
Kabis: a platform for event-based
communication with configurable
trade-off between trust guarantees
and performance

Tesi di Laurea Magistrale in
Computer Science Engineering - Ingegneria Infor-
matica

Author: Matteo Secco

Student ID: 946773
Advisor: Prof. Alessandro Margara
Academic Year: 2022-23





i

Abstract

Despite their increasing popularity of event-based architecture to develop big scale, highly
decoupled services, existing technologies for this kind of architectures rely on the assump-
tion that any process of the system can be trusted.

To get rid of this strict guarantee Kabis has been developed: Kabis is an event-based
system resembling the architecture of Apache Kafka, but allowing its users to enforce
byzantine trust guarantees on a topic level.

This flexibility allows each user to manage the trade-off between functional guarantees and
performance according to its own business requirements. This result has been achieved by
deploying Apache Kafka together with BFT-SMaRt, a system allowing event notification
in a byzantine environment, and developing a communication protocol which optimizes
BFT-SMaRt’s usage preserving its trust guarantees.

Kabis has been designed to allow for a smooth migration from a Kafka-based system,
since its API is a subset of Kafka’s, while exposing optional methods to let the user define
which topics should require the trust guarantees provided by BFT-SMaRt.

Experimental evaluation shown that Kabis performance is comparable to that of Kafka
when no additional guarantees are provided, and outperforms BFT-SMaRt even when
providing its guarantees to all the topics.

Keywords: Event-based system, byzantine fault tolerance, non-repudiation





Abstract in lingua italiana

Nonostante la crescente popolarità delle architetture basate su eventi nello sviluppo di
servizi di ampia scala altamente disaccopiati, le tecnologie esistenti per questo tipo di
architetture si basano sull’assunzione che ogni processo nel sistema sia fidato.

Per superare questa stringente garanzia è stato sviluppato Kabis: Kabis è un sistema
basato su eventi che rispecchia l’architettura di Apache Kafka, ma che permette ai suoi
utenti di applicare garanzie di fiducia bizantina a livello di topic.

Questa flessibilità consente a ciascun utente di gestire individualmente il trade-off tra
garanzie di fiducia e prestazioni in base ai propri requisiti di business. Questo risultato
è stato ottenuto affiancando Apache Kafka a BFT-SMaRt, un sistema che permette la
notifica di eventi in ambiente bizantino, e sviluppando un protocollo di comunicazione che
permetta di ottimizzare l’utilizzo di BFT-SMaRt mantenendone le garanzie di fiducia.

Kabis è stato progettato per consentire una semplice transizione da un sistema basato su
Kafka, dato che la sua API è un sottinsieme di quella di Kafka, fornendo al contempo
metodi opzionali che permettono all’utente di definire per quali topic richiedere le garanzie
di fiducia offerte da BFT-SMaRt.

Una valutazione sperimentale ha evidenziato che le prestazioni di Kabis sono simili a
quelle di Kafka quando le garanzie aggiuntive non sono fornite a nessun topic, e superiori
a quelle di BFT.SMaRt anche quando queste garanzie sono fornite a tutti i topic del sis-
tema.

Parole chiave: Sistema a eventi, tolleranza ai guasti bizantina, non-ripudio





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Background 3
1.1 Event-based architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Fault tolerance models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Ordering models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Non-repudiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Apache Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 BFT-SMaRt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 System model 11
2.1 Functional guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Basic guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Extended guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Update topology API . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Kabis event service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 KabisRecord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 KabisProducer API . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 KabisConsumer API . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 System design and implementation 19
3.1 Component implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Storage implementation . . . . . . . . . . . . . . . . . . . . . . . . 20



3.1.2 Validation implementation . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Producer implementation . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Consumer implementation . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Network protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Push protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Pull protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Performance evaluation 37
4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Performance under varying payloads . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Consumer evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Producer evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Related work 45

6 Conclusions 49
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 51

A Validation service replica implementation 59

List of Figures 63

List of Tables 65

List of Definitions 67

Acknowledgments 71



1

Introduction

In event-based interaction, processes execution depends on events that happened into the
system. An event can be defined as “a significant change in state” [12]. When a process
becomes aware of an event that happened, it may react to it by executing some logic,
which may result in some other event happening for the process. This is called handling
an event , while the technology used to make a process aware of events happened to other
processes is called event notification. Therefore, an event-based system is a system where
processes communicate between each other through event notification, and their execution
is limited to event handling.

To propagate state changes across services, event sourcing [24] has gained popularity as
a data storage model that logs the whole history of events that led to the current system
state. These logs become the persistent memory of the evolution of the system, and the
state of each system component at a given point in time can be always derived from
the logs, by re-executing the events it stores. As a result, event sourcing has become a
common pattern in service-based cloud applications, supported by cloud providers such
as Microsoft Azure [43], Amazon AWS [4], and Google Cloud [25]. Event-sourcing archi-
tectures have the benefit of allowing client processes to only read from the log when they
are computationally able of handling a new event.

However the system used to store the history of events may become a single point of failure
for the entire architecture and therefore needs to be replicated. Existing technologies are
well suited for the simpler failure models, where a machine or a process simply stops
operating but otherwise behave as they are expected. But it is common for service-based
systems to cross the boundaries of individual business units or even organizations. In this
setting, the parties involved in the communication might not fully trust each other and
the events they notify. The event log in an event sourcing application provides evidence
for the responsibility of each component, ensuring that each party can be held accountable
for its actions. Unfortunately, existing solutions for event sourcing inevitably require to
trust a third-party authority that stores the event log (which may collude with some of
the parties) or let some of the parties to store it itself. Even if all of the parties behave
correctly, the processes they own may be compromised by an attacker and start behaving



2 | Introduction

maliciously, hindering accountability in the whole system.

This imposes to consider the infrastructure supporting the system to be able to correctly
operate even when some of the processes that run it may act maliciously. Technologies
addressing such behaviors exist, but their use is limited due to their high performance
cost and its strong dependence on the payload size of the event notifications exchanged.
Another desired property is non-repudiation, which is the impossibility for the process
that notified an event to dispute its authorship and any responsibility derived from the
notification itself.

In this scenario Kabis was developed, an event-sourcing system which can work in pres-
ence of malicious processes. Kabis can be configured to provide two different levels of
guarantees at runtime, and allows parties to validate the correctness of the execution
asynchronously, thus achieving the non-repudiation property.

This thesis is divided as follows: chapter 1 describes the framework Kabis operates within,
introducing the terminology from distributed systems theory that will be needed in the
rest of the document and presenting the technologies used as performance reference and
for the system implementation. Chapter 2 describes Kabis APIs and compares them to
those of Apache Kafka, also presenting the fault-tolerance and trust guarantees the sys-
tem can provide. Chapter 3 describes the system implementation, describing in detail the
components Kabis is composed of and their correct deployment among different parties.
Chapter 4 finally compares the performance of Kabis with those of the reference tech-
nologies, providing interpretation of the measured performance and proposing possible
optimizations to improve over the achieved results. Chapter 6 will draw the conclusion
and present some possible future developments of this work.



3

1| Background

This section will introduce some concepts and terminology from the literature, and present
the technologies adopted during this work. In section 1.1 the concept of event-based
architecture is presented together with the kind of processes generally composing such
architecture, the API it offers, and some variations existing in the literature. Section 1.2
describes the failure models adopted in this study, and section 1.3 the models for event
ordering. Section 1.4 presents the concept of non-repudiation, an high-level requirement
in computer security which is one of the goals of this work. Finally, sections 1.5 and 1.6
present two technologies upon which the developed system is based.

1.1. Event-based architectures

Different configurations of event-based architectures exist in the literature. They mainly
differentiate by the way clients can select which events to receive, though they all share
some common terminology and the communication architecture is mostly standard. As
shown in figure 1.1, the architecture is composed by three components:

Producers are processes publishing events into the system. They can also be referred
to as publishers.

Consumers are processes subscribing for events and getting notified for new events.
They are also called subscribers.

Event-service is the central service coordinating the communication. Producers publish
events to this service, and consumers subscribe and unsubscribe to this service as
well. Also, this service notifies consumers of new event they are subscribed for.

And offers four communication primitives:

subscribe Can be used by a consumer to inform the event service about the events it
wants to be notified about. The subscription logic is the main difference among
different kinds of event-based architectures.

unsubscribe Allows a consumer to revoke a previously issued subscription.



4 1| Background

publish is used by producers to send new events to the consumers

notify is used by the event-service once an event is published, to notify it to all the
consumer which subscription matches the event.

Event Service

Subscription
management

Data
storage

Producer

Producer

Producer

Producer

Consumer

Consumer

Consumer

Consumer

publish

subscribe

unsubscribe

notify

Figure 1.1: Event-based architecture

Different subscription logic define different kind of event-based architectures. The main
architectures are:

Topic-based Events are classified in topics to which consumers can subscribe. In basic
topic-based architectures, consumers subscribe to a topic by its name; however more
flexible forms of subscription are possible (for example allowing to use wildcards or
regular expressions to match the topic name).

Content-based Subscription is issued based on the event content. The consumers gain
more fine-grained control of which events to receive, being allowed to provide pred-
icates on the event during the subscription.

Type-based This is an extension of the topic-based model, where an event type is used
in place of a topic name, allowing type-checking at compile time.

This thesis focuses on topic-based systems. In real deployment, the event service is usually
a distributed component. Therefore topics are usually replicated for fault tolerance, and
partitioned for performance (allowing to split the workload among different producers and
consumers).



1| Background 5

1.2. Fault tolerance models

Focusing on the message-driven architecture used to notify event, its correctness is a
mandatory requirement for the correctness of any system built on top of it. The messaging
infrastructure may be composed by multiple internal processes, and the whole architecture
should keep operating even in when some of these processes become unavailable (which is
called a crash failure). Moreover, the infrastructure should continue to operate correctly
even when some of its processes are exhibiting arbitrary, possibly malicious behavior
(byzantine failure). Formally:

Crash failure happens when a process P takes an infinite amount of time to deliver a
message, and then stops delivering messages.

Byzantine failure happens when process P exhibits arbitrary, possibly unexpected, be-
havior. It was formalized for the first time as a mathematical problem known as
“The byzantine generals problem” [37].

System can be developed to be resistant to a certain number of failures of either the crash
or the byzantine kind. In particular:

Crash fault tolerance (CFT) is the ability of a system to operate correctly when some
of its processes exhibit crash failures. This can easily be achieved with replication,
replicating each process FC+1 times across different machines in order to be resilient
to up to FC brokers crashing; the actual number of replicas is usually determined
at deploy time. The resulting system is said to have a crash fault tolerance (CFT)
up to FC failures.

Byzantine fault tolerance (BFT) is the ability to operate correctly in presence of
byzantine failure. Byzantine fault tolerance (BFT) requires a minimum of 3FB + 1

replicas to cope with FB failures.

In an optimal configuration, a system will always be more resistant to crash failures
than to byzantine ones: inverting the equations above, a system composed of N
replicas will be able to tolerate FB =

⌊
N−1
3

⌋
byzantine failures and FC = N − 1

failures. It is evident that FB < FC as long as soon as N > 1, which happens if
some replication is in place.



6 1| Background

1.3. Ordering models

As already introduced, ordering the notification of events is crucial in an event-based
system for correctness: events being notified out of order could make the internal state of
the processes involved into the system inconsistent among each other. An event system
guarantees an order of notification of events if the events are always notified to processes in
a sequence that is compatible to that order. A message-driven architecture guarantees an
order of delivery of messages if all the messages are delivered in a compatible sequence.
If an event-based system exploits a message-driven architecture for event notification,
and processes handle events as soon as their representation is received in the form of a
message, then any ordering guarantee for the messages is inherited to event handling. For
this reason, the ordering model we present to and any following reasoning about order
will be carried out on a messaging level instead of an event level. Two ordering properties
are of interest for this study: FIFO order, total order:

FIFO order is an ordering requirement that guarantees that messages from a process
will be delivered in the same order they were sent. Messages from different processes
can however be delivered in any order. Formally, a message-driven architecture is
said to be FIFO-ordered if for each process p in the system and any two messages
m1 and m2 sent by p, if p sent m1 before m2, then for any message q in the system
it does never happed that q reads m2 before m1.

Total order is a mathematical definition of order in which any two elements are compa-
rable. In a message-driven architecture, this means that for any couple of distinct
messages m1 and m2, all correct processes will either receive m1 always before m2,
or m2 always before m1.

In general, total order does not imply FIFO order, nor FIFO order implies total order: a
system may ensure FIFO order and not total order, the opposite, both of them or neither.
For our use-case an ordering that is both FIFO and total is required for the correctness
of the execution.

1.3.1. Consensus

Consensus is a mechanism by which a set of replicas try to reach an agreement over
some value. Consensus provides multiple benefits: it can be used to provide total order
without a relying on central authority (by having all the replicas to agree on the order
itself) and, used in combination of a digital signature algorithm, can be used to achieve
non-repudiation not only over the content of any shared message, but also over the order



1| Background 7

of the messages itself.

In a system only affected by crash failures, consensus can be reached using FC+1 replicas
and FC +1 communication rounds to tolerate up to FC failures, using algorithms such as
FloodSet [41]. In more realistic scenarios that contemplate partitioning of the network,
algorithms such as Paxos and Raft, can reach consensus with 2FC + 1 non-byzantine
replicas [29, 36, 48]. In presence of byzantine failures instead, it can be proved that
atomic reliable broadcast and the consensus problem are equivalent [15, 26, 44]. Providing
byzantine fault tolerance is then enough to guarantee consensus on both the content and
the order of messages, and it requires requires 3FB +1 replicas in presence of FB failures.

Permissioned environment A system is said to operate in a permissioned environ-
ment if any participant of the system can be uniquely identified by other participants
any time it operates into the system. Permissioned environments are typically created
through digital signatures, having each participant to share its public key on a trusted
channel before entering the system.

1.4. Non-repudiation

In the field of cybersecurity, non-repudiation is defined as “Assurance that the sender of
information is provided with proof of delivery and the recipient is provided with proof
of the sender’s identity, so neither can later deny having processed the information” [56].
This property is of great legal interest as it allows to stipulate contracts among parties
that don’t fully trust each other.

Digital signature Non-repudiation is easily achieved through digital signatures, a
mathematical technique to ensure authenticity and integrity of a message. Authentic-
ity is a property that allows the receiver of a message to know the sender, while integrity
ensures that the content of the message has not been altered during transmission. In
this work, digital signatures are created by using the ECDSA asymmetric encryption
algorithm to sign hashes obtained through the SHA-256 algorithm.

1.5. Apache Kafka

Apache Kafka is “an open-source distributed event streaming platform” [2] offering an
excellent degree of scalability, high throughput and low latency, persistency of the history
of messages, and a flexible and configurable crash fault tolerance. These characteristics
made Kafka a de-facto standard for event-based architectures.



8 1| Background

In Kafka, an event is characterized by a key, a value, a timestamp and optional metadata
headers. Client processes are divided between producers and consumers the first are
processes that publish events, while the seconds receives them. Producers and consumers
are strongly decoupled.

Events are organized and persisted in topics , an abstraction to aggregate events with the
same semantic meaning. Topics are always multi-producer and multi-consumer: they can
be written on by any number of producers and read form by any number of consumers.

Topics are then partitioned , allowing to divide the physical allocation of data among
multiple locations to achieve an high degree of scalability. Kafka guarantees that any
consumer will always read messages from a given topic-partition in the same order (topic
partitions are totally ordered). Multiple consumers can cooperate to consume messages
from a topic by being part of a same consumer group. Kafka will dynamically divide the
partitions of a same topic among consumers of the same group, splitting the workload
among them.

To achieve crash fault tolerance, each topic can be replicated, resulting in each of its
partitions to be replicated. The number of replicas (and the consequent number of crash
failures tolerated) is configured by the system administrator and can be changed at run-
time.

To manage crash recovery, the offset of the last message read by a consumer is stored in
Kafka itself (using an internal topic). This ensures that if a consumer fails and recovers
later, it can restore its offset and resume reading from where it left. Consumers can also
arbitrarily change their offsets, allowing to skip some events or reading them multiple
times.

A service infrastructure is required to achieve this: topic-partitions are hosted, persisted
and replicated on brokers , specialized processes responsible to store the events sent in
the system in a log and provide them upon requests. Brokers communicate with client
processes on demand, and also communicate between each other directly (for example to
propagate writes to different replicas or to rebalance the workload among them). Finally,
brokers need to be coordinated by an external service. In the past this could be done only
using Apache Zookeeper. Despite nowadays KRaft can also be used in place of Zookeeper,
the latter is the adopted technology for this study.

The offered guarantees depends on the configuration of the system: Kafka always provides
FIFO and total order on a partition level, as well as CFT. Nevertheless, it does not provide
BFT, and all the guarantees it provides do not hold in presence of byzantine failures and



1| Background 9

does not ensure non-repudiation1.

As a result of its popularity and its good results in terms of provided guarantees, Kafka
is both part of the Kabis system and one of the reference technologies to measure its
performances.

1.6. BFT-SMaRt

In section 1.5 is highlighted how Kafka can be used to ensure FIFO-total order and crash
fault tolerance. In the scenario just presented however, stronger assumptions are required:
byzantine fault tolerance is mandatory to handle possibly untrusted participants, total
FIFO order is required to ensure consistency among the state updates of different pro-
cesses, and consensus is needed to ensure non-repudiation. A stronger technology is now
presented, which can meet all of these functional requirements.

BFT-SMaRt is an open-source library providing byzantine fault tolerance product of
active research, currently maintained and extensively optimized [13]. We used this library
both as part of Kabis and as a reference technology for existing BFT systems. BFT-SMaRt
operates in a permissioned, byzantine environment, uses a custom protocol called MOD-
SMaRt to reach consensus [53] and implements different optimization to speedup fault
recovery [7] and operation throughput [8].

VP-Consensus BFT-SMaRt uses a stronger definition of consensus called Validated
and Provable Consensus (VP-Consensus). This property allows the concept of non-
repudiation to be extended, making not only the single message non-repudiable but also
the order in which it was received.

• Validated means the protocol receives a predicate together with the proposed value
to agree on, which any decided value should satisfy.

• Provable means that the protocol generates a cryptographic proof that certifies that
value v was decided in consensus instance i.

BFT-SMaRt exposed two APIs: the service replica and the service proxy. A service replica
is a process involved in the BFT protocol which can process commands (represented as
a byte[]). The logic to serialize, deserialize and process the commands is left to the user
of the framework. Different logic may be defined if the client asks to process a command
in a total ordered way, or without ordering guarantees. A service proxy is just a client

1For example, a single byzantine broker may send the messages to clients in any order.



10 1| Background

process which interacts with service replicas, requesting the execution of commands either
in total order or in any order.



11

2| System model

Kabis is designed to mimic the architecture of Apache Kafka, while optionally exploiting
BFT-SMaRt to provide stronger functional guarantees in exchange of a performance over-
head, offering to clients the possibility to modify the desired behavior at deploy-time or
at run-time, according to their business requirements (as described in section 2.1). The
choice to mimic Kafka architecture as much as possible is to allow users to easily migrate
from a Kafka system to a Kabis system in any use case.

Application

Kabis

Kafka BFT-SMaRt

Network

Kabis layer
External layer

Figure 2.1: Kabis layer stack

2.1. Functional guarantees

Kabis offers to its users the ability to decide to pay an additional performance overhead to
seek extended consistency guarantees. Kabis is in fact able to offer two sets of guarantees,
described later in this section. However, due to this level of reconfigurability, which set
of guarantees will be obtained when an event is consumed depends on the combined
configuration of both the producer of an event and the consumer consuming it: only if



12 2| System model

both of them payed the extra overhead, then the event will be delivered with the stronger
set of guarantees. Otherwise, the delivery will only benefit of the weaker set.

For each existing topic, a producer can be configured to publish events on that topic as
validable events (by paying the overhead price) or unvalidable events. In the first case,
consumers will be able to validate the events published from this consumer to get the
extended level of guarantees that Kabis can produce. In the second case, a consumer will
have no way to validate them and could either deliver it with the basic set of guarantees
or discard it.

From the consumer perspective, when it is configured to not validate the events it will im-
mediately notify each event received to the application level. If the consumer is configured
to only accept validated events, it will deliver only validable events that pass the valida-
tion (the validation process is explained in section 3.3.2). Upon receiving a not validable
event, it will drop it. The provided level of guarantees according to the combination of
producer and consumer configuration is described in table 2.1.

Unvalidable Validable

Don’t validate Basic Basic

Validate Not delivered Extended

Table 2.1: Class of guarantees by producer’s and consumer’s behavior

2.1.1. Basic guarantees

Kabis basic guarantees are the very same of Kafka:

FIFO order on partition level For any topic-partition n and producer P , if P pub-
lished events e1 and e2 on n in this order, than to no consumer will be notified e2

before e1.

Total order on a partition level For any topic-partition n, the messages in that par-
tition are totally ordered. Any consumer will receive events from n in the same
order.

Crash fault tolerance The system can continue to work and provide the ordering guar-
antees presented above even in presence of crash failures, as long as the system is
deployed with a sufficient number of replicas. How many replicas for each kind of
process in the system are required for this kind of fault tolerance is described in
section 3.1.1.



2| System model 13

Since the system in this configuration is only CFT and not BFT, all of its guarantees
do not hold any longer in presence of byzantine failures. If the user requires byzantine
resilience, it should use the extended set.

2.1.2. Extended guarantees

Kabis extended guarantees include all of the basic guarantees. Moreover, this set of
guarantees also includes:

Byzantine fault tolerance The system can continue to work and provide the consis-
tency guarantees presented above even in presence of byzantine failures, as long as
the system is deployed with a sufficient number of replicas1. How many replicas for
each kind of process in the system are required for this kind of fault tolerance is
described in section 3.1.2.

Non-repudiation An event sent through Kabis can only be notified after all the (correct)
parties (including the sender) reached consensus on its content and the order of
notification. The reached consensus and the agreement of each party can be verified
cryptographically at any future time, making it impossible for anyone to repudiate
it.

2.1.3. Update topology API

The UpdateTopology API allows users to configure which topics will be validated and
which won’t. The API only consists of the void updateTopology(Collection<String>)method.
Conceptually, this method splits the set of existing topics in two: the ones that will be
validated, and the one who don’t. This classification is called a topology, and is local to
each producer or consumer process. The caller updates the topology specifying the topics
to be validated: the remaining one will automatically be considered not to validate. This
method is not incremental: calling it erases the previously configured topology replacing
it with the new one.

2.2. Kabis event service

As already introduced, we wanted Kabis architecture to be as similar as possible to the
one of Kafka described in section 1.5. For this reason, Kabis inherits Kafka’s architec-
ture of a partitioned, persisted, replicated topics. Client processes are divided into two

1As it will be shown in section 3.1.2, the extended guarantee set provides CFT at a different cost that
the basic guarantee set (requiring a different number of replicas to tolerate the same number of failures).



14 2| System model

kind: KabisConsumer and KabisProducer, the first are processes capable of consuming events
from the topics, while the second can only publish events on them. KabisConsumers and
KabisProducers are strongly decoupled.

KabisProducers can publish events to any topic, and a single producer can publish to mul-
tiple topics. KabisConsumers can consume messages from multiple topics as well. Moreover,
for the sake of load balancing, consumers can be grouped into consumer groups to split
the workload.

2.2.1. KabisRecord

Kafka uses different data objects in its APIs. The Consumer API returns events in the
form of ConsumerRecord objects, while the Producer API receives events as instances of the
ProducerRecord class. Kabis only uses a single class to represent events: the KabisRecord

class.

1 public class KabisRecord <K, V> {
2 private final String topic;
3 private final int partition;
4 private final K key;
5 private final V value;
6

7 private final byte[] signature;
8

9 public KabisRecord(String topic ,
10 int partition ,
11 byte[] signature ,
12 K key ,
13 V value)
14 {/* assignments */}
15

16 public KabisRecord(String topic , K key , V value) {
17 this(topic ,-1,null ,key ,value);
18 }
19 }

As shown by the code above, a KabisRecord object has 5 attributes: topic, partition,
key, value, signature. The first 4 attributes have the same semantic meaning of Kafka’s,
while the signature is specific to Kabis. This attribute contains the digital signature of
the rest of the record, computed by the KafkaProducer that originally sent the record to
allow KabisConsumers to verify the identity of the sender and the integrity of the event
representation. This field can be empty if the record represents an unvalidable event (see



2| System model 15

section 2.1).

2.2.2. KabisProducer API

KabisProducer API has been intentionally designed as a subset of the Kafka Producer API.
Kafka Producer API can be clustered as follows:

1. Transaction management, containing methods used to make reads and writes trans-
actional (this section is typically used when a Producer is writing the results of
processing events read from a Consumer).

2. Metadata gathering, which are used to retrieve information about the system’s
deployment and the Producer itself.

3. Sending methods, used to publish events into the system.

4. Disposing methods, used for graceful termination.

KabisProducer API hides all the transaction management from the user/system ad-
ministrator and handles it internally, while all the other clusters could be implemented
into Kabis without impacting the system’s design. This means that at the present time,
KabisProducer API consists of most of the methods of groups 3 and 4 of Kafka’s Producer

API, but a 1-to-1 correspondence between the methods of clusters 2, 3 and 4 is theoret-
ically possible. The correspondence between Kafka and Kabis implemented methods is
shown in table 2.2. The core method of this API is void push(KabisRecord), that allows to
publish an event through Kabis. Its implementation will be discussed in section 3.3.1.



16 2| System model

Kafka Kabis

1

initTransactions()
beginTransactions()

sendOffsetsToTransaction(∗)1

commitTransaction()
abortTransaction()

2
partitionsFor(String topic)

metrics()

3
send(ProducerRecord) push(KabisRecord)

send(ProducerRecord,Callback)
flush() flush()

4
close() close()

close(Duration) close(Duration)
1 For space and readability, not implemented methods’ arguments
have been replaced by the ∗ symbol. This also allowed to collapse
overloaded methods.

Table 2.2: Producer API of Kafka and Kabis

2.2.3. KabisConsumer API

As for the KabisProducer API, the KabisConsumer API consists of a subset of Kafka Consumer

API. Because of the higher complexity of the API, the number of clusters is doubled:

1. Metadata gathering, used to retrieve information about the system’s current de-
ployment and the Consumer itself.

2. Topic navigation, used to change the Consumer’s offset to arbitrary move the reading
position on the topic-partition.

3. Execution suspension, which allows to pause the Consumer’s activity (influencing the
behavior of pull operations).

4. Offset commit, which is crucial for error recovery, as it allows the Consumer to resume
reading from where it was before crashing.

5. Rebalance. This cluster is composed by a single method, which purpose is to exists
in Kafka to rebalance the Consumer group in extraordinary circumstances dictated
by business logic.

6. Subscription management contains methods used to instruct the Consumer about



2| System model 17

which topics to read from. In Kafka, this can be done either on a topic level (leaving
the partition assignment to the infrastructure), or manually at partition level. The
two methods cannot be used interchangeably.

7. Poll, a single method used to fetch new data.

8. Disposing methods, to gracefully stop the Consumer.

KabisConsumer API only expose methods from clusters 6, 7 and 8. Metadata gather-
ing, execution suspension, and rebalance methods (clusters 1, 3, 5) could easily be added
to the system, while the other clusters have been left out by design. Specifically, topic
navigation (cluster 2) should be prevented in order to enforce a reading order, offset com-
mit (cluster 4) should be managed by Kabis internally to be able to provide the extended
set of guarantees described in section 2.1.2. Correspondence between Kafka and Kabis
methods is presented in table 2.3. At the core of the KabisConsumer API is the Iterable<

KabisRecord> pull(Duration) method, used to read from the system all the records not yet
read (from the topics to which the KabisConsumer is configured to read).



18 2| System model

Kafka Kabis

1

assignment()
subscription()
committed(∗)1

metrics()
partitionsFor(∗)1

listTopics(∗)1

paused()
offsetsForTimes(∗)1

beginningOffsets(∗)1

endOffsets(∗)1

groupMetadata()

2

seek(∗)1

seekToBeginning(∗)1

seekToEnd(∗)1

position(∗)1

3
pause(∗)1

resume(∗)1

wakeup()

4
commitSync(∗)1

commitAsync(∗)1

5 enforceRebalance()

6

subscribe(Collection<String>) subscribe(Collection<String>)
subscribe(∗)1

assign(Collection)
unsubscribe() unsubscribe()

7 poll(Duration) pull(Duration)

8
close() close()

close(Duration) close(Duration)
1 For space and readability, not implemented methods’ arguments have been
replaced by the ∗ symbol. This also allowed to collapse overloaded methods.

Table 2.3: Consumer API of Kafka and Kabis



19

3| System design and

implementation

Kabis is designed as two independent communication channels accessible from KabisProducers

and KabisConsumers as represented in figure 3.1. The storage channel is used for basic
communication and contains the topics in a readable format (events are serialized by
the producers and deserialized by the consumers). The validation channel can instead
optionally used to provide the extended guarantees to the event notifications. It does
not contain the full description of events but Secure identifiers (SID), obtained through
digital signature. This allows KabisConsumers to verify the correspondence of an event
notification on the storage channel with its SID on the validation channel, while keeping
the bandwidth on the validation channel constrained to a constant value.

Client processes are the KabisProducers and KabisConsumers. KabisProducers always pub-
lish events on the storage channel, and can optionally also write their SID them on the
validation channel. Equally, KabisConsumers always receive notifications from the storage
channel and can optionally also read from the validation channel.

Storage
channel

Validation
channel

KabisProducer KabisConsumer

Mandatory push
Optional push
Mandatory pull
Optional pull

Figure 3.1: Kabis components.



20 3| System design and implementation

3.1. Component implementation

This section describes the actual implementation of the components shown in figure 3.1,
which sub-components and/or processes constitute them, and how many replicas are
required for each type of component, sub-component and process. The actual deployment
of the components, i.e. where each component is hosted and how it is distributed, is
described in section 3.2.

3.1.1. Storage implementation

The storage channel is developed as a replicated Kafka infrastructure. Events are pub-
lished through this channel after being wrapped in the MessageWrapper<V> class:

1 public class MessageWrapper <V> {
2 private final V value;
3 private final Long senderId;
4 }

The class enriches the original event representation (which is the attribute value) with a
senderId used by receivers to order the received MessageWrappers For unvalidable events,
only the value is relevant. The other attributes are set to null to optimize bandwidth
consumption.

The term Kafka replica will be used to refer to one of these Kafka infrastructures, and in
the rest of the thesis it will generally be treated as a black-box system. A single Kafka
replica is composed by FC +1 Zookeeper instances and FC +1 Kafka brokers, where FC is
the number of crash failures we want to tolerate in the system with the basic guarantees
set. This number ensures that at least one Zookeeper instance and one Kafka broker will
always be working.

Then, in order to tolerate FB byzantine failures, we want to have a total of FB + 1

independent Kafka replicas in our system. This is not in contradiction with the lower
bound on the number of replicas presented in section 1.2: this is because each Kafka
replica here is a black box system independent from the others, each with a byzantine
fault tolerance to 0 failures. As described in detail in sections 3.3.1 and 3.3.2, to achieve
BFT it is only needed that at least one of the Kafka replicas of the storage channel is
correct. In presence of FB failures and FB + 1 replicas, at least one replica cannot be
failing.

Summing up, the number of individual process required to deploy a storage layer resistant



3| System design and implementation 21

to FC crash failures and FB byzantine failures is (FC + 1)(FB + 1) Zookeeper instances
and (FC + 1)(FB + 1) Kafka brokers, for a total of 2(FC + 1)(FB + 1). The resulting
architecture is represented in figure 3.2.

Client processes access Kafka replicas using the standard Kafka APIs, and it is respon-
sibility of the KabisProducer to replicate their operations to all of the Kafka replicas. A
KabisProducer failing to do so is considered to be failing in a byzantine way.1

Kafka replica 1

Kafka replica 2

. . .

Kafka replica B + 1

Zookeeper 1 Broker 1

. . . . . .

Zookeeper C + 1 Broker C + 1

Kafka replica 1

Figure 3.2: Kabis storage channel for B byzantine and C crash faults.

3.1.2. Validation implementation

The validation channel is a straightforward implementation of a BFT-SMaRt system
introduced in section 1.6, with 3FB +1 service replicas required to tolerate FB byzantine
failures. Each party using the system will own exactly one service replica, to ensure
fairness and avoid concurrent accesses to the validation channels from the same party.

Data is sent through this channel as a SecureIdentifier (SID) object:

1 public class SecureIdentifier{
2 private byte[] signature;
3 private String topic;
4 private int partition;
5 private int senderId;
6 }

An SID contains the following attributes:
1For KabisProducers producing validable events. KabisProducers only aiming for the basic set of

guarantees can in fact only use the first Kafka replica, as described in sections 3.3.1 and 3.3.2.



22 3| System design and implementation

• signature is a digital signature obtained by applying the SHA-256 algorithm first
and the ECDSA cryptography algorithm later to the serialized representation of an
event’s key,value,topic,partition and senderId.

• topic the topic to which the identified event belongs.

• partition the Kafka’s topic-partition to which the identified event was assigned.

• senderId identifies the producer process that generated the identified event.

Despite each user only owning a single service replica, the application workload can still
be split among distinct processes. Client processes, in fact, will not directly interact with
the service replica but will instead use a service proxy to interface with the validation
channel. The BFT-SMaRt library that we used to implement the validation channel does
guarantee BFT sequentially ordered communication among the service replicas. Since
an additional layer of communication exists between the service replica and the service
proxy, we had to prove that such guarantees are maintained in our use case. This is done
in sections 3.3.1 and 3.3.2.

3.1.3. Producer implementation

Each KabisProducer has access to both the storage and the validation channel. This is
obtained by providing each Kabis KabisProducer with a distinct KafkaProducer for each
Kafka replica of the storage channel. Moreover, the producer will have a service proxy to
interface with the validation channel. This allows a party to run multiple KabisProducers.

When a KabisProducer is sending an unvalidable event, it will only publish events to the
first Kafka replica. This is enough to provide the basic set of guarantees described in
section 2.1.1. To send a validable event instead, the producer will have to send it to all
the Kafka replicas, and through the service proxy as well.



3| System design and implementation 23

Storage

Kafka replica 1

Kafka replica 2

. . .

Kafka replica B + 1

Validation

Service replica 1

Service replica 2

. . .

Service replica 3B + 1

KabisProducer

Service proxy

Kafka producer 1

Kafka producer 2

. . .

Kafka producer B + 1

Mandatory send
Optional send
Internal communication

Figure 3.3: Producer design.

3.1.4. Consumer implementation

A KabisConsumer is a component that receives event notifications from the system. KabisConsumer

’s design is specular to that of the KabisProducer: it is equipped with a KafkaConsumer for
each Kafka replica and aservice proxy to interface with the validation channel.

To consume events without validating them, a KabisConsumer can just read them from the
first Kafka replica. To be able to validate an event and get the extended set of guarantees
however, the KabisConsumer will have to pull from all the Kafka replicas as well as the
service proxy.



24 3| System design and implementation

Storage

Kafka replica 1

Kafka replica 2

. . .

Kafka replica B + 1

Validation

Service replica 1

Service replica 2

. . .

Service replica 3B + 1

Consumer

Service proxy

Kafka consumer 1

Kafka consumer 2

. . .

Kafka consumer B + 1

Mandatory pull
Optional pull
Internal communication

Figure 3.4: Consumer design.

3.2. Deployment

The ideal use case for Kabis is when single parties cannot trust each other. In such a
case, to use Kabis effectively, it would be necessary that each party hosts one service
replica, independently from the number of KabisProducers and KabisConsumers the party
will deploy. This makes the validation channel perfectly distributed among the parties.
The deployment of the validation component is exemplified in figure 3.5.



3| System design and implementation 25

Client

Client Service replica

Party 1

Client Client

Service replica Client

Party 2

Service replica

Client

Party 3

Service replica Client

Client

Party 4

Bft internal connection
Bft client connection

Client Producer or consumer

Figure 3.5: Validation component distributed among 4 parties, tolerant to at most 1
byzantine failure or 3 crash failures.

With regard to the storage channel, the deployment is less rigid. If the number of parties
using the system is N , then the maximum amount of byzantine failures that the system
will be able to tolerate is FC =

⌊
N−1
3

⌋
. A correct deployment of the storage channel

will then require FC + 1 =
⌊
N−1
3

⌋
+ 1 Kafka replicas (as described in section 3.1.1).

Parties may want to host a Kafka replica each for further safety (to avoid some of them
hosting a replica and some not, which may give the impression of a cost or responsibility
imbalance2. Even if this is actually possible, the same level of equity can be achieved with
less processes.

The maximum amount of crash failures tolerable from a deployment with N parties is
FC = N − 1. This means that to maximize the CFT of the system, each Kafka replica
should be internally replicated FC +1 = N times (resulting in N Zookeeper instances and
N Kafka brokers for each Kafka replica). This allows to perfectly distribute each Kafka
replica among all the existing parties (each party having exactly 1 Zookeeper instance
and 1 Kafka broker for each Kafka replica), avoiding some of them to be in a possibly
privileged position. In figure 3.6 an example deployment of the storage channel is shown,

2Only some parties would carry the cost of hosting a Kafka replica, however those parties could
maliciously trigger byzantine failures easier than those who don’t host any replica.



26 3| System design and implementation

which is able to support the validation channel deployment of figure 3.5.

B1

Z1

B2

Z2

Party 1

B1

Z1

B2

Z2

Party 2

Z2

B2

Z1

B1

Party 4

Z2

B2

Z1

B1

Party 3

Zr Zookeeper node in kafka replica r

Br Broker node in kafka replica r

Internal kafka connection

Figure 3.6: Storage channel distributed among 4 parties, tolerant to at most 1 byzantine
failure or 3 crash failures.

3.3. Network protocols

The two main operations of Kabis APIs are the void push(KabisRecord) used by KabisProducers

to publish events, and Iterable<KabisRecord> pull(Duration), that allows KabisConsumers

to receive event notifications.

3.3.1. Push protocol

KabisProducers publishes events using the void push(KabisRecord) primitive. This section
will focus on the case of pushing a validable event. Unvalidable events are also introduced,
but not discussed in detail since the algorithm it’s almost identical to a standard Kafka
usage.



3| System design and implementation 27

As shown in the diagram in figure 3.7 (where the storage processing and validation pro-
cessing boxes are used to collapse the internal behavior of the communication channels
and will be expanded later), the application layer calls the push method passing the
KabisRecord to be pushed into the system. This record will have empty signature and
partition, since those attributes can only be set by the producer. Upon receiving the
record, the KabisProducer first computes the partition and the signature for the record.
The logic to compute the partition is provided by the system administrator by implement-
ing the Partitioner interface provided by Kafka, the same way a Kafka producer would
do. The signature is computed using the SHA-256 and ECDSA algorithms, where the
payload is obtained from the concatenation of the topic, partition, key, value.

As the SID of the event is ready it is used to create a MessageWrapper. Finally, in parallel
calls, the KabisProducer uses its KafkaProducers to sent the MessageWrapper to each Kafka
replica of the storage channel, and its service proxy to send the SID to the validation
channel.

The channels process the received data (as described below) and notify the KabisProducer

upon completion. At this point, the KabisProducer returns to the caller.

In figure 3.7 is represented the just described interactions, hiding the internal operations
of the storage and validation channel.

Compute partition
and signature

storage processing

Metadata Execute on
all replicas

validation processing

push(kabisRecord)

application p:KabisProducer storage validation

Real call
Collapsed call

Figure 3.7: Push sequence diagram (validable message)



28 3| System design and implementation

Storage processing refers to the internal behavior of each KafkaProducer to send the
given MessageWrapper to the respective Kafka replica.

First, the KafkaProducer wraps the MessageWrapper into a ProducerRecord as the value.
Knowing the topic partition for the event, the producer issues a metadata request to
the local broker. The response then allows the producer to know the leader for the topic-
partition, which may be the local broker or one hosted by another party. The producer
then issues the write to the leader, which propagates it to the other replicas.

metadataRequest()

getLeader(topic,partition)

remoteBroker
send(messageWrapper)

ACK

p:KafkaProducer local:Broker leader:Broker replicas:Broker

loop

[for each kafka replica]

Figure 3.8: Storage push sequence diagram (validable message)

Validation processing abstracts the interaction with the BFT-SMaRt library. The
service proxy owned by the KabisProducer invokes the <PUSH,SID> command (serialized as
a byte[]) on the local service replica, which then exploits the MOD-SMaRt protocol [53]
(which description can be found in the referenced paper) to atomically and reliably prop-
agate the execution to all the other service replicas.



3| System design and implementation 29

MOD-SMaRt

execute(PUSH,sign)
invoke(PUSH,sign)

p:ServiceProxy local:ServiceReplica replicas:ServiceReplica

Figure 3.9: Validation push sequence diagram (validable message)

Byzantine fault tolerance is preserved by this protocol: assuming a maximum of FB

byzantine faults, then the storage layer is composed of at least FB +1 Kafka replicas and
the validation channel can operate correctly in presence if this number of faults. Having
FB + 1 Kafka replicas ensures that at least one of them will be correct.

FIFO order on the validation channel is guaranteed by the sequential behavior of
the KabisProducer, which will only send a new record after the last one has been correctly
stored by the validation channel and a sufficient number of Kafka replicas.

Total order on the validation channel is guaranteed by the validation channel itself,
that allows to execute requests preserving total order. The implementation used in Kabis,
reported in appendix A, only accepts PUSH commands as ordered requests.

The validable push protocol therefore preserves the ordering properties of the validation
channel.

Unvalidable events are published by executing only a subset of the already described
operations. Specifically, the KabisProducer only computes the partition for the event
(avoiding to update the sequence number and computing the signature) and sends the
resulting MessageWrapper (which will have null signature and negative sequenceNumber val-
ues as flags) only through the first Kafka replica of the storage channel. The sequence of
interactions would be the same described in figure 3.8, except the loop is only executed
for the first Kafka replica. As a consequence, an unvalidable push gets the very same
guarantees of the underlying Kafka implementation, which composes basic guarantee set.



30 3| System design and implementation

3.3.2. Pull protocol

KabisConsumers consume events with the Iterable<KabisRecord> pull(Duration) primitive.
The procedure for this operation is more complex, as it involves continuous background
processing. The processes involved in a pull sequence are now presented. Then, they are
put together to describe the full pull operation.

KafkaPollingThread Inside a KabisConsumer, a subprocess called KafkaPollingThread

caches Kafka events. The cache is first indexed for Kafka replica. Among a replica, it
aggregates events by TopicPartitions and KabisProducers (identified by their public keys)
and collects them in queue. The thread owns a KafkaConsumer for each Kafka replica
of the storage channel. Also, for each replica the cache tracks the (presumably) failed
KabisProducers into a set, which can be updated or read by other components.

Consider the predicate isFull(replica), which is true for Kafka replica r if, and only if,
for each pair of KabisProducer p and TopicPartition t, either p never sent any event on
t or the queue identified by the tuple < r, t, p > contains at least one event. Then the
pseudo-code for an iteration of the KafkaPollingThread is:

Algorithm 3.1 KafkaPollingThread main loop
1: K ← set of kafka replicas
2: for all k ∈ K do
3: if !isFull(k) then
4: C ← getKafkaConsumer(K)

5: R← pull(C)

6: for all r ∈ R do
7: F ← getFailedProducers(k)

8: p← getKabisProducer(r)

9: if p /∈ F then
10: tp← getTopicPartition(r)

11: q ← getQueueFor(k, tp, p)

12: v ← getV alue(r)

13: push(q, r)

14: end if
15: end for
16: end if
17: end for



3| System design and implementation 31

This code is repeated by the thread indefinitely, until the thread is stopped by calling its
shutdown() method.

pull()

records

put(tp,p,w)

kafka replica p:KafkaPollingThread c:KafkaCache

loop

[for each record w]

Figure 3.10: KafkaPollingThread loop

Validator The Validator’s responsibility is, given a list of SIDs from the validation
channel, to query all the Kafka caches for matching events. This is achieved by the
List<KabisRecord> validate(List<SID>) function, which pseudo-code is the following:



32 3| System design and implementation

Algorithm 3.2 validate procedure
1: S ← list of signatures passed as argument
2: K ← set of kafka replicas
3: R← ∅
4: for all s ∈ S do
5: p← getKabisProducer(s)

6: tp← getTopicPartition(s)

7: for all k ∈ K do
8: F ← set of failed producers for kafka replica k

9: if p /∈ F then
10: result← null

11: queue← getQueueFor(k, tp, p)

12: if result 6= null then
13: wrapper ← poll(queue)

14: if signatureV erify(sv) then
15: result← w

16: else
17: F ← F ∪ {p}
18: end if
19: else
20: pop(queue)

21: end if
22: r ← buildKabisRecord(wrapper)

23: R← R ∪ {r}
24: end if
25: end for
26: end for

This code is correct under the following assumption, that will be proven correct in section
3.3.2: "given a correct Kafka replica k and a correct KabisProducer p, records sent from
p will be read from any correct consumer c of k in the same order as they appear in the
validation channel". Given an SID, if its sender was not marked as failed before for a
Kafka cache, then the first event in that cache is expected to match the SID. Two cases
are possible:

• The event matches the SID The correct event is found. Pop the not yet inspected
queues of the remaining caches (in order to "consume" the replicas of correct event),



3| System design and implementation 33

and return the found event.

• The SID does not match Either the sender has failed, or the Kafka replica has.
Instruct the cache to mark the sender as invalid, and try with the next cache3.

If the sender is considered failed, the cache is skipped.
3The goal is to mark the <KabisProducer,Kafka replica> pair as failed. Marking the KabisProducer

as failed for a cache is functionally equivalent and allows to instruct the cache, which is a local process
and therefore can be trusted by its owner, to discard events from the KabisProducer and reduce memory
usage.



34 3| System design and implementation

Retrieve sender and partition

get(tp,p)

w

validate(s,w)

Mark failure

dropNext(tp,p)

records

validate(signatures)

caller v:Validator cs:KafkaCache

opt

[invalid pair]

[found w]

alt
[searching w]

loop

[for each cache where sender is valid]

loop

[for each signature]

Figure 3.11: Validator procedure

With the Validator component, the pull(Duration) procedure can finally be implemented.
The KabisConsumer first pulls from the validation channel, getting the new SIDs since the
last pull. This is achieved by invoking the <PULL,offset> on the service proxy. This pull
is repeated until the received list of SIDs is not empty, or the given Duration expires (in



3| System design and implementation 35

which case an empty list is returned).

As soon as a non-empty SID list is received, this is passed to the Validator, which will
map each SID to an appropriate KabisRecord.

The result of this mapping is finally returned.

invoke(PULL,offset)

new signatures

validate(signatures)

records

Update offset
records

∅

pull(d)

application c:KabisConsumer validation v:Validator

loop

[d not expired ∧ new signatures=∅]

[else]

alt
[signatures 6= ∅]

Figure 3.12: Pull sequence diagram

Byzantine fault tolerance As described in section 3.2 the validation channel can be
deployed so to be resistant to an arbitrary number FB of byzantine failures. Also, FB +1

Kafka replicas are in the system, and among them at least one is correct for sure. Since
the algorithm used for digital signature is assumed to be resistant to preimage attacks,



36 3| System design and implementation

we can use the signature to rule out any tampered messages from the set of messages
read from the Kafka replicas and, since at least one is correct for sure, a correct message
will always be deliverable. Moreover, because of the MessageWrapper implementation and
the FIFO ordering guarantee of any (correct) Kafka replica, given the next undelivered
SID we know for sure that the correct MessageWrapper will be the first undelivered from the
same KabisProducer (identified by the senderId attribute) from the same TopicPartition.

FIFO total order At the end of section 3.3.1 was highlighted how a KabisProducer

produces events on the validation channel in an order that is both FIFO and total. Since
a KabisConsumer receives a list of SID from such channel, and uses it to find matching events
in the storage channel, the resulting order will be that of the SID list, and so that of the
validation channel.



37

4| Performance evaluation

Kabis performance has been empirically evaluated under different configurations. Specif-
ically, the system has been tested varying the number of validated topics and the size of
the event notifications.

The evaluation metric used is the system throughput, defined as the number of operations
the system was able to process per unit of time, and expressed in Kops/s. Consumer and
producer throughput have been distinguished, because it was suspected that due to the
strict decoupling and the higher complexity of the consumer the results would have been
different.

The rest of the chapter analyzes the performance of these Kabis when its processes are
configured to validate 0, 2, 5, 7 or 10 topics, out of a total of 10. For both consumers and
producers, the measurements found have been first plotted all together to provide a qual-
itative overview of the magnitudes of the performance changes, and then two specialized
plots have been used to distinguish the different behavior when the validation channel
was used or not.

4.1. Experiment setup

The experiment setup for Kabis experiments were executed with 1 KabisConsumer and
3 KabisProducers. The event service was deployed with 2 Kafka replicas each internally
replicated 4 times (for a total of 8 Zookeeper instances and 8 Kafka brokers), and 4 service
replicas. This setup guarantees a fault tolerance to a maximum of FB = 1 byzantine
failures or FC = 3 crash failures, and is therefore the minimum reasoning setup for a micro-
benchmark. Evaluation of Kafka have been performed on an infrastructure equivalent to
a single service replica, while BFT-SMaRt have been deployed with 4 service replicas,
modified from Kabis implementation to transmit the event in plain instead of its SID.
The processes used for each evaluated system are summarized in table 4.1.



38 4| Performance evaluation

BFT-SMaRt Kafka Kabis

Service replica 4 0 4
Kafka broker 0 4 8

Zookeeper instance 0 4 8

Consumer 1 1 1
Producer 3 3 3

Total 8 12 24

Table 4.1: Processes for each evaluated system

Each process have been inserted into a Docker container, and the experiments ran on
a single Linux Mint machine equipped with an AMD Ryzen 9 5900x CPU (offering 24
hardware threads) and 64GB of memory.

Analysis of each of the systems under continuous load allowed shown that in our peculiar
setup the amount of time and requests needed for each of the systems to reach a stable
state was minimal, allowing to take direct measurements of the throughput instead of
relying on more sophisticated techniques.

Therefore, for each presented combination of payload and number of validated topics,
the setup has been tested by measuring the execution time required to transmit 50000

events from each producer, and waiting for the consumer to consume 150000 events. The
measurement happened on each client: for producers, the client first measured the initial
time, then sent all the events through the producer, and finally measured the final time,
persisting the difference between the final and the initial time on disk. Regarding the
consumer, again its client first measured the initial time. Then it continued to pull the
consumer and count the received events, until all the events were read. Finally it measured
the final time, computed the difference and persisted it on disk. In post-processing, the
throughput of a producer was computed from the stored time tp as Tp =

50000
tp

, and that
of a consumer that measured an execution time of tc was computed as Tc =

150000
tc

.

To reduce the variance of the experiments, each configuration has been tested 5 times,
and the resulting throughputs have been averaged.

For Kabis and BFT-SMaRt experiments, the client processes were forced to wait 5s before
starting their real execution1, to allow the service replicas to become fully operational.
Moreover, for Kabis and Kafka, a first round of communication of 1 event per producer

1The client only acquired the initial time after the waiting time to ensure a proper initialization of
the service replicas elapsed, so to not include this delay in the measured execution time.



4| Performance evaluation 39

was sent on each topic before the benchmark began2, to prime the Kafka infrastructure
and avoid to measure the time needed to create and assign the topics and the consumer
groups.

4.2. Performance under varying payloads

The performance requirements of Kabis was to keep consistent performance when per-
forming validation independently from the end-to-end transmitted payload, while achiev-
ing performance close to those of Kafka when not doing so. The graphs in figures 4.1 and
4.3 summarize the evolution of Kabis consumer and producer throughput with increas-
ing message payload, compared to those of Kafka ans BFT-SMaRt, showing that this
goal has actually been achieved. Figures 4.2 and 4.4 focus instead on the cases when a
Kabis process is performing validation (comparing the results with BFT-SMaRt) or not
(comparing with Kafka) to better highlight each of the performance requirements.

2Even in this case, the priming happened before measuring the initial time.



40 4| Performance evaluation

4.2.1. Consumer evaluation

0 256 512 768 1,024 1,280 1,536 1,792 2,048

102

103

104

payload [B]

th
ro
ug

hp
ut

[K
op
s/
s]

Kafka
Kabis-0
Kabis-2
Kabis-5
Kabis-7
Kabis-10

BFT-SMaRt

Figure 4.1: Kabis consumer throughput per payload

The graph in figure 4.1 show the evolution of the consumer throughput of Kafka, BFT-
SMaRt, and Kabis configured to validate a different number of topics. The y axis is in
logarithmic scale to make the curves distinguishable. It can be seen that when validating
0 topics, Kabis performance is close to that of Kafka. As the number of validated topics
increases the throughput decreases, and the curve flattens to a constant value as desired.



4| Performance evaluation 41

0 512 1,024 1,536 2,048

150

200

250

300

350

payload [B]

th
ro
ug

hp
ut

[K
op
s/
s]

with validation

BFT-SMaRt
Kabis-7
Kabis-10

0 512 1,024 1,536 2,048

0.5

1

1.5

2

2.5

·104

payload [B]

th
ro
ug

hp
ut

[K
op
s/
s]

without validation

Kafka
Kabis-0

Figure 4.2: Kabis consumer throughput per payload details

Figure 4.2 shows the evolution of the throughput in linear scale for some of the evaluated
configurations. The graph on the left highlight the performance loss of BFT-SMaRt as the
event payload increases, eventually resulting in Kabis to outperform it. The right graph
instead shows how the offset between Kabis consumer throughput and Kafka’s appears
to be independent from the payload size. It can be said that Kabis consumers meet the
performance requirements previously introduced.



42 4| Performance evaluation

4.2.2. Producer evaluation

0 256 512 768 1,024 1,280 1,536 1,792 2,048

102

103

104

payload [B]

th
ro
ug

hp
ut

[K
op
s/
s]

Kafka
Kabis-0
Kabis-2
Kabis-5
Kabis-7
Kabis-10

BFT-SMaRt

Figure 4.3: Kabis producer throughput per payload

The graph in figure 4.3 plots the evolution of the throughput of the evaluated systems
when events of different size are notified. Dually to what happened for the consumers,
when a producer is only publishing unvalidable events its performance is close to those of
Kafka and the throughput decreases as the number of validated topics increases. However
even with just 2 validated topics the throughput stabilizes to a constant value, while the
consumer’s throughput becomes stable only with 7 validated topics.



4| Performance evaluation 43

0 512 1,024 1,536 2,048

40

60

80

100

120

payload [B]

th
ro
ug

hp
ut

[K
op
s/
s]

with validation

BFT-SMaRt
Kabis-7
Kabis-10

0 512 1,024 1,536 2,048

1

2

3

·104

payload [B]

th
ro
ug

hp
ut

[K
op
s/
s]

without validation

Kafka
Kabis-0

Figure 4.4: Kabis producer throughput per payload details

It can be seen from 4.4 that Kabis producers meet the desired requirements. Specifically,
from the left graph it can still be seen that the throughput reduction still does not strictly
depends on the payload, and that Kabis eventually outperforms BFT-SMaRt. The graph
on the right shows that Kabis producer throughput is not significantly smaller than the
one of Kafka.

4.3. Discussion

The graphs in figures 4.1 and 4.3 show a huge performance drop as soon as 2 topics
receive validation. Even if this was partially expected, the magnitude of the loss can
be surprising. However, it should be considered that the plotted value is obtained by
measuring the overall execution time, but no explicit information is available whether the
validated and non-validated topics had been produced and consumed at the same rate,
or this results mostly reflect the consumer waiting for the last events on some validated
topics.

A comparison of the two graphs can however give some insights on this hypothesis. Dif-
ferently from the consumer, the producer exhibits a constant throughput for any number
of validated topics greater than zero. Since the current implementation of the producer is
completely sequential, any unvalidable write must wait all of the previous validable writes
to complete. This forces the producer to always follow the pace of the validation channel,
resulting in lower throughput. Despite not being a real prove, this reasoning allows to
notice a possible improvement of the current Kabis design.



44 4| Performance evaluation

4.3.1. Threats to validity

Since the experiments were carried out in a containerized environment hosted on a single
machine, the outcome may be affected by the limited resources available to each process
and by the absence of network latency. The limitation of the available computational
resources however would likely affect Kabis more than the reference systems, since it
computes and verifies signatures internally, a relatively costly procedure compared to the
standard execution of Kafka and BFT-SMaRt. Regarding the absence of network latency,
since BFT-SMaRt’s MOD-SMaRt protocol involves an elevated number of message ex-
change between the service replica, this technology (and Kabis as well, since it relies on
it to deliver the SIDs) is expected to be the one to benefit more from this advantage.



45

5| Related work

In this section, we discuss related work on linking actions and the parties that perform
them within a software system.

Event-based communication. Event-based communication has been historically inves-
tigated in publish-subscribe systems, which decouple event producers and event consumers
in a software architecture [23]. Over the years, software platforms for event-based com-
munications have been increasingly adopted and introduced event processing capabilities
to analyze and transform events while they move from producers to consumers [19]. The
platform we adopt in this work, Apache Kafka, is becoming the de-facto standard for
event-based communication thanks to its scalability and persistency features [54].

Byzantine fault tolerance cost. Different algorithms have been proposed to reduce
the required number of replicas for byzantine fault tolerant systems. Veronese et al. [57]
developed an algorithm providing byzantine fault tolerance requiring only 2FB+1 replicas.
This is achieved by trusting a third-party server making it impossible to make conflicting
statements without being detected. Kapitza et al. [32] improved over this result by de-
ploying a BFT protocol that only required FB+1 active replicas during normal operation,
and is able to activate FB extra replicas when fault behavior is suspected.

Accountability. Accountability is about associating states and actions with identities of
the parties involved in a system, and provides primitives for actors to validate the states
and actions of their peers, such that cheating or misbehavior become detectable, provable,
and undeniable by the perpetrator [62]. Jagadeesan et al. [31] study accountability, i.e.,
after-the-fact verification as a mean to enforce authorization policies. They provide a
formal model that accounts for the trade-offs between the power of the auditor, the
efficiency of the audit protocol, the requirements on the agents, and the requirements on
the communication infrastructure.

Erosion of accountability due to the computerization of society has been discussed for
long [46, 47], showing that, without adequate countermeasures, computerization may
undermine accountability, reducing the potential for liability to punishments, such as



46 5| Related work

monetary damages. This is because, for example, software bugs are viewed as inevitable,
hence it is often considered unreasonable to hold developers accountable.

Implementing accountability for concrete software systems has led to various approaches.
PeerReview [27], is a system that ensures that faults observed by a correct node are
properly detected and associated to a faulty node and that a correct node cannot be
considered responsible of a fault. This approach has been applied, among others, to a
network filesystem, a peer-to-peer system, and an overlay multicast system. Attested
Append-Only Memory [14] is a trusted log which ensures that a faulty host cannot lie in
different ways to other parties while retaining linearizability and liveness. Dissent [16] is a
messaging protocol that offers provable anonymity with accountability preserving message
integrity and one-to-one correspondence between members and messages, making denial-
of-service attacks by members traceable.

Accountability in cloud computing. At the conceptual level, the TrustCloud frame-
work [35] is a reference model that addresses accountability in cloud computing considering
both technical and policy-based aspects.

Concerning system implementations, Zhao et el. [38] propose a scalable, fine-grained access
control system based on attribute-based encryption for secure access control in cloud
computing. The approach implements user accountability using traitor tracing, i.e., it
prevents that dishonest users may share their attribute private keys with other users,
who have lower privileges. Accountable Virtual Machines [28] execute software images
in a virtualized environment but record non-repudiable information for auditors. This
information shows whether the software behaved as intended in distributed systems where
hosts do not necessarily trust each other, or third-party platforms for software execution.
Finally, Xiao et al [60] provide an accountable MapReduce system for the cloud. Malicious
nodes may intentionally corrupt the result of the mapping or reducing phase making the
whole final result untrustworthy. In Accountable MapReduce a group of auditors checks
the workers to detect malicious nodes in real time. A formal model allows one to find the
optimal number of workers and auditors to minimize processing time.

Forensic-ready software systems. Forensic readiness is about the availability of the
information about how a an incident occurred and who is responsible for it, potentially
resulting in a successful prosecution [11, 51]. Researchers have investigated various aspects
of forensics readiness, such as ensuring that evidence of potential incidents is preserved [34,
49], that evidence is maintained without alteration [33], as well as software engineering
practices for he development of forensic-ready systems [50].

Zawoad et al. [64] propose a forensics-enabled mechanism for cloud logs. The goal is to



5| Related work 47

provide the logs content to investigators still preserving user privacy and logs integrity
— in existing logging schemes, the logger is in the trusted computing base hence cloud
providers (loggers) can collude with users or investigators to alter the logs. Logs are
accessible to investigators only through a RESTful APIs that ensures confidentiality of
logs. Similar to our approach, integrity is ensured by hash-chain scheme and proofs of
past logs published periodically by the cloud providers.

Similar tot he approach above, tamper-evident logging [18] is collected for forensic purposes
in the case of an untrusted logger with clients storing their events in the log. A tree-based
data structure ensures that the log can efficiently generate proofs to auditors that logged
events are still present, and that the current state of the log is consistent with its past
content.

Auditability and data verification/possession. Auditability [10] refers to the ability
of an auditor to get accurate information when examining a computing system. Poor au-
ditability is associated to a system that has poorly-maintained (or non-existent) records
and does not enable efficient auditing of processes. Auditability is an enabler of (retro-
spective) accountability because an action to be reviewed against a pre-determined policy
to decide if the action is compliant, and eventually hold accountable the entity responsi-
ble for the action [35]. For example, public auditability for cloud storage correctness [59]
ensures that anyone, not just clients who originally stored information on a cloud server,
can verify the correctness of the stored data.

Ateniese et al. [5] propose a model for provable data ownership. With this system a
client that has stored data in an untrusted server can verify that the server possesses the
original data without retrieving it. The underlying mechanism is to generate probabilistic
proofs of possession by sampling the blocks on the server. The client verifies the proof.
This approach, however does not support dynamic data storage. A follow up work [6]
relaxes this constraint but imposes a priori bound on the number of queries and does not
support block insertion. Wang et al. [59] provide a mechanism to achieve auditability of
cloud storage with data dynamics, i.e., file blocks can be modified, inserted, and deleted.
Oruta [58] provides a similar mechanism but the identity of the signer of each block in
shared data is kept private from a third party auditor, that publicly verifies the integrity
of shared data. More recently, the research in this area has focused on simplifying the
implementation and improving performance, e.g., using a skip list for membership queries
instead of Merkle trees or 2–3 trees [21, 22].

Non-repudiation. Non-repudiation protocols avoid that a party involved in a a com-
munication can falsely denying taking part in it. For example, the sender of an email



48 5| Related work

cannot deny sending a message [39]. In blockchain, non-repudiation involves that (1) the
sent information cannot be denied and that (2) the information receiver cannot be de-
nied. Digital signatures [45] use asymmetric encryption to guarantee the non-repudiation
of information. For example, Xu et al. [61] propose a blockchain-based non-repudiation
service provisioning scheme for IoT. In this approach, the blockchain has the role of ser-
vice publisher and evidence recorder. The verification of a service is based on hashing
and validates the (off-chain) service against the on-chain evidence. To this end, the data
field of the blockchain transaction also contains the hash value. Similarly, in this work,
we use digital signature to ensure that events issued by each party can be unequivocally
associated to the sender.



49

6| Conclusions

Existing technologies for event-based architectures don’t work well in byzantine environ-
ments. Even if the user could be able to achieve non-repudiation at the application level,
proper byzantine fault tolerance requires the underlying communication protocol to be
adjusted.

Kabis has been developed as an event system capable of correctly operate in a byzantine,
permissioned environment: offering an API similar to that of Apache Kafka, it can be
dynamically configured to enrich specific topics with byzantine fault tolerance and non-
repudiation, allowing each user to tune the trade-off between performance and received
guarantees according to its individual business requirements.

Kabis correctness in presence of byzantine failures has been proved theoretically. Experi-
mental evaluation shown the improvement of Kabis over existing byzantine fault tolerant
systems, the smaller correlation between its throughput and the payload of events trans-
mitted through it, and its ability to reach performance close to Kafka when it is configured
to provide the same level of guarantees.

6.1. Future Work

Most of the future development of Kabis is of optimization nature. As already suggested
in section 4.2, a stronger decoupling between the storage and the validation channel could
probably impact positively the system’s performance. Other possible optimizations are
the implementation of a sharding mechanism allowing to seek a distinct consensus for
each topic or topic-partition, potentially reducing the number of involved processes and
therefore the cost of the operation.

Extending KabisProducer and KabisConsumer API to cover the missing methods from Kafka
APIs would be useful to further ease an hypothetical transition from a Kafka-based system
to a Kabis-based one. Coordinating BFT-SMaRt state transfer protocol and Kafka crash
recovery logic would be another step to make Kabis more of a complete project by adding
fault recovery to its capabilities.



50 6| Conclusions

Last but not least, despite being build on top of Kafka and exposing a very similar API,
Kabis current implementation does not take advantage of Kafka’s extraordinary ability to
freely scale thanks to consumer groups. Inheriting this feature would greatly increase the
complexity of synchronization between the validation channel and the storage channel,
but it is probably possible to achieve.



51

Bibliography

[1] Apache kafka® performance, . URL https://developer.confluent.io/learn/

kafka-performance/.

[2] Apache kafka, . URL https://kafka.apache.org/.

[3] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis. Chainspace: A
sharded smart contracts platform. NDSS’18, 01 2018. doi: 10.14722/ndss.2018.23244.

[4] Amazon AWS. Event Sourcing, 2020. URL https://docs.aws.amazon.

com/whitepapers/latest/modern-application-development-on-aws/

event-sourcing.html.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song.
Provable data possession at untrusted stores. In Proceedings of the 14th ACM Confer-
ence on Computer and Communications Security, CCS ’07, page 598–609, New York,
NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937032. doi:
10.1145/1315245.1315318. URL https://doi.org/10.1145/1315245.1315318.

[6] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient
provable data possession. In Proceedings of the 4th International Conference on
Security and Privacy in Communication Netowrks, SecureComm ’08, New York, NY,
USA, 2008. Association for Computing Machinery. ISBN 9781605582412. doi: 10.
1145/1460877.1460889. URL https://doi.org/10.1145/1460877.1460889.

[7] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia. On the {Efficiency} of
durable state machine replication. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 169–180, 2013.

[8] A. Bessani, J. Sousa, and E. E. Alchieri. State machine replication for the masses with
bft-smart. In 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 355–362. IEEE, 2014.

[9] B. Carminati, C. Rondanini, and E. Ferrari. Confidential business process execution

https://developer.confluent.io/learn/kafka-performance/
https://developer.confluent.io/learn/kafka-performance/
https://kafka.apache.org/
https://docs.aws.amazon.com/whitepapers/latest/modern-application-development-on-aws/event-sourcing.html
https://docs.aws.amazon.com/whitepapers/latest/modern-application-development-on-aws/event-sourcing.html
https://docs.aws.amazon.com/whitepapers/latest/modern-application-development-on-aws/event-sourcing.html
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1145/1460877.1460889


52 | Bibliography

on blockchain. In 2018 IEEE International Conference on Web Services (ICWS),
ICWS ’18, pages 58–65. IEEE, 2018.

[10] D. Catteddu. Cloud computing: Benefits, risks and recommendations for information
security. In C. Serrão, V. Aguilera Díaz, and F. Cerullo, editors, Web Application
Security, pages 17–17, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN
978-3-642-16120-9.

[11] S. C. Chan, A. Gehani, J. Cheney, R. Sohan, and H. Irshad. Expressiveness bench-
marking for system-level provenance. In Proceedings of the 9th USENIX Conference
on Theory and Practice of Provenance, TaPP’17, page 3, USA, 2017. USENIX As-
sociation.

[12] K. M. Chandy. Event-driven applications: Costs, benefits and design approaches.
Gartner Application Integration and Web Services Summit, 2006, 2006.

[13] P. Charles. Bessani, alysson and sousa, joão and alchieri, eduardo ep, 2022. URL
https://github.com/bft-smart/library.

[14] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-
only memory: Making adversaries stick to their word. In Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, page
189–204, New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595935915. doi: 10.1145/1294261.1294280. URL https://doi.org/10.1145/

1294261.1294280.

[15] M. Correia, N. F. Neves, and P. Veríssimo. From consensus to atomic broadcast:
Time-free byzantine-resistant protocols without signatures. The Computer Journal,
49(1):82–96, 2006.

[16] H. Corrigan-Gibbs and B. Ford. Dissent: Accountable anonymous group messag-
ing. In Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, CCS ’10, page 340–350, New York, NY, USA, 2010. Association for
Computing Machinery. ISBN 9781450302456. doi: 10.1145/1866307.1866346. URL
https://doi.org/10.1145/1866307.1866346.

[17] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Sax-
ena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer. On scaling decentralized
blockchains. In J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, and
K. Rohloff, editors, Financial Cryptography and Data Security, pages 106–125, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-53357-4.

https://github.com/bft-smart/library
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1866307.1866346


| Bibliography 53

[18] S. A. Crosby and D. S. Wallach. Efficient data structures for tamper-evident logging.
In Proceedings of the 18th Conference on USENIX Security Symposium, SSYM’09,
page 317–334, USA, 2009. USENIX Association.

[19] G. Cugola and A. Margara. Processing flows of information: From data stream
to complex event processing. ACM Comput. Surv., 44(3), June 2012. ISSN 0360-
0300. doi: 10.1145/2187671.2187677. URL https://doi.org/10.1145/2187671.

2187677.

[20] M. El-Hindi, M. Heyden, C. Binnig, R. Ramamurthy, A. Arasu, and D. Kossmann.
Blockchaindb - towards a shared database on blockchains. In Procs. of the Int. Conf.
on Management of Data, SIGMOD ’19, page 1905–1908, New York, NY, USA, 2019.
ACM.

[21] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable
data possession. 17(4), Apr. 2015. ISSN 1094-9224. doi: 10.1145/2699909. URL
https://doi.org/10.1145/2699909.

[22] E. Esiner, A. Kachkeev, S. Braunfeld, A. Küpçü, and O. Özkasap. Flexdpdp: Flexlist-
based optimized dynamic provable data possession. ACM Trans. Storage, 12(4), Aug.
2016. ISSN 1553-3077. doi: 10.1145/2943783. URL https://doi.org/10.1145/

2943783.

[23] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe. ACM Comput. Surv., 35(2):114–131, June 2003. ISSN 0360-0300.
doi: 10.1145/857076.857078. URL https://doi.org/10.1145/857076.857078.

[24] M. Fowler. Event sourcing, 2005. URL https://martinfowler.com/eaaDev/

EventSourcing.html.

[25] Google. Deploying event-sourced systems with cloud span-
ner, 2020. URL https://cloud.google.com/solutions/

deploying-event-sourced-systems-with-cloud-spanner.

[26] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical report, Cornell University, 1994.

[27] A. Haeberlen, P. Kouznetsov, and P. Druschel. Peerreview: Practical accountability
for distributed systems. In Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, page 175–188, New York, NY, USA,
2007. Association for Computing Machinery. ISBN 9781595935915. doi: 10.1145/
1294261.1294279. URL https://doi.org/10.1145/1294261.1294279.

https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2699909
https://doi.org/10.1145/2943783
https://doi.org/10.1145/2943783
https://doi.org/10.1145/857076.857078
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner
https://cloud.google.com/solutions/deploying-event-sourced-systems-with-cloud-spanner
https://doi.org/10.1145/1294261.1294279


54 | Bibliography

[28] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Accountable virtual ma-
chines. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, page 119–134, USA, 2010. USENIX Association.

[29] H. Howard and R. Mortier. Paxos vs raft: Have we reached consensus on distributed
consensus? In Proceedings of the 7th Workshop on Principles and Practice of Con-
sistency for Distributed Data, pages 1–9, 2020.

[30] R. Hull. Blockchain: Distributed event-based processing in a data-centric world. In
Procs. of the Int. Conf. on Distributed and Event-Based Systems, DEBS ’17, page
2–4, New York, NY, USA, 2017. ACM.

[31] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely. Towards a theory of accountability
and audit. In M. Backes and P. Ning, editors, Computer Security – ESORICS 2009,
pages 152–167, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-
642-04444-1.

[32] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel. Cheapbft: Resource-efficient byzantine
fault tolerance. In Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, page 295–308, New York, NY, USA, 2012. Association for
Computing Machinery. ISBN 9781450312233. doi: 10.1145/2168836.2168866. URL
https://doi.org/10.1145/2168836.2168866.

[33] V. R. Kebande and H. Venter. On digital forensic readiness in the cloud using
a distributed agent-based solution: issues and challenges. Australian Journal of
Forensic Sciences, 50(2):209–238, June 2016. doi: 10.1080/00450618.2016.1194473.
URL https://doi.org/10.1080/00450618.2016.1194473.

[34] J. King, J. Stallings, M. Riaz, and L. Williams. To log, or not to log: using heuristics
to identify mandatory log events – a controlled experiment. Empirical Software
Engineering, 22(5):2684–2717, Aug. 2016. doi: 10.1007/s10664-016-9449-1. URL
https://doi.org/10.1007/s10664-016-9449-1.

[35] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q. Liang, and
B. S. Lee. Trustcloud: A framework for accountability and trust in cloud computing.
In 2011 IEEE World Congress on Services, pages 584–588, 2011.

[36] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

[37] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.

https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1080/00450618.2016.1194473
https://doi.org/10.1007/s10664-016-9449-1


| Bibliography 55

ACM Transactions on Programming Languages and Systems, pages 382–401,
July 1982. URL https://www.microsoft.com/en-us/research/publication/

byzantine-generals-problem/.

[38] J. Li, G. Zhao, X. Chen, D. Xie, C. Rong, W. Li, L. Tang, and Y. Tang. Fine-grained
data access control systems with user accountability in cloud computing. In 2010
IEEE Second International Conference on Cloud Computing Technology and Science,
pages 89–96, 2010.

[39] P. Louridas. Some guidelines for non-repudiation protocols. SIGCOMM Comput.
Commun. Rev., 30(5):29–38, Oct. 2000. ISSN 0146-4833. doi: 10.1145/505672.
505676. URL https://doi.org/10.1145/505672.505676.

[40] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena. A se-
cure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, page
17–30, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450341394. doi: 10.1145/2976749.2978389. URL https://doi.org/10.1145/

2976749.2978389.

[41] N. A. Lynch. Distributed algorithms. Elsevier, 1996.

[42] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy, G. McMullen,
R. Henderson, S. Bellemare, and A. Granzotto. Bigchaindb: A scalable blockchain
database, 2016.

[43] Microsoft. Command and query responsibility segregation (cqrs) pattern, 2020. URL
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs.

[44] Z. Milosevic, M. Hutle, and A. Schiper. On the reduction of atomic broadcast to
consensus with byzantine faults. In 2011 IEEE 30th International Symposium on
Reliable Distributed Systems, pages 235–244. IEEE, 2011.

[45] National Institute of Standards and Technology. Digital signature standard (dss).
FIPS Publication 186, May .

[46] H. Nissenbaum. Computing and accountability. Commun. ACM, 37(1):72–80, Jan.
1994. ISSN 0001-0782. doi: 10.1145/175222.175228. URL https://doi.org/10.

1145/175222.175228.

[47] H. Nissenbaum. Accountability in a computerized society. Science and Engineering
Ethics, 2(1):25–42, 1996. doi: 10.1007/BF02639315.

https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://doi.org/10.1145/505672.505676
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://doi.org/10.1145/175222.175228
https://doi.org/10.1145/175222.175228


56 | Bibliography

[48] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm.
In 2014 USENIX Annual Technical Conference (Usenix ATC 14), pages 305–319,
2014.

[49] L. Pasquale, S. Hanvey, M. Mcgloin, and B. Nuseibeh. Adaptive evidence collection
in the cloud using attack scenarios. Comput. Secur., 59(C):236–254, June 2016.
ISSN 0167-4048. doi: 10.1016/j.cose.2016.03.001. URL https://doi.org/10.1016/

j.cose.2016.03.001.

[50] L. Pasquale, D. Alrajeh, C. Peersman, T. Tun, B. Nuseibeh, and A. Rashid. Towards
forensic-ready software systems. In 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-
NIER), pages 9–12, 2018.

[51] R. Rowlingson. A ten step process for forensic readiness. International Journal of
Digital Evidence, IJDE, 2, 01 2004.

[52] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy. Towards blockchain-
based auditable storage and sharing of iot data. In Procs. of the Cloud Computing
Security Workshop, CCSW ’17, page 45–50, New York, NY, USA, 2017. ACM.

[53] J. Sousa and A. Bessani. From byzantine consensus to bft state machine replication:
A latency-optimal transformation. In 2012 Ninth European Dependable Computing
Conference, pages 37–48. IEEE, 2012.

[54] B. Stopford. Designing Event-Driven Systems: Concepts and Patterns for Streaming
Services with Apache Kafka. O’Reilly Media, 1st edition, 2018. ISBN 9781492038245.

[55] T. Sund, C. Loof, S. Nadjm-Tehrani, and M. Asplund. Blockchain-based event pro-
cessing in supply chains - a case study at ikea. Robotics and Computer-Integrated
Manufacturing, 65:1–16, 2020.

[56] M. Swanson, J. Hash, and P. Bowen. Sp 800-18 rev. 1. guide for developing security
plans for federal information systems, 2006.

[57] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo. Efficient
byzantine fault-tolerance. IEEE Transactions on Computers, 62(1):16–30, 2013. doi:
10.1109/TC.2011.221.

[58] B. Wang, B. Li, and H. Li. Oruta: privacy-preserving public auditing for shared
data in the cloud. IEEE Transactions on Cloud Computing, 2(1):43–56, 2014. doi:
10.1109/TCC.2014.2299807.

https://doi.org/10.1016/j.cose.2016.03.001
https://doi.org/10.1016/j.cose.2016.03.001


| Bibliography 57

[59] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li. Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Transactions on Parallel
and Distributed Systems, 22(5):847–859, 2011. doi: 10.1109/TPDS.2010.183.

[60] Z. Xiao and Y. Xiao. Achieving accountable mapreduce in cloud computing.
Future Generation Computer Systems, 30:1 – 13, 2014. ISSN 0167-739X. doi:
https://doi.org/10.1016/j.future.2013.07.001. URL http://www.sciencedirect.

com/science/article/pii/S0167739X13001465. Special Issue on Extreme Scale
Parallel Architectures and Systems, Cryptography in Cloud Computing and Recent
Advances in Parallel and Distributed Systems, ICPADS 2012 Selected Papers.

[61] Y. Xu, J. Ren, G. Wang, C. Zhang, J. Yang, and Y. Zhang. A blockchain-based non-
repudiation network computing service scheme for industrial iot. IEEE Transactions
on Industrial Informatics, 15(6):3632–3641, 2019. doi: 10.1109/TII.2019.2897133.

[62] A. R. Yumerefendi and J. S. Chase. The role of accountability in dependable dis-
tributed systems. In Proceedings of the First Conference on Hot Topics in System
Dependability, HotDep’05, page 3, USA, 2005. USENIX Association.

[63] M. Zamani, M. Movahedi, and M. Raykova. RapidChain: scaling blockchain via full
sharding. In Procs. of the Conf. on Computer and Communications Security, CCS
’18, page 931–948, New York, NY, USA, 2018. ACM.

[64] S. Zawoad, A. K. Dutta, and R. Hasan. Towards building forensics enabled cloud
through secure logging-as-a-service. IEEE Transactions on Dependable and Secure
Computing, 13(2):148–162, 2016. doi: 10.1109/TDSC.2015.2482484.

http://www.sciencedirect.com/science/article/pii/S0167739X13001465
http://www.sciencedirect.com/science/article/pii/S0167739X13001465




59

A| Validation service replica

implementation

1 package kabis.validation;
2

3 import bftsmart.tom.MessageContext;
4 import bftsmart.tom.server.defaultservices.DefaultSingleRecoverable;
5 import org.apache.kafka.common.errors.SerializationException;
6 import org.bouncycastle.jce.provider.BouncyCastleProvider;
7 import org.slf4j.Logger;
8 import org.slf4j.LoggerFactory;
9

10 import java.io.*;
11 import java.nio.ByteBuffer;
12 import java.security.Security;
13 import java.util.ArrayList;
14 import java.util.LinkedList;
15 import java.util.List;
16

17 import static kabis.validation.KabisServiceReplica.deserializeSidList;
18 import static kabis.validation.KabisServiceReplica.serializeSidList;
19

20 public class KabisServiceReplica extends DefaultSingleRecoverable {
21

22 private static final Logger LOG = LoggerFactory.getLogger(
KabisServiceReplica.class);

23 private final List <SecureIdentifier > log = new LinkedList <>();
24

25 @Override
26 public void installSnapshot(byte[] bytes) {
27 log.clear ();
28 log.addAll(deserializeSidList(bytes));
29 }
30

31 @Override
32 public byte[] getSnapshot () {



60 A| Validation service replica implementation

33 return pull (0);
34 }
35

36 @Override
37 public byte[] appExecuteOrdered(byte[] bytes , MessageContext

messageContext) {
38 try (var cmd = new ByteArrayInputStream(bytes)){
39 var opOrdinal = cmd.read();
40 var op = OPS.values ()[opOrdinal ];
41 switch (op){
42 case PUSH:
43 push(cmd.readAllBytes ());
44 return new byte [0];
45 case PULL:
46 var index = ByteBuffer.wrap(cmd.readNBytes(Integer.

BYTES)).getInt ();
47 return pull(index);
48 default:
49 throw new IllegalArgumentException(String.format("

Illegal ordered operation requested: %s",op));
50 }
51 } catch (IOException e) {
52 throw new SerializationException(e);
53 }
54 }
55

56 @Override
57 public byte[] appExecuteUnordered(byte[] bytes , MessageContext

messageContext) {
58 try (var cmd = new ByteArrayInputStream(bytes)){
59 var opOrdinal = cmd.read();
60 if (opOrdinal == OPS.PULL.ordinal ()) {
61 var index = ByteBuffer.wrap(cmd.readNBytes(Integer.BYTES

)).getInt ();
62 return pull(index);
63 }
64 throw new IllegalArgumentException(String.format("Illegal

ordered operation requested: %s", OPS.values ()[opOrdinal ]));
65 } catch (IOException e) {
66 throw new SerializationException(e);
67 }
68 }
69

70 public KabisServiceReplica(int id){



A| Validation service replica implementation 61

71 new bftsmart.tom.ServiceReplica(id,this ,this);
72 }
73

74 public static void main(String [] args) {
75 if (args.length != 1) {
76 LOG.error("USAGE: {} <process id>", KabisServiceReplica.

class.getCanonicalName ());
77 System.exit(-1);
78 }
79 Security.addProvider(new BouncyCastleProvider ());
80 int processId = Integer.parseInt(args [0]);
81 new KabisServiceReplica(processId);
82 }
83

84 private void push(byte[] serializedSid){
85 var sid = SecureIdentifier.deserialize(serializedSid);
86 synchronized (log) {
87 log.add(sid);
88 }
89 }
90

91 private byte[] pull(int index){
92 if(index >log.size()) return new byte [0];
93 List <SecureIdentifier > logPortion;
94 synchronized (log) {
95 logPortion = new ArrayList <>(log.subList(index , log.size()))

;
96 }
97 return serializeSidList(logPortion);
98 }
99

100 public static byte[] serializeSidList(List <SecureIdentifier > subLog)
{

101 try(var bytes = new ByteArrayOutputStream ()) {
102 for (var sid: subLog){
103 var serialized = sid.serialize ();
104 bytes.writeBytes(ByteBuffer.allocate(Integer.BYTES).

putInt(serialized.length).array ());
105 bytes.writeBytes(serialized);
106 }
107 return bytes.toByteArray ();
108 } catch (IOException e) {
109 throw new RuntimeException(e);
110 }



62 A| Validation service replica implementation

111 }
112

113 public static List <SecureIdentifier > deserializeSidList(byte[]
serialized){

114 try (var bytes = new ByteArrayInputStream(serialized)){
115 List <SecureIdentifier > res = new LinkedList <>();
116 while (bytes.available () >0){
117 var len = ByteBuffer.wrap(bytes.readNBytes(Integer.BYTES

)).getInt ();
118 var serializedSid = bytes.readNBytes(len);
119 res.add(SecureIdentifier.deserialize(serializedSid));
120 }
121 return res;
122 } catch (IOException e) {
123 throw new SerializationException(e);
124 }
125 }
126

127 }



63

List of Figures

1.1 Event-based architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Kabis layer stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Kabis components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Kabis storage channel for B byzantine and C crash faults. . . . . . . . . . 21
3.3 Producer design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Consumer design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Validation component distributed among 4 parties, tolerant to at most 1

byzantine failure or 3 crash failures. . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Storage channel distributed among 4 parties, tolerant to at most 1 byzan-

tine failure or 3 crash failures. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Push sequence diagram (validable message) . . . . . . . . . . . . . . . . . . 27
3.8 Storage push sequence diagram (validable message) . . . . . . . . . . . . . 28
3.9 Validation push sequence diagram (validable message) . . . . . . . . . . . . 29
3.10 KafkaPollingThread loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Validator procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12 Pull sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Kabis consumer throughput per payload . . . . . . . . . . . . . . . . . . . 40
4.2 Kabis consumer throughput per payload details . . . . . . . . . . . . . . . 41
4.3 Kabis producer throughput per payload . . . . . . . . . . . . . . . . . . . . 42
4.4 Kabis producer throughput per payload details . . . . . . . . . . . . . . . . 43





65

List of Tables

2.1 Class of guarantees by producer’s and consumer’s behavior . . . . . . . . . 12
2.2 Producer API of Kafka and Kabis . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Consumer API of Kafka and Kabis . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Processes for each evaluated system . . . . . . . . . . . . . . . . . . . . . . 38





67

List of Definitions

Term Definition Page

Event A significant change in a process’ state 1

Event notification The operation by which any process is made aware of
an event happened in the context of any other process

1

Event handling The reaction of a process to an event 1

Event-based system A system where processes communicate between each
other through event notification, and their execution is
limited to event handling.

1

Event-sourcing sys-
tem

An event-based system in which the history of events is
stored into a persistent data store, called the event log

1

Producer A client of an event-based system publishing events 3

Consumer A client of an event-based system subscribing for events
and receiving event notifications

3

Event service The intermediate service coordinating an event-based
system

3

Topic A semantic class for events of the same type that may
happen in an event-based system

4

FIFO order Messages from a process will be delivered in the same
order they were sent

6

Total order For any couple of messages, one will always be delivered
before the other.

6

Crash failure A failure model in which a process stops responding to
incoming messages

5

Byzantine failure A failure model in which a process exhibits arbitrary,
possibly malicious, behavior

5

Crash fault tolerance
(CFT)

The ability of a system to correctly operate in presence
of some crash failures

5



68 | List of Definitions

Term Definition Page

Byzantine fault toler-
ance (BFT)

The ability of a system to correctly operate in presence
of some byzantine failures

5

Consensus When of replicas reach an agreement over some value 6

Permissioned environ-
ment

An execution environment where exists a way to deter-
mine the identity of any participant

7

Non-repudiation Assurance that neither the sender or the receiver can
later deny having processed the information

7

Authenticity Allows the receiver of a message to identify the sender 7

Integrity Allows the receiver to verify that the content of a mes-
sage has not been modified

7

Digital signature Technique ensuring authenticity and integrity of a mes-
sage, therefore achieving non-repudiation

7

SHA-256 A common hashing algorithm 7

ECDSA An asymmetric encryption algorithm 7

Apache Kafka Reference event-based technology for this thesis 7

KafkaProducer Client process that writes events to Kafka 8

KafkaConsumer Client process that reads events from Kafka 8

Topic Abstraction used by Kafka to group events of the same
type

8

Partition Subset of a topic created for scalability reasons 8

Offset Tracks the position where a Consumer is reading 8

Broker Server process that stores some of the topic-partition of
the Kafka system

8

Zookeeper Technology used by Kafka for broker coordination 8

BFT-SMaRt An open-source framework providing BFT consensus 9

VP-Consensus A stronger consensus primitive enforcing the satisfaction
of a predicate from any agreed value and the production
of a cryptographic proof certifying the agreement upon
a specific value in a specific consensus instance

9

Service replica Service process of BFT-SMaRt. 9

Service proxy Client process of BFT-SMaRt. 9

Basic guarantees The set of guarantees offered by Kabis when the receiver
doesn’t try to validate incoming messages

12



| List of Definitions 69

Term Definition Page

Extended guarantees The set of guarantees achieved when both the sender
and the receiver aim to get them

13

KabisRecord Data object used into the messaging layer 14

KabisProducer API used to send messages to the messaging layer 14

KabisConsumer API used to read messages from the messaging layer 14

Storage channel Communication channel internal to the messaging layer
offering the basic guarantee set

19

Validation channel Communication channel into the messaging layer offer-
ing extended guarantees

19

MessageWrapper Data type transmitted through the storage channel 20

Kafka replica A fully working kafka infrastructure composing by the
storage channel

20

Secure Identifier
(SID)

Data type transmitted through the validation channel 21





71

Acknowledgments

First I’d like to thank Professor Alessandro Margara, not only for the guidance he gave me
as my advisor, but for being the person who mostly inspired me into joining the Computer
Science faculty. Professor Guido Salvaneschi and Leon Chemnitz have my gratitude as
well for their support in the thesis conceptualization and development.

I would also like to thank Maren Eikerling, Maria Luisa Lorusso, Francesco Vona and
Professor Franca Garzotto for our collaboration and the publication of my first research
paper.

I’m grateful to all my friends, the ones of a lifetime and the once I made in the last years,
for the beautiful time together and the support they gave me along my journey.

Finally my gratitude goes to my family: my parents Sandro and Cinzia and my brother
Luca, which love and support allowed me to get through all this work with peace and
happiness.

Thank you all for your support and inspiration.




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background
	Event-based architectures
	Fault tolerance models
	Ordering models
	Consensus

	Non-repudiation
	Apache Kafka
	BFT-SMaRt

	System model
	Functional guarantees
	Basic guarantees
	Extended guarantees
	Update topology API

	Kabis event service
	KabisRecord
	KabisProducer API
	KabisConsumer API


	System design and implementation
	Component implementation
	Storage implementation
	Validation implementation
	Producer implementation
	Consumer implementation

	Deployment
	Network protocols
	Push protocol
	Pull protocol


	Performance evaluation
	Experiment setup
	Performance under varying payloads
	Consumer evaluation
	Producer evaluation

	Discussion
	Threats to validity


	Related work
	Conclusions
	Future Work

	Bibliography
	Validation service replica implementation
	List of Figures
	List of Tables
	List of Definitions
	Acknowledgments

