
SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING 

Master of Science in Automation and Control Engineering 

 

 

A neural network-based predictive control and 

data analysis of an HVAC system for an 

educational building 

 

 

 

Master Thesis of: 

 

  

Ignacio Ortega Coronado 935889 

Supervisor: Prof. Luca Ferrarini  

Cosupervisor: Ph.D. Soroush Rastegarpour 

     

 

A. Y. 2020-2021 

 
 



 

 

ii 

 

  



 

 

iii 

 

Abstract 

Nowadays, the impact of the Industry 4.0 has increased during the last years and the 

inclusion of fields such as Artificial Intelligence and Machine Learning in new areas is 

taking place. To reduce the energy consumption and the ecological impact of different 

systems, including those devoted to the climate comfort of users in buildings, different 

and advanced controlled techniques appear to push forward the efficiency of such 

complex systems. The objective of this thesis is to examine the influence of the 

characteristics and the size of the dataset used for the training of the Neural Network 

that will be used as a prediction model inside a non-Linear Model Predictive Control 

(NMPC). 

A short introduction analyzing the main aspects of the building and control structure of 

its Heat, Ventilation, and Air-Conditioning (HVAC) system is provided. Then, a 

reference model of the building is used to generate the data set required for training using 

realistic operating scenarios. Different datasets are then tested in prediction under other 

conditions, and in closed-loop introducing them inside the NMPC. 

Some practical concerns about closed-loop bad performing prediction models as well as 

techniques to improve their capacity with an online approach for retraining the prediction 

model are introduced. Finally, this idea is extended to the case of the use of the same 

controller in a different building using a pre-trained model. Performance analysis of the 

best configuration for online retraining is then achieved. 
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Sommario 

Al giorno d’oggi, l'impatto dell'Industria 4.0 è aumentato durante gli ultimi anni e 

l'inclusione di campi quali l'Intelligenza Artificiale e il Machine Learning in nuove aree 

si sta attuando. Per ridurre il consumo di energia e l'impatto ecologico di diversi sistemi, 

compresi quelli dedicati al comfort climatico degli utenti negli edifici, appaiono diverse e 

avanzate tecniche di controllo con lo scopo di promuovere l'efficienza di tali sistemi 

complessi. L'obiettivo di questa tesi è quello di esaminare l'influenza delle caratteristiche 

e delle dimensioni del set di dati utilizzato per il training di una Rete Neurale che verrà 

adoperato come modello di predizione all'interno di un Model Predictive Control non 

lineare (NMPC). 

Viene fornita una breve introduzione che analizza gli aspetti principali dell'edificio e la 

struttura di controllo del suo sistema di riscaldamento, ventilazione e condizionamento 

dell'aria (HVAC). Poi, un modello di riferimento dell'edificio viene utilizzato per generare 

il set di dati necessario per il training utilizzando scenari operativi realistici. 

Successivamente, diversi set di dati vengono testati in predizione con altri condizioni, e 

in closed-loop introducendoli all'interno del NMPC. 

Vengono introdotte alcune considerazioni pratiche sui modelli di predizione ad closed-

loop cattive prestazioni e le tecniche per migliorare la loro capacità con un approccio 

online che retraina il modello di predizione. Infine, questa idea è estesa al caso in cui si 

utilizza lo stesso controller in un edificio diverso utilizzando un modello preaddestrato. 

Si ottiene quindy un'analisi delle performance sulla migliore configurazione per un 

retraining online. 
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1 Introduction 

In this chapter, the objective of the thesis is set, and the proper structure of the document 

is described  

Then, a brief review of the state of the art related to the scope of this thesis is presented. 

First, the environmental motivation and the extension of the system treated is given, 

followed by some review about modelling and control of building heating systems. An 

insight about the generation of data is provided finally. 

1.1 Objective and document structure 

The main objective is to continue the studies opened by Elia Manstretta in his Master 

Thesis [1], using NARX NN inside an NMPC. This approach aims to have a black box 

model-based control scheme that could be applied to different buildings. As a control 

structure, the cascade structure developed by F.Martinoli and G.Veronese in their Thesis 

Work [2]. There is one high hierarchical controller that is the one that will use the NARX 

NN model to control the temperature requirements for the water tank supplying hot 

water to the heating system of building 25 of Politecnico di Milano. 

The idea of the project is to understand the set of data necessary for training the NARX 

NN in order to have the best closed-loop performance for the complete controller 

structure. The existing cascade structure is simulated under different external conditions 

during the heating season to obtain a set of data large enough to train the NN, evaluating 

then the comfort and energy performance of the NN. With that, it will be possible to 

understand the appropriate length of data needed and the characteristics that it should 

have. This knowledge can have some interesting applications regarding the possibility of 

using a pre-trained NN for different buildings and understand the best strategy to retrain 

NN not well-performing. 
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Chapter 2 includes a brief description of the existing building and HVAC model 

developed by Giuseppe Veronesi and Federico Martinoli in their Master's Thesis [2]. The 

controller structure is defined also here. In chapter 3 a description of the NARX NN used 

as a prediction model in the simulations is provided. The analysis of the data used for 

training and the NN performance is described in chapter 4. Chapter 5 consists of a 

possible application of the results obtained from data analysis, considering the retraining 

of bad performing models or possible applications of the NN to a building different from 

the original. Finally, chapter 6 summarizes the main conclusions of the thesis, giving 

some hints for future development. 

1.2 State of the art 

Nowadays, climate change and emissions of greenhouse gases, mainly CO2, are some of 

the main problems that society must face. Energy efficiency is one of the main objectives 

of all the energy policies, trying to reduce the environmental impact. Most of the 

advanced countries have included policies, laws, codes, or certification schemes to 

improve this energy efficiency. The impact of standards, energy taxes, and government 

expenditures of governments in energy R&D is covered in [3]. 

In developed countries, the energy consumption of buildings can represent a substantial 

percentage of the overall energy consumption, reaching levels around 30 – 40 %. This 

percentage can be much higher in countries with extreme weather conditions, even higher 

than in other larger sectors as the industry and transport [4]. In addition, buildings are 

responsible for 24 % of world CO2 emissions [3]. Furthermore, in Italy, almost 70 % of 

the population lives in urban areas, with an expected rise in this number in the close 

future [5]. This means that in the following years it will be of capital importance the 

reduction in the energy consumption in residential and nonresidential buildings, for both 

environmental and economic reasons. There is substantial bibliography analyzing the 

capital importance and the modelling of energy consumption. In [6], the analysis of 

theoretical heating models of different buildings is developed for the dominant residential 

edifice. 

Heat, ventilation, and air conditioning (HVAC) systems play an important role in the 

achievement of the comfort goals for users while maintaining the CO2 level inside the 

rooms. Up to now, almost 50 % of the HVAC energy demand is devoted to the comfort 



3 

 

 

A neural network-based predictive control and data analysis of an HVAC 

system for an educational building 

of the users [7]. For that, a good understanding of the functioning of these systems is a 

key factor when energy efficiency is pursued. In [8], a complete analysis of the energy 

flow in HVAC is depicted to understand where the main issues and the losses of efficiency 

are placed in the energy chain. 

The irruption of Industry 4.0 and the Internet of Things (IoT) has also paid attention to 

this challenge of reducing energy consumption. The IoT consists of the core of this new 

set of technologies, with the inclusion of Artificial Intelligence (AI) techniques. A set of 

sensors is used to gather a huge amount of data that allows communication between 

devices and control [9]. This data can be used to monitor, learn and improve the quality 

and the efficiency of the processes. In smart buildings, machine learning techniques 

collect, treat, and manage the data. Specifically, deep learning techniques can capture 

the dynamics of such a complex and nonlinear system as HVAC.  

Related to data acquisition, the prediction of future energy uses and building states is 

significant to improve energy efficiency to bring the building to the desired conditions 

with the maximum efficiency. The behaviour of the building is characterized and affected 

by many factors such as weather conditions (external temperature, humidity, solar 

radiation…), occupancy, or the desired temperature in the different rooms. Even more, 

the proper specifications of the building, consisting of the dimensions, the materials, the 

external surfaces have a crucial effect on the future evolution of the states [10]. 

To illustrate the use of artificial intelligence in building energy prediction, [11] presents 

the potential of artificial neural networks (ANN) in different building energy applications 

such as solar water heating systems, solar radiation prediction, or heating and cooling 

loads estimation. The main point is related to the use of NARX ANN to predict the 

indoor air temperature of the building or the energy consumption, 

Other machine learning approaches have used Reinforcement Learning (RL) to control 

the HVAC. An agent is trained in different situations to take the correct action over the 

system, as a function of the reward obtained as a consequence of his action. In [12], a 

deep RL algorithm shows that the learned policy of control of the agent can achieve up 

to 15 % of energy savings in the building. 
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1.2.1 Building modelling 

When modelling the building or the HVAC, different criteria can be used to classify them 

[13]. Attending to the nature of the equations that represent the dynamics of the building, 

the models can be linear or nonlinear, static or dynamic, and discrete or continuous. In 

this thesis, nonlinear, static, and discrete systems will be used. 

The most simplified but effective modelling method is the electrical analogy, where the 

building is built as an electrical circuit. The complexity of the model can be tuned by 

adding more R and C components. The most important feature of these models is that 

they can be solved using electrical techniques such as the Kirchhoff law or 

superimposition methods. In [14], a very complex thermal model of a building is created 

to apply a fuzzy logic controller afterwards. The models can be further developed into 

nonlinear systems. 

On the other hand, according to the previous knowledge of the building, the models can 

be classified as black-box (or data-driven), where data is collected and a mathematical 

relationship between inputs and outputs is found; as white-box, where the model is 

described following the laws and the physics that explain the detailed knowledge of the 

different processes; and the grey-box modelling, where the basic equations of the model 

are less detailed than in the white box approach, but some model parameters are 

unknown and may be obtained by using data collected from the system. Any of them 

has proper advantages and disadvantages [15]. 

At the same time, white box models can be subclassified into 3 more classes, depending 

on the level of detail. The multizone technique considers the space as a continuous and 

homogeneous volume, where all state variables are uniform in each point of the volume. 

The zonal method divides the volume into several cells and maintains the state variables 

in each of them. Finally, the CFD method is the most detailed one, having a huge amount 

of small control volumes. 
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Method 

Building 

geometry and 

heating system 

Training data 
Physical 

interpretation 

White box 

Detailed 

description 

required 

No training data 

required 

Results can be 

physically 

interpreted. Easy 

analysis of failures. 

Black box 

No detailed 

description of the 

model is required 

A large amount of 

training data 

required. A long 

period of time 

Several difficulties 

to interpret data 

physically. 

Complex search of 

failure. 

Grey box 
Rough description 

of the model 

Small amount of 

training data. 

Small period of 

time. 

Results can be 

physically 

interpreted. Easy 

analysis of failures. 

Table 1-1 Classification of models based on prior knowledge [15]  

As in the previous case, there is also a subclassification of the black box methods, based 

on machine learning, which is mainly focused on statistical treatments of data about 

building energy and comfort. Some of these methods are conditional demand analysis, 

Artificial Neural Networks, genetic algorithms, and support vector machine (SVM). 

Previous theses are very good examples of these kinds of modelling. In the Master thesis 

[2], a very complex and detailed model of building 25 and its HVAC system is developed 

for the heating season. The physical modelling of the main subunits and their thermal 

relations are extensively described, and different approaches to some parameter’s 

identification. This would constitute a case of grey box modelling. 
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On the other side, in the Master thesis [1], the building is substituted by a NARX NN, 

that based on a set of data obtained with other models, trains the network to behave as 

close as possible to the data, and use this mathematical model to control the HVAC. In 

this case, a black box was the approach selected. 

1.2.2 NARX Neural Network 

The use of AI and machine learning is continuously under study, improving the results 

and performance compared to other classical approaches. Artificial Neural Networks 

(ANN) as a tool for modelling processes and systems outperforms standard techniques. 

Even more, the use of the particular structure of a Nonlinear Autoregressive with 

Exogenous input (NARX) NN has shown similar performance without any computational 

loss against conventional recurrent networks [16]. Of course, some disadvantages appear 

as the number of design choices increase. The selection of the number of inputs and 

output delays are added to the design of the structure and size of the NN, that in the 

case of not having prior knowledge about the system being modelled, can result in a long 

exhaustive search of the best structure. 

NARX NN is a very useful modelling tool for making predictions about future states of 

the system. These predictions can be used for selecting the best action to take regarding 

different objectives, pursuing both comfort and energy efficiency. The use of NARX NN 

in building modelling is present in the bibliography. In [17], a NN is used for temperature 

prediction in an airport building, providing better results than the use of the classical 

RC linear models. This model is then used inside an MPC to achieve comfort goals while 

reducing energy consumption. 

The choice of the inputs and outputs for the NARX NN is also an important step in the 

development of this kind of model. Usually, for building modelling, the inputs are 

external weather conditions and some other HVAC input, while the output is the proper 

building temperature or the wall temperature. In [18], an ANN model-based system 

identification for a multi-zone building is presented. Here the inputs are the external 

temperature and the supplied temperature by the HVAC, while the output is the 

temperature of each of the zones. 



7 

 

 

A neural network-based predictive control and data analysis of an HVAC 

system for an educational building 

When making future predictions of the state of the building, it is important to consider 

too the possible future evolution of the external non-tunable disturbances, such as the 

external temperature or the occupancy, that actuates as an input for the system, or in 

this case for the NARX NN model. Up to now weather forecasting is advanced enough 

and is continuously improving for fields such as renewable energies, being particularly 

important in solar and wind energy. So at least in the short term in which weather 

temperature predictions are needed, this disturbance can be considered as known. An 

example of advanced forecasting is shown in [19], where a temporal convolutional network 

is used to provide accurate short to medium-range weather forecasts with high 

geographical resolution.  

The importance of good weather forecasting is shown in [20], when using some advanced 

control techniques, the use of a poor weather forecast has reduced the controller 

performance. 

The prediction of the occupancy of a building is a quantity more difficult and variable 

to estimate. In [9], a camera is used to detect the number of persons inside the building, 

under the assumption that by knowing the occupancy scenario that the building is facing, 

the most adequate energy configuration can be selected for the HVAC system. In [17], a 

CO2 sensor estimates the occupancy load inside the building, while to predict future 

occupancy the flight schedule is used.  

For further details [15] has a complete review of the state of the art of building predictions 

and building modelling. Whereas [4] provides a complete revision of the use of ANN of 

residential HVAC systems, specifically inside MPC.  

1.2.3 Control structure 

Once that a good model for the system has been obtained, it is needed to manipulate the 

actuators of the model properly. For that, a good controller has to be developed. There 

are several control techniques to apply in this context.  

The two main controllers used in buildings are on/off controller and PID control. On/off 

or thermostat is the most simple but effective controller possible. In fact, it is still being 

used in home heating and some HVAC systems.  Even this simple controller can provide 

energy savings with respect to manual manipulation. An example of this control 
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technique using air conditioning appears in [21]. Basically, it is a feedback controller that 

has two states with hysteresis to avoid chattering: one in which the heating system is 

activated, and one in which is deactivated based on the temperature measurement. Even 

when cheap and simple, it fails when trying to track a setpoint or save energy efficiently. 

A PID controller is a more advanced but still simple control technique, that does not 

need prior knowledge of the controlled system. Given a reference and actual state, 

computes the error and based on this error decides the value of the control action. A 

PID controller is a combination of three separated control techniques: the proportional 

term (P) to the current error, the integral term (I) taking into account accumulation of 

past errors guaranteeing zero tracking error, and the derivative term (D) predicting 

future changes in the error computing the error rate. Depending on the system under 

control it can be beneficial to use only one or two of the three actions. If the dynamics 

of the system are slow, as is the case in heating systems, only proportional action (P), or 

proportional and integral (PI) can be enough for tracking a setpoint maintaining the 

closed-loop stability. As it is not usually a sudden change in the thermal load of the 

building, a derivative action can usually be omitted. The main problem of this kind of 

controller is that it is only considering the error for deciding the control input and it is 

not considering energy consumptions in its election. In [22], a two-position controller, a 

P controller, and a PI controller are used in a residential building heated by an HVAC. 

The conclusions were that the integral term is needed to eliminate the steady-state error 

improving thermal comfort. The P controller had a thermal comfort performance very 

similar to the two-position controller. In contrast, the P controller can provide a smoother 

response, that is less harmful to the heating system. However, none of them can provide 

very good energy efficiency. 

The above-exposed techniques have demonstrated a strong performance in general, but 

for systems strongly nonlinear cannot be the best solution, needing to move to more 

advanced control techniques. Some of the main advanced control techniques are related 

to optimal control, adaptive control, and predictive control.  

Optimal control techniques are model-based techniques in which the control action is 

derived from optimizing one specific cost function while satisfying some physical 

constraints. This can be very useful in the case of buildings to maximize both control 

objectives inside the cost function: comfort and energy consumption performance. As it 
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is model-based, the model can be any of the models shown in the previous subsection: 

white, black, and grey. In [20], it is shown that using optimal controllers in an office 

building, the thermal comfort with respect to classical controllers is maintained while 

substantial energy savings are achieved. Other examples of optimal control for heating 

buildings are shown in [23] and [24]. 

The case of adaptive control consists of a nonlinear control resulting from the 

combination of the structure of a classical controller together with one mechanism of 

adaptation of the controller parameters. This adaptation mechanism is based on online 

performance and data obtained from the system operation. It can be useful in the case 

of processes with non-static dynamics or the appearance of stochastic disturbances. One 

example of the use of adaptive control in the heating system of a building is present in 

[25]. 

If the model developed for the building is used to make future predictions and decide the 

control action based on the future evolution of the system, the Model Predictive Control 

(MPC) is achieved. This control approach provides large energy savings, and it is more 

cost-effective. Also, it is more robust for future disturbances. An MPC computes the 

optimal sequence of inputs for the following finite time horizon and applies only the input 

obtained in the first instant of the sequence (receding horizon). The optimization comes 

from a cost function that can have several goals, being usual in the field of heating 

systems of buildings the comfort and energy-saving optimization. Some examples of this 

application together with a more detailed theoretical development can be found in [26] 

and [27]. In both of them, a good identification of the building model is needed in order 

to provide a sufficiently good prediction in the time horizon together with an accurate 

weather forecast. The use of an MPC in a university building brought savings of 17-24 

% compared to the controller already present in the building. 

This project is mainly based on the use of nonlinear MPC (NMPC) using one of the 

black box modelling techniques explained above: NARX NN. The NARX NN can be 

introduced as a model predictor inside an NMPC and select the optimal control input 

for the heating system in the following time horizon. The use of this machine learning 

model inside a predictive controller was used by Elia Manstretta in his Master Thesis 

[1], obtaining better results in general than the actual NMPC structure proposed by 

Giuseppe Veronesi and Federico Martinoli in their Master Thesis [2]. The main drawback 
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of the use of NMPC is the computational time spent in the optimization of nonlinear 

processes. However, due to the slow sampling time and dynamics of the system treated, 

this is not a limiting feature. Other examples of the use of NARX NN together with 

NMPC are present in [17], [18], and [28]. In the last one, the neural network is 

continuously adapting to capture the time-varying dynamics of the AAC system installed 

in the building, constituting an example of a hybrid technique between MPC and 

adaptive control. This approach has outperformed other conventional controllers using 

non-adaptive NN or classical controllers as the PID when tracking a setpoint or 

disturbance rejection. 

In [29], a further detailed review of building control strategies for HVAC systems, moving 

from classical controllers to more advanced ones. 

1.2.4 Generation of data 

The NARX NN model used inside the NMPC will be critical, and the data used for 

training it is crucial for the appropriate performance of the whole system. The data 

should effectively capture the building dynamics for making accurate predictions for 

future evolution.  

Mainly there can be two approaches to follow when generating the data for training. The 

first one is based on measurement over a real building. The main advantage of this 

approach consists that the data is directly obtained from the building, making no 

assumptions about it. However, depending on the case, it could be that the scenarios in 

which the data is measured are quite limited in the case of heating of a building. If the 

building has a residential or educational purpose, comfort must be guaranteed even 

during experimentation so the desired behaviour of the heating system cannot be 

changed. This causes that the state and input variables that compound the data used 

for training have the same behaviour, only being able to capture a part of the dynamics, 

not resulting in a good performing model in closed-loop. In [30], the data used for training 

was obtained from experimentation in real stations measuring more than 500 parameters 

each 1 min, and only eleven of them were used for constructing the prediction model. A 

commercial building was experimented in [31] for collecting HVAC system data. 
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On the other hand, to be able to test different configurations, references, external 

conditions, the simulation model approach is the most used. If the model is complex and 

accurate enough because prior knowledge of the system is available, it is possible to 

obtain reliable simulations and draw robust conclusions about the results. Another 

advantage comes from the computational time, that it can generate thousands of data 

points in only seconds, not needing to wait until having enough measurements. However, 

if no prior knowledge about the system is present, then the results obtained in the 

simulations could be completely useless.  

There exists several dedicated software for the creation of buildings and heating systems 

installed in them as EnergyPlus. Other environments as MATLAB can be used for coding 

the nonlinear complex dynamics of the whole system using the white-box modelling 

approach. 

Regarding the possibilities of using different conditions of the experiment, the selection 

of the most exploring ones, while maintaining a reduced number of simulations is 

essential. The Design of Experiments (DOE) aims to create a database for training small 

but representative by providing a combination of cases that represents the total case 

space. Some of the algorithms that create this set of cases are the Latin Hypercube 

Sample (LHS) DOE, and the Box-Behnken DOE. These approaches generally place the 

set of inputs in the extremes of the input space, guaranteeing no repeatability of the data 

extracted [32]. A general overview of the different DOE techniques is given in [33]. The 

Box-Behnken DOE method was used for the controllable input variables for an HVAC, 

conducting in the end 28 simulations in total to generate the database. In [34], the LHS 

DOE method is computed in MATLAB for generating the database to train a NN 

representing a school building. 

The simulation model can be also used to test the measurement-based approach, so it 

will be the environment employed to understand the differences between the type of 

data. Specifically, the very detailed model developed in [2] in MATLAB, will be used as 

if it was the real system and some realistic experiment will be carried to understand the 

characteristics of the real data needed to train an effective NARX NN. Also, some DOE 

methods will be employed to check the simulation model approach, and the capacity to 

adapt the NARX NN trained to buildings with different characteristics in their size and 

HVAC capacity. 
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2 Building model 

In this chapter, the summarized description of the building model employed as the actual 

reference model is given based on the Federico Martinoli and Giuseppe Veronese Master 

Thesis [2]. This topic is also briefly described in the Elia Manstretta Master Thesis [1].  

Then, the actual controller structure implemented in it is depicted there, explaining the 

hierarchy of it, and the main functioning of the local controllers. This structure will be 

used sometimes as the baseline controller when comparing performances. The parameters 

defined in the NMPCs and in the cost functions will be maintained during the simulations 

used for making comparisons in the following chapters. 

2.1 Building 25 

The building used for the reference model considered as the real one is based on building 

25 of Politecnico di Milano, located in Lambrate. The building is divided into four floors: 

the basement, and 3 floors. The basement has 3 classrooms, while the first, second, and 

third floors have 2, 6, and 3 rooms respectively. A common area, modelled as a single 

room also appears on each floor. 

The heating system for the building consists of an HVAC system, where the fancoils are 

in charge of heating the different spaces, having each room a variable number of them 

installed. The ventilation is carried on by 2 general Air Handling Units (AHU) that 

renew continuously the air while the building is occupied to maintain the CO2 level 

under a certain value. 

2.1.1 Single room model 

To model each of the rooms, and also when the model-based controller was developed, 

the dynamics of a single room model was followed. One main assumption considered 
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during the modelling was that the rooms were adiabatic. This is a smooth consideration 

since, during the functioning of the HVAC, the temperature in the different rooms will 

be so similar that the heat transmission between them can be neglected. Another 

consideration to take is that the humidity model is not considered in this work.  

On contrary, solar radiation is also not considered because the effect is more difficult to 

predict and more randomized. We will assume the controllers robust enough to deal with 

this disturbance. 

Dynamic model 

Each room can be modelled following the equation (2–1). The first equation describes 

the evolution of the air room temperature, depending on the heat introduced by the 

fancoils and the AHU, the heat of the people inside the building, and the temperature 

difference between the air in the room and the walls. The second equation is the one 

regarding the wall temperature dynamics, considered as uniform, depending on the 

proper room temperature and in the environment temperature. Finally, the third 

equation is considering the dynamics of the volume of CO2 in the room, which depends 

on the occupancy of the space and the rate of CO2 extraction of the room. 

𝐶𝑧𝑇�̇� = 𝑃𝑓𝑐 + 𝑃𝐴𝐻𝑈 + 𝑈𝑑𝑖𝑠𝑝(𝑇𝑤 − 𝑇𝑧) + #𝑃𝑃𝐿𝑃𝑖𝑛𝑡 

𝐶𝑤�̇�𝑤 = 𝑈𝑑𝑖𝑠𝑝(𝑇𝑧 − 𝑇𝑤) + 𝑈𝑑𝑖𝑠𝑝(𝑇𝑒𝑛𝑣 − 𝑇𝑤) 

�̇�𝐶𝑂2 = #𝑃𝑃𝐿
𝑝𝐶𝑂2
𝑉𝑡𝑜𝑡

− �̇�𝑟 

(2–1) 

Where: 

• 𝐶𝑧 is the thermal capacity of the room [
𝐽

𝐾
] 

• 𝑇𝑧 is the room temperature [𝐾] 

• 𝑃𝑓𝑐 is the heat introduced by the fancoils [𝑊] 

• 𝑃𝐴𝐻𝑈 is the thermal power introduced by the AHU [𝑊] 

• 𝑈𝑑𝑖𝑠𝑝 is the thermal transmission coefficient [
𝑊

𝐾
] 

• #𝑃𝑃𝐿 is the number of people inside the space 

• 𝑃𝑖𝑛𝑡 is the thermal power produced by each person [𝑊] 
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• 𝐶𝑤 is the thermal capacity of the space walls [
𝐽

𝐾
] 

• 𝑇𝑤 is the space wall temperature [𝐾] 

• 𝑇𝑒𝑛𝑣 is external temperature [𝐾] 

• 𝑉𝐶𝑂2 is the volume of CO2 inside the room [𝑝𝑝𝑚%] 

• 𝑝𝐶𝑂2 is the amount of CO2 emitted by each person[
𝑚3𝑝𝑝𝑚%

𝑠
] 

• 𝑉𝑡𝑜𝑡 is the total air volume in the space [𝑚3] 

• �̇�𝑟 is the rate of CO2 extracted from the room [
𝑝𝑝𝑚%

𝑠
] 

The coefficient 𝑈𝑑𝑖𝑠𝑝 is obtained according to the dimensions and materials of the 

transmission surfaces. However, it has been corrected to better fit real measurements of 

the building. 

Air Handling Unit 

As it has been explained before, the air is continuously recirculated in the building with 

the aim to maintain low enough the level of CO2. The AHUs oversee this task, replacing 

the air inside the building with fresh air from outside. There are two AHUs in building 

25, each of them being in charge of one of the divisions made in the building. 

In order to save some energy, this entering air is preheated with the exhaust air leaving 

the building through a set of heat exchangers. So, these AHUs are introducing some heat 

in the room through 𝑃𝐴𝐻𝑈, as it is considered in (2–1). This heat can be computed as 

expressed in (2–2). 

𝑃𝐴𝐻𝑈 = 𝑢𝑅 𝑛𝑉𝑡𝑜𝑡 𝑉𝑡𝑜𝑡𝜌𝑎𝑖𝑟𝑐𝑝,𝑎𝑖𝑟(𝑇𝑎𝑖𝑟,𝐴𝐻𝑈 − 𝑇𝑧) 

�̇�𝑅 = 𝑉𝐶𝑂2 𝑢𝑅 𝑛𝑉𝑡𝑜𝑡 
(2–2) 

Where: 

• 𝑢𝑅 is the recirculation input that comes from a local controller 

• 𝑛𝑉𝑡𝑜𝑡 is the maximum number of air volumes that the AHU can extract [
1

𝑠
] 

• 𝑐𝑝,𝑎𝑖𝑟 is the specific heat capacity of the air [
𝐽

𝑘𝑔 𝐾
] 

• 𝑇𝑎𝑖𝑟,𝐴𝐻𝑈 is the temperature of the air coming from the AHU [𝐾] 
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Fancoils 

The fancoils are the main source of heating for the different rooms in the system. Each 

room has its proper number of fancoils, having at least one of them.  The fancoil warms 

the air through a heat exchanger where it is circulating hot water coming from the 

hydraulic circuit. The value of 𝑃𝑓𝑐 can be computed as is described in (2–3). 

𝑃𝑓𝑐 = 𝑈𝑓𝑐(𝑢𝑓𝑐) 𝑁𝑓𝑐(𝑇𝑓𝑒𝑒𝑑 − 𝑇𝑧) (2–3) 

Where: 

• 𝑈𝑓𝑐 is the thermal transmission coefficient of the fancoil, dependent on the input 

command 𝑢𝑓𝑐 [
𝑊

𝐾
] 

• 𝑢𝑓𝑐 is the input from the fancoil controller  

• 𝑁𝑓𝑐 is the number of fancoils of the considered space 

• 𝑇𝑓𝑒𝑒𝑑 is the temperature of the water coming from the hot water tank [°𝐶] 

The thermal coefficient can be obtained from Table 2-1 according to the control input 

obtained from the local controllers. The output of the fancoil is subjected to hysteresis, 

to avoid any kind of chattering. 

𝑢𝑓𝑐 0 1 2 3 

𝑈𝑓𝑐(𝑢𝑓𝑐) [
𝐽

𝑚𝑖𝑛 𝐾
] 0 6768 9360 11808 

Table 2-1 Lookup table for the fancoils 

All the previous equations constitute a nonlinear system for the single room dynamics, 

where the inputs are the ones of the fancoils and the AHU, the external disturbances are 

the number of people, the external temperature, the AHU air temperature, and the 

temperature of the water coming from the hydraulic circuit. Finally, the states considered 

here are the temperature of the space, the wall temperature, and the level of CO2 inside 

the space. 
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𝑥 = [
𝑇𝑧
𝑇𝑤
𝑉𝐶𝑂2

] ; 𝑢 = [
𝑢𝑓𝑐
𝑢𝑅
] ; 𝑑 = [

#𝑃𝑃𝐿
𝑇𝑒𝑛𝑣

𝑇𝑎𝑖𝑟,𝐴𝐻𝑈
𝑇𝑓𝑒𝑒𝑑

] 

 

2.1.2 Hydraulic circuit 

The hydraulic circuit of building 25 is formed by two heat pumps (HP), heating the 

water inside the water tank, which is the one that supplies hot water to the different 

local heating systems of the building through the low-loss header. 

The water flow rate from the water tank will be constant, and the hydraulic circuit 

together with the water tank is considered adiabatic.  

Heat Pumps 

There are two different HPs providing heat to the building, one air-to-water and one 

water-to-water. They are the main components of introducing heat into the building, 

being directly connected to the water tank. The air-to-water HP uses external air as a 

heating source, having a variable temperature, while the water-to-water HP uses 

underground water, which can be considered constant, fixed at 15 °𝐶.  

In the case of HPs, the main parameter that can measures the energy consumption is the 

Coefficient of Performance (COP). This parameter is of capital importance and depends 

on the temperature of the involved components in the heat transfer. In these HPs, the 

experimental COP is shown in (2–4). 

𝐶𝑂𝑃𝑎𝑤 = Φ𝑎𝑤

𝑇𝑡𝑎𝑛𝑘
𝑇𝑡𝑎𝑛𝑘 − 𝑇𝑒𝑛𝑣

 

𝐶𝑂𝑃𝑤𝑤 = Φ𝑤𝑤

𝑇𝑡𝑎𝑛𝑘
𝑇𝑡𝑎𝑛𝑘 − 𝑇𝑔𝑟𝑜𝑢𝑛𝑑

 

(2–4) 

Where: 
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• 𝐶𝑂𝑃𝑎𝑤 is the coefficient of performance of the air-to-water HP 

• 𝐶𝑂𝑃𝑤𝑤 is the coefficient of performance of the water-to-water HP 

• 𝑇𝑡𝑎𝑛𝑘 is the temperature inside the water tank [𝐾] 

• 𝑇𝑒𝑛𝑣 is the temperature of the external air [𝐾] 

• 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 is the temperature of the ground water [𝐾] 

• Φ𝑎𝑤 is the scale factor of the ideal COP of Carnot for the air-to-water HP 

• Φ𝑤𝑤 is the scale factor of the ideal COP of Carnot for the water-to-water HP 

The final heat provided by each HP is provided given the control input of each HP and 

the maximum nominal heat of each of them (2–5). 

�̇�𝑎𝑤 = 𝐶𝑂𝑃𝑎𝑤𝑢ℎ𝑝,𝑎𝑤�̇�𝑚𝑎𝑥,𝑎𝑤 

�̇�𝑤𝑤 = 𝐶𝑂𝑃𝑤𝑤𝑢ℎ𝑝,𝑤𝑤�̇�𝑚𝑎𝑥,𝑤𝑤 
(2–5) 

Where: 

• �̇�𝑎𝑤 is the thermal power provided by the air-to-water HP 

• �̇�𝑤𝑤 is the thermal power provided by the water-to-water HP 

• 𝑢ℎ𝑝,𝑎𝑤 is the control input for the air-to-water HP 

• 𝑢ℎ𝑝,𝑤𝑤 is the control input for the water-to-water HP 

• �̇�𝑚𝑎𝑥,𝑎𝑤 is the maximum nominal thermal power for the air-to-water HP 

• �̇�𝑚𝑎𝑥,𝑤𝑤 is the maximum nominal thermal power for the water-to-water HP 

Hot water tank 

This element stores energy in the form of hot water thanks to the HPs. The main 

advantage of having a water tank is that it allows storing the excess of energy produced, 

reducing losses. The estimated size of this water tank is 20 𝑚3.  

To model the dynamics of the water tank, the consideration of homogeneous temperature 

is important. This is justified by the high flow rate entering the tank, guaranteeing a 

good mixing of water. The dynamics of the water tank are described in (2–6). 

𝐶𝑤�̇�𝑡𝑎𝑛𝑘 = �̇�𝑤𝑎𝑡𝑒𝑟𝑐𝑝,𝑤𝑎𝑡𝑒𝑟(𝑇𝑏𝑎𝑐𝑘,𝐿𝐻 − 𝑇𝑡𝑎𝑛𝑘) + �̇�𝑎𝑤 + �̇�𝑤𝑤 (2–6) 
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Where: 

• 𝐶𝑤 is the thermal capacity of the water tank [
𝑊

𝐾
] 

• �̇�𝑤𝑎𝑡𝑒𝑟 is the water flow rate of the hydraulic circuit [
𝑘𝑔

𝑠
] 

• 𝑐𝑝,𝑤𝑎𝑡𝑒𝑟 is the specific heat of water (4186
𝐽

𝑘𝑔 𝐾
) 

• 𝑇𝑏𝑎𝑐𝑘,𝐿𝐻 is the temperature coming back to the water tank from the low-loss 

header [𝐾] 

Low loss header 

The low loss header supplies the heating subsystems with hot water from the water tank 

and collects cold water coming back. The temperature 𝑇𝑏𝑎𝑐𝑘,𝐿𝐻 then, should be computed 

as the average of the temperatures of all returning flows merging. 

2.2 Controller structure 

The controller for the whole building will be the cascade NMPC developed in [2] (CAS-

NMPC). There are two predictive controllers of different hierarchies, each of them in 

charge of different dynamics. 

The first NMPC (NMPC 1) observes the building dynamics and based on future 

predictions of the state, selects the optimal temperature for the water tank, which in the 

end is the main resource for heating the different rooms in the building. The second 

NMPC (NMPC 2) is in charge of maintaining the water tank temperature at the desired 

one selected by NMPC 1, manipulating the control inputs for the two HPs, minimizing 

their energy consumption. 

Hence, the first NMPC predicts the future needs of heating in the building, and the 

second guarantees to have the needed temperature of water for covering those needs. 

Then, a set of local existing controllers uses this water to heat the rooms with simple 

controllers. The overall structure is depicted in Figure 2-1. 
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Figure 2-1 Nonlinear Model Predictive Controller (CAS-NMPC) 

2.2.1 Local controllers 

The local controllers are the ones existing in the building, already installed. They used 

the energetic resources achieved by the two higher hierarchy controllers. This thesis will 

consider them as untouchables and well-functioning, focusing only on the NMPC 1. 

Fancoils 

There are a total of 18 controllers, one for each space of the building for the control of 

the temperature inside it, so all the fancoils in a room are operated simultaneously with 

the same input command. They guarantee to maintain the temperature inside the rooms 

close to the reference one.  

The basic structure of this controller consists of a lookup table to select the adequate 

power delivered by the fancoil. Comparing the reference 𝑇𝑧,𝑟𝑒𝑓 with the actual 

temperature of the room 𝑇𝑧,𝑖, it selects 𝑢𝑓𝑐 as control action as shown in equation (2–3). 
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CO2 level 

There is also one controller for each of the 18 rooms in building 25. The control goal is 

to not overcome the legal requirement of 15 𝑝𝑝𝑚% in each room. Measuring 𝑉𝐶𝑂2, a PI 

regulator selects 𝑢𝑅 to provide an adequate level of recirculation. This recirculation is 

switched off if nobody is in the room, so the #𝑃𝑃𝐿 should be also considered as an external 

disturbance. The dynamics controlled here are shown in (2–2). 

Three-way valve 

Finally, two controllers are placed for each of the AHUs. The goal is to control the inlet 

air temperature introduced in the building, by controlling the water temperature going 

to the heat exchangers of the AHUs. 

As the dynamics inside the AHUs are fast enough, the controller considered can be an 

algebraic one. Each controller selects the x position of a three-way valve based on the 

different temperatures involved. 

𝑥 =
𝑇𝐴𝐻𝑈 − 𝑇𝑏𝑎𝑐𝑘,𝐴𝐻𝑈
𝑇𝑓𝑒𝑒𝑑 − 𝑇𝑏𝑎𝑐𝑘,𝐴𝐻𝑈

 (2–7) 

Where: 

• 𝑇𝐴𝐻𝑈 is the temperature of the input water to the AHU [°𝐶] 

• 𝑇𝑓𝑒𝑒𝑑 is the temperature of the water coming from the water tank [°𝐶] 

• 𝑇𝑏𝑎𝑐𝑘,𝐴𝐻𝑈 is the temperature of the water coming back from the AHU [°𝐶] 

• 𝑥 is the valve position of the three-way valve, from 0 to 1 

2.2.2 NMPC 2 

As it has been explained, this Predictive Controller deals with the temperature tracking 

of the water tank. Given 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓, the controller operates the HPs commands most 

efficiently according to its cost function.  
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The sampling time is 4 min, while the prediction horizon includes 4 instances. This means 

that the NMPC 2 is making predictions 16 mins in the future about the temperature of 

the water tank, time higher enough than the tank dynamics.  

𝑇𝑠,𝑀𝑃𝐶2 4 𝑚𝑖𝑛 

𝑁𝑝,𝑀𝑃𝐶2 4 ≡ 16 𝑚𝑖𝑛 

Table 2-2 NMPC 2 time characteristics 

Structure 

The model inside the NMPC is the one developed previously for the water tank. So, a 

nonlinear 1-state model is used.  

𝐶𝑤�̇�𝑡𝑎𝑛𝑘 = �̇�𝑤𝑎𝑡𝑒𝑟𝑐𝑝,𝑤𝑎𝑡𝑒𝑟(𝑇𝑏𝑎𝑐𝑘,𝐿𝐻 − 𝑇𝑡𝑎𝑛𝑘) + �̇�𝑎𝑤 + �̇�𝑤𝑤 (2–6) 

The heat transmitted by the HPs can be computed using equations (2–4) and (2–5). The 

state and inputs for this controller are: 

𝑥𝑀𝑃𝐶2 = [𝑇𝑡𝑎𝑛𝑘]; 𝑢𝑀𝑃𝐶2  =

[
 
 
 
 
 
 
 
𝑇𝑒𝑛𝑣
𝑈𝑓𝑐,𝑡𝑜𝑡
𝑄𝐴𝐻𝑈
𝑇𝑧,𝑚𝑒𝑎𝑛
𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓
𝒖𝒉𝒑,𝒂𝒘
𝒖𝒉𝒑,𝒘𝒘 ]

 
 
 
 
 
 
 

; 

From these inputs the only tunable ones are 𝑢ℎ𝑝,𝑎𝑤 and 𝑢ℎ𝑝,𝑤𝑤. The remaining ones are 

measurable disturbances or local controllers output variables. It is necessary though, to 

constraint properly the different inputs and states along the prediction horizon (2–8). 

The super index defines the source from which the signal comes. The only tunable range, 

as said, is given to the HPs inputs. 
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𝑇𝑒𝑛𝑣
𝑚𝑒𝑎𝑠(𝑡 + 𝑘) ≤ 𝑇𝑒𝑛𝑣(𝑡 + 𝑘) ≤ 𝑇𝑒𝑛𝑣

𝑚𝑒𝑎𝑠(𝑡 + 𝑘) 

𝑈𝑓𝑐,𝑡𝑜𝑡
𝑙𝑐 (𝑡) ≤ 𝑈𝑓𝑐,𝑡𝑜𝑡(𝑡 + 𝑘) ≤ 𝑈𝑓𝑐,𝑡𝑜𝑡

𝑙𝑐 (𝑡) 

𝑄𝐴𝐻𝑈
𝑙𝑐 (𝑡) ≤ 𝑄𝐴𝐻𝑈(𝑡 + 𝑘) ≤ 𝑄𝐴𝐻𝑈

𝑙𝑐 (𝑡) 

𝑇𝑧,𝑚𝑒𝑎𝑛
𝑚𝑒𝑎𝑠 (𝑡) ≤ 𝑇𝑧,𝑚𝑒𝑎𝑛(𝑡 + 𝑘) ≤ 𝑇𝑧,𝑚𝑒𝑎𝑛

𝑚𝑒𝑎𝑠 (𝑡) 

𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓
𝑀𝑃𝐶1 (𝑡) ≤ 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓(𝑡 + 𝑘) ≤ 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓

𝑀𝑃𝐶1 (𝑡) 

𝟎 ≤ 𝒖𝒉𝒑,𝒂𝒘(𝒕 + 𝒌) ≤ 𝟏 

𝟎 ≤ 𝒖𝒉𝒑,𝒘𝒘(𝒕 + 𝒌) ≤ 𝟏 

(2–8) 

When predicting the evolution of the states during the time horizon of the NMPC, the 

external disturbance (the external temperature), is considered as perfectly known in 

advance. Another possibility would be to consider it as persistent all the time horizon 

but, in this thesis, a perfect prediction is considered. 

 

Figure 2-2 NMPC 2 model structure 

Cost function 

Finally, it is important to define the cost function to optimize during the prediction 

horizon each time step: 

𝐿𝑀𝑃𝐶2(𝑡) = ∑ (𝐿𝑡𝑟𝑎𝑐𝑘,𝑀𝑃𝐶2(𝑡 + 𝑘) + 𝐿𝑒𝑛,𝑀𝑃𝐶2(𝑡 + 𝑘))

𝑁𝑝,𝑀𝑃𝐶2−1

𝑘=1

 (2–9) 
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Where: 

• 𝐿𝑡𝑟𝑎𝑐𝑘,𝑀𝑃𝐶2(𝑘) is the tracking term, ensuring that 𝑇𝑡𝑎𝑛𝑘 is close to 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓: 

𝐿𝑡𝑟𝑎𝑐𝑘,𝑀𝑃𝐶2(𝑘) = 𝑤𝑇𝑡𝑎𝑛𝑘 (𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓(𝑘) − 𝑇𝑡𝑎𝑛𝑘(𝑘))
2

 (2–10) 

Being 𝑤𝑇𝑡𝑎𝑛𝑘 the weight of the tracking term. 

• 𝐿𝑒𝑛,𝑀𝑃𝐶2(𝑘) is the energetic time, ensuring the saving of energy in the HPs: 

𝐿𝑒𝑛,𝑀𝑃𝐶2(𝑘) = 𝑤𝐻𝑃(𝑢ℎ𝑝,𝑎𝑤�̇�𝑚𝑎𝑥,𝑎𝑤 + 𝑢ℎ𝑝,𝑤𝑤�̇�𝑚𝑎𝑥,𝑤𝑤) (2–11) 

Being 𝑤𝑇𝐻𝑃 the weight of the energetic term. 

The election of the weights in the cost function is subjected to the mode election in the 

NMPC 2. There are three modes depending on the relation between the weights of the 

tracking and the energetic term. The ECO mode weights more the energy consumption 

instead of the tracking term. On the contrary, the COMFORT mode prioritizes the 

tracking term, focusing more on reducing the tracking error than the energetic efficiency 

of the HPs. There exists a third mode that is a trade-off between both called 

COMPROMISE. 

In this thesis the mode used in the NMPC 2 is the COMFORT term, guaranteeing that 

the water tank temperature is always close to the desired by the NMPC 1. 

2.2.3 NMPC 1 

This is the higher in hierarchy controller of the CAS-NMPC structure explained before. 

This controller deals with the building thermal dynamics, selecting the best reference 

temperature for the water tank according to the future energy needs of the building. 

This controller is the most important in this thesis since the NN model that is being 

tested is the one introduced here. The NN model used inside is better described in chapter 

3. However, here it will be explained the main characteristics of the proper controller, 

leaving the development of the NARX NN predictive model for the next chapter. 
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As it is the outer controller of the whole system, the sampling time is bigger. In that way 

the 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓 for the NMPC 2 is a stable signal, that is easy to track. For the NMPC 1, 

then, the change in 𝑇𝑡𝑎𝑛𝑘 is almost instantaneous in the time domain of this controller. 

The sampling time, in the end, is 16 min, while the time horizon is 10 time-steps (160 

mins). This provides 2 hours of estimation of the future energy needs of the building. 

𝑇𝑠,𝑀𝑃𝐶1 16 𝑚𝑖𝑛 

𝑁𝑝,𝑀𝑃𝐶1 10 ≡ 160 𝑚𝑖𝑛 

Table 2-3 NMPC 1 time characteristics 

Structure 

The model will be further developed in the next chapter, but as it has been said, it 

estimates future energy needs based on the setpoint and measurable external 

disturbances and selects the best reference temperature for the heat reservoir that is the 

water tank.  

For making future predictions, up to know the NMPC 1 used a simple 1 room dynamic 

equation for estimating the room and wall mean temperature of the building 𝑇𝑧,𝑚𝑒𝑎𝑛 and 

𝑇𝑤,𝑚𝑒𝑎𝑛. It is important to remark that the models considered in the NMPC 1 do not 

compute the temperature and the error for each room, but 𝑇𝑧,𝑚𝑒𝑎𝑛 is the average value 

of the different rooms in the building. The NARX NN prediction model will be discussed 

later. The states and inputs for this controller are: 
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𝑥𝑀𝑃𝐶1 = [
𝑇𝑧,𝑚𝑒𝑎𝑛
𝑇𝑤,𝑚𝑒𝑎𝑛

] ; 𝑢𝑀𝑃𝐶1  =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑇𝑒𝑛𝑣
#𝑃𝑃𝐿
𝑇𝑧,𝑟𝑒𝑓
𝑈𝑓𝑐,𝑡𝑜𝑡
𝑄𝐴𝐻𝑈

𝑻𝒕𝒂𝒏𝒌,𝒓𝒆𝒇
�̇�𝐴𝐻𝑈,1

𝑇𝐴𝐻𝑈,1
�̇�𝐴𝐻𝑈,2

𝑇𝐴𝐻𝑈,2
𝑿𝒖𝒔𝒆
𝜀1
𝜀2 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

; 

Where: 

• �̇�𝐴𝐻𝑈,1 is the flow rate of the AHU 1 

• 𝑇𝐴𝐻𝑈,1 is the temperature of the AHU 1 

• �̇�𝐴𝐻𝑈,2 is the flow rate of the AHU 2 

• 𝑇𝐴𝐻𝑈,2 is the temperature of the AHU 2 

• 𝑋𝑢𝑠𝑒 is an input variable that distributes the power required between the two HPs 

• 𝜀1 and 𝜀2 are two slack variables to use in the constraints to make the problem 

computationally softer to solve 

Not all the variables will be employed for making the prediction in the building model, 

but some of them are required for the computation of some quantities needed for the cost 

functions in NMPC 1. The tunable input that will be the final decision of the NMPC 1 

is 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓, and the rest are provided by measured disturbances or other variables coming 

from local controllers or the NMPC 2. All of them should be adequately constrained. 

In this thesis, 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓,𝑚𝑖𝑛 is fixed at 25 °𝐶, while 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓,𝑚𝑎𝑥 is given by 45 °𝐶. The 

external disturbances here are 𝑇𝑒𝑛𝑣, 𝑇𝑧,𝑟𝑒𝑓 and #𝑃𝑃𝐿. As 𝑇𝑧,𝑟𝑒𝑓 is given by the user, it can 

be considered as perfectly known within the whole time horizon. As for the case of NMPC 

2, 𝑇𝑒𝑛𝑣 is going to be considered as perfectly estimated, or with an error in the prediction 

of the external temperature so small, that is negligible. Hence, during the whole 

prediction horizon, this quantity is known. Nevertheless, the estimation of the occupancy 

is much more difficult to predict since it is more randomized, and sensible to many factors 
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as the date, the schedule, the global situation, or even the proper weather. For this 

reason, the occupancy is going to be considered persistent during the whole prediction 

horizon. This means that the number of people inside the building obtained when started 

the optimization at that time step 𝑡 is going to be maintained constant during the whole 

prediction horizon. 

𝑇𝑧,𝑚𝑖𝑛 ≤ 𝑇𝑧,𝑚𝑒𝑎𝑛(𝑡 + 𝑘) ≤ 𝑇𝑧,𝑚𝑎𝑥 

𝑇𝑤,𝑚𝑖𝑛 ≤ 𝑇𝑤,𝑚𝑒𝑎𝑛(𝑡 + 𝑘) ≤ 𝑇𝑤,𝑚𝑎𝑥 

 

𝑇𝑒𝑛𝑣
𝑚𝑒𝑎𝑠(𝑡 + 𝑘) ≤ 𝑇𝑒𝑛𝑣(𝑡 + 𝑘) ≤ 𝑇𝑒𝑛𝑣

𝑚𝑒𝑎𝑠(𝑡 + 𝑘) 

#𝑃𝑃𝐿
𝑒𝑠𝑡 (𝑡) ≤ #𝑃𝑃𝐿(𝑡 + 𝑘) ≤ #𝑃𝑃𝐿

𝑒𝑠𝑡 (𝑡) 

𝑇𝑧,𝑟𝑒𝑓
𝑔𝑖𝑣𝑒𝑛(𝑡 + 𝑘) ≤ 𝑇𝑧,𝑟𝑒𝑓(𝑡 + 𝑘) ≤ 𝑇𝑧,𝑟𝑒𝑓

𝑔𝑖𝑣𝑒𝑛(𝑡 + 𝑘) 

𝑈𝑓𝑐,𝑡𝑜𝑡
𝑙𝑐 (𝑡) ≤ 𝑈𝑓𝑐,𝑡𝑜𝑡(𝑡 + 𝑘) ≤ 𝑈𝑓𝑐,𝑡𝑜𝑡

𝑙𝑐 (𝑡) 

𝑄𝐴𝐻𝑈
𝑙𝑐 (𝑡) ≤ 𝑄𝐴𝐻𝑈(𝑡 + 𝑘) ≤ 𝑄𝐴𝐻𝑈

𝑙𝑐 (𝑡) 

𝑻𝒕𝒂𝒏𝒌,𝒓𝒆𝒇,𝒎𝒊𝒏 ≤ 𝑻𝒕𝒂𝒏𝒌,𝒓𝒆𝒇(𝒕 + 𝒌) ≤ 𝑻𝒕𝒂𝒏𝒌,𝒓𝒆𝒇,𝒎𝒂𝒙 

�̇�𝐴𝐻𝑈,1
𝑐𝑜𝑚𝑝 (𝑡) ≤ �̇�𝐴𝐻𝑈,1(𝑡 + 𝑘) ≤ �̇�𝐴𝐻𝑈,1

𝑐𝑜𝑚𝑝 (𝑡) 

𝑇𝐴𝐻𝑈,1
𝑐𝑜𝑚𝑝(𝑡) ≤ 𝑇𝐴𝐻𝑈,1(𝑡 + 𝑘) ≤ 𝑇𝐴𝐻𝑈,1

𝑐𝑜𝑚𝑝(𝑡) 

�̇�𝐴𝐻𝑈,2
𝑐𝑜𝑚𝑝 (𝑡) ≤ �̇�𝐴𝐻𝑈,2(𝑡 + 𝑘) ≤ �̇�𝐴𝐻𝑈,2

𝑐𝑜𝑚𝑝 (𝑡) 

𝑇𝐴𝐻𝑈,2
𝑐𝑜𝑚𝑝(𝑡) ≤ 𝑇𝐴𝐻𝑈,2(𝑡 + 𝑘) ≤ 𝑇𝐴𝐻𝑈,2

𝑐𝑜𝑚𝑝(𝑡) 

𝟎 ≤ 𝑿𝒖𝒔𝒆(𝒕 + 𝒌) ≤ 𝟏 

0 ≤ 𝜀1(𝑡 + 𝑘) ≤ 1010 

0 ≤ 𝜀2(𝑡 + 𝑘) ≤ 1010 

(2–12) 
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Figure 2-3 NMPC 1 model structure 

Cost function 

The cost function in this NMPC is also composed of two main terms: 

𝐿𝑀𝑃𝐶1(𝑡) = ∑ (𝐿𝑐𝑜𝑚𝑓,𝑀𝑃𝐶1(𝑡 + 𝑘) + 𝐿𝑒𝑛,𝑀𝑃𝐶1(𝑡 + 𝑘) + 𝜀(𝑡 + 𝑘))

𝑁𝑝,𝑀𝑃𝐶1−1

𝑘=1

 (2–13) 

Where: 

• 𝐿𝑐𝑜𝑚𝑓,𝑀𝑃𝐶1 is the comfort term, trying to make 𝑇𝑧,𝑚𝑒𝑎𝑛 as close as possible to 

𝑇𝑧,𝑟𝑒𝑓: 

𝐿𝑐𝑜𝑚𝑓,𝑀𝑃𝐶1(𝑘) = 𝑤𝑇𝑧 (𝑇𝑧,𝑟𝑒𝑓(𝑘) − 𝑇𝑧,𝑚𝑒𝑎𝑛(𝑘))
2

 (2–14) 

Being 𝑤𝑇𝑧 the weight of the comfort term. 

• 𝐿𝑒𝑛,𝑀𝑃𝐶1 is the energetic term, measuring the heat consumed by two HPs at instant 

k: 
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𝐿𝑒𝑛,𝑀𝑃𝐶1(𝑘) = 𝑤𝐻𝑃1 (𝑃ℎ𝑝,𝑎𝑤(𝑘) + 𝑃ℎ𝑝,𝑤𝑤(𝑘)) (2–15) 

Being 𝑤𝑇𝑧 the weight of the comfort term, and  𝑃ℎ𝑝,𝑎𝑤(𝑘) and 𝑃ℎ𝑝,𝑤𝑤(𝑘) are the 

electric power consumed by the HPs. 

𝑃ℎ𝑝,𝑎𝑤(𝑘) =
𝑄𝑡𝑜𝑡𝑋𝑢𝑠𝑒(𝑘)

𝐶𝑂𝑃𝑎𝑤(𝑘)
 

𝑃ℎ𝑝,𝑤𝑤(𝑘) =
𝑄𝑡𝑜𝑡(1 − 𝑋𝑢𝑠𝑒(𝑘))

𝐶𝑂𝑃𝑤𝑤(𝑘)
 

(2–16) 

The 𝐶𝑂𝑃(𝑘) is computed according to (2–5), and 𝑄𝑡𝑜𝑡 is the total heat required by 

the fancoils and AHUs, and the reason why they are needed as inputs for the NMPC 

1. 

• The final term is the one devoted to slacks variables, relaxing the HPs power 

constraints and making always feasible the optimization problem. 

𝜀(𝑘) = 𝑤𝜀(𝜀1(𝑘) + 𝜀1(𝑘)) (2–17) 

In this NMPC there are also three modes regarding the relative value of the weights of 

the two terms involved in the cost function. The modes are equally named than before: 

ECO, COMFORT, and COMPROMISE. The meaning of them is the same as the ones 

explained in the previous subsection. 

In this thesis, the mode used for NMPC 1, as it happened before, will be the COMFORT 

mode, so the election of the 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓 will be made giving more importance to the tracking 

of the setpoint in the building rooms. 
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3 NARX Neural Network 

In this chapter, the main aspects of NN are exposed, with its different phases in training. 

Then, the NARX processes are explained briefly to understand the key points about 

autoregressive processes. Many of these descriptions are further detailed in [35]. 

Finally, the combination of both in the NARX NN and its direct application to build the 

prediction model used in the NMPC 1 for selecting the optimal tunable input is 

presented. 

3.1 Feedforward Neural Network (NN) 

Artificial Neural Networks (ANNs) are mathematical models, that take their name from 

their trial of mimic human Neural Networks and their ability of learning.  It is a black 

box model in which some inputs are taken and the output is computed, according to 

some parameters trained with data. In this case, the most used structure, the multi-layer 

perceptron (MLP), is employed. There are other typical structures as the radial basis 

function networks (RBFNs).  

These two types are known to be universal approximators. This means that a big enough 

ANN could approximate any system, with the correct inputs, sizes, and outputs. Of 

course, it is impossible to know the correct size for a NN beforehand. It is a black box 

modelling technique, and it is based mainly on empirical evidence and experimental 

simulations. The main advantage of RBFNs is the quick training compared with MLPs. 

However, MLPs generally use a smaller number of neurons and parameters for complex 

systems with many inputs and outputs. As it is going to be the case, MLPs will be used. 

Another important remark to make here is that if the output of the ANN depends not 

only on the current input but also on past inputs and outputs, it is called a recurrent 
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ANN. As the overall system will be modelled as a NARX process, we will make use of a 

recurrent ANN. 

3.1.1 Structure 

The structure of an ANN with the MLP shape includes neurons, connections, and biases. 

This NN shape has a finite set of layers, each of them constituted by a finite number of 

neurons plus one bias. Each neuron receives a certain number of inputs, sums them, and 

adds the bias. The result of this sum pass through an activation function, that computes 

the output of each neuron. In the end, the ANN can be seen as a nonlinear function: 

�̂� = 𝑓(𝐱, 𝛉) (3–1) 

Where: 

• 𝐱 is the set of inputs 

• �̂� is the set of predicted outputs 

• 𝛉 is the set of parameters, including weights and biases 

The layers are classified into the input layer, hidden layer, and output layer. There is 

only one input layer, where the neurons receive as inputs the original inputs for the 

black-box model. Contrarily, there exist a finite number of hidden layers, where the 

values received for each neuron come from the result of the activation function of the 

neurons in the previous layer. Finally, there exists one output layer that takes the values 

of the activation function of the last hidden layer and computes the value for the output 

of the ANN. This last operation usually includes the operation of passing from a 

normalized value to the original range of the output of the NN. 

The connections between neurons have different weights. The output of each neuron is 

multiplied by this weight, and this product constitutes the final input for the next neuron 

in the next layer. Then, the output of each neuron and for the output layer considering 

a number 𝐾 of hidden layers is shown in (3–2). The shape of a possible ANN is shown 

in Figure 3-1. For simplicity, only some weights are depicted in the image. 
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Figure 3-1 MLP NN structure 

 

𝐱𝑘 = ℎ𝑎𝑓(𝐰
𝑘𝐱𝑘−1 + 𝐛𝑘) 

𝐲 = ℎ𝑎𝑓(𝐰
𝐾𝐱𝐾−1 + 𝐛𝐾) 

(3–2) 

Where: 

• 𝐱𝑘 are the outputs of the neurons in layer 𝑘 

• 𝐰𝑘 are the weights of the connections entering layer 𝑘 

• 𝐛𝑘 are the biases of layer 𝑘 

• 𝐱𝑘−1 are the outputs of the neurons in layer 𝑘 − 1 

• ℎ𝑎𝑓 is the activation function 

It is important in the input layer to normalize all the incoming quantities. Since the type 

of inputs received by the NN can be of many kinds and can have a very different order 

of magnitude, the weights after training can be very diverse in size and complicated to 

train. For that, a previous normalization for guaranteeing the same order of magnitude 

for all inputs is required. The normalization employed by MATLAB is shown in (3–3), 

normalizing the input 𝑥 between -1 and 1. 

�̅� =
2

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 )
(𝑥 − 𝑥𝑚𝑖𝑛 ) − 1 (3–3) 

𝑥1 

𝑥2 

𝑥𝑛 

𝑦1 

𝑦𝑚 

𝑤11
1  

𝑤12
1  

𝑤1𝑘
1  

𝑤𝑛𝑘1
1  

𝑤𝑘𝐾𝑚
𝐾  

𝑤11
𝐾  
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Where: 

• 𝑥𝑚𝑎𝑥 is the maximum value appearing in the 𝑥 dataset 

• 𝑥𝑚𝑖𝑛 is the minimum value appearing in the 𝑥 dataset 

• 𝑥 is the input value to be normalized 

In recurrent ANN, the input layer also uses as inputs past outputs or inputs. So, it uses 

proper values obtained in the NN by the feedback of the past outputs. 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 

are automatically saved during the training procedure of the NN in MATLAB. 

There are many activation functions ℎ𝑎𝑓 used traditionally in ANN with this structure. 

The activation functions are the ones that give the ANN the nonlinear characteristic. 

The most commons are the sigmoid (3–4), the hyperbolic tangent (3–5), and Rectified 

Linear Unit (ReLU) (3–6): 

ℎ𝑎𝑓 =
1

1 + 𝑒−𝑥
 (3–4) 

ℎ𝑎𝑓 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (3–5) 

ℎ𝑎𝑓 = max(0, 𝑥) (3–6) 

In this thesis, is used the activation function defined by default in MATLAB for NN, 

that is the hyperbolic tangent. 

3.1.2 Training, validation, and testing 

As it has been seen, a set of weights and biases, merged in 𝛉, together with the proper 

structure of the ANN are the ones that define the behaviour of the overall Network. To 

set the appropriate value for the parameters, training is needed. Training consists of 

using a dataset obtained from the real system, or in this case, from simulation over a 

reference model taken as the real system. This dataset should be large enough to avoid 

problems as overfitting, also related to the number of parameters to set. During training, 

the parameters are modified to make the predictions as close as possible to the real 

outputs given as data. 
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A training algorithm is needed to modify continuously the parameters of the ANN during 

the training. A lot of algorithms have been developed for training, mainly based on the 

Backpropagation procedure. By default, MATLAB uses Levenberg-Marquardt (LM) 

backpropagation. However, for this thesis, the Bayesian regularization backpropagation 

is configured [36]. Being very similar to LM, it guarantees better generalization 

properties, trying to avoid overfitting during training. Once finished with the training, 

the NN should be ready to be used, but there is still the necessity to try this NN with 

validation and testing procedures. 

Validation is an assessment of the prediction capabilities of the NN using data not 

contained in the training dataset. Assessing the prediction capabilities consists of 

comparing the predicted outputs with the real ones of the validation dataset. For 

measuring the error in prediction, the Mean Square Error (MSE) is used. Validation is 

an essential step to check the generalization capabilities of the ANN and to understand 

if overfitting has appeared during training. The validation step is also useful for analyzing 

the best combinations of hyperparameters present in the structure, such as the number 

of hidden layers, neurons, or the inputs selected.  

The partition between the training and the validation dataset can be randomized in the 

whole data set or divided into blocks. However, the correct proportion of data for training 

and validation must be used, since the validation performance is the one that will be 

used for finishing the training. The training will be performed until the validation error 

starts to increase again during a certain number of training instances. The validation 

error is a good measure of the expected generalization error of the ANN, so if at a certain 

instance this error starts to increase again, is a good indicator of the point at which 

overfitting is starting to take place. In this sense, overfitting means that the NN is trained 

in a way that is able to perfectly shape the training dataset, it is too particularized. In 

this thesis, a proportion of 75 % of data is used for training and 25 % for validation.  

In the end, there exists the testing phase, in which the trained and validated NN faces a 

new dataset not correlated with the previous ones, with the conditions to which it will 

be exposed. This testing phase can appear or not, and it is recommended when the 

conditions in which the system is going to operate are quite different than the ones from 

which the training and validation dataset has been obtained. 
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3.2 Nonlinear autoregressive model with exogenous inputs 

(NARX) 

In a nonlinear autoregressive model with exogenous inputs (NARX), the actual value of 

the output is based on the current and past inputs (exogenous), and on the past outputs 

(autoregressive) with a nonlinear relationship [37]. As it is typical on these prediction 

models, uncertainty is introduced in the form of an additive white noise (3–7). 

𝐲(𝑡) = 𝑓 (𝐲(𝑡 − 1),… , 𝐲(𝑡 − 𝑛𝑦), 𝐮(𝑡 − 1),… , 𝐮(𝑡 − 𝑛𝑢)) + 𝐞(𝑡) (3–7) 

Where: 

• 𝑦(𝑡) is the output of the process at time 𝑡 

• 𝑢(𝑡) is the input of the process at time 𝑡 

• 𝑛𝑦 ≥ 1 is the number of feedback delays 

• 𝑛𝑢 ≥ is the number of input delays 

• 𝑓 is a nonlinear function 

• 𝑒(𝑡) is a white noise with variance 𝜆. 𝑊𝑁~(0, 𝜆2) 

In the end, it is possible to define the input vector, of dimension 𝑛 = 𝑛𝑦 + 𝑛𝑢: 

𝑋 = [𝑦(𝑡 − 1) … 𝑦(𝑡 − 𝑛𝑦) 𝑢(𝑡 − 1) … 𝑢(𝑡 − 𝑛𝑢)]
𝑇
 (3–8) 

3.3 NARX-NN 

In this thesis, a NARX model with the shape of an MLP NN is going to be used for the 

prediction model inside the NMPC 1. The nonlinear function appearing in (3–7) is an 

MLP ANN, where the inputs are a combination of proper inputs, but adding as new 

inputs the input delays and the feedback delays. The prediction model function is 

constructed changing 𝑦 for 𝑥, since the output of the NN will be a proper state of the 

system under control: 
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�̂�(𝑡) = 𝑓(𝐱(𝑡 − 1),… , 𝐱(𝑡 − 𝑛𝑥), 𝐮(𝑡 − 1),… , 𝐮(𝑡 − 𝑛𝑢), 𝛉) (3–9) 

Where the vector of parameters 𝛉 of a standard NN is added. Instead of scalar values, 

here vectors are considered since multiple inputs and outputs are considered. 

In this thesis, the structure of the NN will be the one developed by Elia Manstretta in 

his Master Thesis [1] because it has shown reasonably good results with a relatively 

simple structure. The objective of this predictor is to capture the thermal dynamics of 

building 25. The MLP takes only one input delay, the actual one, and three feedback 

delays for the state. It has one only hidden layer with three hidden neurons, as depicted 

in Figure 3-2. The properties of the NN used in this thesis are summarized in Table 3-1. 

The inputs and outputs for the predictive model have the same structure as the previous 

model used in the CAS-NMPC in the Master Thesis [2], using one single room space for 

the state variables. The set of inputs has been selected according to the variables 

actuating in the equation of the single room dynamics (2–1). In these equations, the heat 

introduced by fancoils, AHUs, and people inside the building were the main inputs, and 

it will have the same structure (3–10). This structure has sense from the point of view 

of the physics governing the dynamics. However, it will be checked in the following 

chapter that some of these variables have a small influence on the evolution of the state, 

being possible to omit them. Nevertheless, they will be maintained in the simulations 

because the main objective of the thesis is to analyze the effect of the size and type of 

dataset used for training this predictive model. 

𝐱(k) = [
𝑇𝑧,𝑚𝑒𝑎𝑛(𝑘)

𝑇𝑤,𝑚𝑒𝑎𝑛(𝑘)
] 

𝐮(𝑘) =

[
 
 
 
 
 
𝑇𝑒𝑛𝑣(𝑘)

#𝑃𝑃𝐿(𝑘)

𝑈𝑓𝑐,𝑡𝑜𝑡(𝑘)

𝑄𝐴𝐻𝑈(𝑘)

𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓(𝑘)]
 
 
 
 
 

 

(3–10) 
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Name Symbol Value 

# of hidden layers #ℎ𝑙 1 

# of neurons #𝐧𝐞𝐮𝐫𝐨𝐧𝐬 [3] 

# input delays 𝑛𝑢 1 

# feedback delays 𝑛𝑥 3 

Table 3-1 Building 25 NARX NN structure 

 

 

Figure 3-2 Building 25 NARX NN structure 

NARX nets can be treated in two different ways: in closed-loop training or open-loop 

training. In the closed-loop training (also called parallel), the NN is trained by feeding 

the feedback delays with predicted outputs �̂�(𝑘) for the next-step prediction. On the 
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other side, the open-loop training (also called series-parallel), uses the actual 

measurement at instant 𝑡, 𝐲(𝑡), for making the future prediction during training. This 

difference is depicted in Figure 3-3. 

In this thesis, however, as future predictions will be made by the NMPC 1, the real 

measurements of the actual state of the building are not available in the prediction 

horizon. Following this reasoning, the training will be made in a closed-loop 

configuration. The disadvantage of this training is that it is computationally slower than 

the open-loop configuration. However, if the open-loop configuration was chosen, then 

the NN should be closed afterwards to be able to make future predictions in the absence 

of measurements. The problem is that the training and validation of the NN would have 

been done using the open-loop shape, and no real guarantees about the performance of 

this NN once closed are given. For that, even when slower in the training, the closed-

loop configuration is chosen to have a closer to real performance NARX-NN. 

         

Figure 3-3 Closed and open loop NARX-NN 
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4 Data generation 

In this chapter, several simulations are developed over the CAS-NMPC using different 

external data, mainly focused on the external temperature profile influence. The final 

NMPC 1 with the NARX NN as prediction model is shown. 

A differentiation between a realistic data generation approach and one considering a 

simulation approach, making use of the Design of Experiments (DOE) techniques, is 

detailed. 

Then, the prediction capabilities of the NARX NN trained using the different datasets 

generated are compared. Finally, their performance when using these prediction models 

in closed-loop inside the NMPC 1 is developed. 

4.1 NARX NN NMPC1 

The NARX NN prediction model developed in chapter 3, is introduced inside the NMPC 

1. To maintain the same structure as the CAS-NMPC employed for generating the data, 

the same set of inputs is going to be introduced. As shown in (3–10), only 5 inputs of 

them (𝑇𝑒𝑛𝑣, #𝑃𝑃𝐿 , 𝑈𝑓𝑐,𝑡𝑜𝑡, 𝑄𝐴𝐻𝑈 and 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓) are used for making the predictions. 

However, the remaining ones are important for computing the cost function 𝐿𝑀𝑃𝐶1 

developed in (2–13). 

4.1.1 Ad-hoc implementation 

Even when the internal structure of the NARX NN is further detailed in chapter 3, for 

the implementation in MATLAB some manipulations are required. The NMPC program 

uses CasADi symbolic toolbox for introducing the nonlinear function to optimize. If the 

MATLAB NN toolbox is used, the resulting NN is incompatible with the CasADi NMPC 

already programed, and the optimization cannot be computed. 
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Figure 4-1 NARX NN model for NMPC 1 

For that, an ad-hoc nonlinear program has been coded to construct a nonlinear function 

able to work inside the NMPC program. Even when it had been already developed for 

the given NN structure in [1], a more generalized version of this ad-hoc program has been 

developed. This function has the shape of (4–1). 

𝐗(𝑘 + 1) = 𝐹𝑁𝑁(𝐔(𝑘), 𝐗(𝑘),𝑁𝑁, 𝑛𝑥, #𝐧𝐞𝐮𝐫𝐨𝐧𝐬, 𝑛𝑢) (4–1) 

Where: 

• 𝐗(𝑘) is the extended state vector 

• 𝐔(𝑘) is the complete input vector 

• 𝑁𝑁 is the network in the format trained by MATLAB 

• 𝑛𝑥 is the number of feedback delays 

• #𝐧𝐞𝐮𝐫𝐨𝐧𝐬 is a vector with the number of neurons of each hidden layer 

• 𝑛𝑢 is the number of input delays 

To deal with past states, an extended discrete state-space representation of the feedback 

outputs is provided in (4–2). An enlarged state vector including as many states as 
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feedback delays is built. The only state that requires computation is the first one, which 

corresponds to the proper output of the NARX NN. The remaining states are the values 

taken by 𝑋1 in previous instances up to the feedback delay, so that 𝑋𝑛𝑥(𝑘) = 𝑋1(𝑘 − 𝑛𝑥). 

{
 
 

 
 𝑋1(𝑘 + 1) = 𝑓𝑁𝑁 (𝑋1(𝑘), 𝑋2(𝑘),… , 𝑋𝑛𝑥(𝑘), 𝑈(𝑘))

𝑋2(𝑘 + 1) = 𝑋1(𝑘)
⋮

𝑋𝑛𝑥(𝑘 + 1) = 𝑋𝑛𝑥−1(𝑘)

 

(4–2) 

Firstly, the program extracts the necessary inputs for the prediction from the set of all 

inputs introduced in the NMPC. Also, the actual state is extracted, considering as states 

the extended ones shown in (4–2). Then, the maximum and minimum values for the 

inputs and feedback states are taken from the information stored in the NN trained by 

MATLAB. The inputs and feedback states are normalized according to equation (3–3).  

The numerical weights are extracted also as matrixes from the network trained. Taking 

the inputs and the feedback states as pseudo inputs, 𝑓𝑁𝑁 is implemented. Using (3–2) for 

each layer, and the hyperbolic tangent as the activation function for each neuron, it is 

possible to compute the nonlinear function providing 𝑋1(𝑘). Finally, all the assignments 

for 𝑋2(𝑘) up to 𝑋𝑛𝑥(𝑘) are made, and the new state vector is constructed. It is needed 

to normalize again but in the opposite direction given in (3–3). 

𝑦 =
𝑦𝑚𝑎𝑥 − 𝑦min

2
(�̅� + 1) + 𝑦𝑚𝑖𝑛 (4–3) 

Where: 

• 𝑦𝑚𝑎𝑥 is the maximum value appearing in the 𝑦 dataset 

• 𝑦𝑚𝑖𝑛 is the minimum value appearing in the 𝑦 dataset 

• �̅�  is the normalized output value to be rescaled to its normal range 

This program can deal with any number of feedback delays, hidden layers, and the 

number of neurons per layer automatically. However, in this thesis this function has only 

been simulated for the set of parameters given in Table 3-1. Once created this nonlinear 

steady-state representation, the NMPC can perfectly work with the extended system and 

make future predictions. 
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4.2 Data collection 

For obtaining the dataset used for training, the CAS-NMPC structure developed in [2] 

is simulated controlling the reference model detailed in chapter 2, as if this complex 

nonlinear model was the real building that the NARX NN will replicate. 

The reference model is going to be simulated in closed-loop, trying to replicate the real 

behaviour in operation. It would not be possible to excite the system in open-loop in 

order to avoid very uncomfortable situations for users or hazardous outputs for the whole 

plant. 

The model inscribed in the NMPC 1 for the data collection is one simple model taking 

the building as a one-room space with the dynamics expressed in (2–1). Some 

considerations must be given for the functioning of the system.  

Only the cold season is considered. This means that only the months in which the heating 

system is used appears. The air conditioning reference model has not been modelled 

beforehand, and the heating usually carries more energy consumption throughout the 

year. So, the summer period is excluded. 

For carrying the simulations, the external disturbances and control inputs must be 

provided. These signals are: 

• 𝑇𝑒𝑛𝑣 the external temperature. The dataset of external temperature is extracted 

from the ARPA weather station placed in Milano Lambrate, where building 25 is 

located [38]. From the 2015/2016 cold period up to the 2019/2020 one, the data 

is downloaded. The cold period is considered the one corresponding to October to 

March of the following year (six months). As the weather station stores 𝑇𝑒𝑛𝑣 each 

10 mins, and the sampling time for simulation is 1 min, a linear interpolation is 

used inside to complete the external temperature profiles. This external 

temperature will be the main source of information to change and study in the 

thesis. 

• #𝑃𝑃𝐿 the occupancy profile. Although 10 weekly occupancy profiles were created 

attending to the lecture hours and the maximum capacity of each room (Figure 

4-2 a), only one has been used, variated enough, to focus on the influence of the 

external temperature. It is expected that during a normal year, the occupancy 
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profile should be uniform along the semesters. Each occupancy profile is 

constituted by 18 different occupancy single profiles, one for each room.  

• 𝑇𝑧,𝑟𝑒𝑓 is the setpoint for the room temperature. Initially, it has been fixed a normal 

regime maintaining 16 °𝐶 during the night and 20 °𝐶 during the working hours 

(Figure 4-2 b). Even when in the weekends after Saturday afternoon it is not usual 

to have students in the building, the setpoint has been maintained as before to 

see the influence of this phenomena in the training. 

 

Figure 4-2 a) Occupancy profile of one room during a week b) Setpoint during a week 

Once defined the input signals to introduce, the simulations can be carried out. Especial 

attention is given to the external temperature because is the one able to place the 

building in many different and environmental conditions. To do the simulations, two 

different approaches can be followed: 

1. Firstly, the simulations can be considered as realistic. It means that the building 

is exposed to a real external temperature profile, with the correct occupancy and 

the desired setpoint. It will replicate the data collection from a real building 

already functioning. 

2. On the contrary, it is possible to consider that we have a very good and accurate 

model of the building and obtain results assuming that this is a simulation 

environment. In this sense, we can provide different external temperatures, 

occupancy, and setpoint profiles to excite properly the reference model and have 

a richer dataset. Both approaches are further detailed, exposing their prediction 

and closed-loop capabilities. 



Data generation 

 

 

 

46

4.2.1 Realistic approach 

The main goal of this approach is to replicate the data collection of a real building. The 

people are continuously using the installations, and it could be hazardous to employ 

setpoints that are out of the comfort zone. It is also impossible to achieve a selected 

occupancy profile since it would be needed to stop or modify the main activities of the 

building, in this case, students receiving lessons by professors. Of course, the external 

temperature is also imposed, and it is not possible to modify, mix, or scale the real 

external conditions.  

By doing simulations considering this, it is possible to obtain a realistic dataset. This set 

would be the one expected to have in the case of a real building, being able to understand 

its training capabilities. Past external temperature sequences will be given to the building 

in different periods and lengths, from October to March, considering the sequential 

characteristic required. The occupancy profile and setpoint will be the ones explained in 

the previous subsection. In order to take it as representative, the period 2017/2018 is 

selected for making the simulations. 

from to from to from to from to from to from to from to 

Oct Oct Oct Jan Nov Nov Nov Feb Dec Jan Jan Jan Feb Feb 

Oct Nov Oct Feb Nov Dec Nov Mar Dec Feb Jan Feb Feb Mar 

Oct Dec Oct Mar Nov Jan Dec Dec Dec Mar Jan Mar Mar Mar 

Table 4-1 Training periods of 2017/2018 

In Table 4-1, the different realistic simulation periods are depicted. The column “from” 

defines the first day of that month, while the column “to” defines the end day of that 

month. This defines the external temperature profile used for each data collection 

simulation. For simplicity, it has been considered that all months are made of four weeks. 

This allows the simpler subdivision of every month that will be useful for the next 

approach. 
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4.2.2 Simulation approach. Design of Experiments 

In this approach, we assume that the system under simulation can be excited in the 

desired way to obtain any data. The setpoint can be configured at any point, having 

more freedom to make the system achieve different reference temperatures. On the other 

side, external disturbances can be imposed. As it is a simulation, warm and cold weeks 

can be applied as external temperature profiles. The same can be done with the 

occupancy profile, being possible to have different levels of occupancy each week. 

Having this choice of manipulating exogenous inputs, there exists the need of having a 

systematic way of launching the simulations in a way that excites properly the system 

but maintaining a small number of simulations.  

Design of experiments (DOE) is employed for this purpose. As explained in chapter 1, in 

[32] an overview of DOE techniques applied to computational systems is given. The main 

goal of these techniques is to extract as much information as possible from a limited set 

of simulations. The external inputs given to the simulation are placed at the extremes of 

the input space, avoiding the repeatability of simulations. 

In this sense, Latin Hypercube Sampling (LHS) will be used. This technique takes the 

ranges of the external inputs for the simulations and creates a list of combinations of 

these inputs. The list of simulations correctly samples the input space. By using LHS, 

the a priori best set of combinations can be reached to excite the system in many 

situations. To further enter into details, [32] and [33] have more detailed information 

about this algorithm. In MATLAB, this function is implemented, receiving the number 

of simulations required. A modified version, in which the ranges of the external inputs 

are also provided, is employed since the original LHS program provides combinations 

between 0 up to 1. 

The objective now is to apply a technique similar to LHS to the case of building 25, the 

first task to do is to correctly define the set of 3 external inputs for the simulations. 

Firstly, the external temperatures are going to be divided into 3 categories: cold, warm, 

and hot months, attending to their mean temperature as shown in Table 4-2. These 

categories are numbered from 1 to 3 for being computable by LHS. When constructing 

the input signal one of the years is selected randomly, and then one of the months of the 
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category selected by LHS is also used at random. From that month, one of its four weeks 

is chosen for the final signal. The result is shown in Figure 4-3 (a). 

Month Category 

October Hot 

November Warm 

December Cold 

January Cold 

February Cold 

March Warm 

Table 4-2 Month classification 

In the case of the occupancy profile the range taken is from 0 to its maximum occupancy 

capacity. It selects a scale factor from 0 to 1 and applies it to the original occupancy 

profile. 

#̅𝑃𝑃𝐿(𝑡) = 𝛼𝑃𝑃𝐿#𝑃𝑃𝐿(𝑡) 

𝛼𝑃𝑃𝐿 ∈ [0,1] 
(4–4) 

Finally, for the setpoint, the temperature taken is selected in 16 in the non-occupancy 

hours, but the upper setpoint is chosen by LHS from the range 17 °𝐶 up to 22 °𝐶. The 

final setpoint temperature is shown in Figure 4-3 (b).  

𝑇𝑧,𝑟𝑒𝑓(𝑡) = 𝑇𝑧,𝐿𝐻𝑆 

𝑇𝑧,𝐿𝐻𝑆 ∈ [17, 22] °𝐶 
(4–5) 

In the end, even when a simulation environment is used, the reference model developed 

has not worked too well out of reasonable ranges of conditions. For that, a not-so-wide 

range of setpoints is given, and the external temperatures are not randomly created, but 

wisely selected, to guarantee all the possible conditions but in the working range.  
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To finish with the configuration of the DOE approach used here, a proper selection of 

the number of weeks is required. The maximum period required in the realistic approach 

has been from October to March, including 6 months. In this case, a period of 25 weeks 

is taken, following some other cases and examples from the bibliography. In [34], the 

LHS is used for generating the data used for training an ANN. 

 

Figure 4-3 a) External temperature generated with LHS b) Setpoint temperature 

generated with LHS 

4.3 Prediction results 

In this section, the prediction capabilities of the NARX NN trained with the different 

datasets will be provided. The realistic approach datasets are tested as well as one 

example using the DOE techniques. 

As explained in chapter 3, the main measurement of training performance is the Mean 

Square Error. For each of the training cases shown in Table 4-1, the following indexes 

are obtained: 

• Training error: the MSE that the NN training algorithm is minimizing, 

concerning the training subset. 

• Validation error: the MSE that the NN uses to measure its generalization 

capabilities, concerning the validation subset. 

• Testing error: the MSE that the NN uses to measure the real prediction 

capabilities when facing completely different datasets. 
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4.3.1 Realistic approach 

The testing error is the main tool to understand the prediction behaviour of each of the 

NARX NN trained. To do so, the NNs trained with the 2017/2018 dataset face each of 

the months of another cold period (in this case, 2018/2019 one). The testing results can 

be seen in Table 4-3. 

From Table 4-3, some analysis can be made, especially in the zones highlighted: 

• The best prediction results are those obtained when testing cold months with NN 

trained mainly with cold months data (red). Even more, those NN are the ones 

with the smallest training and validation error. 

• When testing hot and warm months with these NNs, the prediction results are 

the worst in the table (purple). 

• The NN that includes hot, warm, and cold months in the training dataset are able 

to obtain the best overall performance (blue), even when its performance in the 

cold months is worse than in the case of the NN trained with cold days. 

• The best performing NN is the one using the longest dataset, including the period 

from October to March, which implies a good balance between hot, warm, and 

cold training datasets (yellow). 

This set of results has been also cross-tested. A group of NNs has been trained with the 

cold period of 2018/2019 and tested against the months of 2017/2018, obtaining the same 

qualitative results as in Table 4-3 and verifying the remarks made above. 

The fact that that the NN trained with cold months only behaves very well with cold 

months, but very bad when facing other sets of external conditions is a clear symptom 

of overfitting. The reason behind it is that the type of data used for testing the NN has 

the same characteristics as the one used for training. The data is particularized for the 

case in which the heating system is always active and providing a regular and periodical 

set of outputs for the NN. 

However, when the training dataset also includes a significant set of hot and warm 

months, the error is more uniform across the whole testing set. This kind of months 

includes periods in which the heating system is active and others in which the system is 



51 

 

 

A neural network-based predictive control and data analysis of an HVAC 

system for an educational building 

switched of, allowing the NN to learn the effect of the external disturbances not 

influenced by the heating system. 

From To 
Tr, 

MSE 

Val, 

MSE 
Oct Nov Dec Jan Feb March Mean 

Oct Oct 0,0052 0,096 0,7413 1,8254 4,0898 4,3922 3,3674 1,6707 3,0691 

Oct Nov 0,0139 0,0700 0,3395 0,2006 0,6482 0,7042 0,4276 0,2234 0,4239 

Oct Dec 0,0248 0,0613 0,2560 0,2090 0,2971 0,3088 0,2752 0,1917 0,2563 

Oct Jan 0,0135 0,0108 0,2489 0,1468 0,2896 0,3115 0,2832 0,1550 0,2392 

Oct Feb 0,0173 0,0164 0,3476 0,1720 0,3196 0,3567 0,2989 0,1631 0,2763 

Oct Mar 0,0125 0,0107 0,3838 0,1878 0,1246 0,1338 0,1304 0,1881 0,1914 

Nov Nov 0,0059 0,0100 0,9364 0,2960 0,2850 0,3520 0,2013 0,1999 0,3784 

Nov Dec 0,0077 0,0075 0,9229 0,4297 0,3542 0,3563 0,3668 0,3271 0,4595 

Nov Jan 0,009 0,007 1,0086 0,5682 0,3112 0,5193 0,3280 0,4170 0,5254 

Nov Feb 0,0051 0,0038 0,8134 0,2849 0,0904 0,0950 0,1029 0,3137 0,2834 

Nov Mar 0,0159 0,0496 1,2415 0,4596 0,1850 0,2230 0,1868 0,4308 0,4545 

Dec Dec 0,0036 0,0048 4,2294 1,4142 0,1943 0,1273 0,3258 1,1777 1,2448 

Dec Jan 0,0052 0,0055 1,0742 0,4823 0,1078 0,2550 0,1318 0,4282 0,4132 

Dec Feb 0,0046 0,0046 1,0973 0,5379 0,1037 0,2999 0,1230 0,4465 0,4347 

Dec Mar 0,005 0,0206 1,0375 0,5259 0,1079 0,1091 0,1351 0,4362 0,3920 

Jan Jan 0,006 0,0043 0,9855 0,6110 0,1303 0,1439 0,1325 0,4752 0,4131 

Jan Feb 0,0051 0,0071 1,7350 0,3836 0,1081 0,1226 0,1337 0,4627 0,4910 

Jan Mar 0,0039 0,0129 0,7817 0,3883 0,0886 0,0872 0,1293 0,3954 0,3118 

Feb Feb 0,0369 0,2547 3,9231 1,3393 0,3787 0,3669 0,4663 1,2810 1,2926 

Feb Mar 0,0065 0,0151 0,9995 0,6917 0,3491 0,3493 0,3685 0,4556 0,5356 

Mar Mar 0,0193 0,0454 1,0588 0,5229 0,2033 0,2650 0,1860 0,4611 0,4495 

    1,1506 0,5561 0,4175 0,4704 0,3857 0,4905  

Table 4-3 Realistic approach prediction results (17/18 data tested with 18/19) 

Because of the realistic approach, the output of the system 𝑇𝑧,𝑚𝑒𝑎𝑛 must be periodical in 

cold months to guarantee the comfort of the users. As the trained NN is a NARX process, 

if the output of the NN has periodical behaviour, in the end, the majority of the weight 

in the prediction is given to the past outputs, irrespective of the inputs. The set of data, 

even when large in the case of cold months, is not informative since it has always the 

same evolution.  
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On the contrary, the appearance of hot and warm months provides data more exciting 

for the whole system, which combined also with data of cold months provides a complete 

picture of the scenarios and dynamics that the building could face. A NN trained with 

this set of data is able to capture the influence of the inputs in the states, and not only 

the effect of past states.  

This can be visualized by inspection of the weights of the NN obtained from some dataset. 

In this case, the NN trained with data from December to December and the one trained 

with data from October to March are shown in Table 4-4. As the hidden layer has only 

three neurons, it can be easily extracted the weights from the different inputs and 

feedback delays neurons to each of the three neurons in the hidden layer (Figure 4-4). 

Hence, it is possible to understand if some of these variables have no significant effect on 

the prediction of future states. 

 

Figure 4-4 NARX NN with numbered neurons 
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Input 

𝑵𝑵𝑫𝒆𝒄 𝒕𝒐 𝑫𝒆𝒄 𝑵𝑵𝑶𝒄𝒕 𝒕𝒐 𝑴𝒂𝒓 

N1 N2 N3 N1 N2 N3 

𝑇𝑒𝑥𝑡(𝑘) 1,00 1,00 1,00 1,00 1,00 1,00 

#𝑃𝑃𝐿(𝑘) −0,06 −0,31 −1,37 −1,31 𝑒13 −1,88 318,42 

𝑈𝑓𝑐,𝑡𝑜𝑡(𝑘) −0,03 −0,01 −11,48 −0,30 −4,11 −807,83 

𝑄𝐴𝐻𝑈(𝑘) −0,70 −1,58 0,41 −0,54 −2,02 −1383,48 

𝑻𝒕𝒂𝒏𝒌, 𝒓𝒆𝒇(𝒌) −0,10 −0,07 −0,96 −9,03 𝑒12 −1,73 −447,99 

𝑇𝑧(𝑘) −4,89 −5,77 −1,49 −3,55 −25,80 −7050,32 

𝑇𝑤(𝑘) 48,96 −20,68 −6,11 21,65 51,72 −2547,77 

𝑇𝑧(𝑘 − 1) −1,78 −0,32 −0,13 0,43 11,13 3442,43 

𝑇𝑤(𝑘 − 1) 4,60 −22,74 −0,81 27,58 −233,39 −719,91 

𝑇𝑧(𝑘 − 2) 2,10 −2,36 −10,98 0,02 −11,47 3429,43 

𝑇𝑤(𝑘 − 2) 0,89 42,74 6,56 12,46 182,19 3779,08 

Table 4-4 Realistic approach NN weights 

The above reasoning can be seen in Table 4-4. The bad performing NN trained with data 

from December to December is placing the majority of the weights only on the past states 

and the exogenous inputs have a negligible influence. For this reason, the NARX process 

is learned by the NN as a nonlinear autoregressive (NAR) process. This will be a problem 

when using this NN in closed-loop since the NMPC 1 will try to find the optimal input, 

but not understanding the effect of the input that is trying to optimize, 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓. 
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However, the NN trained with data from October to March is placing the greatest weight 

on the exogenous input (at least in one of the three neurons) and the effect is not 

negligible in one of the others. Hence, the NN understands the influence of the exogenous 

input and it will be possible to find a reasonable optimal for the tunable input. 

4.3.2 Simulation approach 

From the previous results, the DOE external inputs designed before seem to be a very 

useful method for guaranteeing the absence of overfitting. The prediction results shown 

in Table 4-5 are obtained using the explained LHS and testing it against the same cold 

months as for the case of the realistic approach. 

From To 
Tr, 

MSE 

Val, 

MSE 
Oct Nov Dec Jan Feb March Mean 

Oct Mar 0,0125 0,0107 0,3838 0,1878 0,1246 0,1338 0,1304 0,1881 0,1914 

LHS 0,0278 0,0290 0,3707 0,1813 0,1447 0,1890 0,1880 0,1999 0,2074 

Table 4-5 LHS prediction results 

By using the LHS approach, the prediction performances are a bit worse than when using 

the best performing NN with the realistic approach. However, it has the main advantage 

that you are providing rich data and ensuring good prediction performance instead of 

depending on the available dataset in real circumstances. The prediction result of a NN 

trained with LHS is shown in Figure 4-5, tested against the October month of 2018. 

4.4 Closed-loop results 

The NNs trained previously are going to be introduced inside the NMPC 1 to understand 

their behaviour and how the prediction capabilities are related to the closed-loop 

performance. 

4.4.1 Performance indexes 

For defining the performance of this closed-loop simulation, some indexes are going to 

be defined and compared afterwards: 
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Figure 4-5 Prediction of October 2018 with NN trained with LHS 

• Mean Root Mean Square Error (𝑀𝑅𝑀𝑆𝐸): is the mean of the RMSE tracking 

errors in the different classrooms, omitting the common spaces of each floor: 

𝑀𝑅𝑀𝑆𝐸 =
1

14
∑(√

1

𝑛
∑(𝑇𝑧,𝑖(𝑘) − 𝑇𝑧,𝑟𝑒𝑓(𝑘))

2
𝑛

𝑘=1

)

14

𝑖=1

 (4–6) 

Where: 

o 𝑀𝑅𝑀𝑆𝐸 is measured in °𝐶 

o 𝑇𝑧,𝑖(𝑘) is the temperature of room 𝑖 at instant 𝑘 (°𝐶) 

o 𝑛 is the length of the simulation (𝑚𝑖𝑛) 

• Mean Root Mean Square Error during occupancy hours (𝑀𝑅𝑀𝑆𝐸𝑜𝑐𝑐): 

same as before but only computed for the occupancy hours, where the comfort for 

users is a must: 
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𝑀𝑅𝑀𝑆𝐸𝑜𝑐𝑐 =
1

14
∑√(

1

|𝑡𝑜𝑐𝑐|
) ∑ (𝑇𝑧,𝑖(𝑘) − 𝑇𝑧,𝑟𝑒𝑓(𝑘))

2

𝑘∈𝑡𝑜𝑐𝑐

14

𝑖=1

 (4–7) 

Where: 

o 𝑀𝑅𝑀𝑆𝐸𝑜𝑐𝑐 is measured in °𝐶 

o 𝑡𝑜𝑐𝑐 is the set of time instants in the occupancy hours (𝑚𝑖𝑛) 

• Energy consumption by the HPs: it measures the electricity used by both 

HPs: 

𝐸𝐻𝑃𝑠 =∑𝑢𝐻𝑃,𝑎𝑤(𝑘) �̇�𝑚𝑎𝑥,𝑎𝑤 + 𝑢𝐻𝑃,𝑤𝑤(𝑘) �̇�𝑚𝑎𝑥,𝑤𝑤

𝑛

𝑘=1

 (4–8) 

Where:  

o 𝐸𝐻𝑃𝑠 is measured in 𝑘𝑊ℎ 

• Cost: the economic losses due to the energy consumption of the HPs, basically 

multiplying the energy consumption by an estimated price of 0.213
€

𝑘𝑊ℎ
. 

• Mean Coefficient of Performance (MCOP): is the mean COP through the 

working time of the HP: 

𝑀𝐶𝑂𝑃𝑎𝑤(𝑡) =
1

|𝑡𝑢𝑠𝑒,𝑎𝑤|
∑ 𝐶𝑂𝑃𝑎𝑤(𝑘)

𝑘∈𝑡𝑢𝑠𝑒,𝑎𝑤

 

𝑀𝐶𝑂𝑃𝑤𝑤(𝑡) =
1

|𝑡𝑢𝑠𝑒,𝑤𝑤|
∑ 𝐶𝑂𝑃𝑤𝑤(𝑘)

𝑘∈𝑡𝑢𝑠𝑒,𝑤𝑤

 

(4–9) 

Where: 

o 𝑀𝐶𝑂𝑃𝑎𝑤 is the MCOP of the water to water HP 

o 𝑀𝐶𝑂𝑃𝑤𝑤 is the MCOP of the air to water HP 

o 𝑡𝑢𝑠𝑒,𝑎𝑤 is the number of time instants where the air to water HP is used 

o 𝑡𝑢𝑠𝑒,𝑤𝑤 is the number of time instants where the water to water HP is used 

• Execution time: a measure in seconds of the time employed to complete the 

simulation. 
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4.4.2 Realistic approach 

Some closed-loop simulations in cold external conditions are done for understanding the 

effect of the training data set used for training the NN. Again, the best performing NN 

in prediction is used (the one trained with the dataset from October to March). On the 

other side, the NN trained with the data from December to December is also facing the 

same external conditions to understand the differences. These results are highlighted in 

Table 4-6, where a subset of the NNs trained with data of the cold period 2017/2018 is 

working in the external conditions of December 2018. The performance with the baseline 

controller structure developed by Giuseppe and Federico [2] is also obtained. 

From To 
Sim 

Month 

𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑬𝑯𝑷𝒔  
(𝒌𝑾𝒉) 

𝑪𝒐𝒔𝒕  
(€) 

𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 𝒕𝒆𝒙𝒆 (𝒔) 

CAS-NMPC Dec 1,26 0,96 24070,59 5127,04 2,91 4,61 1115 

Oct Oct Dec 1,37 1,25 23540,81 5014,19 2,84 4,50 935 

Oct Nov Dec 1,26 1,03 23935,65 5098,29 2,82 4,83 1036 

Oct Mar Dec 1,14 0,96 21506,67 4580,92 2,99 6,49 957 

Dec Dec Dec 1,44 1,73 12914,24 2750,73 3,99 10,22 1135 

Dec Mar Dec 1,28 0,99 21021,50 4477,58 3,31 6,20 927 

Mar Mar Dec 1,14 1,16 15414,64 3283,32 3,55 9,80 960 

Table 4-6 Closed-loop realistic approach performance (17/18 data tested with 18/19) 

From Table 4-6, it is possible to compare the different closed-loop performances. In terms 

of tracking the reference setpoint, the NARX NN trained with data from October to 

March is showing better results than the baseline controller structure with the single 

room dynamics model inside NMPC 1 (with less energy consumption). This means that 

the good performing NN is providing a better estimation of future states than the single 

room model, being able to predict effectively future energy needs. The fact of providing 

better tracking performance with an HPs energy consumption reduction of 10,65 % is a 

key result. Also, another equilibrated dataset such as the one from December to March 

is providing practically the same performance in tracking, but with a cost saving of 12,67 

%.  

Nevertheless, the bad performing NARX NN trained with a poor dataset like the one 

from December to December discussed previously or the one from March to March is 
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providing bad results, especially in the occupancy hours. In fact, the Dec to Dec NN is 

not able to track the reference setpoint (Figure 4-6). 

 

Figure 4-6 𝑇𝑧,𝑚𝑒𝑎𝑛 obtained in closed loop by using good and bad performing NN 

The main problem when facing the December to December NN consists of the bad 

election of the optimal tunable input 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓. As it is not going to have a predicted 

effect in the future states, the NMPC 1 finds the optimal 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓 in a value as low as 

possible. The energetic term in the cost function is acquiring importance since the value 

of desired water tank temperature is going to require the actuation of the HPs, but it is 

not affecting the future states. Because of that, the 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓 is going to be at its minimum 

value as described in the input constraints defined in (2–12) (this effect can be seen in 

Figure 4-7 b). This is the reason why the energetic consumption by HPs shown in Table 

4-6 is much lower for the bad performing NN. 
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Figure 4-7 𝑇𝑡𝑎𝑛𝑘 evolution using a) Oct to Mar NN b) Dec to Dec NN 

While the Oct to Mar NN provides a mean 𝛵𝑡𝑎𝑛𝑘,𝑟𝑒𝑓 of 32,8 °𝐶 (which has been 

demonstrated to be enough for the building heating requirements) the Dec to Dec is 

giving 26,6 °𝐶. In this case, even with the fancoils working at their maximum level, they 

do not have enough heating resources for achieving the setpoint in the rooms. The 

comparison between the fancoils commands in one of the rooms of building 25 is seen in 

Figure 4-8. As the energetic resources are very low because of bad performance, the 

fancoil command is almost all the time at its maximum level. With the good performing 

NN, it is much softer and it can work at normal levels. 

 

Figure 4-8 Fancoils command comparison using the realistic approach 
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Another problem appearing with the bad performing NN is the one related to the COP 

of the HPs. Even when the values obtained are substantially high in general because of 

the reference model given, the values greater than 9 obtained for bad performing NN are 

not physically feasible.  

4.4.3 Simulation approach 

With the NARX NN trained using the LHS technique, the results in closed-loop obtained 

are expected to be similar to the ones obtained for the NN trained with the dataset from 

October to March. The main results are shown in Table 4-7.  

From To 
Sim 

Month 

𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑬𝑯𝑷𝒔  
(𝒌𝑾𝒉) 

𝑪𝒐𝒔𝒕  
(€) 

𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 𝒕𝒆𝒙𝒆 (𝒔) 

CAS-NMPC Dec 1,26 0,96 24070,59 5127,04 2,91 4,61 1115 

Oct Mar Dec 1,14 0,96 21506,67 4580,92 2,99 6,49 957 

LHS Dec 1,11 0,95 21696,05 4621,26 3,37 7,22 971 

Table 4-7 Closed-loop simulation approach performance (tested with 18/19) 

The tracking error is improved with the LHS technique, with a slight increase in the 

cost. This is caused by the more efficient use of the HPs in this case. In the prediction 

result analysis, the prediction error of the NN trained with LHS was worse than the one 

using the NN trained with the dataset from October to March. However, the NN seems 

to work better in closed-loop, having a better generalization capacity and a more accurate 

knowledge of the dynamics of the model.  

4.5 Concluding remarks 

The data collection employed for training the NARX NN has a key role in the real 

performance of the prediction model. The realistic approach has shown to have an 

excellent performance in prediction under some requirements. The available data for 

training should correspond to different kinds of months that excite the system in different 

ways to avoid the use of periodic and noninformative data. This is overcome in the 

simulation approach, where it is possible to design the set of external conditions in an 

effective way that guarantees the data to be rich enough for training. 
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Even more, the simulation approach allows the generation of a lot of data by fast 

simulations in different scenarios, while the data acquisition in the realistic approach is 

much more limited. As the building could be functioning, the external conditions cannot 

be imposed as variated to guarantee comfort. Even more, the speed of simulation is real-

time, which takes a huge amount of time to record the needed data.  

Nevertheless, the main drawback of the simulation approach is the need to rely on an 

accurate reference model that effectively represents the real system, trying to identify 

this reference model with the NARX NN. In the realistic approach, the data is obtained 

directly from the real building, avoiding the concern about having a realistic and accurate 

reference model.  

The set of real data for training has shown the need of having variated external 

conditions, both for prediction and in closed-loop simulation. In prediction, the NN 

trained with hot, warm, and cold months with representative periods of each of them has 

shown a more generalization capability. However, the NNs trained only with cold months 

have a very accurate prediction in cold months but a poor generalization in other 

scenarios. Hence, there exist the risk of overfitting when generating the dataset in the 

realistic approach if the period of data used is not exciting enough.  

Furthermore, the NNs obtained using a variated dataset for training have learned the 

effect of external inputs in the building, whereas the ones that have incurred in overfitting 

are practically neglecting the effect of exogenous inputs. They are taking the process as 

an autoregressive (NAR) process, not having practically any external effects. For that, 

when testing in closed-loop, the NMPC 1 is able to find an optimized value for 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓 

in the case of a good training dataset but not in the case of the non-informative dataset. 

Finally, the simulation approach using the LHS technique has shown a similar prediction 

and close-loop performance than the NN trained with a rich dataset in the realistic 

approach. The main advantage of this simulation technique is the guarantee that the 

overfitting is not going to be present in the final NARX NN, while in the case of the 

realistic approach it will depend on the available dataset. 
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5 Application 

Based on the previous results, in this chapter, the possibility of using a badly trained 

NARX NN is explored. Firstly, online training is tried to check if it is possible to improve 

the closed-loop performance. Two different techniques are explored: periodic and 

condition-based online retraining. Differences in the performance are shown. 

Then, an application for different buildings than the one used for training is also 

investigated with some simulations to understand some practical and commercial 

applications, including fault detection and mitigation. 

5.1 Online training 

There are two possible reasons to have a bad performing NARX NN given the dataset 

analysis made in chapter 4: 

• Using a realistic approach with a small or non-informative dataset, typical in the 

case of heating systems during cold periods. This was the case of the dataset from 

December to December, showing the tracking performance shown in Figure 4-6.  

• Using a simulation approach in which the model used as reference is substantially 

different from the real system under control.  

In both cases, bad tracking performance is expected as the one in Figure 5-1. The main 

problem with the dataset is the lack of variety in it, showing a periodicity and uniformity 

during the days that make the data to be noninformative, not being able to capture the 

effect of exogenous inputs.  

The main consequence of this phenomena is that the election of the control input 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓 

in the high hierarchical controller NMPC 1 is not the appropriate one for temperature 
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tracking. Then, there are not the needed energetic resources in the water tank to heat 

properly the building with the local controllers.  

However, this bad performing 𝑇𝑧,𝑚𝑒𝑎𝑛 seems to be variated enough and has caused a 

behaviour in closed-loop different than when using the CAS-NMPC of Giuseppe and 

Federico [2] for the data collection. This new dataset has shown the required properties 

needed for being adequate for training the NARX NN. 

 

Figure 5-1 Closed-loop performance using a bad trained NN  

That is the reason why the retraining appears: a bad prediction model used in closed-

loop excites the system in an appropriate way for having a good dataset. So, some days 

of bad performance are allowed, to then use this new data generated in the real building 

to retrain and tune better the NARX NN. As seen in Figure 5-2, the retraining with the 

past data generated using a bad performing NN improves dramatically the performance 

in closed-loop. Two different ways are considered for retraining: periodic and condition-

based online training.  
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Figure 5-2 Retraining after one week of bad performance 

5.1.1 Periodic online training 

As the bad performing prediction model excites the model in a useful way for training, 

it will be tested the effect of retraining periodically. The simulations will be made with 

a retraining period of 7 days. The results obtained each week are shown in Table 5-1. In 

this simulation, the bad performing NN trained with data from December to December 

is used. The energy consumption is omitted since it is providing the same information as 

the cost. The same is done with the execution time because it maintains the same order 

of magnitude in each simulation (depending on the computer state) and not being 

repeatable. 

It can be checked that the first retraining is improving dramatically the performance in 

tracking while decreasing the efficiency of the HPs. However, the COP of the first week 

is not realistic as a consequence of bad performing NN and, for that, the cost is so small 

since the HPs are not being required to achieve a significant 𝑇𝑡𝑎𝑛𝑘,𝑟𝑒𝑓.  
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From To 
𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑪𝒐𝒔𝒕𝒅𝒂𝒚  

(€) 
𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 

Dec Dec 1,44 1,73 88,73 4,79 10,23 

Week 1 1,47 1,86  96,40 4,29 10,21 

Week 2 1,34 0,95 160,19 3,38 7,68 

Week 3 1,27 0,97 161,93 3,25 8,32 

Week 4 1,22 0,96 142,90 3,72 8,48 

Table 5-1 Periodic retraining results 

The tracking performance can be also observed in Figure 5-3. The tracking error is 

maintained irrespective of the number of retraining but the signal behaviour is changing, 

being more unstable in the upper part of the square wave each time that retraining takes 

place. 

The retraining starts to be counterproductive if the achieved performance is already 

acceptable. From that moment, the data used for new retraining start to be periodic and 

non-informative. As the weeks and retraining pass, the proportion of variated data of the 

first bad performing week vanishes, having only a very small quantity of informative 

data and falling again in overfitting. For that, it is more important to have condition-

based retraining of the NN. 

 

Figure 5-3 Periodic retraining evolution 
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5.1.2 Condition-based online training 

The retraining has shown the capability to improve the quality of the NARX NN used 

as a prediction model for the NMPC 1. Nevertheless, if the retraining is not needed in 

terms of tracking, the data used for the new training is periodic and non-informative, 

deteriorating the initial prediction capacity of the NN. That is the reason why retraining 

should only be done if some condition is fulfilled.  

It will remain periodical, in the sense that the condition check will be made every period 

of retraining. However, depending on previous performance, the retraining will take place 

or not. For deciding the retraining an automatic index called 𝑡𝑜𝑢𝑡 will be used as a first 

approach. This index measures the amount of time during the occupancy hours that the 

temperature inside the building is outside a band of 0,2 °𝐶 from the setpoint. By tuning 

properly 𝑡𝑜𝑢𝑡, it is possible to detect bad tracking, implying the need for retraining. A 

flowchart of this condition-based retraining appears in Figure 5-4. 

 

Figure 5-4 Condition-based retraining flowchart 

The retraining results are shown in Table 5-2. The tracking error during occupancy hours 

improves the periodic retraining one. For that, the condition-based seems to be a more 
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practical approach for the considerations made previously. Besides, the signal is more 

stable than in the case of periodic retraining as shown in Figure 5-5.  

From To 
𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑪𝒐𝒔𝒕𝒅𝒂𝒚  

(€) 
𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 

Dec Dec 1,44 1,73 88,73 4,79 10,23 

Week 1 1,47 1,86  96,40 4,29 10,21 

Week 2 1,35 0,94 1253,18 3,03 6,25 

Week 3 1,29 0,96 1414,79 2,66 5,42 

Week 4 1,27 0,94 1308,20 2,88 5,38 

Table 5-2 Condition-based retraining results 

 

Figure 5-5 Condition-based retraining evolution 

A final comparison is made in Figure 5-6, to show the effect of non-necessary retraining 

in the closed-loop performance, showing the best results and response in the third week 

if the unnecessary retraining is avoided. 
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Figure 5-6 Retraining modes for the third week comparison 

5.2 Extension to a change of parameters 

The previous results show that adequate retraining provides the opportunity to readapt 

the NN to the system. Even when the NN is not good performing, it has been seen that 

the temperature inside the building is not going to achieve harmful or hazardous values. 

This can justify the use of a NN pre-trained in other buildings, or pre-trained in a 

simulation model that could be different from the real application building. As the 

response in closed-loop is not dangerous, the pre-trained NN can be used in the real 

building for some days and then retrained to adequate to the real characteristics of the 

system. For sure the building should have the same architecture in terms of controller 

structure and heating system. If the general structure is changed it has no sense to use 

this approach, since the input signal selected by NMPC 1 can be different, or the signals 

measured by sensors and used as exogenous inputs for the prediction model can be 

different.  
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To formalize this approach, the good performing NN trained with data from October to 

March has been used in the reference model but changing some characteristics. The 

parameters that define these changes are: 

• Scale factor: this parameter changes the general sizes of the building directly 

implying the quantity of air to heat and the water tank volume. 

• Power factor: this parameter changes the nominal power of the HPs that provide 

hot water to the tank. 

• Temperature factor: this parameter scales the maximum possible temperature 

achieved by the water tank. 

• Flow factor: this parameter scales the water flow inside the hydraulic system. 

• Fancoil factor: this parameter scales the power provided by the fancoils. 

If the building is scaled in size, the heating system should be scaled accordingly, to 

provide a new building reference model with relative realistic values. To this extension a 

bigger building is considered attending to the parameters shown in Table 5-3. For the 

retraining, the condition-based online training is used. 

Scale 

factor 

Power 

factor 

Temperature 

factor 

Flow 

factor 

Fancoil 

factor 

1,5 1,5 1 1,5 1,5 

Table 5-3 Scaling factors of a bigger building 

The procedure consists of using the pre-trained NN in the bigger building. After 

𝑡𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, the index 𝑡𝑜𝑢𝑡 is checked, and the retraining takes place. Once retrained, the 

tuned NN will face again the same set of external disturbances to see the effective 

difference in performance after retraining. For this purpose, the parameter 𝑡𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 has 

taken a value of 2, 4, and 7 days to understand the amount of data needed for reasonable 

good retraining. 

The results of 2 days retraining horizon are shown both in Figure 5-7 and Table 5-4. In 

them it also appears a robustness simulation where the new NN faces colder and warmer 

external conditions. The same procedure is applied for 4 days in Figure 5-8 and Table 

5-5. Finally, the simulations are done with 7 days retraining horizon, shown in Figure 

5-9 and Table 5-6.  
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Figure 5-7 a) Retraining with 2 days b) Robustness with 2 days 

 

Simulation 
𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑪𝒐𝒔𝒕𝒅𝒂𝒚  

(€) 
𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 𝒕𝒐𝒖𝒕 (𝒉) 

Before retraining 1,35 1,18 307,73 4,75 9,95 10,11 

Retrained 1,29 0,94 415,51 3,63 7,31 2,24 

Warmer 1,40 0,90 458,15 2,79 4,27 3,71 

Colder 1,23 0,97 380,57 4,05 9,54 5,18 

Table 5-4 Retraining with 2 days results 

 

Figure 5-8 a) Retraining with 4 days b) Robustness with 4 days 
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Simulation 
𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑪𝒐𝒔𝒕𝒅𝒂𝒚  

(€) 
𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 𝒕𝒐𝒖𝒕 (𝒉) 

Before retraining 1,26 1,25 565,30 4,95 10,18 10,67 

Retrained 1,29 0,90 968,91 3,11 5,82 2,45 

Warmer 1,36 0,89 837,60 3,20 4,97 3,35 

Colder 1,23 0,93 1076,67 2,97 6,47 2,31 

Table 5-5 Retraining with 4 days results 

 

Figure 5-9 a) Retraining with 7 days b) Robustness with 7 days 

 

Simulation 
𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑪𝒐𝒔𝒕𝒅𝒂𝒚  

(€) 
𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 𝒕𝒐𝒖𝒕 (𝒉) 

Before retraining 1,21 1,34 959,29 4,91 10,12 10,68 

Retrained 1,26 0,92 1686,13 2,97 4,76 2,32 

Warmer 1,34 0,91 1403,89 3,30 5,10 2,79 

Colder 1,21 0,94 2026,82 2,74 4,56 2,24 

Table 5-6 Retraining with 7 days results 

In general, for all the set of retraining horizons, the tracking performance is dramatically 

improved after the retraining, and all of them has shown important robustness against a 

change in the environmental conditions. It can also be seen that, after retraining, the 



73 

 

 

A neural network-based predictive control and data analysis of an HVAC 

system for an educational building 

index 𝑡𝑜𝑢𝑡 has not overcome the threshold of 50 % of the occupancy hours, with a value 

then of 6 ℎ. Even when in the tables above there is no much numerical difference, it can 

be seen some improvement in the number of days used for the retraining. As shown in 

Figure 5-10, when using 4 or 7 days for retraining, the controllers can maintain high 

temperatures during a bigger amount of time of the occupancy hours, being more effective 

in terms of comfort. 

Even more, attending to a rule of thumb to avoid bad training, the number of data points 

for validation should be at least twice the number of parameters in the NN. With the 

NN considered for this thesis, the number of parameters is 35 between weights and biases. 

Considering the sampling time of NMPC 1, the number of days for retraining should be 

greater than 3. That means that even when being able to obtain good results with only 

2 days, to maintain the robustness and avoid overfitting it is not an adequate amount of 

time.  

Another consideration for choosing between 4 or 7 days of retraining time is the weekly 

periodicity of the attendance to a university building as this is the case. If we include 7 

days, we are also including weekends and the whole spectrum of the week, guaranteeing 

that all the scenarios that appear through a complete week are covered by the retraining. 

𝒕𝒓𝒆𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 
𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑪𝒐𝒔𝒕𝒅𝒂𝒚  

(€) 
𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 𝒕𝒐𝒖𝒕 (𝒉) 

Before retraining 1,35 1,18 153,87 4,75 9,95 10,11 

2 days 1,29 0,94 207,75 3,63 7,31 2,24 

4 days 1,29 0,90 193,78 3,11 5,82 2,45 

7 days 1,26 0,92 240,88 2,97 4,76 2,32 

Table 5-7 Retraining horizon results comparison 
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Figure 5-10 Retraining horizon performance comparison 

5.3 Extension to fault detection 

Another possible application of retraining is the application to fault detection. There can 

be some failures in the system that deteriorate the heating performance or that increase 

the heat loss. Even if some of the elements of the HVAC are under maintenance, the 

system should be able to detect these changes with its performance index and decide if 

retrain to readapt to the model if it was necessary because the performance is 

deteriorating.  

Of course, this approach has sense and has application if the anomaly appearing in the 

system changes dramatically the performance of the overall system. If not, then the data 

will not be informative enough to provide good training for the new system 

characteristics.  

In Figure 5-11, a fault is simulated, in which the HPs have lost power because of 

deterioration for any reason and have not the same potential of heating the water in the 

tank. In this case, the condition-based retraining is applied with a 𝑡𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 of 7 days. 

The fault appears at the start of the second week, so the following check will not be done 
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until the end of that week. The retraining takes place, and the performance improves 

after this new retraining, as can be seen in Table 5-8. Of course, the performance will be 

worse than before the fault (the system is dealing with less heating capacity), but much 

better than before retraining. 

 

Figure 5-11 Retraining in case of a fault 

 

From To 
𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑪𝒐𝒔𝒕𝒅𝒂𝒚  

(€) 
𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 𝒕𝒐𝒖𝒕 (𝒉) 

Before fault 1,17 0,94 148,3 3,26 6,01 2,95 

During fault 1,22 1,20  93,96 3,96 9,58 8,59 

After retraining 1,14 1,13 178,11 2,87 6,25 5,2 

Table 5-8 Results of retraining in case of a fault 

Of course, there are faults that completely deteriorates the heating capacity. This means 

that there is not enough heating power to correctly track the desired temperature. So, 

after the retraining, the comfort performance will maintain low quality (Figure 5-12), 

and it will require continuously a retraining. It is always overpassing the condition of 
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retraining. The results can be seen in Table 5-9. With these results under consideration, 

the need of two consecutive retrainings could be used as an alarm signal to detect the 

appearance of fatal errors in the heating system that compromise the heating capacity. 

However, only one retraining implies a deterioration in the heating system, but it is still 

possible to maintain a correct performance.  Furthermore, if there are only small changes 

in the system parameters, it is still possible to fulfil the performance requirements with 

the actual prediction model, and a retraining is not necessary. 

 

Figure 5-12 Retraining in case of a fault not compensated 

 

From To 
𝑴𝑹𝑴𝑺𝑬  
(°𝑪) 

𝑴𝑹𝑴𝑺𝑬𝒐𝒄𝒄   
(°𝑪) 

𝑪𝒐𝒔𝒕𝒅𝒂𝒚  

(€) 
𝑴𝑪𝑶𝑷𝒂𝒘 𝑴𝑪𝑶𝑷𝒘𝒘 𝒕𝒐𝒖𝒕 (𝒉) 

Before fault 1,17 0,94 148,30 3,26 6,01 2,95 

During fault 1,46 1,49  153,40 2,99 4,52 6,69 

After 1st retraining 1,47 1,86 240,11 2,47 4,30 10,65 

After 2nd retraining 1,47 1,81 229,34 2,58 4,29 10,81 

Table 5-9 Results of retraining in case of a fault not compensated 
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6 Conclusions 

 

In this chapter, the main conclusions about the whole set of results underlining the main 

contributions of this thesis are summarized. The main limitations of this analysis are 

detailed, concluding with the future work that can be developed from this starting point. 

6.1 Summary 

The thesis aimed to understand and analyze the set of data that can be used for training 

a prediction model of a building, to optimize the control action used in the HVAC control 

system. The objective of this work has been to achieve the best configuration possible 

for the data collection to have adequate training of the prediction model. 

Firstly, the structure of the building and the heating system, together with the control 

architecture employed, is detailed in chapter 2. The main focus is given to the NMPC 1, 

and the model used to make future predictions for optimizing the control action in that 

controller: the reference temperature for the water tank. 

The prediction model used has been a NARX NN with a particular structure that has 

shown good results in previous works. This structure and its implementation have been 

extensively defined in chapter 3.  

To train the NN, two possible data collection approaches have been analyzed, both 

obtained in closed-loop from a complex reference model of the building and the heating 

system. On one hand, the realistic approach uses the reference model as a real building, 

using realistic sets of external disturbances. The conclusions of this analysis have shown 

that the periodicity observed when obtaining data during real functioning is reliant on 

the kind of scenario faced. If the data obtained corresponds only to a cold period, where 

the outputs of the NN have a periodic behaviour, the set of data is not informative, and 

the tuning of the NN is poorly performed.  
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On the other hand, if other kinds of months are employed in the training data (like warm 

or hot periods), the heating system is switched off or on depending on the instant, making 

the system face different external scenarios and obtaining much richer data for training. 

This phenomenon has been observed in the prediction results and closed-loop 

performance simulated in chapter 4. 

However, if a simulation approach is considered, then the set of external disturbances 

can be freely selected, with the drawback that the model used for the data generation 

must be accurate enough. This configuration guarantees the presence of informative data.  

By understanding the need for variated data, the possibility of retraining a NN when it 

shows a bad performance in its real application has been studied. The causes for this bad 

performance are variated: a bad selection of the dataset employed for training in the 

realistic approach; the application of the NARX NN in a real building with different 

characteristics than the one with which the training data set has been obtained; and the 

appearance of a failure in the heating system or other unexpected event that could change 

dramatically the overall thermal dynamics of the building. In chapter 5, the possibility 

of retraining the NN with a bad closed loop is analyzed. The promising results show the 

possibility of further development in this field of detecting changes in the configuration 

of systems and the possibility to readapt the prediction model to online real 

circumstances. 

6.2 Further development 

Some limitations or assumptions made during the development of the thesis have paved 

the way to further studies in this direction. First of all, the NN model has only been 

applied to the NMPC 1 to understand and capture the building thermal dynamics. 

However, there are other elements of the HVAC system that could be replicated with a 

machine learning model. It is the case of the HPs or the AHU. Mainly the HPs have 

their main contribution in the NMPC 2 and have caused some problems when obtaining 

not physically feasible COP. The models of HPs are complex and strongly nonlinear, so 

the possibility of substituting their simple models with machine learning ones that are 

more accurate could be interesting to observe. Furthermore, it would be a useful 

improvement to analyze the behaviour of the overall system when introducing these 

prediction models inside the whole controller structure of the building.  
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Regarding the reference model, it should be interesting to extend it also including the 

Air Conditioning period. The actual model is only prepared to face properly the heating 

season, needing further mathematical description for including the cooling season. This 

could open the door for combining two prediction models: one for the hot season, and 

the actual one for the cold season. As they are periods with different characteristics, the 

study of switching from one prediction model to the other could be a substantial step. It 

can also be interesting to understand if there can exist one general prediction model of 

the building including both the heating and the cooling configuration. 

Continuing with the modelling considerations, it would be useful to verify the results and 

conclusions using a more accurate reference model by using specialized software, such as 

EnergyPlus. In many prior studies, the building model has been simulated considering 

this kind of software. 

Some attempts have been made during the development of the thesis about using as a 

prediction model a Reinforcement Learning (RL) based one. The main limitation is the 

need to apply the controller firstly to a simulation environment since at the beginning it 

has no information of the system and must learn by trial and error. For that, the fact of 

using pre-trained NN with bad performance for later retraining seems to be interesting. 

To do so, it is needed to explore the set of experiences that the RL should face for 

training. Some steps have been done in this direction of using RL with NMPC in [39] 

and [40]. The use of RL with MPC policies for HVAC systems has also been explored in 

[41]. 

Finally, the practical application detailed in chapter 5 can be further developed. Firstly, 

as the condition-based approach seems to perform correctly, the automatic index chosen 

for the retraining should be further investigated. Up to now, the variable 𝑡𝑜𝑢𝑡 is 

considered. The exploration of other indexes to achieve the best one that indicates the 

informativeness of the data is a must for the retraining applications, or even for detecting 

important failures in the building. Another point of further development could be the 

experiences with different retraining horizons, including fixed or variable retraining 

windows which can detect those changes faster or more effectively. 
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