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Abstract 
In a global context of increasing human pressure on water resources and development of water 

reuse practices, disinfection of municipal wastewater has a primary role in controlling microbial 

contamination of natural water sources and water reuse systems. Operation of disinfection facilities 

are challenged by ever stricter limit at discharge on microbial indicators set by regulation and 

guidelines worldwide and by bottleneck of most chemical disinfectant, whose concentration in 

wastewater effluents cannot be raised, applying wide safety factors, without generating 

unacceptable toxic and ecotoxic impact in receiving waters. Ultraviolet (UV) disinfection gets 

around the use of chemicals, but still its energy consumption is not negligible when very high 

efficiency is needed and lamps end-of-life management is critical, since in most cases they are 

mercury-based.  Such trade-off between health and environmental conflicting objectives demands 

for optimization and control of disinfectant, to achieve reliable compliance with very low target 

concentration of microbial indicators, while avoiding waste of chemicals and energy. This goal has 

been addressed on many aspects by old and recent research, which had to deal with intrinsic high 

variability of flow rate and quality of effluents to be disinfected and complexity of disinfection 

physical, chemical and microbiological mechanisms. 

 

The aim of this PhD project is to conceive, calibrate and test models to optimize disinfection of 

wastewater. The disinfection process was studied combining lab-, pilot- and full-scale experiments 

and monitoring, to gather necessary data to develop and test predictive models of process 

disturbances and efficiency. Two main modeling approaches were explored. Data-driven machine 

learning models were used in cases where explicit description of physical world was not achievable 

or convenient, but data could be used to calibrate effective predictive models. Mechanistic models 

were preferred whenever a-priori knowledge of disinfection was sufficient to detailed modeling of 

involved hydraulic, chemical and microbiological phenomena. Models were deployed within 

control algorithms for real-time optimization of disinfectant dosage, compensating variability of 

effluent quality and flow rate.  

 

Firstly, as essential precondition for real-time control of wastewater disinfection dosage, a “soft-

sensor” approach is presented for virtual on-line monitoring of microbial indicator Escherichia coli 

in secondary and tertiary effluents at the inlet of disinfection units. Several linear and nonlinear 

regression models were studied, using conventional physical and chemical wastewater parameters 

as predictors of E. coli concentration. Results suggested that a neural network model is an effective 
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family of models for E. coli soft-sensing, catching complex nonlinear relationships between 

wastewater characteristics and microbial concentration. Potential benefits of the soft-sensor 

deployment were highlighted, simulating real-time optimization of chemical disinfectant dosage to 

compensate fluctuation in initial concentration of E. coli and estimating significant reductions of 

chemical consumption (about 66%) with respect to conventional off-line approaches for dosage 

design.  

 

Secondly, a novel data-driven approach is illustrated for modeling and control of a full-scale UV 

disinfection of wastewater. The UV disinfection reactor of a large-scale wastewater treatment plant 

(WWTP), treating effluent for indirect reuse in agriculture, was monitored under various operating 

conditions and data were used to calibrate and test a black-box neural network model predicting E. 

coli disinfection efficiency given UV dose, flow rate and wastewater quality parameters affecting 

optical properties of water and disinfection mechanism. Results proved accuracy of the neural 

network model on test data and benefits of the combined use of the previously developed E. coli 

soft-sensor and the UV model for real time control of UV dose, which lead to an estimated saving 

of up to 66% of energy with respect to conventional off-line and experience-based dosage design. 

 

Then, an original mechanistic model of peracetic acid (PAA) disinfection and its practical 

deployment and test at pilot-scale is presented. Lab-scale experiments were performed to calibrate 

sub-models of E. coli inactivation kinetics and PAA decay and how the latter is impacted by 

wastewater quality. Pilot-scale experiments were carried out to calibrate conceptual models of 

disinfection reactor hydrodynamics and validate disinfection model prediction accuracy and its 

effectiveness in controlling the process within a Model Predictive Control (MPC) algorithm. 

Validation of the PAA disinfection model confirmed the importance of considering dynamic nature 

of the process and impact of disturbances in prediction. Model deployment in MPC control at pilot 

scale proved effectiveness of the algorithm, with potential savings between 30% and 85% with 

respect to conventional flow-paced control. 

 

Finally, reduction of health risk achieved by wastewater disinfection in an indirect agricultural 

reuse case study was estimated adopting the Quantitative Microbial Risk Assessment (QMRA) 

framework. Site-specific and literature data and models were integrated to describe fate and 

transport of reference pathogens of concern (salmonella, norovirus) from raw wastewater to 

moment of exposure by accidental ingestion by workers and during crop consumption. Results 

highlighted general low risk for the system under study and that a risk-based approach applied to 
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disinfection optimization allows to manage the process as part of a broader and complex system, 

including several pathogen inactivation barriers before human exposure, which must be completed 

by disinfection when and how much necessary. The study shew how QMRA can support decision-

making in managing wastewater disinfection in a reuse system considering both health protection 

and environmental sustainability.  
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Chapter 1: Introduction 

1.1 Wastewater disinfection: state of art and current challenges 

Wastewater, even after biological, physical and/or chemical treatments in wastewater treatment 

plants (WWTPs), contains relevant concentrations of pathogenic bacteria, viruses and protozoa of 

enteric origin, which can severely affect human health. Discharge of untreated or inadequately 

treated wastewater can indirectly impair sources of drinking water and bathing areas, potentially 

causing outbreaks of diseases like gastroenteritis and hepatitis. Waterborne outbreaks caused by 

fecal pollution are a major concern in many undeveloped and developing countries, where 

wastewater treatment facilities are inadequate or completely lacking. However, wastewater-

originated fecal pollution leads to thousands of hospitalizations per year in developed countries too 

(Xagoraraki et al., 2014, Ma et al., 2022) .  

Disinfection of municipal wastewater is designed to control pathogen concentration at the point 

of discharge of WWTPs, with the aim of minimizing concentration of enteric pathogens in 

receiving waters and protecting human health. While secondary and tertiary treatments usually lead 

to effluents containing 103 to 105 units/100 mL of a given pathogen (Inc. Metcalf & Eddy et al., 

2013), disinfection can reduce this concentration by several order of magnitudes, potentially 

reaching almost null concentration (Mezzanotte et al., 2007, Antonelli et al., 2008, Rachmadi et al., 

2020). Disinfection treatment is carried out with both chemical and physical processes. Chemical 

disinfection implies inactivation of pathogenic microorganisms by dosage of a chemical biocidal 

agent. Chlorine-based compounds, like chlorine gas (Cl2), chloramines (NHxCly) and sodium 

hypochlorite (NaOCl), are the oldest and best-established chemical disinfectants, with long proven 

high and wide spectrum biocidal effectiveness. Most common alternatives are ozone (O3) (Morrison 

et al., 2022), mainly used as oxidants in wastewater treatment (Lim et al., 2022), and chlorine 

dioxide (ClO2), even if it is not largely diffused (inter alia: Wang et al., 2007, Ayyildiz et al., 2009, 

Bischoff et al., 2012). Since all these disinfectants cause the formation of toxic and carcinogenic 

by-products and have high eco-toxicological impact, the use of organic peracids is spreading in 

more recent years. Among peracids, Peracetic Acid (CH3CO3H, PAA) and Performic Acid (CH2O3, 

PFA) are probably the main emerging chemical disinfectants. While they maintain similar 

disinfection efficiencies as conventional competitors, they lead to very low to null concentration of 

harmful by-products and have lower eco-toxicological impact. In case of PAA, DBPs are mostly 

carboxylic acids, while other potentially harmful by-products such as aldehydes, epoxides, 
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halogenated compounds and N-nitrosamines were detected at very low concentrations.  

(Domínguez Henao et al., 2018, Luukkonen & Pehkonen, 2017). 

Physical disinfection systems are based on ultraviolet (UV) radiation or membranes and they 

have the general advantage of avoiding the use of chemicals and, thus, potential toxic and eco-toxic 

side effects. UV disinfection achieves pathogen inactivation by emission of radiation at 

wavelengths between 200 and 300 nm from immersed lamps. UV disinfection demonstrated as one 

of the most effective alternatives in virus inactivation. In more recent years, solar disinfection is 

developing and spreading, as cheaper solution, mainly for small-scale cases, exploiting natural UV 

radiation of sunlight (Bichai et al., 2012, Igoud et al., 2015). Membrane-based treatments with 

porous size lower than 1 µm, being micro-, ultra- and nanofiltration and reverse osmosis, can be 

considered as de-facto disinfection technologies, even if they do not achieve inactivation of 

pathogens but separate them from water. These solutions are expensive and critical to manage, 

usually designed to achieve multiple quality requirements in treated effluents, and rarely they are 

placed in treatment trains exclusively for pathogen reduction purposes (Ezugbe & Rathilal, 2020, 

Chen et al., 2021, Bera et al., 2022). For these reasons, they will be not further discussed in the 

present work.  

Impact on inactivation efficiency of the combination of UV radiation and chemical disinfectants 

was widely explored, both as ad-hoc treatment for pathogen reduction and as positive side-effect of 

Advanced Oxidation Processes. In fact, combination of UV with hydrogen peroxide, ozone, 

titanium dioxide and PAA showed a synergistic effect, which increases the inactivation efficiency 

thanks to the production of high oxidation potential reactants, like hydroxyl radicals (OH•) (Chen et 

al., 2021). Electro-disinfection, sono-disinfection and natural-based solutions, like constructed 

wetlands, are other notable disinfection alternatives emerging in recent years (Collivignarelli et al., 

2018).  

In last decades, wastewater reuse is ever more spreading and developing as fundamental measure 

to compensate increasing water scarcity worldwide, driven by growing demographic pressure and 

climate change (Fito & Van Hulle, 2021, Ungureanu et al., 2020, Jeong et al., 2016). This is one of 

main current challenges for wastewater disinfection and gives it central importance in wastewater 

treatment trains. Direct, indirect and de-facto reuse of treated wastewater for potable, irrigation and 

industrial purposes potentially expose humans to pathogens by many routes, like ingestion, dermal 

contact and inhalation of aerosols, thus very high microbial quality standards must be achieved in 

treatment (Ofori et al., 2021, Kesari et al., 2021, Jaramillo & Restrepo, 2017). Latest guidelines and 

regulations worldwide are then setting ever more low compliance limits at the point of discharge on 

concentration of microbial indicators (NRMMC-EPHC-AHMC, 2006, The European Parliament 
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and the Council of the European Union, 2020, World Health Organization, 2006). The new 

Regulation (2020/741) of the European Union (The European Parliament and the Council of the 

European Union, 2020) on water reuse in agriculture is one of the most recent and with the most 

potential impact, setting new limit at discharge on the indicator microorganism E. coli, which are 

particularly strict in case of reuse for irrigation of crops eaten fresh and critical irrigation techniques 

like sprinkler irrigation (e.g. 10 or 100 CFU/100ml). Moreover, the Regulation explicitly promote a 

proactive management of water reuse systems based on risk assessment, which should lead to even 

stricter discharge limits in case characteristics of a specific reuse system imply higher potential 

exposure to pathogens. 

Disinfection efficiency is driven by two main operating parameters, being the concentration of 

chemical disinfectant (or the UV radiation intensity) and contact time. While such high microbial 

concentration reduction is often practically achievable by sufficiently increasing chemical 

disinfectant concentration or UV radiation intensity, this is not always environmentally sustainable. 

High concentration of chemicals results in unfeasible toxicological and eco-toxicological impacts, 

preventing compliance of disinfection with both discharge of the effluent in surface waters and 

reuse (Domínguez Henao, Turolla, et al., 2018, Affek et al., 2021).  In many cases, WWTP 

effluents eco-toxicity is monitored and regulated and practitioners face the challenge of optimizing 

disinfectant dosage to comply with both microbial and eco-toxicological limits. For example, in 

Italy, where case studies of this PhD work are located, limits on results from acute toxicity tests on 

Daphnia magna (or alternative indicator organisms like Selenastrum capricornutum) are defined by 

national law on wastewater discharge in surface waters and public sewer (D.LGS. 152/99, 

Attachment 5, Table 3. Last update in 2006). UV disinfection gets around the presence of 

chemicals, but the increase in number of UV lamps and radiation intensity could result in 

significant energy consumption, thus an environmental impact is still present. Moreover, most of 

UV lamps used in disinfection are mercury-based and their disposal is critical (Jones et al., 2018). 

The presence of two conflicting health and environment-oriented objectives demands for 

optimization of the disinfection process, minimizing chemicals and energy to reliably achieve 

health protection target, while avoiding excessive environmental impact. This optimization 

perspective requires to consider wastewater disinfection as a process which dynamically varies with 

time and effluent quality and thus needs for control. These concepts are further discussed in 

paragraph 2.  

The various disinfection alternatives previously summarized present both advantages and 

drawbacks and they fit differently to case studies according to the upstream treatment train, 

treatment goals, wastewater characteristics, downstream receiving waters type, and many more 
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factors. It has not been possible to identify one disinfection type dominating all alternatives, yet. 

Still, some options evidently get around the major drawbacks of formation of most harmful DBPs. 

As previously mentioned, this is the case of peracids, with PAA being the most widespread and 

best-established, and UV disinfection. For this reason, case studies on these two alternatives will be 

explored and discussed in the current work, in the attempt of providing modeling, optimization and 

control tools for more reliable and sustainable disinfection of wastewater.  

1.2 Modeling and control of disinfection 

As further discussed in following thematic chapters, wastewater disinfection efficiency, meant as 

the reduction in the pathogen or indicator microorganism of interest, depends on two main 

operating conditions. The first one is the “amount” of disinfectant microbes are exposed to, 

represented by disinfectant concentration (mg L-1) or UV radiation intensity (mW cm-2), in case of 

chemical and UV disinfection, respectively. The second one is contact time, meant as time 

microorganisms are exposed to, given disinfectant concentration or UV radiation.  

While disinfectant dosage can be controlled, the process is affected by two main disturbances, 

which are wastewater flow rate and quality. Flow rate impacts on reactor hydrodynamics and 

determines contact time of each fluid particle, and it varies according to production of wastewater 

from municipalities and/or demand of treated effluent in case of reuse practices. At same time, 

several wastewater quality parameters impact on disinfection efficiency. First and straightforward, 

variability of the concentration of the microorganism of interest in the effluent to be disinfected 

determines variations in output concentration, at given disinfection operation (dosage and contact 

time). Then, concentrations of organics, suspended solids and metals can affect presence of 

disinfectant and how it varies in space and time. In fact, these wastewater quality parameters 

significantly enhance instantaneous oxidative demand and gradual decay of chemical disinfectants 

(inter alia: Haas & Karra, 1984, Domínguez Henao, et al., 2018)  and affect how UV radiation 

spread out in the water media (inter alia: Carré et al., 2018). This topic is further discussed in 

chapters 4, 5 and 6. 

Another main source of variability is inactivation kinetics, namely the relationship of 

disinfectant concentration (or UV radiation intensity) and contact time with reduction in 

microorganism concentration. In fact, it depends on type of microorganism, type of disinfectant, 

water matrix characteristics and the interactions among these three. Despite numerous studies 

propose many different inactivation models to describe inactivation kinetics in WWTP effluents in 

batch conditions (Gyürek & Frinch, 1998, Santoro et al., 2015, Domínguez Henao et al., 2018a), 
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most literature agrees on the common assumption that concentration of disinfectant (or UV 

radiation intensity) and contact time can be synthesized in a single operating parameter, the “dose”, 

univocally determining microorganism inactivation, and propose disinfection models based on the 

dose concept (inter alia: Neumann et al., 2007, Santoro et al., 2015, Dominguez Henao et al., 2018, 

Ahmed et al., 2019). Overall, the higher is the dose, the higher is inactivation. First and most basic 

definition of the dose is the product of dosed disinfectant concentration (or emitted UV radiation 

intensity) and contact time. While this formulation is easy to compute and useful for preliminary 

design, it does not account how the presence of disinfectant can vary in space and time during the 

process. More recent and effective definition of the dose accounts for the loss of chemical 

disinfectant due to decay (Haas & Joffe, 1994) and, in case of UV disinfection, the reduction of 

actual UV radiation intensity due to absorption, reflection and refraction.  

Several approaches were developed through the years in guidelines, regulations and scientific 

literature to model disinfection in continuous flow conditions, to predict reduction in target 

microorganisms and, accordingly, optimize and control disinfectant dosage. First, disinfection was 

modeled approximating it as a batch process, estimating reduction of the target microorganism by 

means of batch inactivation kinetics models relating dose to inactivation level. This approach was 

introduced and applied by the US Surface Water Treatment Rule in 1989 (later updated in 2006, 

USEPA, 2006). The Integrated Disinfection Design Framework (IDDF, Ducoste et al., 2001) 

marked a shift towards a site-specific approach, which included modeling of disinfectant decay, 

inactivation kinetics and reactor hydrodynamics of the case study of interest, leading to more 

accurate efficiency estimates and, consequently, guaranteeing better optimization of dosage. Still, 

IDDF models disinfection as a stationary and deterministic process. More recent scientific literature 

on disinfection modeling is focusing on describing the impact of disturbances variability and model 

uncertainty on the estimation of process efficiency (inter alia: Neumann et al., 2007, Santoro et al., 

2015, Ahmed et al., 2019). Besides, research is pointing at modeling disinfection as a dynamic 

process, affected by time varying disturbances (inter alia: Manoli et al., 2019). More detailed 

discussion on the state of art of wastewater disinfection modeling and related research proposed in 

this work are reported in Chapter 3 to 6. 

1.3 Estimation of wastewater disinfection impact: microbial risk assessment 

As previously mentioned in paragraph 1, municipal wastewater disinfection primary goal is to 

protect human health avoiding spread of enteric pathogens in environment and water reuse systems. 

Monitoring pathogen concentration in raw and treated wastewater at point of discharge and 
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throughout wastewater reuse systems is a challenging task, requiring high expertise in 

microbiology, expensive technologies and time-consuming measuring techniques. Culture-based 

methods reliably measuring concentration of infective pathogen concentration exist only for a 

subset of pathogens of concern. In many cases, only surrogate species can be cultivated, while 

many species can be measured only by real-time Quantitative Polymerase Chain Reaction (qPCR). 

While recent development of qPCR allowed easier and broader monitoring of pathogens, still this 

method showed limitations in case of disinfection monitoring, overestimating actual infective 

concentration of pathogens after exposure to disinfectant (Girones et al., 2010, Rönnqvist et al., 

2014). Monitoring efficiency and compliance of wastewater disinfection would need frequent and 

periodical measurement of all pathogens of concern, or a subset of reference pathogens, which is 

economically and practically unfeasible. Easy to measure and culturable indicator microorganisms 

are instead monitored as proxies of the presence of pathogens, and limits at the point of discharge 

for WWTP in guidelines and regulations are set as indicator microorganism concentrations 

(Toribio-Avedillo et al., 2021, McKee & Cruz, 2021). Examples are fecal coliforms and 

Escherichia coli, for bacteria, coliphages for viruses and Giardia lamblia and Cryptosporidium 

parvum for protozoa. While such indicators are useful for regulators and WWTP practitioners to 

optimize disinfection of wastewater, the actual beneficial impact of disinfection on human health 

should be verified estimating how different management of the process affects exposure to the 

actual source of health risk, being enteric pathogens. Probabilistic modeling of pathogen fate and 

transport from source to human exposure within a risk assessment framework can get around the 

inability of direct monitoring of pathogen species and link disinfectant dose control strategies to 

quantitative estimate of risk of disease by exposure to treated wastewater. Quantitative Microbial 

Risk Assessment (QMRA) (Haas et al., 2014) is the best-established and most widespread 

framework to fit this purpose. As further detailed in chapter 7, QMRA considers as reference a 

subset of pathogens of concern and use literature and site-specific data to model all phenomena 

involving inactivation, regrowth and/or transport and finally assess risk and burden of disease. Use 

of QMRA is of fundamental importance to assess health risk and support decision making in any 

wastewater reuse practice (Zhiteneva et al., 2020). Control of disinfectant dose can be optimized 

according to a risk-based approach, considering disinfection as part of a wider integrated reuse 

system. Moreover, estimating effective health risk resulting from given disinfection operating 

conditions allows to quantitatively assess trade-off between beneficial effects of disinfection and 

drawbacks coming from use of chemicals and energy consumption. 

To summarize paragraphs 1.2 and 1.3, microbial indicators, like E. coli, are necessary to set 

discharge limits and monitoring disinfection compliance, and WWTP practitioners should take 



Disinfection of wastewater: modeling, control and risk assessment 
PhD Thesis – Jacopo Foschi – IAI, Politecnico di Milano – XXXIV cycle 

 

 
 

14 

advantage of accurate modeling of the process to reliably comply with target indicator 

concentration in the effluent. In parallel, risk assessment approaches like QMRA should be used to 

verify actual beneficial effect of disinfection, considering site-specific characteristics of wastewater 

reuse system under study, especially in case of indirect and de-facto reuse, where pathogen routes 

from discharge to exposure are long and complex. Disinfection treatment target should be then 

increased or reduced if health risk from reuse results as non-tolerable or if some chemicals or 

energy can be saved without concerning increase of health burden.  
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Chapter 2: Design of the research 

Ever more increasing water scarcity demands for protection of available water sources from 

microbial pollution originated by municipal wastewater. In this context, reuse of treated wastewater 

is developing as powerful solution to mitigate human water footprint, and in such practice control 

of microbial pollution is even more important and challenging. Disinfection of wastewater within 

WWTPs assumes then a central role and should be optimized to balance health protection with 

sustainable process operation, addressed by use of chemicals and energy consumption. 

 

The objective of the PhD thesis is the development of models to support optimization of 

wastewater disinfection to achieve compliance with discharge limits set by regulators and ensure 

tolerable burden of disease in water reuse practices, while minimizing cost and drawbacks coming 

from eco-toxicological impact of chemicals or energy consumption. This work addressed 

wastewater disinfection mostly with a process-scale perspective, conceiving predictive models to 

estimate process state and disturbances and how to use such models within control strategies aimed 

at optimal compliance with discharge limits on microbial indicators while reducing externalities. 

Then, part of the work is devoted to put the disinfection process in a broader perspective, 

considering how it impacts actual health risk in a water reuse system, conceiving and applying a 
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microbial risk assessment model to optimize disinfection according to a risk-based approach, which 

consider the process as part of an integrated system. 

 

The PhD thesis is subdivided in four thematic chapters, each one following a scientific article-

based structure. Chapters 1 and 2 are published on international scientific peer-reviewed journals, 

while chapters 3 to 5 are under revision or intended for publication and will be submitted soon.  A 

schematic overview of the thesis chapters is given in Figure 1, and their content is briefly described 

in the following.  

 

– Chapter 1: a novel approach is presented for virtual monitoring of E. coli concentration in 

WWTP secondary and tertiary effluents before disinfection, by means of a “soft-sensor” 

approach. “Easy-to-measure” and conventional wastewater physical and chemical 

parameters were explored as potential predictors of E. coli concentration using regression 

models. Data coming from three full-scale WWTP were used for model selection and 

testing. A neural network model turned out as the best option for soft sensor application and 

its potential benefits were highlighted when deployed for real time control.  

– Chapter 2: a neural network model of full-scale UV disinfection was calibrated and tested, 

and used to simulate real-time control of the process to comply with agricultural water reuse 

limits. Results proved good accuracy of the developed model on test data and highlighted 

benefits coming from its deployment for real-time control of UV disinfection, which lead to 

an estimated energy saving of 66% with respect to business-as-usual off-line, conservative 

and experience-based control.  

– Chapter 3 and 4: mechanistic model of PAA disinfection is conceived and tested (chapter 3) 

and deployed for Model Predictive Control (MPC) of the process (chapter 4). Lab and pilot 

scale studies were carried out to characterize reactor fluid dynamics E. coli inactivation, 

PAA decay and how the latter is impacted by wastewater quality. Developed model proved 

good performances in catching dynamic behavior of the PAA disinfection process, and its 

deployment in an MPC control algorithm leads to good control of effluent E. coli 

concentration. 

– Chapter 5: QMRA was applied to an agricultural indirect water reuse system to support risk-

based optimization of UV disinfection, considering accidental ingestion of soil particles by 

workers and crop consumption as exposure scenarios. QMRA revealed the importance of 

considering the whole integrated wastewater reuse system in management of disinfection 
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operation, which allows to set disinfectant dose considering fate and transport pathogen 

undergo between point of discharge and point of exposure. 

 
Figure 1 – Graphical concept of design of the research 

CHAPTER
1

soft sensor
of indicator microorganism load

CHAPTER
2, 3 AND 4

modeling and control
of disinfection

CHAPTER
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of  indirect reuse
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Chapter 3: Soft sensor predictor of E. coli concentration 

based on conventional monitoring parameters for wastewater 

disinfection control  

 

Abstract 

Real-time acquisition of indicator bacteria concentration at the inlet of disinfection unit is a 

fundamental support to the control of chemical and ultraviolet wastewater disinfection. Culture-

based enumeration methods need time-consuming laboratory analyses, which give results after 

several hours or days, while newest biosensors rarely provide information about specific strains and 

outputs are not directly comparable with regulatory limits as a consequence of measurement 

principles. 

 In this work, a novel soft sensor approach for virtual real-time monitoring of E. coli 

concentration is proposed. Conventional wastewater physical and chemical indicators (chemical 

oxygen demand, total nitrogen, nitrate, ammonia, total suspended solids, conductivity, pH, turbidity 

and absorbance at 254 nm) and flowrate were studied as potential predictors of E. coli concentration 

relying on data collected from three full-scale wastewater treatment plants. Different methods were 

compared: (i) linear modeling via ordinary least squares; (ii) ridge regression; (iii) principal 

component regression and partial least squares; (iv) non-linear modeling through artificial neural 

networks.  

Linear soft sensors reached some degree of accuracy, but performances of the artificial neural 

network based models were by far superior. Sensitivity analysis allowed to prioritize the importance 

of each predictor and to highlight the site-specific nature of the approach, because of the site-

specific nature of relationships between predictors and E. coli concentration. In one case study, pH 

and conductivity worked as good proxy variables when the occurrence of intense rain events caused 

sharp increases in E. coli concentration. Differently, in other case studies, chemical oxygen 

demand, total suspended solids, turbidity and absorbance at 254 nm accounted for the positive 

correlation between low wastewater quality and E. coli concentration. Moreover, sensitivity 

analysis of artificial neural network models highlighted the importance of interactions among 

predictors, contributing to 25 to 30% of the model output variance. This evidence, along with 

performance results, supported the idea that nonlinear families of models should be preferred in the 

estimation of E. coli concentration. 
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The artificial neural network based soft sensor deployment for control of peracetic acid 

disinfectant dosage was simulated over a realistic scenario of wastewater quality recorded by on-

line sensors over 2 months. The scenario simulations highlighted the significant benefit of an E. coli 

soft sensor, which provided up to 57% of disinfectant saving. 

Keywords: disinfection; soft sensor; artificial neural network; E. coli; peracetic acid; wastewater 

This chapter has been published on “Water Research”. 

3.1 Introduction 

Chemical and ultraviolet (UV) disinfection are two effective solutions for wastewater treatment 

(inter alia: Mezzanotte et al., 2007), while the concentration of chemical disinfectant, or UV 

radiation intensity, and the contact time are the two fundamental process parameters in determining 

pathogen inactivation. Proper control of the disinfectant dosage can compensate contact time 

variations and preserve disinfection efficiency, as recently demonstrated by Manoli et al. (2019). 

This issue is particularly important when wastewater is treated for reuse, which implies strict limits 

on microbial indicators in the effluent. For example, the European Parliament recently approved the 

new regulation for agricultural wastewater reuse (The European Parliament and the Council of the 

European Union, 2020), where limits on E. coli concentration after treatments are 10 or 100 

CFU/100 mL depending on the type of crops and irrigation techniques. Nevertheless, the 

disinfection process is strongly affected by many sources of uncertainty, which cause high 

variability of the process efficiency with respect to the desired performance setpoint. Particularly, 

the concentration of the indicator bacteria entering disinfection is highly variable, as a result of the 

variability of raw wastewater characteristics, upstream treatment layout and deviation from nominal 

conditions of wastewater treatment plants (WWTP). Moreover, intense rain events can cause 

fluctuations of order of magnitudes in bacteria concentration. The first reason of inlet indicator 

bacteria concentration importance on disinfection is straightforward: the higher the load, the higher 

the required reduction, given a discharge limit to comply with. In addition, bacteria concentration 

can significantly affect inactivation kinetics (Haas & Kaymak, 2003; Kaymak & Haas, 2008) and, 

thus, has an impact on the determination of the disinfectant dosage. 

Traditional disinfection modeling approaches do not address the issue of indicator bacteria load 

variability, and assume average, 95% percentile or maximum of available observations, as well as 

literature reference values, as basis for process design and operation (Ducoste et al., 2001). More 

recently, inlet bacteria concentration and disinfection kinetics parameters were described as 

multivariate random variables (Santoro et al., 2015; Ahmed et al., 2019). In these non-deterministic 
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frameworks, E. coli variability was modeled according to observed concentrations in several real 

WWTP effluents, accounting for stochastic dependency with inactivation kinetics parameters. 

These models give a realistic and reliable estimation of the indicator bacteria concentration 

variability upon which optimizing the disinfectant dosage. However, they are still a static 

description of the bacteria load, synthesizing the quantity fluctuations as a fixed probability 

distribution, to be estimated once for all through a site-specific data collection campaign. 

Differently, providing knowledge about indicator bacteria concentration trend in time and, 

importantly, being able to get this information on-line, is still a challenge. Culture-based methods 

for estimation of indicator bacteria require time-consuming laboratory work. E. coli, which is one of 

the most widespread indicator bacteria for water and wastewater, requires at least 18 hours of 

incubation to be cultured (APHA, 1999). Measurement of indicator bacteria concentration is thus 

usually limited to mandatory analyses of the effluent at the point of discharge. The disinfection 

treatment is then designed and managed according to an approximate or partial knowledge about 

inlet bacteria concentration and wide safety factors are assumed. Sensors for real-time monitoring 

of bacteria concentration are under development, but mainly in the drinking water field (Skovhus & 

Horjis, 2018). One of the major challenges in the implementation of these sensors is that they are 

based on measurement principles, which are different from traditional culture-based methods. Thus, 

they provide outputs which are not directly comparable to regulation limits, expressed as CFU 

(Colony Forming Units) or MPN (Most Probable Number) values. Moreover, sensors rarely 

measure concentration of specific indicator bacteria strains like E. coli (Skovhus and Hojris, 2018). 

Soft sensors for regression applications are models that exploit “easy-to-measure” variables, 

which can be monitored on-line at a reasonable cost, to predict target “hard-to-measure” variables 

(Souza et al., 2016). In recent years many studies highlighted the potential of data-driven regression 

models, as soft sensing tools, to predict non or hardly measurable variables in WWTPs. 

Particularly, many applications focus on the prediction of organic matter content and nutrients, and 

on treatment fault detection (Haimi et al., 2013; Corominas et al., 2018). However, wastewater 

disinfection applications have not been explored yet. A soft sensor could be a cost-effective solution 

to virtually monitor the concentration of indicator bacteria in wastewater and to optimize 

disinfectant dosage accordingly. Actually, the use of predictive modeling to estimate E. coli 

concentration proved promising performances in many environmental water matrices, where some 

chemical, biological and physical characteristics effectively worked as predictors of E. coli 

concentration (Christensen et al., 2002; Dwivedi et al., 2013, 2016; Mälzer et al., 2016; Wang et al., 

2018; Rossi et al., 2020). However, a model for real-time estimation of indicator bacteria load has 

not been still studied for disinfection process control and optimization. 
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In this study, the development of a soft sensor approach to virtually monitor E. coli concentration 

at the inlet of real-scale disinfection units is presented. Conventional wastewater physical-chemical 

indicators, flowrate and E. coli were monitored in three large scale WWTPs in the Milan urban area 

(Italy). Both linear and nonlinear models were explored, to identify the optimal family of models 

and assess prediction performances. Sensitivity analysis was performed to identify negligible 

factors, prioritize relevant predictors and use the regression model to explore the relationship 

between the predictors and E. coli concentration. Finally, an example of the benefits of an E. coli 

soft sensor is reported, simulating its deployment on a realistic scenario for the optimization of the 

disinfectant dosage, focusing on the use of peracetic acid (PAA). 

3.2 Materials and Methods 

3.2.1 Data collection 

Data collection was carried out at three large scale WWTPs in the Milan urban area: WWTP1 

(1,250,000 PE), WWTP2 (600,000 PE) and WWTP3 (440,000 PE). Samples were collected at the 

inlet of disinfection units and analyzed for E. coli concentration and wastewater quality 

characteristics (pH, conductivity, temperature, TSS, turbidity, COD (chemical oxygen demand), 

UV absorbance at 254 nm (UV254), total nitrogen, ammonia, nitrate) and flowrate. 

As for WWTP1, 42 samples were collected between July 2018 and March 2019, in both dry and 

wet weather conditions. Wastewater quality characteristics, listed in Table 1, were recorded by the 

disinfection unit on-line sensors (10 minutes acquisition frequency), except for UV254, which was 

measured in laboratory for each sample collected. As for WWTP2 and WWTP3, respectively 13 

and 19 samples were collected in dry weather conditions between July 2019 and January 2020, and 

wastewater characteristics in Table 1 were measured in laboratory. All WWTPs were monitored at 

approximately weekly frequency. 

Three datasets were created from the collected data, combining monitoring data from the three 

WWTPs, as detailed in Table 1. Dataset 1 comprises only data from WWTP1, while dataset 2 is 

composed grouping data from WWTP2 and WWTP3. In fact, WWTP1 is worth to be studied 

independently, being the only case where also rainy conditions occurred and wastewater quality 

was monitored with commercial on-line sensors. Finally, an additional dataset (dataset 3) 

combining all available data was considered, in order to explore potential general relationships 

between predictors and E. coli concentration. Differences in terms of dataset variables are due to the 

fact that total nitrogen and nitrate ion were monitored only in WWTP2 and WWTP3: for each 

dataset, only variables which were monitored in all the samples were kept in the modeling step. 



Disinfection of wastewater: modeling, control and risk assessment 
PhD Thesis – Jacopo Foschi – IAI, Politecnico di Milano – XXXIV cycle 

 

 
 

26 

Table 1 – Datasets used for soft sensor development: predictor variables, number of data available and source WWTPs. 

Predictors Dataset 1 Dataset 2 Dataset 3 
pH • • • 
Conductivity • • • 
Temperature •   
Turbidity • • • 
TSS • • • 
COD • • • 
UV absorbance • • • 
N  •  
NO3-    •  
NH#$  • • • 
Flow rate •   
Dataset size 42 32 74 
Calibration subset size 33 26 62 
Test subset size 9 6 12 
Source WWTP1 WWTP2+WWTP3 WWTP1+WWTP2+WWTP3 

 

3.2.2 Description of WWTPs under study 

The three WWTPs under study receive municipal wastewater from similar drainage basins, with 

a limited contribution of industrial wastewater. All the WWTPs are based on activated sludge 

processes for carbon and nitrogen removal. WWTP1 has a pre-denitrification stage followed by 

nitrification. Phosphorous is then removed by chemical precipitation with ferric chloride and 

removal of suspended solids is refined by sand filtration. The last stage is UV disinfection.  

WWTP2 stream is firstly treated in a primary sedimentation stage. Biological treatment is made 

of a sequence of pre-denitrification, nitrification and post-denitrification, followed by chemical 

removal of phosphorous by aluminium chloride and disc filtration. Disinfection is carried out by 

sodium hypochlorite dosage. 

WWTP3 has a primary sedimentation stage, followed by a nitrification and phosphorous 

removal by aluminium chloride. The stream quality is then refined by a double stage biofilter 

(BIOFOR®, Suez) performing nitrification, denitrification and suspended solids filtration. 

Disinfection is then performed by peracetic acid. 

3.2.3 Sampling procedure, microbiological and chemical analysis 

All samples were collected in 1-L sterile bottles, transported to the laboratory in refrigerated 

bags and analyzed within 12 h (conservation in refrigerated chamber at 4 °C). Putative E. coli were 

enumerated by membrane filtration method according to Standard Methods (Section 9222, 

APHA/AWWA/WEF, 2012), using 0.45- µm pore size cellulose nitrate membranes (Whatman) and 
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chromogenic agar (Microinstant® Chromogenic Coliforms Agar, Scharlau) as culture medium. 

Inoculated plates were incubated at 37 °C for 24 h. E. coli were expressed as CFU in 100 mL 

volume. For WWTP1, wastewater quality parameters were measured by a multiparameter 

monitoring station (micro::station®, S:CAN), measuring pH, conductivity, temperature (measured 

at sampling time, before refrigeration), COD, TSS and ammonia, and an on-line turbidimeter. For 

WWTP2 and WWTP3, commercial test kits were used for measurement of COD (Hach LCI500, 

ISO 15705), ammonia (Hach LCK303, ISO 7150-1), nitrate (Hach LCK339, EN38405 D-2) and 

total nitrogen (Hach LCK238, EN ISO 11905-1). TSS, turbidity and UV254 were respectively 

measured by 0.45- µm membrane filtration (Standard Methods, section 2540B, 

APHA/AWWA/WEF, 2012), portable turbidimeter (VELP Scientifica) and 1-cm optical path 

laboratory spectrophotometer (Hach DR6000). 

3.2.4 Soft sensor development 

The soft sensor for E. coli concentration was developed following four main steps: (i) data 

collection (paragraph 2.1) and pre-processing, (ii) variable selection, (iii) model selection and 

calibration, (iv) model testing (Fortuna et al., 2007; Souza et al., 2016). The variable selection, 

regression model selection and evaluation procedure were repeated for each dataset. Only 80% of 

data (calibration subset) was used for variable and model selection and calibration; 20% of data 

(test subset), randomly sampled, was used only to assess model performances in the testing step. 

Resulting numbers of data in each subset for the three different datasets are reported in Table 1. In 

detail, for dataset 1 test data corresponded to a randomly selected time window comprising 20% of 

the whole dataset, in order to use the test subset to both evaluating model performances and 

assessing the model deployment benefits over a continuous time span (10/10/2018 – 28/11/2018). 

3.2.4.1 Data pre-processing 

Input data were standardized to have null mean and standard deviation equal to 1, in order to 

ensure they have equal importance in the training process. As output data, the logarithmic 

transformation of E. coli concentration was taken, to properly manage the wide range of 

concentration variability, within order of magnitudes of 102 to 105 (Shu & Burn, 2004). Ammonia 

data were excluded from the analysis, since in most cases they resulted lower than the LOQ (Level 

of Quantification) and thus the parameter was not considered as a good candidate as predictor of E. 

coli concentration. 
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3.2.4.2 Variable selection, model selection and calibration 

Four kind of linear modeling options were evaluated: (i) ordinary least squares (OLS) multiple 

linear regression (MLR) coupled to a best variable subset selection strategy (BVSS); (ii) ridge 

regression (RR) (Hoerl & Kennard, 2018); (iii) principal component regression (PCR) (Massy, 

1965); (iv) partial least squares (PLS) (Wold, 1975). All the four approaches perform variable and 

model selection steps within the identification process itself, as following. More details about linear 

modeling approaches are reported in Supplementary Material (Paragraph 1). 

Each one of the listed linear regression techniques requires the tuning of one hyperparameter, 

being the number of input variables for MLR (k), the value of the shrinking factor for RR (𝜆) and 

the number of components for PCR and PLS. Optimal hyperparameters were estimated via leave-

one-out cross-validation (LOOCV), which allows estimating the expected prediction error of a 

specified model (Hastie et al., 2009).  

As for nonlinear regression model, feed-forward backpropagation artificial neural network 

(ANN) was calibrated and tested on the data. ANN model was chosen as nonlinear regressor 

because it can reproduce any nonlinear relationship at the price of increasing its complexity (Hornik 

et al., 1990), i.e. increasing the number of layers and neurons per hidden layer. In this work, the 

“shallow” ANN model was adopted, being a network with a three-layer architecture, made by one 

input, one hidden and one output layer. Even in single hidden layer network, the number of weight 

parameters defining the model can be very high, being equal to 𝑝(𝑛 + 1), where 𝑛 is the number of 

hidden neurons. In small datasets, such as in this work, the number of weights of a shallow ANN 

with a few hidden neurons can easily become comparable to the number of observations and 

predictors, and even outnumber them. The consequence is to produce a model which easily overfits 

calibration data and provides very poor generalization capability. For this reason, in this work the 

ANN model was trained using a weight decay approach, which applies the same penalty on the loss 

function in the minimization algorithm as the ridge regression (Equation 2.1). The integration of the 

penalty in the training algorithm shrinks towards zero unnecessary connections, removing the effect 

of irrelevant predictors and input-response relationships. Moreover, the weight decay method 

reduces the effect of collinearities. In this work, the ANN model had two hyperparameters to be 

tuned: the number of hidden neurons and the weight decay rate. In order to find the optimal 

hyperparameters, LOOCV was adopted. Early stopping technique was used to further avoiding 

overfitting and improving generalization. Validation error was monitored during each training 

process. Training and validation errors usually decrease together during the first training iterations. 

At later stages of training, the network starts to overfit the data and the validation error typically 
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rises. Summing weight decay and early stopping produce some redundancy in the direction of 

avoiding overfitting. However, the two methods tackle different issues. Weight decay shrinks 

irrelevant parameters, performing a sort of variable selection, even if it does not produce a sparse 

model. Early stopping performs regularization by looking at the validation data, which are an 

additional information with respect to the training subset. ANN models with up to 15 neurons were 

considered in the LOOCV process, representing the inner loop in the whole model selection 

process. An outer LOOCV loop was performed for different values of the weight decay rate, 

ranging between 0.0001 and 1. In each iteration of the LOOCV loop, ANN models were trained by 

means of back-propagation algorithm, based on gradient descent for mean squared error 

minimization. Details about the early stopping algorithm and other ANN training settings are 

reported in detail in the Supplementary Material (Paragraph 2). 

Linear regression analyses were performed on software R 3.6.3, using packages leaps 3.1 for 

BVSS, glmnet 4.0 for RR and pls 2.7-2 for PLS and PCR. Training and CV of ANN models 

were performed on Python 3.3.6, using PyTorch 1.3.1 and ScikitLearn 0.22.1 libraries. 

3.2.4.3 Model testing 

All the identified regression models were evaluated on the test subset of the corresponding 

dataset. Three performance metrics were used, being the Mean Absolute Error (MAE), the Mean 

Absolute Percentage Error (MAPE) and the Coefficient of Determination (R2). 

MAE and MAPE were chosen because of their easy interpretability. Differently from widely 

used performance metrics, like mean squared error (MSE) and root mean squared error (RMSE), 

MAE and MAPE are not influenced by squares and square roots, which emphasize the impact of 

high errors, improving model training but preventing easy and direct interpretation. For the same 

reason, MAE and MAPE were computed using E. coli concentration as CFU/100 mL. Differently, 

R2 was computed over logarithmic E. coli concentration, since R2 values depend on the sum of 

squares and can then overweight high values. 

3.2.5 Sensitivity analysis 

Sensitivity Analysis (SA) of identified regression models was performed to prioritize the 

importance of relevant predictors.  

Variance-based sensitivity analysis (VSA) was chosen for predictor prioritization. VSA is an 

“all-at-a-time” global SA method, where output variations are obtained by varying all the inputs 

simultaneously, exploring their entire variability space (Saltelli et al., 2006; Pianosi et al., 2016). 
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The contribution of the input Xi on the output Y variability is accounted by the term 𝑆! (first 

order effect), defined as:  

𝑆! =
"#$[&['|)%]]

"#$[']
          (Eq. 2.2) 

The larger 𝑆!, the larger the contribution of 𝑋! to the output 𝑌. When the inputs are uncorrelated, 

the total variance 𝑉𝐴𝑅[𝑌]	 is the sum of the contributions given by the variation of all the single 

inputs 𝑋! 	plus the contribution given by the interaction among inputs. Conversely, if the inputs are 

correlated, the sum of the variance contributions given by all the inputs might be higher than 

𝑉𝐴𝑅[𝑌], because the conditional variance also carries over the effects of other predictors that could 

be positively or negatively correlated to 𝑋𝑖	(Saltelli et al., 2006).  

A critical step in VSA is the right definition of the variability space and probability distribution 

for the inputs, which can significantly affect the SA results. In this work, input values for model 

simulations in SA were sampled from independent uniform distributions between the minimum and 

maximum observed values of each input, which is the most common and simple approach (Pianosi 

et al., 2016). The correlation among predictors was not considered in this step, since the aim of the 

analysis was primarily to understand how the models behave, “opening” the black-box, and then to 

prioritize the predictors after the model selection step. Under the assumption of uncorrelation, 

𝑆! 	ranges between 0 and 1. Thanks to this property, results from SA application on linear models 

and ANN (Marseguerra et al., 2003) can be directly compared and the effect of nonlinearity and 

interactions can be studied. Under the hypothesis of uncorrelation of inputs, the contributions of all 

the interactions among the inputs can be estimated as: 

𝑆!+, = 1 − ∑ 𝑆!
-
!./           (Eq. 2.3) 

3.2.6 Simulation of soft sensor deployment 

In order to highlight the benefits of a soft sensor for virtual E. coli monitoring and disinfection 

process control, E. coli concentration in WWTP1 undisinfected effluent was simulated by the ANN-

based soft sensor model derived from regression on dataset 1, during the time span comprising test 

subset data (paragraph 2.1). UV254 was assumed as constant. Estimated E. coli concentrations were 

used to compute optimal PAA dosage, relying on site-specific experimental results (see 

Supplementary Material, Paragraph 4) about disinfectant decay and inactivation in WWTP1 

wastewater entering full-scale disinfection unit. Since no immediate oxidative demand was 

observed in the data (Rossi et al., 2007), PAA concentration needed to comply with a selected 

discharge limit was calculated assuming a first order kinetic model for PAA decay. The model 

described by Domínguez Henao et al. (2018) was used for E. coli inactivation. Assuming the kinetic 
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parameters as constant over time, Equation 2.6 was used to compute the required exposure dose, 

while Equation 2.5, being the integral over time of Equation 2.4, was used to compute the PAA 

dosage needed to guarantee that dose. Results about the calibration of PAA kinetics are reported in 

detail in the Supplementary Material (Paragraph 4). 

𝑃𝐴𝐴(𝑡) = 𝑃𝐴𝐴0𝑒12,         (Eq. 2.4) 

𝐷(𝑡) = 	 3##&
2
(1 − 𝑒12,)         (Eq. 2.5) 

45	(8)
45	(8&)

= 12':(

/1;)*+
          (Eq. 2.6)  

where 𝑡 is time, 𝑘 is the first order decay rate of PAA, 𝑃𝐴𝐴0 is the PAA initial concentration, 𝐷  

is the dose, 𝑁 is E. coli concentration at time 𝑡, 𝑁0 is E. coli initial concentration and 𝑘<, 𝑛 and ℎ 

are the inactivation kinetic parameters. 𝑡 was assumed as equal to 30 minutes, being a typical 

hydraulic residence time for chemical disinfection. The ANN-based soft sensor model used in this 

scenario was re-calibrated (Haupt et al., 2008) on the calibration subset of dataset 1, according to 

two approaches. Firstly, a single ANN model was calibrated. Moreover, an ensemble of 100 ANN 

models (ANNe) was calibrated, according to the “bootstrap aggregation”, or “bagging”, approach 

(Breiman, 1996). Bootstrap sampling consists in randomly drawing new datasets from the original 

calibration data, each sample being a random sample with replacement the same size as the original 

dataset. In some of the re-sampled datasets some observations can appear more than once, while in 

other cases one or more observations can be absent. One model is fitted for each of the bootstrap 

samples. The probability distribution of model parameters, due to the modeling uncertainty, was 

approximated by the observed distribution of the parameters derived from each model training. 

Similarly, given a set of observations of the predictors, the predictions given by ANNe provided 

both a point estimate, by averaging the predictions, and a confidence interval, by taking the 

observed percentiles of the predictions (Efron & Hastie, 2016).  

3.3 Results and Discussion 

3.3.1 Wastewater characterization 

Summary statistics of monitored wastewater physical and chemical characteristics and weather 

conditions during sample collection are reported in Table 2. Rainfall data close to WWTP1 location 

during the data collection campaign are reported in Supplementary Material (Figure S9). All the 

three monitored WWTPs have good quality effluents, both in terms of solids, organic and nitrogen 

(where monitored) content. One straightforward reason was the presence of tertiary treatments for 

quality refinement. In fact, mean effluent constituents are close to typical literature values of 
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tertiary effluents after biological treatment for carbon and nitrogen removal and filtration for 

residual solids removal (Metcalf & Eddy et al., 2013). Moreover, raw wastewater streams in the 

Milan area are typically significantly diluted, due to integration of some canals in the sewer 

network and frequent discharge of groundwater in the sewer to control water table level. E. coli 

concentration was the single parameter deviating in some cases from typical levels of a tertiary 

effluent, peaking 57000 CFU/100mL. Such high concentrations occurred during rain events and 

they could be explained by possible resuspension phenomena taking place in the sewer, resulting in 

higher E. coli concentration at the inlet of the WWTP, or to releases from sand filtration, whose 

efficiency could temporarily drop due to sharp increase of flow rate.  Since data-driven regression 

approaches were used to develop the soft sensor model for each dataset, it is important to stress the 

fact that model validity is limited to observations ranges of variability which were recorded during 

the collection campaign. Limitations could be related to period of the day (e.g. night hours), the 

week (e.g. weekend) or the year (April, May and June, in this work) which could be not well 

represented by collected datasets.  
Table 2 – Physical/chemical characteristics of sampled wastewater streams 

Parameter Unit WWTP1 WWTP2 WWTP3 

pH [-] 6.84±0.13  
(6.64; 7.03) 

7.31±0.27  
(6.94; 7.95) 

7.79±0.32  
(7.33; 8.77) 

Conductivity [µS cm-2] 777.52±89.6  
(599.4; 865) 

807.23±26.38  
(735; 836) 

604±108  
(458; 800) 

Temperature [C°] 20.2±2.9  
(16.4; 24.5) - - 

Turbidity [NTU] 1.96±0.84  
(1.21; 3.98) 

3.09±1.34  
(1.44; 6.35) 

4.95±1.92  
(2.25; 9.27) 

Total suspended solids [mg L-1] 2.8±2.5  
(0.1; 8.8) 

6.11±4.49  
(0.93; 16.4) 

8.81±8.32  
(2.95; 29)	

Chemical oxygen demand  [mg L-1] 9.96±4.56  
(4.71; 20.50) 

15.85±1.71  
(13.5;18.9) 

29.47±14.51  
(9.59; 52.50) 

UV absorbance at 254 nm [-] 0.071±0.018  
(0.04; 0.115) 

0.121±0.022  
(0.099; 0.171) 

0.080±0.025  
(0.051; 0.150) 

Total nitrogen [mg L-1] - 8.45±2.68  
(4.19; 12.8) 

10.00±3.31  
(6.37;16.80) 

Nitrates [mg L-1] - 6.24±2.53  
(2.829; 12.06) 

23.54±11.74  
(12.80; 41.50) 

E. coli [CFU/100mL] 7892±11888  
(1010; 57000) 

27000±12000  
(7900; 44000) 

177377±230441  
(3000; 730000) 

Flow rate [m3 s-1] 1.5 ±0.59  
(0.72; 3.93) - - 

Rainfall [mm] 0.5±0.8  
(0.2; 9.0) - - 

 

3.3.2 Model identification and performance evaluation 

The model selection and calibration step aimed at identifying the best family of models and 

predictors. Regularization techniques used in this work aims at removing non-relevant predictors or 
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shrinking their coefficients, thus reducing model complexity and improving the model 

generalization capability. Both linear and nonlinear regression analyses were performed, in order to 

understand to what extent nonlinear dependencies and interactions are important in estimating 

input-output relationships. Since there is no model or framework in literature to estimate inlet 

bacteria concentration in disinfection, regression models here developed were compared to two 

“baseline” models (BM) which are considered as representative of the general approach in 

disinfection design and operation: (i) mean of the data on the calibration subset (BM1), (ii) 95th 

percentile of the calibration subset (BM2). The performance metrics of BM1 on the test subset was 

considered as the “base error rate” (Hastie et al., 2009), since observed mean can be seen as the 

simplest possible model, while BM2 was included in the comparison as an example of more 

precautionary alternative to the solution here proposed. 

Test performances of all the regression options for each dataset are reported in Table 3. Details 

about the calibration and cross-validation results are reported in the Supplementary Material 

(Paragraph 3). Overall, nonlinear regression based on ANN shows the best performances and a 

significant improvement with respect to BM1 and linear models, suggesting that nonlinearities and 

interactions are fundamental to get satisfying performances from a soft sensor for E. coli. Regarding 

BM2, as shown in Table 3, the price of guaranteeing a wide safety factor is a huge average error in 

the test cases. Differently from linear models, the ANN model is hardly interpretable via direct 

inspection of parameters (weights). 
Table 3 – R2, MAE (mean absolute error) and MAPE (mean absolute percentage error) computed on test data subsets for the 

developed soft sensor regressors. 

Model Dataset 1 Dataset 2 Dataset 3 
 R2 MAE MAPE R2 MAE MAPE R2 MAE MAPE 
BM1 - base error rate - 7728 55% - 193130 290% - 29894 198% 
BM2 - 22133 495% - 291983 3300% - 55123 1820% 
MLR 0.25 7420 40% 0.39 142420 215% 0.4 22633 103% 
RR 0.31 7289 42% 0.22 161827 261% 0.32 23515 177% 
PCR 0.41 6980 40% 0.24 152422 206% 0.30 22765 195% 
PLS 0.41 6995 41% 0.18 155602 253% 0.33 22659 185% 
ANN 0.60 2337 29% 0.71 114515 130% 0.79 11686 47% 

ƒtable 4 

3.3.3 Sensitivity analysis: discussion on physical and chemical parameters relevance 

Sensitivity analysis (SA) is of fundamental importance for model developers and users to 

understand key features of the model and exploit the model at its highest potential. This kind of 

analysis is particularly important in case of high mathematical complexity models, like ANNs, 

whose parameters lack of direct interpretability and physical significance (Olden & Jackson, 2002). 



Disinfection of wastewater: modeling, control and risk assessment 
PhD Thesis – Jacopo Foschi – IAI, Politecnico di Milano – XXXIV cycle 

 

 
 

34 

Actually, data-driven regression models capture input-output relationships as they perceive them in 

the available training data. After model identification, it is important in engineering applications to 

interpret the predictive relationships derived from the data and to compare the regression analysis 

results with a priori knowledge about phenomena. The use of VSA presents some advantages in 

inspecting the model, as briefly detailed in the Supplementary Material (Paragraph 7). 

Values of 𝑆! from the VSA are reported in Figure 1, computed both for the RR model, as an 

example of a linear model, and the ANN model, for the three studied datasets. In many cases the 

index is almost null, as a result of the shrinking effect on the model parameters produced by the 

penalty on the loss function imposed both by RR and weight decay in ANN training. Results about 

dataset 1 show that pH is the most relevant factor in determining the variance of the output, both for 

the linear and the nonlinear model cases (30-40%). In the nonlinear case, conductivity resulted also 

as an important factor, with about 10% contribution to the total variance. The relationship with E. 

coli concentration is negative both for pH and conductivity. A possible interpretation is that the 

most significant increase in E. coli concentration occurs during intense rain events, when the 

contribution of stormwater lowers pH and conductivity. Stormwater can actually determine sharp 

increase in E. coli concentration, due to urban runoff and sediment re-suspension in the sewer 

(McCarthy, 2009; Hathaway & Hunt, 2011; McKergow et al., 2010). The use of pH and 

conductivity as proxies of the incoming of stormwater, instead of directly using the rainfall data as a 

predictor, avoids the critical issues of modeling the delay between the occurrence of rain events and 

the incoming of stormwater in the WWTP, which implies the description of the corrivation 

phenomena and the choice of optimal rainfall monitoring sites. Moreover, acquisition of pH and 

conductivity data from on-line sensors is a much more practical solution than implementing the 

real-time transmission of rainfall data from monitoring sites. The WWTP1 case study is then a clear 

example of how a soft sensor can exploit available monitoring data in order to catch proxy 

relationships which work as surrogates of the real physical cause-effect laws of the target 

phenomena: changes in conductivity or pH are not the physical cause of E. coli increase, but they 

are indirectly correlated to that. The importance of pH and conductivity stands only for this dataset. 

In the other two cases, their contribution to the output variance is almost negligible. Since no rain 

events occurred during data collection, pH and conductivity lose their role of proxies of wet 

weather conditions. Unexpectedly, temperature did not result as an important predictor for the case 

of dataset 1: probably, temperature in the effluent varied in a too narrow range to determine 

significant changes in E. coli concentration. However, since a relationship between temperature and 

bacteria vitality exists, the role of temperature should be further studied. 
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In models trained over dataset 2, most of the output variance (about 50%) is caused by turbidity. 

Significant correlations between turbidity and E. coli concentration were found many times in 

surface waters (Christensen et al., 2002; Jamieson et al., 2005; Money et al., 2009; Huey & Meyer, 

2010; Wu et al., 2011), which can be explained by the tendency of E. coli to attach to particles 

(Hipsey et al., 2006; Dickenson & Sansalone, 2012; Liu et al., 2013; Jiang et al., 2015). Association 

of coliforms on suspended solids in wastewater is still poorly explored, but it has been highlighted 

in some studies (Loge et al., 2002; Falsanisi et al., 2008; McKergow & Davies-Colley, 2010; 

Chahal et al., 2016; Carré et al., 2018). It is then highly probable that increases in E. coli 

concentration in WWTP2 and WWTP3 were determined by a higher contribution of the particle 

associated fraction in the influent, due to temporary decrease of upstream treatments efficiencies or 

higher suspended solids loads to the plant. 

 

Figure 1 – Results of sensitivity analysis for RR and ANN models. 

In the case of dataset 3, models were trained and validated on data coming from all the three 

WWTPs considered in this study. Thus, corresponding sensitivity analysis results are better 

candidates than the dataset 1 and 2 case to describe general relationships between physical and 

chemical characteristics of wastewater and E. coli concentration. For dataset 3, UV254, COD, 

turbidity and TSS resulted as most important predictors. For all the four predictors, the correlation 

with E. coli is positive, thus in this general case, the soft sensor captures the increase in E. coli 

concentration that is correlated with a global worsening in wastewater quality in terms of organic 

content and suspended solids. Dependence of coliforms concentration on treatment efficiency of 

organic matter and solids was already highlighted by George et al., 2002 and Koivunen et al., 2003. 
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The role of TSS and turbidity can be explained as for dataset 2, but in these cases both the two 

aggregated indicators of suspended solids turned out to be important, which can be explained by the 

difference in their measuring principles. Turbidity, which is an optical method, can be affected by 

particle size (Gregory, 2009; He & Nan, 2012; Yao et al., 2014), with larger particles usually 

contributing more to the overall nephelometric turbidity units (NTUs). Since particle size was 

pointed as a factor in determining particle association of coliform, with bacteria typically attaching 

on larger particles (Falsanisi et al., 2008; Chahal et al., 2016), both turbidity and TSS were probably 

kept by the model as predictors, in order to account both for total suspended solids mass and 

particle size, as well as their interaction. The importance of COD was likely due in part to the fact 

that a fraction of the residual organic matter in the effluent was in the form of suspended solids. 

However, the almost equal relevance of ABS254 indicate that soluble organic matter is correlated to 

E. coli concentration as well. A candidate reason behind this evidence is that lower efficiencies of 

the activated sludge treatments in removing soluble organic carbon can be due to lower biological 

activities and thus weaker “ecological barriers” for E. coli. It was in fact highlighted in literature by 

long time how predation, especially by protozoa, is the main mechanism determining abatement of 

fecal bacteria in biological treatments (van Der Drift et al., 1977; Loge et al., 2002). Non-optimal 

conditions of activated sludge may also cause the formation of smaller and less settling flocs, thus 

more difficultly removable by secondary settlers and filters. This could be another reason why 

increase in SST and turbidity work as predictors of increases in E. coli concentration.  

Overall, there are some big discrepancies among the results from the three different datasets that 

worth to be discussed. First of all, as already mentioned, dataset 1 leads to models which are 

completely different from the other two cases, because in WWTP1 occurrence of intense rain events 

resulted as the only cause of sharp increases in E. coli concentration, determining variations of one 

order of magnitude. Results coming from dataset 1 are then really site-specific and no general 

interpretation of the phenomena can be inferred. The different ranges of variability of E. coli 

concentration in the different datasets, highlighted in Figure 2 and 3, have to be considered as well. 

Data from dataset 1 are mainly comprised between 1,000 and 10,000 CFU/100 mL, with a minor 

portion of data regarding wet weather conditions, which reach about 60,000 CFU/100 mL. 

Differently, data from dataset 2 range between 10,000 to 500,000 CFU/100 mL. Similarly, COD, 

TSS, UV254 and turbidity data vary in different ranges in the three datasets. The three datasets 

complement each other and thus their combination allows to better explore their space of variability 

and consequently reveal more relationships with E. coli concentration. This is one of the reasons 

why predictors ranking changed completely from dataset 1 to dataset 2: in the latter case the wider 

distribution of data in their variability space allows to the regression analysis to catch the role of 
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turbidity in predicting E. coli concentration. Since dataset 3 is the sum of all the collected data from 

all the three studied WWTPs, it is the one having the most complete picture on E. coli concentration 

and wastewater quality variability and thus, in addition to turbidity, it can capture the role of 

additional predictors, being UV254, COD and TSS.  

 
Figure 2 – Boxplots of data collected about wastewater characteristics in the three WWTP (wastewater treatment plant) under 

 
Figure 3 – Observed trend of E. coli concentration vs. the monitored wastewater characteristics. 

SA on ANN-based soft sensors revealed that interactions among predictors are responsible of an 

important portion of the total variance (25-30%). This result, together with the significant increase 
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in performances with respect to the linear models, highlights that the relationship between E. coli 

concentration and wastewater quality characteristics is mainly nonlinear and thus a family of 

nonlinear models, like ANN, is the best candidate for soft sensor. 

In conclusion, the coupling of model selection techniques and SA, revealed how wastewater 

characteristics can be screened and prioritized in order to understand which are essential to build an 

effective predictive model as an E. coli soft sensor. 

3.3.4 Example of model deployment over a scenario 

Figure 4 reports predictions during the time window of the ANN-based soft sensor calibrated on 

dataset 1. The single ANN model predictions approximate well almost all the test measurements. 

Importantly, the soft sensor catches the increase in E. coli concentration occurring around 

01/11/2018, which coincided with intense rain events. Even if the model cannot explicitly 

discriminate between dry and wet weather conditions, it captures the sharp increase in E. coli 

concentration thanks to the wastewater quality variables which are real-time monitored and can 

work as proxies of a higher contribution of stormwater to the overall flow rate. Thus, the model 

testing support the interpretation of SA results previously reported. 

Predictions from bootstrap averaging of the ANNe are also reported in Figure 4. Average 

predictions are similar to the single ANN model, except for the wet weather condition cases. In this 

period, average predictions of the ANNe are significantly lower than the single ANN, leading to a 

dramatical underestimation of E. coli in a critical event. However, the bagging approach has the 

advantage of producing an estimate of the confidence interval of the prediction: the 95% confidence 

interval always contains all the observed concentrations of the test subset. The upper bound of the 

ANNe is then a valuable reference to describe E. coli concentration when the goal is the 

optimization of disinfectant dosage, since it both provides an adequate safety factor and catches the 

main fluctuation in E. coli load occurring in the considered time window. 

Table 4 reports PAA consumption that would be required during the whole time window 

considering the different approaches for E. coli concentration estimation. Consumptions data were 

computed for discharge limits equal to 5,000 and 10 CFU/100 mL, which are respectively the 

recommended limit for surface water discharge and the mandatory limit for agricultural reuse in 

Italy. The BM1 approach was totally inadequate for the discharge limit into surface water, since the 

average E. coli concentration observed in the calibration subset was lower than the discharge limit 

itself. Considering E. coli as a constant equal to the observed average leads to a critical 

underestimation which even leads to conclude that no PAA dosage would be needed. Considering 

all the other approaches, as expected the BM2 brings to the highest PAA consumption, 
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guaranteeing a good safety factor, since only the most critical E. coli concentration is 

underestimated. When the single ANN model is used, a PAA mass saving is obtained, being, 

respectively, 57% for the discharge limit in surface water and 55% for the reuse limit. Moreover, 

even if E. coli concentration is often underestimated, the error is quite small (Table 3). Lastly, when 

the ANNe is used, considering the upper bound of the 95% confidence interval, a reduction in PAA 

consumption of 12% and 25% and a wide enough safety factor, in order to never underestimate E. 

coli concentration, were obtained. 

 
Table 4 – Mass of consumed PAA (peracetic acid) and number of under-estimation cases for every modeling approach estimating 

E. coli concentration entering the disinfection unit (N0). 

       PAA (kg) 𝑁, > 𝑁(,	cases 
Discharge limit (E. coli, CFU/100 mL) 5,000 10  
BM1 0 1,084 6/9 
BM2 798 4,589 1/9 
ANN 140 2,050 7/9 
ANNe (97.5%) 703 3,433 0/9 
 

 
Figure 4 – Simulation of E. coli concentration entering the disinfection unit. Trends in rainfall, pH and conductivity during the 

scenario are reported. E. coli test observations are reported as white dots. Single ANN (artificial neural network) model prediction 

(blue line) and ANNe (artificial neural network ensemble) predictions (black line and grey shaded area) are shown. 
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3.4 Conclusions 

In this study an innovative soft sensor based on “black-box” regression models is proposed for 

real-time virtual monitoring of E. coli concentration at the inlet of full-scale disinfection units. 

Relying on data from three WWTPs, soft sensor regressors using different physical and chemical 

characteristics as predictors were calibrated and gave satisfying performances. Performances of the 

ANN-based soft sensors were significantly higher than any linear model tested, highlighting the 

importance of nonlinearities and interactions in the relationships between wastewater physical and 

chemical characteristics and E. coli concentration. 

Based on the results of the sensitivity analysis, in one case study, the soft sensor was able to 

capture E. coli concentration variations due to intense rain events by exploiting pH and conductivity 

as proxy variables of the presence of stormwater in the flow rate. Differently, when data coming 

from all the case studies are considered, variables describing a general worsening of the upstream 

treatment efficiency, being COD, UV absorbance, TSS and turbidity, resulted as the driving 

predictors. Discrepancies of the results among the datasets underlined how this kind of black-box 

regressor can have strongly site-specific validity when data from just one case study are considered. 

The combinations of data from three WWTPs effluents allows to develop a model which was likely 

more generalizable. Then, this work could be additionally developed by collecting  a bigger dataset 

with data coming from a higher number of WWTPs, which could more robustly substantiate general 

conclusions on the physical cause-effect relationships describing the phenomena. 

The ANN-based soft sensor was tested over a scenario of wastewater quality and the model 

predictions of E. coli concentration were used to simulate the control of the dosage of a PAA 

disinfection treatment. The simulation highlighted the significant benefits of the deployment of an 

E. coli soft sensor both in terms of PAA saving (up to 57%) and process reliability. 

This study highlighted the potential of the soft sensor solution to unlock a new dynamic 

approach in optimization and control of disinfection which accounts for the indicator bacteria load 

dynamics, by-passing the drawbacks of laboratory culture methods and new on-line bacteria 

sensors. Different regularization techniques were compared, in order to deal with a limited dataset. 

Establishing a monitoring routine of indicator bacteria at the inlet of WWTPs disinfection by plant 

managers could help in building big enough datasets to improve the soft sensor robustness before 

deployment. Particularly, other important parameters could be monitored and studied, such as 

dissolved oxygen concentration, which could affect microbial vitality. After an initial intensive data 

collection, the monitoring protocol should include a periodical data collection in order to perform 
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proper model maintenance, since black-box regression models could be biased by unexpected 

modifications in the underlying physical system. 
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3.5 Supplementary Material 

3.5.1 Linear model identification 

3.5.1.1 Multiple Linear Regression via Ordinary Least Squares 

Multiple Linear Regression (MLR) via Ordinary Least Squares (OLS) is still the most 

widespread linear modeling technique. Given 𝑝 as the number of possible predictors, BVSS selects 

the subset of predictors of each size k, ranging between 0 and 𝑝, which minimizes the residual sum 

of squares of a MLR model using that subset as input. The optimal subset size k is the one which 

minimizes the prediction error (Hastie, 2009). 

3.5.1.2 Ridge Regression 

Ridge Regression (RR) identifies a linear model and shrinks the regression coefficients by 

imposing a penalty on their size. The penalized residual sum of squares minimized by RR is defined 

as: 

𝑆𝑆𝐸$$ =	∑ (𝑦! − 𝑦=!)=8
!./	 + 	𝜆 ∑ 𝛽>=

-
>./        (Eq. 2.1) 

where 𝑦! are the observations, 𝑦=! are the predicted values, 𝑁 is the size of the sample and 𝛽> are  

model parameters. RR shrinks continuously towards zero coefficients of irrelevant predictors, 

minimizing the impact of correlated predictors and instead promoting a “grouping effect” (Zou & 

Hastie, 2005; Hastie et al., 2009; Zhou, 2013). 
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3.5.1.3 Principal Component Regression and Partial Least Squares 

Principal Component Regression (PCR) and Partial Least Squares (PLS) are two dimensionality 

reduction methods which replace the original predictors with a reduced number of linear 

combinations of them. In the case of PCR, these linear combinations are the principal components 

(PCs) of the input variables. PCs represent a new set of input variables, which are orthogonal and 

tend to capture most of the input data variance in a number of components lower than the input 

number, due to the replacement of the original correlated input variables. 

Similarly, the PLS model has a reduced number of components, but the response variable is 

involved in their identification. PLS uncorrelated components are both a good representation of 

input data variability, and the most correlated to the response (Hastie et al., 2009). 

3.5.1.4 Additional comments on linear modeling methods and results 

RR, PCR and PLS have the advantage of reducing multicollinearity problems, i.e. the impact of 

correlation among predictors, which negatively affect coefficient estimates and are typical in case 

of wastewater physical-chemical properties. 

For each dataset, linear regressors are associated to lower MAE and MAPE with respect to the 

BM1 case. There is no dramatical difference among linear model performances. However, for each 

dataset, a different linear modeling technique performs the best. Based on MAPE, best linear 

models for dataset 1, 2 and 3 are, respectively, RR, PCR and BVSS-MLR. This result underlines the 

importance of testing different modeling approaches for model selection and calibration, since none 

of them can be a priori claimed to be the best one (Frank & Friedman, 1993). 

Parameters of all the identified linear models are reported in Table 3. Thanks to the different 

regularization techniques, some predictor coefficients are exactly or close to 0, corresponding to the 

variables which are less effective as predictors of E. coli concentration. 
Table S1 – Coefficients of linear regression models, being OLS (ordinary least squares), RR (ridge regression), PCR (principal 

components regression) and PLS (partial least squares). Results of hyperparameters tuning are reported in parenthesis, where “N” 

stands for the number of predictors or principal components. 
 Dataset1 Dataset 2 Dataset 3 

Predictors OLS** 
(N= 3) 

RR 
(l=0.076) 

PCR 
(N=5) 

PLS 
(N=3) 

OLS** 
(N=2) 

RR 
(l=0.095) 

PCR 
(N=5) 

PLS 
(N=4) 

OLS** 
(N=2) 

RR 
(l=0.139) 

PCR 
(N=5) 

PLS 
(N=4) 

pH 0.22* 0.160 -0.109 -0.168 0 0.043 0.053 0.080 0 0.048 0.080 0.045 
Conductivity 0 -0.038 -0.043 -0.037 0 -0.002 0.020 -0.017 0 -0.017 0.010 -0.014 
Temperature 0 0.031 0.064 0.047 - - - - - - - - 

Turbidity 0 -0.008 -0.042 -0.019 0.459* 0.350 0.493 0.457 0.400* 0.283 0.366 0.386 
TSS -0.14* -0.111 -0.085 -0.128 0 0.04 -0.038 -0.013 0 0.047 0.058 0.017 

COD 0 -0.015 -0.052 -0.048 0 0.017 0.014 -0.003 0 0.020 -
0.054 -0.010 

UV abs. 0.13* 0.103 0.178 0.175 0 -0.005 -0.023 -0.038 0.163* 0.131 0.150 0.160 
N - - - - 0 0.024 -0.009 0.007 - - - - 
NO3-  - - - - -0.291* -0.261 -0.312 -0.370 - - - - 

Flow rate 0 0.011 -0.063 0.008 - - - - - - - - 
Intercept 3.596 3.602 3.604 3.604 4.444 4.437 4.396 4.396 3.952 3.951 3.946 3.946 

* p-value related to t-tests on model coefficient statistical significance was <0.05. In case of coefficient equal to 0, the predictor was excluded by the Best Variable Subset 
Selection algorithm and thus from the Ordinary Least Squares calculation.  
**p-value related to F-test on model statistical significance was <0.05 
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3.5.2 ANN training, cross-validation and testing 

3.5.2.1 Details about the Early Stopping algorithm 

The early stopping criteria used in this work was defined as:  
?@/
3/
> 𝛼           (Eq. 2.2) 

𝐺𝐿, = 100D&012,/
&45/,/

− 1E         (Eq. 2.3) 

𝐸A-,,, = min
,'C,

𝐸DEF,,'         (Eq. 2.4) 

𝑃, = 1000I
∑ &/6,/'
/
/'7/*89:
HI5

/'∈(/*89:;/)
&/6,/'

− 1J        (Eq. 2.5) 

where  𝐸,J,, and 𝐸DEF,, are respectively the validation and the training error at iteration 𝑡.  𝐺𝐿, is 

the “generalization loss” at iteration 𝑡, defined as the ratio between the current validation error and 

the minimum validation error since the training started (𝐸A-,,,). 𝑃, is the “training progress” at 

iteration 𝑡, defined as the ratio between the average and the minimum training error during the last 

(𝑡 − 𝑘) iterations (Prechelt, 1998). The 𝐺𝐿,/𝑃, ratio increases when the generalization loss 

increases and/or when the decrease in training error gets slower.  

3.5.3 Variables and model selection: details and results of cross-validation 

K-fold cross-validation (CV) was performed in order to estimate models prediction error. In k-

fold CV procedures in general, the dataset is split in k not overlapping subsets, being the “folds”, 

then the model is trained k times, each time considering different (k-1) folds for parameter tuning 

and the kth fold for validation. The average of mean squared error (MSE) values on the k validation 

folds is computed as estimate of the average prediction error. The CV process is repeated for 

different values of the hyperparameters, thus the expected prediction error is estimated at growing 

model complexity. Typically, the CV error decreases in a first phase, for high values of the 

shrinking factor or small number of variables or components (low model complexity, underfitting 

phase). The prediction error starts increasing when the model becomes too complex and overfitting 

occurs. The minimum CV error corresponds to the optimal hyperparameter value. In this work, due 

to the small dataset size, leave-one-out CV (LOOCV) was used (Pasini, 2015), in which k is equal 

to the number of samples. In each iteration of the CV process, only one data was reserved to 

validation, while the rest was used to tune the model parameters. 
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Table S2 – ANN training settings and parameters. 

Training algorithm Gradient descent 
Learning rate 0.005 
Hidden neurons activation function Hyperbolic tangent 
Output layer function Linear 
Max number of epochs 
(final training after model selection) 500 

Early stopping threshold 3 
 

Table S3 – Results about hyperparameters selection after cross-validation of the soft-sensor regressors. 

Model Hyperparameter type Dataset 1 Dataset 2 Dataset 3 

MLR Number of predictors 3 
(TSS, pH, UV abs.) 

2 
(NO?@, NTU) 

2 
(NTU; UV abs.) 

RR Penalty coefficient 0.0760 0.0946 0.1388 
PLS Number of components 3 4 4 
PCR Number of components 5 5 5 
ANN Penalty coefficients; number of neurons 0.01; 10 0.005; 11  0.0005; 11 

 

Table S4 – Performances of soft sensor models on calibration subsets of dataset 1, 2 and 3. 

Model Dataset 1 Dataset 2 Dataset 3 
 R2 MAE MAPE R2 MAE MAPE R2 MAE MAPE 
BM1 - base error rate - 7728 55% - 193130 290% - 29894 198% 
BM2 - 22133 495% - 291983 3300% - 55123 1820% 
MLR 0.51 7420 40% 0.39 142420 215% 0.4 22633 103% 
RR 0.65 7289 42% 0.22 161827 261% 0.32 23515 177% 
PCR 0.64 6980 40% 0.24 152422 206% 0.30 22765 195% 
PLS 0.66 6995 41% 0.18 155602 253% 0.33 22659 185% 
ANN 0.79 2337 29% 0.71 114515 130% 0.79 11686 47% 

 

Table S5 – Average cross-validation performances of soft sensor models for dataset 1, 2 and 3. 

Model Dataset 1 Dataset 2 Dataset 3 
 R2 MAE MAPE R2 MAE MAPE R2 MAE MAPE 
BM1 - base error rate - 7728 55% - 193130 290% - 29894 198% 
BM2 - 22133 495% - 291983 3300% - 55123 1820% 
MLR 0.43 7420 40% 0.39 142420 215% 0.4 22633 103% 
RR 0.51 7289 42% 0.22 161827 261% 0.32 23515 177% 
PCR 0.49 6980 40% 0.24 152422 206% 0.30 22765 195% 
PLS 0.53 6995 41% 0.18 155602 253% 0.33 22659 185% 
ANN 0.68 2337 29% 0.71 114515 130% 0.79 11686 47% 
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Figure S1 – Results from cross-validation of linear regressors on dataset 1. 
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Figure S2 - Results from cross-validation of linear regressors on dataset 2. 
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Figure S3 – Results from cross-validation of linear regressors on dataset 3. 

●
●

●

●

●

●

0.28

0.29

0.30

0.31

0.32

1 2 3 4 5 6
Number of components

M
SE

●

●

●
●

●
●

0.282

0.285

0.288

0.291

0.294

1 2 3 4 5 6
Number of components

M
SE

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●

0.30

0.35

0.40

0.45

−2 −1 0 1
−Log10(lambda)

M
SE

●

●

●

●

● ●

0.24

0.25

0.26

0.27

0.28

1 2 3 4 5 6
Number of predictors

M
SE

(a)

(c)

(b)

(d)

-log10(!)



Disinfection of wastewater: modeling, control and risk assessment 
PhD Thesis – Jacopo Foschi – IAI, Politecnico di Milano – XXXIV cycle 

 

 
 

53 

 
Figure S4 – Results from cross-validation of the ANN models over the 3 datasets. Each point corresponds to the average MSE of 

the ANN at the given l and optimized number of neurons. 

 

 

 

 
Figure S5 – Results from cross-validation of the ANN models over the three datasets. Each series represents the trend of the 

average MSE with increasing number of neurons. The three represented series contains the combination of l and number of neurons, 
which minimizes the CV error. 
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Figure S6 – Test observation vs prediction of the ANN models. 

3.5.4 PAA decay experiments: analytical methods and analysis of data 

PAA decay batch experiments in the WWTP1 effluent were performed at a PAA dosage of 1 and 2 mg/L. 

3 replicates were performed for each PAA dosage. PAA residual concentration was monitored at contact 

times of 2, 5, 10, 30 and 60 minutes. PAA was measured via DPD colorimetric method (Domínguez-Henao 

et al., 2018). A first order decay kinetic model was calibrated over observed data via non-linear regression 

based on gradient descent algorithm. Model equation and parameters are reported in Table S1. 

 

 
Figure S7 – Results from non-linear regression on batch PAA experiments. 

 
Table S6 – Results from non-linear regression on batch PAA experiments. 
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 Estimate 95% 
confidence interval SE t statistics p-value 

k 0.0041 0.0036; 0.0045 0.0002 17.516 4.7353×10-25 
Sample size 60 
Model equation 𝑃𝐴𝐴(𝑡) = 𝑃𝐴𝐴,𝑒@AB 

 

3.5.5 PAA disinfection experiments: analytical methods and analysis of data 

PAA inactivation batch experiments of E. coli in the WWTP1 effluent were performed at a PAA dosage 

of 1 and 2 mg/L and contact time between 2 and 60 minutes. Assuming PAA first order decay rate as 

estimated in PAA decay experiments (see previous paragraph), effluent samples were exposed to a 

disinfectant dose up to about 120 mg L-1 min. Inactivation model developed by Domínguez Henao et al. ( 

2018) was calibrated over observed data via non-linear regression based on gradient descent algorithm. 

Model equation and parameters are reported in Table S2. 

 

 
Figure S8 - Results from non-linear regression on batch disinfection experiments. 

 
Table S7 - Results from non-linear regression on batch disinfection experiments. 

 Estimate 95% 
confidence interval SE t statistics p-value 

k' 4.4561 3.3703; 5.5420 0.54726 8.1427 1.1862×10-12 
n  0.1372 0.0724; 0.2020 0.03265 4.2007 5.8283×10-05 
h 11.476 11.0422; 1.9098 0.21862 52.492 4.4266×10-74 
Sample size 102 

Model equation 
ln	(𝑁)
ln	(𝑁,)

=
−𝑘C𝐷D

1 − 𝑒E@F 
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3.5.6 Additional details on collected data 

 
Figure S9 – Rainfall data during collection campaign in WWTP1. Red marks correspond to sampling times. 

3.5.7 Additional notes on the application of sensitivity analysis 

This family of methods is based on the assumption that the more important is one input in 

determining the model output, the higher is the reduction in output variance when that input is fixed 

to its true value. The main advantage of this approach is that the analysis accounts for both the 

effect of the marginal influence of each single predictor, as well as the effect of their joint 

interactions. Moreover, the results validity is extended to all the variability space of the predictors. 

Another advantage of VSA is that it works regardless the model properties (Saltelli et al., 2006). 
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Chapter 4: Artificial neural network modeling of full-scale 

UV disinfection for process control aimed at wastewater reuse 

  

Abstract 
Accurate modeling of wastewater ultraviolet disinfection is fundamental as support for process 

optimization and control. Detailed modeling of hydrodynamics and fluence rate via computational 

fluid dynamics, coupled to laboratory studies of inactivation kinetics, are usually the preferred 

approach for UV disinfection modeling. Despite this approach often provides accurate predictive 

performance, it requires significantly high computational time, making it unfeasible for real-time 

process control. In this study, to enable an effective process control, black-box regression models 

were assessed as a modeling alternative for UV disinfection, synthesizing hydrodynamics, fluence 

rate and inactivation kinetics. UV disinfection of a full-scale wastewater treatment plant in Italy was 

monitored for 10 months, measuring influent and effluent E. coli concentration, turbidity, 

absorbance at 254 nm, temperature and flow rate at different UV doses. Considering the usually 

observed distribution of effluent E. coli concentration and the zero inflation of the collected dataset, 

Poisson, zero-inflated Poisson and Hurdle generalized linear models were tested, as well as two-part 

models coupling a classifier describing the E. coli zero-count events and a regressor estimating the 

magnitude of E. coli concentrations in positive-count events. The two-part artificial neural network 

model showed the best predictive performance, being able of both describing nonlinearities and 

handling the high proportion of null values in the dataset. The deployment of this model to control 

ultraviolet disinfection was simulated, estimating a plausible 63% energy saving. 

 

Keywords: UV disinfection; artificial neural network; control; E. coli; wastewater; reuse; zero 

inflated dataset. 

 

This chapter has been published on “Journal of Environmental Management”.  

 

4.1 Introduction    

Wastewater ultraviolet (UV) disinfection provides high inactivation levels for many microbial 

indicators (Lazarova et al., 1999), at the same time avoiding the drawback of by-products formation, 
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typical of chemical disinfection, which is the most widespread disinfection alternative. However, 

UV disinfection optimization requires to address the trade-off between the maximization of 

inactivation efficiency and process reliability and the minimization of energy consumption. 

Meeting the selected inactivation target requires the optimal adjustment of UV radiation 

intensity, which is the only quantity which can be controlled in a UV disinfection system, but only 

by the support of a proper process model, accounting for reactor hydrodynamics, UV fluence rate 

and inactivation kinetics. The description of these three elements introduces several modeling 

challenges. As for UV reactor hydrodynamics, it is affected by flow rate and configuration of 

contactor and lamps; two different approaches can be adopted to predict the exposure time to UV 

radiation of fluid particles, differing in complexity, description ability and computational needs: i) 

computational fluid dynamics (CFD), which is a time and computationally intensive approach 

(Wols et al., 2012), ii) conceptual hydraulic modeling, based on a combination of ideal reactors 

(Fenner et al., 2005), which is a simpler alternative in terms of model complexity. Anyway, both 

these approaches require to perform ad hoc tracer experiments. Once fluid dynamics is known, the 

second step is the description of the radiation transfer in the wastewater matrix, which determines 

the fluence rate. The most detailed approach to describe UV fluence rate is again CFD modeling 

(Chen et al., 2011). A simpler alternative is modeling UV radiation as the result of the contributions 

of multiple point or segment sources (Powell et al., 2015); however, this latter approach, 

independently of the adopted modeling method, neglects the impact of fluid dynamics. It should be 

stressed that wastewater quality critically affects the actual UV radiation intensity distribution in the 

reactor volume. In detail, wastewater absorbance at UV wavelengths increases due to many 

dissolved compounds, particularly due to organic matter (Bolyard et al., 2019), thus reducing 

effective UV radiation passing through water and irradiating microbes. Moreover, suspended solids 

reduce actual UV dose by scattering, reflecting and refracting light (Jolis et al., 2001; Madge et al., 

2006; Carrè et al., 2018). Finally, the third step pertains to inactivation kinetics, which are highly 

nonlinear and affected by significant uncertainty, due both to the intrinsic variability of microbial 

concentration and reaction with the disinfectant, and to the shielding effect of suspended solids 

(Chahal et al., 2016). Site specific inactivation kinetics are usually determined by collecting 

wastewater samples and performing batch disinfection experiments, in which they are exposed to 

UV radiation of defined intensity for a known time through a collimated beam apparatus (Bolton 

and Linden, 2003). 

Recently, many of these modeling and experimental techniques were integrated to build up 

modeling frameworks to predict UV disinfection efficiency, while accounting for the uncertainty 

due to modeling and wastewater quality variability (Ahmed et al., 2019). Since most of these 
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modeling approaches are based on CFD, both for hydrodynamics and fluence rate description, they 

imply high computational time and effort. Running a CFD simulation of a UV reactor, given fixed 

operating conditions and geometric configurations, can take hours or days. Thus, while CFD-based 

models work for static modeling of UV disinfection efficiency, even within a probabilistic 

approach, they are not suitable for process control applications, where the disinfection efficiency 

has to be iteratively estimated every time new information on wastewater flow rate and quality is 

acquired. In fact, since the average residence time of UV reactors is usually in the order of seconds 

or minutes, a significant time lag between model predictions based on CFD simulations and 

effective plant output is inevitable. An affordable solution is represented by a black-box approach 

directly modeling the relationship between UV radiation intensity, flow rate, wastewater quality 

characteristics and inactivation efficiency, providing a computationally light model suitable for 

real-time control deployment. This solution only requires the collection of enough data in different 

operating conditions of the disinfection unit and to perform a regression analysis. In recent years, 

some studies highlighted the potential of this simpler but effective approach, but case studies are 

limited to the lab and pilot scale (Lin et al., 2012) or to “surrogate” modeling approaches, where 

statistical models were trained over mechanistic model simulations, in order to mimic them while 

reducing computation time (Xu et al., 2015). 

This study proposes a black-box approach for modeling a full-scale UV disinfection for E. coli 

inactivation in wastewater, predicting the UV system efficiency by considering number of active 

UV lamp banks, flow rate, initial E. coli concentration, UV absorbance, turbidity and temperature 

as predictors. Linear and nonlinear regressors were tested to capture input-output relationships from 

collected data, synthesizing the effect of hydrodynamics, wastewater quality and inactivation 

kinetics in a single black-box mathematical model. Special attention was given to mathematical 

treatment of zero-count data of effluent E. coli concentration, which are typical of high efficiency 

disinfection systems. The developed approach was validated in a full-scale UV disinfection unit in 

S. Rocco WWTP (Milan), one of the biggest in Italy (1.050.000 PE), by measuring E. coli 

concentrations at different operating conditions in terms of UV radiation, flow rate and wastewater 

quality. The accuracy of the best regression model was tested on the data collected by the WWTP 

utility during an irrigation season. Moreover, within the same time window, real-time control of UV 

disinfection based on the black-box regression model was simulated, considering E. coli discharge 

limit imposed by Italian law for agricultural reuse. Potential energy savings enabled by the control 

strategy were also estimated. 
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4.2 Materials and Methods  

4.2.1 Case study and data collection 

Samples were collected between June 2018 and April 2019 from a S. Rocco WWTP (1.050.000 

PE), in the Milan urban area. The WWTP is based on activated sludge process for nitrification and 

denitrification, followed by sand filtration and UV disinfection. The UV disinfection stage is made 

of two parallel lines. This study focused on one line, which is made of three identical parallel open 

channels, each one equipped with three banks containing 144 monochromatic (254 nm) low 

pressure/high intensity UV lamps each (378 lamps per line, 1134 in total), for a total of about 136 

kW of installed power per channel. In each channel, the UV fluence rate can be adjusted by 

changing the number of active UV lamp banks. Thus, each channel can work at three discrete levels 

of nominal UV dose. The disinfection unit was designed to deliver 19, 38 and 57 mJ cm-2 when 

operating with one, two and three active lamp banks per channel, at the nominal flow rate of 4 m3 s-

1. 

The dataset used for model calibration was collected in 129 full-scale disinfection experiments. 

In each experiment, wastewater at the inlet and the outlet of one of the disinfection channels was 

sampled and analyzed in laboratory for E. coli concentration and absorbance at 254 nm (UV254).  

Samples were collected under different operating conditions, meaning with one, two and three 

active UV lamp banks. Turbidity, temperature and flow rate data were collected at a 10-minutes 

frequency during all the campaigns by on-line sensors.  

A second dataset, used for model testing, was collected during the routine UV disinfection 

monitoring carried out by WWTP managers at a roughly 3-days frequency, during the 2018 

irrigation season (from June to August). Flow rate, temperature, turbidity and residual E. coli at the 

UV disinfection outlet were monitored during this time window.  

4.2.1.1 Sampling procedure, physical, chemical and microbiological analysis 

All samples were manually collected in 1-L sterile amber bottles, transported to the laboratory in 

refrigerated bags (within 30 minutes from sample collection) and processed immediately at the 

WWTP laboratory. E. coli were enumerated by membrane filtration method according to Standard 

Methods (APHA/AWWA/WEF, 2012), using 0.45  µm pore size cellulose nitrate membranes 

(Whatman) and chromogenic agar (Microinstant® Chromogenic Coliforms Agar, Scharlau) as 

culture medium. Inoculated plates were incubated at 37 °C for 18-24 h. Turbidity, temperature and 

flow rate data were monitored by on-line sensors (micro::station®, S:CAN). UV254 (1-cm optical 
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path) was measured by DR6000 laboratory spectrophotometer (HACH) on samples filtered by 0.45 

 µm pore size cellulose nitrate membranes (Whatman). 

4.2.2 UV disinfection regression model development 

4.2.2.1 Data preprocessing 

Input data were standardized to have 0 mean and standard deviation equal to 1, in order to ensure 

they have equal importance in the calibration process. 

4.2.2.2 Regression models identification 

Five linear regression modeling techniques were evaluated to estimate E. coli concentration in 

UV disinfected effluent, being: (i) multiple linear regression (MLR) via ordinary least squares 

(OLS); (ii) generalized linear model (GLM) based on Poisson distribution (GLMP); (iii) GLM 

based on zero-inflated Poisson distribution (GLMZIP); (iv) Hurdle model based on Poisson 

distribution (HMP); (v) a two-part model (TPM) made of a sequence of a logistic binary classifier 

(LBC) and a MLR. 

GLMP assumes a Poisson conditional distribution of the response, according to a model equation 

called “exponential mean function” (Lambert et al., 1992): 

𝑓3(𝑦|𝑥) =
;*GKH

L
,												                               (2.1) 

𝐸[𝑦|𝑥] = 	𝜇 = 	 𝑒MN                                             (2.2) 

where 𝑦 is the response, 𝑥 is the vector of the predictor, 𝛽 is the vector of model parameters, 𝑓3 

indicates the Poisson probability mass function and 𝜇 is the Poisson distribution parameter. 

Equation 2.2 defines the conditional mean of the response, given the predictors. 

GLMZIP16 provides a way to model count data with excess zeros. In fact, assuming a Poisson 

distribution, a separate component is added to inflate the probability of zero-count events. Zero-

count events arise then from both a point mass concentrated on zero and the Poisson distribution, as 

described by the expression of the zero-inflated Poisson probability mass function (fZIP):  

𝑓OP3(𝑦|𝑥) = Q𝜋 +
(1 − 𝜋)𝑓3(𝑦)											𝑦 = 0

(1 − 𝜋)𝑓3(𝑦)																			𝑦 > 0											          (2.3) 

where the probability 𝜋 of having zero-count event depends on predictors as follows:  

𝑙𝑛 Q
/1Q

= 𝑥𝛽             (2.4) 

The conditional mean of the response is again defined by equation 2.2. 

HMP (Cragg et al., 1971) is a sequential model where a binomial probability governs the binary 

outcome of whether a count has a null or a positive realization. If the realization is positive, its 
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conditional distribution is governed by a truncated at zero Poisson distribution. The HMP model 

can be written as: 

𝑓R(𝑦|𝑥) = Q
𝜋																																										𝑦 = 0
(1 − 𝜋)𝑓S3(𝑦)																		𝑦 > 0																      (2.5) 

𝑙𝑛 Q
/1Q

= 𝑥𝛽               (2.6) 

 𝐸[𝑦|𝑥] = 	𝜇 = 	 𝑒MN          (2.7) 

where 𝑓S3(𝑦) is the zero-truncated Poisson distribution. 

The TPM is an alternative sequential model, which couples an LBC and an MLR model. The 

LBC was calibrated on the whole dataset to tell between event with null and positive concentration 

of E. coli. A MLR model was then calibrated only on data corresponding to positive E. coli effluent 

concentrations, as an estimator of the concentration magnitude. For MLR calibration log10 

transformation of E. coli concentrations was used, in order to equally weight small and large values 

(Shu and Burn, 2004). When the model is used to predict, given a set of predictor observations, the 

LBC estimates if the concentration of E. coli is null or positive, while, in case of positive 

concentration events, the MLR model predicts the magnitude of concentration. 

Beyond these five linear modeling techniques, two nonlinear options were tested, being an 

artificial neural network (ANN) model and a nonlinear two-part model (TPANN) consisting in the 

sequence of two ANNs, working respectively as a classifier and a regressor, in the same manner as 

the TPM. ANN was chosen as nonlinear family of models since it can reproduce any nonlinear 

relationship at the price of increasing its complexity (Hornik et al., 1990), i.e. increasing the number 

of layers and neurons per hidden layer. In this work, the “shallow” ANN model was chosen, being a 

network with a three-layer architecture, made by one input, one hidden and one output layer. 

All the seven models were calibrated and validated according to a 10-folds cross-validation (CV) 

approach (Hastie et al., 2009). To perform the CV, the dataset was split in 10-not-overlapping 

subsets, being the “folds”, then the model was trained 10 times, each time considering 9 different 

folds for parameter tuning and the 10th fold for validation. The average performance values on the 

10 validation folds were computed as estimate of the average prediction error. Mean Absolute 

Percentage Error (MAPE) was computed as performance metric on validation folds. MAPE was 

chosen for its easy interpretability and to balance the importance of large and small values in 

determining the average error. 

In the case of ANN and TPANN, CV was also used to optimize the number of neurons. The CV 

process was repeated for increasing number of neurons, from 1 to 25, thus the expected prediction 

error was estimated at growing model complexity. Typically, the CV error decreases in a first 

phase, for small numbers of neurons (low model complexity, underfitting phase). The prediction 
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error starts increasing when the model becomes too complex and overfitting occurs. The minimum 

CV error corresponds to the optimal number of neurons. Even in single hidden layer network, the 

number of weight parameters defining the model can be very high, being equal to 𝑝(𝑛 + 1), where 

𝑛 is the number of hidden neurons and p is the number of inputs. In small datasets, such as in this 

work, the number of weights of a shallow ANN with a few hidden neurons can easily become 

comparable to the number of observations and predictors, and even outnumber them. The 

consequence is to produce a model which easily overfits calibration data and provides very poor 

generalization capability. For this reason, in this work the early stopping technique was used when 

training ANNs, to avoid overfitting and improve generalization. Validation error was monitored 

during each training process. Training and validation errors usually decrease together during the 

first training iterations; at later stages of training, the network starts to overfit the data and the 

validation errors typically rise. The training process is stopped once the validation error rises for 

more than 10 subsequent iterations. The values of parameters at the minimum validation error are 

kept as the result of training. Optimization of the number of neurons was repeated for three different 

kinds of activation functions, being sigmoidal, hyperbolic tangent and radial basis functions.  

In the ANN training process, the Levenberg-Marquardt backpropagation algorithm was used for 

MSE minimization.  

Linear models were developed in R 4.0.1 environment, using package pscl 1.5.5 for zero-

inflated Poisson regression and hurdle model regression. ANN models were developed in 

MATLAB R2018b, using the Deep Learning Toolbox. 

4.2.2.3 Model testing and simulation of UV disinfection control 

The model with the best CV performance was tested on effluent E. coli concentration data 

collected between June and August 2018. During this period the WWTP delivered reclaimed 

wastewater for reuse in the agricultural district in the southern Milan area. Since the Italian 

discharge limit for agricultural reuse is 10 CFU/100 mL, the disinfection line under study operated 

with all the UV lamp banks switched on. E. coli concentrations at the inlet of the UV disinfection 

line were estimated each 10 minutes by using a model from a previous study (Foschi et al., 2021). 

Turbidity, flow rate and temperature were available from WWTP sensors records. UV absorbance 

was assumed equal to the mean observed during data collections, since it was not real-time 

monitored by the WWTP. 

95% confidence bounds of the model estimate (E. coli concentration at the UV disinfection unit 

outlet) were generated via “bootstrap aggregation”, or “bagging”, approach (Breiman, 1996). It 

consists in randomly resampling with replacement new datasets from calibration data, each sample 
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having the same size as the original calibration dataset. In each bootstrap sample, a different model 

was calibrated and the probability distribution of model parameters was estimated by the observed 

distribution of parameters coming from each model training. Similarly, both a point estimate, by 

averaging predictions, and a confidence interval, by taking the observed percentiles of predictions, 

can be estimated by predictions from all bootstrapped samples (Efron & Hastie, 2016). 

The control of the UV disinfection process based on the regression model was then simulated. 

The UV model was used to estimate at each time the minimum number of UV lamp banks to be 

activated to guarantee the desired probability of non-compliance (PONC) (Talebizadeh et al., 2014) 

with the 10 CFU/100 mL limit. 

4.3 Results and Discussion 

4.3.1 Preliminary data analysis 

Boxplots of E. coli concentration before and after UV disinfection are reported in Figure 1 and 

descriptive statistics are summarized in Table 1, considering the effect of the different number of 

active UV lamp banks. The effect of the increase of UV radiation is straightforward by looking at 

the trend of E. coli average values. Most of inactivation is reached with just one active UV lamp 

bank, maintaining most of the time E. coli concentration below 100 CFU/100 mL. However, 

activating the second and the third UV lamp banks seems fundamental to safely maintain 

concentrations below the 10 CFU/100 mL agricultural reuse limit in all cases. It is evident by 

looking at Figure 1 and Table 1 how, given a number of active UV lamp banks, data are dispersed 

around the mean. The number of operating UV lamp banks is then not sufficient to measure the 

degree of inactivation with proper accuracy, since they do not univocally define the UV dose which 

wastewater is exposed to. In fact, flow rate values are needed to derive exposure time and 

information about wastewater quality are fundamental to measure the amount of UV radiation 

which is absorbed and reflected by wastewater, making it not available for bacterial inactivation. 
Table 1 – Summary statistics about measured E. coli effluent concentration (CFU/100mL) in the wastewater flowing through one 

UV channel as a function of the number of operating UV lamp banks. Influent E. coli concentration corresponds to zero operating 
UV lamp banks. Sample size: 43 data for each operating condition. 

Number  
of operating banks Min. Avg. Max. Std. Dev. Coeff. of Var. Proportion  

of zero-count data 
0 600 7,182 57,000 10,428 1.4 0% 
1 0 45.2 810 147.6 3.3 12% 
2 0 24.1 510 104.5 4.3 42% 
3 0 0 8 2 2.5 60% 
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Figure 1 – Measured E. coli effluent concentration as a function of the number of operating UV lamp banks. Values 

corresponding to zero operating UV lamp banks are influent E. coli concentrations. The agricultural reuse discharge limit of 10 
CFU/100 mL is marked as a black solid line. 

These considerations are supported by the observed trends of effluent E. coli concentration data 

with flow rate, temperature, turbidity, UV254 and initial E. coli concentration, reported in Figure 2. 

By looking at regression lines slopes, the effects of these factors are always present with one 

operating UV lamp bank, with the exception of UV254, seeming relevant even with 2 and 3 

operating UV lamp banks. Having in mind a typical UV inactivation kinetic curve, composed of a 

linear and a tailing-off segment, a probable reason is that a single operating bank provides a UV 

dose which roughly corresponds to the linear segment, where the inactivation rate is higher (inter 

alia: Antonelli et al., 2008, Carré et al., 2018; Ahmed et al., 2019). Thus, changes in residence time 

(which varied between 7 and 46 s due to changes in flow rate) and in wastewater characteristics 

impact on the level of inactivation by moving the applied UV dose along the linear segment, 

resulting in significantly different output E. coli concentrations. On the contrary, UV dose is located 

in the tailing-off segment with three active UV lamp banks, and its change does not affect 

significantly the inactivation rate. As expected, an increase in turbidity, UV254 and flow rate 

determines a decrease of the inactivation efficiency. Temperature causes the opposite, although it is 

known how its impact on UV disinfection is usually negligible (Severin et al., 1983; Abu-ghararah 

et al., 1994). In this case, temperature could have a role in explaining disinfection efficiency as a 

proxy variable of upstream processes working. As first guess, lower temperatures could determine 

lower activated sludge performance and higher concentration of soluble organics in the disinfection 

influent. This hypothesis is supported by the observed correlation between temperature and 
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ABS254 data (-0.54, p-value = 1.2∙10-10). Differently, most of the time, when more than one UV 

lamp bank is active, flow rate, turbidity and temperature seem not to affect inactivation. Finally, it 

was expected that the influent E. coli concentration is positively correlated to the effluent E. coli 

concentration. 

Overall, it is clear how none of the considered factors can exhaustively describe alone the UV 

disinfection process, which is conversely the result of the sum and interactions of all these factors, 

suggesting that a multivariate approach is the most appropriate to describe it.  

 
Figure 2 –Outlet E. coli concentration after UV disinfection vs. operating conditions (flow rate) and wastewater characteristics, 

as a function of the number of operating UV lamp banks. Linear trends are obtained by linear regression (shaded areas represent 95% 
confidence intervals). 

2 3 4 5
NTU

lo
g1
0(
no
ut
)

0

1

2

3.0 3.5 4.0 4.5
N0ecoli

lo
g1
0(
no
ut
)

banchi

1

2

3

3.0 3.5 4.0 4.5
N0ecoli

lo
g1
0(
no
ut
)

0.05 0.10
ABS

lo
g1
0(
no
ut
)

0.25 0.50 0.75 1.00
Q

lo
g1
0(
no
ut
)

Number of operating lamp banks

1

2

3

O
ut

le
t E

. c
ol

i c
on

ce
nt

ra
tio

n
(C

FU
/1

00
 m

L)

100

10

1

100

10

1

0.1

Turbidity (NTU)Temperature [°C]Flow rate (L s-1)

Absorbance at 254 nm (-)
1000 10,000

16 18 20 22 24
T

lo
g1
0(
no
ut
)

Temperature (°C)

O
ut

le
t E

. c
ol

i c
on

ce
nt

ra
tio

n
(C

FU
/1

00
 m

L)

0.05 0.10
ABS

lo
g1
0(
no
ut
)

0.05 0.10
ABS

lo
g1
0(
no
ut
)

0.05 0.10
ABS

lo
g1
0(
no
ut
)

100

10

1

0.1

0.05 0.10
ABS

lo
g1
0(
no
ut
)

Initial E. coli concentration (CFU/100 mL)



Disinfection of wastewater: modeling, control and risk assessment 
PhD Thesis – Jacopo Foschi – IAI, Politecnico di Milano – XXXIV cycle 

 

 
 

68 

4.3.2 Model selection and testing 

In the model identification step, several linear and nonlinear regression models were calibrated 

and their prediction performances were compared in order to find the best predictive tool to support 

the control of the disinfection line. All the monitored factors, i.e. number of active UV lamp banks, 

flow rate, influent E. coli concentration, turbidity, UV254 and temperature, were selected as model 

predictors, since, as reported in paragraph 3.1, they all showed relationships with the model output 

(effluent E. coli concentration) which were also supported by a priori knowledge about UV 

disinfection (Carrè et al., 2018; Bolyard et al., 2019). Besides being the most important factor 

influencing UV disinfection efficiency, all these parameters, except for influent E. coli 

concentration, are easy to be monitored on-line for real-time control applications. The choice of the 

modeling approaches to be compared was influenced by the presence of a high number of counts 

equal to zero in effluent E. coli concentrations, consisting in about 38% of the total. The number of 

zero-count events rises with the number of active banks, as reported in Table 1. In order to include 

zero-count data in the analysis, not to lose the information related to when zero-count events occur, 

several regression approaches specific for zero-inflated datasets were selected and compared. The 

comparison of the regression techniques by the CV performance of the studied models is reported in 

Figure 3. The MLR model was included in the analysis as a benchmark, being the simplest and 

most widespread multivariate linear regression tool. Due to the leverage effect of the large amount 

of zeroes and of the few extreme values (see boxplots in Figure 1), the MLR model performed 

poorly and is then not adequate for prediction purposes. The GLMP leads to better performance, 

since it assumes the conditional distribution of the output to be a Poisson, which is defined for non-

negative integer values, allowing for zero-count events, and it can describe right skewed observed 

distributions. Adding a point mass concentrated on zero by a zero-inflated Poisson model does not 

improve prediction performance. The use of HMP leads to an additional reduction of error. HMP 

model probably improves performance with respect to ZIP, since it considers the processes 

generating null and positive counts as separated (Colin et al., 2013). Probably for the same reason, 

the TPM leads to even better performance, the best among studied linear models. A possible 

additional reason of this improvement is the fact that the linear regression sub-model of the TPM, 

estimating the magnitude of positive concentrations, was calibrated only on the strictly positive 

observations of the dataset; thus, logarithmic transformation of E. coli concentrations was possible, 

which better balanced the relative importance of observations in the calibration phase. 

The ANN model shows better performance than the MLR, indicating that nonlinear input-output 

relationships and interactions among predictors are important in predicting UV efficiency. 
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However, despite it is a much more complex models, ANN performance is similar to TPM, since it 

does not treat separately the occurrence of zero-count events. Actually, the best performance among 

all tested models is displayed by the TPANN model, which dedicates a sub-model to the 

classification of null and positive count events and properly identifies nonlinearities in data.  

 
Figure 3 – Predictive performance, expressed as MAPE, from CV of the different studied regression models.  

ANN and TPANN predictions on all CV validation folds are summarized and compared in 

Figure 4.a. The two models perform similarly on large concentration values, with slightly better 

performance of the ANN model. Differently, the TPANN model is significantly more accurate on 

middle and low concentration values. Moreover, as reported in Figure 4.b, the TPANN model is 

very accurate in predicting null concentration events (accuracy of 95%), while ANN predictions in 

those cases are very dispersed and, inevitably, negative about half of the times. Better performances 

of the TPANN model are then due to: (i) the use of ANN models, capable of capturing nonlinear 

relationships in data; (ii) the two-part structure, which allowed to dedicate a sub-model to the 

identification of null concentration events and to apply a logarithmic transformation of positive 

counts data, similarly to the TPM case described before.  
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Figure 4 – Comparison of the predictions of the ANN and TPANN models, when observed E. coli effluent concentration is: (a) 

≥0; (b) = 0. 

The TPANN model is then definitely the most suitable for modeling and control purposes in the 

developing field of wastewater reuse, where the collection of zero-inflated datasets is a 

straightforward consequence of the goal these processes are designed for. This black-box approach 

provides an effective predictive tool avoiding the complex and computationally intensive explicit 

modeling of hydrodynamics and UV fluence rate, saving time and effort during model identification 

and unlocking process control applications, which requires low computation time. In fact, while 

running a CFD model can take hours, getting a prediction with such kind of statistical model is a 

matter of seconds. The calibration of the regression models needs to collect data about the UV 

process operations, which could even come from the routine monitoring of the unit by the WWTP 

operators and from available on-line sensors. This data collection effort replaces more expensive 

and demanding ad hoc experiments like multiple collimated beam experiments performed at 

different wastewater qualities, tracer studies and/or biodosimetry tests. 

Predictions of the TPANN model were tested over data which were “unseen” by the model, 

between June and August 2018, as reported in Figure 5. Measured effluent E. coli concentrations 

revealed that the agricultural reuse limit was never exceeded, but concentrations increased and 

approached the limit a few times between July 15th and 20th. In fact, in this period the on-line sensor 

registered an increase in turbidity levels, probably due to the occurrence of some rain events, which 

affected the efficiency of the sand filters located upstream the UV disinfection unit. Moreover, the 

E. coli influent concentration model (Foschi et al., 2021) estimated an increase in bacteria influent 

concentrations. Consequently, the developed UV disinfection model correctly estimates a probable 
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increase of effluent E. coli concentration and a positive PONC, even if the disinfection line worked 

at maximum number of active UV lamp banks. Moreover, it can be noted that the UV disinfection 

model estimates an increase in effluent E. coli concentration around August 26th, when another rain 

event occurred, but unfortunately no samples were collected. This is an example of how the model 

can support the management of UV disinfection when no data are available, providing in real-time 

continuous estimates of E. coli residuals in critical conditions, avoiding the time lag that is intrinsic 

of laboratory microbiological analyses. 

It is important to stress one assumption under this use of the model: the regression models built 

in this work predict the disinfection efficiency statically, by linking current flow rate, UV dose and 

quality to the E. coli output and neglecting the transient dynamics deriving from the reactor 

hydrodynamics. However, this assumption is considered here as reasonable, since the hydraulic 

retention time of the disinfection contact channels is low, as typical of UV disinfection, ranging 

between 7 and 46 seconds. 

4.3.3 Simulation of UV disinfection control for agricultural reuse 

The WWTP UV disinfection facility under study was originally designed in 2004 to meet Italian 

requirements for agricultural reuse even in worst case scenarios. However, wastewater flow rate to 

be treated for reuse was not stationary over the years and even within the single irrigation seasons, 

as a consequence of a changing water demand by agriculture. Wastewater quality is not constant as 

well, as a result of inevitable fluctuations in raw sewage quality and upstream treatment efficiency. 

Then, the number of operating UV lamps could be adjusted according to these boundary conditions, 

in order to save energy, while maintaining adequate disinfection efficiency without overly cautious 

and blind safety factors. In order to demonstrate this approach, the TPANN UV disinfection model 

was used to simulate the control of the disinfection line in order to meet Italian requirements for 

agricultural reuse. Italian regulation states that the 10 CFU/100 mL limit referred to E. coli has to be 

met in 80% of samples collected in a year and E. coli residual concentration must never exceed 100 

CFU/100 mL. Assuming that the plant utility must collect one control sample per day, it is possible 

to model each control event as a Bernoulli random variable, whose possible outcomes can be 

“compliance” or “non-compliance” with the discharge limit. Thus, the probability of being 

compliant k times on n control events can be described by a binomial probability function. Starting 

from these assumptions and since compliance is verified daily (n=356), in order to be compliant at 

least in 80% of the cases (k=292), the maximum probability of non-compliance for each control 

sample has to be 18%. Thanks to the bootstrap averaging approach, the TPANN model can estimate 

the effluent E. coli concentration as a distribution, incorporating model parameters uncertainty, and 
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can relate to regulation limits expressed as maximum PONC. Thus, a robust control strategy was 

implemented, which set at each time step (10 minutes) the optimal number of active UV lamp banks 

as the lowest guaranteeing the PONC setpoint (18%), with the constraint of non-exceeding the 100 

CFU/100 mL limit. The estimated E. coli residual concentration in the effluent with optimal 

management of UV lamp banks resulting from the TPANN model-based control is reported in 

Figure 5.c. As shown, PONC is always lower than the desired limit of 18%, since the studied 

disinfection unit works only at three discrete level of UV dose, linked to the number of active UV 

lamp banks. Two active UV lamp banks per channel resulted as sufficient most of the time, while 

the use of all the UV lamp banks is necessary during some critical events, which in fact were 

denoted by an increase in wastewater turbidity and occurrence of rain events. The application of the 

control algorithm during the agricultural season would have implied a 63% saving of electric 

energy with respect to the business-as-usual policy of always using the maximum number of UV 

lamp banks, which maximizes system efficiency, but completely neglects the energy consumption 

minimization goal. Considering lamp nominal power consumption (about 45 kW per lamp bank), 

energy saving was estimated in about 580 MWh. During the 2018 irrigation season (June-August) 

energy consumption of UV disinfection accounted for about 12% of the WWTP total energy 

consumption, being the second most important item after biological oxidation: the control of the 

process could reduce at 5% the energy consumption of UV disinfection during the irrigation season, 

without any infrastructural intervention. Considering the average emission intensity of fossil CO2 in 

Italy in 2018 (open-source data by European Environment Agency), this implies an avoided 

emission of roughly 145 tons of fossil CO2. If the WWTP manager wants to apply a safety factor in 

designing the control algorithm, lower probability of non-compliance can be considered, at the price 

of a higher energy consumption. The trade-off between system reliability and energy consumption 

goals is reported in Figure 6, where all the equally optimal control alternatives are mapped in terms 

of the two conflicting objectives. It is evident from this relationship how it would be convenient to 

control UV lamp banks with a PONC setpoint lower than the minimum 18%. For example, working 

at 5% PONC, the energy saving would only slightly decrease, being about 58%. These results 

highlighted how exploring all equally optimal alternatives allowed to understand that, in the present 

case study, system reliability can be significantly increased at a small price in terms of energy 

saving. 
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Figure 5 – Use of the two-part artificial neural network (TPANN) model during the agricultural season (June-August 2018): (a) 

prediction of influent E. coli concentration; (b) test of the TPANN model in predicting effluent E. coli concentration (disinfection 
operating at maximum number of UV banks; simulation of effluent E. coli concentration (c) and probability of non-compliance (d) 

resulting from control of UV lamp. 

 

Figure 6 – Pareto front of energy saving and PONC from optimal control of UV lamp banks. 
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4.4 Conclusions 

An ANN based “black-box” model of a full-scale wastewater UV disinfection facility was 

calibrated and tested on “unseen” data over a three-month time window. The model, named here as 

TPANN, proved good performances and was able to correctly predict even slight increases of a few 

CFU/100 mL in E. coli concentration, which is fundamental when dealing with high efficiency UV 

disinfection unit which has to meet the strict regulatory limits for wastewater reuse. The model was 

built as a “two-part” structure made of a sequence of an ANN classifier and an ANN regressor, 

which allowed both to handle the high proportion of zeros in the dataset and to catch nonlinear 

relationships in data. Such model structure could then be helpful in modeling any high efficiency 

disinfection unit, being able to use as calibration data all zero count events, without losing useful 

information to understand the behavior of the disinfection process at high disinfectant doses. 

Comparison of the TPANN model with several linear regression techniques supported the 

conclusion that a nonlinear family of models is needed to catch the relationship between number of 

UV lamps, flow rate, wastewater quality and disinfection efficiency and thus improve predictive 

performance. The TPANN model was here proposed as an alternative to traditional CFD-based 

modeling of UV disinfection, avoiding long computational time and thus unlocking real-time 

control applications. Real-time control of the operating banks of lamps of the UV disinfection 

facility under study was then simulated during the irrigation season of 2018 (from June to August), 

when the WWTP was delivering treated wastewater to an agricultural irrigation channel. Results 

highlighted that a potential saving of 63% of energy, corresponding to 7% of the total consumption 

of the WWTP, could be saved with respect to the conservative business-as-usual lamps 

management, since the model-based control allows to adjust the number of operating lamps 

according to the current flow rate and wastewater quality. Future research is needed to experiment 

and validate the model-based control of UV disinfection. Importantly, a dataset of adequate size 

should be collected to assess model accuracy in estimating the PONC. Moreover, important 

additional aspects of the process such as lamps fouling and the impact of lamp control on their 

durability should be addressed.  
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Chapter 5: Disinfection efficiency prediction under dynamic 

conditions: application to peracetic acid disinfection of 

wastewater  

  

Abstract 
In this work, a mechanistic dynamic model of continuous flow peracetic acid (PAA) disinfection 

was developed, calibrated and validated, assuming E. coli as indicator microorganism. The model 

was conceived as a 1-dimensional dispersion model integrating PAA first order decay and E. coli 

inactivation rate. Lab-scale batch experiments of PAA decay and E. coli inactivation experiments 

were performed to calibrate corresponding kinetic models. In each sample, conventional wastewater 

quality parameters were monitored. A PAA pilot reactor was set up to perform both tracer studies, 

for dispersion model calibration, and continuous flow disinfection experiments, to validate the 

integration of hydraulics and kinetics models, under both stationary and dynamic conditions. Linear 

regression models were calibrated to predict hydrodynamic dispersion, given the flow rate, and 

PAA decay parameters, given effluent quality and PAA dosage.  

Successful validation of the PAA disinfection model proved the importance of (i) considering 

the disinfection process as a dynamic system and (ii) integrating real-time estimation of process 

disturbances, being the initial E. coli concentration and the impact of effluent quality and PAA 

dosage on PAA decay kinetics. Importantly, novel inactivation models were proposed, as two 

different modifications of a literature model for thermal inactivation. These models are suitable for 

dynamic simulation of Eulerian models and can describe the typical triphasic behavior of 

inactivation kinetics.  

 

This chapter was submitted for publication. 
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5.1 Introduction 

Chemical disinfection is one of the most widespread solutions for pathogen removal from 

wastewater, guaranteeing high inactivation efficiencies for bacteria, viruses and protozoa, while 

requiring simple and cheap facilities and equipment which are easy to be managed (White, 2010). 

Main drawbacks of most of chemical disinfectants are the formation of toxic disinfection by-

products (DBPs) and a relevant ecotoxicological impact on natural waters due to both residual 

disinfectant and DBPs (inter alia: Yang et al., 2013, Du et al., 2017, How et al., 2017). Therefore, 

disinfectant dosage has to be optimized in order to guarantee the required pathogen reduction while 

minimizing residual concentration of disinfectant and process cost. In wastewater treatment, this 

goal is challenged by fluctuations in quality and flow rate of wastewater streams to be disinfected, 

which affect process efficiency. This variability is mainly due to the daily variability of raw 

wastewater quality and flow rate, and of the efficiency of upstream treatments. The change of 

wastewater quality impacts on decay kinetics of disinfectants (Wang et al., 2019, Domínguez 

Henao et al., 2018, Domínguez Henao et al., 2018), while flow rate variations cause different 

hydrodynamics in the disinfection contact tank. These dynamic conditions impact the two 

fundamental operating parameters in determining process efficiency: the concentration of 

disinfectant and contact time. Design, optimization and control of chemical disinfection require 

then a model of the process, which account for the impact of changing wastewater quality and flow 

rate when estimating pathogen inactivation.  

One of the first systematic approaches to disinfection modeling was the Surface Water 

Treatment Rule (SWTR) and it was conceived for a highly conservative design of disinfectant 

dosage (USEPA, 2006). The SWTR assumes that the “dose” (CT), defined as the product of 

disinfectant concentration and residence time in the contact tank and expressed as mg L-1 min, is the 

primary factor determining disinfection efficiency, and reported CT tables for a variety of 

disinfectants, linking CT values to inactivation levels. The assumption on the importance of the 

dose is the basis of most of the following modeling approaches to disinfection, but still the SWTR 

is too conservative in the way the dose was estimated. The SWTR assumes that the retention time at 

which 10% of the water passes through the contact tank (T10) and the residual concentration of 

disinfectant after the average hydraulic retention time have to be considered to compute the CT 

value, without accounting for specific characteristics of hydraulics and kinetics of the case study.  

This is the consequence of a single-objective approach, which look for a high safety factor when 

considering pathogen inactivation, while neglecting the environmental and economic impact of 

unnecessary overdosage. The modeling approach introduced by the Integrated Disinfection Design 
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Framework (IDDF) (Ducoste et al., 2001) represented a fundamental shift towards a site-specific 

modeling of continuous flow disinfection. IDDF integrates sub-models of contact tank hydraulics, 

disinfectant decay, DBPs formation and microbial inactivation kinetics, which are all calibrated on 

the case study of interest, allowing to optimize dosage while considering the specificity of 

disinfectant, wastewater and reactor characteristics. However, IDDF was primarily developed for 

drinking water and considers disinfection as a stationary process, with constant water quality and 

flow rate, which makes it very approximate for realistic wastewater applications.  

More recently, variability of disturbances and model uncertainty were included in wastewater 

disinfection modeling, leading to more accurate and robust predictions of process efficiency. A first 

group of studies proposes stochastic models, which characterize the variability of process inputs 

and parameters as probability distributions (inter alia: Neumann et al., 2007; Santoro et al., 2015). 

This kind of approaches provide useful tools to deal with disturbances variability and model 

uncertainty, but they do not explicitly explain how time variability of wastewater quality and flow 

rate impact on the dynamic behavior of the disinfection process. In fact, variability and uncertainty 

are described as static probability distributions and propagated onto disinfection efficiency 

predictions by Monte Carlo simulations of the disinfection reactor under stationary conditions. 

Manoli et al. (2019) made a fundamental step forward in predicting the temporal dynamics of 

chemical disinfection, by modeling the process over time as succession of stationary conditions. 

The contact tank was modeled as a Tank-in-Series (TIS) model (Levenspiel, 1999), a series of ideal 

continuously stirred tank reactors. At each time step, residual peracetic acid (PAA) and E. coli 

concentrations were estimated with the Segregated Flow Model (Crittenden et al., 2017), using the 

current value of flow rate and PAA concentration at the reactor inlet. Elhalwagy et al. (2021) 

developed a disinfection model based on computational fluid dynamics to describe contact tank 

hydraulics and adding the description of the impact of solid settling on disinfectant decay and 

microbial inactivation. Despite these recent advances, wastewater disinfection was rarely modeled 

as a dynamic process and still a dynamic model of disinfection needs to be validated. 

Statistical regression models represent an effective alternative to previously described 

mechanistic approaches whenever lack of knowledge on specific phenomena affecting disinfection 

can be compensated by directly capturing input-output relationships in data. For example, 

regularized linear models (inter alia: Kadoya et al., 2020, Kadoya et al., 2021) and neural networks 

(Newhart et al., 2021) were used to predict process efficiency and/or residual concentration of 

disinfectant. Moreover, data driven models, like neural networks, were used to build surrogate 

models of their mechanistic counterparts (Wei et al., 2020), with much lower computational time, 

unlocking applications in optimization and control. 
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This work aims at conceiving, calibrating and validating a mechanistic dynamic model of PAA 

disinfection. The process was described by a 1-dimensional advection-diffusion-reaction model, 

integrating PAA decay and inactivation kinetics. Impact of varying wastewater quality and flow 

rate on kinetic and hydraulic parameters was estimated by means of regression models. PAA decay 

and inactivation kinetic models were calibrated in lab-scale batch experiments. E. coli was used as 

indicator microorganism. A statistical regression model was calibrated to predict the impact of 

changing wastewater quality on PAA decay kinetics. The 1-dimensional advection-diffusion 

transport model was calibrated over tracer studies carried out on a pilot reactor. Finally, the overall 

1-dimensional advection-diffusion-reaction model, integrating kinetic and hydraulic models, was 

validated over pilot-scale continuous flow disinfection experiments, both in stationary and dynamic 

conditions.  

5.2 Materials and Methods 

5.2.1 Model development 

A mechanistic model of PAA disinfection was developed, integrating the description of contact 

tank hydraulics (paragraph 2.1.1), kinetics of PAA decay (paragraph 2.1.2) and kinetics of E. coli 

inactivation by PAA (paragraph 2.1.3). The PAA disinfection model was then calibrated and 

validated at pilot-scale under both stationary flow rate conditions (paragraph 2.1.4), and dynamic 

conditions (paragraph 2.1.5). 

5.2.1.1 Contact tank hydraulics 

A 1-dimensional advection-diffusion-reaction model, also known as dispersion model 

(Levenspiel, 1999), was used to describe fate and transport of reactive substances through the 

contact tank:  
TU
T,
= −𝑣 TU

TM
+ 𝐷 TIU

TMI
+ VTU

T,
W
J
                                                       (Eq. 2.1)                                     

where 𝑆 (mg L-1) is the concentration of a generic reactive substance, 𝑥 (m) is the spatial 

coordinate indicating the distance from the inlet of the contact tank, 𝑣 (m min-1) is the flow velocity 

along 𝑥 and 𝐷 (m2 min-1) is the dispersion coefficient. VTU
T,
W
J
 (mg L-1 min-1) is the rate of the 

reaction involving S. The model assumes that 𝑆 is constant over the cross-sectional area of the 

reactor. The model does not explicitly describe the flow inversions due to the chicane of the contact 

tank and considers it as a linear channel. The additional mixing and dispersion due to flow 

inversions is then incorporated in 𝐷. 
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Two models were compared for contact tank hydraulics, being: (i) a single dispersion model 

(SDM) (Figure 1.a), describing the contact tank as a single linear channel, and (ii) the parallel 

combination of two dispersion models (PDM), describing the tank as two parallel linear channels 

with a final blend of flow rates (Figure 1.b). In this second case, total flow rate and cross-sectional 

area are split between the two dispersion models according to two parameters 𝛼 and 𝛽, respectively, 

with 𝛼, 𝛽 ∈ [0,1].   

Equations describing the response of the dispersion model to an impulse of a non-reactive 

substance under open-channel boundary conditions were used to calibrate 𝐷 on tracer studies data 

(Crittenden et al., 2017): 

𝐸(𝜗) = "
V
𝐶-WFX; = [

/
√ZQ[T

𝑒1
(:*J)I

KLM , 𝑑 > 0.01

/
√ZQT

𝑒1
(:*J)I

KM , 𝑑 ≤ 0.01
      (Eq. 2.2) 

𝑑 = :
D@

           (Eq. 2.3) 

𝜃 = ,
R$S

           (Eq. 2.4) 

where 𝑀 is the mass of the injected tracer, 𝑉 (m3) is the contact tank volume, 𝐶-WFX; (mg L-1) is 

the concentration of tracer leaving the contact tank at time 𝑡 (min), 𝑑 is the dispersion number (-), 

which measure the axial dispersion of the contact tank, 𝐻𝑅𝑇 (min) is the average hydraulic 

retention time in the contact tank, 𝐿 (m) is the length of the path along 𝑥 from the inlet to the outlet 

of the contact tank. 𝐸(𝜗) is a dimensionless function known as residence time distribution 

(Levenspiel, 1999). The SDM impulse response is directly described by Eq. 2.2, the PDM impulse 

response is the result of the combination of the two channels: 

𝐸(𝜗) = 𝛼𝐸/(𝜗) + (1 − 𝛼)𝐸=(𝜗)        (Eq. 2.5) 

𝐸(𝜗) function was calibrated on tracer experiments (see paragraph 2.2) at different flow rates, 

considering one at a time datasets from each tracer experiment and getting a different 

parametrization for each flow rate value. Empirical models of 𝐷, 𝛼 and 𝛽 as linear, power and 

exponential functions of flow rate were then calibrated.  
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Figure 1 – Schemes of the two options for the hydraulic model of the pilot contact tank. 

5.2.1.2 PAA decay 

PAA decay was modeled with the Haas and Finch model (Haas and Finch, 2001), which implies 

first order decay rate (𝑘) and instantaneous oxidative demand (𝑂𝐷) after dosage: 
T3##
T,

= −𝑘𝑃𝐴𝐴          (Eq. 2.6) 

𝑃𝐴𝐴(𝑡) = (𝑃𝐴𝐴 − 𝑂𝐷)𝑒12,        (Eq. 2.7) 

with 𝑃𝐴𝐴 (mg L-1) as PAA concentration, 𝑃𝐴𝐴0 (mg L-1) as PAA dosage, and 𝑘 (min-1) and 𝑂𝐷 

(mg L-1) as model parameters to be calibrated.  

Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) was used to 

identify and calibrate linear models to predict 𝑘 and 𝑂𝐷 in the effluent, given monitored 

conventional wastewater quality parameters as potential predictors (see paragraph 2.2). In LASSO 

regression, optimal coefficients of a linear model are found by minimizing a penalized residual sum 

of squares plus a penalty proportional to the sum of the absolute values of coefficients: 

𝑆𝑆𝐸@#UU\ =	∑ (𝑦! − 𝑦=!)=8
!./	 + 	𝜆 ∑ |𝛽!|

-
>./             (Eq. 2.8) 

where 𝑦! are the observations, 𝑦=! are the predicted values, 𝑁 is the size of the sample and 𝛽> are 

model parameters. LASSO has the advantage of shrinking continuously towards zero coefficients of 

irrelevant predictors during 𝑆𝑆𝐸@#UU\ minimization, thus leading to a sparse model with a reduced 

number of predictors. The value of 𝜆 was tuned by minimizing Mean Squared Error (MSE) within a 

Leave-one-out Cross-validation (LOOCV) procedure (Hastie, 2009). Then, the final model was 

calibrated on the whole dataset by LASSO using the optimal value of 𝜆. 
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5.2.1.3 E. coli inactivation 

Four models were compared for E. coli inactivation: (i) Dose Model (DM) (Domínguez Henao et 

al., 2018b); (ii) Double Exponential Model (DEM) (Santoro et al., 2015); (iii) and (iv) two modified 

versions of the Geeraerd inactivation model (MGM1 and MGM2) (Geeraerd et al., 2000).    

The DM describes inactivation by PAA in batch conditions as:  

𝑙𝑜𝑔 8
8&
= − 2':(

/];)*+
          (Eq. 2.9) 

𝑑(𝑡) = ∫ 𝐶𝑑𝑡,
0 = V^&1\:

2
W (1 − 𝑒12,)       (Eq. 2.10) 

where 𝑁0 and N (CFU/100 mL) are the initial concentration of bacteria and the concentration at 

time t, and 𝑘<, 𝑛 and ℎ are model parameters. 𝐷(𝑡) (mg L-1 min) is the disinfectant dose at time 𝑡, 

i.e. the integral of PAA concentration up to time 𝑡. This definition of the dose synthesizes the 

combined variation of PAA concentration and contact time, while accounting for the progressive 

loss of PAA concentration due to decay. DM can effectively describe with only 3 parameters the 

triphasic behavior of PAA inactivation kinetics, made of a first lag, followed by a sequence of a 

log-linear phase with high inactivation rate and, finally, by a sharp decrease of inactivation rate 

phase (tailing).  

The DEM used in this work is inspired to previously developed literature model (Santoro et al., 

2015), postulating that the high-rate log-linear phase of inactivation is mainly due to the rapid 

inactivation of dispersed free-swimming bacteria, while the final tailing with slower rate is caused 

by the shielding effect that protects bacteria which aggregate on suspended solid particles. The total 

population of bacteria in the undisinfected effluent is then assumed to be divided in free-swimming 

and particle-associated bacteria. In this work, to define DEM both in a derivative and in an integral 

form, free-swimming and particle-associated bacteria are assumed to follow a Chick-Watson 

inactivation kinetics, as described by: 
T8NO
T,

= −𝑎𝑁_X𝑃𝐴𝐴          (Eq. 2.11) 

T851
T,

= −𝑏𝑁-E𝑃𝐴𝐴         (Eq. 2.12) 

where 𝑁_X (CFU/100mL) is the concentration of free-swimming bacteria and 𝑁-E (CFU/100mL) 

is the concentration of particle-associated bacteria 

Relying on the assumption that the total bacteria population can be calculated as the sum of the 

two above-mentioned subpopulations, the overall DEM kinetics in its integral form can be derived 

as: 

𝑁 = 𝑁_X + 𝑁-E = 𝑁0,_X𝑒1ET + 𝑁0,-E𝑒1`T = 𝛿𝑁0𝑒1ET + (1 − 𝛿)𝑁0𝑒1`T  (Eq. 2.13) 
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where 𝛿 is the percentage of 𝑁_X in the total concentration of initial bacteria (𝑁0). The model 

parameters are a, b and 𝛿. 

As for MGM1 and MGM2, the first one is based on the same assumption as DEM on the 

presence of free-swimming and particle-associated bacteria, but it assumes a different inactivation 

kinetics for the first group, that can describe the initial lag, under the hypothesis that the lag is due 

to the presence of components (𝐶) protecting bacteria from inactivation (Geeraerd et al., 2000). 

Here it is then assumed that 𝐶 undergoes a second order inactivation dependent on PAA 

concentration. MGM1 is then formulated as:  
T8NO
T,

= −𝜂𝑁_X𝑃𝐴𝐴          (Eq. 2.14) 

𝜂 = 𝜂aEM V1 −
^

^1bP
W = 𝜂aEM

/
/])

       (Eq. 2.15) 

𝑋 = ^
bP

           (Eq. 2.16) 

T)
T,
= −𝜂aEM𝑃𝐴𝐴𝑋         (Eq. 2.17) 

where the Michaelis-Menten based kinetics 𝜂 is introduced in the inactivation rate of bacteria. 𝐾c 

(units cell-1) stands for the value of 𝐶 (units cell-1) where 𝜂 equals half of its final value, which is 1. 

𝑋 can be interpreted as a measure of the physiological state of the population (Geeraerd et al., 

2000). The integral form of Eq. 2.14 and of the MGM1 kinetics are given respectively by: 
8NO
8NO,&

= )&]/
)&];QR1SM

          (Eq. 2.18) 

𝑁 = d8&()&]/)
)&];QR1SM

+ (1 − 𝛿)𝑁0𝑒1`T        (Eq. 2.19) 

MGM2 was defined as MGM1, except for the decay of 𝑋 (and, consequently, 𝐶), which was 

described as a first order decay, not depending on PAA concentration: 
T)
T,
= −𝜂aEM𝑋          (Eq. 2.20) 

MGM2 cannot be integrated analytically and was then solved numerically. 

5.2.1.4 Prediction of residual E. coli and PAA concentrations under stationary flow rate 

conditions 

Residual E. coli and PAA concentration at the outlet of the pilot contact tank during continuous 

flow disinfection at constant flow rate were predicted with the SFM (Levenspiel, 1999). The SFM 

works under the assumption that all the fluid elements are segregated, namely they do not mix or 

interact with each other. Therefore, the amount of any reaction that takes place in each fluid 

element is estimated and then the elements are mixed at the end of the reactor. Usually, every 

fraction of fluid is approximated by a batch reactor with the same contact time of that fluid fraction 
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retention time, identified by the 𝐸(𝜗) function. The prediction of residual bacteria and PAA 

concentrations by SFM can be then formalized as a convolution integral: 

𝑃𝐴𝐴AW, = 𝑃𝐴𝐴0 	∫ 𝑃𝐴𝐴`E,ce(𝑡)𝐸(𝑡)𝑑𝑡
f
0       (2.21) 

𝑁AW, = 𝑁0 	∫ 𝑁`E,ce(𝑡)𝐸(𝑡)𝑑𝑡
f
0         (2.22) 

𝐸(𝑡) = 𝑡�̅�(𝜗)          (2.23) 

where 𝐸(𝑡) is the RTD function defined over time and 𝑡̅ (min) is the average contact time. 

𝑃𝐴𝐴`E,ce(𝑡) and 𝑁`E,ce(𝑡) are PAA and bacteria concentration trends, respectively, in batch 

conditions, defined by models described in paragraphs 2.1.2 and 2.1.3. 

5.2.1.5 Prediction of residual E. coli and PAA concentrations under dynamic flow rate conditions 

Residual E. coli and PAA concentration at the outlet of the pilot contact tank during continuous 

flow disinfection at variable effluent flow rate and water quality was simulated by numerical 

solution of the dispersion model in its derivative form. Fate and transport of bacteria and PAA 

through the contact tank were described as: 
T8NO
T,

= − g
#
T8NO
TM

+ 𝐷(𝑄) T
I8NO
TMI

− 𝜂𝑁_X𝑃𝐴𝐴                                         (Eq. 2.24) 

T851
T,

= − g
#
T851
TM

+ 𝐷(𝑄) T
I851
TMI

− 𝑏𝑁-E𝑃𝐴𝐴       (Eq. 2.25) 

T3##
T,

= − g
#
T3##
TM

+ 𝐷(𝑄) T
I3##
TMI

− 𝑘(𝑞o)𝑃𝐴𝐴                                          (Eq. 2.26)     

Equations are reported assuming MGM1 as inactivation model, but can be straightforwardly 

derived for DEM or MGM2 by replacing the reaction term in equations 2.17 and 2.18. Dispersion 

parameter 𝐷 is dependent on flow rate (𝑄), while PAA decay parameter 𝑘 depends on wastewater 

quality parameters (𝑞o) at time 𝑡. 𝑞o	corresponds to the group of water quality parameters which were 

selected as good predictors of 𝑘 by LASSO regression (paragraph 2.1.2). In the case of PDM, Eq. 

2.24-2.26 were solved for the two channels and concentrations flowing out the contact tank were 

computed as the final blend.  

E. coli concentration at the inlet of the contact tank was predicted by a linear regression model, 

calibrated according to LASSO and LOOCV (paragraph 2.1.2), considering wastewater quality 

parameters as predictors (paragraph 2.2). 

5.2.1.6 Experimental plan 

The experimental plan was designed to calibrate kinetic models of PAA decay and inactivation 

of E. coli and the hydraulic model of the contact tank, and to validate the integration of such models 
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to predict PAA and E. coli residual concentration in a continuous flow disinfection process, both in 

stationary and dynamic flow rate conditions.  

PAA decay and disinfection experiments in batch conditions were carried out in the laboratory 

on grab samples of the undisinfected effluent collected in Peschiera Borromeo municipal 

wastewater treatment plant (WWTP) in Milan urban area (Italy), between 02/09/2019 and 

28/01/2020, during random moments of day and week. The WWTP (440.000 PE) includes a 

primary sedimentation stage, followed by a suspended biomass nitrification/oxidation and 

phosphorous removal by aluminium chloride. The stream quality is then refined by a double stage 

biofilter (BIOFOR®, Suez) performing nitrification, denitrification and suspended solids filtration. 

Each collected sample was characterized by pH, conductivity (CND), temperature (T), total 

suspended solids (TSS), turbidity (TRB), chemical oxygen demand (COD), ultraviolet absorbance 

at 254 nm (UV254), total nitrogen (TN), ammonia (NH4+) and nitrate (NO3-).  

Tracer experiments were carried out on the pilot contact tank at 5 flow rates (35, 60, 80, 100, 130 

L min-1). An impulse of 0.1 kg of NaCl was pumped at the inlet of the contact tank and conductivity 

was monitored over time at the outlet.  

PAA disinfection experiments in continuous flow conditions were carried out at pilot-scale in 

between 14/11/2019 and 10/12/2021, under both stationary and dynamic flow rate conditions. 

Experiments are summarized in Table 1, including details about data use in model calibration or 

validation. 
Table 1 – Summary of the experimental plan. Sampling points refer to Figure 2. 

ID Type of 
experiment Condition Scale Flow 

rate 
Measured 
quantity 

Number of 
experiments 

Sampling 
points 

Modeling  
phase 

1 Tracer 
study continuous pilot stationary – conductivity 5 P1 

calibration 
of hydraulic model 

(par. 2.1.1) 

2 PAA  
decay batch lab - 

– PAA  
– wastewater 

quality 
27 P1 

calibration 
of PAA decay 

(par. 2.1.2) 

3 E. coli 
inactivation  batch lab - 

– E. coli 
– wastewater 

quality 
7 P2 

calibration 
of PAA inactivation 

(par. 2.1.3) 

4 PAA 
disinfection continuous pilot stationary 

– PAA  
– E. coli 
– wastewater 

quality 

9 P1; P2 

validation 
of disinfection 

model 
(par. 2.1.5) 

5 PAA 
disinfection continuous pilot dynamic 

– PAA  
– E. coli 
– turbidity 
– conductivity 
– pH 
– UV254 

2 P1; P2 

validation 
of disinfection 

model 
(par. 2.1.6) 
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5.2.1.7 Pilot plant 

A pilot-scale disinfection plant was set up in the WWTP. It is a 2.2 m3 open channel chicane 

type reactor, whose horizontal and vertical sections are reported and detailed in Figure 2. The plant 

inlet is equipped with an online propeller flow meter (Digiten FL-1608), a motor valve (Burkert 

3285) and a peristaltic dosing pump (SEKO) for PAA dosage. All devices are connected to an 

Arduino UNO programmable board for flow rate readings, control of valve opening and dosing 

pump flow rate. The contact tank was fed on the undisinfected tertiary effluent of the WWTP, by a 

centrifugal pump (DAB) withdrawing from the inlet of the full-scale disinfection contact tank. The 

pilot plant enabled continuous flow disinfection experiments under constant flow rate or arbitrary 

flow rate patterns and real-time wastewater quality variations. Samples for batch (lab-scale) and 

continuous flow (pilot-scale) disinfection experiments and tracer studies were collected at inlet (P1) 

and outlet (P2) of the contact tank, as highlighted in Figure 2. 

 
Figure 2 – Scheme of the disinfection pilot plant (not in scale). 

5.2.1.8 Lab-scale decay and disinfection experiments 

1-h PAA decay tests on effluent samples were performed in completely mixed batch reactors 

(CMBR) mixed by magnetic stirrer at room temperature (20 ± 1 °C). In each experiment, PAA 
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commercial solution (PROMOX P510, PAA content: 15% w/w, hydrogen peroxide (H2O2) content: 

23-24% w/w) was added to the effluent to obtain the given PAA initial concentration. Sample 

aliquots were collected at five contact times (2, 5, 10, 30 and 60 min) to measure residual PAA 

concentration. Decay experiments were carried out on 9 samples collected at an initial PAA 

concentration of 1, 2 and 5 mg L-1, for a total of 27 experiments, evaluating PAA residual 

concentration.  

In disinfection experiments, carried out in the same setup of PAA decay tests, 7 undisinfected 

effluent samples were exposed to different combinations of PAA concentration (1 to 5 mg L-1) and 

contact time (1 to 60 minutes), resulting in monotonically increasing disinfectant doses (1 to 270 

mg L-1 min). E. coli concentration was measured in each sample before and after the exposure to 

each dose level. 

5.2.1.9 Pilot-scale disinfection experiments 

Continuous flow disinfection experiments were performed on the pilot contact tank, fed with the 

real WWTP undisinfected tertiary effluent and thus with variable effluent quality conditions. PAA 

was continuously dosed at constant concentration.  

In stationary conditions experiments, flow rate was kept constant, while PAA and E. coli 

concentration was measured at the outlet after 4 times the average HRT. At the same time, a sample 

was collected at the inlet, where pH, CND, T, TSS, TRB, COD, UV254, TN, NH4+ and NO3- were 

measured. Stationary flow rate experiments were carried out in 9 combinations of PAA dosage (1.5, 

3 and 4.5 mg L-1) and flow rate (50, 70 and 100 L min-1). PAA and flow rate values were chosen to 

be different from the calibration phase, but still avoiding extrapolation. 

In dynamic conditions experiments, flow rate varied according to fluctuating patterns (40 to 140 

L min-1, with HRT ranging between 17 and 55 min), while PAA concentration was kept constant at 

1 mg L-1 (1st experiment) and 3 mg L-1 (2nd experiment). PAA concentration at the outlet of the 

contact tank was measured every 10 minutes. E. coli were measured both at the inlet, every 60 

minutes, and at the outlet of the contact tank, every 20 minutes. TRB, pH, CND and UV254 were 

measured each 10 minutes at the inlet. Experiments lasted 5 hours each. 

5.2.2  Chemical and microbiological analyses 

PAA residual concentration was measured by the DPD method according to Dominguez-Henao 

et al. (2018). Commercial test kits were used for measurement of COD (Hach LCI500, ISO 15705), 

ammonia (Hach LCK303, ISO 7150-1), nitrate (Hach LCK339, EN38405 D-2) and total nitrogen 

(Hach LCK238, EN ISO 11905-1). TSS, turbidity and UV254 were respectively measured by 0.45-



Disinfection of wastewater: modeling, control and risk assessment 
PhD Thesis – Jacopo Foschi – IAI, Politecnico di Milano – XXXIV cycle 

 

 
 

90 

 µm membrane filtration (Standard Methods, section 2540B, APHA/AWWA/WEF, 2012), portable 

turbidimeter (VELP Scientifica) and 1-cm optical path laboratory spectrophotometer (Hach 

DR6000). pH and conductivity were measured with a multiparameter probe (HACH HQ40d). 

E. coli were enumerated by membrane filtration method according to Standard Methods (Section 

9222, APHA/AWWA/WEF, 2012), using 0.45- µm pore size cellulose nitrate membranes 

(Whatman) and chromogenic agar (Microinstant® Chromogenic Coliforms Agar, Scharlau) as 

culture medium. Inoculated plates were incubated at 37 °C for 24 h. E. coli and TC were expressed 

as CFU in 100 mL volume. 

5.2.3 Data processing 

Models described in paragraphs from 2.1.1 to 2.1.4 were calibrated with the software R (version 

4.0.1). Package nls 0.2 was used for nonlinear regression and package glmnet 4.0 was used for 

LASSO. Mathworks Matlab R2021b was used for simulations described in paragraphs 2.1.4 and 

2.1.6. Matlab Partial Differential Equation Toolbox was used for numerical solution of ordinary 

differential equations for simulations of disinfection according to the dispersion model (Eq. 2.24 to 

2.26). 

5.3 Results and Discussion 

Firstly, the three sub-models constituting the mechanistic model were calibrated (paragraphs 3.1 

to 3.3) on data derived from tracer study and batch decay/inactivation tests. The calibrated models 

were then used to predict E. coli and PAA concentration at the outlet of the pilot reactor during 

continuous flow disinfection (paragraphs 3.4 and 3.6). For dynamic simulations, considering the 

time-varying flow rate and wastewater quality, the concentration of E. coli at the inlet of the pilot 

reactor was estimated in real-time. 

5.3.1 Calibration of the hydraulic model  

Model parameters of SDM and PDM (paragraph 2.1.1) were estimated by nonlinear regression 

using tracer tests data performed at different HRT, ranging between 17 and 56 minutes. Results of 

model calibrations are reported in Table S1. The PDM fitted experimental data much better 

(adjusted R2: 0.861 to 0.961) than the SDM (adjusted R2: 0.462 to 0.946), suggesting that the flow 

through the contact tank could be described as two parallel non-mixing fluxes with different 

longitudinal dispersion. PDM fit of experimental tracer data is reported in Figure 3a. This result is 

consistent with previous studies on the effectiveness of compartment models in describing 

hydrodynamics of chemical disinfection reactor, which highlighted that most of contact tanks are 
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best described by two TIS models (Gorzalski et al., 2018), which can be considered as equivalent of 

dispersion models (Levenspiel, 1999). PDM parameters suggest that the model is defined by a main 

“low-dispersion” flux (𝐷/=0.24-0.56) and a secondary “high-dispersion” flux (𝐷/=0.93-10.88). The 

lower the total flow rate, the higher the importance of the “low-dispersion” flux, as can be argued 

by values of parameter 𝛼 (0.51-0.87) and 𝛽 (0.40-0.89). Interestingly, dispersion in the “high 

dispersion” flux decreases with flow rate, while the opposite happens for the other flux. The 

variation of the estimated parameters with flow rate evidenced how velocity in the contact tank 

impacts on its overall hydrodynamic behavior, determining the degree of the shift from the ideal 

plug-flow model (Furman et al., 2005, Zheng & Mackley, 2008). Empirical linear models were 

calibrated to describe the relationships between flow rate and each PDM parameter. Model 

equations, coefficients of determination and statistical significances are reported in Table 2, while 

models fits are reported in Figures 3b-e The integration of these equations in the PDM makes it able 

to account in real-time for changes in hydrodynamic behavior of the contact tank due to flow rate 

fluctuations.  
Table 2 – Equations, coefficients of determination and significance of the empirical models of the dispersion model parameters  

Parameter Equation R2 p-value 
𝐷T 𝐷T = −0.003𝑄 + 0.71 0.965 0.003 
𝐷U 𝐷U = 0.11𝑄 − 5.49 0.879 0.019 
𝛼 𝛼 = 0.004𝑄 + 0.40 0.748 0.058 
𝛽 𝛽 = 0.006𝑄 + 0.21 0.888 0.016 

 

 
Figure 3 – Fitting of PDM on tracer experiments at different flow rates (a) and fitting of empirical models predicting PDM 

parameters at given flow rate (b).  
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5.3.2 Calibration of the PAA decay model 

Data from PAA decay experiments evidenced high variability of both first order decay rate and 

oxidative demand. A single parametrization of the Haas and Finch model was not adequate for a 

sufficiently accurate prediction of residual PAA, as reported in Figure S1. Haas and Finch model 

was then calibrated on each out of 27 decay experiments. 𝑘 and 𝑂𝐷 model fits are illustrated in 

Figure 4 and model coefficients and performances are reported in Table 3. LASSO regression 

revealed that part of this variability can be explained by two linear models using PAA dosage and 

conventional effluent quality parameters as predictors of 𝑘 and 𝑂𝐷. As a result of the LOOCV 

procedure, 4 variables (initial PAA dosage, TRB, UV254, TN and NO3-) were selected as predictors 

of 𝑘, as reported in Figure 4a, where MSE reaches its minimum when 𝜆 is such that only 4 predictor 

coefficients are non-zero. This result is consistent with recent findings on PAA. Higher PAA 

concentrations imply higher stability of the compound in water and lower decay, while 

concentration of suspended solids and soluble organics, which are well correlated to TRB and 

UV254, increase 𝑘 (Santoro et al., 2015, Domínguez Henao al., 2018a, 2018b, Elhalwagy et al., 

2021). A physical relationship between TN and NO3- and PAA decay has not been documented and 

these two parameters probably work here as proxies of the upstream activated sludge treatment 

operating conditions. As for 𝑂𝐷, only PAA dosage was selected as predictor (Figure 4c). Despite 

some limitations, as the poor performance in 𝑂𝐷 prediction, both models were integrated in the 

disinfection model, in order to estimate in real-time the impact of changing wastewater quality and 

dosage on PAA decay.  
Table 3 – Results of calibration and LOOCV for regression models predicting PAA first order decay rate (𝑘), PAA oxidative 

demand (𝑂𝐷) and E. coli concentration at the inlet of the pilot reactor. “cal.” (calibration): performances obtained by LASSO 
regression on the whole dataset at optimal 𝜆. “CV” (cross-validation): performances by LASSO regression from LOOCV. 

 𝒍𝒐𝒈𝟏𝟎𝒌  𝑶𝑫  𝒍𝒐𝒈𝟏𝟎𝑬. 𝒄𝒐𝒍𝒊 
PAA0 -0.041  0.073  - 

pH -  -  0.049 
CND -  -  - 

T -  -  - 

TSS -  -  - 
TRB 0.161  -  0.415 
COD -  -  - 

UV254 0.029  -  - 
TN -0.039  -  - 

NH4+ -  -  - 
NO3- -0.034  -  -0.189 

Intercept -2.159  0.164  4.699 

 cal. CV  cal. CV  cal. CV 
R2 0.67 0.45  0.29 0.10  0.67 0.58 
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MAE 0.003 0.004  0.135 0.149  0.385 0.502 

MAPE 38% 49%  8.5% 9.3%  8.4% 11.2% 

 

 
Figure 4 – Results of LASSO regression and LOOCV for models of PAA decay kinetic parameters (𝑘 and 𝑂𝐷). 

5.3.3 Calibration of the E. coli inactivation model 

Data collected in lab-scale batch disinfection experiments, reported in Figure 5, revealed the 

typical triphasic trend of bacteria inactivation by PAA (inter alia: Rossi et al., 2007, Antonelli et al., 

2013, Santoro et al., 2005, McFadden et al., 2017, Dominguez Henao et al., 2018). Experimental 

data suggest an initial lag phase with low inactivation rate for doses lower than approximately 10 

mg L-1 min. Inactivation followed a log-linear trend with a high inactivation rate, between 

approximately 10 and 50 mg L-1 min. Then, for higher doses, there is a tailing phase, with a drastic 

decrease of the inactivation rate.  

DM, DEM, MGM1 and MGM2 were calibrated on collected data and coefficients, statistical 

significance and predictive performance indicators are reported in Table 4.  

R2adj, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) results 

suggest that MGM1 is the best performing model in terms of prediction. MGM1 was formulated 

starting from the model presented by Geeraerd et al. (2000). This model was modified in MGM1 by 
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introducing PAA concentration in the inactivation rate equations, as described in paragraph 2.1.3 

(Eq. 2.14-2.17), which makes MGM1 suitable for inactivation by disinfectants. The good fit of the 

model suggests that this hypothesis, originally formulated for thermal inactivation, could be 

extended to chemical disinfection, where 𝐶 could work as an aggregated parameter accounting, as 

an example, for the presence of several reactive sites to be oxidized on bacteria cell membranes and 

of the presence of external polymeric substances (EPS) protecting the cell membrane (inter alia: 

Kitis, 2004, Xue et al., 2013). MGM1 was conceived to find a triphasic inactivation model, which 

can be used in a Eulerian model in dynamic simulations, like for the dispersion model used in this 

work. Inactivation rates defined so far in the literature, which can describe both lag, log-linear and 

tailing inactivation phases, are explicitly dependent on time or dose. Examples are the well-known 

Hom Model (Gyürek & Finch, 1998) or the recent inactivation rate developed by Elhalwagy et al. 

(2021). This kind of inactivation rates would require a Lagrangian approach, where the time spent 

by each simulated bacteria particle in the reactor is known. Differently, a Eulerian model needs an 

inactivation rate which only depends on model state variables, like the MGM1. Moreover, the 

integral of the MGM1 for batch conditions has an analytical solution (Eq. 2.19) which depends only 

on the PAA dose, being consistent with the assumption on the primary importance of the dose 

usually made in disinfection modeling and providing a useful simplified representation of the 

inactivation phenomena.  

MGM2 shares most of the characteristics of MGM1, except for the definition of 𝐶 decay rate, 

which is a first order not depending on PAA concentration. This assumption implies that the decay 

of all the components, which protect bacteria cells from inactivation determining a lag, depends 

only on time, whatever is the concentration of PAA. MGM2 can catch a first lag phase with lower 

inactivation rate, but lag is less sharp and the transition to the loglinear phase is smoother than for 

MGM1 (Figure 5b). This is the main cause of lower predictive performance with respect to MGM1. 

MGM2 still has the advantage of being suitable for a Eulerian model, although the analytical 

solution of its integral in batch boundary conditions is not available.  

The DM proved lower but similar performance to MGM1, but it needs only 3 instead of 4 

parameters. Moreover, all DM parameters are statistically significant, while parameter 𝑋0 of 

MGM1 (as for MGM2) results as not statistically significant. The fundamental drawback of DM is 

that it was derived directly in its integral form to describe disinfection in batch conditions 

(Dominguez Henao et al., 2018b) and a derivative form of the inactivation rate is not available.  

Finally, predictive performances of DEM were the lowest, since it cannot account for the 

presence of the initial lag. Due to its limited flexibility in describing the lag phase, performance of 

MGM2 were only slightly higher than DEM. 
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Overall, the comparison of those four inactivation models evidenced how different choices 

dramatically impact predicted inactivation for doses corresponding to lag and log-linear phases, 

which in this case study are lower than approximately 50 mg L-1 min. Differently, all models are 

approximately equal for higher doses. These considerations are evident in Figure 5b. 

DM, as the model with the lowest number of parameters and the highest predictive performance 

(as MGM1), was used to model continuous flow disinfection in stationary conditions, according to 

the SFM approach (paragraph 3.4). Since DM does not have a derivative form, DEM, MGM1 and 

MGM2 were used and compared to model continuous flow disinfection in dynamic conditions 

(paragraph 3.6). 

Despite data clearly suggest the general triphasic trend of the disinfection kinetics and were the 

basis for the calibration of models which were mostly statistically significant, variability of 

residuals is very relevant, as can be straightforwardly argued in Figure 5. Such variability is 

probably given by the intrinsic variability of effluent quality, which could result in different shapes 

of the kinetics and consequently different parametrizations of the triphasic kinetic model. As proven 

in Santoro et al. (2015) and Ahmed et al. (2019), data from single inactivation experiments on 

effluent samples coming from the same WWTP could be used to parametrize inactivation model, 

and probability distribution of parameters can be derived from parametrizations on several samples. 

Such approach were based on the empirical evidence that E. coli concentrations coming from single 

experiments on single samples were better aligned along calibrated inactivation models, with much 

lower residuals. Instead, in current work data from all inactivation experiments were pooled in a 

single dataset which was used for model calibration, since number of samples was not considered 

adequate to infer a probability distribution for parameter (n=3 in Santoro et al. (2015) and n=46 in 

Ahmed et al. (2019)). As additional alternative approach, a possible relationship between 

inactivation kinetic parameters and physical-chemical characteristics of the effluent was explored, 

according to the same approach studied for PAA decay kinetics (paragraphs 5.2.1.2 and 5.3.2), but 

no meaningful result was achieved due to inadequacy of data and, probably, of the type of 

wastewater parameters monitored in the study, which were in no relationship with E. coli 

inactivation mechanisms. 
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Figure 5 – Fit of experimental data by all the considered inactivation model. a) reports model fit and observations over the 
complete explored dose range (1-270 mg L-1 min). b) reports same model fit and observations between 0 and 50 mg L-1 min. 

Table 4 – Results of inactivation models calibration. 

Model Coefficients p-value R2adj AIC BIC 𝒏 

Dose 
(DM) 

𝑘C = 1.091 <0.05 
0.79 95.6 104.6 

76 

𝑛  = 0.221 <0.05 
ℎ  = 15.59 <0.05 

      
Double 

Exponential 
(DEM) 

𝛿  = 0.996 <0.05 
0.70 121.4 130.4 𝑎  = 0.196 <0.05 

𝑏  = 0.013 <0.05 
      

Modified 
Geeraerd 
Version 1 
(MGM1) 

𝜂XYZ	 = 0.564 <0.05 

0.80 93.5 104.8 𝑋,      = 287 0.526 
𝛿        = 0.994 <0.05 
𝑏        = 0.015 <0.05 

      
Modified 
Geeraerd 
Version 2 
(MGM2) 

𝜂XYZ	 = 0.346 <0.05 

0.71 119.3 130.6 𝑋,      = 2.534 0.264 
𝛿        = 0.995 <0.05 
𝑏        = 0.014 <0.05 

 

5.3.4 Prediction of PAA and E. coli residuals in stationary conditions 

The use of the SFM to predict PAA and E. coli concentrations at the outlet of the pilot reactor 

was validated in experiments under stationary PAA dosage and flow rate conditions. Plots of 

observed against estimated PAA and E. coli concentrations are reported in Figure 6. Two modes of 

use of the SFM were compared. In the first case, PAA and E. coli were estimated considering PAA 

decay as stationary and independent from wastewater quality: 𝑘 and 𝑂𝐷 calibrated on the pooled 

data coming from all PAA decay batch experiments were used. In the second mode, PAA decay 

parameters 𝑘 and 𝑂𝐷 were estimated from current effluent quality parameters using the regression 

model described in paragraph 3.2. Results evidenced how accounting for the impact of varying 

wastewater quality improved predictive performance. R2 increased from -0.22 to 0.28 for PAA 

concentration and from 0.86 to 0.88 for E. coli prediction. Despite the improvement, predictive 

performance of PAA residual is still globally poor, while prediction accuracy of E. coli remains low 

in higher concentration cases, as can be observed in Figure 6b. One possible explanation is that 

wastewater quality was not stationary throughout the pilot disinfection experiments, which is not 

accounted by SFM, and suggesting the importance of modeling the disinfection reactor as a 

dynamic system, where fluctuations in wastewater quality have to be considered when predicting 

disinfectant and bacteria residuals at given time. However, low predictive performance of SFM for 

PAA residual and the very limited improvement in predicting E. coli residual are also caused by 

partial inadequacy of data available for validation in stationary conditions. While combination of 
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various meaningful flow rate and PAA dosage concentration were covered (see paragraph 5.2.1.4), 

yet more replicates would be needed for the dataset to be more representative of effluent quality 

variability and, thus, to better test possible benefits of integrating wastewater quality-dependent 

PAA kinetic parameters in the disinfection model.  

 
Figure 6 – Results of Segregated Flow Model (SFM) approach under stationary conditions. 

5.3.5 Prediction of PAA and E. coli residuals in dynamic conditions 

The model of PAA disinfection was validated on continuous flow experiments in the pilot 

reactor with variable effluent flow rate and quality (paragraph 2.1.5). Time trends of flow rate and 

turbidity, as most relevant effluent quality parameter in determining both PAA decay and initial E. 

coli concentration, are reported in Figure 7a-b. The disinfection model proved good prediction 

accuracy both for initial E. coli and PAA concentration at the outlet of the pilot reactor.  

As reported in Figure 7e-f, PAA concentration was well approximated (R2 = 0.84), but some 

fluctuations were not caught by the model. Results were compared to predictions of PAA residuals 

when neglecting the impact of effluent quality on PAA decay and assuming constant 𝑘 and 𝑂𝐷, 

calibrated on pooled lab experiments. As shown in Figure 7e-f, this simplification decreased 

prediction accuracy of PAA residual (R2 = 0.57). Most of the worsening is due to predictions in case 

of higher dosage, as expected since PAA follows a first order decay rate. Real-time update of PAA 

decay according to effluent quality avoided underestimation of PAA residual. 

Predictions of E. coli residuals using DEM, MGM1 and MGM2 as inactivation rates were 

compared and MGM2 resulted the best option in terms of predictive performance (R2 = 0.58). As 

reported in Figure 7c-d, the model can reproduce E. coli and PAA dynamics, accounting for the 

impact of fluctuations in flow rate and wastewater quality. As can be seen in Figure 7c, MGM2 is 

the best option since it better predicts E. coli fluctuations both at 1 and 3 mg L-1. As already argued 

from inactivation models in batch conditions, the choice of the inactivation rate model impacted 

mainly the prediction at low dosage, while predictions at higher dosage were approximately 

equivalent (Figure 7d). At low PAA dosage, even small variations of contact time or decay rate can 

significantly affect the inactivation rate, which can shift among the lag, log-linear and tailing phase. 
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Differently, higher dosage moves the inactivation rate in the tailing phase, with lower impact of 

dose variations. Importantly, E. coli final concentrations were predicted correctly also thanks to 

accurate predictions of initial E. coli concentration (Figure 7c-d). 

 
Figure 7 – Validation of the PAA disinfection model on continuous flow pilot-scale disinfection experiments. a-b) flow rate and 

turbidity trends during pilot experiments. c-d) deterministic validation of prediction of E. coli concentration at the inlet and the outlet 
of the pilot reactor. e-f) deterministic validation of the predictions of PAA concentration at the outlet of the reactor. g-l) validation of 

predictions of E. coli and PAA concentration with Monte Carlo simulation. 

Monte Carlo simulations propagated model uncertainty onto predictions, as reported in Figure 

7g-l, providing more robust estimate of disinfection outputs. Particularly, confidence interval 

comprises most of E. coli concentration data. Differently, still some fluctuations in PAA 

concentrations do not fall inside Monte Carlo confidence intervals.  
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5.4 Conclusions 

In this work, a mechanistic model for continuous flow PAA disinfection was developed, 

calibrated and validated. The model proved good performances both in stationary and dynamic 

effluent flow rate and quality. The model was conceived from some well-established models, but it 

introduces some key innovations to improve wastewater chemical disinfection: 

• Reactor hydraulics was described as two 1-dimensional dispersion model in parallel, with 

flow rate-varying dispersion parameters, which estimate in real-time how flow rate variations 

impact contact tank hydrodynamics. 

• Impact of dosage and varying effluent quality on PAA decay kinetics was estimated by a 

linear regression model, which was used to update in real-time PAA decay parameters. 

• Several E. coli inactivation kinetics models were compared. Different models lead to 

significantly different predictions at low PAA dosages, when the triphasic behavior of the 

kinetics is impacting.  

• Two new inactivation kinetic models (MGM1 and MGM2) were proposed, which were 

developed from the model developed by Geeraerd et al. (2000) for thermal inactivation. Both 

models can be integrated in Eulerian models, like dispersion models, and can describe the 

triphasic behavior of inactivation by chemicals like PAA. 

• The developed disinfection model was used in dynamic numerical simulations and validated 

on pilot-scale experiments. Successful validations highlighted the importance of modeling the 

disinfection process as a dynamic system, while integrating regression models to real-time 

update model inputs and parameters, being initial bacteria concentration, disinfectant decay 

and hydraulics parameters. 

In light of these innovations and advantages, the developed disinfection model could be very 

useful for off-line optimization or on-line control of chemical disinfection, to face the always 

increasing need of minimization of both environmental impact and cost. 
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5.5 Supplementary material 

5.5.1 Additional results on hydraulic model calibration 

Table S1 – Results of the calibration of dispersion models SDM and PDM over tracer experiments 

Flow 
rate HRT 

SDM PDM 
𝐷 𝑅Y\]U  𝐷T 𝐷U 𝛼 𝛽 𝑅Y\]U  

40 56 2.15 0.462 0.56 0.93 0.51 0.40 0.861 
66 34 1.19 0.736 0.50 0.90 0.65 0.55 0.988 
80 29 0.73 0.748 0.39 2.92 0.81 0.74 0.981 
90 25 0.50 0.699 0.36 4.02 0.88 0.80 0.972 
130 17 0.29 0.946 0.24 10.88 0.87 0.89 0.961 
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5.5.2 Additional results on peracetic acid decay batch experiments 

 
Figure S1 – Pooled data from lab scale batch PAA decay experiments and Haas and Finch model fit. 

 

5.5.3 Additional details on model uncertainty 

Model uncertainty was assessed by non-parametric bootstrap (Efron & Hastie, 2016). 

Parameters of each model were repeatedly tuned on 𝑛 bootstrap samples with replacement 

independently drawn from the original data, resulting in 𝑛 different estimates �̂�! of each parameter 

𝑝!. Probability distribution and confidence interval of 𝑝! were then approximated by the observed 

distribution of �̂�!. 

Model uncertainty was propagated on the predictions of the continuous flow disinfection model 

(paragraph 2.1.6) with Monte Carlo simulation of size 𝑛. Confidence intervals were estimated as 

delimited by 5th and 95th percentiles of model outputs simulation, while point estimates were 

computed as the median of model outputs simulations, according to the bragging approach 

(Bühlmann, 2003). Results from the combination of bootstrap resampling and Monte Carlo 

simulations were compared with deterministic simulations, where model parameters were tuned 

without bootstrap resampling. 

5.5.4 Additional details on calibration of the initial E. coli concentration model  

E. coli concentration observed in the 19 undisinfected samples of the WWTP effluent were 

highly variable, ranging between 1,300 and 730,000 CFU 100 ml-1. Since such variability can 

drastically impact disinfection efficiency, a regression model was calibrated on collected data to 

predict E. coli concentration using monitored effluent quality parameters as predictors, according to 

a “soft-sensor” approach which was already explored in similar applications (Foschi et al., 2021). 

As a result of LASSO regression and LOOCV procedure, 3 variables were selected as predictors 

(Figure 4a), being pH, TRB and NO3-, whose coefficients are reported in Table 3. As can be argued 

by the absolute value of coefficients, TRB is the most important predictor. As supposed in Foschi et 
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al. (2021), the increase in TRB could determine a higher contribution of the particle-associated 

bacteria fraction in the effluent, due to temporary decrease of upstream treatments efficiencies. 
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Chapter 6: Model predictive control of wastewater 

disinfection by peracetic acid  

 

Abstract 
Wastewater disinfection is designed to reduce, under given regulatory limit, the concentration of 

fecal indicators microorganisms, which is not directly measurable online. Then, model-based 

control is needed for real-time optimization of disinfectant dosage. In this work, feedforward model 

predictive control (MPC) of peracetic acid (PAA) disinfection of a real tertiary effluent from a 

municipal wastewater treatment plant was conceived and its effectiveness was tested at pilot scale, 

considering E. coli as fecal indicator. Previously developed PAA disinfection model was integrated 

in the MPC scheme, which repeatedly optimizes PAA dosage at each time instant, based on model 

predictions over a finite time horizon and measurements of effluent flow rate and quality and 

residual PAA concentration.  MPC accounts for time-varying dynamic nature of the process, 

considering how changes in flow rate affect reactor hydraulics, while fluctuations in wastewater 

quality impact PAA decay. Moreover, MPC can handle the highly nonlinear triphasic disinfection 

kinetics of E. coli. Pilot scale control experiments proved the effectiveness of MPC control in 

meeting E. coli discharge limits of 10 and 100 CFU/100 mL. Comparison with traditional flow-

paced control of disinfection, which maintains a constant dosage, revealed that MPC control, 

besides compensating time-varying operating conditions by optimizing dosage in real-time, can 

potentially save from 30% to 85% of disinfectant. Results suggest that MPC control is particularly 

important in case of the strictest among studied discharge limits, i.e. 10 and 100 CFU/100 mL, 

where it potentially provides highest savings and significantly reduces average PAA dosage, 

limiting the occurrence of potentially ecotoxic conditions at the discharge. MPC control could be 

then an effective option for wastewater reuse applications, which demands for high disinfection 

efficiency, balancing process efficiency, cost and sustainability.  

 

This chapter will be submitted soon for publication. 
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6.1 Introduction  

Raw sewage, sewer overflows and inadequately treated wastewater treatment plant (WWTP) 

effluents are main causes of fecal contamination of surface waters (inter alia: Naidoo & Olaniran, 

2013), impacting human health by impairing sources of drinking and supply water, and bathing 

areas (inter alia: Baum et al., 2013). Increasing global water scarcity is promoting the spread of 

direct and indirect potable and agricultural reuse practices, which can reduce human water footprint 

at the price of implementation of measures to limit potential health risk from exposure to enteric 

pathogens (Rodriguez et al., 2009; Angelakis et al., 2018). Given this scenario, in last decades and 

still today multilateral institutions, environmental agencies and national governments published 

regulations and guidelines defining ever more strict limits on fecal indicators (FI) for WWTPs (Lyu 

et al., 2016, Lavrnić et al., 2017, Ritter, 2021, Radcliffe, 2022). Not only compliance with low FI 

limits is challenging, but violations could have severe impacts on human health (Onyango et al., 

2015, Rock et al., 2019).  Control of disinfection reactors in WWTPs is then of primary importance 

since it is devoted to reducing FI concentration in treated effluent before discharge or reuse.  

In chemical disinfection, which is the most widespread type, concentration of disinfectant and 

contact time drive inactivation efficiency of the system. Main process disturbances are flow rate, 

affecting hydraulic residence time in the reactor, initial concentration of FI, determining required 

reduction to reach given discharge limit, and wastewater chemical and physical-chemical 

parameters, which affect disinfectant decay (inter alia: Domínguez Henao, Delli Compagni, et al., 

2018, Domínguez Henao, Cascio, et al., 2018). Inactivation kinetics determines the log-reduction of 

FI at given initial FI concentration, disinfectant concentration and contact time, and its shape 

depends on both the type of disinfectant and FI (inter alia: Balachandran et al., 2021). Disinfectant 

concentration has to be controlled in order to compensate disturbances and keep outlet FI 

concentration under the compliance limit, according to the inactivation kinetics. Main references for 

disinfection dosage design are the Surface Water Treatment Rule (USEPA, 2006) and the Integrated 

Disinfection Design Framework (IDDF) (Ducoste et al., 2001), but they both provide a modeling 

framework only for off-line optimization of dosage. On-line control in wastewater treatment was 

extensively studied (Santín et al., 2015, Han et al., 2014, Zeng & Liu, 2015), but applications exist 

mainly for biological removal of organics and nutrients and chemical oxidation and coagulation 

processes, neglecting disinfection. More recently, machine learning methods and fuzzy logic 

control were applied to chemical disinfection flow-paced control in order to  compensate the 

disturbances from the presence of ammonia and nitrite in the effluent (Khawaga et al., 2019).  

Manoli et al. (2019) summarized recent studies on on-line control of disinfectant concentration, 
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which are mainly based on feedforward and feedback flow-paced control of disinfectant, 

maintaining constant initial concentration of disinfectant (inter alia: Kobylinski et al., 2014, Dieu et 

al., 1995, Block et al., 2015). It was recently demonstrated that a shift from flow-paced to dose-

paced control is fundamental for reliable control of disinfection (Domínguez Henao, Cascio, et al., 

2018, Manoli et al., 2019). Since inactivation is determined by both concentration of disinfectant 

and contact time, the dose, defined as the integral of PAA concentration up to current contact time, 

which synthesize the effect of both the mentioned operating parameters, should be controlled to 

maintain compliance on outlet FI concentration.  

Despite the advances described so far, still feedback, and possibly dose-based, control of 

disinfection which considers the reactor as a dynamic system was not developed and control 

reliability has not been tested under relevant real-time variations of effluent quality and flow rate. 

This work aims at defining and testing feedforward and feedback model predictive control (MPC, 

Camacho & Bordons, 1999, Eaton & Rawlings, 1992) of wastewater disinfection, with application 

to peracetic acid (PAA) disinfection of tertiary effluent, assuming E. coli as FI. PAA inactivation 

kinetics is highly nonlinear, while PAA decay kinetics and hydraulic behavior of the contact tank 

change with effluent quality and flow rate, respectively. MPC was then chosen as control approach 

since it can effectively handle nonlinear and time varying processes, by using nonlinear models 

with time-varying parameters. Moreover, disinfection performance at each instant is given by the 

current concentration of FI at the outlet of the reactor, which is not measurable in real-time. FI 

concentration can only be estimated by a model and model-based optimization is then needed to 

calculate disinfectant dosage to meet the target setpoint. Previously developed PAA disinfection 

model was integrated in a standard Receding Horizon MPC control scheme. The model is the 

combination of two parallel 1-dimensional advection-dispersion-reaction models, which considers 

both the effect of PAA concentration and contact time for FI inactivation prediction, thus respecting 

assumptions of dose-based control. The control algorithm was deployed on a pilot scale reactor, fed 

by real undisinfected tertiary effluent. Pilot-scale control experiments were carried out to test MPC 

effectiveness in meeting the strictest regulation limits of the new European regulation (The 

European Parliament and the Council of the European Union, 2020) for agricultural water reuse. 

Real undisinfected tertiary effluent was fed the pilot disinfection reactor, with real-time changing 

wastewater quality, and flow rate patterns were artificially generated to realize typical average 

hydraulic residence time of real scale disinfection reactors. Finally, benefits of real time control of 

PAA disinfection were assessed by comparing PAA consumption in case of MPC control with off-

line optimization scenarios.  
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6.2 Materials and methods 

6.2.1 PAA disinfection model 

Previously developed and validated PAA disinfection model (Foschi et al. 2022) was used in this 

work for MPC control of pilot scale PAA disinfection. The pilot reactor was described as two 

parallel 1-dimensional advection-dispersion-reaction model, also known as dispersed plug-flow or 

dispersion model (Levenspiel, 1999, Crittenden et al., 2017). Total flow rate and cross-sectional 

area of the reactor are split between the two dispersion models according to two parameters 𝛼 and 

𝛽, respectively, with 𝛼, 𝛽 ∈ [0,1]. The model assumes that E. coli bacteria population is divided 

into free-swimming (FS) and particle-associated (PA) bacteria. The first sub-population inactivation 

kinetics is characterized by a first lag phase, with lower inactivation rate, followed by a log-linear 

phase with higher inactivation rate. The lag phase is assumed to be caused by the presence of a 

group of components (𝑋) outside and inside bacteria cells which protect from the disinfectant 

action. 𝑋 decays as a first order kinetics. The second sub-population follows a second order 

inactivation kinetics with much slower rate, determining a tailing phase in inactivation kinetics of 

total E. coli. The proportions of FS and PA E. coli are given by 𝛾 and 1 − 𝛾, respectively, with 𝛾 ∈

[0,1]. PAA decay follows first order decay rate, whose constant depends on PAA dosage and 

disinfected effluent quality 𝑞o = [𝑃𝐴𝐴0, 𝑇𝑅𝐵, 𝐴𝐵𝑆=hZ, 𝑁𝑂i1, 𝑇𝑁], where 𝑃𝐴𝐴0 (mg L-1) is PAA 

dosage, 𝑇𝑅𝐵 (NTU) is turbidity, 𝐴𝐵𝑆=hZ is absorbance at 254 nm, 𝑁𝑂i1 (mg L-1) is nitrate 

concentration and 𝑇𝑁 (mg L-1) is total nitrogen concentration. PAA concentration (mg L-1), E. coli 

concentration (𝑁, CFU/100mL) and X (-) are state variables of the dynamic system defined by the 

dispersion model, described by the following system of PDEs: 
T3##%
T,

= −𝑣 T3##%
TM

+ 𝐷!(𝑄!)
TI3##%
TMI

− 𝑘(𝑞o)𝑃𝐴𝐴!      (Eq. 2.1) 

T)%
T,
= −𝑣 T)%

TM
+ 𝐷!(𝑄!)

TI)%
TMI

− 𝜂aEM𝑋!       (Eq. 2.2) 
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= −𝑣 T8NO,%
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+ 𝐷!(𝑄!)
TI8NO,%
TMI

− 𝜂aEM𝑁_X,!𝑃𝐴𝐴!
/

/])%
    (Eq. 2.3) 

T851,%
T,

= −𝑣 T851,%
TM

+ 𝐷!(𝑄!)
TI851,%
TMI

− 𝛽𝑁-E,!𝑃𝐴𝐴!     (Eq. 2.4) 

where 𝑖 ∈ {1, 2} identifies the first and the second dispersed plug-flow reactors which constitute 

the overall model. As reported in the equations, dispersion parameter 𝐷 (m2 min-1) depends on flow 

rate (m3 min-1), since different flow rate regimes impact reactor hydrodynamics (Foschi et al., 

2022). Concentration of E. coli at the outlet of the reactor is given by: 
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𝑁(𝑥 = 𝐿) = 𝛼 V𝑁_X,/(𝑥 = 𝐿) + 𝑁_X,=(𝑥 = 𝐿)W + (1 − 𝛼) V𝑁-E,/(𝑥 = 𝐿) + 𝑁-E,=(𝑥 = 𝐿)W (Eq. 

2.5) 

where 𝐿 is the length of the contact tank.  

Open-flow boundary conditions were assumed (Crittenden et al., 2017). Initial and boundary 

conditions for the system of PDEs described in Eqs. 2.1-4 depend on PAA dosage 𝑃𝐴𝐴0 and 

concentration of E. coli in the undisinfected effluent 𝑁0. PAA dosage is reduced by an amount 

equal to the estimated oxidative demand of the effluent 𝑂𝐷 (mg L-1), which is a positively 

correlated linear function of 𝑃𝐴𝐴0 (Foschi et al., 2022).  

6.2.2 MPC control of PAA disinfection 

MPC control of PAA disinfection at pilot scale consisted of the solution at each time instant of 

the open-loop optimization of PAA dosage over a finite horizon. Discrete time is assumed, with 

time interval (∆𝑡) equal to 10 minutes. The optimization problem to be solved at each time 𝑡	is 

defined as: 

min
3##&

𝐽(𝑍, , 𝑃𝐴𝐴0)          (Eq. 2.6) 

subject to: 

𝐽, = ∑ (𝑙𝑜𝑔/0𝑦! − 𝜗)]S𝑄(𝑙𝑜𝑔/0𝑦! − 𝜗)]+𝑢!S𝑅𝑢!,]R
!., 	     (Eq. 2.7).  

𝑍,]/ = 𝑓(𝑍, , 𝑢, , 𝑤,)         (Eq. 2.8) 

𝑦, =	𝑁, = 𝑁_X,, + 𝑁-E,,                       (Eq. 2.9) 

𝑢, = 𝑃𝐴𝐴0					          (Eq. 2.10) 

𝑤, = [𝑁0A`X, 𝑄A`X, 𝑇𝑅𝐵A`X, 𝑁𝑂i
1
A`X, 𝑇𝑁A`X	]

S      (Eq. 2.11) 

with: 

𝑡 ∈ [𝑡, 𝑡 + 𝐻]          (Eq. 2.12) 

where 𝐽 is the objective function to be minimized, 𝑍 is the vector of state variables 𝑃𝐴𝐴, 𝑋, 𝑁_X 

and 𝑁-E, the function 𝑓(∙) is the result of the discretization of the system of PDEs described by Eqs. 

2.1-4. 𝑤, is the vector of disturbances, which are initial E. coli concentration 𝑁0,,, flow rate 𝑄, and 

effluent quality parameters 𝑇𝑅𝐵, , 𝑁𝑂i1, , 𝑇𝑁,. According to a feedforward compensation scheme, 

they are all assumed to be constant and equal to measured disturbances (marked by subscript “𝑜𝑏𝑠” 

in Eq. 2.11) at time t over the whole control horizon, until t+H. Since 𝑁0,, is not measurable on-line, 

a soft sensor approach was used to virtually monitor initial E. coli concentration (Foschi et al., 

2021). As defined in Eq. 2.10, dosage from 𝑡 to 𝑡 + 𝐻 is assumed to be constant and equal to 𝑃𝐴𝐴0. 

Thus, at each time 𝑡, the optimization problem has one decision variable, and the solution is the 
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optimal dosage 𝑃𝐴𝐴0,,∗ . As defined in Eq. 2.6, 𝑃𝐴𝐴0,,∗  minimizes the standard quadratic convex 

objective function 𝐽, defined as the sum of squared deviation of the logarithm of 𝑁 from the desired 

setpoint 𝜗 and the squared sum of the control 𝑢. Optimization is performed by Sequential Quadratic 

Programming (SQP), an iterative method for nonlinear optimization. MPC algorithm implies that at 

time t, once optimal control 𝑃𝐴𝐴0,,∗  is computed, it is applied to the system only at time instant 𝑡. 

Then, the controlled system, i.e. the pilot disinfection reactor, evolves: at 𝑡 + 1 the new state 𝑍,]/ 

of the system is observed and the optimization of the dosage is repeated. According to this scheme, 

the repeated open-loop optimization behaves as a closed-loop controller.  

At each time 𝑡, only 𝑃𝐴𝐴, is practically measurable on-line, since E. coli concentration requires 

culture-based methods, while 𝑋 is an aggregated parameter which is introduced only for modeling 

need (see paragraph 2.3) and cannot be measured. Extended Kalman Filter (EKF) is then used for 

estimation of the whole state 𝑍,. At each time t, PAAt was measured and the a posteriori state 

estimate 𝑍}, is computed and used as initial condition for predictions from 𝑡 + 1 to 𝑡 + 𝐻. 

6.2.3 Experimental test of effectiveness of PAA disinfection MPC control 

MPC control of PAA disinfection was implemented in a pilot disinfection reactor fed with real 

undisinfected tertiary effluent from a full-scale WWTP and thus at time varying effluent quality 

characteristics. Two 3-hours long experiments were carried out, where MPC was used to control 

effluent E. coli concentration to meet two setpoints, being 10 and 100 CFU/100 mL, respectively. In 

both experiments, flow rate varied according to fluctuating patterns (40 to 140 L min-1, with HRT 

ranging between 17 and 55 min). PAA concentration at the outlet of the pilot reactor was measured 

each 10 minutes. PAA measurements were used both as input of MPC control and as validation of 

the PAA model one-step-ahead predictions during control experiments. E. coli concentration at the 

inlet and the outlet of the reactor was measured each 60 and 20 minutes, respectively. 

Measurements of E. coli concentration at the inlet were used to validate soft sensor estimates (see 

paragraph 2.1), while measurements at the outlet were used to test the effectiveness of MPC control 

in maintaining compliance with the discharge limit. Turbidity, conductivity and pH at the inlet of 

the reactor were measured each 10 minutes.  

6.2.4 Description of the pilot plant and MPC control deployment  

The experimental activity was set up in the Peschiera Borromeo municipal WWTP (440.000 

PE), which includes a primary sedimentation stage, followed by a suspended biomass 

nitrification/oxidation and phosphorous removal by aluminium chloride. The stream quality is then 

refined by a double stage biofilter (BIOFOR®, Suez) performing nitrification, denitrification and 
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suspended solids filtration. The pilot scale disinfection plant was a 2.2 m3 open channel chicane 

type reactor, whose horizontal and vertical sections are detailed in Figure 1. The plant inlet was 

equipped with an on-line propeller flow meter (Digiten FL-1608, China), a motor valve (Burkert 

3285, Germany) and a peristaltic dosing pump (SEKO, USA) for PAA dosage. All devices were 

connected to an Arduino UNO programmable board for flow rate readings, control of valve opening 

and dosing pump flow rate. The contact tank was fed on the undisinfected tertiary effluent of the 

WWTP by a centrifugal pump (DAB, USA) withdrawing from the inlet of the full-scale disinfection 

contact tank, resulting in real-time varying effluent quality of the effluent entering the pilot reactor.  

During control experiments, varying flow rate patterns were generated by means of the motor 

valve. Each 10 minutes, the Arduino UNO board received readings of flow rate and turbidity at the 

inlet of the reactor and PAA concentration at the outlet. While flow rate data were automatically 

sent by the flow meter, turbidity and PAA were measured manually (according to methods 

described in paragraph 2.6) and data were sent to the Arduino board by manual entry. The Arduino 

board sent recorded data to a PC, which performed state estimation and solve the optimization 

problem for MPC control, as it is defined in paragraph 2.2. Calculations were done in Mathworks 

Matlab R2021b. In details, SQP for objective function minimization was performed with the 

fmincon function from the Matlab Optimization Toolbox and the system of PDEs of the PAA 

disinfection model (see paragraph 2.1) was discretized and numerically solved by function pdepe, 

from the Matlab Partial Differential Equation Toolbox. 

 
Figure 2 – Scheme of the disinfection pilot plant (not in scale). 
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6.2.5 Chemical and microbiological analysis 

PAA residual concentration was measured by the DPD method according to Dominguez-Henao 

et al. (2018). Turbidity and UV254 were respectively measured by portable turbidimeter (VELP 

Scientifica) and 1-cm optical path laboratory spectrophotometer (Hach DR6000). pH and 

conductivity were measured with a multiparameter laboratory probe (HACH HQ40d). 

E. coli were enumerated by membrane filtration method according to Standard Methods (Section 

9222, APHA/AWWA/WEF, 2012), using 0.45- µm pore size cellulose nitrate membranes 

(Whatman) and chromogenic agar (Microinstant® Chromogenic Coliforms Agar, Scharlau) as 

culture medium. Inoculated plates were incubated at 37 °C for 24 h. E. coli were expressed as CFU 

in 100 mL volume. 

6.3 Results 

Effectiveness and benefits of MPC control of PAA disinfection were assessed and discussed 

considering the four discharge limits on E. coli concentration defined by the European Commission 

for the direct water reuse in agriculture (The European Parliament and the Council of the European 

Union, 2020), which are 10, 100, 1000 and 10,000 CFU/100mL. In fact, this regulation 

differentiates discharge limits according to the water reuse scenario, with stricter limits the more 

probable is the exposure to pathogens. This regulation was chosen as reference since it covers a 

wide range of concentration limits, equal or close to many other worldwide, and it is likely to be 

significantly impacting water reuse in many countries.  

In paragraph 3.1, the effectiveness of MPC control in maintaining compliance with the two 

strictest among the considered limits, i.e. 10 and 100 CFU/100 mL, was tested in two pilot 

disinfection experiments.  

In paragraph 3.2, MPC control for all discharge limits of the EU regulation was simulated, 

assuming effluent quality and flow rate recorded during the first experiment as reference scenario. 

Benefits and limits of MPC control were discussed in comparison with two benchmark dosage 

strategies (BDS). In both BDS, PAA dosage was maintained constant, assuming flow-paced control. 

PAA dosage was set as the minimum PAA concentration to meet the selected discharge limit, using 

the same disinfection model as for MPC control but assuming stationary operating conditions. PAA 

decay parameters k and OD were assumed constant, as calibrated in a previous work (Foschi et al. 

2022) on pooled data collected in lab scale experiments performed on samples at different quality of 

the effluent under study. The two BDS differed for the assumptions made for flow rate and initial E. 

coli concentration. In the first BDS (BSD1), flow rate was assumed to be equal to the average 
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observed flow rate during the considered scenario (experiment 1) and initial E. coli concentration 

was assumed as equal to the average observed values for the tertiary effluent under study, 

previously published in Foschi et al. (2022). Differently, in second BDS (BDS2), 95th percentile 

was assumed instead of the average for both flow rate and E. coli concentration. BDS1 and BDS2 

were defined as likely representations of traditional approach in designing disinfection dosage, 

assuming site-specific but stationary operating conditions, as in IDDF. Since it assumed average 

operating conditions, BDS1 is representative of a risk neutral attitude, while BDS2, which assumed 

the 95th percentile, is representative of a conservative approach.  

6.3.1 Effectiveness of MPC control of PAA disinfection  

Both experiments for testing the effectiveness of MPC control of PAA disinfection started with 

null concentration of PAA throughout the whole pilot reactor, with dosage starting right at the 

beginning of the experiment. Results reported in Figure 2 cover then MPC functioning since the 

initial transient phase from “undisinfected” conditions. Flow rate patterns during experiments are 

reported in Figures 2.a-b. Turbidity measurements are reported too, since such parameter is the 

most relevant predictor of both initial E. coli concentration and PAA decay kinetics parameters 𝑘 

and 𝑂𝐷, according to the used PAA disinfection model (see paragraph 2.3.1). Figures 2.c-d report 

observations, soft sensor estimates and one-step-ahead predictions of concentration of initial and 

final concentration of E. coli in the pilot reactor. Figures 2.e-f report PAA dosage and observations, 

and one-step-ahead predictions of PAA concentration at the outlet of the reactor.  

MPC control performed well during the first experiment (Figure 2.a, 2.c and 2.e), when the 

setpoint concentration of E. coli at discharge was 10 CFU/100mL. As reported in Figure 2.c, E. coli 

concentration stabilized very close to the setpoint, after the initial transient phase. MPC control was 

then able to compensate variations in effluent quality and flow rate, maintaining process efficiency 

very close to the target. During the second experiment, when a discharge limit of 100 CFU/100mL 

was assumed, MPC was effective only until minute 140 and 160, when two violations of the limit 

were recorded, with concentrations significantly higher than the setpoint. The reason of the 

violations is a failure of the PAA dosing pump, which stopped when PAA dosage reached its 

minimum. As reported in Figure 2.d, the PAA disinfection model can correctly predict the increase 

in E. coli concentration and the violation if the temporary dosage interruption is considered. In both 

experiments, E. coli soft sensor (see paragraph 2.2) overestimated initial E. coli concentration, 

which resulted in a slight overdosage and a final concentration lower than the setpoint in many 

cases. E. coli soft sensor is a data-driven regression model predicting E. coli concentration from 

effluent quality, with a predominant role of turbidity. Probably, in these experiments the effluent 
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under study changed too significantly with respect to conditions observed during soft sensor 

calibration so that the turbidity did not behave as a good predictor.  

Figures 2.e-f show how MPC control tuned PAA dosage to maintain target E. coli concentration, 

compensating variations in flow rate and turbidity, with PAA dosage generally increasing with 

these parameters. In fact, higher flow rate implies lower contact time, while higher turbidity is 

correlated to higher PAA decay and initial E. coli concentrations. The PAA disinfection model 

provided good one-step-ahead predictions of PAA concentration at the outlet of the pilot reactor. 

Previous research proved the effectiveness of a disinfection control algorithm which incorporate 

the dose concept in maintaining E. coli concentration under a pre-defined setpoint. In Manoli et al. 

(2019) outlet E. coli concentration in PAA disinfection experiments shew some fluctuations which 

could not be compensated by dosage control, but it was always compliant with the setpoint, 

differently from experiments presented in these paragraphs, where concentration sometimes 

approached and slightly passed the compliance limit, like recorded by previous literature for flow-

paced control experiments of PAA disinfection (Block et al., 2015). Similarly, successful dose-

paced control of Cryptosporidium by ozone disinfection was achieved in Dieu et al. (2012), but still 

final concentration of target microorganism during experiments was not stable around the setpoint. 

Possibly, this could be due to the impact of disturbances which are not incorporated in models used 

for control or which are purely stochastic. Next necessary step will be then the shift to a Robust 

MPC control scheme, which incorporates a more conservative attitude in the control algorithm and 

achieves compliance admitting a pre-defined and acceptable probability of non-compliance 

(Camacho & Bordons, 1999). 
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Figure 2 – Results from MPC experiments at pilot scale. a-b) flow rate and turbidity trends during pilot experiments. c-d) 

observed and predicted inlet and outlet concentration of E. coli. e-f) PAA dosage and observed and predicted concentration of PAA 
at the outlet of the pilot. 

6.3.2 Simulation of MPC control to meet water reuse limits 

Three different dosage strategies, namely MPC control, BDS1 and BDS2, were simulated, 

assuming the same effluent quality and flow rate pattern recorded for the first control experiment 

described in paragraph 3.1. Simulations were performed for each of the four discharge limits of EU 

regulation described in paragraph 3. Table 1 reports PAA consumption, dosage and operating 

conditions for the considered combinations of dosage strategies and discharge limits. In case of the 

two strictest discharge limits of 10 and 100 CFU/100mL, a significant saving of disinfectant was 

estimated in case of MPC control, with respect to BDS1 and BDS2. Savings ranged between 30% 

and 85%, which includes the roughly 50% saving recorded by Manoli et al. (2019) for PAA 

disinfection to guarantee a concentration of E. coli less than 100 CFU/100mL. Importantly, MPC 

control avoids very high concentrations of PAA, significantly reducing average PAA dosage and 

applying high dosages only in case of low contact time, high PAA decay and/or high initial E. coli 

concentration. This results in a reduced duration of events with potential ecotoxicological impact 

due to excessive concentrations of disinfectant at discharge. MPC control was still beneficial with 

respect to BDS2 in case of a 1000 CFU/mL discharge limit, with a 70% save of PAA. Differently, 

in the remaining cases, MPC control implied higher consumption of PAA, but with a relevant 

increase only with respect to BDS1 when the discharge limit is 10,000 CFU/100mL.  
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Overall, MPC control resulted especially beneficial at discharge limits of 10 to 1000 CFU/mL, 

particularly with respect to BDS2, which is the conservative traditional control strategy most likely 

to be used by water utilities. Differently, BDS1 approach, which can be seen as a risk neutral 

attitude, implied lower PAA consumption than MPC control for higher discharge limits of 1000 and 

10,000 CFU/100mL. However, still BDS1 assumes average operating conditions when designing 

dosage, admitting a high probability of the occurrence of events which are less favorable than 

nominal conditions. This assumption does not necessarily fit water reuse practices, where tolerable 

probability of non-compliance is often low. 
Table 1 – Consumption of PAA and dosage concentration of PAA (in parenthesis) during control simulation at discharge limits 

defined by EU regulation. 

Dosage 
strategy HRT N0 OD k PAA consumption (mg) 

(PAA dosage (mg L-1)) 
     £10 £100 £1000 £10,000 

Flow-paced 
(BDS1) 24 134853 0.05 -0.019 293 

(15) 
137 
(7) 

21.5 
(1.1) 

9.8 
(0.5) 

Flow-paced 
(BDS2) 18 523000 0.05 -0.019 489 

(25) 
293 
(15) 

88.0 
(4.5) 

21.5 
(1.1) 

MPC control 18-46    206 
(9.8±4.6) 

43.85 
(2.2±0.8) 

27 
(1.3±1.1) 

23 
(1.1±1.5) 

 

6.4 Conclusions 

In this work, feedforward MPC control of wastewater disinfection by PAA was conceived and 

deployed at pilot scale. This is the first time that real-time control is used in chemical disinfection 

while considering it as a dynamic system with time-varying hydraulics and kinetic parameters. 

Importantly, the effectiveness of MPC control in meeting target E. coli discharge limit was 

supported by results of pilot scale experiments, with only a few violations due to hardware failure. 

PAA concentration variations at the outlet of the disinfection reactor were well predicted, at varying 

dosage, flow rate and PAA decay. The integration of the PAA disinfection model in the control 

algorithm is then important to provide good predictions of residual PAA, to understand when 

potential ecotoxic events occur and, eventually, when quenching of residual disinfectant should be 

applied.  

Simulations of MPC control considering discharge limits of the EU regulation for direct water 

reuse in agriculture were performed and they estimated significant potential disinfectant saving of 

30 to 85% with respect to traditional risk neutral and conservative flow-paced dosage strategies, 

which assume constant PAA concentration. Overall, higher savings were estimated for lower 

discharge limits, i.e. 10 and 100 CFU/100mL. Therefore, MPC control of disinfection could be 

really impacting in water reuse applications where high process efficiencies are required, both 
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resulting in higher reliability, since real-time control compensate time-varying operating conditions, 

and in much lower disinfectant consumption. 

This work paves the way to important future research on robustness in disinfection control. Due 

to intrinsic variability of microorganism concentration in water and measurement results, E. coli 

concentration at the reactor outlet during pilot control experiment with a setpoint of 10 CFU/100mL 

was very close to the target, but still concentration slightly passed the limit in some cases, as this 

MPC control formulation is still deterministic. This result highlights the need for research of the 

proper robust MPC control formulation to guarantee compliance with a tolerable probability of limit 

violations.  
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Chapter 7: Quantitative Microbial Risk Assessment for 

risk-based management of ultraviolet disinfection of 

wastewater 

 

Abstract 
Wastewater reuse for irrigation of food crops has a great potential in reducing the water footprint 

of agriculture, but it requires high efficiencies in removal of enteric pathogens, which are a threat to 

health of crop consumers and farm workers. In this context, disinfection treatment assumes primary 

importance and needs to be controlled to reduce health risk coming from wastewater reuse under a 

tolerable limit. In this work, the indirect agricultural wastewater reuse case study of a wastewater 

treatment plant (WWTP) in Milan (Italy) was taken as an example of how Quantitative Microbial 

Risk Assessment (QMRA) can be used to support risk-based management of disinfection when 

stringent limits for reuse have to be matched. The probabilistic QMRA framework was applied to 

model fate of reference pathogens (norovirus, salmonella Typhimurium) from raw wastewater to 

human receptors, considering WWTP removal (including a UV disinfection stage) , natural 

attenuation in agricultural canals and final exposure by accidental ingestion of water and soil 

particles (farm workers) and crop consumption (consumers). Results of risk assessment highlighted 

the fundamental importance of UV disinfection in controlling health risk, but revealed that 

additional inactivation phenomena occurring during transport in canals and in agricultural fields 

provide significant additional barriers to pathogens before human exposure. The study highlighted 

how QMRA could be used to optimally manage UV disinfection as a component of an integrated 

wastewater reuse system, completing already existing inactivation barriers while avoiding waste of 

energy due to excessive UV dose. In fact, operating UV dose could be reduced with respect to 

business-as-usual practice in the WWTP, with 33% to 66% energy, while maintaining tolerable 

health risk (> 10-6 DALY per person per year, DALY: Disability Adjusted Life Years). Sensitivity 

analysis of the exposure assessment model used within QMRA framework revealed the importance 

of data, assumptions and parametrizations used both in modeling the concentration of pathogens at 

the inlet and throughout the WWTP, and in dose-response modeling, providing indications on most 

critical aspects of current risk assessment, where future research should focus.  
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The research work presented in this chapter was carried out during a research stay period of 6 

months at the Michigan State University (Michigan, USA). The research work was carried out with 

the valuable supervision of Prof. Jade Mitchell (MSU) and advisory of Prof. Joan B. Rose (MSU). 

 

This chapter will be submitted soon for publication. 

 

7.1 Introduction 

Reuse of treated wastewater in agriculture is spreading worldwide in last decades (Minhas et al., 

2022), pushed by national and international authorities (Rock et al., 2019) as a powerful strategy to 

reduce agriculture water footprint and compensate water shortage in vulnerable areas (Tabatabaei et 

al., 2020, Ungureanu et al., 2020, Fito & Van Hulle, 2021). Natural drawback of wastewater reuse 

is the presence of enteric pathogens, even after treatment and at low concentration, which are a 

source of potential health risk for crop consumers, farmers and anyone who is directly or indirectly 

exposed to reused wastewater (Mara et al., 2007, Purnell et al., 2020, Kesari et al., 2021, Ofori et 

al., 2021). Regulations and guidelines for WWTP discharge limits for wastewater reuse are ever 

more moving to a risk-based approach, with an integrated view of the water reuse system, 

promoting dynamic discharge limits and proactive assessment and management of health risk, to 

comply with tolerable health burden thresholds (The European Parliament and the Council of the 

European Union, 2020, Natural Resources Management Ministerial Council, 2006, World Health 

Organization, 2006). This leads to important advantages. In fact, after WWTP discharge point, 

pathogens can decay or regrow while crossing several natural and artificial environments before 

human exposure, which change according to the water reuse system under study, especially in case 

of indirect reuse, where treated effluent is diluted and/or transported by an artificial or 

environmental water body before reuse and human exposure. We need then site-specific risk 

assessment, integrating description of all phenomena undergone by pathogens in their fate before 

human exposure, to estimate actual risk and set adequate WWTP efficiency for pathogen removal. 

This approach is even more important in de facto wastewater reuse cases, where unplanned reuse 

occurs as result of the incidental presence of treated wastewater in water supply sources. In such 

cases, sources of contamination and fate and transport of wastewater can be more uncertain and 

strictly influenced by the involved natural and anthropic system and, thus, site-specific risk 

assessment of the system receiving reclaimed wastewater could reveal the need for ad-hoc 

discharge limits. Moreover, an integrated risk assessment is the basis to set WWTP treatment 
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efficiencies according to target reduction of pathogens concentration, instead of fecal indicators, 

explicitly accounting for the actual primary sources of health risk. While being easier and cheaper 

to monitor, fecal microbial indicators, like fecal coliforms or coliphages, were several times pointed 

out as ineffective proxies of enteric pathogens (Harwood et al., 2005).   

Quantitative Microbial Risk Assessment (QMRA) (Haas et al., 2014) is one of the best-

established approaches for assessment of health risk coming from exposure to pathogens and it is 

adopted and recommended by main wastewater reuse guidelines. QMRA was extensively applied to 

agricultural wastewater reuse studies, highlighting pros and cons of this practice and providing 

useful models to explore different exposure scenarios (inter alia: Masciopinto et al., 2020, 

Farhadkhani et al., 2020). However, still we lack of a comprehensive QMRA study of the whole 

water reuse system, comprising WWTP, fate and transport to the point of exposure and final 

exposure route, with most of the studies setting the upper system boundary at the outlet of WWTPs 

(e.g: Ayuso-Gabella et al., 2011, Farhadkhani et al., 2020, Moazeni et al., 2017). Particularly, 

impact of wastewater disinfection on health risk was not extensively studied with a quantitative 

approach, despite this is right the purpose of this treatment and what make its cost worth. Moreover, 

it is rare to find in the literature QMRA of water reuse systems which reports all details and 

assumption underpinning risk assessment, which would be fundamental to track back the impact of 

such modeling assumptions on risk and burden of disease estimates. 

In this work, QMRA was applied to an indirect agricultural reuse case study in Milan (Italy), 

where treated effluent from a large scale municipal WWTP is discharged in an agricultural canal to 

meet irrigation water demand during summer season. QMRA was used to map burden of disease 

coming from exposure to residual enteric pathogens via accidental ingestion of water during field 

work and crop consumption. Potential health hazard was mapped over the irrigated agricultural 

fields and at different doses delivered by the UV disinfection treatment present in the WWTP, to 

highlight the potential of a risk-based and integrated approach to support optimal management of 

disinfection in wastewater treatment.  

In this work, as according to the QMRA framework (Haas et al., 2014), reference pathogens, 

being in this case salmonella and norovirus, were chosen as proxies to model source, fate and 

transport, exposure and risk of disease for pathogenic enteric bacteria and viruses. As further 

detailed in paragraph 7.2, literature data on norovirus or viral indicators like coliphages were used 

in this work to model its presence throughout the system understudy, due to lack of site-specific 

data. Differently, E. coli data collected in the system under study were available and they were used 

as proxies of the presence of pathogen enteric bacteria, expecially during the disinfection process. 

In fact, E. coli is one of the most widespread indicator microorganism for fecal pathogen bacteria, 
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but it was not considered in this study as a good indicator of viruses too, considering substantial 

differences in terms of presence in raw wastewater, particle size and resistance to inactivation, 

which all affect their fate in the WWTP treatment train.  

Sensitivity analysis of the QMRA exposure assessment model was carried out to prioritize 

factors which mostly drive risk of disease and understand how assumptions impacted the final risk 

(Zhiteneva et al., 2021), with the aim of giving indications to future research and practice on where 

to focus experimental and modeling efforts.  

7.2 Materials and methods 

7.2.1 Description of case study and data collection 

In the wastewater reuse system under study, the WWTP of Milano S. Rocco (1.050.000 PE), 

located in south-west Milan (Italy), treats wastewater for indirect reuse in agriculture in a large area 

of the “Rural Park South Milan” (Parco Agricolo Sud Milano) and the province of the city of Pavia.  

S. Rocco WWTP is based on activated sludge process for nitrification and denitrification, 

followed by sand filtration and UV disinfection. The UV disinfection stage is made of two parallel 

lines. This study focused on one line, dedicated to treatment of the fraction of effluent which is 

reused in agriculture. The disinfection line under study is made of three identical parallel open 

channels, each one equipped with three banks containing 144 monochromatic (254 nm) low 

pressure/high intensity UV lamps each (378 lamps per line, 1134 in total), for a total of about 136 

kW of installed power per channel. In each channel, the UV fluence rate can be adjusted by 

changing the number of active banks: thus, each channel can work at three discrete levels of 

nominal UV dose. The system is designed to deliver a dose of 59 mJ cm-2 with all UV banks active 

and a flow rate of 4 m3 s-1. Flow rate passing through the wastewater reuse disinfection line is 

controlled according to the demand of irrigation water. 

During the irrigation season, which can at most last from June to September, WWTP delivers 

treated effluent to the two canals Carlesca and Pizzabrasa (from now on referred as canal C and P, 

respectively, for simplicity). Canal C and P originate from Naviglio Grande canal and the Lambro 

Meridionale river, respectively, and thus treated effluent is diluted at the point of discharge. The 

two canals transport water up to 40 km far from the point of discharge. Water is used for flood 

irrigation of mainly rice and corn fields, which are 47% and 24% of the irrigated area, respectively. 

Moreover, many traditional, organic and didactic farms with heterogeneous production are present 

in the area. The case study area is detailed in Figure 1. 
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Figure 1 – Map of the case study 

7.2.2 QMRA framework 

The QMRA framework was adopted to assess risk and burden of disease coming from reuse of 

treated wastewater in this case study. First, within the Hazard Identification (HI), norovirus and 

salmonella Typhimurium, which are both two of the main causes of human gastroenteritis, were 

chosen as reference for viral and bacterial enteric pathogens, which represents the source of health 

risk in wastewater reuse practices. Then, the Exposure Assessment, Dose-Response and Risk 

Characterization phases followed, as detailed in following paragraphs. 

7.2.3 Exposure assessment 

Concentration of reference pathogens (RP) was modeled from the source, which is raw 

wastewater at the inlet of the WWTP, to irrigation water. This required modeling of removal 

throughout WWTP treatment train, dilution, transport and natural attenuation in agricultural canals 

and final route of exposure from irrigation water to humans. The exposure assessment model was 

calibrated on published literature data coming from both current case study and other case studies in 

developed countries, where wastewater characteristics were considered reasonably similar. Since a 

probabilistic QMRA approach was adopted, variability and uncertainty of model inputs and 

parameters were described by probability distribution and propagated on risk estimate by means of 

a Monte Carlo approach. Details on data and sources used for exposure assessment model 

calibration are reported in Table 1.  

Normal, lognormal, exponential and gamma distributions were calibrated and compared via 

Maximum Likelihood estimation to model norovirus and salmonella concentration in raw 

wastewater and their log-removal in activated sludge and sand filtration. Literature data on 

norovirus, norovirus-specific surrogates and general virus surrogates from comparable case studies 

××
×

WWTP
discharge point
farm
rice
corn
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were used to model norovirus concentration. Probability distribution of norovirus in raw 

wastewater was calibrated only on qPCR data on norovirus NovGI and NovGII genotype, and the 

actual concentration of infectious norovirus was estimated applying a conversion factor as assumed 

in previous risk assessment studies (Simhon et al., 2020, Estes et al., 2019). Probability 

distributions of log-removal of norovirus by activated sludge and sand filtration were calibrated on 

data about various virus species, due to the limited amount of norovirus-specific data in the 

literature. Norovirus removal by UV disinfection kinetics was modeled as a log-linear function of 

UV dose (𝐷), based on several studies on norovirus-specific surrogates Murine Norovirus (MNV) 

and Feline Calicivirus (FCV), whose data come only from culture-based methods. In fact, recent 

studies highlighted how qPCR data, even if they address the specific virus species under study, are 

not reliable in detecting inactivation by disinfection (Rönnqvist et al., 2014, Girones et al., 2010, 

Knight et al., 2016, Stals et al., 2013). Available studies explored norovirus UV disinfection at a 

maximum dose of roughly 40 mJ cm-2, corresponding to a log-removal of approximately 4.5. Thus, 

the UV disinfection model for norovirus extrapolated inactivation at higher doses as the inactivation 

predicted at 40 mJ cm-2, in order to be conservative and not to overestimate dramatically log-

removal. Overall, norovirus removal by the WWTP treatment train was modeled as: 

𝑁kkS3 = 10(@$^_]@$_`]@$ab)        (Eq.1)  

where 𝑁kkS3 is the concentration of norovirus removal at the WWTP outlet (CFU/100ml), 

𝐿𝑅#U, 𝐿𝑅Ul and 𝐿𝑅m" are log-removals (on base 10) in activated sludge, sand filtration and UV 

disinfection, respectively.  

Previously published E. coli concentration data on raw wastewater in Milan (Turolla et al., 2017, 

2018) and on the current case study (Foschi et al., 2021a) were used to calibrate salmonella 

concentration and log-removal in WWTP. In details, probability distribution of salmonella in raw 

wastewater was modeled as the product between the concentration of E. coli and the ratio between 

salmonella and E. coli concentration, modeled as a Uniform distribution, based on data coming 

from Kacprzak et al., 2015. Then, probability distribution of E. coli concentration at the outlet of 

sand filtration was calibrated and used to estimate the log-removal of salmonella by activated 

sludge and sand filtration, assuming that the inactivation of E. coli and salmonella are equal. 

Finally, UV disinfection kinetics was modeled as a double exponential function of UV dose, based 

on data from Foschi et al. (2021). Salmonella removal by WWTP treatment train was then modeled 

as: 

𝑁kkS3 = 10(@$^_9_`]@$ab)        (Eq. 2) 

where 𝐿𝑅#U]Ul is the cumulated removal by activated sludge and sand filtration. 
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Table 1 - Summary of details and sources of literature data used to model pathogen concentration and removal in WWTP. 
(NoVGI and NoVGII: norovirus genotype I and II, EV: enterovirus, AdV: adenovirus, RV: rotavirus, SaV: sapovirus, JC virus, AsV 

astrovirus, PMMoV: pepper mild mottle virus, polyoma virus, CV: calicivirus, HAV: hepatitis A virus, MNV: murine norovirus, 
MS2: MS2 coliphage) 

WWTP phase Source Dataset 
size Location Microorganism Measurement 

method 

Raw wastewater 

Cioffi et al., 2020 1 Italy NoVGI qPCR 
Kitajima et al., 

2014 24 USA NoVGI qPCR 

La Rosa et al., 2010 1 Italy NoVGI qPCR 
Cioffi et al., 2020 1 Italy NoVGII qPCR 

Kitajima et al., 
2014 24 USA NoVGII qPCR 

La Rosa et al., 2010 1 Italy NoVGII qPCR 
McCall et al., 2020 43 USA NoVGII qPCR 

Masclaux et al., 
2013 12 Switzerland NoVGII qPCR 

Turolla et al., 2017 5 Italy E. coli culture 
Turolla et al., 2017 5 Italy E. coli culture 
Turolla et al., 2017 7 Italy E. coli culture 

Removal in 
activated sludge 

Naughton and 
Rousselot, 2017 18 Various 

EV, NoV, AdV, 
RV, SaV, JCV 

virus, AsV, 
poliovirus, BK 
virus, Torque 

teno virus, 
coliphages 

qPCR and 
culture 

Removal in sand 
filtration 

Kacprzack et al., 
2014 4 Southern Poland 

E. coli, 
Salmonella 

Typhimurium* 
culture 

Rajala et al., 2003 1 Finland F-coliphage culture 
Hijnen et al., 2010 2 Netherlands F-coliphage culture 

Shirasaki et al., 
2012 1 Japan F-coliphage culture 

Asami et al., 2016 4 Thailand PMMoV, JCV 
PyV qPCR 

Hokajärvi et al., 
2018 2 Finland F-coliphage culture 

Shirasaki et al., 
2018 7 Japan 

AdV, CV, 
HAV, MNV, 

MS2, 
PhiChi174, 
PMMoV 

qPCR, culture 

Kato et al., 2018 8 Japan 
PMMoV, AiV, 
MNV, NoVGII, 

MS2, Qbeta 
qPCR, culture 

WHO 1  F-coliphage culture 
Removal in 

activated sludge 
and sand filtration 

Foschi et al., 2021  Italy  
(this case study) E. coli culture 

 

Dilution of treated effluent after discharge was accounted by mass balance, assuming perfect 

mixing. Agricultural canals were assumed to behave as ideal plug-flows with space-invariant speed 

and uniform section. Natural attenuation of norovirus and salmonella along the canals was then 

estimated assuming a first order decay kinetics. Probability distributions of first order decay rates 
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were for norovirus and salmonella calibrated on data coming from comprehensive recent reviews 

on pathogen persistence in surface water (Boehm et al., 2018, 2019). As for previously described 

parameters, gaussian, lognormal, exponential and gamma distributions were compared. 

Concentration of pathogens along canals C and P were then calculated as: 

𝑁^#8 = 𝑁kkS3𝑒
12S0         (Eq. 3) 

where  𝑁^#8 is the concentration of pathogen at distance 𝑥 (km) from the discharge point, 𝑘 is 

the natural inactivation first order decay rate (d-1) and 𝑣 is the flow velocity in the canal. 

Concentration of pathogens in irrigation water in a given agricultural field was assumed to be equal 

to 𝑁^#8 in the closest point of the canal.  

Two exposure scenarios were considered. The first scenario (scenario 1) considers farmers and 

field workers involuntary ingesting water and soil particles while working in fields irrigated by 

flood irrigation. A previously developed model (Symonds et al., 2014, Moazeni et al., 2017) was 

used to simulate the volume of water and soil accidentally ingested by person per day. The model 

assumes that both ingestion of water and soil can be described equivalently as uniform probability 

distribution comprised between 0.1 and 1 ml d-1. In case of soil, an additional 2 log inactivation was 

considered. The exposure dose 𝑑 (CFU day-1 pers.-1 or PFU day-1 pers.-1) in scenario 1 was then 

estimated as: 

𝑉n~𝑈(0.1,1)	 	 	 	 	 	 	 	 	 	 (Eq. 4)	

𝑑X = 𝐶^#8𝑉n1012O4%2 		 	 	 	 	 	 	 	 	 (Eq. 5)	

𝑑n = 𝑁^#8𝑉n 	 	 	 	 	 	 	 	 	 	 (Eq. 6)	

𝑑 = 𝑑X + 𝑑n 	 	 	 	 	 	 	 	 	 	 (Eq. 7)	

where 𝑉n is the amount of water (or water contained in soil) ingested (ml pers.-1 d-1), 𝑘XA!F is 

pathogen log-removal in soil, 𝑑X and 𝑑k are the pathogen doses ingested from water and soil, 

respectively. 

The second exposure scenario (scenario 2) considers the consumption of crops irrigated with 

treated wastewater. Since the case study contains many organic farms, consumption of lettuce was 

considered as worst-case scenario. Model developed by Mok and Hamilton (2014) was used to 

estimate exposure dose, as described by following equations: 

𝑑 = 𝑁^#8𝑉$𝑐𝑒12cS10k         (Eq. 8) 

𝑉$~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙3(−4.57, 0.50, 0.006)       (Eq. 9) 

𝑘P~𝑁𝑜𝑟𝑚𝑎𝑙(1.07, 0.07) (truncated at 0)       (Eq. 10) 

𝑊~𝑃𝐸𝑅𝑇(0.1, 1, 2)         (Eq. 11) 
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where 𝑉$ is the volume of water retained by lettuce crop surface (ml g-1), 𝑐 (g pers.-1 d.-1) is 

lettuce consumption in Italy (Leclercq et al., 2009), 𝑘P is infield decay on lettuce surface (d-1), 𝑇 (d) 

is the time between last irrigation and harvest, and 𝑊 is log-removal during lettuce washing. 

The two exposure scenarios were evaluated at 4 different UV disinfection dose levels, 

corresponding to 0, 1, 2 and 3 active banks of UV lamps per channel (see paragraph 2.1). In all the 

combinations of exposure scenarios and number of active banks, the scenario of irrigation water 

demand from 2015 was considered, since it was the highest in the last decade for the case under 

study. Average flow rate of treated wastewater to be delivered to agriculture was 2 m3 s-1. 

Variability of flow rate was accounted in Monte Carlo simulation by randomly sampling daily flow 

rate from data records from 2015. 

7.2.4 Dose-response model 

Dose-response model developed by Teunis et al. (2008) was used to estimate risk of disease per 

person per day from norovirus. Model assuming no aggregation of viral particles was adopted, 

being the most conservative option, as highlighted in Van Abel et al. (2017). Risk of disease from 

norovirus was then calculated as: 

𝑃(𝑖𝑛𝑓) = 1−/𝐹/(𝛼, 𝛽, −𝑑)         (Eq. 12) 

𝑃(𝑑𝑖𝑠|𝑖𝑛𝑓) = 1 − (1 + 𝜂𝑑)1J         (Eq. 13) 

𝑃(𝑑𝑖𝑠) = 𝑃(𝑖𝑛𝑓)𝑃(𝑑𝑖𝑠|𝑖𝑛𝑓)         (Eq. 14) 

where 	/𝐹/(𝛼, 𝛽, −𝑑) is the hypergeometric function with parameters 𝛼 and 𝛽, 𝑃(𝑖𝑛𝑓) is the 

probability of infection, 𝑃(𝑑𝑖𝑠|𝑖𝑛𝑓) is the probability of disease given infection with parameters 𝜂 

and  𝑟 and 𝑃(𝑑𝑖𝑠) is the probability of disease. All probabilities are meant as per person per day. 

Probability of disease from salmonella was estimated by dose-response model derived from 

outbreak data on non-typhoidal salmonella and assuming a Beta-Poisson model (Skovgaard, 2004). 

In the case of salmonella, probability of disease is directly estimated as: 

𝑃(𝑑𝑖𝑠) = 1 − V1 + T
N
W
o

         (Eq. 15) 

Uncertainty in dose-response model parameters was estimated and propagated by means of a 

Monte Carlo simulation by the bootstrap method (Weir et al., 2017). 

Annual risk of disease was then computed as: 

𝑃' = 1 − �1 − 𝑃(𝑑𝑖𝑠)�+         (Eq. 16) 

assuming 𝑛 as equal to 120 days, since the irrigation season can last up to 4 months in the case 

study.  
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7.2.5 Risk characterization 

Burden of disease was estimated using Disability Adjusted Life Years (DALY) as indicator, 

computed as: 

𝐷𝐴𝐿𝑌 = 𝑌𝐿𝐿 + 𝑌𝐿𝐷         (Eq. 17) 

𝑌𝐿𝐿 = 𝑚𝐿;M-𝐴T          (Eq. 18) 

𝑌𝐿𝐷 = 𝑠𝑑           (Eq. 19) 

where 𝑌𝐿𝐿 are “years of life lost”, 𝑌𝐿𝐷 are “years of life with disability”, 𝐿;M- is life expectancy 

at the age of death, 𝑚 is mortality, 𝐴T is the age distribution of deaths for the given illness, 𝑠 is 

severity (or disability weight) and 𝑑 is the duration of disease. Assumptions and sources for DALY 

calculations are reported in Tables 2 and 3. 

 
Table 2 – DALY model parameters assumed in this study, with sources and main underpinning assumptions. 

Variable Value Source Assumptions 

 Salmonella Norovirus   

𝑚 0.0017 0.0017 
http://ghdx.healthdata.org 
Global Burden of Disease 
Study 2019 (GBD 2019) 

- data referred to Italy in 2019 
- uniform for all age classes 
- the 95th percentile was assumed 

𝑠 0.247 0.247 
http://ghdx.healthdata.org 
Global Burden of Disease 
Study 2019 (GBD 2019) 

- global data 
- uniform for all age classes 
- referred to “acute gastroenteritis” 

𝑑 0.0296 0.0153 Kemmeren et al., 2006 - data referred to the Netherlands 
and UK 

 

Table 3 – Summary of assumptions and sources on age distribution of deaths due to gastroenteritis and life expectancy at the age 
of death used for DALY calculations. 

Age class 
Salmonella Norovirus 

Proportion of deaths1 Life expectancy at the 
age of death2 

Proportion of 
deaths1 

Life expectancy at the 
age of death2 

0-4 years 0.265 80.22 - - 
0-5 years - - 81.979 0.05 
5-9 years 0.077 75.259 - - 

10-14 years 0.068 70.283 - - 
15-64 years 0.342 42.765 - - 
>64 years - - 20.729 0.95 
>65 years 0.248 19.898 - - 

1 Kemmeren et al., 2006 
2 Italian National Statistical Institute (ISTAT) 
 

7.2.6 Sensitivity analysis 

Correlation-based sensitivity analysis of the exposure assessment model, considering risk of 

disease per person per day as model output, was performed to prioritize model inputs and 

parameters. A Monte Carlo simulation of the model (n = 10000) was run, randomly sampling model 
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input and parameters from their probability distributions, to explore model sensitivity in a realistic 

space. For each input or parameter, Spearman correlation coefficient was computed. Sensitivity 

analysis was run separately for norovirus and salmonella, for the two exposure scenarios and for the 

4 UV doses considered. 

7.3 Results and discussion 

7.3.1 Risk assessment 

Parameters of WWTP treatment and natural attenuation in canals, which were specifically 

calibrated for this study from literature data, are summarized in Table 4. 

Probabilistic QMRA was performed via Monte Carlo simulation under the two exposure 

scenarios described in paragraph 2.2.1, considering in each case 4 UV disinfection scenarios, at 

increasing UV dose. Results of risk assessment in all of the 8 combinations of exposure scenario 

and UV dose were compared with the limit of tolerable burden of disease adopted by many 

guidelines for water reuse (WHO, Australian Guidelines, EU regulation), which is equal to a 10-6 

DALY per person per year. Table 5 reports results on estimated DALY in case human exposure 

occurs immediately after the point of discharge and dilution in agricultural canals, as worst-case 

scenario where natural attenuation of pathogens is null. QMRA revealed the fundamental 

importance of the presence of UV disinfection in the WWTP. In fact, both in case of accidental 

ingestion of water and crop consumption, average DALY is significantly higher than the tolerable 

threshold, when no UV disinfection is applied. Low and middle UV doses are sufficient to lower 

the probability of passing the threshold to negligible values for all scenarios and pathogens, except 

for salmonella in case of scenario 1. The increase of UV dose to the highest level did not 

significantly reduce DALY level. 

DALY was then mapped over the agricultural fields, to assess the combined effect of UV 

disinfection and natural attenuation along agricultural canals in lowering risk. As an example of 

interpreting QMRA results with the most conservative approach, Figure 2 reports trend of 95th 

percentile of DALY with respect to the distance from the discharge point and at increasing UV dose 

and it is compared with the tolerable threshold of 10-6 DALY. As can be seen, in case of norovirus 

almost the whole reduction in risk is obtained by low dose UV disinfection, while the effect of 

further increasing UV dose and distance from the discharge point is negligible. Differently, increase 

of UV dose to middle level and natural attenuation have a significant role in case of risk from 

salmonella, especially in case of scenario 1. In fact, even if at a given dose the probability of having 

a non-tolerable DALY at the point of discharge is remarkable, the inclusion of natural attenuation 
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model within the QMRA exposure assessment allow us to identify agricultural areas which are 

sufficiently far from the WWTP to be irrigated safely, as exemplified in Figure 3, where risk from 

salmonella is considered for both scenario 1 and 2 at increasing UV dose.  

Reported effects of UV dose on health risk control are significantly influenced by data and 

models assumed for norovirus and salmonella UV disinfection kinetics, as reported in Figure 4. 

Inactivation kinetics of norovirus showed higher rate and a higher maximum log removal in the UV 

dose range under study. Differently, the inactivation model used for salmonella shows a sharp 

tailing effect. This could be due to the differences in data sources: due to lack of data, norovirus 

inactivation was calibrated on norovirus-specific surrogates in laboratory experiments on synthetic 

water matrices. Differently, inactivation model for salmonella inactivation was calibrated on E. coli 

data collected in continuous flow full-scale disinfection experiments carried out in the disinfection 

unit under study. It is then likely that the tailing effect recorded for bacteria inactivation better 

represents inactivation kinetics in real conditions.  
Table 4 – Summary of results of calibration of models for concentration of pathogens in raw wastewater, removal in WWTP and 

natural attenuation in surface water. 

Variables/ processes Units Models and parameters 
WWTP - norovirus   

Concentration in raw wastewater PFU/100 ml NovGI: ~Lognormal(10.53, 1.91) 
NovGII: ~Lognormal(10.82, 2.08) 

Log-removal in activated sludge  - ~Normal(1.89, 0.76) 
Log-removal in sand filtration - ~Lognormal(-0.35, 0.64) 

Log-removal in UV disinfection - 𝐿𝑅de = −𝑘f𝐷 
𝑘f=0.14 

WWTP - salmonella   

Concentration in raw wastewater CFU/100ml 
E. coli: ~Lognormal(14.64, 0.62) 
𝑅g@hi~U(0.02, 1.02) 

𝑁, = 𝐸𝐶𝑅g@hi 

Removal in activated sludge and sand 
filtration1 - 

𝑁jkB~ Gamma(85.66,10.24) 
𝐿𝑅gl = f!"#

f$%
 

 

Removal in UV disinfection - 

𝑁jkB = 𝛿𝑁,𝑒@A&,(F+(1 − 𝛿)𝑁,𝑒@A&,)F 
𝛿=0.999; 𝑘g,T=0.17; 𝑘g,U=0.005 

𝐿𝑅de = 𝑙𝑜𝑔T,
𝑁jkB
𝑁,

 

Transport and natural attenuation in 
agricultural channels   

Natural inactivation of norovirus d-1 ~Gamma(0.92, 8.13) 
Natural inactivation of salmonella d-1 ~Lognormal(-0.59, 0.74) 

1meant as cumulated removal of the sequence of the two treatments 
 

Currently, UV disinfection in the considered case study is run at maximum UV dose, in order to 

reliably comply with the Italian regulation for wastewater reuse in agriculture, which is highly 

conservative and defines a strict discharge limit on the indicator microorganism E. coli equal to 10 

CFU/100ml, regardless the characteristics of the downstream water reuse system, the irrigation 
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system and the type of irrigated crop. Such conservative management of UV disinfection implies a 

consumption of roughly 870 MWh, which, according to recent years WWTP records, could reach a 

share of up to 12% of the total energy consumption. Risk assessment results revealed that, even 

according to a very conservative approach, irrigation water would be safe in almost all considered 

scenarios, with the exception of the accidental ingestion of salmonella by workers in agriculture 

(see Figures 2 and 3). However, even in such cases, estimated probability of passing the tolerable 

DALY threshold is very low. Moreover, the portion of agricultural areas identified as not safe is 

limited to a distance lower than 5.5 km for middle UV dose and 15 km for low UV dose. In such 

cases, the water reuse system could be managed by avoiding proximity to water during irrigation 

events. UV disinfection could be then run at low or middle UV dose, with a potential saving of 66% 

or 33%, respectively. 

 
Table 5 – Average DALY (± std. deviation) at point of discharge estimated by QMRA. Probability of having DALY >10-6 is 

reported in parenthesis. 

Average 
UV dose 
[mJ cm-2] 

Energy 
consumption 

[MWh] 

Scenario 1 Scenario 2 

norovirus salmonella norovirus salmonella 

0 0 

 
3.6´10-3 

±8.7´10-3 
(88.1%) 

 

9.7´10-3 
±1.6´10-2 
(99.1%) 

1.0´10-4 
±9.3´10-4  
(42.7%) 

7.5´10-5 
±5.4´10-4 
(80.9%) 

45 290 
1.9´10-7 
±5.0´10-6 

(<1%) 

4.2´10-5 
±2.3´10-4 
(60.9%) 

4.8´10-10 
±8.5´10-9 

(<1%) 

1.3´10-7 
±5.6´10-7 

(3.1%) 

90 580 

 
1.37´10-8 

±3.6´10-7 
(<1%) 

 

7.24´10-7 

±2.3´10-6 
(12.6%) 

1.36´10-9 

±3.8´10-8 
(<1%) 

2.1´10-8 

±8.9´10-8 
(<1%) 

135 870 
9.2´10-9 
±1.8´10-8  

(<1%) 

9.0´10-7 
±5.4´10-6  
(12.4%) 

2.8´10-10 
±3.5´10-9 

(<1%) 

2.7´10-8 
±1.3´10-7 

(<1%) 
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Figure 2 – Trend of 95th percentile of DALY person-1 y-1 with distance from the discharge point and UV dose. 

 

 
Figure 3 – Mapping of “safe” (green) and “non safe” (red) area for indirect reuse of treated wastewater, identified comparing 95th 

percentile of DALY person-1 y-1 with the tolerable threshold equal to 10-6. 
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Figure 4 – Results of UV kinetic model fitting to literature data. 

 

7.3.2 Sensitivity analysis 

Correlation-based sensitivity analysis of the exposure assessment model was performed to 

prioritize importance of model inputs and parameters in determining the risk of disease from 

norovirus and salmonella. The sensitivity analysis was repeated at each of the 4 levels of UV dose 

explored in risk assessment, whose results confirmed the importance of disinfection in controlling 

risk of disease. Results, reported as heatmap in Figure 5, highlight relative importance of the rest of 

considered model inputs and parameters in driving estimated risk of disease, at varying UV doses 

and scenarios. 

As expected, parameters related to WWTP are among the most important. In details, variability 

of concentration in raw wastewater and removal in activated sludge and sand filtration show the 

highest correlation coefficients, especially if disinfection is not active. Differently, uncertainty of 

UV model parameters is not as relevant. Treated effluent flow rate seems to be quite relevant only 

in case of salmonella and low UV doses. This can be explained by the characteristics of UV 

disinfection of bacteria. In fact, in this case study as in many others in the literature, bacteria UV 

disinfection kinetics follows a biphasic behavior, with an initial high-rate phase and a sequent low-

rate phase (see paragraph 2.2.1 and Table 4). Low level UV dose in this case study, which is equal 

to about 45 mJ cm-2, corresponds roughly to the point where the kinetics change from one phase to 

the other. Small variations of flow rate, resulting in variations of the dose, imply then big and 

nonlinear variations of inactivation. 
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As expected by analyzing results from risk assessment, natural inactivation in agricultural canals 

is more relevant in case of salmonella. In fact, salmonella first order decay parameter mean value is 

0.83 d-1, significantly higher than norovirus, whose mean value is 0.13 d-1.  

Finally, sensitivity analysis revealed parameters 𝜂 and 𝑟 (see paragraph 2.2.1) of the dose-

response model of norovirus have a big impact in determining the risk of disease. This is due to the 

high uncertainty in determining those parameters, due to a very limited dataset size on norovirus 

probability of illness given infection, as reported in Teunis et al. (2008).  

 
Figure 5 – Heatmap of the correlation-based sensitivity analysis of risk of disease, at varying scenario, pathogen and UV dose. 

Spearman correlation coefficients are mapped in colors. Tiles are crossed in case model input is not related to the considered 
pathogen or scenario. 

7.4 Conclusions 

In this work, QMRA of an indirect wastewater reuse in agriculture was performed, accounting 

for fate of pathogens from raw wastewater through WWTP removal, natural attenuation in 

agricultural canals and final exposure of humans due to accidental ingestion of water and soil 

particles and crop consumptions. The study confirmed that the UV disinfection system of the 
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WWTP is fundamental to maintain tolerable health risk, but highlighted how significant energy 

saving could be achieved if UV dose is optimized considering it as an integration of natural 

additional inactivation barriers due to natural inactivation in canals and final inactivation in fields, 

conceiving the wastewater reuse system as integrated. UV dose is optimized according to a risk-

based approach, which is based on actual characteristics of the reuse system, like the type of 

irrigation system and crop, and on modeling of fate of pathogen of concern, instead of a static limit 

at the point of discharge on indicator microorganism.  

The sensitivity analysis performed on exposure assessment model revealed that parameters 

related to many steps of pathogens fate from raw wastewater to humans can drive the estimated risk 

of disease, pointing at concentrations in raw wastewater, removal in the WWTP train, natural 

inactivation of salmonella and dose-response of norovirus as most important factors. This states the 

importance on the collection of data on pathogen concentrations, instead of indicators, in WWTP 

and surface waters, to better characterize occurrence and removal according to different strains and 

operating and environmental conditions. Uncertainty and data scarcity on dose-response models, 

like for norovirus, could be reduced by further research on past outbreaks, like in the case of the 

dose-response model used for salmonella in this work. 
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