
Comparison of Uncertainty Quan-
tification and Validation Method-
ologies on a Civil Tiltrotor Flight
Simulation Model

Tesi di Laurea Magistrale in
Aeronautical Engineering - Ingegneria Aeronautica

Author: Matteo Mamino

Student ID: 994517
Advisor: Prof. Giuseppe Quaranta
Co-advisors: Ing. Andrea Ragazzi, Ing. Federico Porcacchia
Academic Year: 2022-23





i

Abstract

The recent advancements of simulation tools made them a mainstay of aircraft develop-
ment and pilot training in the industry. It is predicted that demonstration of compliance
to certification requirements through flight simulations may take advantage of the reduc-
tion of cost, risk and required time offered by modelling tools. To capitalize on these
advantages, effort shall be devoted to the development and the validation of simulation
tools of sufficient fidelity. In the present work, the most widely acknowledged method-
ologies in the field of verification and validation of computational models are revised
and applied to a state-of-the-art flight simulation model of a civil tiltrotor developed by
Leonardo Helicopters Division. The verification and validation procedures are carried out
through an application of the certification by simulation process presented in the guide-
lines developed by RoCS project. The different validation methodologies are eventually
compared in terms of fundamental assumptions, computational expense, validation met-
rics values and suitability to RoCS guidelines.

Keywords: certification by simulation, uncertainty quantification, model validation





Abstract in lingua italiana

Il crescente avanzamento degli strumenti di simulazione nell’industria aeronautica ha
reso questi ultimi un elemento imprescindibile nello sviluppo delle macchine volanti e
nell’addestramento dei piloti. Si prevede che la dimostrazione di conformità ai requisiti
certificativi attraverso simulazioni di volo possa beneficiare della riduzione di costi, rischi
e tempi richiesti offerta dagli strumenti di modellazione. Tuttavia, per godere di questi
vantaggi, è necessario dedicare energie allo sviluppo e alla validazione di strumenti di
simulazione adeguati. Nel presente lavoro, le metodologie più diffuse nel campo della
verifica e della validazione dei modelli computazionali vengono presentate ed applicate ad
un modello di meccanica del volo allo stato dell’arte di un velivolo tiltrotor. Le procedure
di verifica e validazione sono dimostrate attraverso l’applicazione del processo di certifi-
cazione attraverso simulazione presentato nelle linee guida del progetto RoCS. Le diverse
metodologie di validazione vengono infine confrontate in termini di assunzioni fondamen-
tali, costo computazionale, valori delle metriche di validazione e applicabilità alle linee
guida di RoCS.

Parole chiave: certificazione attraverso simulazione, quantificazione delle incertezze,
validazione
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Nomenclature

Acronyms and Abbreviations

δ Error

µ Mean

σ Standard Deviation

D Best Estimate of the Measurand

E Comparison Error

S Nominal Simulation Prediction

U Expanded Uncertainty

u Standard Uncertainty

ACR Applicable Certification Requirement

ASME American Society of Mechanical Engineers

BEM Blade Element Method

CbS Certification by Simulation

CDF Cumulative Distribution Function

CFD Computational Fluid Dynamics

CG Center of Gravity

CHT Computational Heat Transfer

CR Confidence Ratio

CS Certification Specifications

DoE Domain of Extrapolation

DoP Domain of Prediction



2 | Nomenclature

DoR Domain of Physical Reality

DoV Domain of Validation

FCS Flight Control System

FS Flight Simulator

FSM Flight Simulation Model

FTMS Flight Test Measurement System

IPC Influence, Predictability and Confidence

LHD Leonardo Helicopters Division

MOAT Morris One-At-a-Time

MoC Means of Compliance

OGE Out of Ground Effect

PDF Probability Density Function

RoCS Rotorcraft Certification by Simulation

SA Sensitivity Analysis

UQ Uncertainty Quantification

VV Verification and Validation

Physical Quantities

α Angle of Attack [◦]

β Angle of Sideslip or Rotor Flapping Angle [◦]

Ω Rotor Speed of Rotation [ rad
s

]

ϕ Roll Angle [◦]

ψ Azimuth or Yaw Angle [◦]

θ Pitch Angle [◦]

θ3/4 Rotor Blade Collective Pitch [◦]

F Force Vector [N ]

f Force per Unit Length Vector [N
m

]
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A1 Rotor Longitudinal Flapping Angle [◦]

B1 Rotor Lateral Flapping Angle [◦]

g Acceleration of Gravity [m
s2

]

Ixx Product of Inertia
∫
x2 dm [kg m2]

Ixy Product of Inertia
∫
xy dm [kg m2]

Iyy Product of Inertia
∫
y2 dm [kg m2]

Iyz Product of Inertia
∫
yz dm [kg m2]

Izx Product of Inertia
∫
zx dm [kg m2]

Izz Product of Inertia
∫
z2 dm [kg m2]

L, M , N Components of Resultant Moments in Aircraft Body Frame [N m]

naz Number of Integration Steps in One Rotor Revolution [-]

nhar Number of Inflow Harmonics [-]

nrad Highest Power of Inflow Radial Variation [-]

nseg Number of Aerodynamic Sections [-]

nsimps Number of Intervals in the Composite Simpson Integration rule [-]

p, q, r Angular Velocity Components in Aircraft Body Frame [ rad
s

]

Q Rotor Torque [N m]

t Time [s]

vi Induced Velocity [m
s
]

vx, vy, vz Velocity Components in Aircraft Body Frame [m
s
]

X, Y , Z Components of Resultant Forces in Aircraft Body Frame [N ]

xtcol Total Collective Control [◦]

xtlat Total Lateral Control [in]

xtlon Total Longitudinal Control [in]

xtped Total Directional Control [in]

y Generic System Response Quantity[−]
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ACW, m Aircraft Mass [kg]

BL CG Butt Line Station [m]

STA CG Fuselage Station [m]

WL CG Waterline Station [m]

Subscripts and Superscripts

fus Fuselage

ht Horizontal Tail

L Left Rotor

nac Nacelle

R Right Rotor

rot Rotors

tol Tolerance

vt Vertical Tail

w Main Wing
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1| Introduction

The demonstration of compliance to certification requirements is a fundamental milestone
in the development of any rotorcraft and is required to testify that the vehicle meets
the safety requirements set by the certification authority. Nevertheless, the compliance
demonstration process is generally the most expensive and time demanding part of the
certification activity, due to the amount of necessary ground and flight testing. At the
same time, the recent advancements of simulation tools made them a mainstay of aircraft
development and pilot training in the industry. Hence, it is predicted that demonstration
of compliance through flight simulations may take advantage of the reduction of cost, risk
and required time offered by modelling tools. However, in order to deliver these benefits,
some effort shall be devoted to the development and the validation of simulation tools
of sufficient fidelity. Building on this view, the Rotorcraft Certification by Simulation
(RoCS) project aims to explore the challenges and opportunities associated to the use of
flight modelling during certification and to provide guidelines [22] for the application of
flight simulation to support, either directly or indirectly, the compliance demonstration
activity for helicopters and tiltrotors.

1.1. Research Objective

The objective of the present work is to revise the most widely acknowledged procedures
in the field of model Verification and Validation (VV) and to frame them in the Certifi-
cation by Simulation (CbS) guidelines proposed by RoCS [22], in order to establish what
methodology may be overall best suited for an application in the industry and, possibly,
implementation into future revisions of the CbS process.

Indeed, as also stated in [18], a distinctive aspect of the VV research field is that different,
apparently irreconcilable approaches exist. In this dissertation, two approaches have been
elected to primary reference work: the ASME standard for VV in Computational Fluid
Dynamics (CFD) and Computational Heat Transfer (CHT) [8] and the VV approach
for scientific computing proposed by Roy and Oberkampf [29]. Once framed in the CbS
process, the two standards are applied to a real case scenario and compared in terms of
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simplicity, fundamental assumptions, computational expense, validation metrics values
and suitability to the different uses of model VV tools within the guidelines proposed
by RoCS. Moreover, their applicability to the current industry operating standards is
assessed, making use of a state-of-the-art Flight Simulation Model (FSM) and a set of
experimental flight data both supplied by Leonardo Helicopters Division (LHD).

1.2. Problem Statement

The investigation of the research objective is pursued by emulating the implementation of
the starting phases (namely, phase 1 and 2a) of the CbS process on a civil tiltrotor. EASA
CS.29.143 (d) [7] low speed controllability and maneuverability certification requirements
were chosen for the application presented in this work. As stated in [33], the typically
expensive and time-consuming relocation to high-altitude sites, the involved risks and
the modelling challenges associated to this Certification Specification (CS) makes it an
interesting test bench for RoCS guidelines application.

1.3. Computational Tools

All modelling activities and simulation results presented in this dissertation are obtained
with FLIGHTLAB [1]. FLIGHTLAB is a state-of-the-art, component-based, selective
fidelity modelling and analysis software package, specifically tailored for the rotorcraft
industry.

In addition, all the parametric, optimization, sensitivity and uncertainty quantification
analyses presented in this dissertation were performed coupling FLIGHTLAB with Dakota.
Dakota is an open-source software suited for a wide variety of engineering problems, in-
cluding, among others, design optimization, model calibration and uncertainty quantifi-
cation. It also comes with a flexible interface, based on the exchange of simple text files,
which allows the user to couple it with external codes and softwares, effectively managed
as "black boxes". More information about Dakota is available in the Dakota theory [11]
and users manuals [3].

1.4. Sensitive Information Disclosure

The flight simulation model and the flight data exploited in the validation phase were both
supplied by LHD. As a consequence, several quantitative results of the present work are
omitted on purpose, to avoid disclosure of sensitive information. Similarly, quantitative
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conclusions about the model adequacy and the validation metrics values are not presented.
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2| Elements of Probability Theory

In this section, the concepts of probability theory exploited in the course of the present
dissertation are briefly presented.

2.1. Probability Density Function

In probability theory, the Probability Density Function (PDF) of a continuous variable
X conveys information about the probability of X falling within a particular range. In
essence, given two values a and b, the probability that X lies within the interval [a;b] can
be computed according to the following equation.

P (a ≤ X ≤ b) =

∫ b

a

PDF(x) dx (2.1)

The PDF satisfies two key properties, the first one being non-negativity. Namely, the value
of the PDF is non-negative for all values of X, as formalized in eq. (2.2). The second
property, conversely, is normalization, stating that the total area under the probability
density function is equal to 1, as expressed in eq. (2.3).

PDF(X) > 0 for all X (2.2)

∫ ∞

−∞
PDF(x) dx = 1 (2.3)

2.2. Cumulative Distribution Function

Strictly related to the PDF is the Cumulative Distribution Function (CDF). The latter
is defined as the integral of the PDF, as formalized in the following equation.

CDF(X) =

∫ X

−∞
PDF(x) dx (2.4)
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As a consequence, building on eq. (2.1), the value of CDF directly quantifies the proba-
bility of X being smaller than a given value b, as reported below.

P (X ≤ b) = CDF(b) (2.5)

The CDF also exhibits two important properties. First of all, it is a monotonically
increasing function ofX. Secondly, asX approaches negative infinity, the CDF approaches
0, while as X tends to positive infinity, the CDF approaches 1. The latter property is
delivered mathematically in terms of limits, as reported in the equations below.

lim
X→−∞

CDF(X) = 0 (2.6)

lim
X→∞

CDF(X) = 1 (2.7)
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3| RoCS Process Overview

In the course of this dissertation, the structured CbS process proposed by RoCS commit-
tee, as it is presented in [22], is followed. The three main phases in which the guide is
organized are reported in fig. 3.1. Nevertheless, only phase 1, phase 2a and part of phase
3 are briefly summarized in this section, being the ones more involved in the development
of the present work.

Figure 3.1: CbS process summary (from [22])

3.1. Phase 1: Requirements-Capture and Build

Before embarking in the CbS process, the applicant shall understand the problem under
consideration and determine the objectives and the desired outcomes and accuracy of
the simulation activity. In particular, these understandings and determinations are to
be framed both in a specific perspective, strictly related to an Applicable Certification
Requirement (ACR), and in a general perspective, which relates to the aircraft behaviour



12 3 | RoCS Process Overview

throughout the flight envelope. Eventually, these understandings and determination come
together in the definition of a set of requirements which the FSM, FS and FTMS must
measure up to.

Thus, the requirements-capture and build phase starts with the identification of the ACRs,
directly drawn from the CS, for which simulation is foreseen to play a role in compliance
demonstration. Then, the identification of flight simulation Influence, Predictability and
Confidence (IPC) levels for each ACR follows. The definitions of these levels are used
to convey meaning to the underlying consequences of the application of the CbS pro-
cess. Indeed, their choice affects the simulation-aided certification campaign in terms
of safety, efficiency and effort partition between simulation and flight testing. Within
RoCS framework, influence and predictability levels are effectively recognized exploiting
the concept of four domains. This domains structure not only may guide the applicant in
the identification of simulation influence and predictability levels, but comes in handy in
the understanding of influence and predictability concepts themselves. The definitions of
RoCS application domains is reported below and a sketch of the domains, together with
their mutual relationship, is displayed in fig. 3.2.

Figure 3.2: Sketch of RoCS application domains and their mutual relationship (from [22])

1. The domain of physical reality (DoR) is the domain within which the laws of physics
being used are adequately represented in the flight model and flight simulator. Since
all models and simulations used in the CbS process will include approximations to
physical reality, this domain is strictly the region where the approximations are
valid, reflecting the description ‘adequately represented’. All the other domains
mentioned below must be included within DoR.
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2. The domain of prediction (DoP) represents the domain within which the applicant
intends to predict the behaviour of the aircraft1 and to use these predictions to
achieve certification at the defined influence level for an ACR.

3. The domain of validation (DoV) is the domain within which test data that are
involved in flight model validation lie.

4. The domain of extrapolation (DoE) represents the domain within which extrapo-
lation of predictions are made to achieve certification at the defined influence level
for an ACR.

Thus, the operational envelope of the rotorcraft, together with engineering data and ACRs
requirements, lay the basis for defining the conditions under which the components and
the features of the flight simulation model may operate (and so the complexity of the
physics that is to be modelled). Then, building on the flight points in which exhibition of
compliance to an ACR is requested by the certification authority, the applicant identifies
the simulation influence level by deciding to what extent simulation is to be exploited2.
In the present guidance, the levels of influence are organized into four options, defined in
table 3.1. In effect, this decision explicitly marks simulation prediction points and traces
the DoP boundaries within the DoR.

Influence Levels Description
I1 De-risking The simulation is used to develop/familiarise with flight

test procedures and to obtain an understanding of pos-
sible problems, hazards, or the need for additional data
gathering etc. No certification credit is obtained.

I2 Critical point analysis The simulation is used to explore the flight envelope to
be tested for a specific ACR and to perform a down-
selection of critical points to be tested in flight, yielding
improvements in test efficiency and safety.

I3 Partial credit The simulation is used to receive certification credit for a
portion of the flight-envelope/aircraft-configuration ma-
trix, or an aspect of an ACR. Supplementary flight tests
will need to be performed to obtain full credit.

I4 Full credit Full credit This category is for cases where certification
flight tests for a specific ACR are replaced by simulation.

Table 3.1: Influence levels within RoCS framework

1or a component.
2Namely, which compliance demonstrations are to be assessed with flight simulation predictions.
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Within phase one, the flight testing activity is also scheduled building on the necessary
flight data (either required for model validation and/or certification compliance demon-
stration, depending on the influence level). As an outcome of these choices, the DoV
boundaries are traced as well and, eventually, the DoE is identified as the portion of DoP
outside the DoV. As soon as the DoE is defined, the simulation predictability level can
be identified. In the framework of RoCS guidance, the predictability level is picked out
among the options presented in table 3.2.

Predictability Levels Description
P1 Full Interpolation Predictions performed within the DoV, the (inter-

polation) errors for the quantities of interest can
be estimated with high confidence

P2 Extensive interpolation and
limited extrapolation

All cases of acceptable extrapolation as per the
current CS-29 and CS-27 Means of Compliance
(MoC) are of predictability level P2.

P3 Limited interpolation and
extensive extrapolation

A possible interpretation of extensive is - when an
extrapolation model can be built from validation
data that do not fall in the P2 level.

P4 Full extrapolation All points used in simulated tests are outside the
DoV and so no direct comparison of the complete
FSM with flight test data is available, e.g. failure
testing.

Table 3.2: Predictability levels within RoCS framework

It is important to stress that, despite the order in which the concepts are exposed above,
the identification of simulation influence and predictability levels made by the applicant
do not take place independently. Conversely, their choice, together with the scheduling
of the flight test campaign, takes place in the same moment of the CbS process and shall
reflect, among others:

1. the current modelling and simulation capability of the applicant, including expertise
in modelling, fidelity assessment and model-updating techniques;

2. the logistical, economical and safety related advantages the applicant benefits from
when simulation is used to support certification;

3. the will of the applicant to invest resources in flight simulation modelling, method-
ologies and hardware development;
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4. the opinion of the certification authority (concerning the selected CSs);

5. the credibility and confidence level on simulation predictions that can be achieved
by the applicant (as expanded in section 3.3).

Possibly, the selection of the influence and predictability levels conditions the minimum
level of credibility expected from the results of the CbS process. The concept of FSM
credibility and how minimum credibility levels are related to influence and predictability
levels is tackled in section 3.3.

In the end, building on the selected ACRs, flight test campaign program and simulation
IPC levels, the applicant can draft FSM, FS and FTMS requirements, fidelity metrics3 for
model validation and credibility assessment and collect all relevant aircraft design data
which are necessary for the modelling activity.

3.2. Phase 2a: Flight Simulation Model Development

The FSM development process is effectively summarized in fig. 3.3. The FSM employed for
ACRs compliance demonstration should capture the physics necessary to achieve sufficient
fidelity (for the cases and conditions of interest). For a high level of confidence in the
simulation predictions, the FSM is applied within the DoV subset of the DoP. Beyond
this, in the DoE, physics should guide the model content, and the levels of confidence in
the results will depend on the credibility analysis. Therefore, the FSM should be physics-
based, i.e. "expressed in terms of, or derived from, the physical laws applied in the creation
of the mathematical model and in the operation of the numerical simulation", as stated in
[22]. Ultimately, the limits of validity of the FSM shall reflect the DoR boundaries. These
limits are expressed in terms of both global variables, such as those that define the flight
envelope (e.g. airspeed), and local variables (e.g. angle of attack of a specific aerodynamic
component). Multiple models, with different levels of complexities and components, may
also be used according to [22], with the complication driven by, and adapted to, the
specific application. Thus, accounting for these considerations and relying on the FSM
requisites drafted in phase one, the applicant defines and develops the flight simulation
model. This particular step of the process is referred to in fig. 3.3 as "Definition".

3Namely, the system quantities whose simulation-predicted and experimental values are somehow
compared to assess the model fidelity.
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Figure 3.3: Process to create a simulation model (from [22])

Upon completion of a FSM, the Verification and Validation (VV) process is undergone,
as in fig. 3.3. RoCS guidelines, in agreement with the VV framework in the literature ([8],
[28]), divide the verification phase into two parts, namely code verification and solution
verification.

Figure 3.4: Outline of a component-based tilt-rotor flight simulation model (from [22])

Code verification, according to the definition in [28], represents "the process of determining
that the numerical algorithms are correctly implemented in the computer code and of
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identifying errors in the software". Typically, its assessment is carried out in two stages.
At first, software quality assurance operations are performed to collect evidence of the
correct implementation of the code and to verify that the code produces repeatable results
in a specified hardware and software environment. Then, in the course of the second
stage, model results are compared against so-called benchmark solution or verification
benchmarks. These benchmarks can either be analytical solutions or numerical solutions
which have been generated appropriately. Whenever commercial softwares are exploited,
the better part of code verification is often performed by the code provider. Nevertheless,
the applicant needs to collect evidence that the verification has been undertaken.

On the other hand, always according to [28], solution verification represents "the pro-
cess of determining the correctness of input data, the numerical accuracy of the solution
obtained, and the correctness of the output data for a particular simulation". Within so-
lution verification, particular attention is generally devoted to the characterization of the
numerical accuracy. Indeed, due to finite tolerances for iterative methods, temporal and
spatial discretizations and finite machine precision, every computational model prediction
is affected by some degree of numerical uncertainty and its assessment is crucial for model
validation.

Upon completion of the verification process, as reported in fig. 3.3, solution validation
takes place. Within the CbS process, this stage is identified with the process referred
to as model validation in the restricted view of validation promoted in [28]. It consists
in the quantification of the accuracy of the computational model and, from a practical
standpoint, it involves the comparison of fidelity metrics4 via an appropriate operator,
which accounts for simulation and test measurements uncertainties and is referred to
as validation metric. Despite the aforementioned definition being generally accepted in
literature (fig. 3.5 and 3.6), no unanimous agreement on the methodologies that are to
be exploited for model validation has been found to these days. Indeed, as stated in
[18], different approaches exist which are irreconcilable at a fundamental level: from basic
definitions to the validation metric. A review of the most widely recognized approaches
and their differences is reported in chapter 4.

4selected during phase 1.
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Figure 3.5: Overview of the sources of uncertainties and model validation process proposed
in the ASME VV Standard 20 [8]

Figure 3.6: Overview of the sources of uncertainty and model validation process proposed
by Roy and Oberkampf in [28]
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Nevertheless, regardless the methodology chosen by the applicant for model validation,
an iterative model tuning and updating phase is expected in the CbS process. Indeed,
during pre-certification FSM development, validation results may convey evidence that
the FSM fidelity is insufficient. In this event, the applicant should investigate the causes
of the discrepancy and carry out physics-based updates to the FSM. Improvements in
the model fidelity may be achieved via relaxation of modelling assumptions, addition of
previously neglected dynamics, calibration of model parameters.

At completion of phase 2a, the applicant proceeds to perform the credibility assessment
and to exploit the validated FSM to support (according to the intended levels of influence
and predictability) the certification activity.

3.3. Phase 3: Credibility Assessment

Within the CbS process, phase 3 encompasses both to the model credibility assessment
and certification. However, in the present work, the part related to credibility assessment
only is briefly summarized. Moreover, in order to deliver a technical and unambiguous
description of what the credibility assessment is, the author has to rely on some defini-
tions and concepts (e.g. model-input, numerical and model-form uncertainty) that are
foundational to any validation framework and are yet to be formally introduced in this
report. For all these elements, an in-depth description is provided in chapter 4.

The bulk of credibility assessment is associated to what is referred to as model adequacy
assessment in Roy and Oberkampf restricted view of validation [28]. In this phase, the
applicant focuses on quantifying the model predictive capability accuracy level (affected
by model-input, numerical and model-form uncertainties) and on establishing whether or
not the accuracy level is satisfactory for the purpose of the simulation activity. Hence, the
credibility assessment shall be judged directly in the DoP and requires usage of Uncer-
tainty Quantification (UQ) techniques to account for model-input uncertainties in FSM
predictions. Moreover, it is important to stress that also model-form error interpola-
tion/extrapolation becomes relevant at this stage, in order to include model-form uncer-
tainties, evaluated within the DoV in the course of model validation, within the overall
model prediction uncertainty. In this regard, it is critical for the applicant to maximise
the confidence related to model extrapolation, by developing a strong background in the
understanding of the physics behind model predictions variations and by exploiting a
sufficient number of point in the DoV to develop the extrapolation.

From a practical perspective, model adequacy or credibility is quantitatively judged
through a comparison with prescribed margins of acceptability. According to RoCS guide-
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lines, model adequacy requirement may be defined in terms of conventional acceptability
margins, alike the ones typically exploited to judge model fidelity, or directly phrased
in terms of ACRs, as exemplified by the concept of Confidence Ratio (CR). The CR, as
reported in eq. (3.1), relates the relative size of a prediction uncertainty U and the pre-
diction margin M to ACR compliance, so that a minimum acceptable value of CR may be
appropriate to define a minimum acceptable confidence level of the simulation prediction.

CR =
M
U

(3.1)

Building on this concept, [22] proposes a system for minimum model prediction confidence
definition which is based on selected influence and predictability levels. An example of a
possible application of this concept is reported in table 3.3.

Influence Level
Predictability Level

P1 P2 P3 P4
I1 Low Low Low Low
I2 Low Low Medium Medium
I3 Low Medium High High
I4 Medium Medium High Very High

Table 3.3: Influence-predictability levels matrix with minimum confidence levels (from
[22])

Finally, similarly to model validation, several iterations may be necessary to the applicant
to demonstrate model credibility as well. As a matter of fact, as soon as the adequacy as-
sessment conveys evidence that the FSM prediction uncertainty is too large, the applicant
is required to either update the FSM or reduce the uncertainty associated to model-inputs
and numerical approximations (depending on what the most dominant contribution is).
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Verification and validation in scientific computing is still an ongoing domain of research.
However, as anticipated in section 3.2, a distinctive aspect of VV research field is that
different, apparently irreconcilable approaches exist. In this dissertation, two approaches
have been elected to primary reference work: ASME standard for verification and valida-
tion in CFD and CHT [8] and Roy and Oberkampf verification and validation for scientific
computing book [28] and conference paper [29]. The reasons behind this selection can be
traced back to the evidence that both approaches are somehow referred to in RoCS guide
[22]. Therefore, in this section, these two methodologies are presented and discussed, de-
voting particular attention to the proposed validation process (and metrics) and stressing
the irreconcilable differences in uncertainty definitions and management.

4.1. ASME Standard

As highlighted in [18], the foundational idea of ASME VV 20 is to extend the standard
approaches adopted for experimental uncertainties to include numerical and model-input
uncertainties in a comprehensive validation framework. Thus, within this structure, nu-
merical, input-related and experimental uncertainties do not belong to independent un-
certainty domains but, conversely, they are interpreted as the very same class of objects.
This idea was first proposed and rigorously structured by Coleman and Stern [31] in 1997.
Specifically for CFD applications, building on the ground-breaking work of Richardson
[24] and Roache [27], [25], [26] on the quantification of discretization uncertainty, Coleman
and Stern devised a VV methodology and put forward two validation metrics: the com-
parison error E and the validation standard uncertainty uval. Then, these methodology
and validation metrics evolved into the current ASME VV standard for CFD presented
in [8].
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4.1.1. Definitions

Error and uncertainty definitions adopted by this standard are directly inherited by [17]
and their concepts are extended in order to be applied to the solution variable from a
simulation as well. In particular:

• the error (of a measurement) δ is defined as the "result of the measurement minus
a true value of the measurand";

• the uncertainty (of a measurement) u is identified as the "parameter, associated
with the result of a measurement, that characterizes the dispersion of the values that
could reasonably be attributed to the measurand".

Moreover, depending on the method exploited for its evaluation, the uncertainty u can
be classified into two categories:

• Type A, if the method of evaluation of uncertainty is based on the statistical analysis
of series of observations

• Type B, if the method of evaluation of uncertainty relies on means other than the
statistical analysis of series of observations

Figure 4.1: Partial nomenclature schematic for ASME VV 20 approach (from [8])

Thus, in this context, an error δ is a quantity characterized by a specific sign and magni-
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tude (which, if known, allow the error to be removed by correction). On the other hand, in
agreement with [16] and [17], the uncertainty u corresponds to the standard uncertainty,
estimate of the standard deviation σ of the parent distribution (of unknown form) from
which δ is a single realization. Building on these foundational concepts and definitions,
the whole nomenclature system adopted by ASME standard, summarized in fig. 3.5 and
fig. 4.1, can be devised.

Once the System Response Quantities (SRQ) upon which the applicant desires to apply
the validation process (namely, the fidelity metrics) are identified, the following quantities
can be derived.

• S represents the simulation prediction of the fidelity metric value in a given point
of the validation domain.

• D represents the experimental datum (namely, the best estimate of the measurand,
according to [16]) of the fidelity metric in the same validation point.

• T represents the true (but unknown) value of the fidelity metric.

As a consequence, the simulation error δS, the experimental error δD and the comparison
error E, displayed in fig. 4.1, are devised through eq. (4.1), (4.2) and (4.3).

δS = S − T (4.1)

δD = D − T (4.2)

E = S −D = δS − δD (4.3)

Then, as in [31], the simulation error is decomposed into three separate contributions, as
reported in eq. (4.4).

• the error δmodel, due to modelling assumptions and approximations

• the error δnum, due to the numerical solution of the model equations

• the error δinput, due to error in the simulation input parameters (e.g. boundary
conditions, geometrical and physical quantities related to the modelled system)

δS = δmodel + δnum + δinput (4.4)

4.1.2. Validation Methodology

The goal of the validation process is to estimate the model contribution δmodel to the
simulation error, which, rearranging eq. (4.3) and (4.4), can be expressed through eq. (4.5).
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δmodel = E − (δnum + δinput − δD) (4.5)

Focusing on the right-hand side of eq. (4.5), it is possible to observe that once S and D

are determined (the former via model prediction and the latter according to the method-
ologies reported in [16]), the comparison error E is known from eq. (4.3). Nevertheless,
the magnitude and signs of δnum, δinput and δD are unknown. Still, despite this evidence,
standard uncertainties unum, uinput and uD associated to the corresponding errors parent
populations can be defined, thus leading to the definition of a validation standard un-
certainty uval. This validation standard uncertainty effectively represents an estimate of
the standard deviation of the parent population whose one single realization is obtained
as (δnum + δinput − δD). Thus, its estimation, which is a pivotal point of the methodol-
ogy hereby presented, provides an indication of the dispersion of δmodel parent population
around the comparison error E. Equation (4.6) formalizes this idea, providing an explicit
relation between δmodel, objective of the model validation, and E and uval, the selected
validation metrics for this validation methodology.

δmodel = E ± uval (4.6)

Thus, at this stage, the computation of uval represents the only open question. If δnum,
δinput and δD are independent, as it is typically assumed, the validation uncertainty can be
expressed as a function of the other errors uncertainties through the Root Sum of Squares
(RSS), eq. (4.7), hence effectively shifting the problem to the need of quantifying unum,
uinput and uD.

uval =
√
u2num + u2input + u2D (4.7)

The computation of unum takes place during solution verification and methodologies which
strictly apply to CFD and CHT problems are presented in [8]. Nevertheless, it is impor-
tant to stress that these methods, which rely on Richardson extrapolation and Roache’s
grid convergence index, lead to an expanded uncertainty estimate Unum (with a confidence
interval of approximately 95%) of the numerical contribution. Thus, an assumption on
the value of the coverage factor necessary to compute unum starting from Unum is needed.
In regard of uinput, both local and global uncertainty propagation methods are presented
in [8]. Thus, as soon as model inputs uncertainties are characterized, uinput can be di-
rectly computed exploiting these techniques. Eventually, concerning uD, the standard
procedures for measurand uncertainty estimation reported in [16] are accepted.
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Upon completion of the validation process, the applicant has direct access to the values
of the validation metrics E and uval and two corollaries follow:

• if |E| >> uval, then it is safe to assume that δmodel has the same order of magnitude
of E and that its estimation is reliable;

• if |E| ≤ uval, probably δmodel is of the same order of magnitude, or even smaller,
than (δnum + δinput − δD).

Thus, from a practical standpoint, it is possible to conclude that reducing the validation
uncertainty1 is beneficial to obtain a reliable quantification of the modelling error and
set up model improvements (i.e. updates to reduce the modelling error). Otherwise,
whenever δmodel is within the "noise level imposed by numerical, input and experimen-
tal uncertainty", as stated in [8], formulating and measuring modelling improvements is
difficult.

Eventually, since E and uval characterize the model-form contribution to the simulation
prediction error, any assessment aimed at proving the sufficiency of FSM fidelity (in-
tended as the compliance of the model-form error to prescribed acceptable margins) can
be directly carried out on these metrics. Indeed, whenever the acceptable margin for the
FSM model-form error encompasses both E and its uncertainty (derived from uval) for all
fidelity metrics, it is possible to state that the prescribed fidelity requirements have been
met.

4.1.3. Model Adequacy Assessment

Concerning model adequacy assessment and model-form error extrapolation, no explicit
procedure is provided in [8]. However, building on the definition of model adequacy
assessment delivered in section 3.3, E and uval alone are not suited for the completion
of this task, since at this stage the analyst aims at evaluating the total uncertainty on
the FSM predictions (represented by δS, and not limited to δmodel). As a consequence,
the information that E and uval convey, appropriately extrapolated into the DoP, shall
be combined with the quantification of δinput and δnum to obtain a reliable estimate of
δS on certification-aimed model predictions. Then, building on this estimate, the total
uncertainty on model prediction U can be quantified, and model adequacy assessment can
be carried out relying, for example, on the CR (fig. 4.2).

1e.g. via rigorous model inputs uncertainty estimation and validation-oriented flight testing.
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Figure 4.2: Example of model adequacy assessment within ASME validation framework

4.1.4. Observations

One fundamental assumption of the methodology exposed in section 4.1.1 concerns the
definition of uncertainty and its quantitative characterization. Since the process is based
on the extension to simulations of the experimental approach [16], it completely relies on
the mathematical framework of the latter. Thus, regardless the type (random or system-
atic) and the nature (numerical, model-form, due to inputs or experimental) of the error,
and independently from the available knowledge of its population2, δ must be character-
ized by a probability density function. Namely, quantities characterized by a single or
multiple intervals, with no assumption on their PDF, are not conceived in this framework.
This foundational definition represents a crucial difference with the approach proposed
by Roy and Oberkampf, as it is cleared in section 4.2, and, as a consequence, results
in significant dissimilarities in terms of how uncertainties are handled and of validation
metrics.

A second observation concerns the management of the numerical uncertainty. Indeed,
being the VV standard tailored for CFD and CHT applications, no procedure for flight
mechanics problems and multi-body models is reported. As a consequence, no direct
instruction to estimate the numerical error standard uncertainty starting from a generic
error magnitude estimate is proposed. In addition, also the methodologies based on
Richardson extrapolation and Roache’s grid convergence index eventually require the
analyst to make assumptions on the PDF of the discretization error. Nevertheless, this
event is well characterized within this framework, and it is typically referred to as type B
uncertainty evaluation, as reported in [16]. On such occasion, the uncertainty is evaluated
by means other than statistical analysis, thus representing an educated guess the analyst
can make building on the information available.

Concerning the account of model-form uncertainty on simulation predictions in other
2which in turn, according to the classification proposed in [16], lead to either type A or type B

uncertainty evaluation.
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points within the validation domain (interpolation) and beyond its boundaries (extrapo-
lation), no instructions are reported in the standard. However, putting aside the issue of
characterizing the trend of the model-form error beyond validation points, it is reasonable
to think that a practical methodology may be conceived within this framework, based on
eq. (4.1). Indeed, if realizations of δinput and δnum can be obtained in the prediction point
of interest3 and samples of δmodel can be derived building on its statistics (E, uval), it is in
principle possible to characterize δS affecting the nominal simulation prediction S outside
the DoV.

Concerning the validation corollaries, whenever |E| >> uval is not achieved, but the ana-
lyst wants to perform some model update and tuning operations, the validation framework
allows to inspect the different contributions to uval, reported in eq. (4.7). Then, building
on this information, focused interventions may be carried out in order to reduce the vali-
dation uncertainty effectively, acting on the dominant contributions.
In addition, starting from the corollaries, it is also possible to formulate some guidelines
concerning fidelity assessment, as stated in [18]. Indeed, if the uncertainties contributing
to uval are foreseen to be of the same order of magnitude of the required model fidelity
level (e.g. maximum/minimum allowable δmodel for a set of fidelity metrics), at the end
of model validation it might not be possible for the applicant to carry out any sensible
conclusion. In fact, even in the best case scenario (E = 0), the uncertainty associated to
δmodel would prevent the analyst to confidently state that the model fidelity target has
been reached. Similar conclusions, also apply to the model adequacy assessment. If FSM
adequacy requisites are formulated in absolute terms4, and not referred to specific ACRs,
it is important to ensure that the model-input and numerical uncertainties alone do not
exceed the prescribed margins in the prediction point of interest. Otherwise, even ne-
glecting model-form error, the applicant will not be able to carry out predictions that are
useful to support the certification activity. Hence, from a practical perspective, whenever
possible, it is worthy to devote some effort to a preliminary estimation of expected exper-
imental and input uncertainties, in order to gain awareness of what the best achievable
fidelity and adequacy levels are.

Eventually, it is worthy to mention one observation regarding the possible uses the analyst
can make of E and uval (and their relationship with the procedure corollaries) in RoCS.
As far as the author is concerned, two major alternatives take shape.
The first one is to exploit the validation technique to derive a quantitative, accurate predic-
tion of the model error (and of its uncertainty) for model fidelity and adequacy assessment

3through the same methodologies used for the quantification of uinp and unum.
4e.g. a given SRQ shall have an associated predictive uncertainty of 5%.
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or certification-aimed model predictions. For these intended uses, the assumptions upon
which the uncertainty quantification and combination process is founded5 should be at
least assessed in order to increase the credibility of the final result.
The second use, on the other hand, is provide the analyst an effective tool to measure
improvements in the model update and tuning phases and to avoid drawing misleading
conclusions due to interference of numerical, experimental and model input errors in the
process. When exploited in this sense, the assumptions regarding the uncertainty prop-
agation and combinations procedures move to the background, since the computation of
uval may serve only to provide evidence that uval << E and that E is a good proxy for the
model-form error. At the same time, the computational cost of the validation procedure
becomes of paramount importance, since many calibration data may be included in the
model tuning phase and since model update might require several iterations to achieve
the desired level of fidelity.
Building on these views, cheaper alternatives to the algorithm proposed by ASME may
be conceived for the second use.

5To name a few: numerical error estimates combination and conversion to uncertainty, independence of
the numerical uncertainty from model input uncertainty in their aggregation, extension of the validation
standard uncertainty, etc.
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4.2. Roy-Oberkampf Approach

The VV approach proposed by Roy and Oberkampf6 is summarized in their 2010 con-
ference paper [29] and is based on the work of Ferson et al. [15], [13] and [14]. In this
section, a high-level overview of the process is provided. More details about their VV
framework and related worked-out examples are tackled in [28].

At last, it is also worthy to mention that the Roy-Oberkampf framework definitions and
procedures are explicitly referred to in AIAA recommended practices for certification
supported by flight simulation [4].

4.2.1. Definitions

At the foundation of the Roy-Oberkampf VV framework stands the classification of un-
certainties into two categories: aleatory (or irreducible) and epistemic (or reducible).

• Aleatory uncertainties represent "the inherent variation in a quantity that, given
sufficient samples of the stochastic process, can be characterized via a probability
distribution". In this framework, this kind of uncertainty is also referred to as
irreducible, due to its inherent randomness, and it is mathematically characterized
with a PDF.

• Epistemic uncertainties identify the instances "where there is insufficient informa-
tion concerning the quantity of interest to specify either a fixed value7 or a precisely
known probability distribution". This kind of uncertainties are also referred to as
reducible, since they could, in principle, be reduced if additional knowledge is sup-
plied. Epistemic uncertainties can be represented mathematically as intervals with
no associated probability distribution or with a PDF, which, as a consequence, does
not reflect the probability of occurrence of a given value but, conversely, the degree
of belief of the analyst. However, in this framework, all epistemic uncertainties are
treated as intervals.

Then, in agreement with the ASME framework presented in section 4.1, Roy and Oberkampf
decompose the uncertainty affecting the simulation prediction into three contributions.

• Uncertainty due to model inputs can be either aleatory or epistemic and, in prin-
ciple, should involve all inputs whose associated uncertainty is non negligible. Its
evaluation occurs in the course of model validation.

6From now on referred to as Roy-Oberkampf approach in this work.
7e.g. a model parameter, such as a turbulence model coefficient in a RANS CFD simulation.



30 4 | Verification and Validation Methods Review

• Uncertainty due to numerical approximation includes discretization errors, iterative
convergence errors and round-off errors. In addition, whenever a sampling technique
is exploited to propagate input uncertainties through the model, the numerical error
associated to the convergence of the propagation technique shall be considered as
well. Within this framework, numerical uncertainties are always treated as epis-
temic, thus with no associated PDF, and their estimation takes place during the
solution verification.

• Uncertainty due to model form error is treated as epistemic and it is estimated
during solution validation.

4.2.2. Validation Methodology

The verification and validation process begins with the identification and characterization
of all model inputs uncertainties. In this stage, only the inputs for which there is con-
vincing evidence8 that associated uncertainties would result in minimal uncertainty in all
fidelity metrics may be excluded. For all the other instances, a mathematical structure
shall be assigned.

Then, solution verification is undertaken. Within this stage of the VV process, estimates
for discretization, iterative convergence and round-off error shall be computed and explic-
itly converted into epistemic uncertainties. The reason why numerical errors are managed
as epistemic uncertainties (within this framework) should be traced back to the inherent
difficulties associated with obtaining accurate estimates of the error themselves. Indeed
there are techniques for the estimation of discretization and iterative convergence error in
CFD and CHT ([28], [24], [27], [25] and [26]). However, the reliability of these procedures
ultimately depends on the specific case and SRQ of interest while, for some other mod-
els (e.g. multi-body models), rigorous methodologies for numerical error quantification
may not even exist. Thus, starting from a numerical error estimate, the simplest method
to quantify associated epistemic uncertainty is to use the magnitude of the error esti-
mate to define an interval. Then, the different contributions from discretization, iterative
convergence and round-off may be combined as reported in the following equation.

UNUM = UDE + UIT + URO (4.8)

The numerical error bound provided by eq. (4.8) shall be computed for each SRQ of
interest and, in principle, as a function of simulation input quantities (since, in general, the
numerical error may change within the model domain of physical reality). Nevertheless,

8e.g. as an outcome of a preliminary input sensitivity analysis on the model.
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it is fairly common to explicitly compute this estimate in a limited number of conditions
only, then extrapolating the resulting uncertainty over the entire physical domain.

Upon completion of the solution verification stage, input uncertainties (previously iden-
tified and characterized) are propagated through the model. For this stage, Roy and
Oberkampf propose Monte Carlo sampling method in [29], due to its flexibility and ca-
pability of dealing with both aleatory and epistemic input uncertainties. In [28] and [29],
methodologies for aleatory or epistemic input uncertainties only are proposed as well.
However, since they are simplified cases of the more general instance9, and considering
that the general case is of interest for the rest of this work, the mixed uncertainty case
only is hereby reported.

Whenever both aleatory and epistemic uncertainties occur, the sampling of each type of
uncertainty shall be separated. Indeed, considering that there is no PDF associated to
an epistemic model input, a sample represents only a single possible realization over the
interval-valued range. On the other hand, inputs which are characterized by a PDF shall
be sampled considering the different probability of occurrence of different values. Hence,
a nested sampling method is proposed in [29]. For each realization of the epistemic
interval-valued inputs, a single discrete CDF for each SRQ is realized by propagating the
remaining inputs through the model. Eventually, after all epistemic and aleatory samples
have been computed, an ensemble of discrete CDFs for each SRQ of interest is obtained.
Then, the boundary envelope of the ensemble is used to form a so called probability box
(sometimes also referred to as p-box or imprecise probability function). A summary of the
sampling process, which involves two nested sampling loops, is reported in fig. 4.3.

The probability box is a peculiar type of CDF. It is an interval-valued probability struc-
ture which delivers information on both aleatory and epistemic uncertainties but without
confounding the two. The typical appearance of a probability box is reported in fig. 4.4.
The possible values of the SRQ for a given percentile of the CDF quantify the epistemic
uncertainties contribution to the SRQ. On the other hand, if a single realization of the
interval-valued inputs is considered, the corresponding single CDF represents the uncer-
tainty due to aleatory inputs. The two contributions remain distinct and can be accessed
by the analyst by the solely interrogation of the probability box10.

9at least for Monte Carlo sampling.
10As anticipated before, the instances in which only PDF-prescribed or interval-valued uncertainties are

present represent simplified cases of the general approach summarized in fig. 4.3. In these cases a single
sampling loop is required and, eventually, the resulting probability structure is a degenerate probability
box. If no interval-valued uncertainty is present, the CDFs ensemble of the general case is constituted of
a single CDF only, and no interval-valued uncertainty on the SRQ is present. On the other hand, if only
interval-valued uncertainties are present, the pbox degenerates into a rectangle, effectively representing
the interval of possible values for the SRQ with no associated probability.
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used for epistemic interval-valued
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Choose the number of samples N to be
used for uncertainties prescribed with a

PDF

Choose a sample form the interval of each interval-valued uncertainty

Choose a random sample form the PDF of each aleatory uncertainty

Evaluate the model to obtain the SRQ value

Has the model
been evaluated using
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Construct a discrete CDF for the SRQ using the N samples

Yes

Has the model
been evaluated using
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No

Yes

Collect the M CDFs onto one plot to show the ensamble of all possible CDFs

For each value of the SRQ, store the largest and smalles value of probability
from the CDFs ensamble

Plot the minimum and maximum probabilities of the CDF to show the aleatory
and epistemic uncertainty in the SRQ

Figure 4.3: Flow chart of nested sampling loops for propagation of both aleatory and
epistemic uncertainties (from [28])
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Figure 4.4: Example of the p-box obtained for a SRQ y (from [29])

As the probability box for each SRQ is available, the model form uncertainty can be
estimated via model validation. At first, the numerical epistemic uncertainty UNUM , es-
timated in the course of solution verification, is appended to the probability box. From a
practical standpoint, this operation results in an enlargement of the epistemic uncertainty
associated to the SRQ prediction, since both the left and right boundaries of the p-box
are shifted outwards by UNUM .
Then, the experimental measurement and its uncertainties are reported against the p-box
graph. In this framework, all experimental realization of the SRQ are exploited to con-
struct another discrete CDF.
Eventually, the minimum area of non-overlap included between the two probability struc-
tures (the p-box from the simulation and the discrete CDF from experimental data) is
identified as the validation metric d (also referred to as area metric). A visual represen-
tation of the area metric concept is reported in fig. 4.5.

The area metric value, dimensional and characterized by the same measurement unit of
the SRQ (alike a comparison error), effectively represents the measure of disagreement
between the model and the experiment according to the knowledge available to the analyst.
Any disagreement, as stated in [29], is attributed to model-form error. As a consequence,
model fidelity requirements compliance can be checked, in principle, comparing the area
metric value with appropriately delivered acceptability margins.
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Figure 4.5: Area validation metric example with four experimental measurements avail-
able for the SRQ (from [29]). The uncertain simulation prediction is represented by a
single CDF, meaning that there is no interval-valued uncertainty in model inputs and
that numerical uncertainties have been neglected

4.2.3. Model Adequacy Assessment

Unlike in [8], Roy and Oberkampf provide general guidelines to account for the model-form
error also in the domain of application (thus in points other than validation ones). For
these predictions, the model error is managed as an epistemic uncertainty with magnitude
equal to the area metric value, as reported in eq. (4.9).

UMODEL = d (4.9)

By "correcting" the area metric value for the increased uncertainty due to the interpo-
lation/extrapolation process, the epistemic model-form uncertainty can be derived and
applied to model predictions beyond the validation points. Thus, the total uncertainty in
the SRQ at the condition of interest for the analysis may be computed as follows.

1. At first, the SRQ probability box is generated propagating input uncertainties,
according to the algorithm summarized in fig. 4.3.

2. Secondly, the numerical UNUM and the extrapolated model-form UMODEL uncer-
tainties are appended to either sides of the pbox (according to the rules of interval
analysis), thus providing an increase in the epistemic uncertainty associated to the
SRQ.

The increase in predictive uncertainty originating from this process is exemplified in
fig. 4.6.
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Figure 4.6: Increase in epistemic uncertainty associated to model prediction due the
addition of numerical and model-form uncertainty

Then, the model adequacy assessment can be carried out directly comparing the uncertain
model prediction with the adequacy margins and/or the ACR, as displayed in fig. 4.7.
Similar examples of adequacy assessment within this framework can be consulted at [30].
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Figure 4.7: Examples of model adequacy assessments within the Roy-Oberkampf frame-
work
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4.2.4. Observations

The epistemic uncertainty conceived in the Roy-Oberkampf approach effectively represent
an extension of the concept of type B evaluation of uncertainties in [16] and ASME VV
20 standard. Indeed, they represent reducible uncertainties and their characterization
reflects the belief of the analyst. However, their mathematical structure is limited to an
interval with no assumption made by the analyst on the PDF (and thus relying only on
the definition of the bounds). From a mathematical standpoint, this feature results in a
different UQ methodology and representation of propagated uncertainties.

Concerning the area validation metric d, it represents the second fundamental difference
with the approach proposed by ASME and it exhibits a number of interesting properties.
First of all, it is defined relying on an integral definition, which makes it very robust with
respect to extreme value of the SRQ at the tails of the discrete CDFs. Secondly, it can be
evaluated regardless the structure of the simulation and experimental probability boxes.
Then, unlike other metrics for CDFs comparison, such as the Kolmogorov-Smirnov test,
it can be applied even to probability structures which does not have any value of the
SRQ in common, as in fig. 4.8a, or identified by vertical spikes, as in fig. 4.8b. At last,
the fact it retains the dimensional physical unit of the SRQ allows the analyst to have a
more intuitive appeal with it when it comes to its application during model interpolation
and/or extrapolation.
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Figure 4.8: Example of application of the area metric to extreme conditions

Another advantage of the Roy-Oberkampf approach is that the probability box arising
from model inputs propagation allows the analyst to quantitatively distinguish the impact
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of aleatory and epistemic uncertainties on each model SRQ. Nevertheless, this edge over
the ASME approach becomes less useful as soon as a large number of physically unrelated
uncertain inputs is considered or given that sensitivity analysis are typically performed
in tandem with uncertainty propagation.

Moreover, some observations regarding the interpretation of d, the definition of the model-
form error and model extrapolation are worthy of mention.
From [29], an explicit and quantitative connection between the model-form error and the
validation metric is solely addressed when d ̸= 0. However, no clear guideline is proposed
about what conclusions regarding the model-form error shall be drawn when d = 0. Nev-
ertheless, it is straightaway clear that whenever d = 0, no model update can be conceived
solely basing on the value of d.
Moreover, it is important to stress that no information about the size of the pbox and the
uncertainty of the measurement is either explicitly or implicitly delivered with d (unlike
uval in ASME framework). As a consequence, the information about the uncertainties in-
volved in the validation process does not make it to the model adequacy assessment. So,
for example, if for any reason the FSM pbox is overestimated during model validation (e.g.
due to overestimated reducible model-input uncertainties), the area metric undergoes a
reduction, and, as a result, the analyst may inadvertently end up with an underestimation
of the overall FSM prediction uncertainty in the DoP (due to the underestimation of the
model-form contribution). In addition, it is not true either to state that the underesti-
mation of UMODEL that occurs on the aforementioned occasions is compensated, during
model adequacy assessment, by the same overestimation of the pbox that caused it in the
first place (hence, leading to a net null error on the evaluation of the total model predic-
tion uncertainty). Sure enough, either due to FSM non-linearity or due to the fact that
model-input uncertainties may be simply different during certification-aimed predictions11

the size of the input-related pbox might even reduce in the DoP. This feature of the area
metric is recalled and discussed more in detail in section 6.3.6, where d is compared with
the other model validation metrics.
On the other hand, concerning the model extrapolation technique proposed by Roy and
Oberkampf, the following evidence is noteworthy. If the area metric value d ̸= 0 retrieved
in a validation point (fig. 4.9a) is applied to the very same probability box it has been

11e.g. in the course of validation the applicant shall consider uncertainties associated to the simula-
tion boundary conditions (density altitude, air speed, etc.) since the values are retrieved from the flight
measurements upon which the validation is carried out. However, some of these inputs may turn deter-
ministic in certification-aimed predictions, with value assigned directly from the ACR. As a consequence,
it is possible that the pbox shrinks in the DoP, since the overall uncertainty on simulation inputs has
reduced.
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derived from12 to account for the evaluated model-form uncertainty, the result reported in
fig. 4.9b is obtained. Indeed, the different shapes of the simulation pbox and experimen-
tal CDFs lead to a residual disagreement (highlighted in green in fig. 4.9b) between the
model and the experiment. However, apparently, this disagreement is not contemplated
within this framework, given that all conceived uncertainties (inputs related, numerical,
model-form and experimental) have been already taken into account.
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Figure 4.9: Example area validation metric computation and model-form uncertainty
definition and application

Finally, as anticipated in section 4.1.4, considering that expensive sampling techniques are
involved in this framework as well, it is be possible that simpler and cheaper alternatives
may be conceived for model update purposes and preliminary quantification of the model
prediction uncertainty.

12Thus, without the need of any correction to to interpolation/extrapolation of the model-form error.
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Phase 1

In this section, a simplified application example of the phase 1 of the CbS follows. Since
the work presented in this dissertation was carried out in collaboration with LHD, the
proposed application could not ignore, among others, the wide availability of flight test
data and the state-of-the-art tiltrotor FSM provided by the company. As a consequence,
less attention was devoted to the decision making process an actual applicant would fol-
low1. Nevertheless, the pivotal concepts exposed in RoCS guidelines (namely, application
domains, flight data for model validation, IPC levels and model requirements) are tackled.

5.1. Certification Requirements and Fidelity Metrics

Certification specifications for the hereby presented demonstration were extracted from
[7]. In particular, CS.29.143 (d) for OGE low speed controllability and maneuverability,
also reported below, was considered.

"Wind velocities from zero to at least 31 km/h (17 knots), from all azimuths, must be
established in which the rotorcraft can be operated without loss of control out-of-ground
effect, with:

1. Weight selected by the applicant;

2. Critical center of gravity;

3. Rotor rpm selected by the applicant; and

4. Altitude, from standard sea-level conditions to the maximum take-off and landing
altitude capability of the rotorcraft"

The CS requires the applicant to interpret what loss of control means in order to be
translated into ACRs. LHD takes into consideration several factors when it comes to

1Also considering, as specified in section 3.1, than the most critical decisions within this phase of the
process depend on the applicant resources, modelling experience, etc. and the certification authority.
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the interpretation of this specific CS. Static trim controls margins, minimum achievable
rates and accelerations in single-axis maneuvers, aircraft trim attitudes and pilot’s opinion
and workload all contribute to the definition of the low speed controllability envelope for
the tiltrotor configuration. Thus, to derive simple and directly applicable certification
requirements for the aforementioned specifications alone is a great task indeed. So, for
the sake of simplicity, the author decided to exclude any stability and aircraft dynamics
related argument, hence rephrasing the controllability requirement as a sole function of
the aircraft trim static control margins2. As a consequence, model validation is based on
the comparison of fidelity metrics at trim and involves the time domain only.

Concerning the fidelity metrics, the preliminary set proposed by RoCS [32] was considered.
This set of metrics is directly derived from CS-FSTD(H) [6], the certifications standard for
training flight simulators, and was developed in collaboration with LHD. The set of fidelity
metrics proposed in [32] for trim accuracy assessment is summarized in table 5.1, together
with the associated margins proposed to assess model fidelity. In addition, wherever
present, the acceptability margins provided in [6] are reported for comparison.

Parameter
Acceptability Margins

RoCS & LHD [32] CS-FSTD(H) [6]3

Rotor Mast Torque4 3% 3%

Pitch Angle 1.5◦ 1.5◦

Roll Angle 1.5◦ 2◦

Longitudinal (Total) Control Position 5% 5%

Lateral (Total) Control Position 5% 5%

Directional (Total) Control Position 5% 5%

Collective (Cockpit) Control Position 5% 5%

Rotor Longitudinal Flapping 1◦ or 10% -
Rotor Lateral Flapping 1◦ or 10% -
Angle of Attack 1◦ -
Angle of Sideslip 1◦ -

Table 5.1: Summary of time domain fidelity metrics (and associated acceptable margins)
proposed by RoCS and CS-FSTD(H) for trim fidelity assessment

With respect to CS-FSTD(H), this set of metrics incorporates angles of attack and sideslip,
2Thus, relying only on a subset of the controllability criteria exploited by LHD.
3Margins selected from "Low Airspeed Handling Qualities - Trimmed Flight Control Positions"
4Acceptable margins in % of the rotor maximum continuous operating torque.
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together with rotor flapping angles. The latter are considered of paramount importance
in LHD, due to their impact in simulation-based rotor clearance assessments.

However, starting from the summary in table 5.1, some modifications were carried out.
First of all, the angle of sideslip and angle of attack were excluded from the set, due
to the unavailability of reliable airspeed data in low speed flight conditions. Secondly,
the collective control position (xtcol) was replaced with the rotors blades collective pitch.
Indeed, within the FSM, xtcol directly controls the rotors blades pitch. On the other hand,
on the flying aircraft prototype, the collective control position is processed differently,
and represents an input signal for the control system of the turboshaft engines. As a
consequence, a direct comparison of the total collective control between FSM and flight
data was not viable, and the actual blade collective pitch input at the swash-plate was
used instead as fidelity metric. The summary of fidelity metrics exploited in this work for
model validation is reported in table 5.2.

Parameter RoCS & LHD Margins [32]
Rotor Mast Torque5 Q 3%

Pitch Angle θ 1.5◦

Roll Angle ϕ 1.5◦

Longitudinal (Total) Control Position xtlon 5%

Lateral (Total) Control Position xtlat 5%

Directional (Total) Control Position xtped 5%

Rotor Blades Collective Pitch θ3/4 -
Rotor Longitudinal Flapping A1 1◦ or 10%

Rotor Lateral Flapping B1 1◦ or 10%

Table 5.2: Summary of time domain fidelity metrics exploited in this work

5.2. Flight Data Selection

The choice of influence and predictability levels within the CbS process, as mentioned
in section 3.1, depends on several factors and it is carried out together with the flight
test campaign planning. Thus, starting from the data-set of low speed flight data made
available by LHD, the author selected a subset upon which to perform the validation.
Then, the IPC levels were defined as a consequence.

The flight data selected for the guidelines application are represented by a set of mea-
5Acceptable margins in % of the rotor maximum continuous operating torque.
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surements carried over four time windows. Each window has a duration of 2 seconds and
corresponds to an attempt of horizontal, uniform, rectilinear flight at an assigned ground
speed azimuth angle. The selection process took into account several factors, the most
important, aircraft configuration (vertical tail size, control chain version, FCS release,
etc.), the OGE conditions and the quality of the flight datum itself. In addition, the
will to explore different flight conditions ultimately led the author to select a set of data
spanning different ground speed azimuths. In fig. 5.1, the time histories of aircraft pitch
attitude and longitudinal control position associated with the selected validation windows
are displayed. As reported in the legend, different flights have been referred to using the
corresponding nominal ground speed azimuth. For the sake of convenience, this way of
referencing is exploited from here on to identify the different validation points. Flight
data time histories of other quantities interest can be consulted in appendix A.
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Figure 5.1: Examples of flight data time histories for the selected validation flights

The measurand is defined as a steady value, corresponding to the system response quan-
tity at trim. However, great variability can be spotted in the time histories of fig. 5.1
and appendix A6. Building on this evidence and considering the body axis acceleration
data, it is straightaway clear that, mathematically speaking, the trim condition was not
strictly achieved. Thus, among others, indeed some errors (reasonably of both random
and systematic nature) associated to the "imperfect realization of the measurand", as it
is referred to in [16], are present. The validation procedures presented in chapter 4 both
account for experimental data uncertainty, but in different ways. Hence, in this work, the
problem of experimental uncertainty quantification is carried out within model validation
in section 6.3.

6The lateral control position in ψgs = 0◦ and ψgs = 180◦, the directional control position in ψgs = 120◦

and ψgs = 180◦ and the roll angle in ψgs = 180◦ are the greatest examples.
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It is also interesting to observe that the flights selected for validation purposes in this
work do not belong to a validation-oriented flight test program. On the other hand, they
derive from testing campaigns that LHD carried out for vehicle development and certifica-
tion compliance demonstration purposes. Nevertheless, the application of the validation
procedures to this set of data is indeed of use to shed light on the challenges associated
to uncertainty definition for these kind of time histories and to figure out whether this
level of uncertainty may be adequate for model validation, or if the implementation of
more strict validation-oriented testing procedures shall be considered for future, real case
scenario applications of the guidelines. Indeed, building on the observations carried out
in section 4.1.4, if an applicant was to find out that its standard procedures for flight test-
ing result in experimental uncertainties which are unacceptable for the desired margin of
model fidelity, greater effort shall be accounted for validation-oriented flight tests during
the CbS planning. Moreover, it is also possible that the measurement error observed in
these tests, including the contribution associated to the aforementioned "imperfect real-
ization of the measurand", may not be significantly reducible, since largely due to piloting
technique, limit cycle oscillations, etc.

5.3. Domains Definition and Influence, Predictability

and Confidence Levels

Building on the validation flight tests data discussed in section 5.2, the application do-
mains and the IPC levels have been derived. In fig. 5.2, RoCS application domains defined
in terms of (nominal) density altitude and (nominal) ground speed magnitude and azimuth
are reported.

In fig. 5.3, on the other hand, the (nominal) validation flights collocation in the weight-CG
position envelope is displayed.

Considering the ACRs discussed in section 5.1, and relying upon these sole selected flights,
the applicant may exploit the simulation model for a critical point analysis within the
compliance demonstration, thus identifying the influence and predictability levels as I2-P3.
Sure enough, considering fig. 5.2, it is possible to conclude that all validation data points
are far from both the maximum speed of 17 knots and the maximum (and minimum)
landing density altitude of the aircraft. In addition, critical center of gravity positions
are not achieved either, as reported in fig. 5.3. As a consequence, according to RoCS
proposal, upon acceptance by the certification authority, it may also be hypothesised that
the minimum confidence level required on model predictions may be high (table 3.3).
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Figure 5.2: Prediction, validation and extrapolation domains

5.4. Model Requirements

In the framework of this dissertation, the first phase of the CbS can be considered com-
pleted upon selection of the FSM requirements. Building on the elements exposed in
section 5.1, 5.2 and 5.3, the following requisites for the FSM can be established.

Certainly, the model shall be physics-based, especially considering the amount of extrap-
olation (and interpolation) that is necessary for compliance demonstration. Moreover, all
FSM components shall always operate within the DoR required for this CS.

Secondly, considering the fact that no pilot-in-the-loop simulation is forecasted (due to
the simplification hypothesis discussed in section 5.1), no explicit model run time con-
straints are to be placed. Nevertheless, keeping in mind that Sensitivity Analyses (SA)
and Uncertainty Quantification (UQ) are to be carried out in the VV phase, reducing,
whenever possible, the FSM trim evaluation time is in the best interest of the users of
this CbS process.

In addition, since the total control positions have been selected as fidelity metrics in
section 5.1, a faithful reproduction of the aircraft flight control system (at least for the
trim related part) shall be included within the FSM. Otherwise, no direct comparison
between the total control position can be carried out.

Moreover, since all selected validation points and ACRs do not involve ground effect,
its modelling may not be included in the FSM. Nevertheless, considering the low speed
environment of the CS, interference aerodynamics are expected to play a crucial role in
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Figure 5.3: Validation points position within the weight-balance envelope of the rotorcraft

the aircraft behavior; hence, its physics-based modelling shall be a pivotal component of
the FSM. It may be reasonable to conclude that at least the interactions between the
rotor wake, wing, tail and nacelles are necessary to achieve sufficiently high confidence
levels in the model predictions.
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Phase 2a

In the following sections, the phase 2a of RoCS guidelines is tackled. At first, the FSM
supplied by LHD is introduced and assessed in terms of compliance to the requirements
assembled in section 5.4. Then, the solution verification is carried out, devoting particular
attention to the error estimation algorithm and the model parameters involved. Eventu-
ally, the solution validation is performed following different approaches and the obtained
results are presented and compared in terms of validation metrics values, computational
expense and suitability to the CbS process.

Both in this chapter and the following, the author refers to the set of parameters summa-
rized in table 6.1 as SRQs of the FSM.

Parameter Symbol
Rotor Mast Torque Q

Pitch Angle θ

Roll Angle ϕ

Longitudinal (Total) Control Position xtlon

Lateral (Total) Control Position xtlat

Directional (Total) Control Position xtped

Rotor Blades Collective Pitch θ3/4

Rotor Longitudinal Flapping A1

Rotor Lateral Flapping B1

Table 6.1: Summary of the SRQs of the FSM

Rotor flapping angles are defined according to the following equation.

β = β0 + A1 cosψ +B1 sinψ (6.1)
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where β0 is the rotor pre-cone and ψ is the azimuthal position of the rotor blade in the
fixed rotor frame.

6.1. Flight Simulation Model

The phase 2a of the CbS process begins with the FSM development. However, since, as
already mentioned, LHD provided the baseline FSM exploited in this work, this section
is mainly devoted to the description of the model and to the acknowledgment of its
observance of the phase 1 requirements.

The FSM is developed in FLIGHTLAB. Within the model, each aircraft functional part
is implemented and integrated with other systems in a component-based approach, as
exemplified in fig. 6.1. The model is conceived as a time-marching simulator, capable of
the time integration of the aircraft equations of motion, reported in eq. (6.2), together
with the equations of motion of the rotors subsystem. All aerodynamic components are
modelled as rigid, as typical in the flight mechanics framework, and a list of their main
features, together with the associated modelling hypotheses, is reported in table 6.2.

Flight Control
System

Rotors

Wing

Tail

Fuselage

Forces and
Moments

Computation

Flight Dynamics
Equations of

Motion

Atmospheric
Data

Aircraft
Motion

Nacelles

Figure 6.1: FSM components breakdown
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m(v̇x + qvz − rvy) +mg sin θ = Xrot +Xwing +Xtail +Xnac +Xfus

m(v̇y + rvx − pvz) +mg cos θ sinϕ = Yrot + Ywing + Ytail + Ynac + Yfus

m(v̇z + pvy − qvx) +mg cos θ cosϕ = Zrot + Zwing + Ztail + Znac + Zfus

Ixxṗ− Izxṙ + q(Izzr − Izxp)− qrIyy = Lrot + Lwing + Ltail + Lnac + Lfus

Iyy q̇ + r(Ixxp− Ixzr)− p(Izzr − Ixzp) =Mrot +Mwing +Mtail +Mnac +Mfus

Izz ṙ − Ixzṗ+ q(−Ixxp+ Ixzr) + pqIyy = Nrot +Nwing +Ntail +Nnac +Nfus

ϕ̇ = p+ (q sinϕ+ r cosϕ) tan θ

θ̇ = q cosϕ− r sinϕ

ψ̇ =
q sinϕ+ r cosϕ

cos θ

(6.2)

The rotors are modelled with blade element theory. Each blade is subdivided in a finite
number of sections with prescribed aerodynamic properties. Fixed lifting surfaces, namely
the wing and the tail, are modelled as lifting lines. Also in this instance, the surfaces are
subdivided in sections with prescribed aerodynamic properties. Finally, fuselage and
nacelles aerodynamic loads are managed via specific look-up tables and making use of
single control points for airspeed acquisition.

Component Feature Model

Rotor blade
Airloads

Unsteady BEM with non linear
look-up tables

Induced velocity Peters-He finite state
Active aerodynamic interference Peters-He finite state

Wing & tail
Airloads Lifting line
Induced velocity Peters-He finite state
Active aerodynamic interference Peters-He finite state

Fuselage Airloads Steady non linear look-up tables
Nacelle Airloads Steady non linear look-up tables

Table 6.2: FSM aerodynamic components features and models
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The induced velocity field of the lifting components (namely, blades, wing and tail) is
modelled with the Peters-He finite state model ([19], [23]), a physics-based time-domain
dynamic wake model originally conceived as a tool for the aeroelasticity and aeromechanics
of lifting rotors. Nevertheless, within FLIGHTLAB, the possibility to apply this model to
fixed lifting surfaces is contemplated. Within the Peters-He model, the induced velocity
at the rotor disk (or at a fixed lifting surface) is expressed as a combination of shape
functions which account for both azimuthal and spanwise variations, as reported in the
following equation.

vi(r, ψ, t) =
∞∑
k=0

∞∑
j=k+1,k+3,...

Ψk
j (r)[a

k
j (t) cos(kψ) + bkj sin(kψ)] (6.3)

where r is the non dimensional spanwise coordinate, ψ the azimuthal coordinate, Ψk
j are

radial shape functions and akj and bkj time dependent states of the induced flow model.
A system of first order differential equation, directly derived from the incompressible
potential flow equations, is solved to compute the time varying coefficients of the shape
functions. The closed-form analytical expression of this model, together with its finite
state state-space formulation as a system of non-linear differential equations, makes it
suitable for wide variety of applications (including, e.g., time-marching simulations and
rotor stability calculations).
In addition, as described in [20], this inflow model can be expanded in order to account for
aerodynamic interference. Considering the relative position of the lifting device (either
the rotor disk or a fixed wing) and the point of interest for interference, the integral
relations summarized in eq. (6.4) can be derived1.

vi xw(xw, yw, zw) =
1

V∞

∫∞
ξ

ΦV
ξ dξ

vi yw(xw, yw, zw) = − 1

V∞

∫∞
ξ

ΦV
yw dξ

vi zw(xw, yw, zw) = − 1

V∞

∫∞
ξ

ΦV
zw dξ

(6.4)

where xw, yw, zw represent the position of the interference point with respect to the lift-
ing device in the latter’s wind axes frame, V∞ represents the non dimensional freestream
velocity, Φ the non dimensional pressure distribution (see [19]), ξ the non dimensional

1It is important to stress that this interference model establish a one-way connection between the
inducing lifting body and the interference point of interest. In the latter, the experienced dynamic
pressure depends on both an induced contribution and a freestream contribution, but no feed-back of the
presence of a body in the interference point of interest is experienced by the inducing lifting device.
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coordinate along the freestream line and vi the induced velocity components at the inter-
ference point of interest. To compute these integrals, the pressure distribution Φ shall be
known in advance.
Being aerodynamic interference modelling a fundamental FSM requisite, as pointed out
in section 5.4, this wake interference formulation is integrated in the model to compute
the active interference of lifting devices2 on other components. As highlighted in fig. 6.2,
active interference of the rotors on the nacelles, the wing and the tail has been considered.
In addition, the active interference of the main wing on the tail was modelled, as well
as the mutual interference between the vertical and horizontal tail surfaces. No nacelle
or wing blockage effects on the induced velocity at the rotor disk were accounted for, as
well as any active interference on the fuselage body. Similarly, no active interference of
the tail on either the wing, the rotors or the nacelles is modelled3. No interference be-
tween the two rotors is considered either and no ground interaction with any component
of the model is included, given that IGE flight conditions are beyond the scope of the CS
exposed in section 5.1.

Concerning the aerodynamic loads look-up tables (namely for the rotor, wing and tail
sections, for the fuselage and for the nacelles), the attitude and speed envelopes ensure that
only interpolation is carried out during their interrogation in the DoP. Similar conclusions
can be carried out for the other model components, designed to be suitable for flight
conditions in the whole aircraft low-speed envelope.

For the FCS, a replica is included in the FSM within the FLIGHTLAB environment.

6.2. Solution Verification

Being FLIGHTLAB a commercial software package, code verification was not been explic-
itly undertaken by the author. Conversely, the evidence provided in [12] was considered
sufficient for the scope of this work. Hence, the work presented in this section focuses on
the assessment of the FSM numerical accuracy.

As acknowledged in [33], the widely recognized solution verification practices outlined
in existing standards (e.g. [8]) are aimed at CFD and structural analysis problems and

2Indeed, in order to account for the active interference of bluff bodies with a physics based formulation,
a fundamentally different approach would be required.

3Indeed, it may be argued that in backward flight, the tail wake may result in some influence on the
wing and rotor behaviour. Nevertheless, being the tail an aerodynamic body designed for airplane mode
flight, it is also reasonable to believe that such influence in low-speed backward flight conditions would
mainly be viscous-effects related, and, hence, not manageable with the Peters-He induced velocity model
with a physics based approach.
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Figure 6.2: FSM aerodynamic interference outline. Active interference effects of an aero-
dynamic component on other parts are marked by a continuous line. On the other hand,
dashed lines mark the account for self-induced velocity on a component.

cannot be directly applied to a multi-physics flight simulation models. Thus, the author
came up with its own operative procedure for the solution verification of the FSM. Nev-
ertheless, the hereby proposed approach was based on several concepts pointed out in [8]
and [28], starting from the numerical error contributions highlighted in eq. (6.5).

δNUM = δDE + δIT + δRO (6.5)

In the following subsections, the set of FSM model parameters considered for the as-
sessment of δDE and δIT affecting each fidelity metrics is presented and described. The
round-off error δRO, on the other hand, is neglected, since reasonably expected to be
substantially smaller than the two aforementioned error contributions. Then, an outline
of the numerical accuracy estimation process is provided and the results of the solution
verification phase are discussed.
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6.2.1. Parameters of Influence

To select the parameters of interest4 for the solution verification, it is necessary to deepen
the FSM spatial and temporal discretization, the numerical time integration scheme and
trim equations solution algorithm. Indeed, only with a complete overview of the latter
topics it is possible to understand what FSM parameters affect δIT and δDE.

Iterative Convergence Error Parameters of Influence

Contributions to the iterative convergence error δIT are indeed present whenever a system
of equations is solved numerically with an iterative method [29]. Within the framework
under consideration, such occurrence happens several times. Being the flight simulation
model a time-marching, mappings between model inputs and outputs can be computed
only via discrete time integration of eq. (6.2). Hence, the first contribution to δIT is
associated to the implicit Newmark-Beta time integration scheme, which requires a linear
system of equations to be solved at every time step. The second instance is related to the
non linear system of equations that enforces the trim of the aircraft, summarized in the
following equation.

F (x) = 0 (6.6)

where
x = [xtcol , xtlon , xtlat , xtped , θ , ϕ]

T (6.7)

F (x) = [v̇x , v̇y , v̇z , ṗ , q̇ , ṙ]
T (6.8)

Finally, eq. (6.6) is solved exploiting a variation of the Newton-Raphson method, which,
in turn, requires to solve the linear system of equations (6.9) every time the trim variables
x are updated from iteration k to k + 1.

JF (xjac) (xk+1 − xk) = −F (xk) (6.9)

where JF (xjac) represents the numerical approximation of the Jacobian matrix of F (x)
evaluated at xjac.

4In principle, it is indeed true to state that, for each fidelity metric, both δIT and δDE depend on
any FSM parameter and input datum. Nevertheless, the author here uses the expressions "parameters of
influence" or "parameters of interest" to refer to those parameters that are explicitly and formally bond
to the numerical algorithms and discretization procedures which cause the occurrence of δIT and δDE in
the first place.



54 6 | RoCS Guidelines Application - Phase 2a

Rigorously speaking, the exit criteria for the numerical solution algorithms of all the afore-
mentioned equations systems affect δIT . However, since eq. (6.9) solver can be effectively
considered to be only a provider for an update candidate solution to eq. (6.6), it may be
argued that the exit criteria related to the former does not affect the bounds of δIT .
In addition, the iterative convergence error is affected by another factor: the criterium for
the identification of a steady state condition during time integration. As aforementioned,
the FSM is a time-marching system, meaning that time integration of equations of motion
is needed to map model inputs (e.g. control positions) into model outputs (e.g. airframe
accelerations). Thus, within the Newton-Raphson algorithm, time integration up to a
steady state condition is required to evaluate the mapping F (x) and its Jacobian matrix
JF at each iteration. As a consequence, the numerical criterion for the definition of the
steady state condition itself affects the residual of eq. (6.6) during the solution process
and, therefore, impacts δIT .

By default, FLIGHTLAB allows the user to set exit criteria for both the linear and the
non linear equations solvers. Concerning the former, the maximum number of iterations
and a scalar, relative convergence tolerance value can be specified. As soon as one of the
two is reached, the iterative method is arrested. In regards of the latter, independent
tolerances for the residual linear and angular acceleration components in the body frame
at steady state can be set. Thus, once all user defined acceleration tolerances are met,
the solution is considered to be converged.
Considering the identification of the steady state condition, FLIGHTLAB relies once
more on the values of the body frame acceleration components. In particular, their
average values on the last Navg rotor revolutions are compared with the averages on the
previous Navg revolutions. Once the differences between the averages fall within the user
specified tolerances for all linear and angular acceleration components, the steady state is
considered to be achieved. However, no check concerning the variation of the accelerations
within the last Navg revolutions is carried out. By default, in FLIGHTLAB, the linear
and angular acceleration tolerances for the steady state definition are bound to a half
of the trim equation tolerances. Hence, whenever the user asks for tighter trim equation
tolerances, the criterium for the steady state identification is tightened accordingly. In the
present work, the author made use of this FLIGHTLAB default option, which ultimately
led to a reduction of the independent model parameters which affect δIT . Moreover, Navg

was maintained fixed and equal to 1.

A summary of all the independent FSM parameters which affect δIT and are involved in
the solution verification is presented in table 6.3.
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Solver Parameter

Linear system iterative solver Maximum iterations Nlin

Convergence tolerance ϵlin

Trim equation solver

Longitudinal acceleration tolerance v̇x tol

Lateral acceleration tolerance v̇y tol

Vertical acceleration tolerance v̇z tol

Roll rate derivative tolerance ṗtol
Pitch rate derivative tolerance q̇tol
Yaw rate derivative tolerance ṙtol

Table 6.3: List of the FSM parameters affecting the model prediction iterative convergence
error δIT and involved in the solution verification process

Discretization Error Parameters of Influence

Concerning δDE, on the other hand, contributions arise whenever a temporal or spatial
discretization is carried out. Considering the FSM outline presented in section 6.1, this
occurs in several instances. First of all, a time discretization is performed to allow for
numerical time integration with the Newmark-Beta scheme. The integration step dt is
defined according to the following equation as a function of naz.

dt =
2π

Ω naz

(6.10)

Secondly, all aerodynamic surfaces (including the rotor blades, the wing and the horizontal
and vertical tail) are divided into nseg sections. As a consequence, both the sampling of
the dynamic pressure spanwise variation and the resulting integral aerodynamic loads are
affected by the choice of this discretization, as exemplified in eq. (6.11).

F =

nseg∑
j=1

f
j

dlj (6.11)

where f
j

and dlj are the load per unit length and the width of the j-th aerodynamic
segment of a lifting surface, respectively. In addition, as anticipated in section 6.1, the
aerodynamic interference model [20] included within the FSM requires to compute the
pressure distribution integrals in eq. (6.4) in order to quantify the induced velocity at the
interference point of interest. However, some of these integrals do not come with a closed-
form analytical expression. Thus, the composite Simpson integration rule with nsimps

intervals is used for their approximation. Eventually, the last contribution to δDE comes
from the finite state representation of the lifting surfaces inflow, since the approximation
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resulting from the truncation of states of a dynamic system may be interpreted as a
discretization error. Within FLIGHTLAB, the number of induced velocity states can
be set by prescribing the inflow maximum power of radial variation nrad and number of
harmonics nhar (corresponding to the maximum value of indexes k and j of eq. (6.3),
respectively). Then, the total number of inflow states is obtained according to the table
reported in fig. 6.3.

Figure 6.3: Peters-He model total number of inflow states as a function of the inflow
highest power of radial variation nrad and number of harmonics nhar (from [19])

Nevertheless, if all the discretization parameters mentioned above were to be considered,
the solution verification process would become excessively costly and intricate. Hence,
with the aid of some physical considerations, some parameters were left out. In low speed
flight conditions, fixed aerodynamic surfaces are expected to work at low efficiencies and
their wake is expected to be dominated by flow separation (e.g. wing download and verti-
cal tail sideforce in lateral flight). Thus, the associated active interference effects, as well
as their dependence on the corresponding discretization parameters, would not be dom-
inant. Building on this idea, all induced velocity and interference modelling parameters
associated to the fixed aerodynamic surfaces were excluded.
In addition, another simplification was made concerning the rotor inflow finite state rep-
resentation. Building on the convergence study of the Peters-He model reported in [19],
two important observations can be made.

• For a given number of harmonic, significant variations in the inflow distribution at
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the rotor disk can be observed increasing the number of radial shape functions.

• For a given number of radial shape functions, provided that the number of harmonics
is equal to or greater than the number of rotor blades, negligible dependence of the
inflow distribution on the number of harmonics is observed.

So, relying on these evidences, the author decided to fix the number of harmonics nhar

of the rotors inflow distributions equal to 3. As a consequence, the only discretization
error contribution arising from the truncation of radial shape functions was retained in
the analysis.

All the independent FSM discretization parameters considered in the solution verification
are summarized in table 6.4.

Discretization type Parameter
Temporal Time step for time integration naz

Spatial

Rotor blade aerodynamic sections nseg r

Integral discretization for rotor(s) wake
nsimpsactive interference

Wing aerodynamic sections nseg w

Vertical tail aerodynamic sections nseg vt

Horizontal tail aerodynamic sections nseg ht

Inflow states truncation Rotor inflow highest power of radial variation nrad

Table 6.4: List of the FSM parameters affecting the model prediction discretization error
δDE and involved in the solution verification process

6.2.2. Numerical Error Estimation Procedure

Considering the large amount of parameters summarized in table 6.3 and 6.4, a practical
procedure to estimate δIT and δDE could not rely on the evaluation of the entire grid of
possible combinations. Thus, some considerations were made to simplify the process.

First of all, since the linear system solver may stop upon either reaching the maximum
number of iterations Nlin or the convergence tolerance ϵlin, in order to effectively reduce
its contribution to δIT , Nlin shall be increased every time ϵlin is tightened.
A similar way of reasoning can be applied to the trim equations solver tolerances. Despite
having different values, the user shall always tighten them all together in order to make
sure that the solution algorithm interruption is delayed.
Finally, the author decided to bond together the linear solver tolerances and the trim
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equations solver tolerances as well. As a consequence, in the framework hereby presented,
δIT convergence studies can effectively be carried out in one dimension and as a function
of a newly defined single equivalent parameter ϵIT . As soon as ϵIT changes, all parameters
in table 6.3 update accordingly.
Concerning the discretization error parameters of influence, only nseg ht and nseg vt were
bonded, resulting in a single parameter for the identification of the tail aerodynamic
discretization. The final list of independent parameters explicitly involved in the error
estimation algorithm is summarized in table 6.5.

Numerical error Parameter
δIT Equivalent iterative convergence parameter ϵIT

δDE

Time step for time discretization naz

Rotor blade aerodynamic sections nseg r

Integral discretization for rotor(s) wake
nsimpsactive interference

Wing aerodynamic sections nseg w

Tail aerodynamic discretization nseg t

Rotor inflow highest power of radial variation nrad

Table 6.5: List of independent FSM parameters of influence of δIT and δDE involved in
the error estimate algorithm

The process used to accomplish the solution verification is reported below. Within its
description, the author makes use of the expression "convergence study" to refer to a
sweep of model predictions with respect to a numerical parameter, and to the associated
error estimate. Within a sweep, which is carried out for each validation flight, the values
of all fidelity metrics are collected. The sweep is interrupted upon the achievement of a
reasonable approximation of an asymptotic value for all fidelity metrics or upon collection
of sufficient evidence suggesting no asymptotic behavior will be observed5. If asymptotic
convergence is observed, the error on each fidelity metric is defined as the distance from
the representative asymptotic value (fig. 6.4a). On the other hand, if no convergence
occurs, the amplitude of the oscillations in the fidelity metric is taken as the error estimate
(fig. 6.4b).

However, there is a sole exception to these rules, represented by the estimation of the
numerical error due to ϵIT . In [28], the suggested procedure to assess the iterative conver-
gence error is to perform a sweep of model predictions with progressively tightened exit
criteria. However, in the present application, the direct implementation of this technique

5At least with the values of table 6.5 model parameters that can be achieved with acceptable compu-
tational time.
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(a) δnum estimation on xtlon sweep with respect
to naz

nseg r
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(b) δnum estimation on θ3/4L sweep with respect
to nseg r

Figure 6.4: Example of δnum estimation from sweep result (validation flight ψgs = 0◦

may result in an underestimation of δIT .
Indeed, whenever a non linear, algebraic system of equations, is solved with an iterative
method, the numerical solution is identified by a set of points (in the neighbourhood of
the true solution) in the space of the equations unknowns. The points within the set all
result in acceptable residuals of the system of equations. The size of this set in the un-
knowns space is then directly associated to the tolerance set on the residuals: the tighter
the tolerance, the smaller the distance between the true solution and the set boundary.
Hence, in the attempt of providing an accurate estimate of δIT , an assessment of the size
of the aforementioned numerical solutions set shall be made. However, such task cannot
be achieved by mean of a single model prediction for each tolerance value. On the other
hand, a sufficiently large amount of predictions scattered within the set might be consid-
ered a good proxy of its size, thus leading to a more accurate estimate of δIT .
A practical exemplification of this view is displayed in fig. 6.5. In the right-hand side plot
of the figure, 50 realizations of θ3/4L on ψgs = 0◦ obtained with the same value of ϵIT and
different initialization of the solution algorithm are reported. Considering the maximum
and minimum sampled values, it is possible to identify a convergence band for the SRQ.
Such convergence band should represent the image of the numerical solutions set through
the FSM. Basing on its amplitude, δIT is then estimated, as in the left-hand side plot of
fig. 6.5.

However, it is reasonable to say that this procedure leads to a more robust estimate of the
iterative convergence error, with respect to considering only a single, arbitrary realization
of the SRQ for a given value of ϵIT .
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Figure 6.5: Example of the estimation of δIT for a system response quantity y. Several
predictions of y are performed for each value of ϵIT , and are then used to construct an
iterative convergence band

The error estimation procedure was built using the following arguments. First of all,
building on some preliminary investigations carried out on the baseline FSM, it was an-
ticipated that nrad generates the most dominant contribution to δnum. Thus, it is natural
to set the definition of this parameter in the outermost loop of the procedure.
Secondly, as stated in [28], it is good practice to ensure that whenever a discretization
error assessment is performed, the iterative convergence error is at least two order of
magnitude less6. Thus, the author decided to perform the convergence study on ϵIT im-
mediately after the choice of nrad. In this way, building on preliminary investigations of
the expected order of magnitude of δDE for each fidelity metric, it is possible to choose
from the start a suitable value of ϵIT .
Concerning the assessment of the time and spatial discretization error, it is indeed true
that, either through active aerodynamic interference or through trim equations, inter-
actions are present among any pair of aerodynamic components. Thus, arbitrarily, the
author decided to follow the stream of active aerodynamic interference for the discretiza-
tion error assessment. Checks were performed to ensure that the estimated order of
magnitude of a previously assessed δDE contribution was valid also when changing other
discretization parameters values.

The error estimation procedure follows.

1. Choose nrad

2. Perform a convergence study on δIT varying ϵIT
6Otherwise, the interference of the iterative convergence error on the model predictions spoils the

observation of the discretization error.
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3. Choose a value of ϵIT suitable for the δDE assessment

4. Perform a convergence study with respect to naz

5. For a suitable value of naz, perform a convergence study with respect to nseg r

6. For a suitable value of naz and nseg r perform a convergence studies with respect to
nseg w, nsimps

7 and, eventually, nseg t

7. Confirm the δDE estimate due to nseg r provided in step 5 with updated values of
nseg w, nseg t and nsimps

8. Confirm the δDE estimate due to naz provided in step 4 with updated values of
nseg r, nseg w, nseg t and nsimps

9. Confirm the δIT estimate of step 2 with updated values of naz, nseg r, nseg w, nseg t

and nsimps

As the procedure is carried out for several nrad values, upon choice of a reference set of
FSM parameters, error estimates on each fidelity metrics and associated to each parameter
in table 6.5 are obtained. Then, building on this information, some observations can
be drawn. First of all, the error estimate associated to nrad can be isolated, providing
insight on its trend. Secondly, considering the different contributions arising from ϵIT

and discretization parameters, the analyst is supplied with the necessary information to
reach the desired numerical error threshold on each fidelity metric acting on the dominant
contributions, to limit the computational time.

The results provided in this section are effectively error estimates, not uncertainties.
Their conversion into numerical uncertainties is carried out within the solution validation
process in section 6.3, according to the specific validation methodology and stressing the
necessary assumptions.

6.2.3. Results

The most outstanding result concerns the effect of nrad. The typical output of an nrad

sweep on a fidelity metric is reported in fig. 6.6. In these charts, the variability of the
metric with respect to the number of inflow (and interference) states and other numerical
error sources can be appreciated. In addition, the error bar on each point represents
the combination (through a sum) of all the remaining numerical error estimates. This

7The discretization errors due to nseg w and nsimps were assessed together, performing multiple nseg w

sweeps for different values of nsimps. The reason behind this choice can be traced back to the strong
correlation between the two parameters and to the fact that a sufficiently high value of nsimps was to be
employed in order to spot asymptotic convergence with respect to nseg w.
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effective numerical error decomposition allows to isolate the inflow error behavior and,
therefore, to draw several observations.
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[/
]

(a)

nrad

x
t l

on
[i
n
]
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Figure 6.6: Left rotor collective and longitudinal control position numerical error esti-
mates. The dashed line represents the variation of the SRQ with respect to nrad. The
errorbars on each point, conversely, represents the sum of all other numerical error con-
tributions estimates accounted for in this study (e.g. due to ϵIT , naz, etc.)

First of all, fig. 6.6 highlights the magnitude difference between the error associated to
inflow discretization (dashed line) and the error due to the remaining parameters involved
(error bar amplitude). Thus, for this FSM, considering the typical flight simulation ex-
ecution time constraints imposed by industrial applications, the numerical error due to
inflow and interference states truncation is indeed dominant.
Secondly, while the uncertainties owed to trim equation tolerances, aerodynamic segments
and time step typically converge to zero as the discretization improves, the same behavior
was not observed for the examined inflow states samples. Therefore, the numerical error
due to inflow states truncation was not confidently assessed either.
Moreover, as previously mentioned, the inflow harmonics were kept fixed to 3 for this
study (according to [19]). Nevertheless, studies carried out by LHD on articulated hov-
ering helicopter rotors showed that increasing the number of harmonics over the number
of blades results in collective control position variations of the same order of magnitude
of the ones observed with respect to nrad.

For the sake of better understanding the roots of this behaviour, an investigation of the
rotor inflow radial distribution on an isolated rotor model was performed. The results
obtained for two different collective blade pitch angles are displayed in fig. 6.7. As re-
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ported, even truncating the series at a high number of states, the changes in the inflow
distribution (especially at the tip region) are still evident.
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nrad = 15 - nhar = 3
nrad = 21 - nhar = 3

(a) Low collective control position
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nrad = 15 - nhar = 3
nrad = 21 - nhar = 3

(b) High collective control position

Figure 6.7: Radial induced velocity distribution for different values of nrad on an isolated
rotor model in still air

It is also interesting to observe that when the effects of nrad on the validation metrics of all
flights are compared, some trends emerge (fig. 6.8). Indeed, regardless ψgs, a systematic
growth in trim collective and rotor torque and power figures is observed when nrad is
increased (fig. 6.8c). Concerning lateral validation flights (namely, ψgs = 90◦ and ψgs =

120◦), the increase in nrad seem to result in an increase in the lateral control position, in
a decrease in the directional control position and in a decrease in the roll angle. Thus,
despite qualitative, these trends may come useful to the analyst in the interpretation of
the validation results, to understand whether FSM negligence may be traced back to a
model-form error associated to the inflow.

In conclusion, building on the evidence provided above, the author decided not to consider
the effect of nrad into the numerical error. Indeed, considering the great increase in
computational expense that comes together with an increase in nrad, it may be argued
that even if convergence might eventually occur for sufficiently high values of nrad, the
associated computational time would make the model unsuitable even for offline desktop
simulations. Hence, the most reasonable way to account for the error associated with
Peters-He inflow model in the present application is to include it into the model-form
error.

Moving on to the other parameters affecting the numerical error, asymptotic convergence
was typically observed on convergence studies involving ϵIT , naz, nsimps, nseg w and nseg t.
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Figure 6.8: Comparison of the trends of some SRQs with respect to nrad on different
validation flights

On the other hand, variations of the SRQs with respect to nseg r typically exhibited an
oscillating, non monotonic behaviour (fig. 6.4b). Nevertheless, their order of magnitude
was well characterized and proved to be very robust with respect to both the validation
flight and all other numerical parameters. Building on these considerations, several dis-
cretization levels were evaluated, eventually leading to the choice of ϵIT and discretization
parameters to be exploited for the rest of the work.
This final choice was dictated by a compromise between computational time, confidence
on the error estimate8 and error estimate magnitude. Concerning the latter, recalling
the observations concerning the corollaries discussed in section 4.1.4, particular attention
should be devoted to ensure that the cumulative numerical error estimate is well below

8Namely, whenever asymptotic convergence was observed, the author qualitatively ensured that the
chosen discretization level was within the asymptotic range of convergence.
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the validation acceptable margins chosen by the applicant for all fidelity metrics. Oth-
erwise, even neglecting the uncertainties due to model input and experimental data, the
applicant may not be able to exhibit evidence of model fidelity adequacy according to the
selected margins.
For the present work, the margins reported in table 5.2 were used as a guideline, and not
strictly applied. In fact, considering the small absolute values assumed by control posi-
tions in some validation flights (e.g. lateral control position in ψgs = 120◦ or longitudinal
control position in ψgs = 0◦), it was not always possible to achieve compliance to the
aforementioned requisite9 with acceptable values of computational time. Thus, in regard
of control positions, the author considered acceptable discretization levels which provided
a sufficiently small absolute cumulative error estimate.

The numerical error estimate on some SRQs for the ultimately chosen values of the pa-
rameters in table 6.5 is reported in fig. 6.9. As it can be spotted from the histograms,
typically both the total error and its contributions manifest a dependence on the flight
condition. However, the reduced amount of validation flights exploited in this work did
not provide sufficient material to infer reliable correlations of δnum with value of model
inputs (such as ground speed, density altitude, etc.). Nevertheless, this variability poses
doubts regarding how to account for the numerical error in the validation process and
during model extrapolation. In particular, shall each validation flight use its own esti-
mate? or an arbitrarily chosen value should be used for all flights? Moreover, whenever
a numerical error estimate shall be interpolated/extrapolated, is it correct to use the ab-
solute value of the error? or the percentage error shall be used instead?
Despite the answers to these questions may lose relevance as soon as the numerical error
becomes so small to be negligible with respect to the other sources of uncertainty, it is
reasonable to say that they depend on the specific application. In this work, during the
model validation phases, the choice was made to manage each validation flight with its
own error estimate (appropriately turned into numerical uncertainty).

9namely, "the cumulative numerical error estimate is well below the validation acceptable margins
chosen by the applicant for all fidelity metrics".
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Figure 6.9: Numerical error estimates contributions on all validation flights

6.3. Model Validation

6.3.1. Input Uncertainty Identification and Characterization

The first step in solution validation concerns the identification and characterization of
FSM input uncertainties. In the present work, together with LHD, it was decided to
include within this study uncertainties due to wind speed and direction, aircraft mass
and center of gravity position. Using engineering judgement, they have been considered
as the most influential factors.
Concerning the wind uncertainty mathematical characterization, no series of observa-
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tions/realizations was available. On the other hand, regarding aircraft mass and balance,
the realizations available to the author were not sufficient to reasonably characterize the
associated uncertainty. Hence, no uncertainty evaluation based on statistical analysis was
possible. As a consequence, all uncertainties have been evaluated as type B [16] in ASME
framework and epistemic in the Roy-Oberkampf framework10.

Concerning the wind speed magnitude, the FAA advisory circular for FAR part 29 [5]
was taken as a reference. Among the recommended procedures for general performance
flight testing, the advisory circular suggests that "hover performance testing should be
conducted in winds of 3 knots or less". Thus, in absence of additional information, the
author assumed 0 − 3 knots to be a reasonable wind speed uncertainty range for the
LHD low speed flight tests selected for validation. On the other hand, regarding the wind
direction, any value within the 0◦ − 360◦ range is possible.

Considering the aircraft weight, the author relied once more on [5]. In this regards, the
advisory circular states that "test weights should be maintained within +3% and -1% of
the target weight for each data point". Hence, assuming that the standard procedure for
certification flight testing were employed for the test point chosen for validation, it is
possible to state that 3% reasonably represents the maximum allowable uncertainty for
the aircraft weight. Moreover, since, conversely to the wind speed, a nominal aircraft
weight measure is provided in the validation flight data, the author decided to assign a
Gaussian PDF to this input. This choice was dictated by the will to embed within the
uncertainty characterization the belief of the author that the nominal value is the most
likely, and the best available estimate of the true value. Hence, the mean of the PDF was
set equal to the nominal flight data, while the standard deviation was set equal to 1% of
the mean11.

Eventually, in regard of the CG position, no applicable criteria were found. Thus, the
author decided to assign a Gaussian PDF to each coordinate of the CG. Once more, the
mean was set equal to the nominal CG position datum. Then, the 99.73% confidence
interval was set equal to 0.35 inches, hence resulting in a standard deviation of 0.116

inches.

A summary of the FSM inputs uncertainties and a representation of the uncertainty boxes
resulting from the assumptions above are reported in table 6.6 and fig. 6.10 respectively.

10Namely, the uncertainty on model inputs values reflect the belief and opinion of the author according
to the available knowledge.

11In order to ensure a 99.73% confidence interval on the 3% bound derived from the FAA advisory
circular [5].
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Model input PDF Mean Std deviation Bounds
Wind speed WSP - - - 0− 3 kts
Wind azimuth WAZ - - - 0− 360 deg
Aircraft weight ACW Gaussian ACWnom 1% ACWnom -
CG fuselage STA Gaussian STAnom 0.116 in -
CG butt line BL Gaussian BLnom 0.116 in -
CG waterline WL Gaussian WLnom 0.116 in -

Table 6.6: Summary of FSM input uncertainty identification and characterization
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Figure 6.10: FSM input uncertainty boxes
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6.3.2. Sensitivity Analysis

Prior to any uncertainty propagation, sensitivity analyses should be performed with the
scope of assessing the robustness of a computational model and educating the analyst on
the model behaviour. Within the present work, the aim is to exploit sensitivity analyses to
identify, among the candidate uncertain model inputs, those whose uncertainty results in
negligible effects on all the SRQs of interest. Once identified, such inputs may be treated
as deterministic, at the benefit of the uncertainty quantification computational time.

Methodology

The choice of the sensitivity analysis method usually depends on the non-linearities of
the model and the computational expense of a single model run. Hence, considering the
strong non-linearities exhibited by the FSM presented in section 6.1, several simple and
computational inexpensive sensitivity methods (e.g. derivative-based local methods or
classical one-at-a-time methods) have been excluded.
Among the global sensitivity methods, the Variance-Based-Decomposition (VBD) method
stands out for its widespread adoption in the scientific literature and the reliability of its
sensitivity measures: the main effect sensitivity index Si and the total effect sensitivity
index STi

, both reported in the following equations.

Si =
V ar(E(Y|xi))

V ar(Y)
(6.12)

STi
=
V ar(Y)− V ar(E(Y|x−i)

V ar(Y)
(6.13)

where xi represents the i-th model input and x−i = (x1, ..., xi−1, xi+1, ..., xk). The main
effect sensitivity Si estimates the expected fraction of V ar(Y) that could be removed
if the true value of xi was available. However, it does not capture effects due to the
interactions among different input. Conversely, the total effect sensitivity STi

accounts
for all the effects on V ar(Y) involving xi, thus both its main effect and its interactions
with the other model inputs. More than one method is available for computing the VBD
sensitivity measures. The method proposed by Saltelli in [2] allows to access Si and STi

at
the computational cost of N(k+1), where N is the number of necessary model evaluations.
As reported in [10], N is typically at least 100, and can easily become as high as tens of
thousands for slow converging models.

Nevertheless, for the present work, a different approach was pursued and the Morris
One-at-A-Time (MOAT) global screening method was chosen. The MOAT method was
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firstly introduced by Morris in 1991 [21] and was later revised in its sensitivity metrics
and sampling strategy by Campolongo, Cariboni and Saltelli [10]. The method is an
extension of the local OAT derivative based approach, since it overcomes the limitations
of the latter by efficiently exploring the whole model input space. In addition, it is well
suited for identifying the most important factors in a model with a large number of inputs
(namely, too large to apply variance-based techniques). Thus, despite this not being the
case for the present application, the author decided to pursue this approach anyway, in
sight of a potential larger scale application in the industry (where the competitiveness of
MOAT with respect to variance-based methods is even greater). A brief outline of the
MOAT method and a presentation of its sensitivity metrics is provided below, while a
detailed description can be found in [9].

For each of the k model input, a number of SRQ(s) incremental ratios, referred to as
Elementary Effects (EEs), are computed at different location within the input space ac-
cording to eq. (6.14).

di(X) =
y(X+∆ei)− y(X)

∆
(6.14)

where X ∈ Rk represents the location within the input space, ei is the ith vector of
the canonical basis for the model input space, ∆ a scalar increment defined within the
method, and y a SRQ of interest. EEs are evaluated at different locations within the
input domain through an efficient sampling technique [10] based on the construction of
r trajectories12 of k + 1 points. Each trajectory is generated from a starting point, and
develops through the model input space via perturbations of one input at a time (fig. 6.11).
At each perturbation, an EE is computed, and a new point belonging to the trajectory
is generated from that perturbation. At last, once all k inputs have been perturbed, the
trajectory is made of a collection of k+1 points. Eventually, upon the collection of r EEs
at different locations of the input space, the sensitivity indices, referred to as µ, µ∗ and
σ∗ in the present work, are computed for each SRQ-input pair according to eq. (6.15),
(6.16) and (6.17).

µi =
1

r

r∑
j=1

di(X
(j)) (6.15)

µ∗
i =

1

r

r∑
j=1

|di(X(j))| (6.16)

12This particular feature of the method represents its substantial difference with traditional, local OAT
methods.
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σ∗
i =

√√√√1

r

r∑
j=1

(di(X(j))− µi)2 (6.17)

The mean µi (originally proposed by Morris) and the modified mean µ∗
i (proposed by

Campolongo et al. in [10]) give an indication of the overall effect of the ith model input
on the SRQ. The standard mean µ carries the information about the sign of the EEs,
but, as a consequence, is prone to type II errors13 [10]. On the other hand, the modified
mean µ∗ is resilient to type II error, but does not carry any information about the sign
of the EEs. By default then, the Dakota implementation of the MOAT method return
the modified mean. Nevertheless, since µ can be computed with no additional cost once
the EEs are known, the analyst, whenever interested in the information carried by the
sign, may retrieve its value as well. Still, for the purpose of the sensitivity analysis within
this work, the modified mean µ∗ is sufficient. σ∗, on the other hand, is an indicator of
the dispersion of EEs throughout the model input domain. Thus, it effectively represents
non linear effects and interactions between the different model inputs. σ∗ is null for linear
models.

Figure 6.11: An example of trajectory in the input space when k = 3 (from [9])

The MOAT method requires two parameters to be selected by the user: the number of
13i.e., in this application, to fail in identifying an important input. Indeed, if an input significantly

affects an SRQ but with opposite trends depending on the position X in the model input space, the
resulting EEs mean may be small, despite the parameter being important.
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trajectories r and the number of partitions p (e.g. 4 in fig. 6.11) for each dimension of
the input space domain. Increase in both parameters results in both more samples and
a greater coverage of the input space. Eventually, the number of function evaluations
amounts to r(k+1), with r typically being in the range of 10 ∼ 20 [10]. The typically low
sample size required by the MOAT method to inform the analyst on the most important
and unimportant parameters (especially in large models) represents its main strength with
respect to VBD methods. Nevertheless, this advantage comes at the price of providing
qualitative information only. Still, Saltelli et al. [10] compared MOAT with VBD observ-
ing great agreement between the two methods with the same sample size and concluding
that MOAT µ∗ at low samples sizes are indeed great proxies of the more accurate VBD
indices STi

.

Implementation and Analysis Setup

The sensitivity analysis was performed with Dakota and was carried out on all validation
flights. Sensitivity indices for all fidelity metrics in section 5.1 were computed. Unbounded
uncertain inputs (namely, ACW and CG coordinates) were limited in their 99.73% con-
fidence interval, since MOAT requires all model inputs to be bounded. Moreover, since,
as aforementioned, the MOAT method is parametric in r and p, a brief independence
study on the sensitivity metrics was performed. Nevertheless, considering the fact that
µ∗ and σ∗ are qualitative results, this preliminary investigation was only devoted to en-
sure that no doubt related to importance (or unimportance) of any model input could
arise changing the sensitivity method options. The values of r and p explored within the
independence assessment are summarized in table 6.7.

Tier 1 Tier 2 Tier 3
r 10 30 60

p 9 18 27

n 70 210 420

Table 6.7: Summary of MOAT parameters values explored for the sensitivity analysis
independence assessment: r represents the number of trajectories, p the number of par-
titions for each model input, n the total number of function evaluations (aircraft trims)
required for the analysis



6 | RoCS Guidelines Application - Phase 2a 73

Results

The results of a sensitivity analysis based on the MOAT method are typically reported in
scatter plots, as displayed in fig. 6.12 and 6.13. Each plot summarizes the sensitivity pic-
ture for a SRQ of interest and, within the plot, each point position carries the information
of the influence, in terms of µ∗ and σ∗, of a given input on the SRQ. Nevertheless, in the
graphs reported in fig. 6.12 and 6.13, a triplet of points (identified by the same marker
shape and linked by a dashed gray line) is reported for each input, in order to appreciate
on the same plot the variability of the sensitivity indices with respect to r and p tiers of
table 6.7. Moreover, the conclusions carried out in this section find direct confirmation in
fig. 6.12 and 6.13, but they also extend to the other validation flights.
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Figure 6.12: MOAT sensitivity indices of control positions at trim for the ψgs = 120◦

validation flight. Different MOAT parameters are identified by different colors, while
indices corresponding to different model inputs are identified by distinct marker shapes
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First of all, it is important to observe that, for every SRQ-input pair, the different tiers
do not provide significantly different µ∗ values. On the other hand, significant variations
in σ∗ associated to WSP and WAZ occur on several SRQs. These changes can be traced
back to the large number of partitions p (and trajectories r) that is intuitively necessary
to characterize the whole wind envelope in terms of direction. Indeed, it may be argued
that WAZ might require a much larger number of partitions with respect to all other input
intervals (e.g. ACW, STA, BL) for its dispersion index σ∗ to "converge". Nevertheless,
being µ∗ what ultimately drives the analyst in identifying an input as influential, and
considering that, as previously mentioned, the method is qualitative, it is safe to conclude
that the differences between the three tiers do not lead to ambiguous conclusions.
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Figure 6.13: MOAT sensitivity indices of longitudinal flapping angles and aircraft at-
titudes at trim for the ψgs = 120◦ validation flight. Different MOAT parameters are
identified by different colors, while indices corresponding to different model inputs are
identified by distinct marker shapes



6 | RoCS Guidelines Application - Phase 2a 75

Secondly, looking at fig. 6.12 and 6.13, it is possible to observe that the points associated
to WSP and WAZ typically occupy the right-hand side of the graphs (corresponding to
greater σ∗). This is expected, considering that WSP and WAZ team up in characterizing
the wind speed uncertainty. Thus, the impact of the former on a given SRQ strictly depend
on the value of the latter (and viceversa), resulting in great variations of the associated
EEs throughout the input domain. Conversely, ACW, STA, BL and WL always lay on
the left hand side, meaning that their effect on the output is more or less independent on
the values assumed by other inputs.

Finally, it is worth noticing that all input quantities, except WL, result in large µ∗ for at
least one model fidelity metric. Indeed, WSP and WAZ provide important effects on all
SRQ (dominating, in particular, aircraft attitudes and directional control). ACW results
in a great influence on the collective control position and, thus, rotors collective and torque
figures. STA variations determine non negligible effects on longitudinal control position,
pitch attitude and longitudinal rotor flapping, while BL strongly influences the lateral
control position. Conversely, WL always occupies the left-bottom corner of the plots,
with µ∗ sensitivity values typically at least an order of magnitude smaller with respect to
the aforementioned inputs. Thus, to the benefit of the computational expense, the author
decided to exclude any uncertainty associated to WL from all UQ analyses, treating it as
a deterministic input.

6.3.3. ASME Solution Validation

Within this section, the solution validation process according to ASME VV Standard 20,
summarized in section 4.1.2, is carried out.

Numerical Uncertainty Definition

The ASME validation procedure requires the applicant to compute the standard deviation
of the numerical error δnum parent population. Thus, starting from the error estimates
retrieved during the solution verification process, the applicant shall make some assump-
tions in order to combine the different contributions to the numerical error and transform
the numerical error estimate to a standard uncertainty measure. Within the present
work, all numerical error sources are assumed to be uncorrelated and each error estimate
gathered in section 6.2 is assumed to represent the upper bound for the corresponding
numerical error contribution. Then, a uniform PDF was assumed for each contribution
to the numerical error, in order to convert the error estimate into a standard uncertainty,
compatible with the framework proposed by ASME. The PDF amplitude was set equal
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to the estimated error magnitude and the coverage factor exploited for the conversion
operation was set 1.73. Eventually, relying on the hypothesis of non-correlation between
the different contributions, the final numerical standard uncertainty unum was obtained
using the RSS, hence combining the estimated standard uncertainties associated to each
contribution. An outline of the entire process is displayed in fig. 6.14.

-

-

... ...

PDF

PDF

PDF

Figure 6.14: Summary of numerical uncertainty unum evaluation process within the ASME
validation framework

Experimental Uncertainty Definition

The uncertainty associated to the experimental data was computed according to the
widespread metrology standards reported in [16]. In particular, the experimental value D
of each SRQ was retrieved averaging the flight datum time history over the acquired time
window, according to eq. (6.18). On the other hand, the associated standard uncertainty
was computed using the formula of the standard uncertainty for the population mean,
reported in eq. (6.19).

D =
1

N

N∑
n=1

yn (6.18)

uD =
1

N

√√√√ 1

N

N∑
n=1

(yn −D)2 (6.19)

where yn is a single realization of the measurement time history.

Input Uncertainty Definition

The uncertainty associated to the model inputs was estimated with Monte Carlo sampling
using Dakota, considering the non-linearity of the FSM.
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Then, building on the results of the FSM sampling, and considering the definition of
δinput presented in eq. (6.20), the input-related uncertainty uinput can be computed as the
standard deviation of the sampled SRQ population, according to eq. (6.21).

δinput = yn − S (6.20)

uinput =

√√√√ 1

N

N∑
n=1

[δinput − µδinput
]2

=

√√√√ 1

N

N∑
n=1

[(yn − S)− 1

N

N∑
n=1

(yn − S)]2

=

√√√√ 1

N

N∑
n=1

[yn − S − µy + S]2

=

√√√√ 1

N

N∑
n=1

[yn − µy]2

= σy

(6.21)

where yn is a single SRQ prediction obtained with Monte Carlo sampling and N is the
number of samples.

For each validation flight, approximately 24000 samples of each SRQ of interest were
generated. In order to gain an insight on the robustness of the results with respect to the
sample size, histories of the population mean µ and standard deviation σ of each SRQ were
visually inspected. Nevertheless, such operation was not aimed to the quantification of
the sampling uncertainty on uinp, considering that ASME does not provide any guidance
for such an activity. Conversely, it was carried out to collect qualitative information about
what SRQs standard deviation estimates are surely not reliable and would, in principle,
require more samples to improve the confidence on their values.
Some results associated to the control positions in the ψgs = 90◦ validation flight are
reported in fig. 6.15. Despite the suppression of the Y-axis ticks in the images, it is possible
to conclude that the sample size of 24000 generally provides a reliable estimates of µ and
σ for control positions, attitudes and rotors collective and torque figures. Nevertheless,
as it can be grasped in fig. 6.16, the same conclusions cannot be always carried out for
rotor flapping angles, whose variations in the CDF and statistical moments may be still
considered non-negligible at this samples size. Thus, despite validation results associated



78 6 | RoCS Guidelines Application - Phase 2a

to these SRQs are reported in the following sections for the sake of completeness, it is
reasonable to state that an increase in the number of samples is needed to make them
more trustworthy.



6 | RoCS Guidelines Application - Phase 2a 79

X
0

0.2

0.4

0.6

0.8

1

P
(3

3
=
4
L

<
X

)

N = 1000
N = 4000
N = 8000
N = 14000
N = 23844

(a) Discrete CDF of the left rotor collective ob-
tained with different samples sizes

X
0

0.2

0.4

0.6

0.8

1

P
(x

t l
on

<
X

)

N = 1000
N = 4000
N = 8000
N = 14000
N = 23844

(b) Discrete CDF of the longitudinal control po-
sition obtained with different samples sizes

0.5 1 1.5 2

N #104

7
3
3=

4L

Monte Carlo Sampling

(c) Left rotor collective samples mean

0.5 1 1.5 2

N #104

7
x
t l

on
Monte Carlo Sampling

(d) Longitudinal control samples mean

0.5 1 1.5 2

N #104

<
3
3=

4L

(e) Left rotor collective samples standard devia-
tion

0.5 1 1.5 2

N #104

<
x
t l

on

(f) Longitudinal control samples standard devi-
ation

Figure 6.15: Results of the Monte Carlo sampling analysis on left rotor collective and
longitudinal control position for validation flight ψgs = 90◦
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Figure 6.16: Results of the Monte Carlo sampling analysis on validation flight ψgs = 90◦

rotors flapping angles

E and uval Validation Metrics

Upon the computation of unum, uD and uinput as exposed in the previous sections, the
validation metric uval can be computed according to eq. (4.7). On the other hand, E can
be easily computed according to eq. (4.3).
The results of the validation process are discussed in this section and can be consulted
in fig. 6.17 and appendix B. In all these figures, the errorbars are equal to the validation
standard uncertainty uval, which do not represent the bounds of the comparison error E
at all.
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Figure 6.17: E and uval validation metrics results for longitudinal and directional control
positions on all validation flights. The magnitude of uval is reported as an errorbar on E

As mentioned in section 4.1.2, by reporting fidelity acceptability margins onto the plots
of the comparison error, the analyst is able to assess whether or not the required fidelity
requirements are met. Upon negative outcome of the investigation, the applicant shall
investigate the causes of noncompliance and figure out model improvements.
The application of the ASME procedure corollaries reported in section 4.1.2 leads to the
conclusion that the validation uncertainty is too large (with respect to the comparison
error E), to allow for a reliable quantification of the model error and measure model
improvements. In fact, E >> uval in a handful of circumstances only: longitudinal
control position at ψgs = 0◦ (fig. 6.17a) and pitch angle at ψgs = 180◦ (fig. B.2e). In all
other instances, E is typically of the same order of magnitude of uval.
The reasons behind these occurrence can be traced back to excessively large uinput and,
less frequently, uD. As reported in fig. 6.18 (and appendix B), uinput contribution to the
overall validation standard uncertainty is typically at least an order of magnitude greater
than the ones provided by uD and unum. Still, some exceptions are present, in which the
most dominant contribution can be traced back to uD (e.g. directional control position in
ψgs = 120◦ or lateral control position in ψgs = 180◦). Thus, if the FSM turned out to be
non compliant to fidelity requirements in the present application, a reduction of the input
uncertainties and/or gathering higher quality data from validation-oriented flight testing
are indeed necessary to set up well-advised model updates in these flight conditions.
Nevertheless, if the applicant were satisfied of the level of fidelity achieved, the FSM may
still be suited to support the certification activity, as soon as large uncertainties (and a
consequent reduction of the CR) are affordable.
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Figure 6.18: Decomposition of uval2 into the contributions originating from uinput, uD and
unum

Moreover, fig. 6.18 (and appendix B) highlight that the numerical error contribution to
uval is typically negligible with respect to the others. Thus, it may be argued that the
verification of the assumptions behind the numerical error contributions combination and
conversion to uncertainty, as well as the absence of ad hoc methods for the solution veri-
fication multi-body models, did not turn out to be of primary concern in this application.

6.3.4. Roy-Oberkampf Solution Validation

Within this section, the solution validation process proposed by Roy and Oberkampf,
summarized in section 4.2, is carried out.

Numerical Uncertainty Definition

Within the Roy-Oberkampf approach, all numerical uncertainties are managed as interval-
valued epistemic uncertainties. Moreover, as reported in [29] and previously mentioned
in section 4.2.2, the numerical uncertainty magnitude UNUM is directly obtained from the
error magnitude estimate and the combination of the different contributions is carried
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out with a sum. Thus, in order to derive UNUM for the current application, all δnum
contributions estimates retrieved during solution verification (namely, δIT , δDE naz , etc.)
were converted into epistemic uncertainties first. Then, all uncertainties were combined
with a sum. An outline of the process is reported in fig. 6.19.

...

Figure 6.19: Summary of the numerical uncertainty UNUM evaluation process within the
Roy-Oberkampfs framework

Experimental Uncertainty Definition

In the Roy-Oberkampf framework, the uncertainty on the experimental data is managed
with the computation of a discrete CDF from the experimental observations. An exem-
plification of the process is displayed in fig. 6.20.

Figure 6.20: Process of creation of the experimental data CDF within Roy-Oberkampf
verification and validation framework. The example in the figure is referred to the left
rotor torque data of the ψgs = 0◦ validation flight

Input Uncertainty Definition

In the Roy-Oberkampf approach, the uncertainties associated to model inputs are char-
acterized by mean of a probability box. In this work, as stated in section 6.3.1, all uncer-
tainties associated to the FSM inputs are strictly epistemic, since certainly reducible and
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derived by means other than statistical analysis. However, the decision to assign PDFs to
the aircraft mass and CG position convinced the author to frame the latter model inputs
uncertainties as aleatory within this validation attempt. Indeed, this choice results in the
advantage of distinguishing, at the end of the UQ, the SRQ uncertainty due to the wind
from the one due aircraft mass and balance. In addition, this decision paves the way to
test the full algorithm for the computation of the pbox, summarized in fig. 4.3.
The first step of the procedure requires the analyst to choose the sample sizes M and N
defined in fig. 4.3.

The number of samples M , related to the sampling of interval-valued inputs (namely,
WSP and WAZ), was chosen to ensure sufficient coverage of the wind envelope. Two
partitions were considered for the wind speed magnitude WSP, resulting in three levels
of velocity samples: 0, 1.5 and 3 kts. Conversely, a 15◦ step was used for the definition
of the wind azimuth partitions. The aforementioned wind sampling strategy, displayed in
fig. 6.21, results in M equal to 47.

In order to choose the aleatory uncertainties sample size N , and to provide at least an
estimate to the sampling error associated with its choice, a preliminary analysis was
carried out on two validation flights (namely, ψgs = 0◦ and ψgs = 90◦). For each flight,
25600 aleatory uncertainties samples were evaluated in no wind conditions (Vgs = VTAS).
Then, collecting samples from this database, several CDFs ensambles at lower sample sizes

-4 -2 0 2 4

Vwindx
[kts]

-3

-2

-1

0

1

2

3

4

V
w

in
d
y
[k

ts
]

Wind envelope
Epistemic sampling

(a) Wind speed sampling

8 9 10 11 12 13 14

VTAS [kts]

-15

-10

-5

0

5

10

15

20

A
T
A

S
[/
]

Wind envelope
Epistemic sampling

(b) Resulting TAS uncertainty sampling on ψgs = 0◦ val-
idation flight

Figure 6.21: Wind sampling strategy for input uncertainty quantification within Roy-
Oberkampf framework
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N (and different seeds) were generated for each SRQ14, as displayed in fig. 6.22. For each
value of N , the area occupied by the ensemble (see fig. 6.22) was taken as an estimate
of the sampling error δSAMPL associated to the CDF computed with N samples. Indeed,
whenever a disagreement between the model and the experiment arises in the validation
phase, it is the area of this ensemble that (as an epistemic uncertainty) directly affects
the resulting validation metric value.
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Figure 6.22: Evolution with N of the sampling error estimate on the discrete CDF of the
left rotor torque (ψgs = 90◦ validation flight)

Finally, it is important to stress that in this investigation, according to the aforementioned
procedure, all ensambles are obtained exploiting all 25600 starting samples. Thus, the
number of CDFs in the ensemble reduces as N increases and it can be argued that this
latter occurrence might result in a bias in the estimated sampling error trend. In addition,

14e.g. choosing N = 100 allows to collect 256 discrete CDFs computed at different seeds from the
starting database of 25600 SRQs evaluations.
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whenever δSAMPL is comparable, or smaller than UNUM
15, it may also be argued that the

sampling error estimation is spoiled by the numerical uncertainty and, hence, it is even
less reliable. Aware of the limits of this approach, its results were only exploited as a
tool to help the author make an educated choice of N and inform, whenever present, on
the occurrence of situations characterized by unacceptable sampling uncertainties. As a
consequence, these δSAMPL estimates are not accounted for in the validation reported in
the following sections.

The results of the CDFs sampling error estimation analysis are reported in fig. 6.23 to
6.25. In each plot, the numerical uncertainty UNUM is reported as well, in order to provide
reference for the sampling error estimate order of magnitude.
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Figure 6.23: CDF sampling error estimates for control positions and left rotor collective
on ψgs = 0◦ and ψgs = 90◦ validation flights

15Especially when UNUMIT
occupies a large portion of UNUM .
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Starting from control positions and rotor collective and torque figures, N = 400 ∼ 800

typically results in sampling uncertainties on the CDF which are of the same order of
magnitude of the numerical uncertainty. However, the same conclusions cannot be carried
out for flapping angles, for which all samples sizes result in unacceptably large estimated
sampling uncertainties on the CDFs (fig. 6.24).
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Figure 6.24: CDF sampling error estimates for rotor flapping angles on ψgs = 0◦ and
ψgs = 90◦ validation flights

Finally, concerning aircraft attitude angles (fig. 6.25), the same outcome observed for
controls positions and rotors collective and torque figures takes place. So, eventually, as
a compromise between sampling accuracy and computational effort, the author decided
to set the aleatory uncertainty sample size N of fig. 4.3 equal to 400. Nevertheless, it
is clear from fig. 6.24 that using N = 400 while neglecting the sampling error definitely
leads to unreliable outcomes regarding rotor flapping angles validation. Thus, no result



88 6 | RoCS Guidelines Application - Phase 2a

0 500 1000 1500 2000 2500 3000

N

/ S
A

M
P

L
3

Ags = 0/

UNUM Ags = 0/

Ags = 90/

UNUM Ags = 90/

(a) Pitch angle

0 500 1000 1500 2000 2500 3000

N

/ S
A

M
P

L
?

Ags = 0/

UNUM Ags = 0/

Ags = 90/

UNUM Ags = 90/

(b) Roll angle

Figure 6.25: CDF sampling error estimates for attitude angles on ψgs = 0◦ and ψgs = 90◦

validation flights

concerning these SRQs is presented within the Roy-Oberkampf validation framework.

Upon the choice of M and N , the algorithm reported in fig. 4.3 was implemented using
Dakota. As a result the probability boxes for each SRQ and validation flight were ob-
tained.
Moreover, in the pursue of reducing the computational expense of the pbox computation,
another route was undertaken by the author. Within this novel approach, summarized
in fig. 6.26, a direct optimization of the SRQs with respect to all the FSM uncertain
input was carried out16. Then, the values of WSP and WAZ resulting in the maximum
and minimum value of each SRQ were retrieved from the optimization results. Next, a
couple of discrete CDFs (one for each optimal wind condition) are computed for the SRQ,
sampling N times ACW, STA and BL. These two CDFs are assumed to represent the
probability box boundaries.

A comparison of the resulting probability boxes obtained with the conventional sampling
approach and the optimization-based approach is reported in fig. 6.27. For this particular
application, the disagreement between the two methods always fell within the numerical
uncertainty of the results and the estimated order of magnitude of the sampling error.
This outcome may be in part traced back to the limited interference effects between the
wind uncertainty and ACW, STA and BL uncertainties (see section 6.3.2). As a result,
a decoupling between the computation of the pbox bounding epistemic inputs values and
the shape of the pbox envelope can be achieved with limited approximations. However,

16In order for the optimization to be carried out sensibly, the values of ACW, STA and BL were
bounded within their 99.73% confidence interval (three standard deviations from the mean).



6 | RoCS Guidelines Application - Phase 2a 89

the little disagreement between the two methods also testifies the sufficient coverage of the
epistemic input space achieved with the conventional sampling technique and M samples.
Moreover, on some instances (e.g. fig. 6.27a), were the wind conditions corresponding to
the pbox limit were far from all M samples, the optimization-based approach proved its
capability to reduce the sampling error associated to epistemic variables. In addition, the
optimization-based method achieved the results at a fraction of the computational effort17

and, since its cost is directly coupled to the number of SRQ of interest, this edge may
extend even more if less fidelity metrics are used.
In the validation phase, pboxes obtained with both the conventional and the optimization-
based method undergo the validation process and the comparison between the two prop-
agation techniques is extended to the validation area metric.

17∼ 10000 function evaluations, against the ∼ 20000 necessary for the conventional sampling method
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Given SRQ = y(WSP, WAZ, ACW, STA, BL), compute the optimal values of the SRQ such that:

max(SRQ) = y(WSPmax, WAZmax, ACWmax, STAmax, BLmax)

min(SRQ) = y(WSPmin, WAZmin, ACWmin, STAmin, BLmin)

Read WSPmax, WAZmax, WSPmin, WAZmin from optimization outputs

Choose the number of samples N to be used for ACW, STA and BL sampling

Set
WSP = WSPmax

WAZ =  WAZmax

Choose a random sample of
ACW, STA, BL

Evaluate the model to compute
the SRQ

Yes

Has the model
been evaluated using N

samples?

Using N samples, construct the
discrete CDF of the SRQ and

assume it as the upper bound of
the pbox

No

Set
WSP = WSPmin

WAZ =  WAZmin

Choose a random sample of
ACW, STA, BL

Evaluate the model to compute
the SRQ

Yes

Has the model
been evaluated using N

samples?

Using N samples, construct the
discrete CDF of the SRQ and

assume it as the lower bound of
the pbox

No

Put together the two CDFs to obtain the probability box of the SRQ

Figure 6.26: Flow chart of the optimization-based approach for the computation of the
probability box
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Figure 6.27: Comparison of the probability boxes obtained with the conventional sampling
(s-pbox) and optimization-based (o-pbox) approach (ψgs = 0◦ validation flight)

Eventually, considerations concerning the most important contributions to model predic-
tion uncertainty can be made in this framework by looking at the size and shape of each
probability box. Nevertheless, in the attempt of providing the analyst an effective tool
to have access to the full picture of prediction uncertainty decomposition, the author de-
vised an approximated histogram representation (similar to the one proposed for uval in
section 6.3.3). An example of this representation is reported in fig. 6.28, while the results
for all validation flights can be retrieved from appendix C.
Within the histogram, the contributions from aleatory and epistemic input uncertain-
ties are separated from the numerical ones and reported as % of the total prediction
uncertainty. The epistemic input uncertainty contribution is computed as the area of
the probability box before the augmentation due to UNUM . Conversely, the numerical
contribution in the histogram is identified by the double of UNUM , since the augmenta-
tion rule mentioned in section 4.2.2 requires to append UNUM on either side of the pbox.
Eventually, the aleatory input uncertainty contributions has been approximated as the
arithmetic average of the 99% confidence intervals of the left and right-hand side pbox
boundary CDFs. Then, the total prediction uncertainty was approximated as the sum
among all contributions.
Despite approximated, this representation allows the analyst to intuitively collect infor-
mation associated to all fidelity metrics in the same figure, providing an effective starting
point to the decision-making process aimed at reducing model predictive uncertainty.
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Figure 6.28: Model prediction uncertainty decomposition into the contributions from
aleatory and epistemic inputs and numerical error. The results refer to the s-pbox

Building on these results, it is possible to conclude that the directional control position
and the roll angle are dominated by wind uncertainty, regardless the flight condition.
Conversely, longitudinal and lateral control position predictive uncertainty exhibit an
important contribution due to weight and CG position uncertainty in ψgs = 0◦ and
ψgs = 180◦, while wind becomes dominant in ψgs = 90◦ and ψgs = 120◦ validation flights.
Similar conclusions hold for rotors collective and torque figures. However, their predictive
uncertainty decomposition seems more resilient to different flight condition.
The contribution from UNUM is typically the smallest, despite peaks up to ∼ 20% can be
spotted in the lateral control position for ψgs = 90◦.

d Validation Metric

Upon collection of the numerical uncertainty, probability box and experimental data CDF
of each SRQ, the area validation metric d was computed, as displayed in the example
reported in fig. 6.29. The metric was evaluated both on the pbox obtained with the
conventional sampling technique proposed by Roy and Oberkampf (from now on referred
to as d-S) and on the pbox obtained with the optimization-based approach (from now
on referred to as d-O). The results (reported in this section and appendix C) are hereby
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discussed.
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Figure 6.29: Graphical representation of the d area metric on the longitudinal and lateral
control positions (ψgs = 0◦ validation flight)

Since, as reported in section 4.2, the area metric measures the evidence of disagreement
between the simulation and the experimental data, several occurrences where the area
metric is identically 0 can be spotted (fig. 6.30).
On the other hand, whenever evidence of disagreement is present (namely, d ̸= 0), model
update techniques may be conceived to improve agreement even without reducing numer-
ical and model-input associated uncertainties.
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Figure 6.30: Area validation metric computation on left and right rotors torque figures
(ψgs = 0◦ validation flight)

When several different fidelity metrics are involved in the same validation attempt (as
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in this work), situations in which many of them simultaneously show no disagreement
with the experiment may arise. However, it might happen that the agreement occurs in
regions of the probability box associated with very different interval-valued inputs values.
An example of this occurrence is reported in fig. 6.30. Indeed, according to the area
metric, no disagreement between the FSM and the experiment exist for the two rotors
torque figures. However, going more in detail, it is possible to observe that, for the left
rotor (fig. 6.30a), the experimental datum sits in the left-hand side portion of the pbox,
corresponding to a simulation output with wind of ∼ 1.5 kts from the 0◦ azimuth angle.
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Figure 6.31: Comparison of the values of the area validation metric obtained with the
sampling (d-S) and optimization-based (d-O) approach for control positions on all valida-
tion flights

On the other hand, in fig. 6.30b, the experiment sits on the far right hand side of the
pbox (corresponding to ∼ 1.5 kts wind from an azimuth angle of 180◦). Hence, evidence
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of disagreement between the FSM prediction and the experiment can be identified. Still,
the area metric, which accounts for a single SRQ (and provide no uncertainty or range
associated to its value, unlike E of ASME) fails to draw the attention of the analyst to
this evidence.

The differences between the two approaches for the computation of the pbox, as reported
in fig. 6.31 and fig. 6.32, little disagreement is generally observed. Thus, for the sake of the
advantages provided by the optimization-based approach in this particular application,
only its results are reported in section 6.3.6, where the different validation metrics are
compared.
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Figure 6.32: Comparison of the values of the area validation metric obtained with the
sampling (d-S) and optimization-based (d-O) approach for aircraft attitudes rotors col-
lective and torque figures on all validation flights
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6.3.5. Interval Analysis Solution Validation

Considering the validation procedures presented in chapter 4, it is clear that the com-
putation of uval (in ASME framework) and the construction of the probability box (in
Roy-Oberkampf framework) are costly tasks. Indeed, as reported in [8], Latin Hypercube
Sampling (LHS) may be a lower cost alternative to the Monte Carlo sampling for the
computation of uval, but this advantage comes at the expense of a reduced confidence on
the final value of the validation uncertainty itself. Moreover, an additional feature of both
these UQ procedures is that they rely on sampling algorithms which, regardless the num-
ber of samples, carry a sampling error which in practice may be difficult (or expensive)
to assess.
At the same time, building on the final observations carried out in sections 4.1.4 and 4.2.4,
it may be argued that the computation of SRQs statistics18 may not be strictly necessary
for some possible applications of the validation process within RoCS framework. Indeed,
whenever model validation is exploited within the model update and tuning loop or it is
used, in preliminary phases, to quantify the maximum allowable input and experimental
uncertainties to achieve a prescribed margin of model fidelity with sufficient confidence,
the low computational expense and the simplicity of the procedure becomes critical. It is
in this scenario, hence, that interval analysis might stand out as a viable tool to overcome
the aforementioned limitations of sampling techniques and to support the analysis in the
course of the validation campaign planning and model update iterations.

Methodology

Formally speaking, such a framework incorporates elements of both the ASME standard
(validation metrics and corollaries) and the Roy-Oberkampf approach (interval-valued
uncertain quantities). All model inputs affected by uncertainty are characterized as in-
tervals19. Then, the propagation of input uncertainties through the model is performed
via global optimization (i.e. interval analysis) techniques. As a result, bounding mini-
mum and maximum values for S are obtained. Then, the resulting interval of possible
values of S is treated as an epistemic uncertainty on the model output itself, referred
to as UINPUT . Concerning the numerical uncertainty, no difference with respect to Roy-
Oberkampf framework is present. Thus, it is treated as an epistemic uncertainty whose
derivation follows the guidelines discussed in section 6.3.4. Finally, concerning the ex-
periment, the realization(s) of the SRQs of interest are used to derive an interval UD

18and comparison error statistics, in the case of ASME approach.
19thus, with no difference with respect to the mathematical description characterizing epistemic,

interval-valued input uncertainties within the Roy-Oberkampf framework.
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which bounds all possible contemplated values of the measurand D. If the time history
of the SRQ is available, the bounds of the interval may be defined basing upon a certain
confidence range on the measurand (e.g. 95%). On the other hand, if the analyst believes
that the number of realization (or the quality of the experimental datum) is insufficient
to estimate a reasonably accurate confidence interval, the minimum and maximum values
among the realizations at disposal can be used.

Then, upon the quantification of UINPUT , UNUM and UD, the validation metrics can be
evaluated. An outline of the process is reported in fig. 6.33.

SRQ of interest

Uncertain
model inputs

Computational
model

Direct global
optimization

SRQmax

SRQmin

UNUM

+

+

+

-

Experimental
data

Validation metric
operator

Emax 
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EIA

Definition of UD

Figure 6.33: Flow chart of the validation metric quantification process within the frame-
work of interval analysis

UNUM

UINPUT

|Emax| |Emin|

UD

Figure 6.34: Graphical exemplifica-
tion of the computation of Emin and
Emax validation metrics

Emin = min(S-D) (6.22)

Emax = max(S-D) (6.23)

EIA = Emax − Emin (6.24)

At first, the numerical uncertainty UNUM is used to augment the interval associated to
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input uncertainties, as displayed in fig. 6.33. Then, the augmented interval is combined
with UD according to the rules of interval analysis, namely eq. (6.22) and (6.23), in order
to derive the upper and lower bound of the comparison error. These latter quantities,
together with their difference reported in eq. (6.24), constitute the validation metrics for
this framework.

Upon computation of the validation metrics, corollaries based on the ones discussed in
section 4.1.2 can be derived.

• If both |Emax| >> EIA and |Emin| >> EIA, then it is safe to assume that δmodel has
the same order of magnitude of Emax and Emin and that its estimation is reliable;

• if either |Emax| ≲ EIA or |Emin| ≲ EIA, then the comparison error is dominated
by either numerical, input and/or experimental uncertainties and little information
can be retrieved and used about the modelling error value.

Fidelity assessments and model improvements can be measured directly on Emax and
Emin.

Concerning model adequacy assessment, the uncertainty on the model predictive capabil-
ity in the DoP can be approximated by combining the appropriately extrapolated model
error δmodel ⊂ [Emin;Emax] together with UINPUT and UNUM evaluated at the prediction
point of interest, according to eq. (6.25).

UPRED = (SRQmax + UNUM + Emax)− (SRQmin − UNUM + Emin) (6.25)

Results

The validation procedure presented above was carried out on the present test case. The
global optimization of each SRQ of interest with respect to the uncertain inputs was per-
formed with Dakota. Moreover, the unbounded model inputs (namely, ACW, STA and
BL) were bounded within three standard deviations from their mean, thus identifying the
corresponding intervals with the 99.73% confidence interval. Concerning the experimental
uncertainty, in this instance, UD was centered in D (computed according to eq. (6.18)),
with an amplitude equal to three standard deviations of the measurand. However, as pre-
viously mentioned, the analyst may come up with other techniques for its definition basing
on the number of samples available and its knowledge about the presence of systematic
errors.
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Figure 6.35: Results of the uncertainty propagation and aggregation on FSM prediction
and flight data for rotors flapping angles

The result of input uncertainty propagation are reported in appendix D, together with its
aggregation with the numerical uncertainty and experimental data. Fig 6.35 reports the
results of the procedure presented in section 6.3.5 on rotors flapping angles. Straightaway,
this result highlights that this approach makes it possible, in the present application, to
carry out sensible conclusions regarding the validation of rotor flapping angles. Moreover,
as already stressed in section 6.3.3, input uncertainty UINPUT turns out to be the dominant
contribution to EIA by far, with exceptions in a handful of instances only, where UD

dominates instead. The values of Emax, Emin and EIA are reported in section 6.3.6, where
they are compared with the other validation metrics.
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6.3.6. Validation Metrics Comparison

In this section, the results obtained with the three aforementioned VV frameworks and
metrics are compared. Moreover, observations regarding their comparison are drawn
to propose when and why one method may be advantageous with respect to another.
Comparison of the rotors flapping angles is proposed between ASME framework and
interval analysis only, since in 6.3.4 evidence was provided that the finite-size sample on
which d rely is not trustworthy for these fidelity metrics.

Ags = 0/ Ags = 90/ Ags = 120/ Ags = 180/

0

V
al

id
a
ti
on

M
et

ri
cs

on
x
t l

a
t

E and uval

d-O
EIA

(a) Lateral control position

Ags = 0/ Ags = 90/ Ags = 120/ Ags = 180/

0
V
al

id
at

io
n

M
et

ri
cs

on
x
t l

on

E and uval

d-O
EIA

(b) Longitudinal control position

Ags = 0/ Ags = 90/ Ags = 120/ Ags = 180/

0

V
al

id
at

io
n

M
et

ri
cs

on
x
t p

ed

E and uval

d-O
EIA

(c) Directional control position

Figure 6.36: Validation metrics comparison for control positions on all validation flights

Decent agreement in the trends and values of the metrics can be observed in fig. 6.36
and 6.37. Being both based on the comparison error, EIA and E ± uval are indeed very
similar. The yellow band of EIA always include the nominal comparison error E of ASME,
as expected. Moreover, the amplitude of the yellow bar is typically of the same order of
magnitude of uval and, frequently, 2 to 3 times greater. This is expected considering
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Figure 6.37: Validation metrics comparison for left rotor torque and aircraft pitch angle

that uval is a standard uncertainty, while the EIA is extended and directly represents the
interval in which the comparison error is expected to fall. The area metric d assumes values
which are comparable to the other metrics as well. As a consequence, it is reasonable
that the fidelity acceptability margins conceived for the comparison error may also apply
sensibly to this validation metrics. In addition, it also typically follows the same trends of
ASME and interval analysis, with two types of exceptions. Whenever the comparison error
assumes negative values, considering that the area metric is a positive definite quantity,
a difference in the trends emerges, characterized by a pseudo-symmetry with respect to
the X-axis of the plot. Thus, whenever E carries the information about the sign of the
error, the area metric doesn’t. However, if there is any20, this can always be retrieved
by the analyst through a visual inspection of the pbox and the area metric. Indeed, this
condition is the one that occurs in this study every time d and E-based metrics follow
diverging trends (e.g. fig. 6.37a). To support this conclusion, the comparison error from
ASME and the area metric from Roy-Oberkampf are compared in magnitude in fig. 6.38.

Alike E and uval, also |Emax|, |Emin| and EIA, are typically of the same order of magni-
tude. Hence, when the corollaries are applied to interval analysis validation metrics, the
analyst is supplied with compelled evidence that the uncertainty due to input and flight
data is too big to isolate the value of the model error. As a consequence, a reduction
of the input and experimental uncertainty is necessary in order to set up well-advised
model improvements based on these data, unless the applicant is willing to accept a large
uncertainty.

20e.g. the experiment CDF is always on the same side of the FSM pbox, and so a "sign" can be
intuitively associated to the error.
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Figure 6.38: Comparison of |E| ± uval and d

Concerning the area metric, it is straightaway clear that no model improvement can be
formulated basing on the instances where d = 0. On the other hand, depending on the
quality of flight data (as mentioned in section 6.3.4), model update procedures may be
conceived for the cases where d ̸= 0. Nevertheless, as observed in section 4.2.4, d does
not come with any associated uncertainty (unlike E in the other two frameworks). When
the model is extrapolated and the model-form error estimate is exploited in the DoP for
certification-aimed prediction or credibility assessments, any information concerning the
uncertainties involved in the validation phase is lost. As a consequence, another funda-
mental difference among the frameworks emerges in regard of model adequacy assessment.

Within the validation methodologies based either on ASME standard or interval analysis,
any increase in the uncertainties involved in the model validation phase ends up worsening
model credibility. The validation metrics uval and EIA not only draw the attention of
the analyst to large uncertainties involved in the validation process but also, and more
importantly, are able to transport that information (related to the goodness of the model
validation) into the DoP. Essentially, any uncertainty associated to model-inputs (uinput
or UINPUT ), numerical approximations (unum or UNUM) and flight measurements (ud or
UD) in the validation points indirectly affects the model credibility in the DoP through the
model-form error uncertainty (either represented by uval or EIA). Hence, the credibility of
a FSM is not only affected by the comparison error E and the fidelity of the model itself,
but also by the quality of the validation which has been carried out to assess its fidelity.
As a result, the very same model validated with reduced uncertainties in the validation
data can lead to a smaller margin with the same CR when used to support certification
(thanks to a reduction on uval or EIA).
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Conversely, whenever d is used, this connection does not always emerge. Indeed, as the
analyst inadvertently exaggerate either the epistemic input uncertainty or UNUM during
model validation, the value of d reduces and, as a consequence, recalling eq. (4.9), model
credibility improves. An exemplification of this view is presented and discussed in fig. 6.39,
where the increase of model credibility as a consequence of larger input uncertainties
considered during the validation phase is displayed.
Thus, apparently, it is possible to conclude that whenever d is used, it becomes critical
not to overestimate epistemic uncertainties. However, this might not be trivial at all,
considering the fact that epistemic input uncertainties may include inputs of which little
information is available and accounting for the difficulties associated to the estimation of
UNUM (as mentioned in section 6.3 and [29]). On the other hand, E ± uval and interval
analysis methods may be considered more resilient in this regard, since, at least, they
make available to the analyst an indication of the uncertainty associated to the model-
form error.

In regard of uncertainty contributions decomposition, all validation frameworks are able to
inform the analyst about what uncertainties dominate model predictions and/or validation
metrics. Indeed, within the ASME framework, uinput, unum and uD can be compared
to figure out the greatest contribution to uval, as shown in section 6.3.3, and to the
simulation error δS in general. On the other hand, within the approach proposed by Roy
and Oberkampf, the size and shape of the pbox, together with the magnitude of UNUM

can be exploited to decide what is the most effective way to reduce model prediction
uncertainty, as highlighted in section 6.3.4. Finally, in the framework of interval analysis,
UINPUT , UNUM and UD can be compared, as mentioned in section 6.3.5.

Another way of comparing the validation metrics relies on their computational cost. In-
deed, in the present study, uval and d turned out to be the most computationally intensive
metrics to compute, due to the sampling techniques required for the estimation of uinput
and of the model probability box, respectively. On the other hand, at the cost of sacri-
ficing the information on SRQs statistics, interval analysis proved to be much cheaper,
resulting in at least an order of magnitude reduction in terms of required function evalu-
ations per fidelity metrics. As it can be deduced from the flowchart presented in fig. 6.33,
the computational cost of Emax, Emin and EIA scales up with the number of fidelity met-
rics involved in the study (since a dedicated global optimization is required for each SRQ
individually). On the other hand, the cost of uval and d, in principle, is independent from
the number of fidelity metrics involved in model validation. However, as observed in sec-
tions 6.3.3 and 6.3.4 with rotor flapping angles, their cost is bounded above the number
of function evaluations required to obtained satisfactory convergence of the statistics of
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the latest-converging fidelity metric. Thus, in a practical application, the analyst may
find that the validation cost depends on what fidelity metrics are involved in the study
as well.
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In the present work, the ASME VV 20 [8] and Roy-Oberkampf [29] approaches to VV
of computational models are revised. Then, emulating the first phases of a partial credit
demonstration of compliance to EASA low speed controllability requirements [7], the
aforementioned VV methodologies have been applied to a state-of-the-art FSM developed
by LHD. In the course of the application, the CbS guidelines developed by RoCS are
strictly followed. FLIGHTLAB and Dakota are employed as tools for flight dynamics
modelling and SA/UQ, respectively.

The solution verification process is carried out accounting for several model discretization
and solution algorithm parameters. At the time of writing, there is no accepted solution
verification procedure suited for the quantification of the numerical error of flight me-
chanics multi-body models. Hence, the author applies a verification algorithm specifically
conceived for the present application, stressing the assumptions, challenges and limits of
the currently adopted procedures when applied to complex state-of-the-art multi-body
systems. Valuable insight is gained on the behaviour of the Peters-He finite state dy-
namic inflow model with different number of states. In addition, reliable estimates of the
numerical error associated to the FSM solution are obtained.

In the framework of model validation, a preliminary SA with respect to FSM inputs is car-
ried out with the MOAT [9] method implemented in Dakota. Despite a direct comparison
with more widely adopted SA methods (e.g. VBD) is not provided, it is predicted that the
reduced cost of MOAT may result in a significant reduction of the computational expense
of SAs in FSMs with a large number of uncertain input parameters. Model validation is
then carried out with both ASME VV 20 and Roy-Oberkampf approaches. Moreover, a
validation methodology based on interval analysis is proposed and applied to the FSM.
The three VV procedures are eventually compared in terms of fundamental assumptions,
computational expense, validation metric values and suitability to the CbS process devel-
oped by RoCS.

ASME and Roy-Oberkampf validation procedures, as expected, proved to be significantly
more expensive than interval analysis. Despite this, all validation methodologies lead to
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similar values of model validation metrics for all SRQs. The VV framework proposed by
ASME for CFD and CHT [8] may be best suited for the application to FSMs in RoCS.
Indeed, its corollaries provide a powerful tool at disposal of the analyst to critically inter-
pret the outcomes of model validation. Moreover, the standard validation uncertainty uval
allows model credibility in the DoP to be affected by quality of the FSM model validation
(namely, the magnitude of the uncertainties accounted for during validation). This is a
powerful feature, especially when, as in the present work, FSM input uncertainties can-
not be accurately estimated. Nevertheless, when computational expense is of paramount
importance, e.g. when a preliminary guess of affordable FSM input uncertainties shall
be provided, interval analysis might turn out to be best suited, thanks to its capability
of delivering great proxies of the comparison error E uncertainty band obtained with the
ASME approach at a fraction of the cost.

Finally, it is important to stress that, despite the VV methodology, a solid estimation
of FSM input parameters is necessary to set up a well advised validation process and
reinforce model credibility. Moreover, all validation procedures, as they are presented in
chapter 4 and 6.3.5, are well suited for scalar, single valued validation metrics (i.e. SRQs
at trim). Nevertheless, their practical implementation presented in this work shall at
least be revised in order to make it suitable to different kinds of fidelity metrics, such as
non-linear time responses or frequency responses.
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A| Flight Data Time Histories
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Figure A.1: Total controls time histories from flight tests
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Figure A.2: Aircraft attitudes and rotors collectives and torque figures time histories from
flight tests
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Figure B.1: E and uval validation metrics results for control positions on all validation
flights. The magnitude of uval is reported as an errorbar on E
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Figure B.2: E and uval validation metrics results for aircraft attitudes and rotors collective
and torque figures on all validation flights. The magnitude of uval is reported as an errorbar
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Figure B.4: Decomposition of uval2 into the contributions from uinput, uD and unum
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Figure C.1: Comparison of the values of the area validation metric obtained with the
sampling (d-S) and optimization-based (d-O) approach for control positions on all valida-
tion flights
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sampling (d-S) and optimization-based (d-O) approach for aircraft attitudes rotors col-
lective and torque figures on all validation flights
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(b) Validation flight ψgs = 90◦
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(c) Validation flight ψgs = 120◦
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(d) Validation flight ψgs = 180◦

Figure C.3: Model prediction uncertainty decomposition into the contributions from
aleatory and epistemic inputs and numerical error. The results are computed on the
s-pbox
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Figure D.1: Results of interval analysis uncertainty propagation and aggregation on FSM
prediction and flight data for control positions
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Figure D.2: Results of interval analysis uncertainty propagation and aggregation on FSM
prediction and flight data for aircraft attitudes and rotor collective and torque figures
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Figure E.1: Validation metrics comparison for control positions on all validation flights
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Figure E.2: Validation metrics comparison for aircraft attitudes and rotors collective and
torque figures on all validation flights
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Figure E.3: Validation metrics comparison for rotor flapping angles on all validation flights
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