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Abstract

One approach to solving multibody system dynamics cases is to use a minimal coordinate

set via QR factorization. This method provides the trajectory of the physical coordi-

nates. However, the generalized coordinates corresponding to the motion of the system

are discontinuous. A continuation algorithm is thus proposed to maintain the evolution

of generalized coordinates by preserving the spatial continuity of the system coordinates.

In this thesis, the method will be used to evaluate the singularity conditions that may

occur in the system during its motion. A mechanical singularity is a critical condition

where the system can begin to perform a di�erent behavior from the original motion. In

addition, this approach is also used to solve cases where there are redundant constraints

on the system mechanism, meaning some constraints are not independent. Several ex-

amples of 4-bar mechanisms and their modi�cations are presented in this thesis to see

the implementation of the minimal coordinate set approach with and without continua-

tion to detect when singularity con�guration occurs and when the system has redundant

constraints.

Keywords: Minimal Coordinate Set, QR Factorization, Continuation Algorithm, Singu-

larity Con�guration, Redundant Constraint





Abstract in lingua italiana

Un approccio alla risoluzione dei casi di dinamica dei sistemi multicorpo consiste nell'utilizzare

un set minimo di coordinate tramite la fattorizzazione QR. Questo metodo fornisce la

traiettoria delle coordinate �siche. Tuttavia, le coordinate generalizzate corrispondenti

al moto del sistema sono discontinue. Viene quindi proposto un algoritmo di continu-

azione per mantenere l'evoluzione delle coordinate generalizzate preservando la continuità

spaziale delle coordinate del sistema.

In questa tesi, il metodo verrà utilizzato per valutare le condizioni di singolarità che

possono veri�carsi nel sistema durante il suo moto. Una singolarità meccanica è una

condizione critica in cui il sistema può iniziare a svolgere un moto diverso dal quello orig-

inale. Inoltre, questo approccio viene utilizzato anche per risolvere casi in cui vi sono

vincoli ridondanti sul sistema, il che signi�ca che alcuni vincoli non sono indipendenti.

In questa tesi sono presentati diversi esempi di meccanismi a quadrilatero articolato e

successive modi�che in maniera tale da poter confrontare l'approccio con il minimal coor-

dinate set con e senza algoritmo di continuazione, in modo da valutare quando si veri�ca

una con�gurazione di singolarità e quando il sistema presenta dei vincoli ridondanti.

Parole chiave: Set minimo di coordinate, fattorizzazione QR, algoritmo di continu-

azione, con�gurazione singolarità, vincolo ridondante
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1| Introduction

1.1. Multibody System Dynamics

The dynamics of multibody systems have emerged as a challenging subject in mechanical

systems. This deals with the simulation of movements that occur from bodies, both

rigid and �exible, which are connected to each other. The interconnection stems from by

kinematic joint and by force element. The motions of this system can be large translational

and rotational movements.

There are two basic mechanisms of dynamic multibody systems, namely unconstrained

and constrained. An unconstrained system means that the system is not subject to certain

kinematic or geometric conditions. Meanwhile, for a constrained system, the movement

of the system is limited to certain geometric boundaries. There are several papers that

explain an approach to imposing constraints on multibody dynamics systems. For the

classic approach, see [10]. While the contemporary approach can be seen in [1].

In a mechanical system, the equations to describe the unconstrained multibody system are

usually expressed using ordinary di�erential equations (ODEs), Eq. (1.1a). Whereas equa-

tions to describe the constraint are written in algebraic equations, Eq. (1.1b). Combining

those equations leads to the expression of the constrained multibody system dynamics

equation. It is commonly called di�erential-algebraic equations (DAEs).

M(x, t) ẍ = f(x, ẋ, t)

c(x, t) = 0

(1.1a)

(1.1b)

M ∈ Rn×n is the inertial matrix (where it has a possibility to be not constant) with

structure symmetric and positive de�nite. f ∈ Rn is a set of the generalized force, ener-

getically conjugated with the virtual displacement, δx. Eq. (1.1) is usually categorized in

multibody formulations (based on the literature) into three categories [6]:

1. Minimal Coordinate Set (MCS). This formulation manipulates the equation so that

it can be transformed into an ODE problem, reducing the coordinate to a truly
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independent one. This approach will be explained in detail in the following section.

2. Redundant Coordinate Set (RCS). In this formulation, the problem is directly solved

in DAEs form. It consists of n set coordinates and a set of m Lagrange multipliers.

3. Unconstrained Coordinate Set. The problem is modeled as an unconstrained sys-

tem with n coordinates then the constraints are added to the formulation. See for

example the so-called augmented Lagrangian approach [2] or the force projection

method [15], as discussed in [6].

The modi�cation of Eq. (1.1) could be done using Lagrange multipliers, λ. The multipli-

cation between Lagrange multipliers and the transpose of the constraint Jacobian matrix,

c/x, de�ne the value of the reaction force, fc.

fc = c/xλ (1.2)

Therefore, Eq. (1.1a) can be rewritten as

M(x, t) ẍ+ cT/xλ = f(x, ẋ, t) (1.3)

1.2. Minimal Coordinate Set

Using the minimal coordinate set approach, matrix T needs to be suitably de�ned. Con-

sidering a system with n ordinary di�erential equations greater than m number of con-

straints and the constraint Jacobian matrix is full rank, the size of matrix T is Rn×(n−m).

This matrix is obtained by the following de�nition:

ẋ = Tq̇+ β′

ẍ = Tq̈+ β′′

(1.4a)

(1.4b)

where x ∈ Rn is a physical coordinates and q ∈ Rn−m is a generalized coordinates which

is local and independent. Besides that, β′ and β′′ are de�ned through the time derivative

of the constraint equations, Eq. (1.1b). The detailed derivation could be seen in [23]. The

result is displayed in the following equations where c/x ∈ Rm×n is the constraint Jacobian

matrix.
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c/xβ
′ = −c/t

c/xβ
′′ = −(ċ)/x − (ċ)/t

(1.5a)

(1.5b)

Substituting Eq. (1.4b) to Eq. (1.3), leads to the equation of the constrained system

dynamics become:

TTMTq̈+����TTATλ = TT (f−Mβ′′) (1.6)

Matrix T describes a space spanned by coordinate x and tangent to constraint manifold.

Whereas, matrix A ≡ c/x is the constraint Jacobian matrix. The matrix can have the re-

lation TTAT ≡ 0 ∈ R(n−m)×m if the constraints are assumed to be ideal. If the constraint

is not ideal, for example, the presence of friction, the term TTAT can not be canceled. In

this case, The Lagrange multiplier is required and is calculated from the local equilibria.
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2.1. QR Factorization

This thesis focuses on using QR factorization to �nd the suitable matrix T needed in

the MCS approach. Other approaches could be used such as the ones proposed in [14]:

e.g., coordinate partitioning [7, 20], zero eigenvalues [18], singular value decomposition;

[13, 19], and QR factorization [5], etc.

Considering a system with n > m and matrix A is full rank. Matrix T is de�ned as

follows:

AT = QR = [Q1 Q2]

[
R1

0

]
= Q1R1 (2.1)

with A ∈ Rm×n, Q1 ∈ Rn×m, Q2 ∈ Rn×(n−m), R1 ∈ Rm×m. Matrix Q2 is de�ned as the

suitable matrix T. Therefore, Eq. (1.4a) and Eq. (1.4b) can be written as

ẋ = Q2q̇+Q1p
′

ẍ = Q2q̈+Q1p
′′

(2.2a)

(2.2b)

Using de�nition β′ = Q1p
′ and β′′ = Q1p

′′, Eq. (1.5a) and Eq. (1.5b) could be modi�ed

as (the detail modi�cation can be seen in [23]):

p′ = −R−T
1 c/t

p′′ = −R−T
1 [(ċ)/xẋ− (ċ)/t]

(2.3a)

(2.3b)

In the end, the equation of the constrained multibody systems could be written as

TTMTq̈ = TT (f−Mβ′′)

ẋ = Tq̇+Q1p
′

(2.4)
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The form (Eq. 2.4) was originally constructed by Maggi [11, 12] and later re-proposed by

Kane [9], is now often called the Maggi-Kane [3] equation.

The previously mentioned form contains ordinary di�erential equations (ODEs) with phys-

ical coordinates, x, and generalized coordinates, q, as unknown variables. Therefore it is

easy to be integrated. Integrating that equation yields velocity in the generalized coor-

dinates, q̇ and position in the physical coordinates, x. Then, using a simple equation in

Eq. (2.2a), it is easy to �nd the physical velocities, ẋ.

The obtained physical coordinates needs to be corrected. Because the result of the in-

tegration of the constraint derivative might make the set of unconstrained coordinates

not satisfy the constraint manifold. The correction is done by taking a linearization of

constraint equations.

c(x, t) = c
(
x(0), t

)
+ c/x

∣∣∣
x(0)

∆x = 0 (2.5)

A solution is sought in the form,

∆x = Q1∆ν +Q2∆ψ (2.6)

Considering the ideal constraint, the equation can be rewritten as

c
(
x(0), t

)
+ c/x

∣∣∣
x(0)

∆x = c
(
x(0), t

)
+A(Q1∆ν +Q2∆ψ)

= c
(
x(0), t

)
+AQ1∆ν +���AT∆ψ = 0

(2.7)

so that,

∆ν = −(AQ1)
−1c

(
x(0), t

)
(2.8)

The solution is updated as

x(1) = x(0) +Q1∆ν (2.9)

The process is repeated until convergence. For each iteration, matrix c/x may depend on

x, so it should be updated while iterating using QR factorization. The formula can be

written as
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x(i+1) = x(i) −Q1(AQ1)
−1c

(
x(i), t

)
(2.10)

(.)(i) is the estimation of the value at i-th itteration.

Besides that, the velocity (ẋ) needs to be corrected to comply with the derivative of

constraint, namely c/xẋ = 0. The formula can be seen as follows,

ẋ = TTTẋ (2.11)

2.2. QRP for Singularity

If the system experiences a singularity con�guration during its motion, some care of the

solution process needs to be taken into account. The singularity con�guration is a critical

condition in which the system has the possibility to choose another movement that may

be very di�erent from the original movement during its motion. Numerically, it can be

observed by checking the rank of matrix A. If the rank of matrix A reduces (some of

its rows are not linearly independent), the degree of freedom of the system will increase,

and the system experiences another movement. In this case, the de�nition of the suitable

matrix T needs to be updated. The QR factorization also needs to be rede�ned in the

sense that the diagonal of matrix R is arranged in decreased order of their norm. It could

be done by introducing a permutation matrix, P [8], so the Eq. (2.1) could be written as:

AT = QRPT (2.12)

Decomposing matrix Q and R as seen in Eq. 2.1

AT =
[
Q1 Q2

] [R1

0

]
PT (2.13)

and when the singularity condition occurs, Eq. 2.12 can be written as

AT =
[[
Q1ns Q1s

]
Q2

]
[
R1ns R1s

· · · 0

]
0

PT (2.14)
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with Q1ns ∈ Rn×(m−d), Q1s ∈ Rn×d, Q2 ∈ Rn×(n−m), R1ns ∈ R(m−d)×(m−d), and R1s ∈
R(m−d)×d. d is the number of de�ciency ranks of the constraint Jacobian matrix. It can

be obtained from the di�erence between the lesser of the number of rows and columns

of matrix A and the rank of that matrix, such that d = m − rank(A). It explains that

when a rank de�ciency occurs, some constraints are become redundant, meaning they are

not independent anymore. Thus, the rank of matrix A decreases. The number by which

the rank reduces indicates the number of increased degrees of freedom in the system. For

example, when a system is moving, and at some point, the rank of matrix A suddenly

experiences a reduction (assuming one reduction, d = 1). At that moment, the system

experiences one additional degree of freedom, because one constraint becomes redundant.

Some examples of mechanisms and their evaluation are presented in this thesis when the

singularity occurs.

The equation of constrained multibody systems still has the same structure as Eq. (2.4)

but with an updated suitable subspace matrix T. Matrix T is written as follows,

T =
[
Q1s Q2

]
(2.15)

Now matrix T has dimension T ∈ Rn×(n−m+d).
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The purpose of the continuation method is to preserve some sort of spatial continuity

of generalized coordinate, q. This is done by minimizing the deviation of subspace that

intrinsically needs to maintainQ2 tangent to constraint manifold along the time. To make

it understandable-see this illustration.

(a) Solution subspace

(b) Selected solution subspace

Figure 3.1: Subspace selection and continuation process description
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(c) Continuation of selected solution subspace

Figure 3.1: Subspace selection and continuation process description

The yellow space is the space tangent to the constraint manifold, where an in�nite possible

subspace of matrix Q2 could be selected as shown in Fig. 3.1a. Using QR Factorization,

vector-matrix Q2 will be picked randomly (see vectors x − y and x′ − y′ in Fig. 3.1b,

assuming the selected subspace in this point is in vector x − y). Without continuation,

the selected subspace after integration can not be controlled, meaning the next subspace

may have a di�erent orientation than the previous one. Whereas with continuation, the

subspace selection can be handled to be as close as possible to the previous subspace. As

shown in Fig. 3.1c, point B represents the point after integration, and the subspace of Q2

at that point is chosen in such a way as to be close to the subspace before integration

(point A).

The continuation for a system with m < n and having the total rank of matrix A is

done by Zhou, et al. and can be seen in [23]. Meanwhile, the implementation of the

continuation approach with a system that has redundant constraints will be explained in

the next chapter.
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4.1. Rank-De�cient Constraint Jacobian Matrix

4.1.1. Traditional QR

Consider the system with m < n and the rank of matrix A is not full-rank, meaning

the matrix has a rank de�ciency, d. The suitable subspace can be chosen using QR

factorization with permutation [16]. This approach has been explained in Section 2.2

when dealing with singularity. The following shows the calculation of the A matrix for

completeness.

AT =
[
Q1 Q2

] [R1

0

]
PT

=
[[
Q1ns Q1s

]
Q2

]
[
R1ns R1s

· · · 0

]
0

PT

(4.1)

In this problem, the de�nition of the suitable matrix T consists of Q1s and Q2. Thus,

matrix T has dimension T ∈ Rn×(n−m+d), the formula can be seen in Eq. (4.2)

T =
[
Q1s Q2

]
(4.2)

Besides that, if the system has the same number of ordinary di�erential equations and

constraints (n = m), and there is a redundancy in the constraint Jacobian matrix (matrix

A is not full rank), the de�nition of the suitable matrix T only consists of Q1s alone,

because matrix Q2 is empty. The suitable matrix T has dimension T ∈ Rn×d and is

de�ned as:

T = Q1s (4.3)
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4.1.2. Continuation Algorithm

As explained in Chapter 3 about the purpose of this algorithm, with a slight adjustment,

the continuation algorithm can also be applied to this case, the system with m ≤ n and

d > 0. First, taking the time derivative of matrix A

Ȧ
T
= Q̇RPT +QṘPT =

[
Q̇1 Q̇2

] [R1

0

]
PT +

[
Q1 Q2

] [Ṙ1

0

]
PT (4.4)

Then, pre-multiply Eq. (4.4) with matrix QT and post-multiply it by matrix P, and also

exploiting the orthogonality, the equation will be

QT Ȧ
T
P = QT Q̇R+ Ṙ (4.5)

Using the de�nition of

QT Q̇ = Ω = −ΩT (4.6)

with Ω ∈ Rn×n, because of the orthogonality of matrix Q. Back to the Eq. (4.5) and

de�ne as

QT Ȧ
T
P = J (4.7)

Then, Eq. (4.5) can be rewritten by considering non-singular 'ns' and singular 's' blocks,

namely:

[
J11 J12

J21 J22

]
=

[
Ωns −ΩT

s

Ωs 0

][
R1ns R1s

0 0

]
+

[
Ṙ1ns Ṙ1s

0 0

]
(4.8)

with J11 ∈ R(m−d)×(m−d), J12 ∈ R(m−d)×d, J21 ∈ R(n−m+d)×(m−d), J22 ∈ R(n−m+d)×d,

Ωns ∈ R(m−d)×(m−d), Ωs ∈ R(n−m+d)×(m−d), R1ns ∈ R(m−d)×(m−d), and R1s ∈ R(m−d)×d.

The bottom-right of matrix Ω is set to be zero to minimize the re-orientation of the

vector of the suitable matrix T that corresponds to the direction of motion allowed by

rank de�ciency of the constraint Jacobian matrix, A. Eq. (4.8) can be expressed by four

equations as follows:
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J11 = ΩnsR1ns + Ṙ1ns

J12 = ΩnsR1s + Ṙ1s

J21 = ΩsR1ns

J22 = ΩsR1s

(4.9a)

(4.9b)

(4.9c)

(4.9d)

From Eq. (4.9c), it can be rewritten as

Ωs = J21R
−1
1ns

(4.10)

From Eq. (4.9a) do a manipulation of by post-multiplication with R−1
1ns

.

J11R
−1
1ns

= Ωns + Ṙ1nsR
−1
1ns

(4.11)

Then, consider its strictly lower triangular part (remember that matrix R1ns and its

derivative are upper triangular matrix), the equation will be

stril(J11R
−1
1ns

) = stril(Ωns) + stril(�����
Ṙ1nsR

−1
1ns

) = ΩL (4.12)

So that,

Ωns = ΩL −ΩT (4.13)

Thus, Ω can be arranged according to Eq. (4.8) by �lling in the non-singular and singular

blocks. Based on Eq. (4.6), matrix Q for continuation can be obtained by integrating

these equations. Integration must be carried out with appropriate steps by considering

the integration results (matrix Q) must maintain the orthogonality and the submatrix Q1

matches with the one resulting from the factorization of the transpose of the constraint

Jacobian matrix (e.g., using the Munthe-Kaas method [17]).

Assuming constant Ω, the integration from time tk to tk+1 of matrix Q can be seen as

follows

Qtk+1
= Qtk

eΩh (4.14)

After getting matrix Q, it is necessary to reorthogonalize the suitable matrix because
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the solutions of the continuation and QR factorization may di�er. This is due to the

accumulation of numerical errors during integration. The reorthogonalization can be seen

in Appendix A.

4.2. Constraints Exceeding the Number of Coordi-

nates

4.2.1. Traditional QR

Considering the system withm > n and has some redundant constraints, which means the

constrained Jacobian matrix of this system is not full-rank. d is the number of admissible

motions of the system. d can be computed using the di�erence between the lesser number

of rows or columns of matrixA and the rank of that matrix itself, such that d = n−rankA.

Furthermore, using the QRP factorization of matrix AT [16], the results is

AT = QRPT = Q1

[
R1 R2

]
PT (4.15)

with Q1 ∈ Rn×n, R1 ∈ Rn×n, R2 ∈ Rn×(n−m), and P ∈ Rm×m. In this system, matrix Q

does not have component Q2. Instead, matrix R have component R2.

Considering the non-singular 'ns' and singular 's' block, Eq. 4.15 can be rearranged to

AT =
[
Q1ns Q1s

] [[R1ns R1s

· · · 0

]
R2

]
PT (4.16)

with Q1ns ∈ Rn×(n−d), Q1s ∈ Rn×d, R1ns ∈ R(n−d)×(n−d), R1s ∈ R(n−d)×d, and R2 ∈
Rn×(m−n). Therefore the suitable subspace T ∈ Rn×d is de�ned as

T = Q1s (4.17)

4.2.2. Continuation Algorithm

The procedure is the same as the continuation in Section 4.1. However, there are small

di�erences that must be considered. Consider the time derivative of constraint Jacobian

matrix, A.
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Ȧ
T
= Q̇1RP

T +Q1ṘP
T = Q̇1

[
R1 R2

]
PT +Q1

[
Ṙ1 Ṙ2

]
PT (4.18)

Then do a pre-multiplication with QT
1 and post-multiplication with P. Exploiting the

orthogonality of the matrix. The equation will be

QT
1 Ȧ

T
P = QT

1 Q̇1

[
R1 R2

]
+
[
Ṙ1 Ṙ2

]
(4.19)

The Ω is de�ned as

QT
1 Q̇1 = Ω = −ΩT (4.20)

by exploiting the orthogonality of matrix Q1, the dimension of Ω is Ω ∈ Rn×n.

Considering the �rst n columns of both sides of Eq. (4.19), and called as J

QT
1 Ȧ

T
P(:, 1 : n) = J (4.21)

Then, split the matrix with block non-singular 'ns' and singular 's' so that the equation

will become

[
J11 J12

J21 J22

]
=

[
Ωns −ΩT

s

Ωs 0

][
R1ns R1s

0 0

]
+

[
Ṙ1ns Ṙ1s

0 0

]
(4.22)

From there, four equations are developed as follows,

J11 = ΩnsR1ns + Ṙ1ns

J12 = ΩnsR1s + Ṙ1s

J21 = ΩsR1ns

J22 = ΩsR1s

(4.23a)

(4.23b)

(4.23c)

(4.23d)

From Eq. (4.23c)

Ωs = J21R
−1
1ns

(4.24)

Then, from Eq. (4.23a), do the post-multiplication with R−1
1ns
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J11R
−1
1ns

= Ωns + Ṙ1nsR
−1
1ns

(4.25)

Remember that matrix R1ns and its derivative is upper triangular matrices, so by consid-

ering a strictly lower triangular part of Eq. (4.25), it will obtain

stril(J11R
−1
1ns

) = stril(Ωns) + stril������
(Ṙ1nsR

−1
1ns

) = ΩL (4.26)

So that,

Ωns = ΩL −ΩT
L (4.27)

Compiling matrix Ω and integrating Eq. (4.20) from time tk to time tk+1, will obtain

matrix Q from continuation. The integration must be done with proper steps to maintain

the orthogonality of the result of Q and to guarantee Q1 is the same as when using

factorization.

Qtk+1
= Qtk

eΩh (4.28)

It is necessary to do a reorthogonalization of the result because the solution from QR

factorization and continuation may di�er due to the accumulation of numerical error

during the integration. The reorthogonalization can be seen in Appendix A.
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5| Results and Analysis

5.1. Spatial Pendulum

Consider a multi-degree of freedom of spatial pendulum with mass M = 1 kg and length

ℓ = 0.08 m. This system is adapted from the original problem in [23]. The analysis of

the results obtained from this model will allow for choosing a proper time step (h) to

be implemented, which will be used in the simulation of all the systems covered in this

thesis.

The initial position and velocity, in this case, are r0 = [ℓ, 0, 0]T and v0 = [0, 0.7895, 0]T .

Due to gravity (g = 9.81m/s2), the pendulum will experience an external force that

always points out downward.

The constraint dynamics equation of the spatial pendulum can be seen in Equation 5.1.

M 0 0

0 M 0

0 0 M



ẍ

ÿ

z̈

+

2x2y
2z

 =


0

0

−Mg

 (5.1)

with constraint

x2 + y2 + z2 + ℓ2 = 0 (5.2)

Based on Eq. 5.2, the type of the constraint is time-independent, called scleronomic con-

straint. The jacobian matrix is obtained through the partial derivative of the constraint

with respect to the coordinates.

A = [2x 2y 2z] (5.3)

Then, the suitable matrix T is obtained from the QR factorization using Matlab through a

qr function. Finally, the equation will become the ordinary di�erential equations (ODEs)
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as shown in Eq. (2.4). This equation can be easily solved by integration. The integration

is performed using explicit Runge-Kutta scheme [4] and implemented in Matlab using

ode45 with Real tolerance and Absolute tolerance equal to 10−6.

Fig. 5.1 displays the comparison of the time history of the pendulum's position with

di�erent time steps (h).
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(a) The position of the pendulum in the x direc-
tion
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(b) The position of the pendulum in the y direc-
tion

0 0.5 1 1.5 2
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-0.04

-0.02

0

0.02

(c) The position of the pendulum in the z direc-
tion

Figure 5.1: The time history of position of the spatial pendulum

Moreover, Fig. 5.2 shows the velocity comparison also with di�erent time steps (h).
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(a) The pendulum's velocity in the x direction
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(b) The pendulum's velocity in the y direction
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(c) The pendulum's velocity in the z direction

Figure 5.2: The velocity's time history of the spatial pendulum

Based on the results of the time history of the position and velocity comparison, the time

history of time steps (h) 10−4 seconds and 10−5 seconds is quite similar, meaning that the

simulation with a time step of 10−4 seconds is good enough. Therefore, the rest of the

simulation will use the time step h = 10−4 seconds to reduce simulation cost.

Furthermore, Figure 5.3 shows the plot of matrix R1 after sorting the diagonal value to

be decreasing order of their norm.
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Figure 5.3: The time history of the diagonal coe�cient of R1 of the spatial pendulum

5.1.1. Continuation Algorithm for Spatial Pendulum

Consider the previous spatial pendulum model. In this part, the continuation algorithm

is applied to maintain the continuity of the generalized coordinates, q, by tracking the

evolution of a suitable matrix T. The result of the time history of q can be seen in

Figure 5.4.
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(a) The time history of q1
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(b) The time history of q2

Figure 5.4: Time history of the generalized coordinates of the spatial pendulum

Besides that, the time history of projected generalized velocities can be observed in Fig. 5.5
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(a) The time history of q̇1
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(b) The time history of q̇2

Figure 5.5: Time history of the projected velocities of the spatial pendulum

Using a continuation algorithm produces the values q that are continuous over time, with

no jump in values like what is displayed when using a traditional QR. Furthermore, the

�gures below show the comparison of physical coordinates (rx, ry, and rz) using traditional

and continuation algorithm. It can be seen that adding continuity does not change the

results of the physical coordinates (compared to traditional QR), meaning that using the

continuation will only a�ect the generalized coordinates to make them continuous.
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(a) The position of pendulum in x direction
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(b) The position of pendulum in y direction
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(c) The position of pendulum in z direction

Figure 5.6: Time history of the physical coordinates of the spatial pendulum

5.1.2. Comparison with MBDyn Simulation

The spatial pendulum is also simulated using high-�delity multibody simulation, namely

MBDyn1 to check if the results are comparable to the previous simulation. This software

is open source and was created with the general purpose of resolving multibody problems.

The simulation uses a second-order accurate implicit linear multistep integration method

with algorithmic dissipation (asymptotic spectral radius ρ∞ = 0.6) [21, 22]. The result of

the pendulum's position with di�erent time steps can be seen in Fig. 5.7.

1https://www.mbdyn.org/
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(a) The position of the pendulum in the x direc-
tion
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(b) The position of the pendulum in the y direc-
tion
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tion

Figure 5.7: The time history of position of the spatial pendulum obtained from DAE

integration using MBDyn

Furthermore, Fig. 5.8 shows the pendulum's position in the x-direction with the speci�c

range of time (0.999 seconds to 1.001 seconds) to see the convergence of the simulation

when the time step reduces.
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Figure 5.8: The position of the pendulum in the x direction using MBDyn for a certain

time

It can be observed that with the time step h = 10−4 (blue line) and h = 10−5 (black line),

the position of the pendulum over time is identical. It can be concluded that with the

time step h = 10−4, the simulation has reached convergence.
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Figure 5.9: The comparison of the time history of position of the spatial pendulum using

Matlab and MBDyn
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(c) The position of the pendulum in the z direc-
tion

Figure 5.9: The comparison of the time history of position of the spatial pendulum using

Matlab and MBDyn

The simulation using the projection continuation method based on the QR factorization

of the transpose of the Jacobian matrix using ode45 integration produces a comparable

result of the trajectory of the pendulum when its compared to the simulation using high

�delity simulation MBDyn using the same time step h = 10−4, as can be seen from Fig. 5.9.

5.2. 4-Bar Mechanism

This part will cover the analysis and results obtained from the simulations of a 4-bar

mechanism and its modi�cations. This mechanism was originally proposed by IFToMM's

Technical Committee for Multibody Dynamics2. The �rst mechanism presented in this

thesis is a single 4-bar mechanism. Moreover, several modi�cations of the 4-bar mechanism

will also be shown. In total, six systems will be presented. The purpose is to complete

the problem by evaluating the di�erent mechanisms. A brief summary of the description

of each system can be seen in Tab. 5.1

The simulation is carried out using Matlab, especially function qr, to compute suitable

matrix T, and function ode45 (with Relative tolerance and Absolute tolerance 10−6 re-

spectively) to do the integration.

2https://www.iftomm-multibody.org/benchmark/problem/Double_four_bar_mechanism/
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mechanism m n d description

4-bar 8 9 0 m < n, non-redundant, 1 dof

2 4-bar 14 15 0 m < n, non-redundant, 1 dof

modi�cation of 2 4-bar 12 12 1 m = n, redundant, 1 dof

modi�cation of 2×2 4-bar 24 24 2 m = n, redundant, > 1 dof

modi�cation of 3 4-bar 16 15 1 m > n, redundant, 1 dof

modi�cation of 2×3 4-bar 32 30 2 m > n, redundant, > 1 dof

Table 5.1: Brief summary of the simulated systems

First, consider the 4-bar mechanism connected using a revolute joint as shown in Figure

5.10. All bars have a length of 1 m. The mass of all bars is the same, namely 1 kg.

The inertial moment of all bars is 1
12

kg/m2. The gravity, g = 9.81 m/s2, applies in this

mechanism downward. The system has nine ordinary di�erential equations (n = 9) and

eight constraints (m = 8).

Figure 5.10: 4-Bar mechanism

Assume all the bars are homogeneous, so the center of mass of each bar is in the middle.

The initial position bars number 1 and 3 are θ1 = θ3 = 1
2
π rad, and the initial angular

velocity of bars number 1, 2, and 3 are 4, 0, and 4 rad/s, respectively.

The simulation is done for 2 seconds with time step, h = 10−4 seconds. The time history

of an angle of bars no. 1 and 3 are displayed in Figure 5.11.
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Figure 5.11: The time history of the angle of bars no. 1 and 3 of the 4-bar mechanism

Moreover, the angular speed of bars 1 and 3 are shown in Figure 5.12.
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Figure 5.12: The time history of the angular speed of bars no. 1 and 3 of the 4-bar

mechanism

Based on Fig. 5.11 and Fig. 5.12, it can be observed that the movement of the two bars is
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identical, in other words, the position and velocity of those bars are the same every time.

Furthermore, Fig. 5.13 shows the movement of r2y and θ2. It is mentioned that when

the vertical position of bar no. 2 is zero meaning all bars are in a horizontal position, a

singularity condition appears.

0 0.5 1 1.5 2

-1

0

1

0 0.5 1 1.5 2

-4

-2

0

10
-19

Figure 5.13: The time history of vertical position and angle on bar no. 2 of the 4-bar

mechanism

5.2.1. Continuation Algorithm for the 4-Bar Mechanism

This part will use the continuation algorithm to make the generalized coordinates have

continuous values each time. The comparison of projected generalized velocities, q̇, with

and without the continuation algorithm can be seen in Fig. 5.14.
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Figure 5.14: Time history of projected velocities, q̇, of the 4-bar mechanism

As mentioned before, using the continuation approach, the time history of the projected

generalized velocities is continuous. Whereas if using traditional QR, the result of q̇ is dis-

continuous. In other words, its value sometimes experiences a sudden and uncontrollable

sign change whenever it occurs.

Both algorithms start from a negative sign (see Fig. 5.14) since the two approaches were

initialized in the same manner through Matlab's QR factorization and the same constraint

Jacobian matrix. With the continuation, the sign is consistent. Whereas with the tradi-

tional one, it occasionally turns to positive and then negative again because of the blind

execution of the QR factorization algorithm.

Furthermore, the singularity condition could be seen by evaluating the diagonal elements

of matrix R1. As displayed in Fig. 5.15, the last diagonal elements of matrix R1 drop to

zero, or close to zero, when the singularity appears.
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Figure 5.15: Time history of the diagonal coe�cient of matrix R1 of the 4-bar mechanism

Fig. 5.16 shows only the time history of the diagonal part of matrix R1 whose value goes

to zero.
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Figure 5.16: Time history of the last diagonal coe�cient of matrix R1 of the 4-bar mech-

anism

When the singularity condition arises, the mechanism undergoes other possible movements

regardless of the initial one. The second motion can be easily captured by evaluating

matrix T. Fig. 5.17 shows the value of the matrix in the singularity condition.
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Figure 5.17: 4-bar mechanism: the values of the suitable matrix T at singularity condition

An intuitive image of how the bar moves can be seen in Fig. 5.18.

(a) 1st movement

(b) 2nd movement

Figure 5.18: Possible movement of the 4-bar mechanism at singularity condition

5.2.2. Singularity Evaluation for the 4-Bar Mechanism

Consider the previous 4-bar mechanism system. The system is given a certain speed such

that it will stop when all bars are in a horizontal position. Bars number 1 and 3 are

given an initial angular velocity of -4.8522 rad/s, and bar number 2 is 0 rad/s. The initial
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position for bar no. 1 is θ1 =
3
2
π rad. The result shows in Figure 5.19
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Figure 5.19: 4-bar mechanism stopping at horizontal

It can be noticed that when all bars are in the horizontal position, the value of the last

diagonal of matrix R1 drops to zero. It can also be observed that the value of that matrix

goes to zero at a gentle speed. This can be explained by understanding that the system

will physically stop at that moment. The angle of bar number 2 also undergoes an abrupt

change at that moment. In other words, it can be said that the system is in a singularity

condition. At this moment, the system has the possibility to make other moves that are

di�erent from the previous motion.

Introducing the second movement of the system could be done by adding a speci�c torque

in bar number 2. For this moment, the added torque is -20 Nm to trigger the other

movement of the 4-bar mechanism. The result for the time history of θ1, θ2, and θ3 is

displayed in Fig. 5.20.
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Figure 5.20: Time history of θ1, θ2, and θ3 of the 4-bar mechanism

From Fig. 5.20, it is observed that the movement of bars number 1, 2, and 3 are not the

same anymore. Instead, they move in di�erent directions.

Furthermore, the time history of the last diagonal value of R1 is shown in Figure 5.21.
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Figure 5.21: Time history of the diagonal coe�cients of matrixR1 of the 4-bar mechanism



34 5| Results and Analysis

5.3. 2 4-Bar Mechanisms

This mechanism is a modi�cation of the 4-bar system where this system is added with

two more bars (4 and 5). Those bars are identical to the bars in the previous mechanism.

The connection between bars number 2 and 4 is a revolute joint, so both are independent,

as displayed in Fig. 5.22. The system has 15 ordinary di�erential equations (n) and 14

constraints (m).

Figure 5.22: 2 4-Bar mechanism

Applying the previous initial condition to bars number 1, 3, and 5, the results of 2 seconds

simulation with time steps (h = 10−4) are shown in the images below.
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(a) The horizontal position of bar no. 2 and 4
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(b) The vertical position of bar no. 2 and 4

Figure 5.23: Time history of the position of bars no. 2 and 4 in the 2 4-bar mechanism
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(a) The angle of bar no. 2 over time

0 0.5 1 1.5 2

-5

-4

-3

-2

-1

0

1
10

-19

(b) The angle of bar no. 4 over time

Figure 5.24: Time history of the rotation angle of bars no. 2 and 4 in the 2 4-bar

mechanism

It can be seen that the motion of two bars (2 and 4) are identical. Then, when all bars

are in the horizontal position (can be observed from Fig. 5.23b), the system experiences

singularity con�guration, θ2 and θ4 experiences a sudden jump in value.

Compared to the previous mechanism, although the motion is not exactly the same, the

motion of bar number 2 in this mechanism is identical to the previous mechanism. It

is because the double 4-bar mechanism has more inertia compared to the 4-bar mecha-

nism. Fig. 5.25 shows the comparison of the position of the 4-bar mechanism and 2 4-bar

mechanisms in the x and y-direction.
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(a) Time history of the horizontal position of bar
no. 2
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(b) Time history of the vertical position of bar
no. 2

Figure 5.25: The comparison of the position of bar no.2 between 4-bar and 2 4-bar

mechanisms
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5.3.1. Continuation Algorithm for the 2 4-Bar Mechanisms

The time history of q̇ using the continuation algorithm can be seen in Fig. 5.26.
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Figure 5.26: Time history of the projected velocities, q̇, of the 2 4-bar mechanisms

The time history of the diagonal coe�cients of matrix R1 can be seen in Fig. 5.27.

Figure 5.27: The time history of the diagonal coe�cients of matrix R1 of the 2 4-bar

mechanisms

It can be observed that two diagonal values go to zero when the system experiences the

singularity condition. This means that the degree of freedom of the mechanism is changed.
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It increases from 1 dof to 3 dof. The system has the possibility to make di�erent motions

from the previous one. The other movement can be easily seen by checking the values of

matrix T at the singularity condition.

Fig. 5.28 shows the value of matrix T when a singularity occurs. It notices that the

system experiences two additional motions in addition to the expected motion.

Figure 5.28: The values of the suitable matrix T at singularity condition of the 2 4-bar

mechanisms

A more intuitive visualization to capture the possible motion in singularity condition can

be seen in Fig. 5.29.
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(a) 1st movement

(b) 2nd movement

(c) 3rd movement

Figure 5.29: Possible movement of the 2 4-bar mechanisms

5.4. Modi�ed Form of the 2 4-Bar Mechanisms

Figure 5.30: 2 4-Bar mechanisms modi�ed form

Using the previous double 4-bar mechanisms, but with a modi�cation in bar BD and DF.

The two are now connected rigidly in D to form a single part (it is called bar number

2). The mass and length of that bar are 2 kg and 2 m. Thus, the moment of inertia is
2
3
kg/m2. Furthermore, this system has 12 ordinary di�erential equations, and it is the

same as its number of constraints (m = n). However, because of the rank de�ciency of

the jacobian matrix of this system, d = 1, this mechanism has one degree of freedom.

The system is simulated by giving the initial angular velocity of -1 rad/s to bars number

1, 3, and 4. The time history of the position of bar no. 1 for the 2 seconds simulation can

be seen in Fig. 5.31
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Figure 5.31: Time history of the position of bar no. 1 of the modi�ed form of the 2 4-bar

mechanisms

Furthermore, the �gures below show the comparison of 2 4-bar mechanisms without and

with modi�cation.
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(a) Time history of the horizontal position of bar
no. 2
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(b) Time history of the vertical position of bar
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Figure 5.32: The comparison of the position of 2 4-bar without and with modi�cation

It can be observed that the position of bar number 1 of those systems is identical over the

simulation. It can be concluded that the whole motion of those systems is comparable.
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5.4.1. Continuation Algorithm for Modi�ed Form of the 2 4-Bar

Mechanisms

This part presents the results of the modi�ed form of 2 4-bar mechanisms using the

continuation algorithm. This algorithm obtains the same result as traditional QR in

terms of physical coordinates, as shown in Fig. 5.33. This �gure shows the results of the

position of bar number 1 using traditional QR and continuation.
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(b) Time history of the vertical position

Figure 5.33: Time history of the position of bar no. 1 of the modi�ed form of the 2 4-bar

mechanisms

However, the continuation algorithm yields the projected velocity becoming continuous

over time. Whereas using traditional QR, the values of q̇ are discontinuous, as shown

in Fig. 5.34. This �gure demonstrates the result of projected generalized velocity using

traditional QR and continuation.
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Figure 5.34: The time history of the projected velocity of the modi�ed form of the 2 4-bar

mechanisms

Furthermore, the time history of the suitable matrix T related to the bar number 1 using

traditional QR and continuation can be observed respectively in Fig. 5.35 and Fig. 5.36.

Figure 5.35: Time history of suitable matrix T(1:3,:) with traditional QR of the modi�ed

form of the 2 4-bar mechanisms
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Figure 5.36: Time history of suitable matrix T(1:3,:) with continuation of the modi�ed

form of the 2 4-bar mechanisms

From the two �gures above, it can be seen that the values of matrix T in the continuation

algorithm are continuous. It is also observed that when the singularity occurs, matrix T

will produce other values. Because when the singularity condition appears, the rank of

the Jacobian matrix is reduced.

Furthermore, Fig. 5.37 shows all the diagonal values of matrix R1.

Figure 5.37: The time history of the diagonal coe�cient of matrix R1 of the modi�ed

form of the 2 4-bar mechanisms
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When the system experiences a singularity condition, some component of the diagonal

coe�cients of R1 will move towards zero. Evaluating the values of matrix T in this

condition will reveal another possible motion of the system, as mentioned before. Fig. 5.38

shows the value of matrix T when a singularity occurs.

Figure 5.38: Possible movement of the modi�ed form of the 2 4-bar mechanisms

A more intuitive �gure which shows the possible motion of all bars is displayed in Fig. 5.39.

(a) 1st movement

(b) 2nd movement

Figure 5.39: Possible movement of the modi�ed form of the 2 4-bar mechanisms
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5.5. Modi�ed Form of the 2×2 4-Bar Mechanisms

Modifying the 2 4-bar mechanisms by adding another 2 4-bar mechanisms with the same

properties as the previous one. This simulation is carried out to evaluate a system that

has a redundant constraint and more than 1 degree of freedom and analyse how the

singularity condition occurs in that system.

The system is given initial condition for θ1 and θ5 are equal with
π
2
. The initial angular

velocities for bars number 2 and 6 is zero. The remaining bars have the intial angular

velocities of -1 rad/s.

Figure 5.40: 2×2 4-bar mechanisms

The system is simulated for 2 seconds. The result for the position of bars number 1 and

5 is shown in Fig. 5.41.
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Figure 5.41: Time history of bar no. 1 and 5 of the modi�ed form of the 2×2 4-bar

mechanisms

It can be observed that the �rst 2 4-bar mechanisms (bars number 1, 2, 3, and 4) reach

the horizontal position (for all bars) is di�erent from the second 2 4-bar mechanisms (bars

number 5, 6, 7, and 8). This also explains the part of matrix R1 that goes to zero between

0.6 seconds and 1 second twice. It shows in Fig. 5.42, in which the time history of the

diagonal coe�cients of matrix R1 is displayed.

Figure 5.42: Time history of diagonal elements of matrix R1 of modi�ed form of the 2×2
4-bar mechanisms
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5.5.1. Continuation Algorithm for Modi�ed Form of the 2×2
4-Bar Mechanisms

Applying the continuation algorithm generates the results in the generalized coordinates,

and the projected generalized velocities are progressive as compared to the traditional

QR. The time history of generalized coordinates can be seen in Fig 5.43
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Figure 5.43: Time history of the generalized coordinates of the modi�ed form of the 2×2
4-bar mechanisms

Furthermore, the projected generalized velocities can be observed in Fig. 5.44
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Figure 5.44: Time history of the projected velocities of the modi�ed form of the 2×2
4-bar mechanisms
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5.6. Modi�ed Form of the 3 4-Bar Mechanisms

In this part, consider the triple 4-bar mechanisms with bar number 2 as a single bar, as

shown in the �gure below.

Figure 5.45: 3 4-bar mechanism

The properties of bars number 1, 3, 4, and 5 are identical, namely 1 m of the length, 1 kg

of the mass, and 1
12

kg/m2 of the inertial moment. Besides that, the mass of bar number

2 is 3 kg, and the length is 3 m. The inertial moment of this bar is 2.25 kg/m2. The

initial angular velocity of this system is -1 rad/s, and it is applied to bars number 1, 3,

4, and 5. Whereas the angular speed of bar number 2 is 0 rad/s. The initial position of

bars number 1, 3, 4, and 5 are π
2
. Furthermore, the position of point D is in the 1

3
of bar

number 2, and point F is in the 2
3
of bar number 2.

Fig. 5.46 shows the time history of bar number 2. It can be observed that when all the

bars are in the horizontal position, the value of θ2 suddenly changes. It can be understood

that the system experiences the singularity condition.
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Figure 5.46: Time history of the position of bar no.2 of the modi�ed form of the 3 4-bar

mechanisms

5.6.1. Continuation Algorithm for Modi�ed Form of the 3 4-Bar

Mechanisms

This part adopts the continuation algorithm. It can be observed in Fig. 5.47 that the

physical coordinates using two algorithms (traditional QR and continuation) have the

same result.
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Figure 5.47: The time history of the position of bar no. 1 of the modi�ed form of the 3

4-bar mechanisms

Besides that, Fig. 5.48 illustrates the comparison of the time history of the projected
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generalized velocities, q̇. It can be seen that using the continuation algorithm, the values

of q̇ over time are continuous.

0 0.5 1 1.5 2

-20

-15

-10

-5

0

5

10

15

20

Figure 5.48: Time history of projected velocities of the modi�ed form of the 3 4-bar

mechanisms

The continuity of the result using the continuation algorithm can also be seen in matrix

T. Fig. 5.49 and Fig. 5.50 display the �rst three rows of the value of matrix T using

traditional QR and continuation, respectively.
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Figure 5.49: Time history of suitable matrix T(1:3,:) of the modi�ed form of the 3 4-bar

mechanisms with traditional QR

Figure 5.50: Time history of suitable matrix T(1:3,:) of the modi�ed form of the 3 4-bar

mechanisms with continuation

Furthermore, the diagonal coe�cients of matrix R1 is displayed in Fig. 5.51.
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Figure 5.51: Time history of the diagonal values of matrix R1 of the modi�ed form of the

3 4-bar mechanisms

The evaluation of matrix T when singularity occurred explains the possible motion of the

system. Fig. 5.52 shows the values of T when singularity condition.

Figure 5.52: Possible movement of the modi�ed form of the 3 4-bar mechanisms in the

singularity condition

A more intuitive �gure which shows the possible motion of all bars is displayed in Fig. 5.53.
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(a) 1st movement

(b) 2nd movement

Figure 5.53: Possible movements of the modi�ed form of the 3 4-bar mechanisms in the

singularity condition

5.7. Modi�ed Form of the 2×3 4-Bar Mechanisms

Modifying the 3 4-bar mechanisms by adding another 3 4-bar mechanisms with the same

properties as the previous one. The system is given initial condition for θ1 and θ6 are equal

with π
2
. The initial angular velocities for bars number 2 and 7 is zero. The remaining

bars have initial angular velocities of -1 rad/s.

Figure 5.54: 2×3 4-bar mechanisms

The system is simulated for 2 seconds. The result for the position of bars number 1 and

6 is shown in Fig. 5.55.
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Figure 5.55: Time history of bars number 1 and 6 of the modi�ed form of the 2×3 4-bar

mechanisms

Furthermore, Fig. 5.56 shows the time history of the diagonal coe�cients of matrix R1.

Figure 5.56: Time history of the diagonal values of matrix R1 of the modi�ed form of the

2×3 4-bar mechanisms

It can be observed from Fig. 5.55 and Fig. 5.56 when singularity condition occurrs, a part

of matrix R1 goes to zero. Between time 0.6 seconds and 1 second, the number of times

matrix R1 goes to zeros is twice because the �rst part of the mechanism (bars number 1,

2, 3, 4, and 5) reached the horizontal positions at a di�erent time from the second part
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of the system (bars number 6, 7, 8, 9, and 10).

5.7.1. Continuation Algorithm for Modi�ed Form of the 2×3
4-Bar Mechanisms

Applying the continuation algorithm to the 2×3 4-bar mechanisms results in the continuity

of the generalized coordinates and projected generalized velocities. Fig. 5.57 shows the

comparison of the generalized coordinates using traditional QR and continuation.
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Figure 5.57: Time history of the generalized coordinates of the modi�ed form of the 2×3
4-bar mechanisms

Furthermore, Fig. 5.58 shows the comparison of projected generalized velocities using

traditional QR and continuation.
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Figure 5.58: Time history of the projected velocities of the modi�ed form of the 2×3
4-bar mechanisms

It can be observed from Fig. 5.57 and Fig. 5.58 that using the continuation, the values of

the generalized coordinates and projected generalized velocities are continuous compared

to using traditional QR.
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6| Conclusions

This thesis demonstrates the singularity detection and redundant constrained multibody

system dynamics using the minimum coordinate set with the continuation algorithm.

The computation is based on selecting an appropriate matrix. The matrix has to be

tangent to constraint manifolds. This matrix is obtained from full QRP factorization of

the constraint Jacobian matrix.

A singularity con�guration occurs when the system experiences another possible motion

regardless of its initial movement. Numerically, it can be seen by evaluating the coe�cient

of the diagonal matrix R1. When this condition occurs, some of the diagonal values of

matrix R1 will go to zero, which leads to the rank de�ciency of the constraint Jacobian

matrix. This means that the matrix rank will decrease and result in the other possible

motions of the system.

On the other hand, a system with a number of constraints greater or equal to the number

of ordinary di�erential equations can perform a movement if the rank of matrix A is not-

full, meaning some of the constraints are repeated. The number of admissible motions can

be computed by subtracting the rank of matrix A from the smallest between the number

of rows and columns.

Lastly, the continuation algorithm is used to create a regularity of the generalized coordi-

nates. In other words, this method results in generalized coordinates which are continuous

and di�erentiable, which is not the case for the traditional QR. On the contrary, it will

not a�ect the physical coordinates, which means the results of the physical coordinates

using the continuation are the same as traditional QR.

Several examples of mechanisms are presented. The �rst system consists of m < n and a

full-rank matrix A. The second system uses m = n with redundant constraints. Lastly,

a system with m > n containing redundant constraints. The example of singularity is

also presented in which the mechanism changes the motion by introducing a torque in the

system.
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A| Reorthogonalization After

Continuation

For convenience, the reorthogonalization will be explained for the speci�c cases, namely

m < n and d > 0. Even so, this method can still be used for other problems, such as

systems with m > n and d > 0 or systems with no redundant constraints.

Considering T̃ is the suitable subspace matrix obtained from the continuation and T̂ is the

suitable subspace matrix from QR factorization. As mentioned before, the two matrices

may di�er due to the accumulation of numerical errors during the integration, including

the correction of physical coordinates to bring them back onto the constraint manifold.

Matrix T after orthogonalized must consist of

1. a recombination of matrix T̂,

2. as close as possible to T̃

To do that, some processes must be followed.

The �rst requirement could be done by multiplication with matrix P

T = T̂P (A.1)

Matrix P ∈ R(n−m+d)×(n−m+d) is orthonormal matrix, i.e. subjected to the constraint

PPT = I (A.2)

such that

TTT = PT T̂
T
T̂P = PTP = I (A.3)

The second requirement is met by determining matrix P subjected to the condition,
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min
P

∥T̃T
T− I∥ (A.4)

where ∥.∥ indicates a suitable matrix norm that will be de�ned later.

Consider matrix E as,

E = T̃
T
T− I = CP− I (A.5)

such that,

C = T̃
T
T̂ (A.6)

That problem in Eq. (A.4) can be remodeled as a minimization of the cost function J

that is de�ned as a square of Frobenius norm of matrix E with respect to matrix P,

subjected to the constraint of Eq. (A.2). It can be done by transforming the constraint

minimization into an unconstrained one with the addition of the constraint equation to

the cost function using the Lagrange multipliers, Λ ∈ R(n−m+d)×(n−m+d).

J = tr((CP− I)(CP− I)T ) + tr
(
(PPT − I)Λ

)
(A.7)

The stationary condition can be evaluated by taking the partial derivative of cost function

J related to the minimization variables equal to zero. Setting the partial derivative of J

concerning Λ equal to 0 yields the constraint equation, Eq. (A.2). On the other hand,

setting the partial derivative of J regarding P equal to 0 yields the equations as follows

∂J

∂P
= 2CT (CP− I) + 2ΛP = 0 (A.8)

such that,

P−1 = C−T (CTC+Λ) = PT (A.9)

Substituting Eq. (A.9) equation to Eq. (A.2) yields

Λ+ΛT +ΛTC−1C−TΛ+CTC− I = 0 (A.10)
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Eq. (A.10) is acquainted as a continuation algebraic Riccati in Λ. Solving that equation

yields Λ and substituting Λ in Eq. (A.9) to get

P = (CTC+Λ)C−1 (A.11)

Thus, the suitable matrix T after reorthogonalization can be obtained from the Eq. (A.1).

Alternatively, based on the polar decomposition theorem, matrix CT can be decomposed

into the product of the orthonormal matrix U ∈ R(n−m+d)×(n−m+d) and the symmetric

matrix, positive (semi)de�nite, D ∈ R(n−m+d)×(n−m+d), i.e.

CCT = DTUTUD = DTD
sym.
= D2 (A.12)

So, it can be rewritten as

D = (CCT )
1
2 (A.13)

where operation (.)
1
2 shows a square root operation of matrix and thus

U = CTD−1 (A.14)

Matrix U corresponds to the optimal matrix of Eq. (A.11).

The proof is done by showing that the value of the cost function J will be minimal when

P ≡ U. Assume that P comes from matrix U multiplied by any orthogonal matrix.

P = UW (A.15)

where W ∈ R(n−m+d)×(n−m+d) is an arbritary orthogonal matrix, so that WTW ≡ I.

Therefore, matrix P will satisfy the constraint in Eq.(A.2). Thus, requirement number 1

is guaranteed.

Substituting Eq. (A.15) to cost function J, Eq. (A.7). Thus,

JW = tr(D2 −DW−WTD+ I) (A.16)

Exploiting the fact that tr(MT ) = tr(M),
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JW = tr(D2 − 2DW+ I) (A.17)

The variation of cost function J is formulated as

JW − JW≡I = tr(D2 − 2DW+ I)− tr(D2 − 2D+ I)

= 2tr(D(I−W))
(A.18)

Without losing generality, the easiest possible perturbation matrix forW is one consisting

of the 2D rotational equivalents of the �rst two directions in the coordinate space, i.e.

W =



cos θ − sin θ 0 . . . 0

sin θ cos θ 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


(A.19)

Thus, matrix DW can be write as follows

DW =



D11 cos θ +D12 sin θ . . . (irrelevant)

−D12 sin θ +D22 cos θ . . .

D33 . . .
...

...
...

. . .
...

(irrelevant) . . . D(n−m+d)(n−m+d)



(A.20)

taking advantage of the symmetry matrix D, its trace is

DW = D11 cos θ +D12 sin θ −D12 sin θ +D22 cos θ +
n−m+d∑

i=3

Dii

= (D11 +D22) cos θ +
n−m+d∑

i=3

Dii

(A.21)
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Which is smaller than or at most equal to the traceD alone, because cos θ ≤ 0 ∀θ, yielding

JW − JW≡I = 2tr(D(I−W)) = 2(D11 +D22)(1− cos θ) ≤ 0 (A.22)

This is a second-order variation with respect to the perturbation: for |θ| ≪ 1, cos θ ≈
1− θ2/2, thus

JW − JW≡I ≈ (D11 +D22)θ
2 (A.23)

i.e. θ ≡ 0 represents a minimum.

Since an arbitrary perturbation can be transformed into an alternative formulation via a

suitable coordinate transformation, this proves the optimality of that proposed approach.

Also, since the same cost function of the original case was used, this proves their equality.
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