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Abstract

Floquet theory was introduced to aid the study of periodical systems. A laser imping-
ing onto a material is able to provide this periodicity. Yet, some applications such as
ultrafast pump-probe spectroscopy require few-cycle pulses, which can be so short (few
femtoseconds) to be no longer periodic. In this thesis we wish to verify whether Floquet
theory may still be applied in the case of ultrashort pulses. We employ a pump-probe
spectroscopy technique on a Ne gas target. Two sets of pulses are produced: the probe, in
the extreme-ultraviolet (XUV) range, and the pump, in the infrared (IR) region. Our aim
is to verify the system behaviour as a function of the IR intensity for long IR pulses, and to
investigate the effect of a finite driving pulse on the induced Floquet states. In our setup,
the probe is generated through High-order Harmonic Generation and selected through a
Time Delay-Compensated Monochromator. The pump passes through a hollow-core fibre
compression setup and through a delay stage. The two beams meet in a Time-of-Flight
spectrometer, where the XUV pulses ionise the gas, producing free electrons which con-
stitute the main band, and the IR beam dresses the states of the systems, generating
multiple sidebands. When this is done for many time delays, it results in a spectrogram,
which is analysed together with the figures of merit of the two beams. One of the meth-
ods employed to retrieve the pulse characteristics is a custom algorithm named STRIPE.
Then, we study the theoretical aspect of the problem, starting from the Strong Field Ap-
proximation and performing a frequency expansion considering Gaussian pulses. In the
long IR range we describe sideband amplitudes with generalised Bessel functions depend-
ing on the IR intensity. In the short IR range, we find that the amplitude of the dressed
states decreases with short IR pulses. When comparing these descriptions to the acquired
data, we find a good agreement (aside from a correction factor) in the long IR range. In
the short IR range we can reconstruct the general trend through STRIPE, but the actual
values are different due to unforeseen variations in IR intensity and wavelength, which can
be accounted for in a more sophisticated data analysis. This work will impact the study
of Floquet engineering and of the ultrafast behaviour of novel materials for electronics.

Keywords: Floquet theory, pump-probe, femtosecond pulses, ultrafast optics, laser
physics





Abstract in lingua italiana

La teoria di Floquet fu introdotta per lo studio di sistemi periodici, come quelli generati
da un laser incidente su un materiale. Tuttavia, alcune applicazioni come gli esperimenti
di pompa-sonda ultraveloci richiedono impulsi a pochi cicli, che risultano così brevi (pochi
femtosecondi) da non essere più periodici. In questa tesi verificheremo se la teoria di Flo-
quet possa essere ancora applicata in caso di impulsi ultrabrevi. Impieghiamo una tecnica
di spettroscopia pompa-sonda su un bersaglio di Ne in stato di gas. Vengono generati due
set di impulsi: la sonda nell’estremo ultravioletto (XUV), e la pompa nell’infrarosso (IR).
Il nostro scopo è verificare il comportamento del sistema in funzione dell’intensità dell’IR
per impulsi IR lunghi, e indagare l’effetto di impulsi finiti sugli stati di Floquet indotti.
Nel setup, la pompa è prodotta tramite generazione di armoniche di ordine elevato e se-
lezionata da un monocromatore compensato in tempo. La sonda invece passa attraverso
un sistema di compressione a fibra cava e un ritardatore. I due fasci si incontrano in
uno spettrometro a tempo di volo, in cui gli impulsi XUV ionizzano il gas, creando elet-
troni liberi che compongono la banda principale, e il fascio IR veste gli stati del sistema,
popolando più bande laterali. Se svolto per più ritardi temporali ciò genera uno spettro-
gramma, analizzato assieme alle figure di merito dei due fasci. Uno dei metodi impiegati
per ricavare le caratteristiche degli impulsi è un apposito algoritmo chiamato STRIPE.
Andiamo poi a studiare l’aspetto teorico del problema iniziando dall’Approssimazione
di Campo Forte per poi eseguire un’espansione in frequenza considerando impulsi gaus-
siani. Per impulsi IR lunghi possiamo descrivere le ampiezze delle bande con funzioni
generalizzate di Bessel dipendenti dall’intensità dell’IR. Per impulsi IR brevi troviamo
una decrescita di ampiezze degli stati vestiti a durate più brevi. Comparando queste de-
scrizioni con i dati acquisiti abbiamo un buon accordo (a meno di un fattore correttivo)
per impulsi IR lunghi. Per impulsi IR brevi riusciamo a ricostruire l’andamento generale
attraverso STRIPE, ma i valori effettivi sono differenti a causa di variazioni impreviste
di lunghezza d’onda e intensità dell’IR. Questo lavoro avrà un impatto sull’ingegneria di
Floquet e lo studio del comportamento ultraveloce di nuovi materiali per l’elettronica.

Parole chiave: teoria di Floquet, pompa-sonda, impulsi nei femtosecondi, ottica ultra-
veloce, fisica dei laser
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Introduction

0.1. Floquet theory

Floquet theory was develped by Gaston Floquet in the late 19th century. [11]. This
theory is vastly useful in the treatment of linear differential equations with periodic coef-
ficients, and lends itself to the description of numerous physical phenomena which present
a periodicity, as we are going to see in this introductory chapter.

The most relevant result of this theory is the aptly-named Floquet theorem (sometimes also
referred to as Floquet-Lyapunov theorem), first written by Floquet himself in 1883 [16].
It states that even though they might not retain the exact periodicity of the coefficients,
the solutions to such differential equations can nonetheless be written as the product of
a function with that same periodicity and a constant phase term.

In more mathematical terms [6], we can start by considering the following linear differen-
tial equation, also called Floquet system

ẋ(t) = A(t) · x(t) (0.1.1)

where the derivative of x(t) is indicated as ẋ(t), and A(t) is a piecewise continuous
function which is periodic in t with a period T , so that we can write

A(t) = A(t+ T )

If we wish to solve this kind of equation, the Floquet theorem states that given the
fundamental matrix Φ(t) that is a solution of the previous system of Eq. (0.1.1) in x(t),
it must not be periodic in itself, yet needs to assume the form of

Φ(t) = P(t) · eBt (0.1.2)

where it is the factor P(t) to hold the actual periodicity in t, therefore making it possible
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to write

P(t) = P(t+ T )

and the matrix B is a complex matrix.

An analogous form of writing Eq. (0.1.2) is also

Φ(t+ T ) = Φ(t) · eBT (0.1.3)

This was the principal formulation of the Floquet theorem, which can be applied in
classical mechanics in various cases. For instance, it is fundamental to demonstrate the
stability and behaviour of certain systems, such as the abruptly driven classical oscillator,
or the harmonically driven classical oscillator [22, 41].

Yet, it may also be adapted to quantum mechanics, where the majority of applications
lie. If we consider the Hamiltonian Ĥ(t) inside the Time-Dependent Schrödinger Equation
(TDSE) [34, 41]

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩

then we may write that the Floquet theorem applies whenever Ĥ(t) = Ĥ(t + T ), where
T = 2π

ωF
and ωF is the Floquet frequency, i.e. whenever the system is periodically driven

(linearity is already guaranteed from the beginning in the TDSE). Hence, in this intance
Eq. (0.1.2) can be interpreted as follows

|ψ(t)⟩ = |ϕ(t)⟩ e−iϵt (0.1.4)

where ϵ is the so-called Floquet quasi-energy and

|ϕ(t)⟩ = |ϕ(t+ T )⟩

Moreover, since |ϕ(t)⟩ is periodic, we may also expand it in series as follows:

|ϕ(t)⟩ =
+∞∑

n=−∞

Ane
−inωt (0.1.5)
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from which we have also

|ψ(t)⟩ = e−iϵt
+∞∑

n=−∞

Ane
−inωt (0.1.6)

and

Ĥ(t) = Ĥ(t+ T ) =
+∞∑

n=−∞

Ĥne
inωt

Ĥn =
1

T

∫ T

0

Ĥ(t)e−inωtdt

(0.1.7)

The results of Eqs. (0.1.6) and (0.1.7) find application in a plethora of research areas, as
we are going to see shortly.

It is worth noting that we only focused of a time-dependent Hamiltonian, but if we con-
sider a dependence of Ĥ on space we obtain a parallel theorem pertaining to the realm of
solid-state physics, Bloch’s theorem. As may be known, crystals present a regular struc-
ture, with atoms disposed in a periodic configuration, thus generating a periodic potential.
Bloch’s theorem claims this periodicity causes the solution to the static Schrödinger equa-
tion to take the form of a Bloch wave, which is composed of plane waves modulated by a
periodic function. Consequently, this theorem can be written in two analogous formula-
tions:

ψ(r) = u(r) · eik·r

ψ(r+R) = ψ(r) · eik·R
(0.1.8)

where the latter representation is akin to that of Eq. (0.1.3), in which the periodicity is
given by the spatial vector R = a1R1 + a2R2 + a3R3, which in turn has that Ri is the
period in the direction i = x, y, z, and ai is an integer number; on the other hand, in
the first formula describing Bloch waves u(r) is the function with period R, so to have
u(r+R) = u(r). This solution resembles Eq. (0.1.2), and that is the reason why these
solutions to the TDSE are also referred to as Floquet-Bloch Ansatz for the TDSE [11, 41].

Going back to a time-dependent Hamiltonian, countless systems are present which can
be described by means of Floquet theory, especially from a quantum mechanics point of
view. While many uses are also present in theoretical physics (see for example Floquet
Supersymmetry, or FSUSY [19]), we are interested in a more applied approach.
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We could start by mentioning a few applications in solid-state physics. For instance,
Floquet topological insulators1 (FTI) [26] are a topic of interest. It is in fact possible to
induce a topological state in a semiconductor quantum well via microwave irradiation,
without changing the structure of the well itself. By means of this time-periodic radiation
it is feasible to generate new differential operators with spectra of topological insulators,
which exhibit peculiar properties especially in out-of-equilibrium conditions. In particular,
it is possible to control the spectral properties of the surface states and rapidly vary the
transport of electrons in these edge-states. This in turn may have a practical application
in the creation of ultrafast switches, as seen in [23].

A further relevant application is found in solid-state nuclear magnetic resonance (NMR)
spectroscopy [3, 20]. Here in fact the Hamiltonian of the system presents a time periodicity
which is caused by the so-called magic-angle spinning (MAS)2, which in turn generates
sidebands in the analysed spectrum at multiples of the rotor frequency. These sidebands
patterns (Figure 1), while not exactly straightforward to calculate, may be considerably
simplified through the utilisation of Floquet theory, which allows for a Fourier series
expansion of the periodic Hamiltonian and an overall ease of calculation.

Another way through which the Hamiltonian is rendered periodic and the sidebands are
generated is shining RF (radio frequency) pulses or resonant oscillating radiation onto
the sample. This leads us to realise that an analogous logic may be applied using optical
frequencies and pulses in the far THz ÷ PHz range. In fact, optics and spectroscopy are
perfect candidates to apply Floquet theory.

1Topological insulators are materials which behave like insulators in their bulk, while still maintaining
conductive states in the surface.

2Magic-angle spinning, or MAS, is a technique through which the orientational dependence of the
NMR anisotropic interactions in solid-phase samples is eliminated by rapidly rotating the sample itself
around an axis which is tilted at a particular angle (indeed, the magic angle). Read [38] for more details
on the topic.
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Figure 1: Simulation of MAS sideband pattern using Floquet theory. In this graph we are
able to see how spinning the sample at different frequencies generates sidebands which
are spaced with a different period which is proportional to the frequency itself. Therefore,
the higher the frequency, the fewer the sidebands, and vice versa. From [14].

0.2. Floquet theory in Optics

With the rise in popularity of Floquet theory, a new branch of physics was born, called
Floquet engineering. It consists in the manipulation and control of quantum systems
via periodic driving, usually of the electromagnetic kind. Even though radio frequency
waves or microwaves may be used, lasers too are able to provide such a periodicity, be
it in continuous wave (CW) or in pulses. A few results of this discipline include Floquet
engineering of band topology [21, 37], of quantum gases [4, 13, 50], of quantum materials
[11, 37], or of the atomic light-shift [10].

On the topic of band topology, the concept is not unlike what we saw in the previous
section regarding FTI. A main difference here is that circularly polarized laser radiation
may be utilised instead of microwaves.

Concerning quantum gases, an interesting topic of study is found in the behaviour of
ultra-cold atoms in optical lattices (or optical traps) such as the one that arises from the
interference caused by two identical counter-propagating laser beams. If the frequency of
one of the two beams gets periodically modulated, it is possible to periodically shake the
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optical lattice. This would allow to engineer a new Hamiltonian with completely different
properties which would not be available in that specific system or in any other static
system. This yields consequences on topics like Bose-Einstein condensation, coherent
resonant tunneling, and even topological band structures and insulators.

In a similar way, on the subject of quantum materials many phenomena can be described
through Floquet theory and can benefit from Floquet engineering. Some examples include:
signatures of light-induced or light-enhanced superconductivity, ultrafast switching of
hidden electronic phases, phonon-induced magnetization, and ultrafast spintronics, on
which we are going to spend a few words. Spintronics is a discipline which stems from the
mixture of electronics and magnetism, and it employs the degrees of freedom of the spin
of the electrons to transport and store information via spin current and magnetisation.
Ultrafast spintronics, in addition, utilises the magnetic component of a laser to control
spin and magnetism on a sub-picosecond (< 10−12 s) time scale through Zeeman coupling.
The idea of Floquet engineering in this case would be to apply a periodic Hamiltonian
to the system, with different levels of approximation depending on the spin degrees of
freedom.

Regarding the last matter of atomic light-shift, just like quantum gases it is of high rele-
vance when treating optical traps, but it also results to be interesting to determine atomic
properties for fundamental physics or in sensing applications. It is usually calculated by
means of second-order perturbation theory. However, in considering the case of strong
non-linearity and mixing of hyperfine energy levels, the use of another model is required.
Indeed, a non-perturbative semiclassical theory based on Floquet’s theorem may be suc-
cessfully employed. Floquet theory can accurately describe light shifts due to multiple
lasers of arbitrary polarization with wavelengths close to atomic resonances, being suitable
to treat the issues of non-linearity and level mixing, and having a relatively simple math-
ematics which renders engineering the light-shift and its eventual compensation much
easier.

It is worth noting that Floquet engineering cannot be applied in any case, three conditions
[13] must apply for it to be a viable option for our purposes:

• the system must be suitable to be driven periodically in time;

• it must be well isolated from the environment so that dissipation processes happen
on a much larger time scale than the driving period;

• the Floquet Hamiltonian needs to be calculable theoretically (with reasonable ap-
proximations).
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Furthermore, Floquet theory finds its value in numerous other applications both in new
and exotic subjects, such as phonon-driven spin-Floquet magneto-valleytronics [43], and
in more widely-known technologies, like fibre optics [2].

These were only a few of the countless applications of Floquet theory. We are going to
focus our work mainly on laser-matter interaction and on photoemission. In particular, up
to now the Floquet formalism has been vastly used and tested with quasi-monochromatic
light drivings, yet it is not clear if its concept can be extended to the short-pulse limit,
where the light-dressed states could be employed to switch the optical properties of ma-
terials on ultrafast time scales. Indeed, due to their short duration few-cycle pulses lose
their periodicity and border effects become rather relevant, and we may not be able to
apply Floquet theory any longer. Hence, the objective of this thesis is to explore the
limits of Floquet theory in the case of ultrashort pulses, therefore entering the realm of
ultrafast physics and ultrafast optics.

0.3. Floquet theory in Ultrafast Optics

In order to deal with phenomena occurring at a very brief time scale we need to employ
techniques which are able to probe sub-picosecond processes. Some of these processes
include some chemical reactions [15], plasma processes [33], light-induced phase changes
[54], and are even present in photosynthesis [51]. Photoemission is one of such phenomena,
since the ionised electrons dynamics takes place on the lower side of the femtosecond (10−15

s) time scale.

Then, if we wish to treat these dynamics we have to use a tool possessing the same
duration. The only physical object that we can utilise and that can reach such small
durations are light pulses. Here ultrafast optics comes into play. With current technology
we are able to generate light pulses with a duration that can reach down to hundreds of
attoseconds (10−18 s) [45].

How are we able to create such short pulses? We can use two techniques: mode-locking and
Q-switching3. According to Fourier theory, the broader the bandwidth we employ, and the
higher the frequency used, the shorter the pulses we can generate. This reasoning reaches
a physical limit when considering pulses in the order of a few femtoseconds for visible light
(single optical cycle). If we wish to go beyond that limit we need to use higher frequency
pulses, which cannot be generated like visible light due to the high absorption of the gain
materials in that frequency range. Instead, we can use specific techniques such as High-

3All these concepts are discussed in detail in [46] and in [52].



8 | Introduction

order Harmonic Generation (HHG), which will be discussed more in detail in Chapter
1.1.1. On the other hand, a further requirement for these pulses is usually to have an
intensity I > 109 W

cm2 . In order to reach that objective we can use multiple amplification
stages, and employ techniques such as Chirped Pulse Amplification (CPA)3. Once these
pulses have been produced, they can be used to perform the desired experiments.

Ours will be a series of pump-probe spectroscopy experiment on a Ne gas target using
few-femtosecond pulses of variable duration (between 9 fs and 150 fs). The basic idea
is to focus two different types of pulses onto a sample: one will be used to photoionise
it, and the other to drive the actual dynamics. In our case the first one (probe pulse)
will be in the extreme ultraviolet region (XUV), while the second one (pump pulse) will
be in the infrared region (IR). In the following we will indicate with τXUV and τIR their
respective duration. The probe will ionise the outer electrons of the gas, creating free
electrons with an energy EMB, while the pump is going to create dressed states with
energy ESB = EMB+N ·∆E, with ∆E being the energy of a single IR photon and N ∈ Z
the order of the sideband, with a result which is akin to that of Figure 1. Then, by varying
the duration and intensity of the two sets of pulses, we will be able to finally explore the
limits of Floquet theory. Specifically, we will first try to comprehend the behaviour of the
theory for long IR pulses with different intensities, and then we shall investigate the effect
of a finite driving pulse on the induced Floquet states. We will perform the experiments
in the case of τXUV , τIR >> TIR, with TIR being the period of the IR pulse. In fact, by
taking τIR >> TIR we ensure not to have a streaking trace instead of sidebands [5], and if
τXUV >> TIR we will be able to apply the SVEA approximation, as performed in Chapter
2. Therefore, we will try to gauge how much greater our pulses need to be in relation to
TIR and see whether τIR needs to be larger than τXUV for us to apply Floquet theory, as
in the original understanding of the theory.

0.4. Outline of the work

In this work we are going to examine the population of light-induced Floquet states
through the use of few-femtosecond pulses. This study will be carried out bearing in
mind the theoretical description given by Floquet theory, of which we wish to investigate
the limits of validity both as a function of intensity and of pulses duration.

In this introduction we started to understand the basics of Floquet theory, and we saw
a few applications in classical mechanics as well as in quantum mechanics, with an in-
depth focus on optics. We also had a brief overview on ultrafast optics and on how the
experiment is going to be performed.
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In the first chapter we are going to conduct a detailed analysis on the methodology of the
experiment. We will start from a general outlook on the experimental setup and on the
instrumentation employed, to then have a better insight on the inner workings of each
component of the arrangement. In particular we are going to study how the XUV pulse
gets generated and the process of HHG, how the correct beam is selected after generation
and how it is measured. We are also going to analyse the path of the pump IR pulse
through the fibre and what happens when the two pulses meet. We are going to discuss
the creation of the main band and the population of sidebands, and we are going to
see the resulting spectrograms. Then the characterisation of the pulses in considered, as
well as the instruments and techniques employed, such as FROG. In particular, we will
describe the STRIPE algorithm utilised for the XUV phase reconstruction. The process
of sideband characterisation and noise removal is also presented in detail.

The second chapter contains all the theoretical discussion on the topic of Floquet theory
applied to our system. From the derivation of the Strong Field Approximation (SFA) to
its simplification, and then passing through the Bessel expansion. Finally, we will see a
few examples of the effects of both linear and non-linear dispersion on the pulses, which
up to now have been considered either as monochromatic or as Gaussian.

In the third chapter we are going to discuss experimental results. At first we will analyse
the long IR pulse regime and verify how the amplitude of the bands changes depending on
the IR intensity; then, we shall study the case of different IR durations and non-Gaussian
pulses, and how this affects the behaviour of experiment in relation to our model.

At last, the fourth and final chapter will be devoted to final comments and remarks, in
which we will draw conclusions on the work and give future perspectives on the topic.
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1.1. Experimental setup

Before explaining the raw theory behind the experiment, it is crucial to discuss the setup
and the principles behind the experiment, so to have a better comprehension of their final
objective. The experimental setup is illustrated in Figure 1.1.

Figure 1.1: Simplified schematics of the optical setup and of the path travelled by the
laser. In red, IR radiation (λIR = 811 nm); in purple, XUV radiation (λXUV = 35.26 nm).

The main light source that was employed consists of an ultrafast Ti:Sapphire laser operat-
ing in mode-locking regime used as a seed, with a wavelength of λIR = 811 nm (frequency:
νIR = 370 THz) and a repetition rate of frep = 1 kHz [8]. It is then amplified up to an
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output energy of Eout = 7 mJ through a chirped-pulse amplification (CPA) stage [7],
which employs high-power Q-switched laser as a pump [9].

At the laser exit, a beam splitter divides the beam into two paths. The first path (PIR,1
= 1.2 W) leads to the generation of the XUV pulse, which acts as the probe in the pump-
probe experiment, while the second one (PIR,2 = 1 W) leads to a hollow-core fibre (HCF)
compressione setup, which shapes the pulse in order to function as the pump.

Following the former, we encounter the generation chamber first, which allows to produce
XUV pulses through High-order Harmonic Generation (HHG) [34]. Subsequently, the de-
sired harmonic is selected through a Time Delay-Compensated Monochromator (TDCM)
[39], and ultimately measured through an XUV spectrometer placed at the end of the
setup, after traversing the Time-of-Flight spectrometer (ToF).

If we follow the second path instead, the laser beam is collimated into the HCF, which
modulates the duration and the shape of the pulses depending on the amount of gas it
is filled with, and therefore on its pressure. Chirped mirrors at the output of the fibre
enable chirp compensation.

Afterwards, a piezoelectric actuator is used in a delay stage to vary the temporal distance
between the two paths, fundamental to obtain a complete spectrogram of our pump-probe
experiment. The laser is finally deflected into the second chamber of the monochromator,
where it recombines with the first path.

The two pulsed laser beams co-propagate inside the ToF spectrometer, where they are
focused onto our sample, a cloud of Ne gas, thus performing the experiment.

1.1.1. XUV generation

In order to perform our pump-probe experiment with Ne gas it is required to have a
highly energetic pulse to ionise the electrons. IR radiation is not capable of such a task
due to its low photon energy (EIR = 1.53 eV, while Eion.,Ne = 21.56 eV)1, whereas XUV
radiation already has an energy of EXUV = 35.23 eV > Eion.,Ne. Therefore, we need to
generate said XUV pulse. To do so, we deflect the beam inside the vacuum chamber of
Figure 1.2, kept at a pressure of p ∼ 10−9 bar. This is to prevent air from absorbing all
the XUV radiation. Then, aided by a converging mirror we focus the beam into an HHG
cell. The HHG cell is a metal cell filled with Ar in gaseous form, which is kept confined
by aluminium tape. Once the beam is focused onto the cell, it burns the aluminium and
gets in contact with the gas, thus generating high order harmonics in the XUV range.

1We would need a 14-or-higher photon absorption process, requiring a very high IR intensity.



1| Methodology 13

Figure 1.2: Generation chamber schematic.

To understand what happens from a physical point of view, we can use the three-step
model2 [52]. As the name implies, we can subdivide the phenomenon into three stages,
as shown in Figure 1.3:

1. Ionisation: the Coulomb potential experienced by the electrons of each Ar atom
is strongly distorted by the presence of the so-called driving pulse (our IR pulse),
resulting in the generation of a potential barrier which may be overcome through
tunnel ionisation by the outer-most electrons.

2. Acceleration: the ionised electron is accelerated far from the nucleus at first,
following the path of least resistance (i.e. the direction in which the potential is the
lowest); however, the driving pulse keeps varying the shape of the potential well in
an oscillating pattern, and the free electron is soon led back towards the parent ion.

3. Recombination: the free electron collides with the ion, thus recombining; its
kinetic energy is then released in the form of a high-energy XUV photon, which
constitutes the high-order odd harmonics of the initial IR pulse (EXUV = [2k + 1] ·
EIR); it is worth noting that this recollision happens with an efficiency of 10−8÷10−6.

2We will not delve into mathematical detail, which is outside the scope of this thesis.
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Figure 1.3: Three-step model representation. Figure from [36].

1.1.2. Time-Delay Compensated Monochromator (TDCM)

After exiting the first vacuum chamber, two kinds of pulse are present: the generating IR
pulse and the XUV pulse. Since we only need the higher energy one, we will consider just
the XUV line. We could eliminate the IR radiation by intercepting it with an Al filter
upon entering the second vacuum chamber (which is kept at around 10−10 bar for reasons
akin to the first one), but this would decrease the overall fluence of a factor 10.

Furthermore, the XUV pulses would remain composed of several high-order harmonics,
i.e. they would not be monochromatic. In order to revise our pump-probe experiment,
we need to separate them and select one, and we do so by means of a Time-Delay
Compensated Monochromator (TDCM). The TDCM is composed of two identical
structures separated by a slit. Each structure comprises two gold-plated toroidal mirrors
and a grating. The first toroidal mirror is used to collimate the beam, the grating spec-
trally disperses the radiation, while the second toroidal mirror focuses the beam. The
beam is focused in correspondence of the slit, which blocks all the harmonics but one,
which is the one we wish to study (in our case it will be H23, i.e. the 23rd harmonic). The
pulses that are let through are then compensated both temporally (broadening compen-
sation) and spatially (spectral dispersion compensation) by the second structure, which is
placed inside the third vacuum chamber (10−8 bar).
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(a) Order (1,1) - one harmonic is selected for the experiment.

(b) Order (0,0) - several harmonics passing for calibration purposes.

Figure 1.4: Second and third vacuum chamber. The second chamber contains the Al filter,
two toroidal mirrors and a grating. Between the two chambers, a slit. The third chamber
accommodates two toroidal mirrors and a grating for the XUV line, and a converging
mirror and a drilled mirror for the IR line. The drilled mirror lets the XUV from the first
path through while reflecting most of the IR from the second path. A movable mirror
may be inserted to deflect the IR pulses and make power, spectrum or beam profile
measurements (see Chapter 1.3).

Taking a closer look at how the gratings operate, we observe that they diffract light
depending on its wavelength and on the angle at which it impinges onto the grooves.
In fact, given an incident angle α, a generic diffracted angle θ, and a distance between
grooves d, we have

sin θ = sinα +
m · λ
d

,

where m is the order of diffraction. As we can see both from the previous formula and
from Figure 1.5, if m = 0 we have no dependence from the wavelength, hence the grating
acts as a mirror. If, on the other hand, we are at order m = 1 or higher, the sine of the
diffracted angle is linearly dependent on λ, and a splitting of all the present colours is
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manifested.

Therefore, if we allow the grating to rotate, we are able to precisely select the frequency
we desire to work with, obstructing all the others with the slit. In our setup both gratings
are able to rotate, and to run the experiments we wish to operate at order (1,1), meaning
that both gratings need to be at order 1. We will use order (0,0) with an open slit for
calibration instead, as described in Chapter 1.3.2.

Figure 1.5: A diffraction grating. While order 0 still contains all frequencies, orders 1 and
2 spatially spread the spectrum of the beam.

1.1.3. XUV spectrometer

(a) (b)

Figure 1.6: XUV spectrometer in the case of monochromatic light (1.6a) - i.e. order (1,1)
of the monochromator - and in the case of superimposed harmonics (1.6b) - i.e. order
(0,0).

After recombining with the IR pulse (path 2) in the second TDCM chamber and entering
the Time-of-Flight spectrometer (which we will discuss in detail in Chapter 1.1.5), the
XUV radiation (path 1) travels further, to finally be detected by the XUV spectrome-
ter.
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The XUV spectrometer is made up mainly of five elements: another gold-plated toroidal
mirror, followed by a grating, a micro channel plate (MCP), a phosphor screen, and at
last a CCD camera.

The first two elements act exactly as mentioned in the previous section: if we are at order
(1,1) with a closed slit, it simply reflects the beam with a wavelength-dependent angle
(Figure 1.6a); if we are at order (0,0) and the slit is open, it parts the frequencies which
were collimated again by the second grating in the TDCM (Figure 1.6b).

After the grating, the pulses hit the micro channel plate (MCP) in Chevron configuration
(see Figure 1.7). Photons from the XUV pulses hit the micro channels, ionising the metal
and generating electrons. These charges travel along the channels striking their walls
and producing more and more electrons. This cascade of electrons then collides with the
phosphor screen, which in turn converts electrons into photons. Naturally, the more the
photons reaching the MCP, the more the electrons ending up on the screen, and the more
the photons generated moving towards the CCD camera, which finally observes the shape
and intensity of the pulse.

Figure 1.7: Micro channel plate scheme. Top
left: section of single MCP. Top right: single
channel of MCP and electron chain ionisa-
tion. Bottom: MCP in Chevron configura-
tion. Adapted from [25].

Figure 1.8: Phosphor screen. Converts accel-
erated electrons into photons. From [44].

The following images represent what can be observed at CCD output in the (0,0) order
case with an open slit, and in the (1,1) order case with a closed slit.
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(a) (b)

Figure 1.9: XUV spectrum in the case of (1,1) order with a closed slit (1.9a), and in case
of (0,0) monochromator order with an open slit (1.9b).

1.1.4. Hollow-core fibre (HCF)

Now that the XUV path is clear, we will examine the IR line, starting from the role of
the hollow-core fibre (HCF).

The HCF is an optical fibre composed of a glass cladding (n ≃ 1.5) and an empty core
guiding the IR pulses. Having a hollow core is fundamental, as it can be filled with Ne
gas to modulate the refractive index n seen by the pulse (ngas = 1÷1.000118963263), and
therefore to alter the pulse shape. The more gas we input into the fibre, the higher the
refractive index is.

As a result, we are able to use self-phase modulation (SPM) and self focusing to vary the
spectral and spatial profile of the pulse. In fact, according to Kerr effect the resulting
refractive index is:

n(z, t) = n0 + n2 · I(z, t) ,

with n0 and n2 distinct for each material and I the intensity, dependent on z and t, the
propagation direction and time respectively. From a spatial point of view this means that,
together with the coupling of laser and fibre, we are able to get a high-intensity mode
which is very close to Gaussian. From a temporal point of view, SPM modifies the phase
ϕ of the pulse, together with its spectrum ω, and we have both spectral broadening, and

3Calculated through [42] at p = 1.8 bars.
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a positive frequency chirp:

ω(t) =
dϕ

dt
= ω0 −

ω0n2z

c

dI

dt
,

where
ϕ(t, z) = ω0t− kz = ω0t−

ω0

c

(
n0 + n2I(t, z)

)
z

and where c represents the speed of light in vacuum, and ω0 is the laser central frequency.
While the first phenomenon implies the generation of new frequencies, never possessed
before by the pulse, the second one suggests that some frequencies tend to arrive at later
times than others. In particular, in case of a positive chirp lower frequencies arrive earlier
than higher frequencies. Now, according to Fourier theory having a broader spectrum
implies the possibility of a pulse that is shorter in time, and this is in fact achieved
through a series of chirped mirrors4 at fibre output, which compensate the positive chirp.
Hence, by regulating the pressure of the gas inside the fibre we are capable of generating
pulses with a duration calculated at full width at half maximum (FWHM) which ranges
from 50 fs (empty fibre) down to 9 fs (1.8 bars).

Figure 1.10: Self-phase modulation graph. In
blue, the pulse intensity. In orange, the spec-
trum of the pulse. As we can see, different
frequencies arrive at different times.

Figure 1.11: Example of positively chirped
pulse. Higher frequencies arrive at later
times with respect to lower ones.

4Chirped mirrors are a particular type of dielectric mirrors with variable layer size which delay lower-
energy, "faster" frequencies, so to reunite them temporally with the higher-energy, "slower" ones (see
Figure ??).
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Figure 1.12: Generation of a positively chirped pulse from a Gaussian one.

1.1.5. Time-of-Flight spectrometer (ToF)

(a) (b)

(c)

Figure 1.13: Time-of-Flight spectrometer (ToF) seen from the top (1.13a), from the side
(1.13b), and a 3D representation (1.13c).
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In this penultimate section we finally see what happens inside the Time-of-Flight spec-
trometer (ToF).

Both XUV (path 1) and IR (path 2) pulse meet inside the second TDCM chamber (see
Figure 1.1.2). On one hand, the XUV pulse arrives from the gratings of the TDCM itself
and passes through a drilled mirror; on the other, the IR radiation enters the vacuum
chamber from the side and strikes a converging mirror, which deflects the beam onto the
drilled mirror. Even if part of the pulse is discarded (namely its peak) diminishing its
intensity, the majority of photons is reflected inside the ToF.

Both beams are then focused near the tip of a needle (or nozzle) inside the ToF, from which
Ne gas (our sample) is ejected. The light ionises the gas (more details in Chapter 1.2),
yielding free electrons that are accelerated by means of an electric field generated through
electromagnetic lenses. The charges travel towards an MCP in Chevron configuration
(Figure 1.7) at the bottom of the ToF, and generate a current that is proportional to the
quantity of electrons that hit said MCP, and resolved in the time they take to travel from
gas cloud to plate (i.e.: time of flight). The signal is displayed onto the computer screen
immediately afterwards.

Subsequently, the XUV line continues along its path to be detected by the XUV spec-
trometer, whereas the IR is deflected away by the last grating in the following vacuum
chamber.

Figure 1.14: Example of experimental ToF spectrogram for a given delay between the
pulses. A more detailed analysis of this spectrogram will be conducted in Chapter 1.3.5.
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1.2. Pump-probe experiment

Now we are going to briefly illustrate the concept behind the kind of experiment per-
formed. Before reaching the ToF spectrometer, the TDCM is used to select the 23rd

harmonic of the IR beam (EXUV = 35.23 eV, or λXUV = 35.26 nm). This beam is
used to ionise the gas inside the ToF and generate photoelectrons with an energy of
EMB = EXUV −Eion.,Ne = 13.67 eV, which we will call main band, MB; if an opportunely
delayed IR pulse (EIR = 1.53 eV, or λXUV = 811 nm) is added to the process, its field
dresses the photoelectron final state inducing the formation of sideband peaks in the pho-
toelectron spectrum. Those shall be indicated as SBN±, with ESBN± = EMB ±N ·EIR =

13.67±N ·1.53 eV, and with N ∈ N being the number of photons absorbed (+) or emitted
(-), following the scheme of Figure 1.15. As we will see, the number of generated side-
bands depends on the IR laser intensity. Naturally, the more IR photons impinge onto the
ionised electrons, the more sidebands are visible, having a higher intensity. Furthermore,
the main band becomes more depleted, accordingly to particle conservation. Actually, if
we keep increasing the IR intensity with respect to the XUV one, we will reach a point
in which the sidebands will start to empty too in order to fill higher order ones. More
details about these phenomena are given in Chapter 2.

Figure 1.15: Visual representation of the ionisation of photoelectrons and formation of
main band (MB) and sidebands (SB).



1| Methodology 23

Figure 1.16: Simulated intensity of the sidebands as a function of the energy of ionised
photoelectrons at null delay.

In order for this to happen, it is crucial to overlap the pulses both spatially and temporally,
due to the rapidity of electron dynamics. This is why the two paths of the XUV and
IR beams must have the same length. Furthermore, to follow the complete dynamics
of photoelectrons, probing needs to happen at different delays with respect to pump
excitation5. This is what the delay stage is for. It is composed of a pair of mirrors
mounted onto a moving sled at 90° one with respect to the other; the sled is in turn
connected to an electronically controlled piezoelectric actuator that expands or shrinks
depending on the current it receives, consequently moving the mirrors and varying the
time delay.

5Think of it as a film: to have a "moving image", you need to have a sequence of frames, of snapshots
taken at different times. By probing the phenomenon at different delays from the event of the pump,
you are effectively taking many pictures which allow a reconstruction of photoelectronic behaviour during
and after ionisation.
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Figure 1.17: Example of SHS simulation. In this 3D graph it is possible to notice 2
sidebands on each side of the main band. These are SB+ and SB++ on the upper end,
and SB− and SB−− on the lower part of the plot. It is also clear that the main band
is weaker in correspondence of the peak of the sidebands. The 2D graph at null delay
(dashed line) corresponds to Figure 1.16.

By doing as such, we are able to plot a colourmap of the intensity of the sidebands and of
the main band as a function of the energy of the photoelectrons and of the delay between
IR and XUV pulses. We are therefore plotting a so-called single-harmonic spectrogram
(SHS). In Figure 1.17 we can observe a simulation of an SHS. The shape that sidebands can
assume may vary, and it is usually far from the smooth and regular shape of Figure 1.17,
the principal reason being that the pulses we used in the previous simulation possess a
Gaussian temporal distribution, while in reality our pulses have a more complex structure.
This depends on a series of factors which will be explored in detail in Chapter 2.3, and
cannot be attributed solely to experimental noise, whose influence on the matter may be
disregarded. For the moment we will limit to show a few examples of real traces (Figures
1.18 and 1.19).
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(a) (b)

Figure 1.18: Some examples of experimental SHS plots. In Figure 1.18a, two sidebands
are visible on each side of the main band, and the depletion of the main band is also
evident. In Figure 1.18b, another spectrogram has been over-saturated to better display
the shape of the sidebands, which are clearly centred around the expected energies, yet
do not possess an elliptical shape.

(a) (b)

Figure 1.19: (a) Example of experimental spectrogram as a function of energy and time
delay τ . (b) SB amplitudes as a function of energy at τ = 0 fs and IIR = 6.58 · 1011 W

cm2 .
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1.3. Beam characterisation

In this section we will study the techniques employed to measure and calculate the pulse
intensity and temporal characteristics. We will also have a glimpse of the results of
our beam characterisation, so to have an idea of the type of pulses employed in our
experiment. Later on, this will help us have further insight on the effects of non-idealities
and on the reasons behind given outcomes. We will also see how to correctly characterise
the experimental spectrograms we retrieved.

1.3.1. Intensity measurement

A fundamental part of beam characterisation is knowing the intensity of the pulses we
use in our experiments. Intensity cannot be measured directly, we require two quantities
to calculate it: the beam profile, and the power of the beam.

The spatial distribution of the pulse can be measured by means of a beam profiler,
which detects the distribution of photons inside the beam. It allows to have an idea of
the spatial FWHM of the pulse and to check whether the mode is Gaussian or it has
any kind of non-ideality, astigmatism being the most frequent. Hence, it is a way to
determine the beam quality and of calculating its M2 factor6. In our configuration the
laser from the second TDCM chamber gets deviated by the movable mirror towards the
device. In the same position we employ a power meter to measure the average power
of the beam. Knowing both power and beam profile, we can now calculate the intensity
of our IR pulses.

6For further details about M2 see [52].
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(a) (b) (c)

Figure 1.20: Three examples of IR beam profile. While the first one from the left can
be interpreted as a quasi-Gaussian beam, the second one is less so. The last one is
undoubtedly aberrated, and in particular it manifests an evident astigmatism, which
elongates the beam in one direction and compresses it along its orthogonal.

1.3.2. Spectral characterisation

In order to characterise our ultrashort pulses we can start by using a spectrometer,
which will measure the spectrum of our pulses7. In a spectrometer, light will enter the
device and travel towards a first focusing mirror. This mirror will send the beam to a
diffraction grating, which will disperse the different wavelengths of the light source. We
now have the spectrum of the beam. Subsequently, the different frequencies move in the
direction of a second focusing mirror, that will focus each part of the beam onto a stripe
of pixels, each dedicated to a wavelength, acting as the detector.

Seeing as now we have the intensity of every wavelength shining onto each pixel, in order
to have a physically meaningful signal we convert the units of the x axis of the detector
from pixels (px) into energy (eV). Therefore, we need to calibrate our axis. To do this
we are going to require the gratings at order (0,0). This way we will be able to see all the
harmonics and their intensity (Figure 1.21a). Then, we are going to integrate along the
y axis (Figure 1.21c), apply a multi-Gaussian fit, and find the peak position in pixels for
each high harmonic. We will be able to associate to each pixel a value in energy (Figure
1.21b), and finally plot the harmonics as a function of the energy instead of the pixels
(Figure 1.21d).

7For the XUV pulse, the spectrometer is the one presented in Chapter 1.1.3. For the IR beam, a
movable mirror is present inside the third vacuum chamber (right side of Figure 1.4) which will deviate
the path of the IR laser towards the spectrometer when inserted.
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(a) (b)

(c) (d)

Figure 1.21: In Figure 1.21a, the output of our spectrometer, in which many high-order
harmonics are visible. Integrating along the y-axis the previous signal we obtain Figure
1.21c. Figure 1.21b represents the axis conversion from pixels to energy, which allows
to obtain the final result of Figure 1.21d, in which the signal is plotted as a function of
energy, and as a consequence all the harmonics result equidistant.

Now that we have the spectrum, we can use Fourier theory to Fourier transform what we
obtained in the frequency domain into the time domain. The narrower the spectrum, the
larger the pulse in time, and vice versa. Hence, we are able to retrieve a duration for the
pulses by calculating the FWHM of the Fourier transform of the spectrum.
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(a) (b)

Figure 1.22: Four examples of different IR spectra (1.22a) and their associated pulse
duration (1.22b). A broader spectrum corresponds to a narrower duration of the transform
limited pulse.

There is only one issue: we are not able to retrieve the phase of these pulses. In fact, it
is not possible to fully reconstruct the pulse only by means of a spectrometer, and what
we calculate is the TL (transform limited) duration, that is the minimum duration it is
possible to achieve. Hence, we need to follow another approach: we will use the so-called
FROG technique.

1.3.3. FROG reconstruction

Frequency-Resolved Optical Gating, otherwise known as FROG, is one of the main
techniques to gather information about ultrashort pulses8. It is a spectrographic technique
capable of retrieving the shape, duration and, above all, phase of a pulse. It is in fact
impossible, due to the sheer rapidity and briefness of the pulse itself, to use exclusively
electronic devices to characterise the beam. We could say that electronics is too slow, and
the relaxation of electrons in a common detector cannot follow the dynamics of light.

There are several types of FROG, including self-diffraction FROG (SD-FROG), polarization-
gated FROG (PG-FROG), cross-correlation FROG (XFROG), or transient-grating FROG
(TG-FROG) [17, 48]. What we are going to use is second-harmonic generation FROG,
or SHG-FROG.

8In the context of our setup, this method is exploited in order to characterise the IR pulses, and is
realised "ex-situ". For this reason it is important to ensure that the pulses led to the FROG experience
the same dispersion encountered on the path towards the sample.
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How does SHG-FROG work? Since our objective is reconstructing the electric field E(t)
of the pulse, we wish to recover the temporal distribution of its frequencies. In order to
capture this temporal distribution of frequencies, we can define a gate function g(t− τ),
which will sample the electric field with a delay τ varying with respect to our pulse. The
resulting signal from the presence of both pulse and gate will be Esig(t, τ) = E(t)g(t− τ).
This gated signal in the Fourier domain appears as:

Ẽsig(ω, τ) = F [Esig(t, τ)] =

∫ +∞

−∞
E(t)g(t− τ)e−iωtdt

Therefore, if we are able to acquire a spectrogram of this signal, we will find:

S(ω, τ) ∝
∣∣∣Ẽsig(ω, τ)∣∣∣2 = ∣∣∣∣∫ +∞

−∞
E(t)g(t− τ)e−iωtdt

∣∣∣∣2
Now, being FROG a self-referenced technique, it only makes use of one beam, which will
act both as the pulse to investigate (E(t)) and as our gate function (E(t − τ)). Hence,
the final spectrogram obtained is going to be

S(ω, τ) ∝
∣∣∣∣∫ +∞

−∞
E(t)E(t− τ)e−iωtdt

∣∣∣∣2
From this, we will be able to calculate E(t) through an iterative algorithm (shown later
on).

The way in which the spectrogram is performed is shown in Figure 1.23. The pulses are
sent onto a 50:50 beam splitter, which separates them into two paths. One path heads
straight in the direction of a second 50:50 beam splitter, whereas the other one leads to
a delay line regulating the difference in the time of arrival of the two beams, to then
go towards the beam splitter. The second beam splitter guides the two beams onto a
converging mirror, which in turn focuses them onto a χ(2) crystal (BBO, i.e. β-barium
borate - BaB2O4), allowing for second-harmonic generation. At last, these new pulses
doubled in frequency are picked and sent through another focusing lens to a spectrometer
to be analysed, thus giving origin to the sought spectrogram.
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Figure 1.23: SHG-FROG scheme. Adapted from [47].

The following is the iterative algorithm used to retrieve E(t) from S(ω, τ):

• start with a guess of the initial electric field E(t). Usually, a null phase (ϕ = 0) is
assumed and the transform limited (TL) pulse is used;

• multiply E(t) by the gating function E(t− τ), to get Esig(t, τ) = E(t)E(t− τ);

• find Ẽsig(ω, τ) = F [Esig(t, τ)];

• calculate a new quantity, Ẽ ′
sig(ω, τ) =

Ẽsig(ω,τ)

|Ẽsig(ω,τ)|
√
S(ω, τ). This way the phase is

still unknown, but we substitute the correct modulus inside the formula.

• antitransform the new quantity, to obtain E ′
sig(t, τ) = F−1[Ẽ ′

sig(ω, τ)];

• integrate E ′
sig(t, τ) in dτ , so to have

∫ +∞
−∞ E ′

sig(t, τ)dτ =
∫ +∞
−∞ E ′(t)E(t− τ)dτ ;

• since E ′(t) does not depend on τ , we can take it out of the integral and calculate it

by knowing E ′
sig(t, τ) and E(t− τ), and we do it as E ′(t) =

∫+∞
−∞ E′

sig(t,τ)dτ∫+∞
−∞ E(t−τ)dτ

;

• compare E ′(t) and E(t). If they are similar and their difference lays within a pre-
viously set margin of error, E ′(t) can be considered the electric field of the pulse;
otherwise, substitute E ′(t) to E(t) and repeat the process until the desired condi-
tions are met.

There are some drawbacks to this method, the main one being that it is not feasible to
have information about the sign of the chirp due to the symmetry of S(ω, τ) = S(ω,−τ).
Furthermore, the presence of an iterative algorithm implies an outcome which is not direct,
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and we require to scan for many delays, which results in a process that may be lengthy
(in the order of a few minutes).

The following are some of the results of FROG reconstructions.

Figure 1.24: FROG example #1.

Figure 1.25: FROG example #2.
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In the case of Figure 1.24 we have the experimental trace (i.e. the spectrogram) on the left,
the FROG reconstruction in the centre, and the reconstructed pulse on the right (orange
line), together with its transform limited (blue line). This experiment was performed with
an empty fibre (p = 0 bars). We can notice that the peak of the IR pulse is around νIR

= 0.755 PHz and its duration is around ∆τ ≃ 44.07 fs (TL duration of ∆τTL ≃ 28.87 fs).

In Figure 1.25, performed at p = 1.8 bars, it is possible to find our signal peaking at around
νIR = 0.81 PHz. The duration, on the other hand, is decreased to ∆τ ≃ 9.39 fs (∆τTL ≃
7.55 fs). This is due to the effect of the gas inside the fibre. In fact, the spectrum of the
IR beam is not symmetric, and during pulse compression the peak is shifted to higher
frequencies. Furthermore, the presence of gas renders the pulse shorter in time, as already
explained in Chapter 1.1.4, due to self-focusing and self-phase modulation. Another clear
implication is that the spectrogram is broader in frequency due to Fourier theory, going
from a ∆ν ≃ 0.045 PHz to a ∆ν ≃ 0.2 PHz.

1.3.4. STRIPE reconstruction

Another method used for pulse reconstruction is the Simplified Trace Reconstruction
In the Perturbative regimE [32]. STRIPE is a reconstruction algorithm built on a
simplified theoretical model which will be explained in Chapter 2.1.2, based on the Strong
Field Approximation (SFA) for the free electron in an electric field. Unlike FROG, it is
capable of reconstructing pulses "in-situ", which means directly at the sample position.
It is also fast and reliable in case of large noise measurements. Moreover, it allows back-
ground removal and spurious signal elimination. We are going to use it for the retrieval
of the XUV phase and the reconstruction of the XUV pulses.

The main idea behind the algorithm is the following: given in input the IR pulse shape,
the XUV spectrum and the experimental spectrogram, a guess is made of the XUV phase
(usually null, to begin with); then, a new spectrogram is simulated from those values, it is
convoluted with the instrumental response of the ToF spectrometer, and it is compared to
the real spectrogram; based on this difference, a new guess is made for the XUV phase, and
this process is iterated until the difference between the two spectrograms is close to null
within a certain margin. See Figure 1.26 for the final steps of a STRIPE reconstruction.

As we might expect, even with different duration IR pulses the reconstructed XUV pulses
are similar one to the other, since in our experiment we only act on the characteristics of
the IR pulse (Figure 1.27).
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Figure 1.26: From left to right: experimental SHS, STRIPE-reconstructed SHS, convolu-
tion of reconstructed SHS and instrumental response, IR pulse, and reconstructed XUV
pulse.

(a) (b)

Figure 1.27: (a) IR pulses with a diverse duration (τIR = 48.3 fs, 32.8 fs, 17.2 fs, 9.3 fs);
(b) XUV pulses with similar features (τXUV ≃ 11.6 fs and similar dispersion).

The instrumental response was found experimentally by comparing the energy FWHM
of the XUV photons of H23 with the electronic FWHM obtained. It is possible to note
that, even if their relation should be linear, it will start to deviate the more we go towards
zero. In fact, we will have a non-zero electronic FWHM for a null photonic FWHM. This
instrumental response is around 250meV (Figure 1.28).
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A few more details on the STRIPE algorithm can be found at the end of Chapter 2.1.2.

Figure 1.28: Instrument response of ToF spectrometer. Assuming Gaussian curves, we
have that FWHM2

Inst.Resp. = FWHM2
ToF − FWHM2

XUV , where FWHMToF is the total
FWHM resulting from the convolution, FWHMInst.Resp. is the one of the instrumen-
tal response and FWHMXUV is that of the light pulses. If we measure experimentally
FWHMToF and we have FWHMXUV = 0, we find our instrument response. While the
yellow line represents the response with XUV pulses of different linewidth, the red circle
at 0.25 eV is the actual instrument response with no XUV, and the gray dashed line is
the theoretical line, i.e. what should happen if no instrument response was present.
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1.3.5. Sideband characterisation and noise removal

Figure 1.29: SHS raw data of experimental trace. Over-saturated for clarity.

Let us consider an experimental SHS trace, such as the one in Figure 1.29. We immediately
notice that noise must be eliminated from the trace. This is a major issue deriving from
various electronic effects affecting the trace9. This is the reason why the energy profile
of our sidebands is never going to be perfectly Gaussian (as we would expect, since the
spectrum of the harmonics is Gaussian itself), and instead presents a tail at lower energies.
Then, our main goal now is removing this tail to render the sidebands Gaussian.

Firstly, we start by considering a single time delay between pulses, for instance τ = 0.
By examining the XUV-only trace, i.e. the trace taken without the presence of IR pulses
(Figure 1.30b), we observe that this signal is composed of two parts: a smooth hunch,
and a few bounces right before the peak. We are going to remove the smooth part first
through a background removal algorithm (Figure 1.31a). This leaves us with the bounces
at lower energies. If we draw a Gaussian fit starting from the higher energy end of the
spectrum down to where the curve is still roughly Gaussian (Figure 1.31b), we are able
to isolate the remaining part of the tail (Figure 1.31c). Finally, we can add up the two

9The electronics will behave like an RC circuit, thus possessing a response which resembles a decreasing
exponential more than a Dirac delta, which gives our signal its characteristic tail at low energies.
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contributions.

(a) (b)

Figure 1.30: (a) raw signal, which needs to be rid of noise; (b) XUV-only signal, employed
for noise characterisation.

If we observe the final shape of the tail, we can see how the noise actually does not go
to zero at lower energies. Instead, it seems to be increasing linearly (Figure 1.31d). This
is caused by another type of noise, which is due to the presence of the metallic nozzle
near the cloud of gas. Some of its electrons are in fact ionised and travel relatively slowly
towards the MCP of the ToF, resulting in a linear distribution of low-energy electrons
that contributes to the overall noise. Therefore, we are going to remove this noise from
the tail to see its actual shape. This final noise tail is present under every peak of the
signal, and from previous characterisations we know that it is linearly proportional to the
number of counts of each peak of the signal. Now we only need to scale this noise and
subtract it from every peak in order to remove it.

Our next step towards noise removal becomes applying another fit to Figure 1.30a to
discern the position of the peaks of the main band and sidebands and their area. This
in turn will make the tail calculation possible for each of the sidebands and for the main
band. After that, we shall subtract the calculated tails from the respective sidebands and
main band, starting from the higher energies since they often affect also the lower ones.
Afterwards, we are going to remove the linear noise once over the whole signal. Now we
have a clean signal for a given time delay (Figure 1.32a). Finally, we are going to use
a super-Gaussian filter (Figure 1.32b) to remove the residual noise between the peaks,
which will also allow an accurate retrieval of the amplitude.

As a last step, for each time delay we are going to normalise our trace, remove the noise,
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and then apply the multi-Gaussian fit, so to obtain a complete trace which is devoid of
noise (Figure 1.33).

Hence, we now have a full reconstruction of the sidebands and main band amplitude as a
function of their energy and the time delay.

(a) (b)

(c) (d)

Figure 1.31: Noise tail characterisation. (a) The smooth hunch is found and subtracted;
(b) the Gaussian fit is applied on the data (red circles); (c) comparison between Gaussian
fit (orange) and original signal (blue), in which the bounces at lower energies are evident;
(d) sum of hunch and bounces (blue), linear noise (yellow), and subtraction of the two
(orange), which gives the final shape of the tail.
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(a) (b)

Figure 1.32: (a) Clean signal; (b) super-Gaussian filter.

Figure 1.33: Example of clean SHS spectrogram. Over-saturated for clarity.
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2| Floquet theory in the Strong

Field Approximation

We already discussed the basic mathematics behind Floquet theory and some of its impli-
cations in the Introduction. Now we dive deep into further calculations to apply it to the
current case study. We will start from the Strong Field Approximation, to then derive
different levels of approximation which are going to frame the main physical parameters
driving the phenomenon. We will also investigate how the various approximations relate
to one another, and which model we believe to be more reliable.

2.1. Strong Field Approximation (SFA)

Also known as Keldysh-Faisal-Reiss theory [24, 29, 34, 49], the Strong Field Approxi-
mation, or SFA, allows to describe numerous phenomena, such as High-order Harmonic
Generation (HHG), Above-Threshold Ionisation (ATI), Non-Sequential Multielectron Ion-
isation (NSMI), or laser-assisted photoelectric effect [1, 29, 34]. Two-colour photoexcita-
tion is no exception.

To introduce such a relevant approach, we start by describing the framework in which it
is defined. To start, it is important to specify how we are going to treat both light and
matter. We are in fact using a semi-classical approach. Therefore, we are choosing to
deal with matter as a quantum object, while still viewing light in a classical way.

Let us start by considering matter. First of all, none of the investigated particles will
reach velocities so high to be comparable to the speed of light. Hence, we assume to
be working in a non-relativistic framework. Second of all, to simplify our discussion, we
will consider the Single Active Electron (SAE) formulation. This implies the presence
of exclusively one electron, which evolves according to the Time Dependent Schrödinger
Equation (TDSE):

Ĥ |ψ⟩ = iℏ
∂

∂t
|ψ⟩ (2.1.1)
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in which ψ represents the electron wave function, and the Hamiltonian for light-matter
interaction Ĥ takes the form of

Ĥ =
1

2m
(p̂+ eA)2 − eϕ (2.1.2)

where we indicated as p̂ the momentum operator, A is the vector potential, ϕ is the scalar
potential, and e and m are the absolute value of the charge of the electron and its mass
respectively.

Now let us take a look at the radiation aspect of the model. We will have that it is
described on a microscopic level by the Maxwell equations :

∇× E = −∂B
∂t

∇ · E =
ρ

ϵ0

∇×B =
1

c20

∂E

∂t
+ µ0J

∇ ·B = 0

(2.1.3)

where E and B are the electric and magnetic field respectively, ρ is the density of charges,
J is the density of current, ϵ0 and µ0 are the dielectric and magnetic constants in vacuum,
and c0 is the speed of light, also calculated in vacuum. Now, usually E = E(r, t), and
the same holds for B. Though, here comes into play the first approximation we make:
the dipole approximation. In the dipole approximation (Figure 2.1) we assume that λ,
the wavelength of the electromagnetic field, is so large with respect to the size of the
atom (λ >> a, with a = atomic radius) that it is perceived as uniform in the region in
which the particle is present, meaning that E(r, t) ≃ E(t). This approximation has also a
dependence on the intensity of the beam (it is therefore valid in the so-called "oasis zone"
[30], Figure 2.2), but this does not concern the range of intensities which we are going to
utilise.
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Figure 2.1: Representation of dipole approx-
imation. The field (in blue) is almost con-
stant (green line) in the region in which the
particle (red) is present.

Figure 2.2: Oasis region. Adapted from [30].
In orange, the region of intensities in which
we operate. In red and purple, the wave-
lengths we use.

From this moment forward, we are going to use atomic units (a.u.), i.e. we are going to
render some of the main constants we use unitary, namely ℏ = m = e = 4πϵ0 = 1 a.u.
This is mainly for simplicity in calculation. Due to this variation, our TDSE from Eq.
(2.1.1) becomes the following:

Ĥ |ψ⟩ = i
∂

∂t
|ψ⟩ (2.1.4)

which has a solution in the Schrödinger picture1 equal to:

|ψ(t)⟩ = e
−i

∫ t
t0
Ĥ(t′)dt′ |ψ(t0)⟩ (2.1.5)

Here, Ĥ can be written in a way which is akin to Eq. (2.1.2):

Ĥ(t) =
1

2
(p̂+A(t))2 + VC (2.1.6)

where we substituted ϕ with the Coulomb potential VC . This is the so-called velocity
gauge. Actually, this is not the only form that the Hamiltonian can take. Another
manner in which it can be written is in fact the length gauge:

1The Schrödinger picture differs from the Heisenberg picture due to the fact that in the first one wave
functions are time dependent, while in the second one operators are. There is also the interaction picture,
in which both evolve in time, which is in turn different from both the Schrödinger and the Heisenberg
one. All these pictures are equivalent and lead to the same result, albeit we choose to utilize the first
one.
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Ĥ(t) = −1

2
∇2 + VC + r̂ · E(t) = 1

2
p̂2 + VC + r̂ · E(t) (2.1.7)

in which r̂ is our position operator and E(t) is the electromagnetic field2.

Now, in order to take a step forward in the direction of the SFA, we start precisely by
considering the length gauge3. We begin by partitioning the Hamiltonian into two terms,
Ĥ0 = −1

2
∇2 + VC and ĤI(t) = r̂ · E(t), so to have:

Ĥ(t) = Ĥ0 + ĤI(t) (2.1.8)

Hence, our solution of Eq. (2.1.5) can be demonstrated4 to be equal to:

|ψ(t)⟩ = −i
∫ t

t0

e−i
∫ t
t′ Ĥ(t′′)dt′′ĤI(t

′)e
−i

∫ t′
t0
Ĥ0(t′′)dt′′dt′ |ψ(t0)⟩+ e

−i
∫ t
t0
Ĥ0(t′′)dt′′ |ψ(t0)⟩ (2.1.9)

At this point, we can project the previous solution onto a continuum state |v⟩, so to
obtain a coefficient c(t), which taken its square modulus (|c(t)|2 = |⟨v|ψ⟩|2) represents the
probability to find the electron in a continuum at time t. The aforementioned coefficient
takes the shape of:

c(t) = −i
∫ t

t0

⟨v| e−i
∫ t
t′ Ĥ(t′′)dt′′ĤI(t

′)e
−i

∫ t′
t0
Ĥ0(t′′)dt′′dt′ |ψ(t0)⟩+ ⟨v| e−i

∫ t
t0
Ĥ0(t′′)dt′′ |ψ(t0)⟩

(2.1.10)

Since Ĥ0 is time independent,
∫ t

t0

Ĥ0(t
′′)dt′′ = E0(t−t0) in the second part of the previous

formula, and the whole exponential can be brought out of the bracket (⟨v| e−i
∫ t
t0
Ĥ0(t′′)dt′′ |ψ(t0)⟩ =

e−iE0(t−t0)⟨v|ψ(t0)⟩. This term is therefore negligible because it does not contain any rel-
evant information about the electronic transition. On the other hand, the first term is
quite significant, representing the ionisation probability. This term is named time reversed
S-matrix amplitude (a(t)), and it is of fundamental importance for the SFA:

2We also recall that p̂ = −i∇, should it not be obvious from the previous equation.
3The same result that we will see in Eq. (2.1.11) can be obtained through the velocity gauge too.
4Through a set of equations called Dyson equations [49], which we will not be treating.
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a(t) = −i
∫ t

t0

⟨v| e−i
∫ t
t′ Ĥ(t′′)dt′′ĤI(t

′)e
−i

∫ t′
t0
Ĥ0(t′′)dt′′dt′ |ψ(t0)⟩ (2.1.11)

Finally, it is time to apply the Strong Field Approximation. The SFA takes this result
and neglects the effect of Coulomb interaction after ionisation. Therefore, we have that

Ĥ(t) → Ĥ(t) =
1

2
p̂2 + r̂ · E(t) = 1

2
(p̂+A(t))2 (2.1.12)

to substitute inside Eq. (2.1.11). Again, a choice of gauge presents to us. Due to the
approximations introduced, it appears that not all gauges result in an accurate description
of the physics. As a result, we are forced to decide what to use, and in our case only the
length gauge leads to an exact representation. Nevertheless, going against our instincts
we shall start by viewing the problem in the velocity gauge, only to switch to the more
correct representation towards the end.

Thus, in velocity gauge (here represented by the (V ) apex) we have:

Ĥ(V )(t) =
1

2
p̂2 + r̂ · E(t)

We now consider to use as eigenvectors |v⟩ = |v(t)⟩, where |v(t)⟩ represents the velocity
states, which means that the electron at time t has a velocity v and a kinetic energy
Ek =

1
2
|v|2.

Therefore, we wish to solve the following equation, in order to find the first part of the
integral in Eq. (2.1.11):

⟨v| e−i
∫ t
t′ Ĥ

(V )(t′′)dt′′ = ⟨v(t)| e−i
∫ t
t′ Ĥ

(V )(t′′)dt′′ = ⟨Φ(t′)|(V ) (2.1.13)

with ⟨Φ(t′)|(V ) a generic state, evaluated in the velocity gauge.

The next step is to consider a property of momentum space, which is completeness. In
general, for a complete and finite set of vectors |uk⟩, we have

∑
k

|uk⟩ ⟨uk| = 1

If extended to a continuum set of vectors such as |p̃⟩, the previous formula translates to
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∫
|p̃⟩ ⟨p̃| d3p̃ = 1

Hence, we can write:

⟨v(t)| e−i
∫ t
t′ Ĥ

(V )(t′′)dt′′ =

∫
⟨v(t)|p̃⟩ ⟨p̃| e−i

∫ t
t′ Ĥ

(V )(t′′)dt′′d3p̃ =

∫
⟨v(t)|p̃⟩ ⟨p̃| e−i

∫ t
t′ Ĥ

(V )(t′′,p̃)dt′′d3p̃

(2.1.14)

where the last equivalence is demonstrated in [49].

At this point, if we define a velocity operator v̂(t) = p̂ + A(t) such that v̂(t) |v(t)⟩ =

v(t) |v(t)⟩, then we can see how we can also define a p = v(t) − A(t) that satisfies
p̂ |v(t)⟩ = p |v(t)⟩. Hence, since we have momentum conservation, at different times t
and t′ we can write:

p = v(t)−A(t) = v′(t′)−A(t′) (2.1.15)

resulting in

|v′(t′)⟩ = |v(t) +A(t′)−A(t)⟩ (2.1.16)

Then, our Eq. (2.1.13) becomes:

⟨v| e−i
∫ t
t′ Ĥ

(V )(t′′)dt′′ = ⟨v(t) +A(t′)−A(t)| e−iS(t,t′) (2.1.17)

where we have defined the semi-classical action S(t, t′) as

S(t, t′) =
∫ t

t′

1

2
(v(t)−A(t) +A(t′′))2dt′′ =

∫ t

t′

1

2
(p+A(t′′))2dt′′ (2.1.18)

Now it is time to go back to the length gauge (apex (L)), and we do it by applying the
correct transformation, which simply consists in a product with an exponential:

⟨Φ(t′)|(L) = ⟨Φ(t′)|(V )
e−ir̂·A(t′) (2.1.19)

By applying the above-mentioned transformation, and by considering |0⟩ as the initial
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state ψ(t0), we obtain a new formula for the a coefficient, also known as the Keldysh
amplitude:

a(t)(L) = −i
∫ t

t0

ei(IP (t′−t0)−S(t,t′)) ⟨v(t) +A(t′)−A(t)| e−ir̂·A(t′)r̂ · E(t′) |0⟩ dt′ (2.1.20)

in which IP is the ionisation potential of the atom.

At last, if we exploit again the property of completeness as we did in Eq. (2.1.14), using
this time the position vectors |r⟩, we can get (after a few calculations, see [49]) a final
formula for the Keldysh amplitude:

a(t)(L) = −i
∫ t

t0

E(t′) · d[p+A(t′)]ei(IP (t′−t0)−S(t,t′))dt′ (2.1.21)

where d[p+A(t′)] represents the dipole transition.

2.1.1. SFA for two-colour interaction

Now let us analyse the mathematical consequences of having both an XUV and an IR
field.

Given the interaction between a single atom (SAE) and two pulses, a weak XUV (IXUV ∼
106 ÷ 108 W

cm2 ) and a higher IR intensity (IIR = 109 ÷ 1013 W
cm2 ), we can adapt Eq. (2.1.21)

to become:

a(t) = −i
∫ t

t0

(EIR(t
′) + EXUV (t

′)) · d[p+AIR(t
′) +AXUV (t

′)]ei(IP (t′−t0)−S(t,t′))dt′

(2.1.22)

with a semi-classical action redefined as

S(t, t′) =
∫ t

t′

1

2
(p+AIR(t

′′) +AXUV (t
′′))2dt′′ (2.1.23)

We can then split a(t) into two components, one depending on EIR and one depending
on EXUV :
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aIR(t) = −i
∫ t

t0

(EIR(t
′)) · d[p+AIR(t

′) +AXUV (t
′)]ei(IP (t′−t0)−S(t,t′))dt′

aXUV (t) = −i
∫ t

t0

(EXUV (t
′)) · d[p+AIR(t

′) +AXUV (t
′)]ei(IP (t′−t0)−S(t,t′))dt′

(2.1.24)

In particular, aIR(t) is the contribution to photoelectron emission due to the IR field,
while aXUV (t) is the term related to the direct ionisation caused by the XUV.

Now we need to introduce a series of approximations, which will help us simplify the
previous formulas. The first assumption is to have the same linear polarization for both
XUV and IR. Then, as previously stated, the XUV beam is much weaker than the IR one.
Therefore, it is safe to assume that |AXUV | << |AIR|. From this, a third approximation
stems: a new semi-classical action can be defined as such

S(t, t′) =
∫ t

t′

1

2
(p+AIR(t

′′))2dt′′ =

=
1

2
p2(t− t′) +

∫ t

t′
p ·AIR(t

′′) +
A2
IR(t

′′)

2
dt′′ =

=
1

2
p2(t− t′)− ϕ(p, t′)

(2.1.25)

Subsequently, we can also make a couple of statements about the initial and final ob-
servation times, t and t0. In fact, we can claim that the observation starts long before
the interaction happens, and ends long after it is done, hence we may set t0 → −∞ and
t → +∞. This not only changes the extremes of integration in Eqs. (2.1.24), but also
eliminates any t dependence from all the complex exponentials. In fact, eiQt, with Q any
constant and t → ∞, is a constant phase term which does not influence our final result
and may as well be removed.

To summarise, the approximations made are:

• same linear polarization for XUV and IR;

• |AXUV | << |AIR| ;

• S(t, t′) =
∫ t
t′

1
2
(p+AIR(t

′′))2dt′′ ;

• t0 → −∞ ;

• t→ +∞ ;
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• eiQt
t→∞−−−→ 0 .

After all these approximations, our coefficients become the following:

aIR(t) = −i
∫ +∞

−∞
EIR(t

′) · d[p+AIR(t
′)]eiϕ(p,t

′)ei(
1
2
p2+IP )t′dt′

aXUV (t) = −i
∫ +∞

−∞
EXUV (t

′) · d[p+AIR(t
′)]eiϕ(p,t

′)ei(
1
2
p2+IP )t′dt′

(2.1.26)

At last, we can focus exclusively on the second coefficient aXUV (t) by introducing the
delay τ between IR and XUV. Thus, if we rename t′ to t for simplicity, we are able to
write

a(τ) = −i
∫ +∞

−∞
EXUV (t+ τ) · d[p+AIR(t)]e

iϕ(p,t)ei(
1
2
p2+IP )tdt (2.1.27)

which results in the spectrogram5

S(ω, τ) = |a(τ)|2 =
∣∣∣∣∫ +∞

−∞
EXUV (t+ τ) · d[p+AIR(t)]e

iϕ(p,t)ei(
1
2
p2+IP )tdt

∣∣∣∣2 (2.1.28)

As a final approximation, we will assume the dipole not to vary significantly due to the
flat response of Ne to those XUV frequencies and long durations (many optical cycles),
and therefore we assume it to be nearly constant and fix it to d ≃ 1.

S(ω, τ) =

∣∣∣∣∫ +∞

−∞
EXUV (t+ τ)eiϕ(p,t)ei(

1
2
p2+IP )tdt

∣∣∣∣2 (2.1.29)

where we recall that

ϕ(p, t) = −
∫ +∞

t

p ·AIR(t
′) +

A2
IR(t

′)

2
dt′ (2.1.30)

Thanks to this final formula we are able to model numerically the physics of the experiment
happening inside the ToF spectrometer. The following are some of the results obtained
through this method.

5Not to be confused with the semi-classical action.
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Figure 2.3: Simulation of SFA in the case of Ne and Ar gases. On the left, the generating
IR (red) and XUV (blue) pulses. On the right, The results of the simulation in case of
Ne (up) and Ar (down) gas. We can see how a different IP (INeP = 21.56 eV, IArP = 15.76

eV) allows to obtain different results in terms of the final energy of the main band and of
the sidebands.

2.1.2. Simplified SFA model

Now we wish to further simplify this model of Strong Field Approximation. We may start
from Eq. (2.1.29) and assume the IR beam to have the shape of

AIR = A0(t) cos(ω0t+ φ) (2.1.31)

with A0(t) being the amplitude, ω0 the IR frequency, and φ the phase.

Then the IR electric field becomes

EIR(t) = −dAIR(t)

dt
= −dA0(t)

dt
cos(ω0t+ φ) + A0(t)ω0 sin(ω0t+ φ) (2.1.32)
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The next step is to apply the Central Momentum Approximation (CMA): we assume the
dependence of ϕ from the momentum p to be more or less negligible, so that ϕ evaluated
in any p is similar to ϕ calculated in its central value pC . Hence, ϕ(p, t) ≃ ϕ(pC , t) = ϕ(t).

In particular,

pC =
√

2(ωx +N · ω0 − IP ) (2.1.33)

where ωx is the XUV frequency and N indicates the order of the sideband, which may be
either positive or negative (or null in case of the main band).

A further assumption we need to make is that the IR intensity is low enough to neglect
the second power of AIR inside the same phase ϕ(t). Therefore, our new phase will be

ϕ(t) = −
∫ +∞

t

pC ·AIR(t
′)dt′ (2.1.34)

From this we get

S(ω, τ) =

∣∣∣∣∫ +∞

−∞
EXUV (t+ τ)e−i

∫+∞
t pC ·AIR(t′)dt′ei(

1
2
p2+IP )tdt

∣∣∣∣2 (2.1.35)

Let us work further on the phase term inside Eq. (2.1.35):

e−i
∫+∞
t pC ·AIR(t′)dt′ = e+i

∫ t
−∞ pC ·AIR(t′)dt′ (2.1.36)

Now, if we consider the previous integral and keep in mind Eq. (2.1.32), we can further
explicit the formula as

∫ t

−∞
pC ·AIR(t

′)dt′ =

∫ t

−∞
pC ·

∫ t′

−∞
−EIR(t

′′)dt′′dt′ ≃

≃ pC

∫ t

−∞

∫ t′

−∞
−A0(t

′′)ω0 sin(ω0t
′′ + φ)dt′′dt′ ≃

≃ pC
A0

ω0

sin(ω0t+ φ)

(2.1.37)

in which we have assumed the long pulse limit for Eq. (2.1.32) and thus we have approx-
imated dA0(t)

dt
≃ 0, so to obtain
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EIR(t) ≃ A0ω0 sin(ω0t+ φ) (2.1.38)

and we have considered A0(t) ≃ A0 constant inside the integral. We applied the so-called
Slowly-Varying Envelope Approximation (SVEA), which treated our IR field as near-
monochromatic. From now on, to simplify we will consider the IR beam to be perfectly
monochromatic, until otherwise specified.

Hence, we can substitute our result inside Eq. (2.1.39) and obtain the following:

e+i
∫ t
−∞ pC ·AIR(t′)dt′ = e

ipC
A0
ω0

sin(ω0t+φ) (2.1.39)

which in turn becomes

S(ω, τ) =

∣∣∣∣∫ +∞

−∞
EXUV (t+ τ)e

ipC
A0
ω0

sin(ω0t)eiωtdt

∣∣∣∣2 (2.1.40)

if we substitute Eq. (2.1.39) inside the spectrogram. A further step which has been
made in Eq. (2.1.40) is to condense the argument of the second exponential to iωt, where
ω = 1

2
p2 + IP . This was done exclusively for the sake of simplicity. For the same reason,

we also set the phase φ = 0.

We notice that the previous equation corresponds to a Fourier transform, i.e. is in the

form F (ω) = F [f(t)] =

∫ +∞

−∞
f(t)eiωtdt, where f in our case is equal to

f(t, τ) = EXUV (t+ τ)e
ipC

A0
ω0

sin(ω0t) = EXUV (t+ τ)e
ipC ·EIR(t)

ω2
0 (2.1.41)

By substituting the final result of Eq. (2.1.41) inside Eq. (2.1.40) we obtain what we
named the simplified model, which is the one used in STRIPE. This model is way faster
to compute than the plain SFA, yet it gives results which are not too different from the
ones that can be obtained through mere Strong Field Approximation6.

At this point, we can make a Fourier frequency expansion of the function f(t, τ) to obtain
a result similar to that of Eq. (0.1.5).7

6This is true only for weaker IR fields, for which the term A2
IR(t′)
2 is not truly relevant.

7Originally, a time expansion was performed, which did not yield accurate results. Although it was
not utilised in the final analysis, it is shown for completeness in Appendix A.
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STRIPE Let us open a brief parenthesis on the algorithm employed by STRIPE. We
already mentioned in Chapter 1.3.4 the general concept behind STRIPE: the main idea
is to use a set of fixed quantities (the IR spectrum, the IR phase, and the XUV spec-
trum) together with the experimental differential spectrogram to reconstruct the actual
phase of the XUV pulse; by starting with a guess of the XUV trace and comparing the
reconstructed trace to the real one we manage to achieve such a task.
We start by calculating the spectrogram of IR and XUV, obtained through the product
of spectrum and phase:

SIR(ω) = S0,IR(ω) · e−iϕIR(ω)

SXUV (ω) = S0,XUV (ω) · e−iϕXUV (ω)
(2.1.42)

where S0,IR and S0,XUV have already been measured and ϕIR(ω) is known, while ϕXUV (ω)
is input as a guess. Typically the first guess sees the XUV phase set to 0.
Then, once the two spectrograms have been calculated (one being truly the correct spec-
trogram and the other being a guess), the two E fields are calculated through the inverse
Fourier transform:

EIR(t) = F−1[SIR(ω)]

EXUV (t) = F−1[SXUV (ω)]
(2.1.43)

to then be input inside Eq. (2.1.40) as such:

S(ω, τ) =

∣∣∣∣∫ +∞

−∞
EXUV (t+ τ)e

ipC ·EIR(t)

ω2
0 eiωtdt

∣∣∣∣2 = ∣∣∣∣F [
EXUV (t+ τ)e

ipC ·EIR(t)

ω2
0

]∣∣∣∣2 (2.1.44)

As a next step, the simulated differential spectrogram is computed by taking the difference
between Eq. (2.1.44) and |F [EXUV (t+ τ)]|2, which is the Fourier transform of the XUV-
only trace (no IR present).
Finally, the process is iterated until the difference between experimental trace and
calculated trace is minimised within chosen limits.
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2.2. Frequency (Bessel) expansion

If we take a look at Eq. (2.1.41), we notice that the exponential term is written in the
form eiz sin(ϑ), and therefore we are able to use the Jacobi-Anger expansion:

eiz sin(ϑ) =
+∞∑

n=−∞

Jn(z)e
inϑ (2.2.1)

In this equation Jn(z) represents the Bessel function of the first kind of order n, and it is
dependent on z, which in our case equals to pC A0

ω0
. Moreover, ϑ = ω0t.

We are therefore able to write Eq. (2.1.41) as follows:

f(t, τ) = EXUV (t+ τ)
+∞∑

n=−∞

Jn

(
pC
A0

ω0

)
einω0t (2.2.2)

Now we recall that the sine function is an odd function, so to be able to write

+∞∑
n=−∞

Jn(z)e
inϑ = eiz sin(ϑ) = e−iz sin(−ϑ) =

+∞∑
n=−∞

Jn(−z)e−inϑ (2.2.3)

As a final step, we can write the XUV electric field in its complex representation, that is

EXUV (t) =
EXUV (t)

2
e−iωxt + c.c. (2.2.4)

where ωx is the XUV frequency. The consequence of Eq. (2.2.4) is then

S(ω, τ) =

∣∣∣∣∣F
[
EXUV (t+ τ)

2
e−iωx(t+τ)

+∞∑
n=−∞

Jn

(
−pC

A0

ω0

)
e−inω0t

]∣∣∣∣∣
2

(2.2.5)

in which we discarded the complex conjugate (c.c.) because it would have contributed
with negative frequencies, which are clearly not physical.

It is now plain to see how each term in Eq. (2.2.5) represents a single sideband. In fact,
by analysing the phase term we notice that the resulting frequency of each term is equal
to the sum of the central XUV frequency ωx, and a multiple of the IR frequency ω0. For
instance, for n = 0 we find the main band, at frequency ωx; at n = ±1 we have the first
two sidebands with a frequency of ωx±ω0, i.e. SB+ and SB−; if n = ±2 the frequency will
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be ωx ± 2ω0, representing SB++ (or SB2+) and SB−− (or SB2−), and so on. This is quite
useful, for not every model has this kind of one-to-one correspondence (see Appendix A).

In order to further approximate Eq. (2.2.5) we can also consider the XUV field to be
almost monochromatic, therefore losing its time dependence and having EXUV (t+τ) ≃ Ex.
Moreover, we can discard the term e−iωxτ , being a pure phase term. This results in having

S(ω, τ) =

∣∣∣∣∣F
[
Ex

+∞∑
n=−∞

Jn

(
−pC

A0

ω0

)
e−i(ωx+nω0)t

]∣∣∣∣∣
2

(2.2.6)

Consequently, If we normalise with respect to the XUV spectral area EXUV ≃ Ex and we
consider the SB amplitude as a function of IIR, we find that each amplitude is represented
by the square modulus of a Bessel function in which the SB order corresponds to the

order n of the function, thus having: MB =
∣∣∣J0 (−pC A0

ω0

)∣∣∣2, SB± =
∣∣∣J±1

(
−pC A0

ω0

)∣∣∣2,
SB2± =

∣∣∣J±2

(
−pC A0

ω0

)∣∣∣2, etc..., which depend on the central momentum8, on the IR
amplitude, and on the IR frequency.

The following graphs (Figure 2.4) show how the amplitude of the sidebands behaves at
different intensities in correspondence of τ = 0.

(a) (b)

Figure 2.4: (a) Main band and first four positive sidebands for monochromatic IR beam;
(b) first three positive (solid line) and three negative (dashed line) sidebands for monochro-
matic IR beam.

8Note that to have a higher agreement with the SFA approximation and to have a less severe CMA
we consider pC = pC,SB± for SB±, pC = pC,SB2± for SB2±, and so on.
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As anticipated in Chapter 1.2 and demonstrated by Figure 2.4, the sidebands do not
increase indefinitely, they oscillate instead. After reaching its first peak, each sideband
will begin its depletion. The electrons from the depleting sideband end up populating
higher-order sidebands, up until the point in which the sideband will be completely empty.
Then, it will reprise its growth towards a second, lower peak, which in turn is going to
decrease at even higher intensities, and so on. This behaviour is valid for all sidebands,
whose amplitudes with respect to the IR intensity all follow this Bessel function shape.
It is worth noting that higher order sidebands entail lower peaks at higher intensities.

Nonetheless, if we compare positive and negative sidebands of the same order we notice
that even though the height of the peaks is identical, the negative sidebands are going to
have peaks at higher intensities, and the Bessel function overall will be more stretched.
This is caused by having essentially the same function (recall that |Jn(z)|2 = |J−n(z)|2)
but with a different argument. In fact, the central momentum is going to vary from
sideband to sideband, being calculated for a different frequency each time, and this will
yield the results of Figure 2.4b.

Up to this moment we only took into consideration monochromatic beams. In our exper-
iments we can replicate said beams by using long duration pulses, but we would also like
to know the behaviour of the model in the case of shorter pulses. To do so, we can follow
the path of the non-adiabatic approach. For this approach we are going to hypothesize
Gaussian pulses with duration of τXUV and τIR for XUV and IR respectively.

2.2.1. Non-adiabatic approach

In Eq. (2.1.38) we considered A0 to have such slow, adiabatic variations in time to be
basically constant. Now let us go back to having fields that are dependent on time. In

particular, we choose the IR pulse to have A0(t) =
1
ω0
E0e

− t2

τ2
IR . Similarly, the XUV pulse

will reprise its time dependence and we will write EXUV (t + τ) = Exe
− (t+τ)2

τ2
XUV . Then, Eq.

(2.2.6) for SB+ becomes9

SB+(ω, τ)
.
= SSB+(ω, τ) =

∣∣∣∣∣F
[
Exe

− (t+τ)2

τ2
XUV J1

(
−pC

E0

ω2
0

e
− t2

τ2
IR

)
e−i(ωx+ω0)t

]∣∣∣∣∣
2

(2.2.7)

This is the Fourier transform of a Bessel function of the first kind with a Gaussian argu-
9From now on we are going to consider positive sidebands only, since negative ones behave similarly.
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ment. Considering the general form of a Bessel function in Eq. (2.2.8), it is possible to
calculate a numerical approximation of the SB+, as indicated in the following steps.

Jn(z) =
(z
2

)n +∞∑
k=0

(−1)k
(
z
2

)2k
k! Γ(n+ k + 1)

(2.2.8)

with the Γ function indicated below10:

Γ(x) =

∫ +∞

0

tx−1e−tdt Γ(x+ 1) = x!

Then, naturally:

J1

(
−pC

E0

ω2
0

e
− t2

τ2
IR

)
= −pCE0

2ω2
0

e
− t2

τ2
IR

+∞∑
k=0

(−1)k
(
−pCE0

2ω2
0

)2k

e
−2k t2

τ2
IR

k! (k + 1)!
(2.2.9)

From numerical computations we are able to observe that we can take the Gaussian
exponential out of the Bessel function without incurring in a significant error:

J1

(
−pC

E0

ω2
0

e
− t2

τ2
IR

)
≃ J1

(
−pC

E0

ω2
0

)
e
− t2

τ2
IR (2.2.10)

Hence, a new analytical formula for the SB+ amplitude presents to us, which better
approximates the results of the SFA. By normalizing to the area of the XUV pulse (i.e.
√
πτXUVEx) we get that the value of the sideband amplitude in τ = 0 is

SB+
0 ≃

∣∣∣∣J1(−pCE0

ω2
0

)∣∣∣∣2 1√
1 +

τ2XUV

τ2IR

(2.2.11)

An analogous reasoning can be applied to SB2+, obtaining

J2

(
−pC

E0

ω2
0

e
− t2

τ2
IR

)
≃ J2

(
−pC

E0

ω2
0

)
e
−2 t2

τ2
IR (2.2.12)

and finally
10The Gamma Function Γ(x) is an extension of the concept of factorial numbers. It draws a curve

which interpolates factorial numbers, giving a value to x! even if x /∈ N.
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SB2+
0 ≃

∣∣∣∣J2(−pCE0

ω2
0

)∣∣∣∣2 1√
1 + 2

τ2XUV

τ2IR

. (2.2.13)

More in general, for N ∈ Z we obtain

SBN±
0 ≃

∣∣∣∣JN (
−pC

E0

ω2
0

)∣∣∣∣2 1√
1 + |N | τ

2
XUV

τ2IR

(2.2.14)

If we analyse again the sideband intensity with respect to the intensity of the IR pulse,
we discern a pattern which is quite similar to the previous one, yet holds substantial
differences (Figure 2.5).

(a) τIR = 50 fs, τXUV = 11 fs. (b) τIR = 11 fs, τXUV = 11 fs. (c) τIR = 11 fs, τXUV = 50 fs.

Figure 2.5: Comparison between non-adiabatic expansion and monochromatic case at
different time durations of IR and XUV.

Here we can see how decreasing the IR pulse duration with respect to the XUV one causes
a decrease in the sideband amplitude, while still having the zeros of the Bessel functions
at the same IR intensity. Indeed, if we calculate the limit for τ2XUV

τ2IR
→ +∞ (i.e. for

τIR → 0) we find that the square roots in Eq. (2.2.11) and Eq. (2.2.13) tend to 0. On the
other hand, if τ2XUV

τ2IR
→ 0 (i.e. τIR → +∞)), then the limit of those square roots is 1. For

τIR = τXUV instead we have different results for each sideband. It is worth mentioning
that in the case of the first sideband this results in a 1√

2
decrease in amplitude.

Now let us focus on what happens to the sideband amplitude if we fix the IR intensity
and the XUV duration and let τIR vary. Let us also compare these results with our SFA
simulations, where we have assumed to have perfectly Gaussian pulses.
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(a) IIR = 1011 W
cm2 , τXUV = 11 fs. (b) IIR = 1012 W

cm2 , τXUV = 11 fs.

Figure 2.6: Dependence of the amplitude of SB+ on τIR. In these graphs three models
are compared: the time-independent Bessel, the non-adiabatic Bessel, and SFA model.

(a) IIR = 109 W
cm2 , τXUV = 11 fs. (b) IIR = 109 W

cm2 , τXUV = 11 fs.

Figure 2.7: Dependence of the amplitude of SB++ and SB+++ on τIR. In these graphs
three models are compared: the time-independent Bessel, the non-adiabatic Bessel, and
SFA model.

From Figure 2.6 we immediately notice how our simple Bessel approximation behaves as
an asymptote for both the SFA simulations and the non-adiabatic approximation in the
case of SB+. In fact, the simple Bessel function calculated in the previous section was
time independent, treating A0(t) as constant.

If we now focus on the comparison between the non-adiabatic approximation and the



60 2| Floquet theory in the Strong Field Approximation

SFA, we notice a solid agreement between the two models for the first sideband up to
an intensity of IIR < 1011 W

cm2 . Afterwards, the two curves start diverging one from the
other, more and more for shorter IR pulses. Moreover, at longer IR duration the SFA
simulations and the non-adiabatic model do not tend to the same asymptote any longer.

An analogous observation can be made for higher order sidebands (Figure 2.7), for which
the agreement between SFA and time-dependent Bessel is already unconvincing at IIR ≃
109 W

cm2 . This disagreement is not to be attributed to the CMA, which has a less relevant
impact on the matter, but mainly to the missing term A2

IR

2
inside Eq. (2.1.30), which is

no longer negligible.

2.2.2. Addition of the quadratic term

As we noticed from the previous analysis, the behaviour at higher intensities makes so
that we cannot ignore the quadratic term anymore.

By including again A2
IR(t)

2
inside the phase ϕ(p, t) we bring it back to the form of Eq.

(2.1.30). Hence, we can separate the integral into two terms as such:

ϕ(p, t) = −
∫ +∞

t

p ·AIR(t
′)−

∫ +∞

t

A2
IR(t

′)

2
dt′ (2.2.15)

We choose to focus on the last term, since the analysis of the first one yields the same
result as before. If we consider that AIR(t) = A0(t) cos(ω0t) =

E0(t)
ω0

cos(ω0t), then we are
able to write

A2
IR(t) =

E2
0(t)

ω2
0

cos2(ω0t) =
E2

0(t)

ω2
0

[
1 + cos(2ω0t)

2

]
(2.2.16)

Here we have assumed E0(t) to be Gaussian and therefore take the form of E0(t) =

E0e
− t2

τ2
IR . Consequently, E2

0(t) is going to be Gaussian too, but with a time duration

which is shorter of 1√
2
. In fact, E2

0(t) = E2
0e

−2 t2

τ2
IR = E2

0e
− t2

(τIR/
√
2)2 .

Now, we can simplify the second term of Eq. (2.2.15) as indicated below:

−
∫ +∞

t

A2
IR(t

′)

2
dt′ = −

∫ +∞

−∞

A2
IR(t

′)

2
dt′ +

∫ t

−∞

A2
IR(t

′)

2
dt′ ≃

∫ t

−∞

E2
0(t

′)

ω2
0

[
1 + cos(2ω0t

′)

4

]
dt′

(2.2.17)
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where we have neglected the first term, as it yields a constant phase term.

We can further separate the integral of Eq. (2.2.17) into two parts:

∫ t

−∞

E2
0(t

′)

ω2
0

[
1 + cos(2ω0t

′)

4

]
dt′ =

∫ t

−∞

E2
0(t

′)

4ω2
0

dt′ +

∫ t

−∞

E2
0(t

′)

4ω2
0

cos(2ω0t
′)dt′ (2.2.18)

The first term can again be neglected, as it results in an almost linear contribution which
is small enough in the limits given by the size of the pulse. The second one can be easily
calculated applying the SVEA:

∫ t

−∞

E2
0(t

′)

4ω2
0

cos(2ω0t
′)dt′ ≃ E2

0(t)

8ω2
0

sin(2ω0t) (2.2.19)

As a result, the spectrogram of Eq. (2.1.29) becomes

S(ω, τ) =

∣∣∣∣∣
∫ +∞

−∞
EXUV (t+ τ)e

ipC
E0(t)

ω2
0

sin(ω0t)
e
i
E2
0(t)

8ω3
0

sin(2ω0t)
eiωtdt

∣∣∣∣∣
2

(2.2.20)

which is the Fourier transform of

f(t+ τ) = EXUV (t+ τ)
+∞∑

n=−∞

Jn

(
pC
E0(t)

ω2
0

)
einω0t ·

+∞∑
m=−∞

Jm

(
E2

0(t)

8ω3
0

)
eim2ω0t

By using a transformation akin to that of Eq. (2.2.3) we can also write it as

f(t+ τ) = EXUV (t+ τ)
+∞∑

n=−∞

Jn

(
−pC

E0(t)

ω2
0

)
e−inω0t ·

+∞∑
m=−∞

Jm

(
−E

2
0(t)

8ω3
0

)
e−im2ω0t

(2.2.21)

That product of sums of Bessel functions can be simplified in notation if we introduce the
generalised Bessel function

Jn(u, v) =
+∞∑

m=−∞

Jn(u) · Jm(v) (2.2.22)
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with u = −pC E0(t)

ω2
0

and v = −E2
0(t)

8ω3
0

. Hence, Eq. (2.2.21) becomes

f(t+ τ) = EXUV (t+ τ)
+∞∑

n=−∞

Jn(u, v)e−i(n+2m)ω0t (2.2.23)

Therefore, we can easily notice that these terms oscillate at frequency (n+2m)ω0. Then,
if we want to consider only the first (upper) sideband, we have to take into account only
the terms at a frequency ω0. This implies having n+ 2m = 1, which is possible to obtain
for different (n,m) couples. From a numerical analysis it results that the more relevant
contributions come from the couples (-1,1) and (1,0).

For this reason, we can reprise Eq. (2.2.11) and write

SB+
0 =

∣∣∣∣∣∣∣
+∞∑

n=−∞
n+2m=1

Jn(u, v)

∣∣∣∣∣∣∣
2

1√
1 +

τ2XUV

τ2IR

≃

≃
∣∣∣∣J−1

(
−pC

E0

ω2
0

)
J1

(
− E2

0

8ω3
0

)
+ J1

(
−pC

E0

ω2
0

)
J0

(
− E2

0

8ω3
0

)∣∣∣∣2 1√
1 +

τ2XUV

τ2IR

(2.2.24)

The same can be said for SB2+, for which n+2m = 2 and the most relevant (n,m) couples
are (-2,2), (0,1) and (2,0):

SB++
0 =

∣∣∣∣∣∣∣
+∞∑

n=−∞
n+2m=2

Jn(u, v)

∣∣∣∣∣∣∣
2

1√
1 + 2

τ2XUV

τ2IR

≃

≃
∣∣∣∣J−2(u)J2(v) + J0(u)J1(v) + J2(u)J0(v)

∣∣∣∣2 1√
1 + 2

τ2XUV

τ2IR

(2.2.25)

In general we could say that n + 2m = N , where N is the order of the chosen sideband
(N < 0 for negative sidebands).

This result could have also been obtained through another method (explored in [29] as
well). Let us consider Eq. (2.1.12): the resulting time-dependent Schrödinger equation
will be
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i
∂ |ψ(r, t)⟩

∂t
=

[
p̂2

2
+ p̂ ·AIR(t) +

A2
IR(t)

2

]
|ψ(r, t)⟩ (2.2.26)

With no coupling terms its solution would be a simple plane wave; instead, now our
solution takes the form of a Volkov wave (or Volkov state). The shape of a generic Volkov
wave is

|Ψv(t)⟩ = |p̃⟩ e−iS(t,t′) (2.2.27)

which is basically a plane wave multiplied with the complex exponential of the semi-

classical action S(t, t′) =
∫ t

t′

1

2

(
p+AIR(t

′′)
)2

dt′′. In fact, our solution looks like

ψV (r, t) =
1

(2π)3/2
eip·re−i

∫ t
t′

(
p2

2
+p·AIR(t′′)+

A2
IR(t′′)

2

)
dt′′ (2.2.28)

where the presence of both the plane wave and the semi-classical action is evident.

The integral in the exponential can be calculated to obtain

ψV (r, t) =
1

(2π)3/2
eip·re

−ip·A0(t)
ω0

sin(ω0t)−i
A2
0(t)

8ω0
sin(2ω0t)e

−i
(

p2

2
+

A2
0
4

)
t

(2.2.29)

This wave function looks quite familiar: it is in fact explicitly written in the form stated
by the Floquet theorem |ψ(t)⟩ = |ϕ(t)⟩ e−iϵt, where we observe that the Floquet quasi-
energy is represented by ϵ = p2

2
+

A2
0

4
, and the rest of the function is periodic in T (the first

exponential is the plane wave and therefore does not depend on time, whereas the second
exponential depends on sin(ω0t) and on sin(2ω0t), which are both T -periodic functions).
This way we have simply shown another way of seeing the relation between our model
and Floquet theory.

From here we can use the property of generalised Bessel functions [40] according to which

ei
(
u sin(ϑ)+v sin(2ϑ)

)
=

+∞∑
n=−∞

Jn(u, v)einϑ (2.2.30)

so that we are able to write
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ψV (r, t) =
1

2π3/2
eip·r

+∞∑
n=−∞

Jn
(
p · A0(t)

ω0

,
A2

0

8ω0

)
e
−i

(
p2

2
+

A2
0
4
+nω0

)
t

(2.2.31)

which after CMA and a couple of calculations allows to obtain the exact same results of
Eq. (2.2.24) and Eq. (2.2.25).

If we now try to plot this behaviour as we did in the previous sections we find the following:

(a) τIR = 50 fs, τXUV = 11 fs. (b) τIR = 11 fs, τXUV = 11 fs. (c) τIR = 11 fs, τXUV = 50 fs.

Figure 2.8: Generalised Bessel functions for positive sidebands spanning from the first to
the fourth order.

Little to no changes seem to have occurred in the shape of the functions, aside from
the difference in height of the various peaks depending on the ratio between the squared
duration of the pulses (Figure 2.8). Although, if we take a closer look and compare this
graph with that of the non-adiabatic case, we observe how a variation is actually present.
This deviation is nearly null for an IIR < 1013 W

cm2 , while it increases of a relevant amount
once the intensity grows, as demonstrated in Figure 2.9.
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Figure 2.9: Comparison between generalised Bessel expansion and non-adiabatic expan-
sion at different IR and XUV duration.

Let us now consider what happens by halting the expansion of the generalised Bessel
function at different terms, to demonstrate that our approximations in Eq.s (2.2.24) and
(2.2.25) were valid.
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(a) n = −1 : 1 (b) n = −3 : 3

(c) n = −5 : 5 (d) n = −200 : 200

Figure 2.10: Generalised Bessel expansion halted at different values of n.

In Figure 2.10a we can see what happens if we truncate the summation after just two
terms. For the first (positive) sideband this is equivalent to the approximation in Eq.
(2.2.24), while for the second and third ones we have way less elements than needed to
form a reliable curve. Instead, in Figure 2.10b we notice how SB+ deviates from its
approximation. SB2+ is exactly on its approximation, while SB3+ begins to assume a
more accurate shape. By moving on to Figure 2.10c we notice hardly any difference in
SB+ and a small deviation on SB2+ and on SB3+ akin to that of the previous figure for
the first sideband. Finally, if we look at the last figure, Figure 2.10d, we see that nearly
no difference is present with the previous plot, thus we may confound those curves with
actual generalised Bessel functions.

Therefore, truncating to fewer terms leads to a negligible error, especially if we consider
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that our experiment is going to take place in a smaller range of intensities than what is
shown in the previous figures. Namely, we are going to perform experiments up to an IR
intensity of IIR = 2 ·1012, where we have an acceptable margin of error, as we can observe
from Figure 2.11.

Figure 2.11: Generalised Bessel functions and their approximations for the first three
positive sidebands within the experimental range.

Up to this moment we have analysed positive sidebands exclusively. If we consider the
negative sidebands as well, we find a result which at first glance may be unexpected:
while the peak of negative sidebands is shifted with respect to that of positive ones, as we
already anticipated from the simple Bessel model for monochromatic beams, they possess
a lower amplitude too. What is the reason behind this behaviour? In order to understand
this, we can study an example.

Let us employ the previous approximation of

SB+
0 ≃ |J−1(u)J1(v) + J1(u)J0(v)|2

.
= |A+B|2

and the similar truncation for its negative counterpart

SB−
0 ≃ |J1(u)J−1(v) + J−1(u)J0(v)|2

.
= |A′ +B′|2

and remember the property of Bessel functions for odd11 values of n
11Instead, for even values we have Jn(z) = J−n(z).
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Jn(z) = −J−n(z) (2.2.32)

As a consequence, we can analyse how the terms A and A′, and the terms B and B′

relate to one another. If we start from A and A′, by applying Eq. (2.2.32) we are able to
calculate the following:

A′ = J1(u)J−1(v) = [−J1(u)] · [−J−1(v)] = J−1(u)J1(v) = A

On the other hand, B and B′ behave as indicated below:

B′ = J−1(u)J0(v) = [−J1(u)] · J0(v) = −J1(u)J0(v) = −B

Hence, we have that A′ = A and B′ = −B, which implies that we can rewrite our
sidebands amplitude as

SB+
0 ≃ |A+B|2

SB−
0 ≃ |A−B|2

where it is easy to notice the difference between the two, and also why the peaks of SB−

are at lower intensities12 than those of SB+.
12By analysing the parity of Bessel functions we are able to notice that both A and B have a negative

first peak around similar values of intensity, so an addition of the B term actually corresponds to an
increase in absolute value of the first peak. Naturally, the opposite happens if we subtract B. Therefore,
in terms of the amplitude of the first peak we have SB+ > SB−. The same happens for later peaks.
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Figure 2.12: Generalised Bessel functions for the first three positive (solid lines) and
negative (dashed lines) sidebands.

If we now return to analysing the dependence of the sidebands amplitude on the IR
duration, what we observe is the following:

(a) IIR = 1011 W
cm2 . (b) IIR = 1011 W

cm2 . (c) IIR = 1011 W
cm2 .

(d) IIR = 1012 W
cm2 . (e) IIR = 1012 W

cm2 . (f) IIR = 1012 W
cm2 .

Figure 2.13: Dependence of the amplitude of SB+, SB++ and SB+++ on τIR. In these
graphs the following models are compared: the time-independent Bessel, the non-adiabatic
Bessel, the time-independent generalised Bessel, the truncated generalised Bessel, the
complete generalised Bessel, and the SFA model. Here, τXUV = 11 fs.
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The first detail is that now the asymptotic value reached by the curve is no longer the same
which we had with the simple Bessel functions; the addition of the quadratic term has
in fact moved the limit for long duration pulses. This difference gains a higher relevance
the more we increase the IR intensity, and the higher is the order of the sideband we are
considering.

Then, it is clear that truncating the generalised Bessel functions at higher orders (in
this instance at n = 200) does not yield a significant improvement with respect to the
approximation we made in Eq. (2.2.24) and in Eq. (2.2.25), hence we are justified to use
the latter instead of the former.

A further point can be made about the comparison between the three time-dependent
models we used (i.e. SFA, non-adiabatic Bessel and generalised Bessel). Concerning the
first sideband, the three models are superimposed up to an intensity of IIR ≃ 1011 W

cm2 .
After that, while the non-adiabatic Bessel functions and the generalised Bessel curves are
still roughly superimposed, the deviation from the SFA model is definitely non-negligible.
This may be attributed to the approximation performed in Eq. (2.2.10). As we can see
from Figure 2.14c, this approximation becomes weaker right after an intensity of IIR ∼
2 · 1011 W

cm2 , where the difference between the exact value of |J1|2 and its approximation
begins to manifest. On the other hand, if we look at the temporal profile of the function
in Figure 2.14a, we begin to see a splitting of the main peak at IIR > 1012 W

cm2 , which is
not present in Figure 2.14b due to the Gaussian nature of the approximation. After this
point we can no longer employ the approximation of Eq. (2.2.10) to find an analytical
solution and we require numerical calculations.

Instead, by analysing the second and third positive sidebands it is possible to notice how
a difference is immediately present. Indeed, the SFA simulations lie onto the generalised
Bessel curves instead of the non-adiabatic Bessel model, which are visibly distinct one
from the other. Even at higher intensities (IIR ≃ 1012 W

cm2 ) the accord appears to be
reliable enough.
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(a) (b) (c)

Figure 2.14: (a) exact value of |J1|2; (b) approximation of Eq. (2.2.10); (c) difference
between the two.

2.3. Effects of dispersion

As we already mentioned in Chapter 1.2, the generated sidebands may not have the shape
displayed in previous simulations (see Figure 1.17). In fact, they are likely to be distorted
by dispersion.

Before introducing the effects of both non-linear and linear dispersion (also referred to
as chirp), it is of fundamental importance to fully understand what they are from a
theoretical standpoint.

Let us begin by considering a simple, non-monochromatic electric field E(t) having a
central frequency of ω0. We wish to isolate a few frequency around ω̄, another frequency
comprised in the wave packet which is far enough from ω0. Our objective now is trying
to understand when this frequency will arrive.

If we take into account a small range of frequencies around ω̄, namely the range ω̄−∆ω <

ω < ω̄ +∆ω, we can write:

Eω̄(t) =
1

2π

∫ ω̄+∆ω

ω̄−∆ω

∣∣∣Ẽ(ω)∣∣∣eiϕ(ω)eiωtdω (2.3.1)

where we indicated as Ẽ(ω) the Fourier transform of E(t) and we wrote it as the product
of its modulus and phase ϕ(ω).

We can then make an expansion of our phase ϕ(ω) centred around ω̄, thus obtaining

ϕ(ω) = ϕ(ω̄) +
dϕ

dω

∣∣∣∣
ω̄

(ω − ω̄) + ... (2.3.2)



72 2| Floquet theory in the Strong Field Approximation

For the moment we shall stop at the first order expansion. Therefore, our E(t) field will
become:

Eω̄(t) =
1

2π

∫ ω̄+∆ω

ω̄−∆ω

∣∣∣Ẽ(ω)∣∣∣e−i[ϕ(ω̄)+ dϕ
dω |ω̄(ω−ω̄)]eiωtdω =

=
1

2π

∫ ω̄+∆ω

ω̄−∆ω

∣∣∣Ẽ(ω)∣∣∣e−iϕ(ω̄)e−i dϕ
dω |ω̄ωei

dϕ
dω |ω̄ω̄)ei(ωt−ω̄t)eiω̄tdω =

=
1

2π
ei[ω̄t−ϕ(ω̄)]

∫ ω̄+∆ω

ω̄−∆ω

∣∣∣Ẽ(ω)∣∣∣ei(ω−ω̄)[t− dϕ
dω |ω̄ ]dω

(2.3.3)

We immediately notice that we have the maximum for E(t) when t − dϕ
dω

∣∣
ω̄
= 0, that is

when t is equal to the so-called group delay τg(ω̄). Hence, τg(ω̄) = dϕ
dω

∣∣
ω̄
.

If we now wish to extend the previous reasoning to the whole pulse, we can perform the
same expansion of ϕ(ω) around the central frequency ω0 instead. Therefore,

ϕ(ω) = ϕ(ω0) +
dϕ

dω

∣∣∣∣
ω0

(ω − ω0) +
1

2

d2ϕ

dω2

∣∣∣∣
ω0

(ω − ω0)
2 +

1

6

d3ϕ

dω3

∣∣∣∣
ω0

(ω − ω0)
3 + ... (2.3.4)

From this we gather that the final group delay calculated for a generic frequency ω must
be:

τg(ω) =
dϕ

dω
=

dϕ

dω

∣∣∣∣
ω0

+
d2ϕ

dω2

∣∣∣∣
ω0

(ω − ω0) +
1

2

d3ϕ

dω3

∣∣∣∣
ω0

(ω − ω0)
2 +

1

6

d4ϕ

dω4

∣∣∣∣
ω0

(ω − ω0)
3 + ... =

= τg(ω0) +D2(ω − ω0) +
1

2
D3(ω − ω0)

2 +
1

6
D4(ω − ω0)

3 + ...

= τg(ω0) +GDD(ω − ω0) +
1

2
TOD(ω − ω0)

2 +
1

6
FOD(ω − ω0)

3 + ...

(2.3.5)

In Eq. (2.3.5) we have defined a few critical quantities, which are the focus of this
discussion, and indicate the dispersion of the pulse. While τg(ω0) is a constant term and
can generally be disregarded, we have that the others are pivotal in the discussion on the
phase, being multiplied by the frequency itself and therefore leading to a value which is
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not invariable.

The first important term we encounter is D2, or GDD, and it is the second order dis-
persion, or group delay dispersion. It represents the linear chirp, which we also hinted
at in Chapter 1.1.4. D3, or TOD, is the third order dispersion, and it gives a parabolic
contribution, while D4, or FOD, is the fourth order dispersion, which resembles a cubic
function, and they will be followed by the fifth order, the sixth order, and so on. These
represent the non-linear dispersion. We will limit to consider up to the fourth order, since
above the fifth order the influence of those terms can be deemed trivial in our discussion.

Let us transpose these terms into our model. For an easier visualisation of these concepts
we will employ simulations performed through the STRIPE algorithm. In our case, we
will be able to decompose the phase terms ϕIR(ω) and ϕXUV (ω) of Eq. (2.1.42) as we did
in Eq. (2.3.4). This will result in a phase that may be written as:

ϕIR(ω) =
1

2
GDDIR(ω − ω0)

2 +
1

6
TODIR(ω − ω0)

3 +
1

24
FODIR(ω − ω0)

4

ϕXUV (ω) =
1

2
GDDXUV (ω − ω0)

2 +
1

6
TODXUV (ω − ω0)

3 +
1

24
FODXUV (ω − ω0)

4

(2.3.6)

bringing us to the following spectrograms:

SIR(ω) = S0,IR(ω) · e−i[
1
2
GDDIR(ω−ω0)2+

1
6
TODIR(ω−ω0)3+

1
24
FODIR(ω−ω0)4]

SXUV (ω) = S0,XUV (ω) · e−i[
1
2
GDDXUV (ω−ω0)2+

1
6
TODXUV (ω−ω0)3+

1
24
FODXUV (ω−ω0)4]

(2.3.7)

We can observe how the constant and linear terms have been neglected. This is due to
the fact that their derivative results in a null and constant contribution respectively, and
we do not mind for a constant delay of all frequencies.

Now we can start analysing the effects of the the single components of the phase. Let us
go in order, from lower to higher order dispersion, to then see a few examples of mixed
terms.

• TL pulses:
We begin by considering transform limited (TL) pulses. This implies that all the
previous terms, both pertaining to the IR phase and to the XUV phase, are set to
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zero. We only have the terms τg(ω0) and τg(ωx) for the IR and XUV respectively,
which (as already mentioned) we will not consider. This makes for an intuitive
picture which is akin to that of Figure 1.15: firstly, the XUV pulses ionise the gas,
and subsequently the IR beam hits the photoelectrons, causing stimulated emission
or absorption, thus generating the sidebands. Here is an example of simulation with
no dispersion, accompanied by the respective schematic sidebands plot:

(a) (b) (c)

Figure 2.15: In Figure 2.15a we can see a straightforward scheme of the ionisation of
the Ne atoms. If no chirp is present, the sidebands are always centered around the same
values. Only two sidebands were plotted, for simplicity. In Figure 2.15b we see the SHS
spectrogram, which indeed possesses straight sidebands at the expected values. It was
obtained with an intensity of IIR = 8 · 1011 W

cm2 . In Figure 2.15c, the generating pulses.

• GDDIR-only pulses:
Now we consider a spectrogram which is affected exclusively by the second order
dispersion of the IR pulse. As previously mentioned, since D2 represents the linear
chirp, it must have a linear effect on the sidebands of the spectrogram. Indeed,
what happens in case of an IR beam affected only by GDD is that the frequency
of the IR pulse increases (up-chirp) or decreases (down-chirp) linearly with time,
therefore varying its energy in time too (Figure 2.16). Hence, with an XUV pulse
whose energy is constant and a time-varying IR pulse, we will have diverging or
converging sidebands.
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(a) (b) (c)

Figure 2.16: Case of a linearly chirped IR pulse (up-chirp) after ionisation by a TL XUV
pulse. The XUV beam ionises photoelectrons to the same energy, while the chirped
IR pulses hit ionised photoelectrons with different energies depending on the delay τ .
Since higher frequencies in this case are faster, we will have higher energies at negative
delays and while lower frequencies for τ > 0, resulting in converging sidebands. The
opposite happens in case of down-chirp, and the sidebands are diverging. Note that in
this instance the probe is delayed, differently from the previously used formulas (with a
delayed XUV the result is similar to the one shown for the down-chirp, instead). This
behaviour is confirmed by Figure 2.16b, in which a GDDIR = −250 fs2 and an intensity
IIR = 5 · 1011 W

cm2 were used. The third picture represents the employed pulses. We notice
how their shape is still Gaussian, since the linear chirp depends on the square of the
frequency.

• GDDXUV-only pulses:
Let us consider the case in which only the XUV pulses are affected by group delay
dispersion. At first glance, it may appear similar to the previous one, yet it yields a
different result. We foresee that having another linear chirp will imply again some
kind of tilt of the sidebands, except now it is the XUV beam to possess different
energies and ionise photoelectrons differently. Then, no matter the delay τ , the IR
radiation is going to affect the particles with the same quantity of energy. So, the
distance between main band and sidebands will be the same for every delay, but
this time the main band will be at different energies depending on τ , therefore being
tilted, together with its sidebands.
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(a) (b) (c)

Figure 2.17: Simulated spectrogram with linear up-chirp on the XUV pulse. The side-
bands result parallel and tilted upwards, instead of being converging or diverging. The
sidebands are tilted downwards in case of down-chirp. In this figure a GDDXUV = 100

fs2 and an IIR = 1012 W
cm2 were employed.

• GDDIR-only and GDDXUV-only pulses:
Now that we have seen the effects of chirp in both IR and XUV taken individually,
we can see a few examples of what happens if we have both pulses with a non-zero
GDD. What we expect is certainly a tilt in the sidebands, and we can imagine this
tilt will vary from SB+ to SB−.

(a) (b) (c)

Figure 2.18: Case of both IR and XUV pulses affected by down-chirp. Here, GDDIR =

−100 fs2, GDDXUV = −50 fs2 and IIR = 8 · 1011 W
cm2 .

• TODIR-only pulses:
From this point on, the dispersion we are going to analyse will no longer be linear.
This is the reason why we are not able to represent in a clear and simple way as in
Figure 2.15a, Figure 2.16a or Figure 2.17a the energy of our photoelectrons and the
shape of the sidebands. Now we will analyse the case of a TL XUV pulse and an IR
pulse with third order dispersion (TOD). By inspecting the shape of the sidebands,
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we are able to discern a parabolic form. This is given by the fact that our TOD
term in the derivative of the phase is actually proportional to ω2.

(a) (b)

Figure 2.19: In the case of TODIR ̸= 0, the IR pulse is no longer Gaussian: it possesses
a main peak with a steeper side, after which lower, decreasing peaks are collocated.
This allows the formation of the aforementioned parabolic shape, visible in Figure 2.19b.
Changing the sign of the TOD would vary the concavity of the parabola. This spectrogram
is also symmetric with respect to the main band. In this figure only one sideband is marked
with the red dashed line to better appreciate the parabolic shape. The values used for
this simulation are TODIR = 350 fs3 and IIR = 1012 W

cm2 .

• TODXUV-only pulses:
In the linear chirp case, when we switched from a non-null GDDIR to a GDDXUV

different from zero our simulations changed visibly. On the other hand, altering the
current hypothesis from TODIR ̸= 0 to TODXUV ̸= 0 does not have a substantial
impact on the overall shape of the sidebands. The only difference this time is the
position of the vertex of the parabola. With a positive TODIR (as in Figure 2.19)
the vertex could be found for an IR delay τ > 0, and conversely for a negative
dispersion. In our case of a non-null TODXUV the opposite happens: in case of
positive dispersion the vertex is at negative delays and vice versa. Having this kind
of parallelism makes so that it is impossible to distinguish a negatively chirped XUV
from a positively chirped IR (or vice versa) from the SHS spectrogram alone.

• TODIR-only and TODXUV-only pulses:
Given the previous two points, what happens if we have a combination of both
TODIR and TODXUV ? Naturally, it depends on the amount of third order dis-
persion present in each type of pulse and on its sign. Since the sidebands have
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a mirrored behaviour, With an opposite dispersion we expect them to sum up to
obtain a similar shape as the one we started with. However, if the two signs of the
dispersion are equal, their value is more or less the same, and the duration of the
pulses is comparable, we can watch how the overall TOD changes form. The "tails"
from the parabolic shape are now visible on both sides, rendering the sidebands
almost symmetrical around τ = 0. Also, due to this symmetry the case of both pos-
itively chirped pulses is almost indistinguishable from the case of both negatively
chirped pulses.

(a) (b)

Figure 2.20: IR and XUV beams with opposite TOD. In this case the pulses have
a comparable duration, causing interference. The lower peaks will behave like pulses
themselves and create many smaller parabolic figures. In this instance TODIR = 400 fs3,
TODXUV = −400 fs3 and IIR = 1012 W

cm2 .
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(a) (b)

Figure 2.21: In this picture we have both positive third order dispersions. We notice how
this "cross-shaped" spectrogram is actually the superposition of two parabolic curves with
vertices on opposite sides of τ = 0. In this case we have TODIR = TODXUV = 400 fs3

and IIR = 8 · 1011 W
cm2 .

• FODIR-only pulses:
As we might expect having in mind the previous points, the fourth order dispersion
(FOD) for the IR pulse will lead to a sideband which is shaped like a cubic function.
This is of course given by the dependence of τg(ω) on the third power of ω. D4 is
in fact multiplied by (ω − ω0)

3. Furthermore, we notice that these sidebands are
symmetric with respect to the main band. Here are a couple of examples of FOD-
affected pulses and the resulting spectrograms.
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(a) (b)

Figure 2.22: SHS spectrogram generated by a TL XUV pulse and an IR pulse affected by
fourth order dispersion. The pulse is nearly symmetrical in time with an almost Gaussian
peak, but it also presents two pedestals which prolong its final duration and confer to the
spectrogram it characteristic cubic shape, as seen in Figure 2.22b. In this picture, the
following factors were used: FODIR = 2500 fs4, IIR = 8 · 1011 W

cm2 .

• FODXUV-only pulses:
Since the sidebands assume the shape of an odd function, having the FOD on the
IR or on the XUV changes the shape of the spectrogram. In fact, if the fourth order
dispersion is on the XUV it breaks the symmetry around the MB (as in case of
GDD-only pulses) and we have that the sidebands have the same shape instead of
being mirrored.

(a) (b)

Figure 2.23: SHS of positive XUV non-linear chirp of the fourth order. In this case
FODXUV = 2200 fs4 and IIR = 1.2 · 1012 W

cm2 .
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• FODIR-only and FODXUV-only pulses:
Due to the peculiar kind of symmetry of fourth order dispersion, we expect to always
have one of the two sidebands to be the consequence of a "constructive" sum, giving
origin to a sideband which looks similar to the previous ones, while the other one
results in a sort of "destructive" sum, having a cross-like shape, not unlike those
coming from TOD-only pulses. Here is an example:

(a) (b)

Figure 2.24: In this picture we can clearly observe a cubic SB− and a cross-shaped SB+.
This happens when both pulses have same sign dispersion. In this image both signs are
positive; if they were negative, the lower sideband would be mirrored around zero delay.
With opposite sign dispersion we would have a cubic SB+ and a cross-shaped SB−. In
the above picture, FODIR = 3000 fs4, FODXUV = 2700 fs4 and IIR = 1.2 · 1012 W

cm2 .

• Example of pulses with mixed dispersion:

(a) (b)

Figure 2.25: GDDIR = 70 fs2, TODIR = −230 fs3, FODIR = 1250 fs4, GDDXUV = −60

fs2, TODXUV = 400 fs3, FODXUV = 1400 fs4, IIR = 4 · 1011 W
cm2 .
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Now we wish to enquire how these pulses behave compared to our models. We are therefore
going to run SFA simulations of pulses with different kinds of dispersion, and plot the
amplitude of the resulting sidebands as a function of the duration of the IR pulse. In
these simulations we are going to use an IR intensity of IIR = 1011 W

cm2 and a TL duration
of the XUV pulses of τXUV = 11 fs. Furthermore, we are going to investigate the first
positive sideband exclusively, as the other sidebands behave similarly.13

We are going to study linear chirp to begin with. We shall consider a chirped IR pulse
first. From Eq. (2.3.5) we know that chirp is going to vary the time of arrival of certain
frequencies, thus broadening the pulse in time. Given the same chirp for each pulse,
shorter pulses are the ones which are going to be more affected, experiencing a large
dispersion compared to their duration. Hence, shorter pulses are going to be stretched
in time and behave like longer ones, resulting in sidebands with a higher-than-expected
amplitude. Therefore, we need not consider their TL duration any longer for this type
of plot; instead, we must plot the amplitude of the sidebands as a function of the actual
FWHMIR.

An equivalent reasoning can be applied to linearly chirped XUV pulses. In this case, we
are going to need a correction factor for our models, in which FWHMXUV is employed
instead of τXUV inside the square root of Eq. (2.2.11), (2.2.24), and (A.0.4), so to obtain

1√
1+

FWHM2
XUV

τ2
IR

(and similarly for the other sidebands).

Hence, if we have both pulses which are linearly chirped and we apply both corrections,
we anticipate to find again a robust correspondence between models. This is in fact the
case, as we see from Figure 2.26. In the following figures, the generating pulses are also
shown, in the case of τIR = 10 fs and τXUV = 11 fs.

13As a final remark, in the following graphs the Taylor expansion presented in Appendix A is considered
as well, so to have a more complete outlook on all the models.
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(a) (b)

Figure 2.26: Comparison between models with linearly chirped IR and XUV pulses.
GDDIR = −50 fs2, GDDXUV = 50 fs2.

Now we shall move on to non-linear dispersion. Both TOD and FOD result in a distortion
of the temporal distribution of the pulses, which now present tails and peaks that are not
contemplated by our theory. As a result, our model begins to be less reliable. Indeed, if
we simulate a non-linearly dispersed IR pulse we find that the temporal shape of shorter
pulses is so distorted that they possess a large FWHMIR, while still having a sideband
amplitude which is smaller than expected. Therefore, our generalised Bessel model is not
valid for these pulses, while it still holds for longer ones. This is true both for the case of
a non-null TODIR and FODIR (Figure 2.27).
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(a) (b)

Figure 2.27: Comparison between models with non-linearly dispersed IR pulse. TODIR =

450 fs3, FODIR = 15000 fs4.

On the other hand, with a non-linear dispersion on the XUV pulse we obtain a different
result. In fact, since the duration of the XUV pulse is kept constant throughout all the
simulations, we are going to have a deformation of the whole curve, without any "jumps"
for particular values like those of Figure 2.27b. We can notice this deviation in Figure
2.28b.

(a) (b)

Figure 2.28: Comparison between models with non-linearly dispersed XUV pulse.
TODXUV = 650 fs3, FODXUV = −19000 fs4.

Naturally, by combining all these types of dispersion we obtain pulses which are not
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temporally Gaussian and which do not strictly follow the previous curve, rather they
follow a mixture of the previous trends. As we expect and observe from Figure 2.29
and Figure 2.30, the smaller the dispersion, the more the points calculated through SFA
simulations lay on the generalised Bessel line.

(a) (b)

Figure 2.29: Comparison between models with slightly dispersed IR and XUV pulses.
All but one point follow the generalised Bessel model. That deviant point comes from
the τIR = 5 fs pulse, as we expect, and is not very distant from the rest of the curve.
GDDIR = 50 fs2, TODIR = 75 fs3, FODIR = 130 fs4, GDDXUV = 40 fs2, TODXUV =

−45 fs3, FODXUV = −120 fs4.
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(a) (b)

Figure 2.30: Comparison between models with strongly dispersed IR and XUV pulses.
The deviation from the curve is highly visible, and some of the points deriving from shorter
pulses do not follow the same curve as the others. GDDIR = 100 fs2, TODIR = 500 fs3,
FODIR = 15000 fs4, GDDXUV = −131 fs2, TODXUV = 656 fs3, FODXUV = −19000 fs4.
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After studying the theoretical models, time has come to verify whether they are consistent
with the experimental results. In this chapter we will check whether or not the experi-
mental points are close the theoretical lines. If that is not the case, we will also examine
the reasons behind the discrepancies and how we can adjust our data accordingly, so to
find again a match between model and reality.

3.1. Long-IR limit

We start by considering long IR pulses (τIR → +∞)1, and we perform our experiments
with a variable IR average intensity, in a range spanning from IIR = 5 · 1010 W

cm2 to
IIR = 2 · 1012 W

cm2 . We recall from Chapter 2 that we expect to see for each sideband a
pattern which follows the modulus square of a generalised Bessel function.

1In our case, given τXUV ≃ 11 fs we will require τIR ≳ 100 fs
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(a) (b)

Figure 3.1: (a) Behaviour of raw data from the first three positive and negative sidebands
and from the main band, and (b) comparison with the generalised Bessel model. The am-
plitude of the main band has been halved in both data and model for better visualisation.
In Figure 3.1b, the solid lines represent positive order sidebands (and main band), while
the dashed lines represent negative order ones.

From Figure 3.1 it is clear that the experimental points are well below the expected curves.
Furthermore, the negative sidebands seem to be at higher values than the positive ones.
Nonetheless, they all appear to be following the expected generalised Bessel shape. How
can we explain this behaviour?

The reason behind this deviation from the model is to be attributed to the transfer
function of the ToF spectrometer. As a matter of fact, the electromagnetic lens generating
the electric field inside the ToF acts on the ionised electrons by means of two parameters,
namely lens and drift. The first one controls the focusing of the electrons, whereas the
second one dictates their acceleration. They can be selected by the user, and usually
having higher lens and drift factors improves the efficiency of counts as a function of time.
On the downside, this creates the need for a greater correction.

Therefore, we need to rescale our experimental results considering these two parameters
as well. In Figure 3.2 the scaling factors applied to each sideband and to the main band
are shown, which are increasing in a monotonic fashion as a function of the sideband
order. They were found by minimising the RMS distance between experimental data and
the curve of each SB. In Figure 3.3 we observe how this affects our results, which now lie
onto the theoretical curves.
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Figure 3.2: Correction factor α as a function
of the sideband order. It is a monotonically
increasing function, and the error grows with
the order (positive or negative) of the side-
band.

Figure 3.3: Comparison between corrected
data and theoretical model. The data have
a good match with the respective generalised
Bessel lines. As expected, the negative order
sidebands are now below the positive ones.

Hence, we conclude that in the range of intensities we explored, Floquet theory in the
approximation of generalised Bessel functions is reliable in its description of the gener-
ation and population of sidebands due to two-colour photoemission, provided we are in
the limit of long IR pulses (τIR >> τXUV ) and that we account for both lens and drift
factors.

Now we shall investigate the case of IR pulses of variable time duration.
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3.2. Variable IR duration

The duration of the IR pulses is now set to explore the range between τIR = 5 fs and
τIR = 50 fs, using an average intensity of IIR = 5 · 1011 W

cm2 . The following figures display
the outcome of these measurements, side by side with the theoretical values given by
the generalised Bessel approximation. Only the main band and the first two positive
sidebands will be considered, for simplicity (the other sidebands yield similar results).

(a) (b)

Figure 3.4: (a) Raw data compared to (b) theoretical model. In Figure 3.4b, τXUV = 12.33

fs was considered.

What we immediately observe from Figure 3.4, is that the general trend of the data abides
by the expected behaviour of the theoretical curves obtained through the generalised
Bessel functions, i.e. the data do actually depend on time and the sideband amplitudes
grow with τIR. Nevertheless, the final curve given by the data does not seem to adhere
to the anticipated shape, which is monotonic and does not present any extreme.

We can make sense of this discrepancy by recalling that each pulse is affected by dispersion.
Since different duration IR pulses are obtained through the variation of the pressure of gas
inside the HCF, the pulses generated in each experiment are subject to different amounts
of GDD, TOD, and FOD. Hence, by knowing the dispersion of every pulse we should be
able to predict the behaviour of the main band and of the sidebands. Through STRIPE
reconstructions of the pulses and of the spectrogram, we are capable of retrieving all of
the required values of dispersion and of calculating the values of the bands in τ = 0. In
Figure 3.5, the comparison between the raw data and the STRIPE reconstructions, which
take into consideration the dispersion of the single pulses.
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(a) Raw data from the experiments. (b) STRIPE reconstruction.

Figure 3.5: (a) Raw data compared to (b) STRIPE reconstruction, which considers the
dispersion of both IR and XUV pulses.

The trend of the acquired data now aligns to that of the reconstructed bands, yet the
actual values do not match the expected ones. The first issue we encounter is the duration
of the XUV pulses. We considered the same duration for all pulses, but this was just a
reasonable assumption. It is necessary to check whether τXUV deviates from the value
we utilised. In Figure 3.6 we examine the duration of both IR and XUV pulses, and the
effect of the variation of the XUV duration on the theoretical curve of the first positive
sideband.
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(a) (b)

Figure 3.6: (a) duration of the employed IR and XUV pulses; (b) effect on the SB am-
plitude of the variation in XUV duration. The durations plotted in Figure 3.6b are those
of the actual pulses and their mean (in red), which is the value used in the previous
simulations.

From the previous graphs it is clear that the XUV pulses do not undergo substantial
variations. Hence, by using the average value in the theoretical model we do not commit
a tangible error. Therefore, in order to understand why we have a deviation between
model and data we need to look into two different parameters which might change: the
average intensity of the IR beam (Figure 3.7) and the generating IR wavelength (Figure
3.8).
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(a) (b)

Figure 3.7: (a) variation in intensity for each pulse; (b) effect of this intensity variation.
In Figure 3.7b, the aqua line represents the expected intensity, which was used in the
simulations.

(a) (b)

Figure 3.8: (a) variation in wavelength for each pulse; (b) effect of this wavelength vari-
ation. In Figure 3.8b, the blue line represents the expected wavelength, which was used
in the simulations.

The fluctuations from pulse to pulse in both intensity and wavelength are non-negligible,
and their effect on the amplitude of main band and sidebands is manifest. It was already
known that a variation in intensity leads to the bands moving in amplitude in a generalised
Bessel trend. Therefore, a large variation in intensity such as the one experienced for
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τIR = 34 fs is bound to contribute to a large deviation from the reconstructed value.
Similarly, having different IR wavelengths for each pulse creates a difference in the outcome
of our measurement, especially at a higher IR duration. Hence, if these two factors diverge
from their expected values of IIR = 5 · 1011 W

cm2 and λIR = 811 nm, this results in a
discrepancy between theoretical model and acquired data.

Nevertheless, the general behaviour of the bands is clear. Through Floquet theory we
were able to predict the decreasing trend in the sidebands amplitude (increasing in case
of the main band) as the IR pulses decrease in duration. This implies that Floquet theory
may still be applied to short, few-cycle pulses, even if we have a loss of periodicity and
an increase in border effects. Moreover, we demonstrated that having τIR > τXUV is not
strictly necessary, as in the previous graphs we employed two IR pulses at τIR = 9 fs
while having τXUV ≃ 12 fs. This also suggests that it is not necessary for τIR to be much
greater than TIR. Indeed, in the case of τIR = 9 fs we have TIR = 2.57 fs (λIR = 770 nm),
therefore we only require τIR > TIR (which is the simple condition to have a pulse).

As a final remark, we can observe in Figure 3.9 the complete behaviour of the first two
positive sidebands and of the main band, spanning the range of τIR = 5 ÷ 160 fs. In
the short IR duration range we notice the bend in the graph given by the presence of the

1√
1+N ·( τXUV

τIR
)2

term, while in the long IR pulse limit the curve goes towards the asymptotic

value given by the original Floquet theory.

Figure 3.9: Complete behaviour of the theoretical model, considering the range of both
short and long IR pulses.
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4| Conclusions

During the course of this thesis work we employed principles of ultrafast optics to explore
Floquet theory in the limit of short pulse duration.

In the beginning we discussed the general concept of Floquet theory as a way to describe
systems undergoing a periodic perturbation, together with some of its implications. In
particular, we discussed the Floquet theorem and how it is possible to write the wave func-
tion of a particle in the Time-Dependent Schrödinger Equation as |ψ(t)⟩ = |ϕ(t)⟩ e−iϵt,
with ϕ being a T -periodic function and ϵ the Floquet quasi-energy. This gives the oppor-
tunity for a series expansion that will be largely exploited in our theoretical analysis of
the experiment.

We also mentioned some of its practical applications in the description of physical phe-
nomena, especially in condensed matter physics and in optics, and in the relatively new
field of Floquet engineering. Specifically, we focused on ultrafast optics and inquired
whether the use of ultrashort pulses would hinder the utilisation of Floquet theory due to
their non-perfect periodicity. As a solution to this quandary, we proposed an experiment
consisting in a pump-probe technique with ultrashort (femtosecond) IR and XUV pulses
to research the behaviour of Ne gas. Afterwards, we analysed the optical setup employed
for the aforementioned pump-probe experiment and presented the experimental results.

In our experiments we used the XUV pulses to ionise the gas and generate the main
band, and employed the IR beam to drive the electron dynamics and dress the Floquet
states, thus populating the sidebands. This process was repeated for numerous time delays
between probe and pump until we obtained a complete spectrogram of the amplitudes as
a function of both energy and delay. To characterise these spectrograms the main figures
of merit of the IR and XUV beams needed to be analysed as well, such as their spectra,
phase, intensity, or beam profile. Many techniques were employed to characterise both
pulses. Some of them were already well-known, such as the FROG setup, while others
were implemented ad hoc for this experiment, like STRIPE. Through these methods, and
by normalising, fitting and cleaning the signal from the tails caused by electronic effects,
we were able to reconstruct both IR and XUV pulses. This also helped us retrieve the
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values of dispersion, which were of paramount importance in the study of the theoretical
model.

4.1. Interpretation of the results

We started from the derivation of the model through Strong Field Approximation, to
then simplify it by taking advantage of approximations and series expansions. At first,
we chose not to consider the quadratic term of the vector potential (A2

IR), as it was
deemed negligible. Afterwards, as a first approximation we decided to perform a frequency
expansion. This expansion was found to be considerably effective. In fact, each order of
approximation, consisting in a Bessel function of the first kind, fully represents a single
sideband. This expansion was performed in an adiabatic fashion, without considering
the duration of the pulses, which on the contrary we believed to have an impact on
the result. Indeed, through a non-adiabatic approximation and considering temporally
Gaussian pulses we observed a substantial attenuation of the amplitude of the Bessel
functions for τ2XUV

τ2IR
→ +∞.

Further studies were performed to examine the dependence of the sideband amplitude on
the IR duration. Here we found a discrepancy between non-adiabatic Bessel expansion
and SFA model with the variation of intensity. The A2

IR term resulted to be less and less
negligible the more we raised the IR intensity. The threshold over which we could still
tolerate the absence of the quadratic term depended on the order of the sideband we were
considering: first order sidebands were nearly unaffected by the initial approximation until
IIR was in the order of 1011 W

cm2 , whereas from the second order sidebands on we noticed
a discrepancy between models already at IIR = 109 W

cm2 . Hence, we decided to include
the missing term in the frequency expansion, obtaining a final model which follows the
behaviour of the so-called generalised Bessel functions. This new approximation, although
slightly more complex than the previous ones, seems to be remarkably close to the results
of the SFA model for higher order sidebands, while SB+ and SB− are still not perfectly
aligned with the expected values. Finally, we observed the effects of non-idealities such as
dispersion. We concluded that GDD does not have a relevant effect on our models, as it
maintains the Gaussian shape of the pulse, whereas TOD and especially FOD strongly
impact the final results, which do not always match.

As a final step, we compared the results of our theoretical analysis with the actual data
acquired from the experiments. The first results were devoted to verify the behaviour
of the amplitudes of MB and SB as a function of the IR intensity in the long IR limit.
The general trend of the data followed the generalised Bessel functions predicted by the
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theoretical model, confirming that our generalised Bessel approximation is reliable and
accurate in the range of intensities we explored (IIR = 5 · 1010 ÷ 2 · 1012 W

cm2 ).

Afterwards, we focused on the impact of the duration of our pulses on the theoretical
model. We set the average intensity at IIR = 5 · 1011 W

cm2 and let the IR duration vary
in the range τIR = 5 ÷ 50 fs, while keeping τXUV ≃ 12 fs. We immediately verified the
decreasing of the amplitude for shorter IR pulses, yet the data curve did not completely
follow the theoretical line. In fact, the model does not account for dispersion, so we had to
use the STRIPE algorithm to retrieveGDD, TOD and FOD of the pulses and reconstruct
the main band and sideband amplitudes. Then, we decided to inspect the values which we
considered to be constant, such as the XUV duration, the IR intensity and the wavelength
of the generating IR beam. What we discovered is that the XUV pulses maintained a
similar duration throughout the whole experiment (τXUV = 11.79÷12.81 fs), thus leading
to small differences with the theory. On the other hand, IIR and λIR were subject to non-
negligible variations (IIR = 0.92 · 1012 ÷ 2.13 · 1012 W

cm2 and λIR = 768 ÷ 811 nm), which
resulted in the deviations from the generalised Bessel model we observed. Regardless
of these dissimilarities, the general behaviour of the experimental results demonstrated
that we do not necessarily require long IR pulses to apply Floquet theory, nor having
τIR > τXUV is needed. Furthermore, it is sufficient to have τIR slightly greater than TIR

(in our case τminIR ≃ 2 · TIR, less than an order of magnitude greater).

4.2. Future developments

The results obtained in this thesis may be considered satisfactory, yet some improvements
could be made to advance our knowledge on Floquet theory and its limits.

Regarding the dependence on the intensity of the sideband amplitudes, we observed the
beginning of the depleting process in the first positive and negative sidebands. It would
be interesting to study the full depletion of those sidebands and verify whether they
actually reach a zero like the main band, or if some other physical effects come into play,
disrupting the model. For such an improvement we would need to be capable of increasing
the intensity of the laser up to around IIR ∼ 1013 W

cm2 . A possible way of increasing the
total power (aside from substituting the laser system) is diminishing the losses of the
HCF. To do so we may implement a stretchable HCF [35] which would substitute the
current one and allow to reach higher IR intensities. Moreover, a stretchable fibre could
allow a shorter pulse duration, which would be useful to verify which is the lower limit for
τIR with respect to TIR. The model predicts that the SB amplitudes should also depend
on the XUV time duration. In a future experiment we could test if this prediction is
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correct by changing the duration of the XUV pulses in the monochromator. Moreover,
the SB amplitude is expected to change with the electron momentum. This aspect could
be verified by repeating the experiment with a different selected harmonic (at higher or
lower energy).

Another improvement could be to perform new STRIPE simulations to take into con-
sideration and quantify the variation of IR intensity and wavelength, so to correct our
data accordingly. This way we would be able to further verify the accuracy of our model.
Therefore, an additional objective would be to gather more data with several values of
τIR, spanning the 5÷ 50 fs range multiple times.1

In this dissertation we investigated Floquet theory employing Ne gas as the only target in
our pump-probe experiment. Being a noble gas, Ne possesses a simple structure, it is inert
and is naturally a monoatomic element. When we excited it with our XUV pulses, we
generated free electrons, and those were the subject of our study. It would be fascinating
to explore not only free electrons, but also bound states of more complex systems, starting
from diatomic molecules, up to organic molecules and solid-state materials. Theoretical
analyses of bound states through Floquet theory have been performed [12, 27, 53], it
would be significant to explore experimentally their behaviour when brought to the limit
of ultrashort pulses. In particular, bound states of few-layer semiconductors, semimetals
and topological insulators are of particular interest for electronic applications, and are
therefore some of the most investigated materials for Floquet engineering [18, 28]. So,
an intriguing future perspective would be to characterise the behaviour of some of these
materials according to Floquet theory through ultrashort pulses using a few-femtosecond
pump-probe technique.

1Note that the above-mentioned IR range is to be considered for a fixed τXUV close to 12 fs, which is
what we employed in Chapter 3. If τXUV changes significantly, the range of interest will too.
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A| Time (Taylor) expansion

A further route which we took at first after Chapter 2.1.2 is making a time (Taylor)
expansion instead of a frequency (Bessel) expansion. This approach yields much less
accurate results, especially at higher intensities (as we will see in a moment), so we will
not consider it as a proper way to proceed. Though, it is interesting to show this approach
both for completeness and because it is the route that is followed in STRIPE.

Let us reprise Eq. (2.1.41), in which the frequency expansion was not yet performed. If
we recall the Taylor expansion of the exponential function

ex =
+∞∑
n=0

xn

n!
(A.0.1)

we may expand our function f(t, τ) too. We do it as such:

f(t, τ) = EXUV (t+ τ) ·

[
1 + i

pC
ω2
0

EIR(t) +
1

2

(
i
pC
ω2
0

EIR(t)

)2

+
1

6

(
i
pC
ω2
0

EIR(t)

)3

+ ...

]

(A.0.2)

Provided we keep a low enough intensity, we can consider solely the first order, which is
responsible for the first sideband:

f(t, τ) = EXUV (t+ τ) + EXUV (t+ τ) · ipC
ω2
0

EIR(t) (A.0.3)

Hence, we are able to find the maximum of the SB+ amplitude, given a normalization
over the XUV field:

SB+
0 =

p2c
ω4
0

(
E0

2

)2
1√

1 +
τ2XUV

τ2IR

(A.0.4)
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Similarly, for the second sideband we can write

SB2+
0 =

1

4

p4c
ω8
0

(
E0

2

)4
1√

1 + 2
τ2XUV

τ2IR

(A.0.5)

An issue immediately presents once we take a closer look at these equations. While in the
frequency expansion each Bessel function corresponds exactly to a sideband, here each
odd order of expansion actually gives a small contribution to the previous odd orders,
and the same happens for even ones. For instance, the fourth order of expansion will
appear not only in SB4+, but also in SB2+ and in MB; the same will happen for SB5+,
contributing to both SB3+ and SB+.

Furthermore, another glaring difference from the frequency expansion is the dependence
of the sideband amplitudes on a simple power of the field E0. This results in a model
which is accurate exclusively at low intensities, as illustrated in Figure A.1.

(a) (b)

Figure A.1: Comparison between Taylor expansion and generalised Bessel expansion.

We can also observe this disagreement between models by examining the following graphs:
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(a) IIR = 109 W
cm2 , τXUV = 11 fs. (b) IIR = 1011 W

cm2 , τXUV = 11 fs.

Figure A.2: Dependence of the amplitude of SB+ on τIR. In these graphs the following
models are compared: the time-independent Bessel, the non-adiabatic Bessel, the time-
independent generalised Bessel, the truncated generalised Bessel, the complete generalised
Bessel, the Taylor expansion, and the SFA model.

(a) IIR = 109 W
cm2 , τXUV = 11 fs. (b) IIR = 109 W

cm2 , τXUV = 11 fs.

Figure A.3: Dependence of the amplitude of SB+ on τIR. In these graphs the following
models are compared: the time-independent Bessel, the non-adiabatic Bessel, the time-
independent generalised Bessel, the truncated generalised Bessel, the complete generalised
Bessel, the Taylor expansion, and the SFA model.

It is apparent that if we take SB+ into account, the Taylor expansion results to be a valid
model at low intensities. Then, the more IIR increases, the higher the Taylor curve will be,
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rapidly parting from the other models (we have a large distance between models already
at IIR ≃ 1011 W

cm2 ). Concerning SB2+ and SB3+ instead, we already notice a distance
between Taylor expansion and SFA model and generalised Bessel functions. A steady
overlap with the non-adiabatic Bessel model can be found at low intensities, which lasts
until the intensity reaches a value of IIR ≃ 1011 W

cm2 .

In order to correct for high intensities we could use three coefficients a, b, and c to modify
the final formula as follows

SB+
0 =

p2c
ω4
0

(
E0

2

)2
a√

1 + b · ( τXUV

τIR
)c

and the same could be done for the other sidebands as well.

The only issue is that such coefficients would require to be found on a case-by-case basis,
without a clear pattern or behaviour. Hence, we will refrain from using this correction. In
Figure A.4, an example of the original versus the corrected Taylor model. All the previous
models are represented as well.

(a) (b)

Figure A.4: Dependence of the amplitude of SB+ on τIR. Calculated using IIR = 1012 W
cm2

and τXUV = 11 fs. (a) Original model; (b) corrected model. In this instance, a = 0.435,
b = 0.4, and c = 2.5.
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B| Two-time approach

In Eq. (2.2.2), the Jacobi-Anger expansion was employed. The use of this formula was
justified by the fact that we only considered monochromatic fields, thus having no time
dependence inside the argument of the Bessel functions. In actuality, our experiments
are going to employ long pulses to simulate the effect of a monochromatic wave, which
do possess a dependence on time. Hence, we will have that A0 = A0(t), for which the
Jacobi-Anger expression might not be applicable. The following appendix serves as a
proof that we may still apply our formulas of Chapter 2.2 also in case of a time-dependent
A0.

In [31] the following approach was used, which can be then adapted to our specific case.
We start by taking into account the TDSE in SAE approximation in a particular frame
of reference called Kramer-Henneberger, which takes the form of

−i ∂
∂t

ΨKH(r, t) =

(
−1

2
∇2 + V (r+ α(t))

)
ΨKH(r, t) (B.0.1)

where the coupling with the laser field is indicated exclusively by the shift α(t). Con-
sidering a potential V (r + α(t)) in which α(t) = α0(t) cos(ω0t+ φ), we can introduce a
two-time potential V̄ such that:

V̄ (r, t, t′) = V (r+ α0(t) cos(ω0t
′ + φ)) (B.0.2)

in which we considered a slower evolution in time of α0 than that of the cosine, hence
justifying the presence of both t and t′. With that in mind, we can expand V (r, t) in
Taylor series, so to have:

V (r, t) =
∑
m

Ṽme
−imω0t (B.0.3)

with the single components Ṽm which can be calculated through the integral in Eq. (B.0.4):



110 B| Two-time approach

Ṽm =
1

TIR

∫ TIR

0

V̄ (r, t, t′)eimω0t′dt′ (B.0.4)

having TIR = 2π
ω0

as the period of the IR pulse. It is possible to verify the correctness of
the previous statements as such:

V (r, t) =
∑
m

(
1

TIR

∫ TIR

0

V̄ (r, t, t′)eimω0t′dt′
)
e−imω0t =

=
1

TIR

∫ TIR

0

V̄ (r, t, t′)
∑
m

eimω0(t′−t)dt′ =

=
1

TIR

∫ TIR

0

V̄ (r, t, t′)δω(t
′ − t)dt′ =

=
1

TIR

∫ TIR

0

V̄ (r, t)dt′ = V (r, t)

□

In our case, the aforementioned potentials are equal to

V (r, t) = e
ipC

A0(t)
ω0

sin(ω0t)

V̄ (r, t, t′) = e
ipC

A0(t)
ω0

sin(ω0t′)
(B.0.5)

where we can assume that A0(t) evolves more slowly than sin(ω0t
′) thanks to the SVEA.

From this and from Eq. (B.0.3) and Eq. (B.0.4) we calculate:

Ṽm(t) =
ω0

2π

∫ 2π
ω0

0

e
ipC

A0(t)
ω0

sin(ω0t′)eimω0t′dt′ (B.0.6)

If we apply again the Jacobi-Anger expansion of Eq. (2.2.1) we manage to obtain

Ṽm(t) =
ω0

2π

∫ 2π
ω0

0

+∞∑
n=−∞

Jn

(
pC
A0(t)

ω0

)
einω0t′eimω0t′dt′ =

=
ω0

2π
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Jn
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ω0

)∫ 2π
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ω0

)
2π

ω0

=
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(
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A0(t)

ω0

)
(B.0.7)
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in which we have that
∫ 2π

ω0

0

ei(n+m)ω0t′dt′ ̸= 0 iif n = −m. Then, if we substitute into

the first equation of Eq. (B.0.3) we find

V (r, t) =
∑
m

Ṽme
−imω0t =

∑
m

J−m

(
pC
A0(t)

ω0

)
e−imω0t (B.0.8)

As a last step, we can substitute n = −m to get the final expression, which is

V (r, t) =
+∞∑

n=−∞

Jn

(
pC
A0(t)

ω0

)
einω0t (B.0.9)

What we just found is formally the same as Eq. (0.1.5), indicating that Jn
(
pC

A0(t)
ω0

)
represents the amplitude of our sidebands, which is what we found through the frequency
expansion as well. Therefore, we can state that in our conditions Eq. (2.2.2) may be
safely applied, even in the presence of a time-varying argument.
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