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1. Introduction
In the context of the Circular Restricted Three
Body Problem (CR3BP), interest in space mis-
sions around Lagrange points has grown in re-
cent years for both the Sun-Earth and Earth-
Moon systems. Most of these missions are take
place around Lagrange Points L1 and L2 [12].
These are unstable locations, thus a spacecraft
(s/c), located on an operational orbit in their
vicinity, requires station keeping. Many station
keeping algorithms have been developed through
the years [12]. One of this is the Floquet Mode
Approach (FMA) [13].
In this thesis the FMA has been developed
and deeply studied to understand its applica-
tion limits in the case of Halo orbits around
Sun-(Earth+Moon) and Earth-Moon L2. This
study, through the use of a Monte Carlo sim-
ulation, investigates in which cases the control
algorithm fails, with respect to two parameters:
the minimum time between maneuvers and the
amplitude of Halo orbits.
Furthermore, within the established operational
limits, this study includes two distinct applica-
tions. The former concerns the Radiation En-
vironment Monitor for Energetic Cosmic rays
(REMEC) mission. In this case, a prelim-

inary analysis is performed to assess station
keeping costs. The second application involves
the Bi-Circular Restricted Four Body Problem
(BR4BP), where the algorithm’s utility is ex-
plored in a different dynamical model.

2. Circular Restricted Three
Body Problem

The thesis is mainly developed in the CR3BP
dynamics. Graphically represented Fig. 1.

Figure 1: Schematic representation of CR3BP.

Using the notation expresses in Fig. 1, the
dimensionless equations of motion [2, 16] in
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CR3BP are expressed as Eq. (1).
ẍ− 2ẏ = Vx,

ÿ + 2ẋ = Vy,

z̈ = Vz.

(1)

Where Vx, Vy and Vz are the partial derivatives
of the total potential (Eq. (4)):

Vx = x− 1− µ

r31
(x+ µ)− x+ µ− 1

r32
µ,

Vy = y − 1− µ

r31
y − µ

r32
y,

Vz = −1− µ

r31
z − µ

r32
z.

(2)

Where,{
r1 =

√
(x+ µ)2 + y2 + z2,

r2 =
√

(x+ µ− 1)2 + y2 + z2.
(3)

In this form, the equations of motion depend
only on the mass parameter µ.

V =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
(4)

2.1. Halo orbits
Halo orbits are 3D periodic and symmetric with
respect to x − z plane. They can be computed
analytically, considering the in-plane and out-of-
plane frequencies to be equal [4]. In this thesis,
Halo orbits are computed numerically. A differ-
ential correction technique that exploits the or-
bits’ symmetry and the State Transition Matrix
(STM) to adjust the initial conditions and find
the correct ones. For the purpose of this thesis,
it is important to know that when the amplitude
Az increases, Halo orbits become more stable:
stability index decreases.

2.2. Monodromy matrix
The Monodormy matrix M corresponds to the
STM evaluated after one orbital period. The
eigenvalues of M provide information on the
global stability of Halo orbits: m1 > 1 and
m2 = 1/m1 < 1 represent the unstable and sta-
ble components, while m3 = m4 and m5 = m∗

6
1

lie on the unit circle that represents marginal
stability. Moreover, eigenvectors associated with
m1 and m2 represent stable and unstable di-
rection of the hyperbolic manifolds towards and
from the periodic orbit.

1* means complex and conjugate eigenvalues

3. Floquet Mode Approach
FMA is a control method used in the CR3BP
framework, that makes use of the theory of
invariant manifolds. The method, developed in
[6, 13], aims to cancel the unstable component
of the error state vector, such that the s/c can
naturally converge towards the nominal orbit.
The information about stable and unstable
directions are not recovered from STM, since its
elements grow exponentially in time, but from
the Floquèt modes.

3.1. Floquet Modes
Floquet modes can be computed numerically fol-
lowing procedure in [9], with the following for-
mula:

Ẽ(t, t0) = Φ(t, t0)Se
−J̃t (5)

Where matrix S is a real matrix that collects the
eigenvectors of M , J̃ is a Jordan matrix that
depends on the eigenvalues of M and Φ(t, t0) is
the STM at the given time.

3.2. Controller definition
Different controllers based on the FMA exist [5,
8, 9], but the aim of all of them is to eliminate
the unstable component of the error state vector.
In this work, a one-axis controller Eq. (6) and a
two-axes controller Eq. (7) are implemented.

∆x = − c1
π4

(6)

∆x = − c1π4
π2
4 + π2

5(t)
;∆y = − c1π5

π2
4 + π2

5

(7)

Where π1 = [π1;π2;π3;π4;π5;π6] is the pro-
jection factor along the unstable direction and
c1 = π1(t) ·δ(t) is the unstable component, with
δ(t) = [δx ; δy ; δz ; δẋ ; δẏ ; δż] the error state
vector, the difference between the actual space-
craft position and the nominal orbit.

4. Simulation
As already mentioned, a Monte Carlo simula-
tion, with 100 trials [7], is performed varying two
parameters: minimum time between two con-
secutive maneuvers, ∆tmin, and Halo amplitude
along the z direction, Az.
In this simulation a maneuver is performed when
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the deviation with respect to the nominal or-
bit overcomes a certain limit. Two boundaries
have been defined: Starting maneuver and Limit
maneuver. Maneuvers are not executed below
the Starting maneuver boundary, but within the
range defined by the Starting maneuver and
Limit maneuver boundaries. Indeed, a maneu-
ver is executed if the s/c deviates from the nom-
inal orbit, while if the s/c exceeds the Limit ma-
neuver boundary, the station keeping is consid-
ered to have failed.
Furthermore, orbit determination (OD) errors,
orbit injection (OI) errors and magnitude ma-
neuver errors are included in the simulation, to
make it more realistic.
The simulation has been conducted for both the
Sun-(Earth+Moon) and Earth-Moon systems.
However, as the same conclusions can be drawn
for both systems, only the results for the Sun-
(Earth+Moon) case will be presented herein.

4.1. Sun-(Earth+Moon)
The orbits considered for Sun-(Earth+Moon)
case are listed in Table 1.

Az [km] T [days] k

6.27 · 103 180.38 1695

3.62 · 105 180.04 1458.13

6.95 · 105 179.02 978.13

9.94 · 105 177.16 548.75

1.38 · 106 171.57 174.67

1.65 · 106 161.06 45.68

1.72 · 106 155.21 24.81

1.77 · 106 149.84 14.24

1.80 · 106 144.61 7.93
1.82 · 106 139.42 3.89

Table 1: Amplitudes, periods and stabil-
ity indexes of the selected orbits for Sun-
(Earth+Moon) system.

In Table 2 the input parameters are defined.
Figure 2 shows the success probability of the
station keeping algorithm implemented with the
FMA, as function of the ∆tmin and Az.

Input parameters

Number of orbits 10

OD errors 1.5 km and 1 cm/s

OI errors 150 km and 3 cm/s

Maneuver errors 5% in magnitude

Tracking points one per day

Starting maneuver 500 km

Limit maneuver 50000 km

MC trials 100
µ 3.04042 · 10−6 [15]

Table 2: Input parameters for Monte Carlo sim-
ulation in the Sun-(Earth+Moon) system

The first interesting observation that can be
done is that the two-axis controller (Fig. 2b) pro-
vides an overall greater number of successes with
respect to one-axis controller (Fig. 2a): in par-
ticular higher amplitudes are better controlled.
For both cases two common behaviours have
been identified:

1. Increasing ∆tmin the station keeping starts
to fail.

2. Increasing the amplitudes Az, even if ∆tmin

is low, the station keeping fails.
Increasing ∆tmin limits station-keeping effec-
tiveness as it constrains to control less the orbit,
eventually leading to failure. Halo orbits become
more stable with higher Az values, suggesting
that station-keeping failing with a low amplitude
orbit at a specific ∆tmin might succeed with the
same ∆tmin but a larger amplitude orbit. The
second behavior is due to the Floquet mode ap-
proach’s structure. Instead, if the stable compo-
nent is weak, the s/c can’t converge to the nom-
inal orbit, as the method cancel the error state
vector along the unstable component. Remem-
ber that, system stability depends on eigenval-
ues within the unit circle on the complex plane.
In Fig. 3, two zones are distinguishable: success
and failure zones. In the success zone, the strong
stable component keeps the spacecraft on a nom-
inal orbit when cancelling the unstable one. In
the failure zone, the weakening stable compo-
nent can’t maintain s/c bounded. Between the
two zones, there is a transition region where the
station keeping could succeed or not.
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(a) One-axis controller

(b) Two-axis controller

Figure 2: Successes of Floquet mode approach: Halo orbits around L2 in Sun-Earth system.

Figure 3: Unstable and stable eigenvalues of Halo orbits around L2 in Sun-(Earth+Moon) system.
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5. Application
Within the defined operational limits, two appli-
cations of the algorithm will be presented: one
referring to the baseline operational orbit of the
REMEC mission [1], and one with the same or-
bit defined in the BR4BP.

5.1. Application A: REMEC
The operational orbit of the baseline mission [10]
has an amplitude Az = 280000 km. The aim of
the analysis was to make a preliminary definition
of station keeping costs. Also in this case, a
Monte Carlo simulation is performed to obtain
more significant results. The input parameters
for the simulation are listed in Table 3.

Input parameters

Number of orbits 10

OD errors 1.5 km and 1 cm/s

OI errors 150 km and 3 cm/s

Maneuver errors 5% in magnitude

∆tmin 30 days

Tracking points one per day

Starting maneuver 500 km

Limit maneuver 50000 km

MC trials 100
µ 3.04042 · 10−6 [15]

Table 3: Input parameters for the station keep-
ing algorithm for REMEC mission

Two simulations were done: with and without
Solar Radiation Pressure (SRP). The cannonball
model [14] has been implemented. The accelera-
tion term, Eq. (8), is added to the left hand side
of Eq. (1).

as =
PSCASC

mSC
ρr (8)

Where the mass of the s/c is mSC = 100 kg,
the surface area hit by the Sun is ASC =
1.570604 m2 and the reflectivity coefficient ρr =
1.8.
Table 4 and Table 5 show the results of the sim-
ulation. It is evident that with the presence of
SRP, the performances are worst. The SRP acts
continuing pushing the s/c.

Mean STD

Error 612.15 km 89.60 km

SK cost 4.04 m/s 1.01 m/s
n° of maneuver 33 3

Table 4: Simulation results REMEC mission (no
SRP).

Mean STD

Error 8550.39 km 1112.63 km

SK cost 69.55 m/s 5.11 m/s
n° of maneuver 44 1

Table 5: Simulation results REMEC mission
(with SRP).

5.2. Application: BR4BP
An application has been analyzed in the B4BP.
The dynamics is modified as in [11]. In this case,
the Moon is included inside the dynamics as a
perturbation, thus the total potential, Eq. (4),
becomes:

VM (x, y, z, µ, θ) = V (x, y, z, µ, θ)

+
mM

rM
− mM

ρ2M
(x cos θ + y sin θ) (9)

Where θ̇ = ωM = 12.367 [ndu] is the Moon
mean angular velocity with respect to Earth,
mM = 3.6942 · 10−8 [ndu] is the Moon mass,
ρM = 2.5721 · 10−3 [ndu] is the mean Earth-
Moon distance and r2M = (x−1+µ−ρM cos θ)2+
(y − ρM sin θ)2 is the s/c-Moon distance.
The aim was to apply the station keeping algo-
rithm in this new dynamics, to represent a more
realistic scenario. Using the same input parame-
ters reported in Table 3, with the only difference
in Limit maneuver=500000 km, the results are
reported in Table 6.

Mean STD

Error 124934.33 km 7472.16 km

SK cost 2210.51 m/s 266.89 m/s
n° of maneuver 49 1

Table 6: Simulation results in BR4BP.
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The results, in particular the SK cost, are worse
than in the CR3BP case, but were predictable
as the Moon is introduced as a perturbation and
therefore the station keeping algorithm has to
compensate for it. Moreover, the initial condi-
tions, for the Halo orbit propagation, are found
in CR3BP thus they don’t exist in BR4BP. How-
ever, the input parameters can be changed as
shown in Table 7.

Input parameters

Number of orbits 1

OD errors 0

OI errors 0

Maneuver errors 0

∆tmin 1 days

Tracking points one per day

Starting maneuver 100 km

Limit maneuver 50000 km

MC trials 100
µ 3.04042 · 10−6 [15]

Table 7: Input parameters to compute a refer-
ence orbit in BR4BP

In this way, the mean error is equal to 12299.15
km. The graphical representation of the simula-
tion is shown in Fig. 4. Since the orbit in this
way is controlled, it is assumed that it is possible
to use it as initial guess for future refinement in
a more realistic dynamics.

Figure 4: Controlled orbit in BR4BP to use as
initial guess for future refinement.

6. Conclusions
In this work, the limits of the FMA are shown.
Since FMA exploits stable component to keep

the s/c bounded around the nominal orbits, Halo
orbits with a small unstable component, and
therefore a larger stable component, are more
difficult to control than orbits with a higher
unstable component. In addition, the FMA
was implemented varying the minimum time be-
tween maneuvers ∆tmin and amplitude Az of the
Halo orbits, to see how the algorithm was influ-
enced by these parameters. As a general con-
sideration, performances can be improved im-
plementing a two-axes controller: ∆tmin and Az

can be grater.
Within the identified operating limits, two ap-
plications were made. Application A: the results
of the station keeping are in in agreement with
literature [3, 5, 6, 12, 13]. Application B: station
keeping was tested inside the BR4BP to verify
if it was able to control a s/c. It turned out that
the FMA was able to keep a s/c bounded around
a nominal orbit, even if the station keeping costs
are not reasonable.

6.1. Future works
As just said, FMA has some limitations, specif-
ically respect to orbits with a very little unsta-
ble component. For this reason, it is suggested
to perform the same analysis as described in
Section 4, implementing another method, such
as Hamiltonian Structure Preserving to check
whether this method is able to control all or-
bits of the Halo family.
Moreover, since an orbit in BR4BP has been
computed using the FMA, this orbit could be
used as initial guess for future refinement of the
same orbit but in the four-body dynamics.
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