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1. Introduction
The demonstration of compliance to certifica-
tion requirements is a fundamental milestone
in the development of any rotorcraft and is
required to testify that the vehicle meets the
safety requirements set by the certification au-
thority. Nevertheless, the compliance demon-
stration process is generally the most expen-
sive and time demanding part of the certifica-
tion activity, due to the amount of necessary
ground and flight testing. It is predicted that
demonstration of compliance through flight sim-
ulations may take advantage of the reduction of
cost, risk and required time offered by modelling
tools. However, in order to deliver these bene-
fits, some effort shall be devoted to the devel-
opment and the validation of simulation tools
of sufficient fidelity. Building on this view, the
Rotorcraft Certification by Simulation (RoCS)
project aims to explore the challenges and op-
portunities associated to the use of flight mod-
elling during certification and to provide guide-
lines [9] for the application of flight simulation
to support the compliance demonstration activ-
ity for helicopters and tiltrotors.
The objective of the present work is to revise
the most widely acknowledged procedures in the

field of model Verification and Validation (VV)
and to frame them in the Certification by Sim-
ulation (CbS) guidelines proposed by RoCS [9],
in order to establish what methodology may be
overall best suited for an application in the in-
dustry and, possibly, implementation into fu-
ture revisions of the CbS process. Two ap-
proaches have been elected to primary reference
work: the ASME standard for VV in Compu-
tational Fluid Dynamics (CFD) and Compu-
tational Heat Transfer (CHT) [4] and the VV
approach for scientific computing proposed by
Roy and Oberkampf [11]. Once framed in the
CbS process, the two standards are applied to
a real case scenario and compared in terms of
simplicity, fundamental assumptions, computa-
tional expense, validation metrics values and
suitability to the different uses of model VV
tools within the guidelines proposed by RoCS.
The investigation of the research objective is
pursued by emulating the implementation of the
starting phases (namely, phase 1 and 2a) of the
CbS process on a civil tiltrotor, making use of a
state-of-the-art Flight Simulation Model (FSM)
and a set of experimental flight data both sup-
plied by Leonardo Helicopters Division (LHD).
EASA CS.29.143 (d) [3] low speed controlla-
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bility and maneuverability certification require-
ments were chosen for the application presented
in this work.
All modelling activities and simulation results
presented in this dissertation are obtained with
FLIGHTLAB [1]. In addition, all the paramet-
ric, optimization, sensitivity and uncertainty
quantification analyses presented in this disser-
tation were performed coupling FLIGHTLAB
with Dakota.

2. Verification and Validation
Methods Review

2.1. ASME Standard
The foundational idea of ASME VV 20 [4] is
to extend the standard approaches adopted for
experimental uncertainties to include numerical
and model-input uncertainties in a comprehen-
sive validation framework. Error and uncer-
tainty definitions adopted by this standard are
directly inherited by [7] and their concepts are
extended in order to be applied to the solution
variable from a simulation as well. The nomen-
clature system adopted by ASME standard, to-
gether with the proposed verification and vali-
dation process, is summarized in fig. 1.

Figure 1: Overview of the sources of uncertain-
ties and model validation process proposed in
the ASME VV Standard 20 [4]

The goal of the validation process is to estimate
the model contribution δmodel to the simulation
error δS . Such estimate is provided according to
eq. (1) as a function of the two validation met-
rics: the comparison error E and the standard
validation uncertainty uval.

δmodel = E ± uval (1)

The former is computed according to eq. (2)
from the nominal simulation output S and ex-
perimental data D. The latter, conversely, is
evaluated through equation eq. (3) starting from
numerical, model inputs and experimental un-
certainties.

E = S −D (2)

uval =
√

u2num + u2input + u2D (3)

As a result, the validation uncertainty uval,
whose quantification is a pivotal point of the
methodology hereby presented, provides an in-
dication of the dispersion of δmodel parent pop-
ulation around the comparison error E.
Upon completion of the validation process, two
corollaries follow:
• if |E| >> uval, then it is safe to assume that
δmodel has the same order of magnitude of
E and that its estimation is reliable;

• if |E| ≤ uval, probably δmodel is of the same
order of magnitude, or even smaller, than
(δnum + δinput − δD).

Thus, reducing the validation uncertainty is
beneficial to obtain a reliable quantification of
the modelling error and set up model improve-
ments (i.e. updates to reduce the modelling er-
ror). Otherwise, whenever δmodel is within the
noise level imposed by numerical, input and ex-
perimental uncertainty, formulating and mea-
suring modelling improvements is difficult.
Concerning model adequacy assessment and
model-form error extrapolation, no explicit pro-
cedure is provided in [4]. However, building
on the definition of model adequacy assessment
delivered in [9], the information that E and
uval convey, appropriately extrapolated into the
DoP, shall be combined with the quantification
of δinput and δnum to obtain a reliable estimate
of δS on certification-aimed model predictions.

2.2. Roy-Oberkampf Approach
The VV approach proposed by Roy and
Oberkampf is summarized in their 2010 con-
ference paper [11]. At the foundation of the
Roy-Oberkampf VV framework stands the clas-
sification of uncertainties into two categories:
aleatory (or irreducible) and epistemic (or re-
ducible). Aleatory uncertainties represent "the
inherent variation in a quantity that, given suf-
ficient samples of the stochastic process, can
be characterized via a probability distribution"
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and are mathematically characterized with a
PDF. Epistemic uncertainties identify the in-
stances "where there is insufficient information
concerning the quantity of interest to specify ei-
ther a fixed value or a precisely known probabil-
ity distribution" and are characterized as inter-
vals with no associated probability distribution.
An overview of the sources of uncertainties and
verification and validation process proposed by
Roy and Oberkampf is presented in fig. 2.

Figure 2: Overview of the sources of uncertainty
and model validation process proposed by Roy
and Oberkampf in [12]

Whenever both aleatory and epistemic uncer-
tainties are present, the simulation output and
the experimental data are represented as prob-
ability boxes. The probability box is a peculiar
type of CDF. It is an interval-valued probabil-
ity structure which delivers information on both
aleatory and epistemic uncertainties but with-
out confounding the two, as reported in fig. 3.
Then, the minimum area of non-overlap in-
cluded between the two probability structures
(the p-box from the simulation and the discrete
CDF from experimental data) is identified as
the validation metric d (also referred to as area
metric). The area metric value, dimensional and
characterized by the same measurement unit of
the SRQ (alike a comparison error), effectively
represents the measure of disagreement between
the model and the experiment according to the
knowledge available to the analyst. Any dis-
agreement is attributed to model-form error, de-
fined as an epistemic uncertainty equal to the
validation metric value according to eq. (4).

Figure 3: Example of the p-box obtained for a
SRQ y (from [11])

UMODEL = d (4)

Unlike in [4], Roy and Oberkampf provide
general guidelines to account for the model-
form error also in the domain of applica-
tion. By "correcting" the area metric value
for the increased uncertainty due to the in-
terpolation/extrapolation process, the epistemic
model-form uncertainty can be derived and ap-
plied to model predictions beyond the valida-
tion points. Then, the model adequacy assess-
ment can be carried out directly comparing the
uncertain model prediction with the adequacy
margins and/or the Applicable Certification Re-
quirement (ACR).
An advantage of the Roy-Oberkampf approach
is that the probability box arising from model
inputs propagation allows the analyst to quan-
titatively distinguish the impact of aleatory and
epistemic uncertainties on each model SRQ.
However, it is predicted that the usage of d as a
validation metric (and proxy for the model form
uncertainty) may lead to underestimation of the
model predictive uncertainty in the domain of
application. Moreover, concerning the model
extrapolation technique proposed by Roy and
Oberkampf, it is observed that a residual dis-
agreement between simulation output and ex-
perimental data is still present, in the domain
of validation, once the model form uncertainty
is accounted for.
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2.3. Interval Analysis
The computation of uval (in ASME framework)
and the construction of the probability box (in
Roy-Oberkampf framework) are costly tasks. At
the same time it may be argued that the com-
putation of SRQs statistics may not be strictly
necessary for some possible applications of the
validation process within RoCS framework. It
is in this scenario, hence, that interval analysis
might stand out as a viable validation tool to
overcome the aforementioned limitations.
Formally speaking, such a framework incorpo-
rates elements of both the ASME standard (val-
idation metrics and corollaries) and the Roy-
Oberkampf approach (interval-valued uncertain
quantities). All model inputs affected by un-
certainty are characterized as intervals. Then,
the propagation of input uncertainties through
the model is performed via global optimization
(i.e. interval analysis) techniques. As a result,
bounding minimum and maximum values for
S, which identify the interval UINPUT , are ob-
tained. Concerning the numerical uncertainty,
no difference with respect to Roy-Oberkampf
framework is present. Finally, concerning the
experiment, the realization(s) of the SRQs of
interest are used to derive an interval UD which
bounds all possible contemplated values of the
measurand D. Then, upon the quantification
of UINPUT , UNUM and UD, the validation met-
rics Emax, Emin and EIA can be evaluated, as
reported in fig. 4 and eq. (5).

UNUM

UINPUT

|Emax| |Emin|

UD

Figure 4: Graphical exemplification interval
analysis validation metrics

EIA = Emax − Emin (5)

Upon computation of the validation metrics,
corollaries based on the ones discussed in the
ASME standard can be derived.
• If both |Emax| >> EIA and |Emin| >>
EIA, then it is safe to assume that δmodel

has the same order of magnitude of Emax

and Emin and that its estimation is reliable;
• if either |Emax| ≲ EIA or |Emin| ≲ EIA,

then the comparison error is dominated by
either numerical, input and/or experimen-
tal uncertainties and little information can
be retrieved and used about the modelling
error value.

Fidelity assessments and model improvements
can be measured directly on Emax and Emin.

3. RoCS Guidelines
3.1. Phase 1
Certification specifications for the hereby pre-
sented demonstration were extracted from [3].
In particular, CS.29.143 (d) for OGE low speed
controllability and maneuverability was consid-
ered. The CS requires the applicant to inter-
pret what loss of control means in order to be
translated into ACRs. For the sake of simplic-
ity, the author decided to exclude any stability
and aircraft dynamics related argument, hence
rephrasing the controllability requirement as a
sole function of the aircraft trim static control
margins. As a consequence, model validation is
based on the comparison of fidelity metrics at
trim and involves the time domain only.
Concerning the fidelity metrics, the prelimi-
nary set proposed by RoCS [13] was considered.
However, the angle of sideslip and angle of at-
tack were excluded from the set, and the collec-
tive control position (xtcol) was replaced with
the rotors blades collective pitch.
The flight data selected for the guidelines appli-
cation are represented by a set of measurements
carried over four time windows. Each window
has a duration of 2 seconds and corresponds
to an attempt of horizontal, uniform, rectilin-
ear flight at an assigned ground speed azimuth
angle.
Concerning FSM requirements, the model shall
be physics-based. Moreover, since all selected
validation points and ACRs do not involve
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ground effect, its modelling may not be included
in the FSM. Nevertheless, considering the low
speed environment of the CS, interference aero-
dynamics are expected to play a crucial role in
the aircraft behavior.

3.2. Phase 2 - FSM Development
The FSM is developed in FLIGHTLAB. Within
the model, each aircraft functional part is im-
plemented and integrated with other systems
in a component-based approach, as exemplified
in fig. 5. The model is conceived as a time-
marching simulator, capable of the time integra-
tion of the aircraft and rotors subsystem equa-
tions. All aerodynamic components are mod-
elled as rigid. The rotors are modelled with
blade element theory. Fixed lifting surfaces,
namely the wing and the tail, are modelled as
lifting lines. Finally, fuselage and nacelles aero-
dynamic loads are managed via specific look-up
tables and making use of single control points
for airspeed acquisition.

Flight Control
System

Rotors

Wing

Tail

Fuselage

Forces and
Moments

Computation

Flight Dynamics
Equations of

Motion

Atmospheric
Data

Aircraft
Motion

Nacelles

Figure 5: FSM components breakdown

The induced velocity field of the lifting compo-
nents (namely, blades, wing and tail) is mod-
elled with the Peters-He finite state model
([8], [10]), a physics-based time-domain dynamic
wake model originally conceived as a tool for
the aeroelasticity and aeromechanics of lifting
rotors. The same model is used to account for
aerodynamic interference, as outlined in fig. 6.

3.3. Phase 2 - Solution Verification
The widely recognized solution verification prac-
tices outlined in existing standards (e.g. [4])
are aimed at CFD and structural analysis prob-
lems and cannot be directly applied to a multi-
physics flight simulation models. Thus, the au-
thor came up with its own operative procedure
for the solution verification of the FSM. Nev-

Figure 6: FSM aerodynamic interference out-
line. Active interference effects are marked by a
continuous line. Conversely, dashed lines mark
the account for self-induced velocity on a com-
ponent.

ertheless, the hereby proposed approach was
based on several concepts pointed out in [4] and
[12].
Great variability of all fidelity metrics with re-
spect to the number of inflow (and interference)
states was observed, as reported in fig. 7. As a
consequence the author decided not to consider
the effect of inflow states into the numerical er-
ror.

nrad

3
3
=
4
L

[/
]

Figure 7: Left rotor collective numerical error
estimates. The dashed line represents the varia-
tion with respect to inflow states. The errorbars
on each point, conversely, represents the sum of
all other numerical error contributions estimates
accounted for in this study

Concerning the other parameters affecting the
numerical error, asymptotic convergence was
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typically observed. The choice of their value
was dictated by a compromise between com-
putational time, confidence on the error esti-
mate and error estimate magnitude. Upon such
choice, numerical error estimates (and associ-
ated decomposition into the different contribu-
tions) were derived for each fidelity metric, as
reported in fig. 8.
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Figure 8: Numerical error estimates contribu-
tions on all validation flights for longitudinal
control position

3.4. Phase 2 - Model Validation
The first step in solution validation concerns the
identification and characterization of FSM in-
put uncertainties. In the present work, based
on engineering judgement, it was decided to in-
clude uncertainties due to wind speed and direc-
tion, treated as epistemic, and aircraft mass and
center of gravity position, treated as aleatory.
Their mathematical characterization was made
building on [2] and the judgement of the author.
A preliminary sensitivity analysis was per-
formed with Morris One-at-A-Time (MOAT)
global screening method, in order to determine,
among the candidate uncertain model inputs,
those whose uncertainty results in negligible ef-
fects on all the system response quantities of in-
terest. The MOAT method was chosen instead
of variance based decomposition method due to
its reduced computational cost [6] when a large
number of parameters is considered. As a result,
the center of gravity waterline was removed from
the list of uncertain model inputs, due to the
negligible impact exhibited on all fidelity met-
rics.

To complete the validation process, numeri-
cal, experimental and model input uncertainties
were derived according to the process provided
by each framework, and validation metrics val-
ues were computed for each SRQ of interest.

4. Phase 2 - Validation Metrics
Comparison

Decent agreement in the trends and values of
the metrics was observed, as reported in fig. 9.
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Figure 9: Validation metrics comparison for
control positions on all validation flights

Being both based on the comparison error, EIA

and E±uval are indeed very similar. The yellow
band of EIA always include the nominal compar-
ison error E of ASME, as expected. Moreover,
the amplitude of the yellow bar is typically of
the same order of magnitude of uval and, fre-
quently, 2 to 3 times greater. This is expected
considering that uval is a standard uncertainty,
while the EIA is extended and directly repre-
sents the interval in which the comparison error
is expected to fall. The area metric d assumes
values which are comparable to the other met-
rics as well. As a consequence, it is reasonable
that the fidelity acceptability margins conceived
for the comparison error may also apply sensi-
bly to this validation metrics. In addition, it
also typically follows the same trends of ASME
and interval analysis. However, whenever the
comparison error assumes negative values, con-
sidering that the area metric is a positive defi-
nite quantity, a difference in the trends emerges,
characterized by a pseudo-symmetry with re-
spect to the X-axis of the plot. Thus, whenever
E carries the information about the sign of the
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error, the area metric doesn’t. However, this can
always be retrieved by the analyst through a vi-
sual inspection of the pbox and the area metric.
Alike E and uval, also |Emax|, |Emin| and EIA,
are typically of the same order of magnitude.
Hence, when the corollaries are applied to in-
terval analysis validation metrics, the analyst is
supplied with compelled evidence that the un-
certainty due to input and flight data is too big
to isolate the value of the model error. As a
consequence, a reduction of the input and ex-
perimental uncertainty is necessary in order to
set up well-advised model improvements based
on these data, unless the applicant is willing to
accept a large uncertainty.
Concerning the area metric, it is straightaway
clear that no model improvement can be for-
mulated basing on the instances where d = 0.
On the other hand, depending on the quality
of flight data, model update procedures may be
conceived for the cases where d ̸= 0. Neverthe-
less, as observed in section 2.2, d does not come
with any associated uncertainty (unlike E in the
other two frameworks). When the model is ex-
trapolated and the model-form error estimate is
exploited in the DoP for certification-aimed pre-
diction or credibility assessments, any informa-
tion concerning the uncertainties involved in the
validation phase is lost. As a consequence, an-
other fundamental difference among the frame-
works emerges in regard of model adequacy as-
sessment.
Within the validation methodologies based ei-
ther on ASME standard or interval analysis,
any increase in the uncertainties involved in
the model validation phase ends up worsening
model credibility. The validation metrics uval
and EIA not only draw the attention of the an-
alyst to large uncertainties involved in the vali-
dation process but also, and more importantly,
are able to transport that information (related
to the goodness of the model validation) into the
DoP. Essentially, any uncertainty associated to
model-inputs (uinput or UINPUT ), numerical ap-
proximations (unum or UNUM ) and flight mea-
surements (ud or UD) in the validation points in-
directly affects the model credibility in the DoP
through the model-form error uncertainty (ei-
ther represented by uval or EIA). Hence, the
credibility of a FSM is not only affected by the
comparison error E and the fidelity of the model

itself, but also by the quality of the validation
which has been carried out to assess its fidelity.
As a result, the very same model validated with
reduced uncertainties in the validation data can
lead to a smaller margin with the same CR when
used to support certification (thanks to a reduc-
tion on uval or EIA).
Conversely, whenever d is used, this connection
does not always emerge. Indeed, as the analyst
inadvertently exaggerate either the epistemic in-
put uncertainty or UNUM during model valida-
tion, the value of d reduces and, as a conse-
quence, recalling eq. (4), model credibility im-
proves. Thus, apparently, it is possible to con-
clude that whenever d is used, it becomes criti-
cal not to overestimate epistemic uncertainties.
However, this might not be trivial at all, consid-
ering the fact that epistemic input uncertainties
may include inputs of which little information is
available and accounting for the difficulties asso-
ciated to the estimation of UNUM . On the other
hand, E ± uval and interval analysis methods
may be considered more resilient in this regard,
since, at least, they make available to the ana-
lyst an indication of the uncertainty associated
to the model-form error.
In regard of uncertainty contributions decompo-
sition, all validation frameworks are able to in-
form the analyst about what uncertainties dom-
inate model predictions and/or validation met-
rics.
Another way of comparing the validation met-
rics relies on their computational cost. Indeed,
in the present study, uval and d turned out to
be the most computationally intensive metrics
to compute, due to the sampling techniques re-
quired for the estimation of uinput and of the
model probability box, respectively. On the
other hand, at the cost of sacrificing the in-
formation on SRQs statistics, interval analysis
proved to be much cheaper, resulting in at least
an order of magnitude reduction in terms of re-
quired function evaluations per fidelity metrics.

5. Conclusions
In the present work, the ASME VV 20 [4] and
Roy-Oberkampf [11] approaches to VV of com-
putational models are revised. Then, emulating
the first phases of a partial credit demonstra-
tion of compliance to EASA low speed control-
lability requirements [3], the aforementioned VV
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methodologies have been applied to a state-of-
the-art FSM developed by LHD. In the course
of the application, the CbS guidelines developed
by RoCS are strictly followed. FLIGHTLAB
and Dakota are employed as tools for flight dy-
namics modelling and SA/UQ, respectively.
The solution verification process is carried out
accounting for several model discretization and
solution algorithm parameters. At the time of
writing, there is no accepted solution verifica-
tion procedure suited for the quantification of
the numerical error of flight mechanics multi-
body models. Hence, the author applies a veri-
fication algorithm specifically conceived for the
present application, stressing the assumptions,
challenges and limits of the currently adopted
procedures when applied to complex state-of-
the-art multi-body systems. Valuable insight is
gained on the behaviour of the Peters-He finite
state dynamic inflow model with different num-
ber of states. In addition, reliable estimates of
the numerical error associated to the FSM solu-
tion are obtained.
In the framework of model validation, a prelim-
inary SA with respect to FSM inputs is carried
out with the MOAT [5] method implemented in
Dakota. Despite a direct comparison with more
widely adopted SA methods (e.g. VBD) is not
provided, it is predicted that the reduced cost of
MOAT may result in a significant reduction of
the computational expense of SAs in FSMs with
a large number of uncertain input parameters.
Model validation is then carried out with both
ASME VV 20 and Roy-Oberkampf approaches.
Moreover, a validation methodology based on
interval analysis is proposed and applied to the
FSM.
The three VV procedures are eventually com-
pared in terms of fundamental assumptions,
computational expense, validation metric values
and suitability to the CbS process developed by
RoCS.
ASME and Roy-Oberkampf validation proce-
dures, as expected, proved to be significantly
more expensive than interval analysis. Despite
this, all validation methodologies lead to sim-
ilar values of model validation metrics for all
SRQs. The VV framework proposed by ASME
for CFD and CHT [4] may be best suited for the
application to FSMs in RoCS. Indeed, its corol-
laries provide a powerful tool at disposal of the

analyst to critically interpret the outcomes of
model validation. Moreover, the standard vali-
dation uncertainty uval allows model credibility
in the DoP to be affected by quality of the FSM
model validation (namely, the magnitude of the
uncertainties accounted for during validation).
This is a powerful feature, especially when, as
in the present work, FSM input uncertainties
cannot be accurately estimated. Nevertheless,
when computational expense is of paramount
importance, e.g. when a preliminary guess of
affordable FSM input uncertainties shall be pro-
vided, interval analysis might turn out to be
best suited, thanks to its capability of delivering
great proxies of the comparison error E uncer-
tainty band obtained with the ASME approach
at a fraction of the cost.
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