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Abstract

Breast cancer is the most common type, and the leading cause
of cancer-related deaths among women worldwide. The assess-
ment process starts with the imaging tests which provide initial
diagnosis, but the reliable result of presence of cancer can be de-
termined only with a biopsy. It requires the sectioning of a small
tissue sample and its analysis under the microscope. Nowadays,
the diagnosis requires several days to complete, thus, it represents
the bottleneck of the dynamic of modern day hospitals. There-
fore, the automation of the diagnostic process in histopathology,
with accurate detection of breast cancer is one of the most ad-
dressed challenges in the recent years. Within this context, Ma-
chine Learning, and especially Deep Learning, which are more and
more used for automation of decision making processes, provide
large space for exploration of a possible solution. The main char-
acteristic of this methodology is the utilization of the data as the
only resource of knowledge about the underlying condition, and
its characterization.

BRAVE AI presents the design and the implementation of
an automated, end-to-end pipeline for Invasive Ductal Carcinoma
(IDC) detection in histopathological Whole Slide Images (WSIs).
The purpose of the work is to facilitate, standardize, and accel-
erate the breast cancer diagnosis process which would, in turn,
reduce the pathologists’ workload and enable higher throughput
from the pathology departments in hospitals. Exploiting informa-
tion contained in the patches of WSI, we train multiple Neural
Network (NN) models narrowing down the space for optimal so-
lution of the imposed problem. The approach is validated on an
open-source dataset used in multiple works from the state of the
art. BRAVE AI best performing model relies on DenseNet121
architecture, and obtains a balanced accuracy of 88.41%, a F1
score of 89.55%, and a sensitivity of 91.97%, achieving perfor-
mance comparable to the state of the art.
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Sommario

Il cancro al seno è il tipo di cancro più comune e la principale
causa di morte tra le donne di tutto il mondo. Il processo di valuta-
zione di questa patologia inizia con i test di imaging che forniscono
una diagnosi iniziale, ma il risultato più attendibile sulla sua pre-
senza può essere determinato solo con una biopsia. Questo esame
richiede il sezionamento di un piccolo campione di tessuto e la sua
analisi al microscopio. Al giorno d’oggi, la diagnosi richiede diversi
giorni rappresentando così il collo di bottiglia della dinamica degli
ospedali moderni. Pertanto, l’automazione del processo diagnosti-
co in istopatologia, con l’obiettivo di un’accurata identificazione
del cancro al seno è una delle sfide più affrontate negli ultimi an-
ni. In questo contesto, il Machine Learning, e soprattutto il Deep
Learning, sono sempre più utilizzati per l’automazione dei processi
decisionali, fornendo ampi spazi d’esplorazione per una possibile
soluzione. La caratteristica principale di queste metodologie è l’u-
tilizzo dei soli dati come unica fonte di conoscenza sulla condizione
sottostante e unico strumento per la sua caratterizzazione.

BRAVE AI presenta dunque la progettazione e l’implementa-
zione di una pipeline end-to-end automatizzata per il rilevamento
del Carcinoma Duttale Invasivo da immagini WSI (Whole Slide
Image) istopatologiche. Lo scopo di questo lavoro è quello di facili-
tare, standardizzare ed accelerare il processo di diagnosi del cancro
al seno che, a sua volta, ridurrebbe il carico di lavoro demandato
ai patologi e consentirebbe una maggiore produttività dai reparti
di patologia negli ospedali. Sfruttando le informazioni contenute
in sotto aree estratte dalle immagini WSI sono stati addestrati più
modelli di reti neurali al fine di identificare la soluzione ottimale
e riducendo così lo spazio delle possibili soluzioni. L’approccio è
stato validato su dati open-source utilizzati in diversi lavori pre-
senti nello stato dell’arte. Il modello che raggiunge le migliori
prestazioni all’interno di BRAVE AI si basa sull’architettura della
rete DenseNet121 e ottiene un’accuratezza bilanciata di 88,41%,
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un valore di F1 di 89,55% e una sensitività di 91,97%, ottenendo
prestazioni paragonabili allo stato dell’arte.

Questa tesi è organizzata come segue:

• Il Capitolo 1 fornisce una panoramica generale del problema
affrontato in questa tesi e gli obiettivi principali del lavoro;

• Il Capitolo 2 fornisce le informazioni biologiche e mediche
riguardanti il tumore al seno e le informazioni necessarie per
comprendere il problema e apprezzare l’impatto che l’auto-
matizzazione del processo diagnostico porterebbe;

• Il Capitolo 3 descrive brevemente la teoria sottostante gli
strumenti utilizzati per l’implementazione di BRAVE AI;

• Il Capitolo 4 discute i lavori presenti in letteratura sulle
diverse soluzioni per l’analisi di Whole Slide Image;

• Il Capitolo 5 propone i dettagli sulle scelte metodologiche
e implementative che stanno alla base della progettazione
della soluzione proposta;

• Il Capitolo 6 segnala i punti chiave per la valutazione del
sistema implementato e discute i risultati raggiunti;

• Il Capitolo 7 esamina i principali traguardi raggiunti da que-
sto lavoro di tesi, i limiti individuati e si conclude con i
possibili sviluppi e ricerche future.
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Introduction 1

This Chapter provides an overview of the context in which is placed the

work of BRAVE AI. Section 1.1 provides the details of the problem and

the impacts of its resolving. In Section 1.2 we give a brief overview of the

state of the art in the field, while in Section 1.3 we provide the proposed

solution in the thesis. Finally, we conclude this Chapter with Section

1.4 where we summarize the outline of the thesis.

1.1 Problem Statement

Breast cancer is the most commonly diagnosed type of cancer among

women in the world, with more than two million cases in 2018 reported

by the World Health Organization (WHO) [1]. It accounts for around

15% of the burden of cancer mortality, even though recent research shows

that early detection and effective treatment increase the five-year sur-

vival rate to 88%, and even more for the localized disease [2]. Nowadays,

the process of cancer diagnosis is long and cumbersome. It starts with

imaging tests like mammography, which are able to capture the mass

inside the body providing initial diagnosis, but the final result of the

presence of cancer can be determined only with a biopsy examination.

The biopsy sample is then investigated by a skilled pathologist who is

looking for the cancerous cells and making the definitive diagnosis. This

process takes around one to two weeks to be completed. Furthermore,

due to the aging population, there is an increasing interest in preventive

and personalized medicine, requiring screening protocols, and specific

testing which leads to a larger workload in the laboratories. This all
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1. Introduction

results in the increased need for automation, which is not only speeding

up the process but also making it more accurate and reliable. Further-

more, this is enabling remote work which is crucial for places with no

specialists, or during the time of pandemic like in 2020.

In recent years, due to the aforementioned need of the diagnostic

process automation, there is an emerging field called digital histopathol-

ogy. Specifically, In this thesis, we are going to address the problem

of Invasive Ductal Carcinoma (IDC) identification from histopathologi-

cal Whole Slide Images (WSIs), which is the last step in the diagnostic

pipeline. In this domain, Machine Learning (ML), and, more recently,

Deep Learning (DL), have been able to provide encouraging results in

the identification of cancer present in the tissue slices. The problem

here is how to generalize the decision-making process, and which mod-

els are able to perform well on tissue samples that they have not seen

before. On the other hand, since the positive or the negative result of

the biopsy has a huge impact on the life of the patient, and even bigger

consequences if the result of the biopsy is wrong, there is a problem of

estimating model performance and reliability of the results. The model

must provide accurate and reliable results in order to be implemented

as part of decision-making support systems for precision medicine.

1.2 Machine Learning in Breast Cancer

assessment

Mammography is the first, and the most common exam done in the pro-

cess of breast cancer assessment, hence, there are many works addressing

the problem of detecting suspicious lesions in mammograms. Some ap-

proaches rely on feature extraction, based on morphological analysis,

and more traditional preprocessing of the images followed by a Neural

Network (NN) [3], while other works employ automated pipeline working

2



1.2. Machine Learning in Breast Cancer assessment

directly with images utilizing Convolutional Neural Networks (CNNs) [4]

to classify the images as benign or malignant. Nevertheless, even though

mass identification is very important, none of these approaches is able

to investigate the cells inside the body, and analyze their structure and

shape, to provide the definitive diagnosis for the detected lump.

Therefore, the method employing tissue biopsy, and the analysis of

the slides is the only way to confirm the presence of cancer with high

reliability. Since the manual analysis suffers from inter and intra ob-

server variability [5], its automation can standardize the outcomes, and

accelerate the whole process. There are two types of approaches, one em-

ploying shallow methods with manual feature extraction, and the other

employing fully automated DL frameworks. Some shallow methods ap-

ply simple statistical classifiers obtaining lower accuracies [6], while oth-

ers use classifiers like Random Forests (RFs) [7] obtaining high accuracy

on their classification problems.

Nevertheless, the aforementioned methods for histopathological im-

age classification use hand-made feature extraction which requires ex-

pertise in many sub-domains, and careful integration of engineering and

medicine. It is very laborious to include new datasets in these frame-

works since the feature extraction requires major adjustments each time

different data is presented. On the other hand, DL models automatically

perform the process in a completely end-to-end manner, learning the fea-

tures ranging from simple to abstract ones in the deeper layers. Early

works like [8] used a custom made CNN obtaining results of 71% for the

F1 score and 84% for the balanced accuracy, while more recent works like

the ones proposed in BASH [9], and CAMELYION [10] challenges use

architectures already proven on classification problems like ImageNet,

in order to classify images as cancerous or healthy ones. The most com-

monly used architectures are Residual Neural Networks (ResNets), VGG

networks, and Densely connected Neural Networks (DenseNets).

3



1. Introduction

1.3 BRAVE AI Solution

Analyzing the current state of the art and the challenges, the purpose

of BRAVE AI is to develop and implement an automated, end-to-end

pipeline for breast IDC detection in histopathology images, aiming to

be a support for the pathologist during the assessment of the condition.

This automated procedure can offer standardization of the diagnostic

process, reliability, and reproducibility also allowing a reduction of time

needed for one diagnosis and lightening the workload of the pathologist.

This thesis proposes a methodology and a software tool that, using

histopathology image patches of WSIs from breast cancer, and DL based

classification, provides the identification of cancerous patches. Further-

more, we provide the visualization of the cancer probability map from

the reconstructed histopathology image of the patient’s biopsy slide.

The contributions of this work are:

• Reproducible methodology, design, and implementation of an au-

tomated end-to-end pipeline for breast cancer assessment;

• Exploration of Deep Neural Network architectures as the space of

solutions for histopathological images classification;

• Implementation of a Deep Neural Network classifier based on the

histopathology images, which has performance comparable to the

models from state of the art on the same dataset.

The validation of the pipeline is obtained using a public dataset

obtained by Cruz-Roa et al. [8], and our best performing model using

DenseNet121 architecture obtained a balanced accuracy of 88.41%, a F1

score of 89.55%, and a sensitivity of 91.97%, and it achieves performance

comparable to the results from the state of the art.
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1.4. Outline

1.4 Outline

The thesis is organized in seven chapters. Chapter 2 provides the basic

biological and medical knowledge needed to understand the problem and

the imapct of automated solutions. Chapter 3 gives a brief description

of the tools used for the implementation, while Chapter 4 discusses the

solutions in the state of the art. Chapter 5 explains into details the

proposed pipeline with the specifics of its implementation. Chapter 6

reports the experimental setup and, provides results of the performed ex-

periments. Finally, Chapter 7 presents the final remarks and conclusions

of the work done in the thesis.
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Background 2

This Chapter has the aim of providing basic theoretical knowledge that

will facilitate the understanding of the faced challenges, and the rea-

sons behind some of the choices that have been made for the develop-

ment of this work. It mainly focuses on the background from biology

and medicine which are crucial for understanding the problem and its

proposed solution, and the future towards which the world goes when

it comes to medicine, bioengineering, and emerging technologies. Sec-

tion 2.1 introduces the domain of histopathology in which the work of

BRAVE AI is focused. Section 2.2 goes into details of normal and patho-

logical cell functioning. Section 2.3 explains how the breasts function,

their importance and then explains into details the pathology of can-

cer and its types. Additionally, this section addresses the diagnostic

methods and gives brief explanation of the medical procedures for its

assessment. At the end, in Section 2.4 we present the possible impact

which the presented work, and similar works in automation and Machine

Learning (ML), may have in the development of medicine and medical

diagnosis.

2.1 Histopathology

Pathology is the study of the causes and effects of a disease, injury, or

any changes in cells, tissues, and organs that are associated with the

disease. The name itself comes from the Greek language and it means

the study (logos) of suffering (pathos).

Principally, there are two major facets of pathology: etiology and

7



2. Background

pathogenesis. Etiology encompasses the knowledge of the underlying

causes and factors that are initiators of the disease or they are related to

its progression. In short, it attempts to explain why the disease occurs.

For example, diabetes, hypertension, and cancer are caused by a com-

bination of inherited genetic susceptibility and various environmental

triggers. On the other hand, pathogenesis is related to the mechanisms

that lead to the state of the disease. In other words, it describes how

a disease develops. These mechanisms are responsible for structural,

functional, and morphological changes on cellular and molecular levels.

These changes can be observed and investigated to characterize different

diseases [11]. Knowing the disease, its etiology, and pathogenesis is cru-

cial for defining effective treatments and prevention measures. Moreover,

the investigation of these abnormalities requires a deep understanding of

how the healthy and normal organism functions, which requires entering

the field of histology. In particular, we can define histology as the study

of microanatomy of cells, tissues, and organs of the body. It analyzes

tissue biology, especially focusing on the correlation between structure,

organization, and arrangement of cells which produces different organs’

functions [12].

The intersection of histology and pathology is giving rise to the dis-

cipline called histopathology. It refers to the examination of tissue struc-

tural changes with the aim of studying a particular disease. Recognizing

and evaluating changes in the tissue, and providing diagnostic informa-

tion is a manual process which requires analysis by highly skilled medical

practitioners. To perform the histopathology examination the patient

must undergo a tissue biopsy, the process which involves the extraction

of cells and pieces of tissues, to determine the diagnosis [13].

8



2.2. The cell - living unit of health and disease

2.2 The cell - living unit of health and disease

The cell is the basic structural, functional, and biological unit of all liv-

ing organisms [14]. It is the smallest unit of life. The cell is surrounded

by the plasma membrane inside which are different types of organelle,

cytoplasm, and, optionally, nucleus depending on the type of the cell.

The nucleus is the largest organelle in the cell, and it contains the De-

oxyribonucleic Acid (DNA) which is the genetic material of the cell [15].

The development of a multicellular organism involves cellular repli-

cation, growth, and functional differentiation. Almost all cells replicate

through mitosis producing two genetically identical daughter cells. The

daughter cells continue with replication and, sometimes, they evolve to

specialize in a specific function, thus creating differentiated cells with

particular functions like the cells of the skin or muscles. The only cells

that do not follow this type of division are male and female germ cells

which divide by meiosis. Cell division is happening throughout the whole

life of the organisms, and it depends on the function and the homeostatic

machinery, therefore it is tightly controlled to meet the needs of the or-

ganism. An important part of the normal cycle is the programmed death

of the old cells and that mechanism is called apoptosis [16]. When nor-

mal regulatory influences that protect the body, and keep the organism

balanced, are broken down the cells may become cancerous.

Cancer is a pathology caused by a rapid division of abnormal cells

within the body which destroys or replaces the normal tissues. Cancer

can spread from the inception site to other organs, and this process is

called metastasizing [17]. For example, it is very common for breast

cancer to spread to the lungs or liver, and cause complications like a

respiratory failure which can result in death [16]. Cancer is a genetic

disease that can be traced to specific gene modifications in the DNA of

the cell. It is not an inheritable disease, but arises during its lifetime due

to a variety of risk factors [14]. Cancer-causing environmental exposures

9
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Lungs
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Colorectal
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Figure 2.1: The most common types of cancer as reported by WHO.

include substances, such as the chemicals in tobacco smoke, radiation,

and ultraviolet rays from the sun [18].

Cancer is a leading cause of death worldwide as reported by WHO

[17]. Its most common types and their absolute number of occurrence

are shown in Figure 2.1. According to another WHO report on cancer,

in 2018, there were an estimated 18 million new cases of cancer and

10 million deaths from cancer worldwide. The predicted global burden

will double to about 29–37 million new cancer cases by 2040. Of the

15 million premature deaths between the ages of 30 and 69 in the same

year, 4.5 million are due to cancer. In fact, cancer develops in 1 out of

5 people before they reach the age of 75 [1].
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in 2018, there were an estimated 18 million new cases of cancer and

10 million deaths from cancer worldwide. The predicted global burden

will double to about 29–37 million new cancer cases by 2040. Of the

15 million premature deaths between the ages of 30 and 69 in the same

year, 4.5 million are due to cancer. In fact, cancer develops in 1 out of

5 people before they reach the age of 75 [1].
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2.3. The Pathology of Breasts

2.3 The Pathology of Breasts

The work of the thesis focuses on histopathology of breast cancer as it is

the second most common type of cancer in the world, and the first among

the female part of the population. That is why this Section will firstly

provide basics for understanding the functions of breasts, their impor-

tance on various levels and continue with explanations of the pathology

and its types. Finally, it also addresses the methods for diagnosing the

disease and gives brief explanations of the medical procedures.

2.3.1 Breasts

Breasts are milk-producing organs of mammals that provide appropriate

nourishment to their offspring. They are essential for the survival of

infants. The act of nursing has two important benefits: physiologically,

it helps to involute the uterus; psychologically, it helps to “bond” the

mother and the baby [2]. Furthermore, there are other, non-biological

functions of this organ. Breasts are visible and as such have a social,

cultural, and personal significance for the individual. This characteristic

is not shared by other organs, except the skin which defines the race,

and with it impacts the society at large. These features play a role when

considering the origins and treatment of breast diseases [19].

On the other hand, biologically, breasts are defined as highly mod-

ified apocrine sweat glands (mammary glands). They develop embry-

ologically along two lines, known as the milk lines, extending from the

axillae to the groin. Mammals can have multiple glands, but in humans,

only two glands are developed - one gland on each side of the thorax.

The breasts of both sexes follow a similar course of development until

puberty, after which the female breasts undergo visible changes in size

and function as a result of the influence of pituitary, ovarian, and other

hormones. Until menopause, the breasts go through cyclical changes in

activity which are controlled by the hormones of the ovarian cycle. The
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Figure 2.2: Schematic representation of the women’s breast

most visible changes can be seen during and after pregnancy when they

are producing milk for the baby. After menopause, the breasts, like the

other female reproductive tissues, undergo progressive atrophy and invo-

lutional change [16]. A highly schematic representation of the anatomy

of the breast is shown in Figure 2.2.

Considering everything mentioned above, it is obvious that breasts

are very important for human development and survival, and they should

be healthy. However, there are many pathologies that can affect their

development, functions, and structure which have been studied through-

out the years in order to give proper diagnosis and treatment and even

prevent the occurrence of the diseases. The focus of this work is one of

the most severe pathologies, that can even lead to death if left untreated,

breast cancer.
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2.3.2 Breast Cancer

Breast cancer is the most frequently diagnosed cancer, and the leading

cause of cancer-related death among females worldwide, with an esti-

mated 2.1 million new cases in 2018 which is the 24.2% of all detected

cancer conditions in women part of the population [1]. The incidence of

this disease increases with higher life expectancy, urbanization, and mod-

ern lifestyle which is characteristic of western countries, but nonetheless,

breast cancer is the most common cancer among women both, of the de-

veloped and the developing world [20]. In the USA, it ranks second to

lung cancer in terms of mortality. There are an estimated 41, 000 breast

cancer deaths among women annually, which accounts for 15% of the

burden of cancer mortality. In recent years, the mortality from this type

of pathology has decreased due to early detection and advancement of

treatments. Five-year survival rate is 88%, and five-year survival is 98%

for women diagnosed with localized disease [2].

Tumor stage and type are remaining the most important determi-

nants of the outcome, and an early detection of breast cancer allows

more effective and less aggressive therapy assuring lower mortality rates,

and better quality of life [1].

Depending on how the cells behave, there are two types of breast

tumors: those that are non-cancerous, or ‘benign’, and those that are

cancerous, generally called ‘malignant’. Benign tumors are usually not

aggressive towards neighbors, i.e. they lack the ability to invade sur-

rounding tissue. Benign tumors are not removed unless they continue to

grow and cause pain, pressure, or other problems to surrounding organs.

On the other hand, malignant ones are cancerous and aggressive, which

means that they invade and damage surrounding tissue. When a tumor

is suspected to be malignant, the doctor will perform a histopathological

analysis (biopsy) to determine the severity of the tumor [21].

Malignant tumors are classified morphologically according to whether
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they have penetrated the basement membrane. Those that remain within

this boundary are called in situ carcinomas, and they are non-invasive.

On the other hand, those that have spread beyond it are called invasive

carcinomas [19]. Breast cancer can spread when the cancer cells get into

the blood or lymph system and are carried to other parts of the body

[22]. There are many types and subtypes of breast cancer depending on

which part of the breast and tissue it is affecting. The most common

non-invasive types are [23]:

• Ductal carcinoma in situ (DCIS) which grows in the milk ducts of

the breast.

• Lobular carcinoma in situ (LCIS) which develops in the milk-

producing glands at the end of breast ducts called lobules.

The most common invasive types of breast cancer are [23]:

• Invasive ductal carcinoma (IDC) which affects the milk ducts, but

it has broken through the lining of the duct and spread to sur-

rounding tissue. It can also spread to the other parts of the body.

About 80% of detected breast cancers are IDC.

• Invasive lobular carcinoma (ILC). The cancerous cells appear firstly

in the lobules and spread into surrounding tissue.

• Paget’s disease of the nipple. Cancerous cells grow in the nipple

or in the area around it called areola. It is usually the indication

of invasive cancer somewhere else in the breast.

• Inflammatory breast cancer. This is rare and aggressive form of

invasive cancer that affects the blood vessels and/or lymphatic

vessels of the breast.

• Phyllodes tumours of the breast. They can be benign or malignant.

They develop quickly inside the connective tissue of the breast.
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• Locally advanced breast cancer. It is usually large and spreads to

skin, chest wall or muscles and may have involved lymph nodes.

• Metastatic breast cancer. This is stage IV breast cancer, and it

has spread to lungs, bones, liver or other more distant parts of the

body.

2.3.3 The Process of Diagnosis

The process of diagnosis usually starts with a woman noticing a small

lump under the arm, or swollen breast during-self examination. Based

on the symptoms, the doctor can request a different type of test to

determine if the lesion is cancerous, and give a suitable diagnosis and

treatment.

One set of tests that can be done belongs to the group of imaging

tests. They are producing images of the inside of the body, particularly,

in this case, around the suspicious area in the breast. The three prevalent

ones are: mammography, ultrasound, and MRI [24].

Mammography. The resulting image is an x-ray of the breast.

Screening mammography is used to detect breast cancer in women with-

out apparent symptoms. On the other hand, diagnostic mammograms

are more detailed and time-consuming since the images are taken from

multiple vantage points. They are used after screening or based on some

signs of the pathology. The reliability of a mammogram depends on the

size of the tumor, the density of the breast tissue, and the skill of the

radiologist [25].

Ultrasound. This type of examination involves penetrating sound

waves to create an image of the breast tissue. The tissue is not affected

nor damaged during this process. Ultrasound distinguishes between can-

cer which is a solid mass and a cyst that is filled with liquid. The picture

generated by the ultrasound is called a sonogram, and its reliability de-

pends on the size of the mass [26].
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Magnetic Resonance Imaging (MRI). This method uses a mag-

netic field to produce a detailed image of the body. It is usually used

after the patient has been diagnosed with cancer to determine how much

the disease has spread in the breast or throughout the body.

The second group of tests used for the diagnosis of breast cancer

is called biopsies. A biopsy is the removal of a small amount of tissue

for examination under the microscope. The aforementioned types of

tests can suggest if the mass is present, but only a biopsy can make a

definitive diagnosis. After the extraction of tissue a pathologist analyzes

the sample. The type of biopsy depends on the size of the needle used to

collect the sample and can be classified as surgical, core needle, sentinel

lymph node, and image-guided biopsy [24].

Surgical biopsy removes the largest amount of tissue but the pa-

tient has to undergo surgery. Since most of the examinations are not

diagnosed as cancer this process is not recommended because it means

that a person takes unnecessary surgical operation.

Core needle biopsy is used for the extraction of a larger sample

of the tissue. It is performed to diagnose whether the cancer is invasive

or not, and what the cancer biomarkers are. Biomarkers are substances

that are produced by the tumor or by the body in response to cancer.

Sentinel lymph node biopsy is used to determine whether cancer

has spread to the lymph nodes around it. The lymph node which is

the first to get infected is called the sentinel lymph node, and in breast

cancer that is usually the node under the arm.

Image-Guided biopsy exploits additional imaging techniques like

ultrasound or MRI which are used to guide the needle to the location

of the mass. It is also called fine needle biopsy and it is used when the

lump is likely to be filled with fluid [27].

After one of the aforementioned biopsies, the sample undergoes the

technical processes of preparation and histological staining and then is
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used for the diagnostic procedure done by a skilled pathologist who is

looking for cancerous or abnormal cells. The pathology report takes 1-2

weeks to complete [27]. The preparation procedure is described in the

following section.

2.3.4 Histological tissue preparation and staining

Histological tissue preparation and staining are the series of processes

conducted to visually label the tissue which is to be used in the mi-

croscope study [28]. The tissue section which is examined is otherwise

colorless because the fixed protein and the glass have the same refrac-

tive index. Different dyes are linking to different tissue proteins and this

helps to understand its morphology [29]. Methods of staining make vari-

ous tissue components not only non-transparent but also distinguishable

from one another. Dyes stain the sample behaving like acidic or basic

compounds and forming electrostatic (salt) linkages with ionizable radi-

cals of macromolecules in the tissues. If we observe the inside of the cell

we can see components with different net charges: negative ones called

aions, and positive ones called cations. For example, nucleic acids have

a net negative charge and they have an affinity for basic dyes, and are

termed basophilic. On the other hand, proteins that have a net positive

charge with many ionized amino groups, stain more readily with acidic

dyes and are termed acidophilic [30]. Histological tissue preparation

is the multi-step process composed of fixation, processing, embedding,

sectioning, and staining [31].

Fixation has the goal of preserving the natural tissue structure and

delaying the degradation of the cell structure. The most used chemical

for this process is formalin. After the fixation, processing has the objec-

tive to dehydrate the sample, i.e. remove water from the selected tissue

to solidify them and facilitate the cutting of thin sections of slides. This

is done by transferring sample through a series of alcohol solutions end-
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Figure 2.3: On the left is example of tissue stained with Hematoxylin and
Eosin (H&E) - terminal duct lobular unit (breast tissue). On the right
is the part of left image zoomed in to show more clearly the structure of
the tissue.

ing with 100% ethanol. The result of embedding step is to secure the

specimen in a block of paraffin wax for section cutting and storage with-

out changing the morphology of the tissue. Since this process may cause

changes in structure due to prolonged heating, and, thus, modifications

of the Ribonucleic Acid (RNA) on high temperatures. Before concluding

the procedure with the staining, there is the sectioning which produces

’ribbon’-like microtomes of a tissue which are later mounted on a micro-

scope slide for examination [31]. Finally, the last step of the process is

staining, which is utilized to apply the dye color on the posterior and

anterior border of the sample tissues to locate the pathological cells (e.g.

tumorous cells). The combination of Hematoxylin and Eosing (H&E) is

the most commonly used for the staining process. Hematoxylin, the ba-

sic dye, stains acid structures like DNA in the cell nucleus, RNA-rich

portions of the cytoplasm, and the matrix of cartilage, producing a dark

blue or purple color. On the other hand, eosin is an acidic dye and it

stains other cytoplasmic structures and collagen in red or pink [30]. An

example is shown in Figure 2.3. In addition, this method is quick to

execute, cheap and can be altered.

Slide preparation, from tissue fixation to observation with a light
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microscope, may take from 12 hours to 2½ days, depending on the size

of the tissue, the embedding medium, and the method of staining [30].

After this process, all the samples are manually analyzed by the patholo-

gist in the laboratory, who is the expert with knowlege of cell behaviour

and structure, and also relying on previous experience, giving a final

diagnosis on whteher the pathology is present or not, and its type.

2.4 The Future of Pathology is Digital

In the past years, alongside the improvements in technology and inno-

vation, comes the modernization and digitalization of the hospital. The

waiting time for the results of the laboratory tests is becoming shorter

every day, and, nowadays, we can get hormone or blood test results in

just a couple of hours to our email address.

Unfortunately, histological and histopathological analyses are still

not able to keep the pace with the requirements and norms posted by

the dynamic present-day hospitals, and thus, they are labeled the slow-

est of all the laboratory departments. The process which includes the

preparations and steps mentioned in the sections above is taking a couple

of days or even weeks to provide the results.

The reasons to automate and speed up the process of histology pro-

cessing come from both - financial and healthcare points of view. We

should consider that, due to the aging population, there is an increase

of interest in preventive and personalized medicine, requiring screening

protocols and specific testing which lead to the larger workload in the

laboratories. On the other hand, there is also the need for standard-

ization and verification of all the steps and processes used which can

be achieved with automation. Automation, in this domain, has been

recognized as the need of society and is the main drive that leads to the

development of the field of Digital Pathology (DP) [32].

DP is a broad and general term that refers to the development of dig-
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ital workflow and imaging solutions in pathology. The framework goes

towards creating a digital image-based practice environment in which a

Whole Slide Image (WSI) or another digital image is acquired, managed,

interpreted, and searched for specific content [33].

The main advantages of DP can be summarized as follows [34]:

• Improved standardization of the methods.

• Simultaneous and rapid examination of several regions, and stain-

ing procedures at any magnification.

• Simplification of morphological findings through digital tools (count-

ing, annotations, measurements).

• Support of the assessment process by use of Artificial Intelligence

(AI) applications, ML systems for decision making, and quantifi-

cation of diagnostic and predictive markers.

• Provision of detailed clinical information in one dataset.

• Easy and quick access to digital archives with the data.

• Error-free slice preparations.

• Enabling remote diagnosis and consultation with pathologists around

the world, which is crucial for places where only a few specialists

are available.

• Flexible job opportunities - remote work.

Here should be mentioned that all the steps of the histological anal-

ysis process mentioned in Section 2.3.4 can be automated. They are

highly repetitive and there are already working solutions and machines

approved by Federal Drug Association (FDA) that are speeding up the

process, like for example The Leica ASP200S/ASP300S Tissue Proces-

sor [35]. Note that after the staining process comes to the analysis done
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by a skilled pathologist, but with the introduction of WSI it can be au-

tomated, or at least quickened, with the improvements in ML, especially

Deep Learning (DL).

Automatization and/or assistance to the pathologist’s analysis is the

domain of research considered in this thesis and the presented work

is going to focus on the automatization of the analysis of WSI when it

comes to predicting the presence of breast cancer with the novel methods

in DL.
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This Chapter aims to provide to the reader the basics of Machine Learn-

ing (ML), which is a trend in computer science, both in research and in

industry. This approach is used more and more to solve all big data

problems as well as any issues that have observable patterns and rep-

etitions in the data that contribute to decision-making in the domain.

In Section 3.1 we focus on a general overview, trying to clarify com-

mon misconceptions about it, while in Section 3.2 we provide a basic

overview of Convolutional Neural Networks (CNNs) needed to under-

stand the methodology and complex ML architectures used in the thesis

which are going to be explained later in details.

3.1 Artificial intelligence, Machine Learning

and Deep Learning

Since concepts of ML, Deep Learning (DL) and Artificial Intelligence

(AI) are going to be mentioned interchangeably throughout the thesis,

we should clarify their relationship at the beginning.

AI enables computers and machines to mimic the perception, learn-

ing, problem-solving, and decision-making capabilities of the human

mind. Therefore, AI is the most general concept in this domain. It

includes expert systems or any application that makes decisions based

on complex rules. ML is a subset of AI which can learn automatically

by itself from given data. As the amount, diversity, and quality of data

increases - the accuracy increases too. The last concept is DL, and it

23



3. Machine Learning

ARTIFICIAL 
INTELLIGENCE

MACHINE
LEARNING

DEEP 
LEARNING

Figure 3.1: Relationship among DL, ML and AI

is the subset of both ML and AI, which is focusing on problems in the

world of big data and Deep Neural Networks and the idea that the sys-

tem can learn from raw data without feature engineering or any human

assistance [36]. The relationship among the three concepts can be seen

in Figure 3.1.

When we say that the system is able to learn from the data we

usually talk about two types of learning: supervised and unsupervised.

In supervised learning, the goal is to learn a mapping from input x to

output y, when given a labeled set of input-output pairs. When the

output y is categorical the problem is known as classification, whereas

when y is a real-value variable the problem is called regression. On the

other hand, in unsupervised learning, we are only given the input x and

the goal is to find patterns in the data. This problem is not a well-

defined one, and we are not told what kind of patterns to look for, thus

this method is usually associated with knowledge discovery [37].

Even though pattern recognition and statistical ML are very power-

ful tools, they require proficiency and expertise from the data domain
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Figure 3.2: Schematic representation of Deep Neural Network (NN).

to solve the problem imposed in the thesis - providing diagnosis from

breast tissue biopsies. In other words, to do this type of ML with data

coming from histopathology, one must have specific knowledge in the

mentioned field and be able to transform the Whole Slide Image (WSI)

into meaningful features for further processing of the classifier or any

other learning system. Such feature engineering can be labor-intensive

and cannot scale well in general. On the other hand, it is obvious that

when it comes to processing data in its raw form these techniques fail

to produce meaningful results [38].

Therefore, the solution to this problem is coming with the growth of

computational power and resources and consequentially the rise of DL.

DL encompasses ML methods that are based on representation learning.

It allows computational models to learn representations of data with sev-

eral stages of abstraction obtained by stacking several non-linear mod-

ules that, starting from the raw input, transform data on multiple levels.

Different layers capture different motifs, such as edges and orientations

at the beginning and more complex objects as body parts or objects in
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the deeper layers. Therefore, the model is able to learn the important

features and internal structure of the dataset without the need for the

assistance of humans nor expertise and domain knowledge [38].

Usually, when we talk about DL we talk about Artificial Neural Net-

works (ANNs) or simply Neural Networks (NNs). NN is, simply said,

a computational model which transforms inputs into outputs through

a series of nonlinear computations. Every NN consists of at least one,

but usually many, basic computational units called neurons, which are

stacked in interconnected layers. They are represented with blue circles

in Figure 3.2. Each unit has inputs coming from previous layers, which

are processed in a specific way, and it has one output that is propagated

to the units in the following layer. The output of a neuron does not have

to be propagated to all of the neurons in the following layer, nor just

to the first following layer, but also the second, third, etc. There are

many ways in which the signals can be propagated and they are defining

the type of the NN [39]. Some of the examples are: fully connected

NN (Figure 3.2), CNNs, U-nets, Autoencoders, etc. The details about

some of them are going to be discussed later. All the layers which have

the units that propagate the outputs to the following layers are called

hidden layers. If the NN has more than one hidden layer it is considered

as a deep NN, but the definition is not strict and it varies in the litera-

ture. The main point is that deep NNs solve the problem hierarchically

through stacked layers of neurons performing different tasks.

The neuronal computational model is based on the work by Rosen-

blatt from 1958 [40]. Defining the parameters and their mathematical

relationships of one neuron can be seen in Figure 3.3. They are the

weights of the connections ω, the bias b, and the activation function

ϕ. We can have many different activation functions. The examples of

activation functions are sigmoid, hyperbolic tangent, and Rectified Lin-

ear Unit (ReLu), with the last one being the most used among them.
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The reason is the fact that it does not have the problem of saturation

of derivative which accelerates the convergence of the training of a NN,

and it is computationally very simple to calculate.

Figure 3.3: Schematic representation of a neuron in NN.

Assuming that the neuron has m inputs, we can define the output y

of the neuron as:

y = ϕ(

m∑
i=1

ωi × xi + b) (3.1)

When we say that NNs are able to learn from the data through train-

ing, it means that the weights and the biases of all the neurons in the

NN are iteratively updated as the NN attempts to minimize the certain

objective function. The objective function is usually the error, and it is

also called the cost or loss function. Learning is an optimization prob-

lem and we can use different algorithms to search through the space of

all the possible parameters in order to obtain good enough predictions.

Typically, a NN is trained using the gradient descent optimization al-

gorithm and the weights are updated using the error backpropagation

algorithm [41].
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Figure 3.4: Schematic representation of a CNN and its layers.

3.2 Convolutional Neural Networks

CNNs are a very popular and powerful method for solving computer vi-

sion problems and perform image analysis. The architecture of CNNs is

inspired by the receptive field structures which are found in the human

primary visual cortex in the brain. This means that individual neurons

respond only to the small region of the visual field, but the larger collec-

tion of neurons covers the whole visual area [42]. As a consequence, the

main characteristic of these networks is not to do the mapping of input

to output, but to learn the internal structure of the data.

In order to use CNNs, we do not need to extract hand-crafted fea-

tures, because the network will do this for us by learning the filters

which are applied to the input. CNNs are always deep NNs because

they learn the structure of data on different levels. Firstly, they learn

how to extract simple details like vertical and horizontal edges, and then

from them pass to the extraction of colors, part of the objects, or more

complex patterns. The structure of this type of NNs typically consists

of two types of layers that are repeated several times (in-depth) called

convolutional and pooling layers. Convolutional layers are working as

filters to the input image, and there can be many filters applied at once

producing many processed images as a result of the output of the layer.
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The convolution function is defined as follows [43]:

S(i, j) = (f ∗ g)i,j =
p−1∑
k=0

q−1∑
l=0

fi−k,j−l × gk,l (3.2)

where f and g are two matrices of dimensions m x n and p x q,

respectively. In case of CNNs the matrix f is the input image and the

matrix g is a filter (kernel). The output is sometimes called the feature

map. Convolutional layers are followed by the activation function. Af-

ter the convolutional layers, the CNN typically has a pooling layer. It

is a form of non-linear downsampling which, after partitioning the im-

age in rectangles, chooses a specific value from each rectangle, usually

maximum, and produces it as the output. The main advantages of this

operation are the elimination of noise, reduction of computation times

for upper layers, and translation invariance. It should be noted that

pooling reduces the size of the feature maps. After that, the network

usually has a couple of fully connected layers which are processing the

features produced by the convolutional backbone part of the NN. An

example of CNN architecture is shown in Figure 3.4.

The main motivations behind the use of convolutional layers are

sparse interactions, parameter sharing, and equivariant representations.

In simple feedforward NN every output of a hidden layer is interacting

with every neuron in the following layer. On the other hand, CNNs

have sparse connections obtained by making the filter smaller than the

input, thus allowing us to compute the output quickly and store a smaller

number of parameters. This means that, in order to obtain the same

performance as feedforward NN, CNN needs a smaller number of layers.

Figure 3.5 shows the difference between fully connected layers seen in

Figure 3.2 and layers with sparse connections. Parameter sharing refers

to using the same parameter for more than one function in a model as

seen in Figure 3.6 where the dark blue line represents weight with the

same value. Simply said, we are doing the convolution of the input image
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Figure 3.5: Sparse connections Figure 3.6: Parameter sharing.

part by part with the same filter, so each element of the filter is used at

every position of the input. On the contrary, in a traditional NN, each

element of the weight matrix is used exactly once when computing the

output of a layer. It is multiplied by one element of the input and then

never revisited. This is further reducing the storage requirements and

lessening the time needed for training. The particular form of param-

eter sharing causes the layer to have a property called equivariance to

translation. This means that if the input changes, the output changes

in the same way [43].

To summarize, these were the main characteristics of CNNs, which

are the motivation for their use in the problems of classification of

histopathological images.

30



Related Work 4

Breast cancer detection is a challenge addressed from many points of

view, and using different methodologies. This Chapter presents the main

branches of this challenge, and goes through the related works from the

literature, which are important for the research. We are going to explain

different types of data that can be used, and different methods from more

traditional roads, to the Machine Learning (ML) ones, explaining their

advantages and disadvantages for solving the proposed problem. We will

mainly focus on the problem of classification, and on works related to

breast cancer datasets, since they are the topic of this thesis. Section

4.1 summarizes works related to the mammogram analysis since it is the

first step towards breast cancer detection. Section 4.2 presents the state

of the art in histopathological image analysis for the same task. Finally,

in Section 4.3 we address the problem of datasets, data availability, and

computational resources needed for achieving the results, and how these

factors affect the research and implementation of given solutions in real

hospitals.

4.1 Mammography Images Analysis

Mammography is the gold standard for breast cancer screening. In fact,

this is usually the first test that the person undergoes when comes to

an examination. It should be noted that a false negative in this context

means that the person would be left untreated, and probably sentenced

to a fatal end because of the disease. That is why many works are

addressing the problem of breast cancer detection from mammograms.
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These works usually aim to identify suspicious masses, calcification or

any sort of abnormalities [44] [3].

Some works use more traditional preprocessing with Gaussian fil-

ters, Otsu thresholding, and region growing techniques from which the

features are extracted and fed into a Neural Network (NN), or another

type of classifier, that predicts the image as benign or malignant [34],

[45]. Several other papers successfully employ Convolutional Neural Net-

works (CNNs) to obtain the classification of the lumps using extensive

augmentations on the mammography images showing that Deep Learn-

ing (DL) can be used for this sort of problems [4]. In order to obtain

more detailed images, some of the researchers use Magnetic Resonance

Imaging (MRI) modality to get the information about the breast lumps

[46]. These can be particularly useful for younger women with denser

breast tissue, and for the detection of very small lesions that are missed

on the mammograms because of their lower resolution.

Nevertheless, even though least stressful and non-invasive, this type

of examination is not able to confirm whether there are cancerous cells

or not, or whether the lump seen on the image is benign or malign.

Therefore, the biopsy method is currently considered the only way to

confirm the presence of cancer with higher assurance, but also the only

method that is able to differentiate among sub-types of tumors.

4.2 Histological Images Analysis

Histological images are the most accurate resource of data for cancer

detection. Moreover, manual analysis that is nowadays done in the lab-

oratories by experts, experienced pathologists, is time-consuming, and

besides that, it has problems of inter and intra observer discordance

[5]. Therefore, Computer Aided Diagnosis (CAD) systems, that can

automatically process histopathological images, are going to accelerate

and standardize the analysis, and improve the outcomes. In the next
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sections, we go through some of the ways to automate these analyses

through ML methods proposed by researchers.

4.2.1 Shallow methods

Shallow methods aim to classify the images based on the features ex-

tracted from them. That is why feature engineering is a very important

step of these methods since it is used as the first step to reduce the

number of dimensions and to provide relevant information related to the

task. Features are usually based on histograms, textures, or counts of

different elements, and they require specialized domain knowledge. They

also require specific image preprocessing which includes different filters

and transforms to exaggerate particular characteristics of the image. For

example, one of the works by Marugame et al. is using morphological

operations and Gabor wavelet transform on the dataset. They report

a 66% true classification rate using Bayes classifier on three-class clas-

sification (cancerous, normal/benign, and precancerous) [6]. The other

work by Chen et al. proposed a method based on a pixel-wise Support

Vector Machine (SVM) to differentiate tumor nests from stroma, and a

marker-controlled watershed algorithm for nuclei segmentation [47].

One popular shallow method for classification in the literature is

Random Forest (RF). For example, Basavanhally et al. use a different

patch sizes procedure for the Whole Slide Image (WSI) from which they

extract morphological, textural, or graph-based features. They analyze

which features are more informative for different sizes of patches and

associate them with them. Afterward, they use RF classifier on aggre-

gated multiple field of view patches to distinguish between tumor grades

in breast cancer from histopathology tissue images. They classify low

versus high, low versus intermediate, and intermediate versus high grade

and obtain an area under curve values of 0.93, 0.72, and 0.74, respec-

tively [48]. One more paper employing RFs, as well as SVMs and some
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other shallow methods like K-nearest neighbors and Logistic regression,

is reporting high accuracy for the detection of cancer in WSI: AUC =

0.97-0.98 for tumor detection within the whole image area, AUC = 0.84-

0.91 for tumor vs. normal tissue classification. The features extracted

from the WSIs include information about texture, spatial structure, and

distribution of nuclei. The authors of this work (Valkonen et al.) claim

that they provide explainability to the results and the way in which the

algorithm makes decisions based on the given features. The method

was evaluated in breast cancer metastasis detection from lymph node

samples [7].

The most important shortcoming of these works is their low efficiency

together with high complexity due to the huge amount of features. They

require specific expert knowledge which is not easy to obtain for such a

study, and even harder without a personal bias. Moreover, in general,

they are not able to scale well.

4.2.2 Deep Learning methods

DL methods are very powerful when it comes to classification, automatic

feature extraction, or retrieving information from the larage datasets.

They do not require pathology domain knowledge and they are able to

generalize well.

One of the first works to employ DL in histopathological image clas-

sification was done by Cruz-Roa et al. in 2014. They employed a custom

3-layer CNN to classify patches obtained from WSIs. The authors report

an F-measure, and balanced accuracy of 71.80% and 84.23%, respec-

tively, when classifying patches in two classes - one containing Invasive

Ductal Carcinoma (IDC), and one being healthy [8]. The same dataset

is also used in the work by Reza et al. from 2018, who, similarly to Cruz-

Roa et al. used a custom 3-layer CNN, but in addition, tried to balance

the classes in the dataset with different techniques like Synthetic Minor-
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ity Over-sampling Technique (SMOTE). They showed an improvement

in the performance, with respect to earlier works, obtaining an F1 score

of 84.78% and a balanced accuracy of 85.48% [49]. Later works started

to rely more on findings from computer science, and other specialized

domains where distinctive NN architectures showed impressive perfor-

mances. The dataset presented by Cruz-Roa et al. is further exploited

in the work by Romero et al. from 2019, which used multilevel batch

normalization with Inception network [50], and obtained a balanced ac-

curacy of 89% and an F1 score of 90% [51]. One more work utilizing

the same dataset is presented by Celik et al. from 2019, who obtained

an F1 score 94.11% and balanced accuracy value of 90.96% using Resid-

ual Neural Networks (ResNets) [52], and an F1 score of 92.38% and a

balanced accuracy value of 91.57% utilizing Densely connected Neural

Networks (DenseNets) [53] on their best trained models [54].

Another work, done by Bejnordi et al. in 2017. proposed a system,

using VGG networks [55], for classification of breast biopsy WSI. They

used two VGG-like networks, one for classifying WSI into epithelium,

fat, and stroma, and the second one to distinguish between cancerous

and healthy parts of stromal regions. Finally, they extracted two sets

of features from both network outputs and used RF in order to perform

the classification of WSI into healthy or cancerous class, obtaining an

area under the curve (ROC) of 92% [56].

At this point, we are going to mention two big challenges in histopathol-

ogy image analysis which are moving the benchmarks in the field, as

many teams are competing over the same data.

The first one is BASH [9]: Grand challenge on breast cancer histol-

ogy images which was conducted with the 15th International Conference

on Image Analysis in 2018. It aimed at the classification and localization

of different classes in microscopy and WSIs. Different research groups

showed that CNNs are the most successful in the challenge. The most
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outstanding work was done by Aresta et al. who obtained an accuracy

of 87% using ensembles of DenseNets [53] and ResNets [52] on four class-

classification of microscopy images. Ensembles are sets of classifiers that

have their results combined to provide predictions for the selected prob-

lem. Separately, classifiers usually do not perform very well on the task,

but, if the errors are uncorrelated, their combination can produce over-

all satisfying results. Ensemble results can be obtained in several ways,

but the most common ones are majority voting or taking the median or

average of the produced predictions by separate classifiers.

The second challenge is the CAMELYON Challenge [10] whose goal

is to develop algorithms to detect cancer metastasis in lymph node WSI.

The winner of this challenge in 2016 was the group of Wang et al. They

obtained an AUC of 0.925 for classification of WSI in metastatic breast

cancer or healthy one [57]. They used four well known CNN architectures

for this task: AlexNet [58], VGG [55], GoogleNet [59], and FaceNet [60].

All of these papers and challenges are showing that DL methods are

very powerful tools for obtaining competitive results on the classification

of anomalies like cancer in histopathological images without the assis-

tance of experts in pathology. They showed that they can be a relevant

and reliable part of CAD systems, and reduce the manual labor done

by the doctors. Moreover, computer vision and DL algorithms are the

center of attention in today’s computer science world thus, new tools

and methods are proposed on an everyday basis and they can be used

for solving histopathological automation tasks.

4.3 Data availability and evaluation challenges

Even though the number of papers in this research domain is rapidly in-

creasing, we should underline some of the limitations on data availability,

and the evaluation process of the presented algorithms.

First of all, we should note that different works are using a differ-
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ent type of images in datasets. In particular, there are two types of

datasets containing microscopy images and WSI, respectively. The for-

mer are usually smaller in size, which is in the order of 1k pixels in width

and height. The labels are usually image-based, and not region-based,

which means that all the patches from one image are annotated with the

same ground truth, even though they might belong to a different class.

Datasets that contain this type of image are BreakHis [61], and BASH

challenge dataset for classification. The latter type containing WSIs,

are the result of digitization of entire slides without loss of biopsy tissue.

They provide better resolution for the pathology assessment. The size

of these images is in giga-pixels and that is why the automatic analysis

of these images requires a lot of computational resources, meaning that

they are very memory consuming and computationally expensive. Here

we usually deal only with regions of interest, that are divided into smaller

patches, and the rest of the image is discarded. A dataset that contains

WSI is, for example, the one used in the CAMELYON challenge and in

the work done by Cruz-Roa et al. mentioned in the previous Section.

Additionally, most of the datasets contain only hundreds of images,

which brings bias to the obtained results. That is not enough to pro-

pose generalized solutions, and all the results should be taken cautiously.

Multiple papers analyzed in the previous Section, propose and validate

solutions based on private datasets which are partly, or even not at all

publicly available, limiting the reproducibility of the results. Moreover,

many authors omit specific details of the implementation. When it comes

to DL they usually specify the type of architecture used, but they rarely

go into details on specific hyperparameters, like batch size or learning

rates, or adaptations of last layers for classification used for the imple-

mentation. They never go into details about data augmentation and the

ranges used for the transformations done on the images. Additionally,

when it comes to the training of the models, they do not show the graphs
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of the training accuracy history. None of the works reports the results

on cross-validation nor they explain how they did the split of data in

training and validation datasets. Finally, and maybe most importantly,

they almost never specify which computational resources they had, and

for how long they trained the NN, and this is very important for this

type of research especially with WSIs. In the WSI case computations

can never be done locally, and additional servers with multiple GPUs

are required. That is why all the results from the related works should

be considered carefully when trying to compare the obtained results and

assess the reliability of the methodology.

These are all the limitations and shortcomings of the related works

which need to be resolved to reach better and reliable results before they

can be considered as real benchmarks in the field.

4.4 Summary

This section gave a brief overview of the trends in the field of breast

cancer detection, the results, and the main drawbacks of the literature.

Since the imaging exams are the first step in breast cancer detection

in medicine, we decided to dedicate the first part of the related works to

the results in this field. As we saw, many works are successfully able to

segment and classify masses as benign or malign which is crucial for the

rest of the procedure. In fact, mammography is usually the first exam in

breast cancer assessment and based on its results the patient is selected

for the biopsy or other procedures.

From here we move to histology images analysis mentioning the so-

lutions that used shallow as well as DL algorithms for classification. It is

very important to understand which is better for the task and which of

the two approaches is going to thrive in the future because of research in

other biomedical and computer science domains. Therefore, even though

results of the works using shallow methods are producing comparable re-
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sults, the space for research in DL domain is definitely larger and more

prosperous because of the increase of available data. Furthermore, DL

methods are going towards models that are able to generalize better

in different tasks and provide the framework for the fusion of different

histopathological tasks in the future.

Finally, we addressed the problem of repeatability and validation

which are important for the possible deployment of these systems in the

medical practice.
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This Chapter explains the chosen methodology, its general concepts, as

well as the implementation details which are used for the development

of the BRAVE AI pipeline proposed in the thesis. Firstly, in Section

5.1 we give a complete overview of the pipeline followed, while the rest

of the sections are going into details with different parts of it. Section

5.2 gives information about the dataset and provides its analysis which

is influencing other implementation details in further work. Section 5.3

shows how to address the problems which can occur during training

deep NNs. Section 5.4 provides information about particular deep NN

architectures used in the work, and their general overview along with

the modifications and training details. Finally, in Section 5.5 we explain

the evaluation metrics used to analyze the performance of the pipeline.

5.1 BRAVE AI Pipeline Overwiev

This Section provides a general description of the methodology employed

in the thesis, with all the steps performed to obtain the final results.

The main goal of this section is to provide a general understanding of

the framework before going into details regarding the constituting steps

of the methodology and implementation.

The pipeline employed is a Machine Learning (ML) one, and it can

be divided into three distinctive parts as shown in Figure 5.1. The first

one is the dataset analysis and preparation. We are working with a

dataset consisting of patches coming from Whole Slide Images (WSIs),

which need to be loaded and stored for further analysis. Afterward,
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Figure 5.1: BRAVE AI pipeline proposal.

we remove the patches which do not contain useful information about

the presence of Invasive Ductal Carcinoma (IDC) on the image, in fact,

they are providing no useful information about the content of the WSI.

Finally in this part, we provide basic statistics about the dataset, about

the number of patches per WSI, and the percentage of those containing

the cancerous tissue. This is giving insights into the way the dataset

is balanced and its dimensions, and how to handle this in the following

parts of the pipeline. Next, we move forward to methods for reducing

the overfitting on the training dataset.

After the dataset analysis and preprocessing, we proceed with the

part of the pipeline related to choosing and modifying the Neural Net-

work (NN) architecture which is well suited for the imposed problem:

decision making in histopathology of breast cancer. After careful reason-

ing on Deep Learning (DL) models, we are proposing two architectures:

Residual Neural Network (ResNet), and Densely connected Neural Net-

work (DenseNet) which are among the most popular architectures for

image classification. They are very deep structures with additional con-

nections for the propagation of information that are not suffering from

training problems typical for deep architectures, and, at the same time

they are more accurate and easier to train. Their details are provided

in the following sections. The output of the NN is the probability that

the image patch is IDC positive, i.e. that it contains cancerous tissue.

Finally, the last part is the model evaluation. We carefully reason

on which evaluation metrics should be used in medical problems, and
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explain the differences and common misconceptions about them. This

is highly challenging because of the nature and characteristics of the

dataset. Therefore, giving an estimation on how good the model is,

and how sure about the results we are, is crucial for medicine, since the

treatment and handling of the disease can be highly affected by this.

5.2 Dataset

This section provides information about the dataset used in the thesis.

Having a dataset which is reflecting well the problem in the real world

is crucial for ML models because they are using the data to learn and

memorize the information which is used for making future predictions.

Therefore, the dataset must contain information about the events or ob-

jects of interest, reflect its true nature, and as many of its variants as

possible. Even though having an infinite dataset seems like the perfect

solution, it is not because of the computational power and memory re-

sources that are available for training the model. In Section 5.2.1 we

provide basic information, while Section 5.2.2 explains the preprocess-

ing, data cleaning, and statistics about the dataset which are influencing

further decisions in the work.

5.2.1 Dataset General Information

The work of the thesis relies on the dataset used by Cruz-Roa et al. [8].

The dataset originally comes from the University of Pennsylvania and

The Cancer Institute of New Jersey, and it consists of WSIs of IDC,

from 162 women. All slides were digitized via a whole-slide scanner at

40x magnification with the resolution of 0.25 µm/pixel. Ground truth

annotations of the cancerous regions in the image were provided by a

pathologist. They used images with 2x magnification in order to decrease

the time needed to provide annotations, with the cost in precision. This
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(a) (b)

Figure 5.2: Figure (a) shows ground truth annotation. On Figure (b)
is shown result of patching of WSI. Red patches correspond to positive
examples of IDC and green patches correspond to negative examples.

means that some stromal and non-invasive tissue near the IDC region is

included in the region that is labeled as positive, even though it is not.

In the original paper by Cruz et al., they used non-overlapping patches

of 100x100 pixels size, while in this work we used 50x50 pixels images.

The dataset consists of 277,524 RGB patches (198,738 IDC negative and

78,786 IDC positive). Patches that contain only fat tissue or background

are discarded from the dataset. In Figure 5.2a can be seen a WSI with

pathologist’s annotation, and in Figure 5.2b can be seen the result of

patching after discarding irrelevant patches.

This dataset has been used in the state of the art in several works [8],

[51], [54], [49]. Furthermore, this dataset has a sufficient amount of WSIs

which are patched and labeled. This is very important because of the size

of WSIs that is originally in gigapixels (around 1010 pixels) which makes

them extremely computationally expensive to work with and even their

storage represents a problem since they can occupy a couple of terabytes

of hard disk space. Moreover, this dataset is increased in size and now

consists of 279 WSIs and can be found open-sourced on Kaggle 1.

1https://www.kaggle.com/paultimothymooney/breast-histopathology-images
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Figure 5.3: Examples of IDC positive patches.

Figure 5.4: Examples of IDC negative patches.

5.2.2 Dataset Analysis and Preprocessing

Since the approach, we are taking in this work is exclusively a DL one,

the exhaustive preprocessing of the dataset is not required, nor extract-

ing any kind of features. The whole images are passed as inputs to the

NN and the network is extracting features and important information

by itself through its layers of neurons. The original dataset has 277,524

images of 50x50 pixels from which 78,786 were IDC positive and 198,738

were IDC negative. This distribution makes the dataset unbalanced

and this has consequences for the training of the NN. The examples of

patches belonging to the class of IDC positive are shown in Figure 5.3,

and the ones belonging to class of IDC negative are shown on in Figure
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Data: dataset
Result: dataset without non-informative patches
for t=1,...,number of patches do

image = dataset(t);
if image shape is different than (50,50,3) then

remove image from dataset;
end
for r=1,...,number of channels do

add to count1 pixels in channel r with value <
threshold_min;
add to count2 pixels in channel r with value >
threshold_max;

end
if count1 or count2 > threshold_pix then

remove image from dataset;
end

end
Algorithm 1: Pseudocode for removing the non-informative image
patches from the dataset

5.4. Every image name consists of the patient ID, the coordinates where

the patch is located in the WSI, and the class to which the patch be-

longs. An example of file name is 9255_idx5_x401_y851_class0 where

9255idx5 is the unique patient ID, x401 and y851 are coordinates and

class0 is putting image patch in class of IDC negative samples.

Since the dataset is annotated coarsely as we explained in Section 5.2,

we removed from the dataset images which are not exactly 50x50 pixels,

and images that are mostly black or white. Algorithm 1 shows how the

patches were removed. Thresholds for pixel values were chosen as values

that are 10% higher or smaller than the minimal and maximal value of

the pixel range ([0, 255]). We then count the number of pixels that are

out of the restricted range for pixel values. The count threshold needed

to remove the image from the dataset was set to 80% of the number of

pixels in the image for all of the three channels together (6, 000 pixels).

The number of patches after the removal of the non-informative ones is
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Figure 5.5: Number of patches from all classes per WSI.

Figure 5.6: Percent of patches with IDC positive class per WSI.

270, 544, which means that we have removed 6, 980 patches (2.52% of

all the patches). After the removal, we have 192, 004 of healthy patches

and 78, 540 belonging to cancerous regions. From Figure 5.5 we can see

that most of the images have from 0 to 2, 000 patches. From Figure 5.6

we observe that the WSIs contain mostly non IDC tissue which is also

reflected in the class imbalance of the dataset.
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5.3 Reducing Overfitting

As we saw in the previous Sections, the dataset that we use does not have

a large amount of WSI and deep NNs are hard to train from scratch with

a small amount of data. In these cases, they are prone to overfitting since

the capacity of the NN is many times bigger than the variance carried

by the dataset and thus it performs poorly on unseen data. But we can

at least partially solve this problem using two ML approaches:

• Transfer Learning. In these cases, we approach the problem by

using an already trained NN on a bigger dataset like ImageNet

[62] to extract the features and then use them with another shallow

classifier. This basically means that the network is using already

learned filters, and we are relying on the fact that simpler filters

are equally important in both datasets. This process is also called

fine-tuning. We are explaining how we do this in Chapter 6.

• Data Augmentation. This technique means that the images are

transformed using affine transformations like rotating, flipping,

shearing, etc. In this way, we are adding noise to the dataset

and the NN will learn how to generalize better on images and re-

duce overfitting. Another way to do data augmentation is to patch

the images. This is especially the case with WSIs that can have

thousands of pixels and different parts of the image can look very

different and even belong to different classes.

At this point, we are going to provide information about the aug-

mentation that we have done on the dataset. We apply horizontal and

vertical flips, and color jittering with values of 0.05 for brightness, hue,

and saturation. Finally, we also do normalization to mean and stan-

dard deviation for the three channels as follows: [0.485, 0.456, 0.406],

[0.229, 0.224, 0.225] because of the requirements for the pretrained mod-

els. As we are working with patches, and not looking at the WSI of
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Figure 5.7: Examples of augmentation of different patches.

tissue, we are not losing spatial connections among patches. Addition-

ally, all of the mentioned transformations are creating realistic examples

of histopathology patches because cells and tissues can also be stretched

and vary in size. The examples of augmentations can be seen in Figure

5.7. The augmentation is done only for the training part of the dataset,

and not for the validation considering that the model needs to be vali-

dated on the same dataset every time to make decisions about the model

and its parameters.

Moreover, it should be noted that the traditional pipeline for aug-

mentations assumes doing the augmentations before continuing with the

classifier, whereas our framework does augmentations on the fly. So, in-

stead of showing the exact same item at every epoch, there is a variant

that has been changed in a different way each time. So after three epochs,

the model has seen three random variants of each item in a dataset.
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5.4 Deep Neural Networks

It is known that simple NN with only one wide layer can learn to repre-

sent any function given enough training data. But the issue arises with

increasing the number of neurons in the same layer because the algo-

rithm becomes prone to overfitting and its generalization error is going

to increase. In fact, we may say that such networks are very good at

memorization, and not at generalization. This means that the network

will perform very well on already seen samples, but with the new ones

will completely fail. Therefore, the networks needed to become deeper,

i.e. to have more hidden layers.

In theory, as you make a NN deeper, it should only do better and

better on the training set. Empirically, as the number of layers increases,

the training error will tend to decrease, but after a while, it will start to

increase. This is the problem of vanishing or exploding gradients that

can arise during backpropagation [63]. This is due to the fact that each

of the weights in the NN receives an update proportional to the partial

derivative of the error function with respect to the current weight in

each iteration of training. If the gradient at the output of the network

is small its propagation backward is going to make the error smaller and

smaller as we are reaching the layers closer to the input, and in extreme

cases, the updates of those layers are going to be negligible. This means

that the weights in the NN are not changing therefore, the NN is not

learning. The opposite thing may happen if the gradients are too large:

they become larger and larger until the weight update goes to infinity.

In both cases, the updates become meaningless and the NN is not able

to learn the patterns.

Moreover, this is not the only problem that very deep networks may

have. If there are many layers the training may be very computationally

expensive and need a lot of memory, or just take too long to train.

Nevertheless, deep NNs are a very powerful tool and that is why the
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Artificial Intelligence (AI) community finds deep NNs very interesting

as a research domain and produces many new architectures as solutions

to the problems mentioned above. In the next section we are going to

explain the ones used in this work.

5.4.1 Residual Neural Network - ResNet

Inspired by the pyramidal cells from the cerebral cortex, comes the idea

of ResNets, which can facilitate solving some of the mentioned problems

and make the NN deeper. The architecture of ResNets introduces the

concept called Residual Learning. This network uses a method called

skip connections or shortcuts, which skips training from a few layers and

connects to the neurons in some of the subsequent layers. This work was

presented in 2015 by He et al. [52] and it was a major breakthrough in

training very deep NNs.

Figure 5.8 represents a small part of a simple feedforward NN where

l represents the layer, and a[l] the activation in that layer.

Figure 5.8: Simple feedforward NN block.

Starting from activation a[l] in the layer l we firstly apply linear

operations as written in matrix Equation 5.1 where W represents the

weights of the connections and b are the biases. The result of the linear

operation z is now the input to the non-linear function g() which is the

activation function in the layer [l + 1]. The analogue operations are

applied in the following layer. The mathematical equations ruling this

process are:
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z[l+1] = W [l+1]a[l] + b[l+1] (5.1)

a[l+1] = g
(
z[l+1]

)
(5.2)

z[l+2] = W [l+2]a[l+1] + b[l+2] (5.3)

a[l+2] = g
(
z[l+2]

)
(5.4)

On the other hand, in ResNet, except this main flow of informa-

tion, we add new connections that are skipping some of the layers. The

authors of [52] also call them identity mappings. This can be seen in

Figure 5.9. These connections are not adding computational complex-

ity, nor new hyperparameters to tune and the backpropagation training

algorithm for the NN stays the same.

Figure 5.9: Residual block.

Mathematically, there is only one change in the flow of data in Equa-

tions 5.1 - 5.4 and it comes before applying non-linear function in Equa-

tion 5.4:

a[l+2] = g
(
z[l+2] + a[l]

)
(5.5)

It should be noted that, in the mathematical equations we provided,

the shortcut skips only one layer whereas in chosen architecture we can

skip as many layers as we want. If we look at the corner case where
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the weights tend to go to 0, and with it z[l+2] goes to 0 the result of

the non-linear function is going to be at least equal to the activation of

the layer l which is a[l]. This means that it is very easy for ResNet to

learn identity mappings. Therefore, by adding more residual blocks, the

NN is going to perform at least the same as without them, but in many

more cases, the deeper layers will be able to learn useful mappings from

the data.

5.4.2 ResNet18 implementation

We started the research with a smaller and simpler ResNet model with

18 layers. The activation functions and the max/average pooling layers

are not counted in the 18 layers. The architecture starts with a 7x7

kernel size and 64 filters. Here begins the first residual block. Then we

have 2 convolutions with kernel size 3x3 and 64 feature maps. This is

where the residual block ends and the feature maps are added together

to the next block. The same residual block is repeated once again. Then

the network continues with 3 more stages, and each of them having two

residual layers with 2 convolutions. All filters have a 3x3 kernel size,

but the number of filters is increasing twice in every following stage.

The network is ending with a fully-connected layer and the softmax ac-

tivation. We are using already validated models implemented in the

PyTorch. In our implementation, we are removing the last fully con-

nected layer and adding 3 fully connected layers with 512, 256, and 128

neurons respectively ending with the softmax for classification. After

the Rectified Linear Unit (ReLu) activation in each layer, we are adding

batch normalization and dropout of 0.2.

5.4.3 ResNet50 implementation

In the second experiment, we have increased the capacity of the ResNet

and implemented ResNet50, a residual network that has 50 layers di-
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vided into several stages. The activation functions and the max/average

pooling layers are not counted in the 50 layers. It should be noted that

this implementation has shortcut connections that are not skipping two

layers like ResNet18, but three layers since we are adding 1x1 convolu-

tions. In the first layer, we perform the initial convolution using 7×7

kernel sizes and 64 filters, which is the same as in ResNet18. Next, we

proceed with a stage that has three residual blocks with the number of

filters being 64, 64, and 256 which is repeated 3 times adding 9 more

layers. Every next stage of the network is doubling the number of feature

maps in every residual block of the stage. Residual block is repeated 4,

6, and 3 times in the next three stages (2, 3, 4) respectively. Initially,

the ResNet50 as the last, 50th layer, has a fully connected layer with

the softmax for classification. We are using already validated models im-

plemented in the PyTorch. In our implementation, as in ResNet18, we

are removing the last fully connected layer and adding 3 fully connected

layers with 512, 256, and 128, respectively, ending with the softmax for

classification. After the ReLu activation in each layer, we are adding

batch normalization and a dropout of 0.2.

5.4.4 Densely Connected Neural Network - DenseNet

One of the more recent solutions to making the NNs deeper are DenseNets

introduced by Huang et al. in 2017 [53]. They are exploiting the idea

that deep NNs are more efficient to train if they contain shorter connec-

tions among the layers close to the input and those close to the output.

In order to achieve this, each layer in the dense block connects to every

other layer in a feed-forward fashion. Figure 5.10 shows one example of

5-layer dense block.

Traditional Convolutional Neural Network (CNN) with L layers have

L connections while DenseNet has L(L+1)/2 direct connections in one

DenseNet block. Moreover, in contrast to ResNets where we sum acti-
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Figure 5.10: A 5-layer dense block.

vation of the previous layer before the non-linear function, in DenseNets

the activations from previous layer are concatenated before being passed

into the following layer as written in Equation 5.6. This increases the

variation of the inputs and passes forward all the knowledge from the

previous layers thus it is increasing efficiency. Mathematically, the equa-

tions we had for traditional NN 5.1 - 5.4 need to be changed with the

following ones:

A[l] = [a[0]a[1]...a[l]] (5.6)

z[l+1] = W [l+1]A[l] + b[l+1] (5.7)

a[l+1] = g
(
z[l+1]

)
(5.8)

The advantages of DenseNet are: alleviation of the vanishing-gradient

problem, improving feature propagation and increasing feature reuse,

and reducing the number of parameters that need to be learned. Since

each layer receives feature maps from all of the preceding ones with fea-

tures with different complexity levels, so the knowledge is passed more
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efficiently and the network can be smaller and more compact. Further-

more, dense connections have the effect of regularization, which reduces

overfitting when training with smaller datasets. Additionally, since each

layer has direct access to the gradients from the loss and the original

input signal, it can be interpreted as deep supervision. Deeply super-

vised CNNs have classifiers attached to intermediate hidden layers which

are forcing them to learn more discriminative features [64], while in

DenseNet we have only one loss function which provides direct supervi-

sion to many intermediate layers not just to the last one.

5.4.5 DenseNet121 implementation

In order to further increase the capacity of the model, we have imple-

mented a DenseNet with 121 layers. The architecture starts with 5

convolutonal layers and it is followed by 4 dense blocks. Between each

of the dense blocks there is a transition block which is used to downsam-

ple the feature maps using the pooling operation. The first dense block

consists of 1x1 and 3x3 convolutins, resulting in 32 feature maps, which

are repeated six times. Every next dense block has convolutions of the

same size repeated 12, 24, and in the last layer 16 times. At the end

there is one fully connected layer with the softmax for classification. We

are using already validated models implemented in PyTorch. In our im-

plementation, we are removing the last fully connected layer and adding

3 new fully connected layers with 512, 256 and 128 neurons, respectively,

ending with the softmax for classification. After the ReLu activation in

each layer we are adding batch normalization and a dropout of 0.2.

5.4.6 Training

Training a NN means finding the appropriate weights of the NN connec-

tions in the feedback loop thanks to the algorithm called backpropaga-

tion. The loop starts with presenting the model with the inputs which
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for each epoch do
for each training iteration do

take batch of images and corresponding labels from
training dataset as input;
forward propagate the images and obtain the output;
calculate weighted cross entropy loss;
calculate and save training accuracy and loss values;
compute the gradient penalties;
propagate the gradients backward and update the weights;
update learning rate ;
if number of training iterations passed > threshold then

for each batch in validation dataset do
forward propagate the batch images and obtain the
output;
calculate and save cross entropy loss;

end
calculate accuracy on whole validation dataset;
calculate average loss on whole validation dataset;

end
end

end
Algorithm 2: Pseudocode for training of the NN and obtaining ac-
curacy and loss on training and validation datasets.

are propagated in feedforward fashion through the NN in order to get

the prediction. In our case it is the probability of the output class, the

one of healthy tissue and the other with IDC. After a batch of images

is propagated we can calculate the error function, commonly known as

loss of the NN.

Since the dataset used in the thesis is imbalanced, as shown in Section

5.2.2 we need to address this problem in the training in order not to

overfit on one of the classes. That is why we implemented the weighted

cross-entropy as the loss function as follows:

Jw = − 1

M

K∑
k=1

M∑
m=1

tk × ykm × log (hω (xm, k)) (5.9)
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where M is the number of training examples, K is the number of

classes, tk is the weight for class k, ykm is the target label for training

example m for the class k, xm is the input for training examplem, and hω

is the model with NN weights ω. The class weights are calculated as the

negative logarithm of fraction of specific class elements in all elements in

the dataset. Therefore, the class which has higher occurence will have

lower weight and vice versa. Minimizing the loss function is the final

goal of the training, and the way we update the weights and learning

rate is defined by the optimizer we use. Training is performed in a loop

epoch by epoch as shown in Algorithm 2.

5.5 Evaluation

Evaluation of the model requires the assessment of its ability to correctly

predict the output value for any given input. How the model generalizes

on unseen data is a highly important part of a ML project. Therefore, the

estimation of the model performance should be as realistic as possible.

In the Sections 5.5.1 and 5.5.2, we explain two methods used to evalu-

ate the proposed model namely holdout method, and cross-validation.

Moreover, a model can produce satisfying results when evaluated us-

ing one metric but may perform poorly when evaluated with another.

Therefore, it is very important to choose the metrics wisely depending

on a given problem. It should be also noted that different metrics are

used to evaluate classification and regression models, or any other which

goal is segmentation or natural language processing. In the Sections

5.5.3 and 5.5.4 we go into details for the metrics used in classification.

5.5.1 Holdout method

The holdout method is a way to estimate how well the model performs

on unseen data using only the dataset that we have for developing the
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model itself. In this method, depending on how much data we have,

the dataset is randomly split into two or three subsets, namely training,

development (validation), and test set. The fraction is usually 80 : 20

for two and 80 : 10 : 10 for three datasets.

The training dataset is used to fit the model, i.e. update weights

and biases until the loss function is minimized. Therefore, the model

learns from this data. A validation dataset is used to assess the model

performance on unseen data, providing its unbiased estimation. It must

not contain the data from the training dataset. Even though the model

itself is not learning from this data, we use it to choose the model hyper-

parameters like the number of layers or neurons in each layer. Therefore

validation dataset is affecting the model indirectly. Finally, the test set

provides the result of the model evaluation. It is used only once at the

end of the training of the model and it should be a well-made reflec-

tion of the real-world data. Moreover, if having a dataset like this is

not possible it is better to divide the original one only into training and

validation datasets. The holdout method gives, as the final performance

of the model, the assessment obtained on the validation dataset.

If a model fits the training set much better than it fits the test set,

overfitting is probably the cause. It means that it has memorized exam-

ples from the training dataset, without learning how to generalize on the

unseen data. If it is the opposite, the model underfits, which means that

the model does not have enough capacity, or that the validation/test

dataset is easier to learn than the training dataset.

The holdout method is very simple, and quick to execute, but its

main disandvantage is high variability depending on the dataset train/-

validation/test split and possible bias for the estimation.
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5.5.2 K- fold cross-validation

Another, more reliable method to estimate the model performance is

k-fold cross-validation. The dataset is, as in holdout method, divided in

training and validation subset but this divison is done multiple times in

order to reduce bias of the estimation. K-fold cross-validation involves

partitioning the original dataset into k subsets of equal size which are

called folds. The model is then trained on dataset formed from k − 1

folds that are combined together, and validated of the one that is left.

This is repeated k times, so that each of the k folds is used exactly once

as validation dataset. The performance estimation is then averaged over

all k trials to obtain the final unbiased performance assessment. The

number of folds k is usually chosen to be at least 5. It should be noted

that cross-validation is not giving the information of which model exactly

is the best, but how well that class of models is able to fit that data.

Moreover, it is computationaly very expensive since we have to train the

model k times.

5.5.3 Confusion matrix and standard metrics

Almost all commonly used measures of a model’s quality come from a

table known as confusion matrix or matrix of errors. Each row of the

matrix represents the instances in a predicted class, while each column

represents the instances in an actual class (or vice versa). A model is

perfect if this matrix is diagonal, which means that it is not making any

errors on the given data. Non-diagonal elements are errors. In case of

binary classification the dimension of the matrix is 2x2 and the classes

are classified as positive and negative one. Following that the generic

confusion matrix is shown in Table 5.1, and every cell from the table is

defining a specific concept.

True positives (TP) are positive instances that are correctly classified

by the model as positives. True negatives (TN) are negative instances
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Table 5.1: Generic confusion matrix.

Predicted Value
Positive Negative

Actual Value
Positive TP FN

Negative FP TN

correctly classified as negatives. False negatives (FN) are instances from

the positive class missclassified by the model as negative. False positives

(FP) are negative instances that are predicted to be positive by the

classifier. In our case, positives are the images that contain IDC, and

negatives are the images with the healthy tissues in it. Based on these

four terms we can define all of the metrics for the evaluation of a binary

classifier.

The first metric that is coming from the confusion matrix is the

accuracy. It represents the fraction of correctly classified instances in

the whole dataset, and it is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(5.10)

Accuracy is the most used metric in classification, but it should be

noted that it is not highly informative when classes are not balanced.

For example, if one class has 99% of all the samples in the dataset, and

the other class only 1% the accuracy of 99% can be achieved wiht a

classifier that puts all instances in the first class. Furthermore, there

are metrics that are not using all of the information from the confusion

matrix, but are relevant for the problem like precision, sensitivity (re-

call) and specificity. Precision is the fraction of true positive instances

among the positive instances (Eq. 5.11). On the other hand, sensitivity

is the fraction of true positives among all instances that belong to the

positive class of the dataset (Eq. 5.12), and specificity is the fraction of

true negatives among all instances that belong to the negative class of

the dataset (Eq. 5.13). Sensitivity and specificity are very popular in
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medical fields as ours. If we assume that having a condition means be-

longing to a positive class, a test that is highly sensitive will flag almost

everyone who has the disease and will not generate many false-negative

results, whereas highly specific model will flag correctly almost all true

negatives and will generate some false-positive results. These two are

connected and increasing one is often at the cost of the other. Further-

more, when in the field of medicine, very high sensitivity of classifier is

desired because we want to minimize false negatives. In other words, we

do not want to treat the person as healthy if the person is not because

it can lead to progressing of the cancers or tumors into higher stadiums

and eventually lead to death.

Prec =
TP

TP + FP
(5.11)

Se =
TP

TP + FN
(5.12)

Sp =
TN

TN + FP
(5.13)

It should be noted here that using only one of the metrics is usually

not relevant because it can lead to missleading results. For example, if

we classify all instances as positive ones sensitivity will be 1. On the

other hand, if we do the same for true negatives specificity will be 1.

In order to get more relevant results we sometimes use metrics that are

combining them, like F1 and balanced accuracy which are defined in

Equations 5.14 and 5.15, respectively. Balanced accuracy is good for

imbalanced classes.

F1 = 2
Prec× Se

Prec+ Se
(5.14)

Accb =
Se+ Sp

2
(5.15)
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It should be noted here what is the difference between the loss func-

tion and the metric in general. Loss functions are showing a measure of

the model performance, and they are used to train a ML model. They

should be differentiable with respect to the parameters of the model.

On the other hand, metrics are used to monitor and measure the per-

formance of a model both during training and testing, and they are not

used to update the model’s weights.

5.5.4 Reciever Operating Characteristic and

Precision-Recall curve

The Section 5.5.3 explained how the confusion matrix summarizes all of

the possible conditions of a binary classification task. What should be

noted here is that, usually, the output of the model is the probability that

a sample belongs to a class. In order to put a sample in one or the other

class we have to choose a cut-off threshold. The results change when

the threshold is changed, thus the performance with varying threshold

should be estimated. Threshold-invariant metrics, such as area under the

curve (AUC), are capable of measuring the overall model performance

despite any chosen threshold. There are two commonly used curve which

we are going to explain here - reciever operating characteristic (ROC)

and precision-recall (PR) curve.

ROC curve reports Sensitivity on y-axis vs. (1− Specificity), also

known as false positive rate (FPR), on x-axis calculated for different

thresholds of classification. A ROC graph depicts relative trade-off be-

tween benefits which are TP, and costs which are FP. There are several

points in the ROC space that are important to note. The lower left point

(0, 0) means that the classifier is never giving a positive class as a result,

thus it has neither FP errors nor TP instances. The opposite classifier

is represented by the upper right point (1, 1) which is always predicting

that sample belongs to positive class. The point (0, 1) represents perfect
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Figure 5.11: ROC curve.

Figure 5.12: PR curve.

classification. The classifier is better as the points are located more to

the upper left part of the ROC. If the classifier is random the ROC is a

diagonal line [65]. The example of ROC curve is shown in Figure 5.11.

Nevertheless, ROC curves can be misleading when it comes to work-

ing with imbalanced classes with a severe skew in the dataset where the
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minority class is more important. This is exactly the case in our dataset

and in medicine in general. Usually, disease is a rare condition, but it

is very important to be detected. In these cases, common alternative is

the PR curve, which shows the trade-off between precision and recall, as

shown in Figure 5.12. One thing that should be noted is that not every

point in the PR space is achievable. That is, for a given dataset it is

possible to construct a confusion matrix that corresponds to any sensi-

tivity and FPR pair, but it is not possible to do this for every sensitivity

and precision pair. It is shown that the size of the unachievable region

is a function of the class skew and it is equal to the fraction of positive

samples with respect to all classes [66]. When classes are balanced it is

equal to 0.5.
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In this Chapter we present the results obtained to validate the BRAVE

AI pipeline in this thesis. Section 6.1 provides information of the ex-

perimental setup in terms of programming language, frameworks, and

devices employed for the given analysis which are both the main resource

and the biggest constraint of this research. Section 6.2 presents the ob-

tained results by different Neural Network (NN) architectures. Section

6.3 summarizes the model performances and compare them with the

state of the art. Finally, in Section 6.4 we present the visualization of

the results on one WSI as it would have been presented in a possible

clinical environment.

6.1 Experimental setup and resources

The whole pipeline and the experiments have been developed in Python™,

which is a highly employed language for the development of machine

learning projects and applications. Characteristics that make Python

the best fit for ML-based projects are, in the first place, simplicity and

consistency, then access to good libraries and frameworks for ML, flexi-

bility, platform independence, and a wide community.

The biggest part of the work, meaning the neural networks and their

training, are developed in PyTorch which is a well-known open-source

machine learning framework [67]. Its main advantages are accelerated

tensor computations by exploiting graphical processing units (GPU) and

simplicity when it comes to building and training NN architectures.

Additionally, PyTorch offers dynamic computational graphs, which can
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be changed during runtime. For example, this is not enabled with its

main competitor TensorFlow which uses static computational graphs

[68]. This is highly useful when there is no estimation on how much

memory will be required for creating a NN model. It can be compared

to static and dynamic memory - dynamic memory is taken and released

on the fly and leads to better efficiency.

In particular we used Python version 3.6.8 and the version of PyTorch

1.7.1 with CUDA 11.1. CUDA (Compute Unified Device Architecture)

is a parallel computing platform and programming model developed by

NVIDIA for CUDA enabled GPUs. In GPU-accelerated applications,

the sequential part of the workload runs on the CPU – which is optimized

for single-threaded performance – while the compute intensive portion

of the application runs on thousands of GPU cores in parallel [69]. The

GPU used in this work is a GeForce GTX 1660 Ti.

6.2 Models

In the work of the thesis we explored how different models perform on

the dataset, starting from simpler ones and progressively increasing the

capacity. We did transfer learning starting from NN trained on ImageNet

dataset, which is the standard benchmark in any classification problems.

In all of the experiments we performed 10-fold cross-validation. Cross-

validation dataset splits are done on patients since having patches from

the same patient both in training and validation dataset is giving biased

estiomation of the model performance. This happens due to the cor-

relation of the patches from the same patient, and it could mean that

the model is seening in validation dataset almost the same data as in

training which is resulting in better performance estimation. It should

be noted that cross-validation estimation of the performance is usually

giving numbers which are more pessimistic than the best model that can

be trained on that data.
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Figure 6.1: Training and validation accuracy history of a ResNet18
model.

All NN models explored in the thesis, utilize the following parameters

for training:

• batch size equal to 32;

• stochastic gradient descent optimization;

• cyclic learning rate with minimum value 10−6, maximum value

10−3, and half-cycle length one third of steps in the epoch;

• batch normalization momentum of 0.3.

6.2.1 ResNet18 results

The first model developed in this work relied on ResNet18. In this

experiment we used transfer learning with all the layers frozen except

the last fully connected layers that we added to the network. The NN was
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trained for 2 epochs. The result on 10-fold cross-validation is (75.06 ±
2.92)%. We have chosen one of the best performing models from 10

folds, and the training history is shown in Figure 6.1.

We calculated all the evaluation metrics for this model and visual-

ized the confusion matrix on the validation data set. They are shown

in Tables 6.2 and 6.1, respectively. Analyzing the results obtained in

Table 6.2 we can see that area under the Precision-Recall (PR) curve

(PR_AUC) is 58.77% which is low, therefore we decided to plot the

PR curve and the distribution of the output probabilities that a patch is

containing cancerous tissue, and they are shown in Figures 6.3 and 6.2

respectively. We can observe that the PR curve is quickly going down

to the lowest value when recall is equal to 1.0 and that is the indication

that the model is not performing well on the given dataset. Similarly,

we can observe in Figure 6.2 that the output probability distribution is

indicating that the model is not sure in its predictions and that many

patches are around 0.5 which means that the model is not reliable.

Table 6.1: Confusion matrix of ResNet18 model.

Predicted value
cancer healthy

Actual Value
cancer 6738 2030

healthy 5534 16258

Table 6.2: Evaluation performance of ResNet18 model in [%].

Model Acc Se Sp F1 Prec Accb PR_AUC

ResNet18-1 75.25 76.85 74.61 76.04 54.91 75.73 58.77
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Figure 6.2: Output probabilities distribution for ResNet18 model.
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Figure 6.3: Precision-recall curve for ResNet18 model.
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6.2.2 ResNet50 results

For developing the ResNet50 model we used again transfer learning,

and we froze the first half of the network. The result on 10-fold cross-

validation is an accuracy of (85.62±1.58)% which means that the model

is providing stable solution for the given problem. We have chosen the

best model from the cross-validation folds, and the training history of the

model is shown in Figure 6.4. We can observe that the model’s training

and validation accuracy are very close over time, which means that the

model is a good fit for the given problem. The model is not overfitting

since it is not performing better on the training set than on validation,

therefore it is able to generalize well on unseen data. Moreover, we

can see a slight upward trend of the accuracy on training dataset which

means that the model’s accuracy would have been higher if the model has

Figure 6.4: Training and validation accuracy history of ResNet50.
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been trained for more than two epochs. Moreover, training the model

for many epochs require extensive computational resources.

Table 6.3: Confusion matrix of ResNet50 model.

Predicted value
cancer healthy

Actual Value
cancer 6798 946

healthy 2207 15105

Table 6.4: Evaluation performance of ResNet50 model in [%].

Model Acc Se Sp F1 Prec Accb PR_AUC

ResNet50 87.41 87.78 87.25 87.59 75.49 87.51 82.88

Confusion matrix with absolute numbers for image patches from val-

idation dataset is shown in Table 6.3. All the metrics related to this

model are around the same value which indicates stability of the model

performance for different classes as shown in Table 6.4. Distribution of

the resulting probabilities for the given classes is shown in Figure 6.5. It

can be observed that the distribution still does not show them as com-

pletely separable classes, but we can observe that two peaks have formed

close to the borders of the range. PR curve is shown in Figure 6.6, and

it reports the highest values for small recall, and then it falls down till

the value defined by the class balance in the validation dataset.
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Figure 6.5: Output probabilities distribution for ResNet50 model.
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Figure 6.6: Precision-recall curve for ResNet50 model.
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6.2.3 DenseNet121 results

We used, like in the previous experiments, transfer learning with pre-

trained network on ImageNet dataset and we froze the first 2/3 of the

network since the network is very deep and we wanted to avoid overfit-

ting, but at the same time have enough capacity to capture the variation

of the data. The result on 10-fold cross-validation has an accuracy of

(87.44 ± 1.45)% which means that the model is providing stable solu-

tion for the given problem. The training history of the best performing

model from cross-validation is shown in Figure 6.7. Again, the model’s

training and validation accuracy are very close over time, which means

that the model is a good fit. Furthermore, we can see a slight upward

trend of the accuracy on training dataset also in this model, which means
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Figure 6.7: Training and validation accuracy history of the chosen model
of architecture DenseNet121.
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that the model can be trained for longer time and produce even better

performance.

Confusion matrix with absolute numbers of the image patches from

validation dataset is shown in Table 6.5. All evaluation metrics are

shown in Table 6.6. We can observe that all of them have similar values

which indicates that the model is balanced, and not performing better

or worse for different classes. Distribution of resulting probabilities for

given classes is shown in Figure 6.8, where we can see that probabilities

now have a distribution that resembles bi-modal distribution with peaks

further apart. PR curve is shown in Figure 6.9, and reports the highest

values for small recall as expected, and then it slowly falls down till the

value defined by the class balance in the validation dataset.

Table 6.5: Confusion Matrix of DenseNet121 model.

Predicted value
cancer healthy

Actual Value
cancer 9106 795

healthy 2941 16470

Table 6.6: Evaluation performance of Densenet121 model in [%].

Model Acc Se Sp F1 Prec Accb PR_AUC

DenseNet121 87.25 91.97 84.84 89.55 75.59 88.41 90.12
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Figure 6.8: Output probabilities distribution.
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Figure 6.9: Precision-recall curve for DenseNet121 model.
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6.3 Model comparison and comparison with

the State of the Art

Firstly, we are going to compare the models developed in the thesis.

Evaluation metrics for all of the models are shown in Table 6.7 to-

gether with the metrics for the models proposed in the state of the

art. Analysing the results shown in details in the previous sections, we

can conclude that the model using the ResNet18 architecture is not able

to capture the information contained in the data, and perform reliable

classification. We can observe that all of its evaluation metrics are lower

than the other models, and the state of the art, and it is not a good

model for solving this problem. The model obtained using the ResNet50

architecture has a better performance, but the best performing model

of those proposed in the thesis is the one relying on the architecture of

DenseNet121 with a balanced accuracy of 88.41%, an F1 score of 89.55%,

and a sensitivity of 91.97%.

Comparing our best performing model with the other works we can

conclude that our model achieves comparable performance with the ones

proposed in the state of the art which used the same dataset. In fact,

we can see that the only work obtaining metrics that are above 90%

is the one done by Celik et al. [54]. It should be noted that all of

Table 6.7: Comparison of results with state of the art. The unit of
numbers in the table is in [%].

Source Model Epoch Acc Se Sp F1 Prec Accb PR_AUC

BRAVE AI ResNet18 2 75.25 76.85 74.61 76.04 54.91 75.73 58.77
BRAVE AI ResNet50 2 87.41 87.78 87.25 87.59 75.49 87.51 82.88
BRAVE AI DenseNet121 2 87.25 91.97 84.84 89.55 75.59 88.41 90.12

Reza et al.[49] 3 layer CNN 20 85.48 80.85 90.12 84.78 - 85.48 -
Cruz-Roa et al.[8] 3 layer CNN 25 - 79.60 88.86 71.80 65.40 84.23 -
Celik et al.[54] ResNet50 30 91.96 93.64 88.28 94.11 94.58 90.96 -
Celik et al.[54] DenseNet161 30 91.20 89.59 93.56 92.38 95.34 91.57 -

Romero et al.[51] Inception 55 - - - 89.70 - 89.0 -
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6.4. Output image visualization

these works trained their models for at least twenty or more epochs,

while we showed that comparable results can be obtained with only

two epochs. Moreover, none of the works in the state of the art used

cross-validation to prove the stability of their proposed architectures and

training, but used only holdout validation. Furthermore, as we stated

before, the training history of our ResNet50 and DenseNet121 shows a

slight upward trend with respect to the accuracy, which indicates that

they can reach even better performances if trained for longer periods of

time, which was not feasible with our computational resources.

6.4 Output image visualization
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Figure 6.10: Figure (a) shows reconstructed slide from patches. On
Figure (b) is shown the ground truth - patches labeled as cancer.

In Figure 6.10a we present how the extracted Whole Slide Image

(WSI) patches in the image look like, and where exactly they are posi-

tioned in the image. As explained in Section 5.2 the dataset contains

only the patches that have the tissue on them, and the patches contain-

ing background are removed from the dataset. The Figure 6.10b shows
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6. Experimental Evaluation

the ground truth of the image, where the patches containing Invasive

Ductal Carcinoma (IDC) are labeled with red colour masks. The Fig-

ure 6.11 presents the output of the BRAVE AI framework, which is a

probability map of the presence of IDC on the tissue of the slice. The

red parts show that the classifier gives high probability that the patch

is cancerous, whereas blue regions represent parts without cancer.
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Figure 6.11: Visualization of results of automatic classification of patches
from the slice. Red color of the image represents high probability of
cancer, while blue part of the spectrum represents patches with very low
probability of cancer.
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Conclusion and Future Works 7

This Chapter summarizes all the work done in the thesis, providing

a general overview of what has been done, as well as conclusions and

plans for the future. In Section 7.1 we provide the main contributions

of the work done in the thesis. Section 7.2 reflects on limitations of the

work, while Section 7.3 provides ideas for the future and possible ways of

overcoming the limitations mentioned before and improving the results.

7.1 Contribution

In this Section, we summarize the contribution of the thesis and the

proposed solution.

Firstly, we provide the design and the implementation of an auto-

mated, end-to-end pipeline for breast cancer assessment. This means

that we can produce the cancer probability maps from tissue slides with-

out the need for additional tunning, thresholding, or counting of cells

for each patient, which enables standardization of breast cancer assess-

ment. Moreover, we propose the BRAVE AI framework that can reduce

the workload for the pathologist and enable higher throughput from

the pathology departments which pace of work is the bottleneck of the

modern hospitals’ dynamic today.

Secondly, we provide the results of the exploration of Deep Learning

(DL) space of solutions for histopathological image classification. We

start with smaller Convolutional Neural Networks (CNNs) showing that

they are not able to capture all the variability of the data, thus going

deeper is required for finding an optimal solution. We move forward with
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deeper architectures, and we demonstrate that the models’ performance

is increasing. Therefore, we provide initial solutions, carefully narrowing

down the exploration space, which can be a good starting point for future

research.

Finally, we provide a detailed explanation of the methodology and

implementation of the models with all the hyperparameters used, allow-

ing the reproducibility of proposed solutions. Moreover, we provide ex-

haustive results with different metrics for the evaluation of the obtained

models, also on cross-validation, which are the proofs of the stability

of the proposed solution on the unseen data. We show that our best

performing model, using DenseNet121 architecture, reach a balanced

accuracy of 88.41%, an F1 score of 89.55%, and a sensitivity of 91.97%,

achieving performance comparable to the state of the art.

7.2 Limitations

Despite all the presented work, there are some limitations that are af-

fecting the result of the work and limiting its impact, which could not

be solved during the work on the thesis in order to improve the results.

Firstly, the dataset that we are using contains only 279 WSI and the

same number of patients. Therefore, even though the cross-validation

is done subject-wise in order to avoid overfitting on the subjects, the

dataset is small for the field of DL. On the other hand, some of the

available datasets that are larger, like CAMELYION, contain a couple

of hundreds of unprocessed WSI which require terabytes of memory to

be stored, and high computational power to be processed, and used for

further analysis. This is the problem that many research groups are

encountering in biomedical engineering, due to the lack of computing

infrastructure.

On the other hand, the ground truth provided for the used dataset is

not perfect, meaning that the pathologist did the annotations on smaller
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images, which affects the border patches of the selected regions. This

is decreasing the performance estimation for two reasons: firstly, if the

patch that is not containing cancer is labeled erroneously as cancerous in

the ground truth, and correctly classified by the model as negative, it is

lowering the accuracy estimate in the evaluation since the ground truth

and the prediction are discordant; secondly, since the model is learn-

ing from the presented data, incorrect ground truth can alter the model

performance and bring confusion to the model while training. This limi-

tation can be improved with a quality check done by another pathologist

on the given annotations, carefully classifying the tissue patches into the

two classes.

Furthermore, the whole pipeline is tested on only one dataset, which

is not enough to claim that the model is able to generalize well on the

unseen data from the real world and that it is good enough to be imple-

mented in a clinical workflow. In order to provide a benchmark for the

detection of breast cancer, the whole workflow should be validated on

different datasets from several points of acquisition in various hospitals.

The main reason is the fact that acquisition machinery can be different

and produce different artifacts that could affect the result, even though

we are addressing this limitation through the introduction of augmenta-

tion of the dataset during the training of the Neural Network (NN).

7.3 Future Work

Taking into account all said, there are several ways in which the system

could be improved. First of all, we should process a larger number of

patients with the supervision done by an expert in pathology, for the

segmentation of the image. In this way, we can have better annotations,

and better segmentation provided for the Whole Slide Image (WSI),

which would have increased the performance of the model. Secondly,

with the baseline results provided for different models, we can choose
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only one of them and increase the strength of augmentations while letting

the model train for a larger number of epochs. This would have lowered

the accuracy at the beginning but could result in a more robust model

which can generalize better on different datasets. Furthermore, we can

explore the idea of an ensemble of classifiers, which are known to increase

performance, if the errors, that the models are making individually, are

not correlated.

Lastly, as a far future, we could start thinking about how to include

a system like this in the clinical workflow as an assisting device to the

pathologist which would require automatic loading of the WSI from the

scanner and automatic patching and storing of the image before the

framework we proposed in the thesis.

Concluding, we have proposed the prototype of an automated pipeline

that aims to be credible support to the pathologist in the identification

of breast cancer in histopathological images. It provides cancer maps of

histology slide on the output which suggests to the expert the regions

with a high probability of cancer to which the attention should be fo-

cused. In this way, it can reduce the workload, and the time needed for

decision making which is the bottleneck of today’s diagnosis process in

the laboratories.
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