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A B S T R A C T

Malware is still today a major worldwide problem. In the last years, profit
became the target of malware authors and the constant digitalization growth
of many companies led to a new source of gain for cybercriminals. To pro-
tect simple users and companies from cyber threats it is necessary to know
and to understand them. This led to the born of malware analysis that is one
of the most important methods against this threat. Due to the large number
of malware samples, doing the classical steps of malware analysis manually
is time-consuming for malware analysts, therefore they developed many au-
tomated malware analysis systems. Most of these systems consist of a sand-
box that runs the malware in an isolated environment and provides static and
behavioral information, but the battle with malware never ends, while new
technologies and processes evolve rapidly to deal with it, so too do those of
the attackers. Indeed these sandbox environments often leave specific artifacts
which can be used by malware to determine if it is being executed in a vir-
tual environment, therefore malware authors implement different techniques,
the so-called evasion techniques that are used to evade systems analysis by the
malware. On the other side, to fight back, sandbox authors try to implement
different methods to detect if malware is trying to do evasion and to nullify
the evasion-techniques, these methods can be called anti-evasion techniques.
In this thesis, we study how the security specialists try to defeat the evasion
techniques, analyzing the behavior of the most important public sandboxes
available on the Internet. We also collect information about debuggers, which
are important tools used during dynamic malware analysis, and how they try
to defeat evasion techniques. To obtain this result, we collected, implemented,
and tested more than 130 evasion-techniques. To test this thesis, we imple-
mented a tool that allows us to apply these techniques to a malware sam-
ple at choice, in this way we can analyze directly the effectiveness of each
technique against the sandboxes. Based on the results of our experiments we
show the current strength of the automated malware analysis systems. We
also show how certain evasion-techniques families are more useful than oth-
ers against an automated analysis system, and we demonstrate how strong
evasion-techniques against automated analysis systems could be instead easily
detected by a human analyst.
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S O M M A R I O

I malware sono tutt’oggi uno dei più grandi problemi nel mondo dell’informatica,
ma considerando l’attuale avanzamento tecnologico, il rapido sviluppo e il
ruolo fondamentale che l’informatica sta assumendo attraverso il suo utilizzo
in quasi tutti gli aspetti della nostra società e i sempre più grandi capitali che
si stanno investendo nella digitalizzazione i malware non sono più solo un
problema relegato al mondo IT, ma possono causare gravi danni all’economia,
alla sanità e a molti altri servizi pubblici. Gli autori di malware negli ultimi
anni hanno fatto del profitto il loro maggior obiettivo, organizzandosi in veri
e propri gruppi criminali che sfruttano le loro conoscenze informatiche per
generare profitto recando danni a banche, istituzioni o aziende private con
l’utilizzo, molto spesso, di software malevoli. Questo nuovo trend ha portato
alla necessità di dover analizzare e studiare i malware in modo da poter difend-
ersi, buona parte dell’analisi dei malware però si basa sul reverse engineering
manuale o sull’analisi statica, usando software come gli antivirus in grado di
rilevare, tramite "signature", l’eventuale presenza di codice malevolo. Tuttavia,
a causa dell’elevato numero di malware generato ogni giorno questi approcci
non sono efficaci o comunque richiedono tempi eccessivamente lunghi per an-
dare a buon termine. Per questo gli specialisti di sicurezza informatica hanno
sviluppato dei tool automatici per l’analisi dei file sospetti, molti di questi tool
usano una sandbox per eseguire il file in sicurezza e alcuni di loro sono gra-
tuitamente accessibili dal web e forniscono un report basato sull’analisi com-
portamentale. Ma all’interno delle sandbox ci sono degli artefatti, ovvero dei
file essenziali per il funzionamento della sandbox stessa, che possono essere
utilizzati dai malware per determinare se sono sotto analisi o meno. Quindi
per evitare quest’analisi, gli autori di malware hanno inziato a sviluppare mal-
ware evasivi, ovvero dei malware che possono capire, attraverso diverse tec-
niche conosciute come tecniche di evasione, se sono sotto analisi ed in quel caso
nascondere la loro natura malevola. Con il lavoro sviluppato in questa tesi
vogliamo valutare la resistenza dei più importanti tool per l’analisi automatica
di malware gratuitamente accessibili dal web. Uno dei nostri principali obi-
ettivi è di capire in che modo e con quali tecniche gli autori di questi tool
cercano di contrastare le tecniche di evasione. Per fare ciò abbiamo raccolto e
implementato più di 130 diverse tecniche di evasione e abbiamo sviluppato un
tool che ci permette di applicarle ad un file qualsiasi in modo da poter testarne
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direttamente l’efficacia contro le analisi effettuate in sandbox. Con i risultati
ottenuti dalle varie sandbox disponibili online, e dai più importanti debuggers
per Windows, che abbiamo deciso di analizzare in quanto strumenti fondamet-
ali durante l’analisi dinamica dei malware, abbiamo anche classificato in base
alla loro efficacia le varie tecniche di evasione.
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1
I N T R O D U C T I O N

The first malware, intended as software intentionally designed to cause dam-
age to a computer system, in computer history was written in the 70s. In the
first years of malware history, they were developed usually just to show off the
author’s skills or to demonstrate that practical implementations of theoretic
notions, like self-reproducing code or self-obfuscation, were possible. In the be-
ginning, they spread on personal computers by infecting executable programs
or boot sectors of floppy disks, but by the mid-90s, however, with the spread of
the Internet, the malware began to spread much faster, using the Internet and
e-mail exchange as a source for new infections.
This change led to new aspects in malware development, the new target of mal-
ware developers was mass attacks also known as opportunistic attacks, which
involve malware that are distributed in large numbers for anyone to download
or to be injected into websites easy for anyone to access.

Figure 1: Unsafe websites detected per week

1



2 introduction

How we can see from Figure 1, obtained from Google Datasets [11], from
2009 malware spread all over the Internet, this so-called mass-malware were
written by organized groups to capture and transmit users’ private or sensitive
information, so they were written to infect the largest possible number of users
to increase the gain of the authors.
So malware now are profit-oriented, but in the last years against normal users
usually are used pishing websites which pretend to be legitimate so that they
can trick users into typing in their usernames and passwords or sharing other
private information. While cybercriminals use malware with the aim of strate-
gical attacks against critical infrastructures or high-profile targets, for example,
the 64% of companies have experienced web-based attacks and the average
cost of a malware attack for a company is $2.6 million [30]. Malware nowadays
can also be used for political activism and espionage activity, this makes states
new actors in malware development.
With the following graph we can understand better the damage caused by cy-
bercrimes, usually accomplished through the use of malware.

Figure 2: Total damage caused by reported cyber crime 2001-2019
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This trend keeps growing, indeed the damage related to cybercrime is pro-
jected to hit $6 trillion annually by 2021 [6]. Due to this huge proliferation of
malware and to the high impact of them on the economy researchers revolved
their attention to malware analysis, the study of the functionality, origin, and
potential impact of malware. The necessity of defense against malware led also
to new software, like antivirus and anti-malware which have as basic strategy
a signature-based detection. To avoid this signature-based detection, malware
authors began writing polymorphic malware, usually, viruses that change the
layout with each infection, so malware analysts come up with dynamic mal-
ware analysis that is performed by observing the behavior of the malware
while it is actually running on a host system, usually, a sandbox environment,
or debugging them while running using a debugger.
However dynamic malware analysis is a time-consuming operation for security
specialists, and the presence of 350,000 new malware samples every day [12]
and over 18 million websites [28] infected with malware makes unfeasible to
check them all manually. So, to increase the number of malware samples that
can be analyzed, cybersecurity specialists developed automated malware anal-
ysis services, some of them are freely available on the Internet: it is possible to
upload any suspicious file, then this file will be executed and analyzed, in a
sandbox environment, producing a report with all the information regarding
the execution. However, malware authors try to avoid the analysis developing
malware, that try to evade the system looking for several technical artifacts
that must exist in virtualized environments to work properly. Evasive malware
looks for these artifacts through different techniques and if they found them
they do not act maliciously, avoiding in this way the analysis.
Our goal is to evaluate what kind of countermeasures the developers of auto-
mated malware analysis tools are using in their products against evasion tech-
niques. We collected results about all the public sandboxes available on the
Internet and the most important Windows debuggers. To obtain these results,
we tested all the malware analysis tools against known evasion techniques. In-
deed, we collected and implemented more than 130 evasion techniques, we
developed a system that allows us to apply them to any file. Our system al-
lows us to execute all the evasion techniques applied before the execution of
the original malware sample, so the malware can be analyzed only if the eva-
sion did not work. Hence if the uploaded file was recognized as malware we
concluded that the sandbox has an anti-evasion technique for the evasion tech-
nique we applied to the file or the evasion-technique does not work anymore,
otherwise, the technique is useful to do evasion.



4 introduction

This thesis is organized as follows:

• In Chapter 2, we introduce the evasive malware problem, we provide a
deeper explanation of malware analysis and of all the tools and technique
used by security analysts, focusing especially on dynamic program anal-
ysis, we talk about the state of the art of sandboxes and of our project
goals.

• In Chapter 3, we first give an overview of our approach. Then, we explain
in detail all the evasion technique families and the implementation details
of our work, focusing above all on how the crafter works.

• In Chapter 4, we present everything concerning the analysis process: we
explain the automated malware analysis tools used, and how we per-
formed our tests, and finally, we present the results obtained with our
work

• In Chapter 5, we discuss our project limitations and the related possible
future works.

• In Chapter 6, we present some conclusive remarks about our project, how
we developed it, and the results obtained by our tests.



2
B A C K G R O U N D & M O T I VAT I O N

In this chapter, we detail and formalize the focus of our thesis. In particular, we
provide more information about evasive malware and how malware authors
develop them, focusing on all the different ways and techniques used to evade
analysis. Then we detail some of the current state-of-the-art approaches in mal-
ware analysis, showing all the different techniques and tools used by malware
analysts. We also describe in broad terms how sandboxes and debuggers work.
Finally, we present the goals of our work.

2.1 the problem of evasive malware

In the malware markets can be found everything, from simple programs to
crack passwords, to companies offering software for surveillance and espi-
onage. Some of these products are highly valuable; for example, some com-
panies advertise a $1.5 million payout to anyone willing to sell zero-day vul-
nerabilities 1 in Apple’s iOS operating system. Therefore there is a great variety
of malicious software and analyze and detect them is essential for cybersecu-
rity specialists.
Once the approach against malware was a signature-based detection, that con-
sists of a process where a unique identifier is established about a known threat
so that the threat can be identified in the future. In the case of an antivirus, it
may be a unique pattern of code that attaches to a file, or it may be as simple as
the hash of a known bad file. If that specific pattern, or signature, is discovered
again, the file can be flagged as being infected. But malware authors came up
with obfuscation techniques like polymorphism and metamorphism that make
each sample different from another, so the most effective way, nowadays, to
defeat malware is to analyze it to understand what is capable to do and how,
for example discovering which vulnerability in the system it is exploiting so it
can be fixed.

1 A computer-software vulnerability that is unknown to those who should be interested in miti-
gating it.
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6 background & motivation

So due to the very profitable aspect of this market, the malware authors want
to avoid their products being analyzed. To achieve this goal they started devel-
oping evasive malware; they consist of malware that use several techniques to
actively detect if they are under analysis. The evolution of evasive malware is
alarming: the 99% of malware is used for under one minute before the sam-
ple is changed to evade security software [17] and malware authors always
develop new ways to improve the evasion.

Now we go deeper into all the different tricks used by malware authors to
protect their malicious software by antivirus and anti-malware tools or by the
security analysts.

2.1.1 Obfuscation

Malware authors to bypass security solutions based on signatures, developed
polymorphic and metamorphic malware:

• Polymorphism consists of changing the layout/shape of the malware
with each infection and usually, the payload is encrypted making static
string analysis practically impossible.

• Metamorphism consists in create different “versions” of code that look
different but in the end, they do the same thing. This is achieved through
techniques like instruction reorder or dead code insertion.

A more advanced technique is packing that hides the real code of a pro-
gram through one or more layers of compression/encryption, similar to poly-
morphism but used in more complex malware. To understand the importance
of packing nowadays just consider that 80% of new malware is packed with
various packers and that 50% of new malware samples are simply repacked
versions of existing ones [2].To see the original code of packed malware is nec-
essary the use of a specific unpacking routine. Without knowing it the only
way to analyze the malware behavior is by executing it because at run-time an
unpacking routine restores in memory and then executes the original code. To
defeat this technique so is useful analyze the malware sample at runtime, to
do it usually security specialists do not run the sample natively on a machine,
instead, they use debuggers, or sandbox environments, but malware authors,
to avoid the analysis, developed anti-virtualization and anti-debugging tricks
that are able to detect if their malware is being analyzed.
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2.1.2 Evasion Techniques

The main concept of evasion techniques is to recognize if the malware is be-
ing executed in a controlled environment and subsequently hide or alter its
malicious behavior.

Figure 3: General scheme for evasion techniques.

The detection of the analysis environments can be performed in different
ways: malware samples look for specific artifacts left by the analysis compo-
nents (or agents). If any of such artifact is identified, malicious activity is
not executed (or executed differently), how we can see from Figure 3 where
the function amIUnderAnalysis() looks for some artifacts and if it found them
simply stops the execution. Malware authors used so many different evasion-
techniques that look for artifacts during the years that collecting all of them is
almost impossible, for example, to avoid detection can be used also wear-and-
tear artifacts as checking the recycle bin size, the number of browsers installed
or also the number of cookies and bookmarks present on the environment [23]
because in a sandbox it is more likely to have small values than in a system
used by a normal user. But, in general, we can distinguish two big families of
evasion techniques:

• Anti-debug: that are techniques that aim to find artifacts to detect if the
malware is under debugging;

• Anti-VM: that are techniques that try to detect if the malware is executed
inside a virtualized environment.
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We focused above all on them, and we collected or implemented 135 evasion
techniques dividing them based on where or how they try to get the informa-
tion to understand if the malware is under analysis, obtaining so 18 families.
Now, to understand better how evasion techniques work, let’s take a look at
each family and at their characteristics:

1. Memory Fingerprinting: this family contains all the techniques that check
inside the memory regions of the running process to detect debuggers.
These techniques work because a debugger usually leaves some traces in
the memory of the debugged process modifying several system variables
associated with the process under debug. For example, in the Process
Environment Block (PEB), which is a user-mode data structure present
in each Windows process, we can find variables designed to indicate the
debugger presence.

1 struct _PEB {

2 0x000 BYTE InheritedAddressSpace;

3 0x001 BYTE ReadImageFileExecOptions;

4 0x002 BYTE BeingDebugged;

5 0x003 BYTE SpareBool;

6 ...

7 0x1ec void* AppCompatInfo;

8 0x1f0 _UNICODE_STRING CSDVersion;

9 0x1f8 void* ActivationContextData;

10 0x1fc void* ProcessAssemblyStorageMap;

11 0x200 void* SystemDefaultActivationContextData;

12 0x204 void* SystemAssemblyStorageMap;

13 0x208 DWORD MinimumStackCommit;

14 );

Listing 1: PEB structure

In the above listing, for example, we can see how the third BYTE (line 4)
of the PEB structure provides information about if the process is being
debugged or not.

2. Exception Handling: in this family, we can find all the techniques that
abuse the behavior of the program when exceptions or errors occur; in-
deed malware can detect the presence of a debugger setting a custom
handler for certain exceptions, then it throws the correct exception, and
if the routine is never executed, it means that the debugger caught the
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exception.

3. CPU Fingerprinting: this family contains all the Anti-VM techniques that
use the different features between Virtualized CPU/real CPU used with
virtualization extension and CPU without virtualization to detect if the
malware is executed inside a virtualized environment. This behavior can
be intended, or it could be a side-effect due to incorrect execution of
sensitive instructions by the hypervisor. It is possible to identify these dif-
ferences using a few instructions. An example is CPUID, which returns
both the presence of the hypervisor and the hypervisor brand if present.

4. Table Descriptors: in this family, we can find techniques that use instruc-
tions to retrieve the addresses of OS Table Descriptors, that are data struc-
ture used by Intel x86-family processors in order to define the character-
istics of the various memory areas used during program execution, in-
cluding the base address, the size, and access privileges like executability
and writability. If a hypervisor is present usually these addresses change.
Thus the malware author used these discrepancies to detect virtualized
environments. But nowadays, these techniques are reliable only on single-
core machines, so they are not useful with modern systems.

5. Traps: this family contains all the techniques that use x86 instructions
to leak the presence of a hypervisor, emulator, or debugger throwing an
exception in a different way than the Exception Handling family. For ex-
ample with the typical ’INT 3’ instruction which is used by a debugger
to set breakpoints. So the malware can detect the presence of debuggers
if these exceptions are intercepted.

6. Timing: this family contains all the techniques that exploit accurate times-
tamps to identify analysis systems. For example, discrepancies in the ex-
ecution time of instructions are clear signs of a virtual environment. In-
deed, most analysis systems have a significant impact on performance.
So, usually these techniques get a first timestamp, then execute some op-
erations and then they get a second timestamp, if the difference between
the two timestamps is greater than how expected they detect that are in-
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side a virtual environment.

7. Stalling: in this family, we can find techniques that use instructions to
put the executable in sleep mode to avoid detection. These techniques
work because sandboxes have a limited amount of time allocated for the
analysis, so they could miss malicious activities of malware samples that
activate after a long period. A reasonable time assigned by Sandboxes
ranges from 3 minutes to 10 minutes, thus a safe choice is to start mali-
cious actions after 10 minutes to fool the detection system. This behavior
is extremely stealthy. Understanding if a sample is stalling is an undecid-
able problem and, above all, a malware sample does not stall only using
sleeping functions offered by the OS, but can do it also performing use-
less arithmetic operations, or system calls.

8. Human Interaction: this family contains all the techniques that exploit
the fact that in an automated system where thousands of malware sam-
ples are analyzed inside virtual machines, there is no Human Interaction.
A way to detect if a human is using the infected machine or not is for
example to check the mouse activity, a malware sample can assume that
if the mouse cursor is not moving, the environment is instrumented.

9. Registry: in this family, we can find techniques that abuse the Windows
Registry, which is a container of valuable system information. The Reg-
istry is a hierarchical database that contains interesting aspects such as
Services available, Programs Installed, and System information that can
be retrieved also using Windows API calls. So the techniques of this fam-
ily access to Windows Registry in search of virtual machines or debug-
gers related artifacts such as VirtualBox Guest Additions. We can see an
example in Figure 4.

10. WMI: in this family, we can find techniques that exploit the Windows
Management Instrumentation for evasion. The WMI is a proprietary tech-
nology by Microsoft for Enterprise Management of Windows Machine.
Using the WMI framework and the corresponding query language WQL,
it is possible to query any information about Windows machines config-
uration and change their settings. So with the right query, malware can
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Figure 4: Registry entries usually checked by malware

(a) Normal system (b) Virtual machine

Figure 5: WMI query example

detect if it is inside a virtualized environment. In Figure 5 we can see
with an example of a WMI query that retrieves information about the
BIOS, the differences in the results between a real environment and one
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inside a virtual machine.

11. System Environment: this family contains all the techniques that detect
system-related information that can spot the presence of a VM or debug-
ger. For example, checking the MAC address that contains a manufac-
turer fixed part that is well known for virtual machines. Other interesting
things to check are the number of processors because usually, VMs have a
lower number than normal systems, or the disk size because a virtualized
environment uses less space usually.

Figure 6: General settings to check for a VM

12. Process Environment: in this family, we can find all the techniques that
use information about the running process to detect if it is under anal-
ysis. For example, a trick used by malware authors to understand if the
malware is under debugging is to spawn a child process with debugging
privilege and using the Windows API DebugActiveProcess try to debug the
parent process. Since a process cannot be debugged by two debuggers if
the operation fails a debugger is in place.

13. File System: this family includes all those techniques that rely on artifacts
present on the file system. More precisely malware checks inside known
directories if a resource is present or not. For example, in Windows Virtu-
alBox components are usually located under ’C:\ProgramFiles\Oracle\VirtualBox
Guest Additions\’. A successful attempt to open this directory is an indi-
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cator of VM presence.

14. List Process: this family includes all those techniques that list and check
the running processes on the system and if they find something suspi-
cious like, for example, ’VBox.exe’ they don not act maliciously.

15. List Services: in this family, we can find all the techniques that enumer-
ate services. A Windows service is a computer program that operates in
the background, it is similar in concept to a Unix daemon. When a Guest
OS is installed some hypervisor-related artifacts such as VirtualBox Guest
Additions could be needed by the Guest to work properly. Once enumer-
ated all the services, malware search for possible VM components and if
one is found they die.

16. Drivers Information: this family contains all the techniques that follow
the same principle of Services Enumeration, but looking for Drivers. In
order to work correctly, most Guest OS contains drivers related to Virtual
Peripherals built by the Hypervisor. These components can be enumer-
ated either by direct access to the Windows Driver folder or using a Win-
dows API call.

17. Others: this family contains all the remaining techniques we found in
similar works that cannot be easily associated with one of the precedent
families or that do not produce always reliable results.

18. Emulation Software: this family uses a mix of different techniques be-
longing to the precedent families to detect the presence of emulation soft-
ware, like QEMU, a free and open-source emulator and virtualizer that
can perform hardware virtualization or like Wine a free and open-source
compatibility layer that aims to allow application software developed for
Microsoft Windows to run on Unix-like operating systems.

2.2 malware analysis techniques

Now that we have more information about all the tricks used by malware au-
thors and about how they try to do evasion, we can see in detail how security
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specialists try to defeat all these techniques and the tools they use.

How we said before the first and the most basic way to detect malware is
to use a signature-based detection method; with this approach antiviruses and
anti-malware analyze a file and compute its hash, if it matches with one inside
a database of known malware signature then the file is considered dangerous.

Figure 7: Signature based detection scheme.

The database can contain also code patterns of known malware. In this case
the analysis tool checks for a match at byte-level.

This method belongs to a branch of malware analysis called static malware
analysis: known also as code analysis because is usually performed by dissect-
ing the different resources of the binary file without executing it and studying
each component.
This kind of analysis is usually the first thing that security specialists do when
he has to analyze a suspicious file. Understanding what a binary does without
running it can be a complicated operation. But to help with the analysis there
are different commands and tools that can be used. For example one of the
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Figure 8: Byte-level match.

most basic command that can be used is the ’strings’ one that shows the text
inside a binary or data file, this could be useful to obtain, sometimes, clues on
what the file does.

Figure 9: Output of ’strings’ command.

For example in Figure 9 we can see that using the ’strings’ command against
a malware sample we can notice the name of some APIs that usually are used
to do evasion.

However simple commands as ’strings’ usually with complex malware are
not enough. So the malware analysts use Disassemblers tools like Ghidra de-
veloped by the NSA, or IDA Pro that is de facto standard to translate the



16 background & motivation

machine code contained in the binary into assembly code which can be read
and understood easily, we can see an example in Figure 10.

Figure 10: Disassembled code example.

Once that the code is translated into assembly malware analysts can read it
and identify specific functions and actions inside the program to have a better
point of view on what the program is going to do and how it was originally de-
signed. This reverse engineering operation so helps to find out hidden actions
or unintended functionality of the analyzed binaries, but modern malware use
evasive techniques to defeat this type of analysis, for example by embedding
syntactic code errors that will confuse disassemblers so in the end to analyze
the real behavior of the malware, it is necessary to execute it.
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This led to the second type of malware analysis, the so-called Dynamic mal-
ware analysis or Behavioral analysis that is performed by observing the behav-
ior of the malware while it is actually running on a host system but to avoid
that the malware damage the real system of the analyst this form of analysis
is often performed in a sandbox environment, many of such sandboxes are
virtual systems that can easily be rolled back to a clean state after the analysis
is complete. To obtain more information during the execution of a malware
sample it is useful also to debug it while is running with a debugger, for exam-
ple, GDB for Unix-like systems or WinDbg for Microsoft Windows operating
systems. This is done to watch the behavior and effects on the host system of
the malware step by step while its instructions are being processed.

2.3 sandboxing & virtualization

In cybersecurity, a sandbox is an isolated, separated, and restricted environ-
ment, usually with limited permissions and limited access to resources, that
mimics end-user operating environments. Sandboxes are used to safely exe-
cute suspicious code without risking harm to the host device or network.

Just like in a real playground where children can play in the sandbox but
are not allowed to play anywhere outside of the sandbox. The limitation of re-
sources (for example of file descriptors, memory, file system space, etc.) is fun-
damental for security because in case malware is executed the damages will be
delimited to the controlled resources providing so another layer of protection
against zero-day or high-evasive malware and avoiding them from spreading
in all the system. Automated malware analysis systems usually use sandboxes
in combination with virtual machines to easily allow to restore a clean envi-
ronment, saved before the execution of the analyzed file. While sandboxing
allows us to execute a program in an isolated, but equal to the host system, en-
vironment, Virtualization provides a separate environment within a computer
that can function independently from all other environments on the computer.
So, a sandbox just isolates a part of the original system, while Virtualization
emulates a different environment, for example, we can use a UNIX system as
’guest’ on a Windows system we will see as ’host’. So it is important to under-
stand the differences between a sandbox and a virtual machine, when you run
an application in a sandbox, it has access to run as if it were not in a sandbox.
Anything the application attempts to create or change, however, is lost when
the application stops running. In a virtual machine, on the contrary, anything
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created or changed by the application is allowed, and everything that happens
stays within the virtual machine space.

2.4 state-of-the-art of malware analysis

In this section we present similar and previous works, to understand which is
the actual state-of-the-art for what regards automated malware analysis tools.
One of the first tools, similar to our project, used to detect sandboxes and
analysis environments is the open-source project ’Paranoid fish’ also known as
Pafish [37]. As in our work Pafish project employs several evasion-techniques
to detect malware analysis tools in the same way as malware does. Another
project that uses malware tricks to test anti-malware systems is ’al-khaser’ by
LordNoteworthy [20], it performs more common malware tricks with respect
of Pafish grouped by which tools they are trying to test. Another similar project
is the ’ShowStopper - Anti-Debug tricks exploration tool’ based on the ’Anti-
Debug Tricks’ [15] a tool useful for malware researchers to explore and test anti-
debug techniques or verify debugger plugins. For what regards the state-of-art
of security sandboxes we know that some of them are based on Cuckoo [5] that
is an open-source automated sandbox, written in Python, that through Oracle
VM VirtualBox, it executes the malware samples. Cuckoo also supports custom-
written packages so it is important to test the different sandboxes based on it
because the authors could have freely implemented additional features. An-
other commonly used tool is YARA [36] that is an open-source project used
to classify malware samples based on textual or binary patterns. From these
patterns, researchers write a description of malware families called rules. For
what regard malware analysis an evaluation of automated static analysis tools
is provided by Namanya et al. [25], it is a valid work that provides good re-
sults, but they focus only on static analysis tools. While our approach focuses
above all on dynamic analysis. Egele et al. [9] proposed a survey on automated
dynamic malware analysis providing an overview of techniques to analyze un-
known and potentially malicious software and of the existing approaches and
tools that make use of the introduced techniques. They provide a lot of differ-
ent and useful information, but the work is almost fifteen years ago, so some
information is outdated or tools are not available anymore. Another important
evaluation about sandboxing was introduced by Al Ameiri et al. [1], they pro-
vide a deep explanation of sandbox implementation focusing on the different
types of available sandboxes and their performance, but they do not focus, as
we do, on the anti-evasion techniques implemented.
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2.5 goals

In this thesis, we aim to discover all the countermeasures implemented in auto-
mated malware analysis tools against the evasion-techniques used by evasive
malware. Taking into account that test all the possible evasion techniques is
not feasible due also to the fact that malware authors come up every day with
new possible tricks to do evasion, our objective is to collect and test the most
known and used in malware samples. We want to test them against the auto-
mated malware analysis tools used nowadays by cybersecurity specialists and
simple users to evaluate their strength and efficiency against evasive malware.
We also aim to exploit more evasion techniques of the available state-of-art
tools, dividing them on where or how they try to get the information to under-
stand if the malware is under analysis. To conduct our tests we aim to provide
a tool that allows us to add to any executable the evasion techniques that we
collected or developed. Then with the obtained results, we want to provide a
classification of the most effective evasion techniques and of the anti-evasion
techniques implemented in the automated malware analysis tools, above all
on the ones freely available on the Internet that use a sandbox, since we did
not find a similar classification on previous works, with the hope to provide to
everyone valid results that could be useful against evasive malware.





3
A P P R O A C H A N D
I M P L E M E N TAT I O N D E TA I L S

In this chapter we detail and formalize the approach on which this thesis is
based to obtain the wanted results, providing also the implementation details
of the different parts of our work, in such a way that everyone could obtain
the same results following the same steps. In particular, we provide more in-
formation about our implementation of the script, crafter.py, that crafts the new
sample with the selected techniques added and we also show how we im-
plemented the different evasion-techniques used by evasive malware that we
described in the previous chapter.

3.1 approach overview

To detect how automated malware analysis tools developers try to defeat the
different evasion techniques we decided to analyze with these tools a malware
which uses evasion techniques. To obtain such malware we added, through our
crafter script, the evasion techniques we want to test. If the malware is detected
then we suppose that there is an anti-evasion technique in that specific tool that
nullifies the attempt of doing evasion, or the used evasion-technique does not
work anymore, otherwise, the evasion technique does evasion properly.

In Figure 11 we represented with a flow chart our approach to detect the im-
plemented anti-evasion techniques in all the different tools for dynamic malware
analysis we analyzed. We tested these tools in black with a black-box approach,
which is a method of software testing that examines the functionality of an ap-
plication without having specific knowledge of the application’s code or of the
internal structure. We are aware of what the software is supposed to do but
we do not know how it does it. So, providing an input we base our results
only on the output that we receive. While the crafter is the part of our project
that generates the samples used to test the tools mentioned before: from any
malware builds a new executable which contains any evasion techniques we
want and the original malware sample.

21
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Figure 11: General scheme of our approach to detect anti-evasion techniques

3.2 the crafter

The crafter is an essential part of our project. As its name suggests, it has
the goal to craft the samples we will use to analyze the different automated
malware analysis tools. So, it is the part of our project that will make us de-
cide which evasion techniques will be added to our original malware sample.
Thanks to the crafter we can generate every time a different sample with differ-
ent evasion techniques added or with a different malware sample embedded.

As we said before the aim of the crafter is to help us to add any evasion tech-
nique we want to any executable. It consists of a python3 script that essentially
modifies the Makefile of our project, because we decide the different evasion
techniques to use at compile-time, through the use of compilation flags. The
main concept of the script can be seen in Figure 12. We provide our malware
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Figure 12: General scheme of crafter.py

sample as an argument of the script, then through a loop, we can add all the
technique we want, at this point the script embeds [18] the malware sample
binary data in a new executable that first of all execute all the evasion tech-
niques we added to it, then if an analysis environment is detected the program
terminates, otherwise drops and executes the provided malware sample. So
our obtained .exe file acts as a dropper, which is a kind of Trojan designed to
"install" some sort of malware (virus, backdoor, etc.) to a target system. There
are different ways to drop the malware, its source code can be contained within
the dropper itself (single-stage, like in our case) this helps to avoid detection
by virus scanners or the dropper may download the malware to the target
machine once activated.

In the following listing there is the function that generates the new exe-
cutable:

466 def generateExe():

467 subprocess.run([’make’, ’-f’ ,’Makefile.linux’, ’clean’])

468 subprocess.run([’i686-w64-mingw32-ld’, ’-r’, ’-b’, ’binary’, ’-o’, ’./output/

objects/binary.o’, ’tmpExe’])

469 subprocess.run([’rm’, ’tmpExe’])

470 modifyMake()

471 subprocess.run([’make’, ’-f’ ,’Makefile.linux’])

Listing 2: Code to generate the new executable in crafter.py

First of all, we create a new object from the malware sample we provided as
an argument, that will be embedded inside the new executable, then with the
function modifyMake we apply all the compilation flags relative to the evasion-
techniques we chose, during the execution of the script, modifying the Makefile
of our new executable and in the end, we run the make command to generate
the new executable.
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3.3 the crafted sample

In this section, we show how the new executable, that we obtain after the exe-
cution of the crafter script, is composed. This executable is the main part of our
project, indeed it is the sample that will be analyzed by the sandboxes. It has
the goal to execute all the different evasion techniques we decided to test and
if all of them fail to detect an analysis environment it has the goal to execute
the embedded malware sample.

All the files used to obtain the new executable are written in C and they
can be built with MinGW [22], that is a free and open-source software devel-
opment environment to create Microsoft Windows PE applications, basically is
a Windows port of the GNU compiler tools, such as GCC, Make, Bash, and so
on and an alternative to the Microsoft Visual C++ compiler and its associated
linking/make tools.
The goal of the main file of this new executable is to execute the different eva-
sion techniques we selected before, we implemented all of them in such a way
that they return 0 if an analysis environment is not detected, otherwise they
return 1. So we maintain these return values inside the flag variable and if at
the end it still is equal to 0, we have to drop the original malware sample and
we do it through the function doBadStuff that simply generates a new file called
’embedded.exe’ where the malware code will be written and then it executes it
with the system function.

1 ...

2 extern char binary_tmpExe_start[];

3 extern char binary_tmpExe_end[];

4 void doBadStuff(){

5 FILE *fp;

6 fp = fopen("embedded.exe", "ab");

7 if (fp == NULL){

8 puts("Error while opening file");

9 exit(1);

10 }

11

12 for (char* p = binary_tmpExe_start; p != binary_tmpExe_end; ++p) {

13 fprintf(fp,"%c",*p);

14 }

15

16 fclose(fp);

17 system("embedded.exe");

18 getchar();

19 }
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20

21 int main(void){

22 int flag = FALSE;

23

24 ...

25

26 #ifdef MEMFING

27 printf("[-] Memory Fingerprinting:\n");

28 flag = flag | memoryFingerprinting();

29 printf("\n");

30 #endif

31

32 ...

33 #ifdef EM

34 printf("[-] Looking for emulation softwares:\n");

35 flag = flag | emulation();

36 printf("\n");

37 #endif

38

39 if (flag == FALSE){

40 print_traced("I’m running the program:\n\n");

41 doBadStuff();

42 }

43 else{

44 print_not_traced("We are under analysis.\n\n");

45 getchar();

46 }

47 return 0;

48 }

Listing 3: main.c source code

We defined all the evasion technique families in the checks.h header and its
implementation works similarly to the main function, we decide which of the
evasion techniques of a family is going to be executed, always through compi-
lation flags that we applied in the Makefile with our crafter script.

1 int memoryFingerprinting(){

2 int a = FALSE;

3 int b = FALSE;

4 int c = FALSE;

5 int d = FALSE;

6 int e = FALSE;

7

8 #ifdef MF1

9 a = exec_check("PEB->IsDebugged", &PEB_isDebugged);

10 #endif
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11

12 #ifdef MF2

13 b = exec_check("PEB->NtGlobalFlag", &PEB_NtGlobalFlag);

14 #endif

15

16 #ifdef MF3

17 c = exec_check("PEB->Heap->Flags", &PEB_Heap_Flags);

18 #endif

19

20 #ifdef MF4

21 d = exec_check("PEB->Heap->ForceFlags", &PEB_Heap_ForceFlags);

22 #endif

23

24 #ifdef MF5

25 e = exec_check("KUSER_SHARED->KdDebuggerEnabled", &

KUSER_SHARED_KdDebuggerEnabled);

26 #endif

27

28 return (a | b | c | d | e);

29 }

Listing 4: checks.c source code

How we can see from Listing 4 the evasion techniques are executed with
the help of the exec_check function that needs as parameters a string that de-
scribes the evasion techniques we are going to execute and a function pointer
to the concrete implementation of the evasion techniques that we will explain
in details in the next section.

3.4 evasion technique families

For what regards the implementation of the different evasion techniques we
wrote a file, containing the concrete implementation, for each family and we
used as references previous works on evasive malware or, in case the evasion
technique was described in previous works only theoretically, we used the Mi-
crosoft Windows Documentation [35] for the Win32 API used by the techniques.
After the implementation of a technique, we tested it, first in a normal environ-
ment and then in a virtual machine/debugger, to check if it works correctly.
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3.4.1 Memory Fingerprinting

How we saw before this family of techniques abuses of structures that hold
data about the current process, like the Process Environment Block (PEB) or
like the KUSER_SHARED_DATA that contains a lot of Windows system in-
formation. So we implemented five different techniques that look for traces of
debuggers in these structures, all using the asm keyword that allowed us to em-
bed assembler instructions within C code. In this way, we accessed directly the
wanted structure and we checked the interested bytes, the PEB, since we are in
a 32-bit process, is located at FS 1:[0x30] [38], while the KUSER_SHARED_DATA
is always located in user mode at the address 0x7ffe0000 [40]. Once accessed
the right point of the structures we saved the value and we checked them, for
example, the PEB->NtGlobalFlag is a byte inside the PEB at offset 0x68 and it
is 0 when no debugger is in place and 0x70 otherwise.

3.4.2 Exception Handling

This family contains all the techniques that abuse the behavior of the program
when occurring exceptions or errors. We implemented five different techniques
and the main concept behind their implementation is to define an exception
handler for that certain exception and then throw it. If the handler is executed
we are in a normal environment, otherwise, we are under debugging because
debuggers usually intercept exceptions. In general, our exception handlers sim-
ply set a global variable relative to that technique equal to 0, so in the end,
we can use the flag’s value to understand if we are under analysis. The five
techniques we used are well known and they can be found in "The Ultimate
Anti-Reversing Reference" [10], we just adapted them for our goals, each of
them uses a different way to throw the exception, for example with the NtClose
function, that normally is used to close a Windows HANDLE 2, if we try to
close an invalid handle an exception is generated.

1 Segment register that points to the Thread Information Block (TIB). This structure is created
by the kernel on thread creation and is used to support OS-related functionalities, services and
APIs.

2 A HANDLE is a context-specific unique identifier to access a resource
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3.4.3 CPU Fingerprinting

In this family, we implemented the techniques that retrieve information from
the actual CPU to detect the analysis environment. We implemented five dif-
ferent techniques, two of them use CPUID, an x86 instruction used to retrieve
information about the running CPU, passing EAX=1 as input, the return value
describes the processor’s features while with EAX=40000000 as input we get
as return value the virtualization vendor string in EAX, ECX, and EDX [4] then
we check the return values against the known value to detect VM environment.
To check if we are in a VMware environment we implemented an evasion tech-
nique that uses the privileged x86 instruction IN. This instruction is used, with
specific parameters, to communicate with the host in a VM environment, so if
it fails we can detect that we are in a normal environment [4]. We implemented
also a technique that uses the STR instruction that retrieves the segment selec-
tor from the task register, because the value returned by this instruction will
differ depending on whether it is run on a host or a virtual machine, we can
use it to detect a virtualized environment [3]. The last technique of this family
uses the SMSW instructions that store the machine status word into the desti-
nation operand, and the return value is known for some VMware versions so
we can detect if we are inside a VM [8].

3.4.4 Table Descr.

In this family we use three instructions to retrieve information from the OS
Table Descriptors and check them against known values:

• "sidt" stores the Interrupt Descriptor Table Register (IDTR) content, this
technique is also known as Red pill

• "sldt" stores the segment selector from the Local Descriptor Table Register

• "sgdt" stores the Global Descriptor Table Register (GDTR) content.

These techniques are well known and nowadays deprecated because they are
not privileged instructions, so with hypervisors, the retrieved values could well
be the same inside and outside of the VM. We just used a classical implemen-
tation of these techniques that uses the instructions and checks the returned
value [3].
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3.4.5 Traps

From the point of view of the implementation for this family, we worked in the
same way that for the Exception Handling family. We implemented a custom
handler for a specific exception, then we throw the exceptions with different
instructions. If the handler is executed a global flag is set to 0 and we are in
a normal environment otherwise we are under analysis. The instructions we
used are:

• "INT 3" that throws a BREAKPOINT_EXCEPTION used by debuggers to
set breakpoints [10]

• "VPCEXT" that is an illegal instruction that throws an exception if exe-
cuted outside of a Virtual PC environment [32]

• "POP SS" used by debuggers to skip the next instruction [14]

• "INT 1" is used by debuggers for a SINGLE_STEP exception [7]

• "ICEBP" is an undocumented x86 instruction that triggers SINGLE_STEP
exception with opcode 0xF1 [19]

• "INT 2D" is used to raise a breakpoint exception [19]

3.4.6 Timing

This family contains all the techniques that exploit accurate timestamps to iden-
tify analysis systems, to implement the techniques of this family we followed
for all of them the same approach just using different Windows APIs to retrieve
the timestamp. First of all, we made a first call of the API to get a timestamp
than we executed many times the CPUID instructions, which is a VM Exit in-
struction, and then we retrieved a second timestamp. If the difference between
the first and second timestamp is greater then the pre-computed average exe-
cution time of the CPUID instructions we are under analysis. Some example
can be found in "The Ultimate Anti-Reversing Reference" [10].

3.4.7 Stalling

For this family that abuses the fact that sandboxes spend only a few minutes
analyzing each file, we delayed the execution of the malicious payload by ex-
actly ten minutes. To do it we used different Windows APIs from the official
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documentation [35], as for example Sleep and waitForSingleObject or some un-
documented functions of Ntdll.dll 3 [26], like for example NtDelayExecution.

3.4.8 Human Interaction

For what regards the implementation of this family that checks if there is hu-
man interaction during the analysis we called a first time the functions GetCur-
sorPos and GetLastInputInfo that retrieves respectively the position of the mouse
cursor and the time of the last input event, then we stalled the execution for a
certain amount of time and then we recalled the two functions. If the two re-
turn values were the same we considered that we are in an automated analysis
environment.

3.4.9 Registry

For the implementation of this family that checks for known Registry Keys in
the Windows Registry, we collected known values of registry key related to
virtual machines [4] and we used four different NTAPI undocumented func-
tions [26] to check if they were present in the sandboxes:

• "NtOpenKey" tries to open a certain registry key, if the function fails we
considered that we are not in a virtualized environment

• "NtEnumerateKey" enumerates all the registry key, so we checked if the
ones relative to virtual machines were present

• "NtQueryValyeKey" allows to query a certain key, if the function fails we
considered that we are in a normal environment

• "NtEnumerateValueKey" enumerates all registry key value, and we checked
for known values.

3.4.10 WMI

To use the Windows Management Instrumentation (WMI) queries for environ-
ment detection and evasion of dynamic analysis and virtualization engines we

3 One of the most important file in the "Microsoft Windows NT" OS family. Ntdll.dll is mostly
concerned with system tasks and it includes a number of kernel-mode functions that enable
the "Windows Application Programming Interface (API)".
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implemented the main function wmi_check_query that accepts as a parameter a
WMI Query and executes it, we also pass to this function a function pointer
to another function that handles the checks to do to detect if we are under
analysis. In this way, we generalized the process to check 22 different WMI
Queries used to do evasion and we found these queries in previous works like
Al-Khaser [20] or from threat researches [24].

3.4.11 System Environment

To detect system information related to a VM or a debugger we used different
functions: with NtQuerySystemInformation, an undocumented syscall from nt-
dll.dll, and with GlobalMemoryStatusEx we checked the memory size because
sandboxes are usually configured to take few GB of memory. Others good in-
dicators of VMs, are the disk size and the number of processors, we used the
functions GetDiskFreeSpaceExA and DeviceIoControl to get the disk size and we
accessed the PEB at +0x0b8 [38] to retrieve the number of processors, if the disk
was less the 60GB or we had 2 or less processors we considered to be under
analysis. To check the MAC Addresses, that usually, in VMs, have specific start-
ing bytes depending on the Hypervisor [4] we used the functions GetAdapter-
sAdresses and GetAdaptersInfo. To detect the presence of a debugger we used Is-
DebuggerPresent, CheckRemoteDebuggerPresent, NtQuerySystemInformation(0x23)
and NtQueryObject after a call to NtCreateDebugObject because if a debug ob-
ject is created and a debugger is present, we should have two debug objects.
Another way to detect VMs, debugger or sandboxes is to check the name of
windows on the system or of the computer itself and to do it we used the
FindWindow and GetComputerName functions.

3.4.12 Process Environment

We checked the presence of a debugger retrieving information from the run-
ning process using the system call NtQueryInformationProcess passing as param-
eter 0x07 or 0x1e or 0x1f [14]. To detect a debugger also NtGetContextThread
and NtSetContextThread can be used, with the first function we can check if a
debugger used hardware breakpoints, in a positive case the returned values
are always different from zero, while the second function is useful to bypass
a hardware breakpoint [14]. Another way to detect a debugger that we im-
plemented is to generate a child process with debugging privileges and try
to use the DebugActiveProcess function on the parent. Since a process cannot
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be debugged by two debuggers, if the attempt fails we can say that the par-
ent process is under debugging. While NtSetInformationThread(0x11) [10] and
NtCreateThread(HIDE_FROM_DEBUGGER) [14] are useful instructions to tem-
per with debugging.

3.4.13 File System, List Process, List Services and Drivers Information

The main idea behind these families is to check if certain files, processes, ser-
vices, or drivers are present in the environment, so for what regards the imple-
mentation, we proceeded in a similar way for all of them. We collected all the
known strings related to VMs or debuggers files, processes, services, or drivers
and with different functions, we try to query or open them, if the functions suc-
ceeded we detected the analysis environment. Other approaches we used are
just to enumerate all of them and compare with the known strings we collected,
or to try to create them, in this case, if the function fails, probably they already
exist on the system. In Table 1 we can see the list of checked resources by our
techniques, all of them are collected by previous works [4] [33] [20].

3.4.14 Others

In this section we collected different techniques implemented in similar projects
to work with our tool, many of them are not very powerful evasion techniques
and usually, they provide unreliable results. For example with CanOpenCsrss
we attempt to open csrss.exe if it fails we are not being debugged however if
it is successful we ’probably’ are [31] or with hideDesktop we simply switch the
current desktop with a different one with no obvious way to switch back to
the old, making difficult the debugging process [15]. IsParenExplorerExe checks
if the program is executed from the command line, really common in auto-
mated malware analysis tools, or clicking the file icon. With pirated_Windows or
query_License_Value we check if the program is running with a valid Windows
license or not because usually VMs and sandboxes use not activated versions.
The ’VirtualAlloc_WriteWatch’ techniques use the MEM_WRITE_WATCH fea-
ture of VirtualAlloc to test for additional memory writes by debuggers and
sandboxing [20].



3.4 evasion technique families 33

Table 1: OS resources to check
File system

• C:\windows\System32\Drivers:
Vmmouse.sys
vm3dgl.dll
vmdum.dll
vm3dver.dll
vmtray.dll
VMToolsHook.dll
vmmousever.dll
vmhgfs.dll
vmGuestLib.dll

VmGuestLibJava.dll
VBoxMouse.sys
VBoxGuest.sys
VBoxSF.sys
VBoxVideo.sys

• C:\windows\System32:
vboxdisp.dll
vboxhook.dll
vboxmrxnp.dll

vboxoglerrorspu.dll
vboxoglfeedbackspu.dll
vboxoglpackspu.dll
vboxoglpassthroughspu.dll
vboxservice.exe
vboxtray.exe
VBoxControl.exe
vboxoglcrutil.dll
vboxogl.dll
vboxoglarrayspu.dll

List Process

VGAuthService.exe
vmacthlp.exe
vmtoolsd.exe
VBoxService.exe
VBoxTray.exe
ollydbg.exe
ProcessHacker.exe
tcpview.exe
autoruns.exe
autorunsc.exe
x64dbg.exe
x32dbg.exe

ImmunityDebugger.exe
Wireshark.exe
dumpcap.exe
HookExplorer.exe
ImportREC.exe
PETools.exe
LordPE.exe
SysInspector.exe
proc_alyzer.exe
sysAnalyzer.exe
sniff_t.exe
windbg.exe

filemon.exe
procmon.exe
regmon.exe
procexp.exe
idaq.exe
idaq64.exe
httpdebugger.exe
Fiddler.exe
joeboxcontrol.exe
joeboxserver.exe
joeboxserver.exe
ResourceHacker.exe

List Services

VMTools
Vmhgfs
VMMEMCTL
Vmmouse
Vmware Physical Disk Helper Service

Vmvss
Vmscsi
Vmxnet
vmx_ga

Vmrawdsk
Vmusbmouse
VBoxService
Vmware Tools

Drivers Information

vmnetadapter.sys
VBoxNetLwf.sys
VBoxUSBMon.sys
VBoxDrv.sys

vmmouse.sys
vmrawdsk.sys
VBoxMouse.sys
VBoxGuest.sys

vmhgfs.sys
vmmemctl.sys
VBoxSF.sys
VBoxVideo.sys
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Table 2: Processes and Registry Keys for emulation software
Process Registry Keys

Virtual PC
VMSrvc.exe

VMUSrvc.exe
SOFTWARE\Microsoft\Virtual Machine\Guest\Parameters

QEMU qemu-ga.exe
HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0

HARDWARE\Description\System

Xen xenservice.exe -

Wine - SOFTWARE\Wine

3.4.15 Emulation software

With these techniques we checked for register keys for different emulation soft-
ware using the RegQueryValueEx and RegOpenKeyEx functions. We looked also
for processes generated by this emulation software, using a function GetProces-
sIdFromName from the List Process family. In Table 2 we can find all the strings
checked by these methods.
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E X P E R I M E N TA L VA L I D AT I O N A N D
R E S U LT S

In this chapter, we explain the experimental validation of our work. First, we
formalize and list the goals of the experimental validation. After that, we de-
scribe how we setup our tests and which tools we used during our experimen-
tal validation. Finally, we present and discuss the results, divided by the differ-
ent automated malware analysis tools we tested and we provide an evaluation
of notable behaviors discovered through the examination of the results of the
different tools. We present also an evaluation of the strengths and weaknesses
of the different evasion techniques we used to obtain the results, classifying
them with regard to their efficacy against the tested tools.

4.1 validation goals and challenges

In our experimental validation, we have several goals: first, we want to provide
an evaluation to every one of the actual available automated malware analysis
tools against the modern evasive malware. We want also to present this evalua-
tion, to everyone is interested, in a good, quick and readable way. Another goal
is to classify the used methods to nullify evasion techniques implemented in
these tools, obtaining so a clear picture of what has been done so far by sand-
box and debugger developers and what should be improved or implemented
against evasive malware. We want also to provide a simple but effective tool to
test the resistance of the different automated malware analysis systems against
evasion techniques, and that this tool covers as many techniques as possible. As
final goal, thanks to our tool we want to classify the evasion techniques on the
base of their strengths and weaknesses in such a way that security specialists
can focus their efforts on defeat the more efficient ones. Our major challenges

35
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are fundamentally to provide feature details of the software that we do not
know the internal developments and so to develop a method to understand
them from the outside. We have to face also difficulties due to the limitations
of the free versions of the available online sandboxes many of them provide
partial reports or do not allow some additional features that could be obtained
by premium versions.

4.2 experimental setup

To conduct our experiments first of all we generated a crafted executable for
each evasion technique we wanted to test, we proceeded in this way to face the
sandbox services that do not provide a rich report and to avoid that may be a
result from a certain technique affects another one. We decided to use as em-
bedded malware a sample of theZoo repository [39] with a score of 61/70 on
VirusTotal [34]. We also tested the original sample against the different sand-
boxes and it was classified as malicious by each of them. Due to the variety
of the different automated malware analysis tools we tested, we did not use a
constant setup, but we adapted it with regard to the category of tools analyzed.
For example, for what regards to the free available online sandboxes we used a
python script to automate the sending process of the crafted sample to all the
fifteen sandboxes we tested simultaneously. Such script works thanks to the
selenium python package [29] that is used to automate web browser interac-
tion, while for what regard the obtained reports, we analyzed them manually
because some of them provided screenshots of the execution so it was easy to
understand what was happening inside the sandbox, while for those that did
not provide them we checked if the "embedded.exe" file was executed, in that
case, we considered the evasion techniques defeated. Instead, for what regard
the debuggers we installed them locally on a clean machine and we made the
testing phase manually.
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4.3 results

In the following sections, we show the obtained results related to public online
available sandboxes and debuggers.

Due to a large number of obtained results, to synthesize, we collected them
in tables and we tried to schematize them in a readable way through the use
of graphs.In the following tables, we can see the results obtained for each tech-
nique, we present overall results with the percentages just to provide a quick
overview of the strength of each technique. Looking at the two columns ’Sand-
box’ and ’Debugger’ we can immediately understand the nature of a tech-
niques’ family. For example, the techniques of the ’Exception Handling’ family
work against almost all the debuggers, while against sandboxes they are use-
less, this shows us that they are intended for anti-debugging purposes, instead,
the techniques of the ’Stalling’ family are very powerful against sandboxes but
they do not work against debuggers, because it is sufficient to skip the instruc-
tion, this shows clearly that they are anti-VM techniques.
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Table 3: Results grouped by evasion-technique

Technique Sandbox(% ) Debugger(% ) Tot(%)

M
em

or
y

Fi
ng

er
pr

in
ti

ng PEB->IsDebugged
KUSER_SHARED->KdDebuggerEnabled
PEB->NtGlobalFlag
PEB->Heap->Flags
PEB->Heap->ForceFlags

0/15 (0.0)
0/15 (0.0)
0/15 (0.0)

1/15 (6.67)
1/15 (6.67)

5/5(100)
0/5 (0.0)
5/5(100)
5/5(100)
5/5(100)

5/20(25)
0/20(0.0)
5/20(25)
6/20(30)
6/20(30)

Ex
ce

pt
io

n
H

an
dl

in
g SetUnhandledExceptionFilter

NtClose(INVALID_HANDLE)
OutputDebugString
POPF/D - TRAP FLAG
CTRL Exception Handling

1/15 (6.67)
0/15 (0.0)
0/15 (0.0)
0/15 (0.0)
0/15 (0.0)

5/5(100)
2/5 (40)
5/5(100)
5/5(100)
4/5(80)

6/20(30)
2/20(10)
5/20(25)
5/20(25)
4/20(20)

C
PU

Fi
ng

er
pr

in
ti

ng CPUID (EAX=0x00000001)
IN
CPUID (EAX=0x40000000)
STR
SMSW

1/15 (6.67)
0/15 (0.0)

1/15 (6.67)
0/15 (0.0)

1/15 (6.67)

0/5(0)
3/5 (60)
1/5(20)
1/5(20)
1/5(20)

1/20(5)
3/20(15)
2/20(10)
1/20(5)

2/20(10)

Ta
bl

e
D

es
cr

. SLDT
SGDT
SIDT

0/15 (0.0)
0/15 (0.0)
0/15 (0.0)

1/5(20)
1/5(20)
1/5(20)

1/20(5)
1/20(5)
1/20(5)

Tr
ap

s

INT 3

VPCEXT
POP SS
INT 1

ICEBP
INT 2D

1/15(6.67)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)

5/5(100)
5/5(100)

0/5(0)
5/5(100)
5/5(100)
5/5(100)

6/20(30)
5/20(25)
0/20(0.0)
5/20(25)
5/20(25)
5/20(25)

Ti
m

in
g

GetTickCount
RDTSC/D
QueryPerformanceCounter
GetLocalTime
timeGetTime
NtQuerySystemTime
GetSystemTime
KUSER_SHARED->SystemTime
KUSER_SHARED->InterruptTime
timeGetSystemTime
KUSER_SHARED->TickCountQuad
NtGetTickCount
QueryInterruptTime
NtQueryPerformanceCounter
QueryUnbiasedInterruptTimePrecise
QueryInterruptTimePrecise
GetTickCount64

QueryUnbiasedInterruptTime

0/15(0.0)
11/15(73.3)
13/15(86.6)
9/15(60.0)
5/15(33.3)

13/15(86.6)
3/15(20)

11/15(73.3)
11/15(73.3)

6/15(40)
5/15(33.3)
7/15(46.6)
15/15(100)
2/15(13.3)
15/15(100)
15/15(100)

6/15(40)
7/15(46.6)

0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)
0/5(0)

0/20(0.0)
11/20(55)
13/20(65)
9/20(45)
5/20(25)

13/20(65)
3/20(15)

11/20(55)
11/20(55)
6/20(30)
5/20(25)
7/20(35)

15/20(75)
2/20(10)

15/20(75)
15/20(75)
6/20(30)
7/20(35)
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Table 4: Results grouped by evasion-technique (2)

Technique Sandbox(%) Debugger(%) Tot(%)

St
al

lin
g

waitForSingleObject/Ex
Sleep/SleepEx
SetTimer
SetWaitableTimer/Ex
CreateTimerQueueTimer
NtDelayExecution
timeSetEvent
icmpSendEcho/2/Ex

12/15(80)
5/15(33.3)
15/15(100)
13/15(86.6)
15/15(100)
5/15(33.3)
12/15(80)

13/15(86.6)

0/5(0.0)
0/5(0.0)
0/5(0.0)
0/5(0.0)
2/5(40)
0/5(0.0)
1/5(20)
1/5(20)

12/20(60)
5/20(25)

15/20(75)
13/20(65)
17/20(85)
5/20(25)

13/20(65)
14/20(70)

H
I GetCursorPos

GetLastInputInfo
5/15(33.3)
0/15(0.0)

0/5(0.0)
0/5(0.0)

5/20(25)
0/20(0.0)

R
eg

is
tr

y NtOpenKey/Ex
NtEnumerateKey
NtQueryValueKey
NtEnumerateValueKey

0/15(0.0)
1/15(6.6)
0/15(0.0)
0/15(0.0)

0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)

0/20(0.0)
1/20(5)

0/20(0.0)
0/20(0.0)

W
M

I
(E

xe
cQ

ue
ry

)

Win32_Processor
Win32_LogicalDisk
Win32_BIOS
Win32_ComputerSystem (model)
Win32_ComputerSystem (manufacturer)
Win32_ComputerSystem (ProcessorId)
Win32_Fan
Win32_CacheMemory
Win32_PhysicalMemory
Win32_MemoryDevice
Win32_MemoryArray
Win32_VoltageProbe
Win32_PortConnector
Win32_SMBIOSMemory
Win32_PerfFormattedData_count_therm
CIM_Memory
CIM_Sensor
CIM_NumericSensor
CIM_TemperatureSensor
CIM_VoltageSensor
CIM_PhysicalConnector
CIM_Slot

8/15(53.3)
2/15(13.3)
2/15(13.3)
1/15(6.6)
3/15(20)
0/15(0.0)
1/15(6.6)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)

0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)

8/20(40)
2/20(10)
2/20(10)
1/20(5)
3/20(15)
0/20(0.0)
1/20(5)

0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)

Sy
st

em
En

vi
ro

nm
en

t

NtQuerySystemInfo(PHY_MEM_NFO)
FindWindow
GetComputerName
IsDebuggerPresent
GetAdaptersInfo
GetDiskFreeSpace/Ex
CheckRemoteDebuggerPresent
GetAdaptersAdresses
GlobalMemoryStatusEx
NtQuerySystemInformation(0x23)
DeviceIoControl
PEB->NumProcessors
NtQueryObject(after)NtCreateDebugObject

10/15(66.6)
0/15(0.0)
0/15(0.0)
0/15(0.0)
1/15(6.6)
1/15(6.6)
0/15(0.0)
1/15(6.6)
3/15(20)

2/15(13.3)
1/15(6.6)
1/15(6.6)
0/15(0.0)

0/5(0.0)
0/5(0.0)
0/5(0.0)
5/5(100)
0/5(0.0)
0/5(0.0)
5/5(100)
0/5(0.0)
0/5(0.0)
0/5(0.0)
0/5(0.0)
0/5(0.0)
0/5(0.0)

10/20(50)
0/20(0.0)
0/20(0.0)
5/20(25)
1/20(5)
1/20(5)
5/20(25)
1/20(5)
3/20(15)
2/20(10)
1/20(5)
1/20(5)

0/20(0.0)
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Table 5: Results grouped by evasion-technique (3)

Technique Sandbox(%) Debugger(%) Tot(%)

Pr
oc

es
s

En
vi

ro
nm

en
t

NtSetContextThread(CNTXT_DBG_REGS)
NtQueryInformationProcess(0x07)
NtSetInformationThread(0x11)
NtQueryInformationProcess(0x1e)
NtQueryInformationProcess(0x1f)
NtGetContextThread(CNTXT_DBG_REGS)
DebugActiveProcess on Parent
NtCreateThreadEx(HIDE_FROM_DBG)

0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
1/15(6.6)
1/15(6.6)

0/5(100)
5/5(100)
5/5(100)
5/5(100)
5/5(100)
0/5(0.0)
5/5(100)
0/0(100)

0/20(0.0)
5/20(25)
5/20(25)
5/20(25)
5/20(25)
0/20(0.0)
6/20(30)
1/20(5)

Fi
le

Sy
st

em

NtOpenFile
NtQueryAttributesFile
NtCreateFile
NtQueryDirectoryFileEx

0/15(0.0)
0/15(0.0)

7/15(46.6)
11/15(73.3)

0/0(100)
0/0(100)
0/0(100)
0/0(100)

0/20(0.0)
0/20(0.0)
7/20(35)

11/20(55)

Li
st

Pr
oc

NtQSI(SYSTEM_PROCESS_INF)
EnumProcesses
GetModuleBaseName
GetProcessIdFromName

0/15(0.0)
0/15(0.0)
0/15(0.0)

1/14(7.14)

0/0(100)
0/0(100)
0/0(100)
3/5(60)

0/20(0.0)
0/20(0.0)
0/20(0.0)
4/19(21)

Li
st

Se
rv

ic
es

OpenSCManager
EnumServicesStatus
OpenService
GetServiceDisplayName
GetServiceKeyName

0/15(0.0)
1/15(6.6)
0/15(0.0)
0/15(0.0)
0/15(0.0)

0/5(0.0)
0/5(0.0)
2/5(0.0)
0/5(0.0)
0/5(0.0)

0/20(0.0)
1/20(5)
2/20(10)
0/20(0.0)
0/20(0.0)

D
ri

v EnumDeviceDrivers
GetDeviceDriverBaseName

1/15(6.6)
1/15(6.6)

0/5(0.0)
0/5(0.0)

1/20(5)
1/20(5)

O
th

er
s

IsParentExplorerExe
CanOpenCsrss
MemoryBreakpoints_PageGuard
NtYieldExecution
SetHandleInformatiom_ProtectedHandle
query_License_Value
power_Capabilities
pirated_Windows
check_LoadLibrary
instructionPrefixes
IsHooked
dbgExcp
VirtualAlloc_WriteWatch_BufferOnly
VirtualAlloc_WriteWatch_APICalls
VirtualAlloc_WriteWatch_IsDebuggerPresent
VirtualAlloc_WriteWatch_CodeWrite
hideDesktop

8/15(53.5)
6/15(40)
0/15(0.0)
9/15(60)
0/0(0.0)

2/15(13.3)
5/15(33.3)
4/15(26.6)
0/15(0.0)
1/15(6.6)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)

5/5(100)
1/5(20)
5/5(100)
0/5(0)

5/5(100)
0/5(0)
0/5(0)
0/5(0)

4/5(80)
5/5(100)
1/5(20)
5/5(100)
0/5(0.0)
0/5(0.0)
0/5(0.0)
5/5(100)
0/5(0.0)

13/20(65)
7/20(35)
5/20(25)
9/20(45)
0/20(0.0)
2/20(10)
5/20(25)
4/20(20)
4/20(20)
6/20(30)
1/20(5)
5/20(25)
0/20(0.0)
0/20(0.0)
0/20(0.0)
5/20(25)
0/20(0.0)

Em
ul

at
io

n Virtual PC
QEMU
Xen
Wine

0/15(0.0)
0/15(0.0)
0/15(0.0)
0/15(0.0)

0/5(0.0)
0/5(0.0)
0/5(0.0)
0/5(0.0)

0/20(0.0)
0/20(0.0)
0/20(0.0)
0/20(0.0)
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In the next sections, we will show in detail the results for all the different
malware analysis tools we analyzed, showing the data obtained concerning the
single tools.

4.3.1 Public sandboxes results

First of all, in the following Figure, we can see a general representation of the
obtained results for what regard the public online sandboxes.

Figure 13: General results of public sandboxes

The red columns "Failed evasion" represent the number of evasion tech-
niques that failed to do evasion in a certain sandbox, while the green columns
represent the number of evasion techniques that did evasion with success, mak-
ing impossible the analysis of the malware sample. For what regards the yel-
low columns, they represent the number of evasion techniques that make crash
the executable in that certain sandbox, usually this is caused by the use of an
API too new for the operating system version on which is based the sandbox.
More precisely every new Windows version introduces new APIs that are not
available in the older ones, so a program developed with APIs introduced in
Windows 10, for example, cannot be executed in a machine with Windows
XP. This shows immediately that only three online public sandboxes use the
last version of the Windows operating system, while the others usually use
Windows 7, and some of them still Windows XP. It is important to underline
that we separated the count of not supported APIs that make the executable
crash from the count of evasion techniques that worked correctly, simply to
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show better this behavior, but at the end, they have to be considered as per-
fectly working evasion techniques because they prevent the malware from the
analysis. This can explain also because, as we can see from Tables 3, 4 and 5,
there are some evasion techniques intended as anti-debugging tricks that work
against sandboxes, indeed if one of these techniques use APIs call not sup-
ported by the OS version used in the sandbox the sample will crash and the
malware cannot be analyzed. From Figure 13 we can also see that the average
number of working evasion techniques is twenty-three, with a range of scores
that goes from sixteen up to thirty-eight. It is important also to notice that
sandboxes, during their behavior analysis, classify as dangerous a file also if
suspicious windows commands are executed or if certain API calls are made.
For example, it is sufficient to have a call of the IsDebuggerPresent function to
obtain a high severity signature that makes our file to be reported as malicious
also in the case there is nothing malicious during the execution, except for the
API calls that usually are used to do evasion. So during the collection of our
results, we did not consider the score assigned by the sandboxes but just if our
malicious payload is executed or not.

4.3.2 Debuggers results

In this section, we provide and comment the result of all the major debuggers
available for Windows Systems.

Figure 14: General results of Windows Debuggers
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From the graph in Figure 14 we can notice how, on average, all the debuggers
have the same "strength" against evasion techniques, that are not so elevated.
On average, only thirty techniques over one hundred thirty-five worked, but
we have to consider that those that did not work are anti-VM techniques, so
each technique, developed specifically to do evasion against debuggers, works
fine even if they are really old and well-known. This shows that, for what re-
gard debuggers, no one took countermeasures against evasive malware, this
could seem reckless, but considering that debuggers usually are used man-
ually by the security specialists, unexpected behaviors, as a crash of the de-
bugger during the analysis of a sample, are easily detected. Moreover, with
single-step execution, each instruction can be seen and evasion techniques can
be quickly detected and defeated by a cybersecurity expert. It is interesting to
notice from Tables 3, 4 and 5 that some evasion techniques that are intended
to work against VMs work also against debuggers, this happens because these
techniques usually use privileged instructions that make the debugger crash.

4.4 sandboxes assessment

In this section, we aim to provide a general assessment of the different sand-
boxes we tested with respect to the collected results. As we said before of the
fifteen online sandboxes we analyzed, only three of them use the last version of
the Windows OS, just one of them uses still Windows XP, while all the others
use Windows 7. It is interesting to notice that no one uses Windows 8 as an op-
erating system and that the worst score is of the only one that uses the oldest
operating system, but newer OS versions do not imply better results indeed
two of the sandboxes using Windows 10 got a score greater than the average.
During our tests we noticed that at least three online sandboxes are based on
Cuckoo, moreover from Tables 3, 4 and 5 we can deduce that no sandboxes ap-
ply a debugger during the analysis of a sample indeed all the anti-debugging
evasion techniques usually fail, while in the few cases of success is because
the program crashed due to the old version of the OS, this makes the Memory
Fingerprinting, Exception Handling, Traps and Process Environment almost
useless. For what regard the anti-evasion techniques implemented by the de-
velopers of these automated malware analysis systems they are focused above
all on hiding the presence of the virtualized environment, for example against
the lack of human interaction in many of the sandboxes is implemented an
automatic movement of the mouse cursor or random input during the execu-
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tion of the suspicious file. Another important precaution used is to empty or
to hide from the Windows Registry every known key value related to the virtu-
alized environment, indeed all the techniques belonging to the Registry family
failed against almost all the sandboxes. We can hypothesize also that the de-
velopers of these online sandboxes denied the access or anyway hide in some
way, as we already saw for the Windows Registry, all the sensible resources
to the identification of the system indeed all the techniques based on listing
files, directories, processes, services, and drivers have a really low success rate.
Another interesting aspect to notice is from the System Environment family:
from Table 4 we can notice that GlobalMemoryStatusEx, that retrieves informa-
tion about the system’s current usage of both physical and virtual memory,
worked only against three sandboxes over fifteen, but the NtQuerySystemInfor-
mation that, with the right parameter, it is used fundamentally for the same pur-
pose and it is implemented to check the same size of memory, worked against
ten sandboxes, this can be explained by the possible presence of a Windows
API Hooker that detects and apply the countermeasures of evasive techniques
based on system calls and Windows APIs, in this case incrementing the return
value of available memory. The presence of a possible x86 Instructions Monitor
is confirmed also, for example, with the result got with the CPUID instruction
from the CPU Fingerprinting family that it should return values describing the
processors’ features, but it works only against the weakest sandboxes, but us-
ing the Win32_Processor WMI query that retrieves similar CPU information we
have better results. We found other evidence of the presence of such counter-
measures thanks to the Stalling family, that is the most powerful one against
sandboxes, indeed the timer that we set in different ways sometimes was nulli-
fied by the sandboxes, it is the case of the Sleep function, but to be more precise
we know that internally this function executes the syscall NtDelayExecution
and in fact, they have the same success rate. A separate discussion must be
made for the techniques belonging to the Timing family, for the ones based on
the time elapsed since the system boot, like KUSER_SHARED->TickCountQuad,
GetTickCount, GetTickCount64 and NtGetTickCount the value could have been
easily crafted because they work but not well as the techniques based on dis-
crepancies in the execution time of instructions, indeed these techniques work
very well, above all QueryInterrupTime, QueryUnbiasedInterruptTimePrecise and
QueryInterruptTimePrecise that are functions recently added and so they make
crash the execution in all the sandboxes not based on Windows 10. We also
noticed, testing many times the same sample, that the results were not always
the same for this kind of techniques and we counted a technique as working
only if the average of the success rate was quite high, we deduced so that the
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actual workload of the automated malware services maybe can influence the
performance. This behavior could be considered similar to that of a normal en-
vironment, indeed slowdowns are frequent, but testing the evasion techniques
also in an everyday laptop we noticed that they rarely provide wrong results.
In conclusion, about these public sandboxes, we can say that they provide, gen-
erally, a good level of detection against malicious files because also if there are
still many working evasion techniques that hide our malware payload from the
analysis the reports detected almost always suspicious elements that should
alert those who submitted the file for analysis. Despite the excellent counter-
measures against all those techniques based on listing files, processes, services,
registries, or drivers related to virtualized environments, some improvements
should be done for what regards the performance of the sandboxes in such a
way to defeat the techniques based on Timing or about the evasion techniques
based on Stalling in the same way as it has been done, for example, for the Nt-
DelayExecution API, however having tested only free versions of the sandboxes
we cannot say that such improvements are not already implemented in the
premium versions which add many features for the analysis. All the previous
considerations led us to consider online free available sandboxes good tools
for a basic malware analysis that can be used also by simple users if they have
doubts about some files or if there is a very high number of samples to test,
but for advanced analyses, at least for the free versions, they cannot replace
the experience of a security expert and they have to be considered as the first
step of the analysis process.

4.5 evasion techniques : strengths and weaknesses

In this section, we aim to clarify the strengths and weaknesses of the different
evasion techniques we tested on the base of the obtained results. From Tables 3,
4 and 5 we can immediately notice that the most effective evasion techniques
against sandboxes are, without any doubt, the ones belonging to the Timing
and Stalling families.

From Figure 15 and 16 we can see detailed data about every single sandbox,
for what regards the Stalling family its strength is to abuse the limited amount
of time assigned to the analysis, indeed, on average, each sandbox runs the
sample for a maximum of five minutes so if a malware, as in our case, starts to
act maliciously after 10 minutes it fools the detection system. Also if the sand-
boxes’ developers as countermeasure try to set to a null value the parameter
of known functions used to stall the execution, detecting this kind of evasion
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Figure 15: Timing results against online sandboxes

Figure 16: Stalling results against online sandboxes

remains a tough problem, because understanding, if a sample is stalling, is
an undecidable problem and a malware can use other techniques beyond the
sleeping functions offered by the OS, for example performing useless arith-
metic operations [13] [27], while this extremely stealthy behavior could be eas-
ily detected by manual analysis and nullified, for example, using a debugger to
skip the instructions. On the other side, the strength of the Timing family relies
on detecting discrepancies in the execution time of VM Exit instructions such
as CPUID between two timestamps and this can be used also against debug-
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gers if the analysis is made with single-steps. Another strength of this family
is to use many functions added only in recent OS versions and since only three
sandboxes use the last version of Windows the most of them is not able to ana-
lyze malware that instead works on the 57.21% of laptops [21]. Another family
with a useful strength is the WMI one, indeed it is unfeasible to understand
from WQL queries which specific information a malware is looking for, and
this led to increased use of WMI queries for environment detection and we
already saw in the previous section that we retrieved successful CPU informa-
tion in this way, while classical methods like the use of the CPUID instruction
failed.
The major weaknesses regard the techniques based on detecting sandbox ar-
tifacts, because the malware use vendor-specific information associated with
popular sandbox products, like for example, the existence of certain files, pro-
cesses, drivers, file system structure, Windows ID, username, etc. to reveal the
presence of a virtualized environment, but this information have been known
for a long time now and then replace them with random strings is not a hard
task for sandbox developers, defeating so completely this kind of techniques.
Other useless techniques are the ones based on STR, SLDT, SGDT, and SIDT in-
structions, their weakness is related to the fact that they are instructions useful
against single-core physical machines that are no longer used. To conclude, for
what regards instead all the techniques intended as anti-debugging tricks they
work perfectly fine against debuggers, but they have obviously poor results
against sandboxes.





5
L I M I TAT I O N S & F U T U R E W O R K S

This chapter focuses on our project’s limits. First, we present the shortcomings
in our work. Then, we propose new branches that can be explored to improve
our research about automated malware analysis tools.

5.1 limits

So far we have presented our research about anti-evasion techniques imple-
mented in public sandboxes, showing our approach to detect them, highlight-
ing the general context in which we developed a tool to test the actual available
automated malware analysis tools, then we presented how we conducted the
experiments to obtain the results from which we made our assessments. In this
chapter, we want to provide the limits of our tool and of our investigation and
we want to propose also some possible improvements for future work related
to the same research field.
The first limitation is due to the usage of free versions of the online automated
malware analysis tools: inevitably, many important features are accessible only
to premium users, and usually, these paid versions are not cheap and rarely
affordable for simple users. This caused problems, first, in some cases, we had
difficulties to extract the results from the incomplete reports provided to free
users, but above all, we could not use fundamental options against evasion,
like increasing the duration of the analysis or using, as called by some of the
services, heavy anti-evasion analysis. Evasion techniques that did evasion suc-
cessfully against the free versions we tested, with the use of these premium
features, maybe could fail, providing us different results and increasing the
resistance of these tools against evasive malware. We also notice that some
sandboxes in their free versions use as OS version Windows 7, while with a
premium account the user can decide among all the Windows operating sys-
tems, this would modify, for example, the results of the Timing family because,
as we saw, it has many techniques using Windows 10 APIs which in lower
OS versions make the executable crash doing so evasion correctly. Another
small limit of our work is due to the fact that many evasion techniques use
specific 32-bit instructions our tool generates a 32-bit executable, so we were
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unable to add few techniques that work only with 64-bit executables as the
WudfIsAnyDebuggerPresent, WudfIsKernelDebuggerPresent and WudfIsUserDebug-
gerPresent [20], function presents in the WUDFPlatform.dll file, but they are
fundamentally anti-debugging tricks, so against the sandboxes, generally, they
should not work, while for what regards debuggers, we tested them and they
worked fine.
Finally due to our black-box approach during the testing phase, as we ex-
plained before we provide the input and we consider only the output with-
out caring about the internal structures of the sandboxes, some of our conclu-
sions about the anti-evasion techniques implemented by the developers could
be wrong, being all the sandboxes we tested closed source software this limit
cannot be overwhelmed we could only speculate about the presence of coun-
termeasures similar to those present in open source sandbox-like Cuckoo [5].

5.2 future works

As mentioned in the previous section, there are some aspects of our work that
could be improved. We tested 135 different evasion techniques, but we know
that there are many others and that everyday malware authors come up with
new tricks against analysis, so due to the design of our project it is possible to
add them in the future without any effort, it is enough to add their implemen-
tations and make little modifications in the already saw main.c and checks.c files
and in our crafter script. This could make our tool even more powerful and use-
ful for testing sandboxes and automated malware analysis tools. A second im-
provement can be done by studying the premium version of the sandboxes we
tested, in this way we could try if, with the use of the premium options, we will
obtain different results than the ones we got with the free versions, a similar
work it would be also useful to underline the differences between free and paid
versions of the actual available automated malware analysis tools. Another pos-
sible future work it would be also to use our tool to test the sandboxes used
by antiviruses, indeed many antiviruses use sandboxes to analyze suspicious
file working in a similar way of the sandboxes we analyzed, they automatically
lock unknown files in a secure environment where they can cause no damage
and after their execution, they provide a report to the user. To accomplish this
task antiviruses also use cloud sandboxes that use artificial intelligence and
machine learning technologies to detect never-seen-before malware by study-
ing the behavior of the samples, so it would be very interesting to test their
resistance against evasion techniques using our tool.



5.2 future works 51

Finally, it would be interesting to make a different version of our project able
to run in other operating systems, like Mac or Linux, to test the evasion tech-
niques used in these environments, indeed Malwarebytes1 is out with a new
report [16] in which it states that Mac malware is growing faster than that
for Windows and we know that automated sandboxes that analyze malware
targeting Linux and macOS are already available, also in free online versions.
The same work could be done also for what regard Android ad iOS operating
systems, indeed with the emergence of mobile application markets, there has
been a dramatic increase in mobile malware, and mobile platform providers are
constantly creating and refining their malware-detection techniques, including
static analysis and behavioral monitoring and a similar too to the one we de-
veloped could be useful.

1 American Internet security company specialized in protecting home computers, smartphones,
and companies from malware and other threats.





6
C O N C L U S I O N S

As we saw dynamic malware analysis is now considered the last line of defense
against advanced threats, but due to the high number of malware samples
developed nowadays cybersecurity specialists developed automated malware
analysis tools to speed up the analysis process. So evading detection in these
analysis environments now is the objective of any malware author, we also
saw that during the years they developed many different ways to detect these
environments and to conceal the real behavior of their malware and that they
are keeping to find every day new ways to do it. In this thesis we collected
and developed many of these evasion-techniques, providing a concrete imple-
mentation for some of them that until now were only theoretically explained
in previous works, and we made a tool capable of applying them to any ex-
ecutable we desire. Armed with our tool we decided to test all the available
automated malware analysis tools freely accessible on the web that use a sand-
box to analyze the file, and also all the main debuggers for Windows operating
system, since many of these techniques are intended as anti-debugging tricks,
to analyze and understand what kind of countermeasures, the developers of
these tools, use against evasive malware and their evasion techniques. The re-
sults we collected showed us that sandbox developers made many efforts to
hide the presence of a virtualized environment, indeed almost all the evasion
techniques based on looking for the existence of certain files, processes, drivers,
file system structure, Windows ID, username, registry, etc. that could reveal the
presence of a sandbox failed. While, always from the obtained results, we no-
ticed that other approaches to do evasion like detecting time discrepancies dur-
ing the execution of certain instructions or delay the execution of the malware
payload of a certain amount of time, in such a way that the time dedicated for
the analysis by the sandbox is not enough to detect the malicious activities, are
still very powerful methods. Sandbox developers introduced some countermea-
sures against these families of evasion techniques, but they are still not enough
because, for example, they focus only on the most famous functions used to
stall the execution, like the Sleep API, while we saw that malware authors al-
ways come up with new methods and tricks. With this work we also tried to
show the obtained results quickly and intuitively, so that we can provide to
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everyone an evaluation of the different automated malware analysis systems
available at the moment, underlining their strengths and weaknesses concern-
ing the problem of evasive malware, doing so we also provided a classification
of the different evasion techniques showing which are the more powerful and
useful to do evasion. Another goal of our work was to test also the resistance
of the main Windows debuggers against evasive malware because they are
fundamental tools for dynamic malware analysis, often used by security spe-
cialists, also in this case thanks to the tool we developed we wrapped around
a malware sample different evasion techniques intended precisely against de-
buggers, and we saw that almost all of these anti-debugging tricks work fine
usually making crash the debugger or stopping the execution on certain in-
structions. Sincerely, above all from the still updated projects, we expected a
greater resistance, but this is not a big issue, unlike in the case of automated
tools, because in the end, the crash of the debugger during the execution of a
sample is a big suspicious alert for the analysts.
In conclusion this work provides to everyone a clear assessment of the available
automated malware analysis tools freely accessible, underlining that this study
does not consider the premium versions that could obtain better results, and it
provides also a useful tool to test the resistance of sandbox environments and
debuggers, that collects a number of evasion techniques greater than previous
works, but above all, it allows to apply them to any executable.

This work has been conducted with the hope of contributing to the study
against evasive malware.
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