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1. Introduction
We live in an epoch where multimedia acquisi-
tion devices such as cameras and smartphones
have become very accessible tools of common
use in our day life. Constantly, we are shar-
ing and consuming images, videos and record-
ings through web platforms such as social media.
With this growth on the availability of capturing
devices, also a huge amount of digital processing
techniques have appeared. Some of these tech-
niques allow us to completely alter the content of
the media, giving us a powerful tool for enhanc-
ing and personalizing our pictures, videos and
audios, but also, opening a door for using them
with malicious purposes such as fake publicity
or impersonation. For instance, online tools like
DALL·E [4] and others let the users insert fake
faces on images and videos. For these reasons,
multimedia manipulations have become a poten-
tial risks in different scenarios of our society.

In this context, multimedia forensics, and
more specifically image forensics, have become of
great interest in the scientific community. Some
of the most successful techniques for spotting
local image manipulations are data-driven sta-
tistical methods [1]. Data-driven approaches
harness the power of deep learning and statis-
tical analysis to uncover patterns and anoma-

lies within images that may indicate that some
kind of tampering has been made. Leveraging on
large datasets, these methods employ sophisti-
cated algorithms to automatically learn and de-
tect complex characteristics of manipulated im-
ages at a pixel level.

One of the state-of-the-art methods for im-
age forgery localization is the Noiseprint [1],
which exploits unique traces associated with the
camera-model used to acquire photographs. In
fact, each camera model possesses its own spec-
ifications, like the lenses, sensors and the Color
Filter Array (CFA), all of them being character-
ized by specific features. Additionally, diverse
digital processing stages may be incorporated
depending on the manufacturer and specific to
each camera model, like white balancing or color
correction. It is expected that localized manip-
ulations will have an effect on the Noiseprint,
leaving local traces on it. By extracting the
Noiseprint from an image, the authors of [1] end
up with an efficient forgery localization method.

In this work, we aim to construct a robust al-
gorithm capable of detecting and localizing im-
age manipulations. To this purpose, we take in-
spiration from the idea of the Noiseprint. To do
so, we start by training a Neural Network (NN)-
based denoiser capable of extracting a camera-
model fingerprint from images. Then, we ex-
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ploit different activation maps of the denoiser
as abstract high-level noise-related features for
training an Anomaly Detection (AD) algorithm.
This algorithm makes use of the extracted fea-
tures to generate a heatmap that determines the
dissimilarity between the input image and a set
of normal images. By doing so, we are able to de-
tect any present local variations on the extracted
noise fingerprint, exhibiting possible tampered
pixels inside the images.

To validate our results, apart from a public
dataset based on splicing [2], we construct two
more datasets based on generative Artificial In-
telligence (AI) models by applying realistic local
manipulations to natural images. Our results
show remarkable performance in the proposed
datasets, outperforming in most of the cases the
state-of-the-art.

2. Problem Formulation
In this work, we focus on developing a robust
method that is able to detect which pixels of
an image have been manipulated by means of
splicing. Formally, we define a generic pristine
image as I, with size H × W , in which a pixel
coordinate is defined as (h,w), h ∈ [1, H] and
w ∈ [1,W ]. The locally manipulated version of
I can be written as

Ī(h,w) =

{
t, if (h,w) ∈ S,
I(h,w), if (h,w) /∈ S

(1)

where S is the pixel region under splicing attack
and t corresponds to the specific tampered with
pixel value.

The local manipulation can be described by a
tampering mask, which is a 2D matrix with the
same spatial size of the image. We can define
the tampering mask as

M(h,w) =

{
0, if (h,w) /∈ S,
1, if (h,w) ∈ S (2)

Figure 1 shows a sketch of the tackled prob-
lem: given a generic manipulated image Ī, our
goal is to estimate a tampering heatmap H that
is as close as possible to the mask M. A heatmap
H is a single-channel image with the same spa-
tial dimensions as the input. For each pixel loca-
tion (h,w), the value of the pixel H(h,w) repre-
sents the probability of the image pixel belong-
ing to the manipulated class.

Figure 1: We show the pristine image I, its manipu-
lated version Ī (the splicing region is highlighted by
red contour) and the corresponding mask M.

3. Proposed method
The proposed method is designed for detecting
forgeries in the case of image splicing. To do so,
we take advantage of the unique camera model
related artifacts that are present on captured im-
ages. The method can be separated into two
main stages:
Fingerprint extraction. We use a denois-
ing NN architecture to retrieve low level infor-
mation from the image. In particular, the de-
noiser is capable of extracting camera model-
based artifacts. If the image has been manipu-
lated by splicing, the denoising model extracts a
noise fingerprint which shows two different pat-
terns, clearly making a distinction between non-
manipulated and manipulated pixels.

This distinction, however, may or may not be
perceptible by the human eye, moreover, even if
it is perceptible, it might not be easily separable
into the two classes, in the sense that a simple
thresholding might not be able to separate the
two different noisy patterns.
Heatmap generation. In this stage, an AD
technique is applied in order to generate a tam-
pering heatmap that effectively quantifies the
differences between the patterns, resulting in a
probability map that can thresholded to obtain
a mask that classifies each pixel as belonging to
one of the extracted patterns. In particular, we
make use of the noise fingerprint and of the net-
work activation maps acquired in the previous
stage.

Figure 2 reports a sketch of the proposed
methodology.

3.1. Fingerprint extractor training
In this stage, we aim to develop a NN-based
denoiser that is capable of extracting from im-
ages the camera model related artifacts. This
should be done by removing all the scene con-
tent and other types of noises coming from dif-
ferent sources. To do so, we take inspiration
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Figure 2: Simplified sketch of the proposed pipeline.
From a test image, we extract noise-related feature
maps by using a pretrained fingerprint extractor.
Finally, we use the feature maps as input of an
anomaly detection algorithm to estimate a manip-
ulation heatmap.

from the original Noiseprint paper [1], propos-
ing a Siamese framework for training a denoising
network architecture:

1. We select a number of pristine images from
which we know the exact camera model that
was used for their acquisition.

2. We crop images into squared patches Pm
(h,w)

of size P × P , where (h,w) represents the
position of the top-left pixel of the patch in
the original image, and m the camera model
used for capturing the image.

3. Each patch is fed into a denoising network.
We extract its related model-related finger-
print, defined as Fm

(h,w).
4. We generate a mini-batch of samples con-

taining the fingerprints of N patches com-
ing from different images and camera mod-
els. Then, we pair patches only if they meet
the two following conditions: they share the
same camera model, and they are extracted
from the same pixel positions but from dif-
ferent images.

5. The weights of the denoising NN are itera-
tively updated by calculating the Distance-
Based Logistic (DBL) loss between the fin-
gerprints in the mini-batch. The DBL loss
minimizes a distance metric between the
fingerprints of paired patches, while max-
imizing the unpaired ones.

Figure 3 shows a sketch of the training process.
By following this procedure, we are training

a denoising NN that is not only able to ex-
tract noise fingerprints that are similar for all
the images belonging to the same camera model,
but also to distinguish between images captured
from different models and maximize the dissim-
ilarity between them.

We employ the algorithm described to train
two distinct NN models. The first one is a

Figure 3: Siamese architecture for training the fin-
gerprint extractors.

Convolutional NN (CNN)-based denoiser called
Denoising CNN (DnCNN) [6], which is a fully-
convolutional NN used for image denoising. As
a second model, we use Restormer [5], which is
a Vision Transformer (ViT) architecture used
for general image restoration purposes, includ-
ing denoising.

3.2. Heatmap generator training
For the heatmap generation stage, we take in-
spiration from the Patch Distribution Modeling
(PaDiM) algorithm proposed in [3]. The idea
behind PaDiM is to use a CNN for extracting
feature maps from a dataset of “normal” images;
these maps are used to construct a set of refer-
ence local embeddings that follow a specific dis-
tribution. Then, a generic image can be tested
and compared with the training data distribu-
tion to spot local anomalies.

In particular, we propose an Anomaly Detec-
tion (AD) algorithm to infer distributions from
a set of “normal” training data, which in our
case are non-manipulated pristine images. To
do so, we exploit denoising NN architectures pre-
trained as shown in Section 3.1.

3.2.1 Training steps

The training steps of our proposed AD method
are as follows (see Figure 4):

1. We select N pristine images coming from M
different camera models. Since all these im-
ages may have different sizes, we crop them
to a common size of C×C×3 pixels, start-
ing from the top-left corner of the image.
Let us call the set {Ikc}, where k = 1, ..., N
enumerates the N images, and c is used to
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Figure 4: Scheme of the procedure for training the proposed AD algorithm.

clarify that it is a cropped image.
2. The cropped images {Ikc} are fed into one of

the proposed fingerprint extractors. Then,
Nh activation maps are selected and hooked
from some of the layers of the extractor.

3. From the previously acquired maps, only
those pixels corresponding to a patch Pk of
size P ×P ×3 inside every original cropped
image Ikc are kept, in order to avoid border
artifacts. Notice that, in the most general
case, feature maps coming from different
network layers may have different spatial
size. Therefore, every original input patch
Pk has a corresponding activated region in
the selected maps which is typically smaller
than P ×P pixels, its size changing accord-
ing to the activation map depth.

4. We upscale all the selected activation re-
gions to have equal spatial dimensions. We
end up with all the regions having the same
spatial size of Pl × Pl pixels, were Pl and
Pl represents the size of the largest selected
activation region.

5. We concatenate the resulting feature maps
extracted from all the considered layers.
Each Pk has its own embeddings Ek with
size Nh ×Pl ×Pl. Notice that, by following
similar considerations to those done in step
3, every Ek

i,j , which has Nh total elements
and (i, j) ∈ [1, ...Pl]× [1, ...Pl], corresponds
to a small pixel area in the input patch Pk.
Therefore, Ek

i,j ∈ RNh is defined as the em-
bedding vector of a specific pixel region of
the input Pk.

6. Considering the contributions of all train-
ing images, we end up with a set of N em-
beddings {Ek}, k = 1, ..., N . For each pixel
position (i, j) of the embeddings, we esti-
mate a multivariate Gaussian distribution
by computing the mean µij and covariance
matrix Σij over the set of N samples.

3.3. Deployment stage
When a query image has to be analyzed, we
pass it through the trained fingerprint extrac-
tors to extract features by selecting specific net-
work layers. Then, we exploit our proposed AD
algorithm to find local anomalies.

To correctly apply the algorithm, we have to
make a one-to-one comparison of patch embed-
dings from test and train images. This means
that the spatial size of the input images at test
step must be the same as that of the patches
used at train step, i.e, P × P . To avoid any
resizing operation, we operate in a patch-wise
framework.

The procedure for extracting the heatmap
from an image of size H×W×3 is the following:

1. The image is passed through the fingerprint
extractors (DnCNN or Restormer).

2. We select Nh activation maps from the lay-
ers of the fingerprint extractors. For the
DnCNN we hook the last three network lay-
ers, while for the Restormer we only use the
estimated fingerprint (last layer).

3. We divide the activation maps into regions,
every region corresponding to input image
patches of size P × P .

4. We create patches’ embedding vectors in
the same way they were created at train-
ing step.

5. The Mahalanobis distance between each
embedding vector and the reference multi-
variate Gaussian distribution is calculated,
resulting in an anomaly score for every pixel
position (i, j).

6. The heatmap of the whole image is esti-
mated by properly joining all the obtained
score maps from the single patches.

4. Results
In this section, we present the results and perfor-
mance of our method on the proposed datasets.
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Then, we make a comparison with the state-of-
the-art techniques. To do so, we rely on three
different datasets:

• DSO-1: The DSO-1 dataset [2] comprises
200 images, including indoor and outdoor
scenes, with 100 original and 100 manipu-
lated images.

• PNG-based Generative-Based Manipulated
Dataset (GBMD): We use DALL·E as
a generative AI local tampering method,
starting from 50 uncompressed PNG images
to generate 200 locally manipulated images.

• JPEG-based GBMD: We generate another
dataset based on DALL·E, starting from 50
JPEG compressed images to generate 200
images containing local manipulations.

In all the considered datasets, we do not have
100% control on the applied tampering opera-
tions. In the case of DSO-I, we have no infor-
mation on the devices and camera models used
for capturing the images, while on GBMD we
have no information on how the image is exactly
processed by DALL·E.

We employ the Matthews Correlation Coef-
ficient (MCC) and the Area Under the Curve
(AUC) of the Receiver Operating Characteristic
(ROC) as performance metrics. Both metrics
are computed between the estimated heatmap
H and the associated tampering mask M. The
higher the metrics (ideally achieving 1), the bet-
ter the localization results.

4.1. Test on the proposed Datasets
Table 1 reports the results of each of our models
on DSO, PNG-based GBMD and JPEG-based
GBMD datasets respectively.

Table 1: Results of testing our method on the three
proposed datasets. In bold, the best results per
dataset.

DSO JPEG-based GBMD PNG-based GBMD

DnCNN Restormer DnCNN Restormer DnCNN Restormer

AUC 0.951 0.968 0.975 0.952 0.834 0.750
MCC 0.731 0.843 0.838 0.859 0.545 0.520

Both models obtain remarkable results on
DSO and JPEG-based GBMD datasets, while
on the PNG-based GBMD dataset the perfor-
mances are slightly lower and seem to be affected
by the PNG nature of the original images. In
the case of the DSO dataset, which is shared as
PNG images, the achieved good results lead us

to think that, in some step of the dataset pro-
duction, some JPEG compression was applied.

Looking deeply at the results on the DSO
dataset, we observe better performance com-
ing from the Restormer model, outperforming
in a moderate quantity the DnCNN model. The
contrary comes out when testing on the PNG-
based GBMD dataset, where DnCNN performs
slightly better than Restormer. For the JPEG-
based GBMD dataset, the overall performances
are valid for both the denoising models.

Figures 5 shows three examples of fingerprints
and heatmaps estimated with our method for
the three considered datasets.

Figure 5: Examples of the results on the proposed
datasets.

4.2. Test on post-processed images
We explore how post-processing operations like
resizing and JPEG compression applied to the
manipulated images can affect the performance.

Table 2 shows the results of our method af-
ter JPEG compressing the images. We can no-
tice that compressing the image with the high-
est possible quality factor does not have a big
impact on performances. In fact, if we com-
pare these results with those of table 1, the
impact is less than 2% for both models. On
the other hand, reducing the JPEG quality fac-
tor has an unwanted effect on the results, with
this effect being more critical on the Restormer
model, even for high quality factors.

Table 2: Results on JPEG compressed images.

DnCNN Restormer

QF 100 95 90 100 95 90

AUC 0.943 0.682 0.643 0.959 0.644 0.598
MCC 0.722 0.229 0.178 0.832 0.187 0.135

We report the results of applying 0.8×, 0.9×,
1.1× and 1.2× scaling in Table 3. We can notice
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a huge impact in the performance for both mod-
els, being the DnCNN the most affected one. It
is interesting to observe that Restormer is more
successful than DnCNN in case of downscaling,
while DnCNN outperforms Restormer in case of
upscaling. With these results, we confirm that
the camera-model traces that we want to isolate
are highly affected when applying rescaling to
the images.

Table 3: Results of testing our method on resized
images.

DnCNN Restormer

Resizing factor 0.8 0.9 1.1 1.2 0.8 0.9 1.1 1.2

AUC 0.618 0.657 0.696 0.706 0.706 0.714 0.686 0.703
MCC 0.155 0.170 0.221 0.227 0.274 0.279 0.204 0.223

Figures 7 and 6 show results for compressed
and resized images, respectively.

Figure 6: Results on a resized image from the DSO
dataset, we show the heatmaps at 0.8×, 0.9×, 1.1×
and 1.2×.

Figure 7: Results on a JPEG compressed image
from the DSO dataset, we show the Fingerprints and
heatmaps for Quality Factors of 90 and 95.

4.3. Comparison with state-of-the-art
We compare our results with state-of-the-art
methods, in particular, with the method from
which we take inspiration, the Noiseprint [1]. We
make the comparison by taking as a reference
our best results per dataset. Results are shown

in Table 4.

Table 4: Comparison with the state-of-the-art. For
space constraints, D corresponds to DnCNN, R to
Restormer, N to Noiseprint. In bold, the best results
per dataset.

DSO JPEG-based GBMD PNG-based GBMD

D R N D R N D R N

AUC 0.951 0.968 0.926 0.975 0.952 0.961 0.834 0.750 0.938
MCC 0.731 0.843 0.722 0.838 0.859 0.841 0.545 0.520 0.769

In case of DSO, we observe a considerable ad-
vantage for our method. For the JPEG-based
GBMD dataset, both models have almost the
same performance. On the PNG-based GBMD,
we observe a noticeable out-performance by the
Noiseprint. However, this result was expected
from the previously analyzed experiments. In-
deed, we already noticed that our method has
disadvantages when used on images that were
not JPEG compressed before the forgery was
added.

5. Conclusions
In this work, we faced the problem of image
forgery localization, in particular, the cases of
image splicing and image manipulation with
generative AI technologies. These forgeries can
be made with tools that are available to almost
any person, which makes the dissemination of
manipulated images a problem of great concern.

Inspired by two state-of-the-art algorithms,
we proposed a method to expose tampering re-
gions inside images. To do so, we trained denois-
ing NN capable of extracting a camera-model
fingerprint from images. Then, we used activa-
tion maps coming from different layers of these
denoisers to apply an AD procedure, resulting
into a heatmap that can be interpreted as a
probability map of tampered with pixels.

Our technique shows promising results for all
the considered local manipulation techniques. In
most of the considered experiments, our method
outperforms one of the top state-of-the-art tech-
niques. However, when the forgeries are ap-
plied to images that have never been JPEG com-
pressed or when the manipulated images are
post-processed, the performances are affected
considerably. Future works will be dedicated to
further investigations for enhancing the robust-
ness of the proposed method.
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