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Abstract

Several future space missions will be equipped with low-thrust engines as main propul-
sion subsystem. This is true not only for planetary missions such as orbit raising, de-orbiting,
Geostationary Transfer Orbits (GTOs), but also for interplanetary missions and large satellite
constellations. The advantage in using low-thrust systems grants a higher final operational mass
at the expense of a longer time of flight. Indeed, the main task of a space mission is to host a
dedicated payload, which is associated to a set of scientific instruments to accomplish multiple
objectives. The higher is the final operational mass the higher is the number of payloads to be
set onboard of a single satellite. In the last 10 years the advancement in technology allowed to
develop different types of new electric engines: solar engines, Hall effect thrusters, and plasma
thrusters. The use of low-thrust engines completely changes the design problem of a spacecraft
trajectory. When chemical engines, characterised by high thrust level, are involved in the de-
sign, the spacecraft trajectory design is solved considering multiple ballistic arcs separated by
impulsive manoeuvrers.

The introduction of low-thrust engines turns the control policy from discontinuous manoeu-
vres to continuous laws. The design of a continuous control law requires the solution of a
non-linear optimal control problem. One of the many techniques used to solve this problem is
Differential Dynamic Programming (DDP) which couples the main advantages of classic direct
and indirect methods. Despite its strong mathematical formulation the DDP technique did not
find many applications over the past and the state representation was always chosen in terms
of Cartesian coordinates. It is interesting to apply this technique to spacecraft trajectory de-
sign problems written in terms of orbital elements. Indeed, orbital elements represent a natural
set to describe orbit mechanics because they provide a more physical insight into the problem.
The variation of orbital elements can be rapidly associated to a geometrical representation of
the spacecraft trajectory, whereas a variation of the position or the velocity vector in terms of
Cartesian coordinates cannot be visualised until the full trajectory is plotted.

The aim of this research is to investigate the coupling between the optimisation technique of
DDPwith the use of orbital elements as dynamic formulation and to apply the algorithm to space
mission trajectory design problems. The other topic investigated is the possibility to leverage the
effect of orbital perturbations as accelerations that can be engineered in the space mission design
and not see them as disturbing factors. This second objective is set by the COMPASS ERC
project which funded this research. The main contributions of this work are the definition of a
mathematical theory to couple DDP with orbital elements and the formulation of cost function
to optimise the maximum shadow time experienced by a spacecraft. The algorithm is used to
solve single or multi-revolution interplanetary and planetary transfers.
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Sommario

Numerose missioni spaziali future verranno equipaggiate con motori a bassa spinta. Tale
scelta non riguarderà solo missioni di carattere planetario come innalzamento dell’apocentro,
rientro di un satellite o orbite di trasferimento Geostazionarie (GTOs), ma anche a missioni
interplanetarie. Il vantaggio principale nell’utilizzo di motori a bassa spinta è quello di garantire
una maggiora massa per la strumentazione scientifica a bordo (il cosiddetto payload) a discapito
di un maggior tempo di trasferimento. Lo sviluppo di motori a bassa spinta è cominciato, negli
ultimi anni del XX secolo, attraverso l’utilizzo di motori ionici che sfruttavano lo xenon come
propellente. Negli ultimi 10 anni il progresso tecnologico ha permesso lo sviluppo di ulteriori
tipi di motore a bassa spinta: motori solari, motori basati sull’effetto di Hall e motori al plasma.

L’uso di un motore a bassa spinta come sistema propulsivo cambia la progettazione della
traiettoria del satellite. Infatti, per un satellite che sfrutta motori chimici caratterizzati da alte
spinte, la traiettoria del satellite risulta essere l’unione di più archi balistici separati ognuno da
una manovra impulsiva. Nel caso di motori a bassa spinta, l’accelerazione che viene fornita
al satellite diventa continua trasformando la progettazione della traiettoria in un problema di
controllo ottimo altamente non lineare. Una delle tecniche numeriche per poter risolvere tale
problema consiste nella Programmazione Dinamica Differenziale (DDP) che unisce gli aspetti
vantaggiosi dei classici metodi diretti e indiretti. Tuttavia, la DDP non ha vantato un grande
utilizzo in particolare in ambito spaziale ed ha sempre usato un sistema di rappresentazione
Cartesiana come caratterizzazione dello stato di un sistema dinamico.

Questa ricerca propone lo studio e l’applicazione della DDP in ambito della progettazione
delle traiettorie di un satellite usando i parametri orbitali come rappresentazione della dinamica.
I parametri orbitali sono una scelta naturale per risolvere i problemi di meccanica celeste perchè
offrono la possibilità di una visualizzazione più chiara della soluzione ottenuta. Ogni parametro
orbitale può essere associato ad una caratteristica geometrica dell’orbita. Pertanto, la variazione
di un parametro orbitale è sicuramente di più facile interpretazione rispetto alla variazione delle
coordinate Cartesiane che risultano delle variabili che oscillano durante la rivoluzione di un
satellite e che non forniscono alcun senso illustrativo fino a quando l’orbita tridimensionale non
viene graficata. Un altro elemento analizzato in tale ricerca è la possibilità di usare le pertur-
bazioni orbitali come accelerazioni a favore della progettazione della traiettoria di un satellite
e non più come degli elementi di disturbo che devono essere contrastati con apposite manovre
correttive. Questo secondo obiettivo è fissato dal progetto ERC COMPASS che ha finanziato
la ricerca. I contributi principali di questo lavoro sono la definizione di una teoria matemat-
ica sull’accoppiamento della DDP con gli elementi orbitali e la formulazione di una funzione
costo per ottimizzare il tempo massimo speso da un satellite all’interno dell’ombra generata in
un’eclissi.
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Ũ Auxiliary matrix multiplying the Lagrange multipliers and final time variations δbT...δtf
inside the expanded HJB equation

ũ Ademensional control thrust vector
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ũt Adimensional tangential control thrust component

xvii



Nomenclature
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CHAPTER 1

Introduction

Low-thrust propulsion subsystems represent the baseline for many of the future planetary
and interplanetary space missions. This propulsion choice affects the design of spacecraft tra-
jectories which are the result of a complex non-linear optimal control problem. This thesis will
propose an effective strategy to solve in an innovative way non-linear optimal control problems
in terms of orbital elements. In this chapter we will introduce the motivations and objectives
of the study. Subsequently, a summary of the currents state of the art on numerical techniques
used to solve non-linear optimal control problems will be given. A brief discussion of direct and
indirect approaches, in order to highlight the reasons which led us to the selection of the differ-
ential dynamic programming technique for the design of low-thrust optimal trajectories is also
presented. An overview of low-thrust past and future space missions is also given to justify the
possible applications of the work presented in this thesis. A careful literature review about the
differential dynamic programming together with all its past applications is presented to enhance
the novelty of the proposed methodologies with respect to the literature in this area. Finally, a
summary of the novel contribution developed and implemented in this study is provided.

1.1 Design of optimal spacecraft trajectories

Every space mission requires to define in its design an operative trajectory for one or more
spacecraft according to the main scientific requirements. After the assessment of the operative
trajectory a very important task in the preliminary design of the space mission is to derive
the transfer trajectory that will move the spacecraft from the launch base to the nominal orbit.
This design is very difficult because it must satisfy multiple constraints that are defined in a
concurrent design engineering approach. Some examples of relevant design constraints can be
provided by the telecommunication subsystem which requires the spacecraft to communicate
with the ground stations during specific phases of the space missions such as during flybys
[1]. The consequence on the design of the trajectory is to be kept always in view of the relay
spacecraft and/or not having the Sun directly behind the Earth, which is introducing noise in the
communication [2]. Another relevant constraint is related to the power subsystem, which can
require the spacecraft to be always in sunlight or satisfy a maximum time to be in the shadow of
the eclipse due to the storage capability of the onboard batteries. In this case the trajectory of the
spacecraft must be adjusted to avoid the shadow created by the Sun and a generic occulting body
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during its transfer. The use of multiple flybys to change the size of the orbit moving towards the
outer or inner planets is also a constraint in the design of the spacecraft trajectory to overcome
some limitations imposed on the maximum thrust provided by the propulsion subsystem or by
the payload subsystem when several scientific instruments are required to be onboard.

The main problem to be solved from a mathematical point of view is to design an opti-
mal trajectory for a spacecraft which is minimising a specific or multiple cost functions subject
to several additional internal or final constraints. This problem has been considered for many
decades and it is still at the moment a very important topic to be discussed thanks to the advance-
ment of computer computational power and development of numerical optimisation techniques.
The first attempts in solving this problem involved only the use of multiple ballistic arcs sepa-
rated by impulsive manoeuvrers. In the last years the use of low-thrust technologies is imposing
the definition of a continuous control law for the design of the optimal trajectory. The inclusion
of all the constraints was not always possible in the design of the optimal trajectory and the
result that the satisfaction of some conditions have to be checked a posteriori. This is why the
literature offers many research papers related to optimal design of spacecraft trajectories deal-
ing with both the optimisation technique itself or the way to improve the quality of the design
considering the inclusion of constraints. One of the objectives of this research is to contribute
in both these directions to the several methods present in the current literature highlighting the
main advantages and the possible applications.

1.2 Research motivations and objectives

The aim of this research is to investigate the use of the differential dynamic programming
technique to solve low-thrust optimal control problems where the trajectory is written in terms
of orbital elements as state representation of the dynamics. The formulation of the differential
dynamic programming has been discovered in the second half of the XX century. However, the
applications of such technique were limited mainly to solve reservoir problems [3],[4],[5][6].
The first and only application of differential dynamic programming to a space mission has been
carried out for the NASA Dawn mission [7] to design the interplanetary trajectory of the space-
craft [8]. Both the two previous examples employed Cartesian coordinates as state representa-
tion of the dynamics. In the last years the differential dynamic programming started to be used
as numerical tool to solve a trajectory optimal control problem for space applications. However,
the applications were still limited to Cartesian coordinates as state representation of the dynam-
ics. For celestial mechanics problem orbital elements represent a valid alternative to Cartesian
coordinates to represent the satellite state. This is true for many common astrodynamics prob-
lems such as orbit propagation, eclipses determination and constellation coverage because of
the strict relation between orbital elements and geometry.

The first objective of this research is to study and extend the use of differential dynamic pro-
gramming with orbital elements representation as alternative optimisation technique to solve the
spacecraft trajectory design problem. In this framework the target is to solve multiple revolution
ellipses transfer with low-thrust which has hardly been done with DDP so far. The second ob-
jective is related to the inclusion of eclipse as internal path constraint during the optimal design
of the spacecraft trajectory. The eclipse represents always a hard constraint to be studied in the
design of the spacecraft trajectory and the compliance with this requirements is usually verified
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after the design of the trajectory. The real bottleneck leading to this approach which is not op-
timal is the lack of a systematic way to include eclipse for each time instant in the optimisation
process. All the eclipse algorithm developed in literature consider a fixed spacecraft orbit for
the determination of the entry and exit umbra points. However, spacecraft equipped with low
thrust engines are subject to continuous accelerations which are changing the orbital elements
at each time instant making the existing eclipse algorithm not reliable. This is why the second
main topic of the research is to fill this hole creating a systematic way to include the eclipse path
inside the optimisation process so that the spacecraft trajectory accounts for the presence of the
shadow during its transfer. The last objective of the research is to define a wide variety of space
mission opportunities that can be designed using the optimisation technique presented in this
dissertation. A comparative assessment of the proposed optimisation technique is compared
with other methods proposed in literature to evaluate efficiency, advantages and disadvantages
according to the type of problem that is solved.

1.3 Background

1.3.1 Numerical methods for trajectory optimisation

In this section an overview of the classic methods to design a spacecraft trajectory is pre-
sented. In particular, most of the methods can be classified under direct and indirect approaches
[9]. However, other different techniques such as the shape-based method are used as a valid
alternative for the definition of a initial suboptimal solution.

Direct methods

A direct method is an optimisation technique that transcribes a general non-linear optimal
control problem into a non-linear programming problem so that the objective function is "di-
rectly" optimised. The transcription process is the process that converts the state or both the
state and control variables into parameters which are selected from finite dimensional spaces.
Imaging to consider an univariate functionF (x), a direct method constructs a sequence of points
x1, x2, .., x

∗ such that the objective function is minimised and typically F (x1) > F (x2) > ... >
F (x∗) [20]. At least in principle, the direct method needs only to compare values for the objec-
tive function so that it attempts to find its minimum. A direct method does not need to write the
adjoint equations, the control equations, or the transversality conditions. After the transcription,
the direct method uses numerical algorithms (for instance, sequential quadratic programming,
penalty methods, augmented lagrangian) to compute candidate points which minimise the non-
linear programming problem. The candidate points are not generally the real optimal solution.
The candidate solution is refined computing the corrections which satisfy the first-order neces-
sary optimality conditions also known as Karush-Kuhn-Tucker (KKT) conditions [10].

Single shooting, multiple shooting and collocation methods are widely used to solve numer-
ically the optimisation problem. In the single shooting only the control variables are discretised
and the optimisation is carried out through all the time interval. In the multiple shooting tech-
nique the time domain is partitioned in many connected segments and in each segment the

3



1.3. Background

single shooting approach is applied [11]. Finally, collocation methods discretise both state and
control variables and transform differential equations into non-linear constraints [12]. Several
Sequential Quadratic Programming (SQP) solvers exist based on the direct collocation method
which automatically transforms the non-linear optimal control problem into a corresponding
non-linear programming problem and apply state-of-the art method to solve the quadratic sub-
problems. Example of NLP solvers are SNOPT [13], IPOPT [14], SLSQP [15], KNITRO [16],
GPOPS [17], PSOPT [18], LOQO [19]. The advantage in using direct methods is the possibil-
ity to handle easily complicated constrained non-linear problems and to provide a solution also
when a poor initial guess is available [20]. However, these methods suffer multiple-revolution
trajectories because a large number of variables is usually required to obtain an accurate solution
and cannot guarantee an optimal solution.

Many applications of direct methods are present in literature to solve trajectory optimal
control problems. A direct trajectory optimisation method using non-linear programming and
collocation method using cubic polynomials to represent state variables and linear interpola-
tion for the control variables is presented by Hargraves and Paris [21]. The same collocation
is used by Tang and Conway [22] to solve interplanetary optimal trajectories. Gath and Well
[23] present a software package called GESOP which is a combination of direct multiple shoot-
ing method and direct collocation method. The collocation phase adopts either a third order
Hermite polynomials or a trapezoidal approximation. Fahroo and Ross [24] describe a direct
trajectory optimisation based on Chebyshev pseudospectral method. In this case the Lagrange
polynomial approximations for state and control variables are evaluated using the Chebyshev
method. Other applications of direct collocation methods to solve low-thrust trajectory optimal
control problems are analysed by Herman and Spencer [25], and Somaverapu et al. [26]. Vasile
and Bernelli [27] present an original direct optimization approach has been used to design an
optimal interplanetary trajectory. The proposed approach is characterized by a transcription of
both states and controls by Finite Elements in Time (DFET). A set of additional parameters,
not included among states and controls, are allowed and can be used for a combined optimiza-
tion of both the trajectory and other quantities peculiar to the original optimal control problem
(parametric optimization). In particular, in this paper, the orbital elements of each swing-by hy-
perbola are treated as additional parameters and swing-by trajectories are not transcribed with
collocation but using multiple shooting. Direct methods can be also combined with other op-
timisation techniques such as genetic algorithm to create an hybrid approach as discussed by
Vavrina and Howell [28].

Indirect methods

An indirect method differs from its counterpart because it attempts to find a root of the
first order necessary condition F ′(x) = 0. Therefore, an indirect method must compute the
slope F ′(x) and decide if it is sufficiently close to zero. The optimal control necessary con-
ditions requires to explicitly derive the adjoint equations, the control equations, and all of the
transversality conditions. In this case, the optimal control problem is transformed in a Mul-
tipoint Boundary Value Problem (MPBVP) as a consequence of the application of Pontryagin
Maximum Principle (PMP) which represents the first-order necessary conditions that an opti-
mal solution must satisfy [29]. At this point the necessary conditions are discretised so that a
constrained parameter optimisation problem is obtained. The optimal control is the solution of
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the MPBVP which requires the application of Newton-like algorithm. Also in this case single
shooting, multiple shooting and collocation techniques can be applied to indirect methods.

The main advantages in using an indirect method is in the quality of the solution obtained
that is accurate and it is guaranteed to be optimal because of the satisfaction of the first-order
necessary conditions. However, the methods is very sensitive to the initial choice of the costates
and it is not obvious which could be a proper selection for their choice due to their non-physical
interpretation. Indirect methods have been used for many applications starting from the opti-
misation of rocket ascent trajectories as presented by Colasurdo et al. [30]. Fahroo and Ross
[31] analyse a hybrid approach combining a direct methods with an indirect collocation tech-
nique. A different combination using genetic algorithm which provide a tentative guess for the
subsequent indirect optimisation is investigated by Sentinella and Casalino [32].

Ranieri and Ocampo [33] introduce an indirect optimisation to compute the minimum pro-
pellant spiral escapes and captures in terms of spherical coordinates. Lagrange multipliers are
estimated in a two steps. In the first step, an adjoint control transformation converts the thrust
direction to the multipliers controlling the trajectory, while in the second phase curve fits are
matched with the values of the initial multipliers. La Mantia and Casalino [34] proposes a
different approach to optimise low-thrust capture trajectories using Cartesian coordinates and
Edelbaum’s approximation to model the suboptimal spiral phase. Bokelmann and Russell [35]
solve an optimisation problem for Europa capture trajectory using primer vector theory and im-
pulsive manoeuvrers. Other applications of indirect methods are related to the optimisation of
low-thrust trajectories with multiple gravity assists as presented by Casalino et al. [36], and
deflection missions for the design of a kinetic impactor trajectory as discussed by Casalino and
Simeoni [37].

Differential dynamic programming

This research uses a Differential Dynamic Programming (DDP) algorithm as optimisation
technique to solve the low-thrust optimal control problem. The first derivation of the DDP
algorithm was presented by Mayne [38] as a second-order gradient method to determine op-
timal trajectories for non-linear discrete time systems. The formulation has been expanded by
Jacobson andMayne [39] providing a detailed description of the DDP algorithm also for contin-
uous time systems considering both global and weak variations of the control action. Gershwin
and Jacobson [40] improved the constrained DDP algorithm introducing some checking condi-
tions to verify if the update of the Lagrange multipliers can be consistent with the second-order
Taylor expansion. The formulation of the DDP algorithm was investigated and further devel-
oped by many authors for many years [41], until it reached a first stop with the definition of
the Static/Dynamic Control (SDC) approach introduced by Whiffen [8]. This technique was
the first one used to design an interplanetary space mission (NASA Dawn) and represented the
state-of-the art for several years. The advance in computer technology made DDP a research
topic starting from the first decade of 2000. In particular, Colombo et al. [42] analysed in their
work a stage-wise approach to incorporate an adaptive refinement of the discretisation mesh
within the optimisation process based on interpolation techniques. The most important devel-
opment related to DDP was provided by Lantoine and Russell [43] which introduced the Hybrid
Differential Dynamic Programming (HDDP) where the partial derivatives are propagated using
State Transition Matrices (STMs) and it is particularly useful for multi-phase problems defin-
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ing the new state-of-the art for this type of optimisation technique. Maestrini [44] extended the
HDDP applying differential algebra to compute the STMs as polynomial maps without solving
numerically the ordinary differential equations. The DDP algorithm was extended to stochastic
problems thanks to the work of Campagnola et al. [45] that generalised in their work the classic
DDP algorithm assuming the existence of state and control multiplicative process noises.

The DDP deserves a separate class as numerical technique for the solution of non-linear
optimal control problems because it represents a mixture between the benefits and disadvantage
of both direct and indirect methods. The DDP shares with the direct methods the ability to
handle also poor initial guesses and it does not require a first guess solution for the adjoint
variables. As the indirect methods it can be proved that DDP is strongly related to PMP which
represents the starting point for the derivation of the first-order necessary optimality conditions.
The main feature of the DDP algorithm is the ability to derive a feedback control law as result
of the optimisation that is granting robustness to the optimal control law, and the possibility to
perform real-time corrections if unknown disturbances have to bee included in the dynamics.

TheDDP can be summarised as a practical solution to the so called "curse of dimensionality"
problem [46] inherent with the basic formulation of the dynamic programming that consists in
the rapid growth of memory and computational time as the dimension of the problem increases.
This creates a limitation in the application of the dynamic programming to very complicated
non-linear optimal control problem. The DDP is based on a successive backward quadratic
Taylor expansion of the cost functional in the neighbourhood of a nominal and non-optimal
trajectory. The successive backward expansion allows to transform the large scale non-linear
optimal control problem into a series of problems of small dimension. This characteristic makes
theDDP an attractive alternative to classic Non-Linear Programming (NLP) solvers when highly
dimensional problems are considered. The optimisation process in in the DDP algorithm can
be summarised in a backward sweep where the coefficients of the feedback control law are
determined solving Hamilton-Jacobi-Bellman (HJB) equation, and a forward integration where
the new control law is used to propagate the system dynamics to check the reduction in the cost
functional [39].

Shape-based optimisation

Another alternative for the design of spacecraft trajectories is the shape-based method. In
this case an analytical solution for motion variables for a given class of trajectory shape func-
tions is provided. Once the trajectory shape is selected a priori, the thrust profile is derived a
posteriori from the inverse solution of the equations of motion. The parameters of the shape
function can be computed thanks to an optimisation algorithm. The outcome of the method is
not guaranteed to be an optimal solution but it can be used as initial guess for more complicated
optimisation methods.

The shape-based method idea is to provide an approximate analytical solution to model the
low-thrust spacecraft trajectories. The first important reference is described by Petropoulos and
Sims [47] that presented a review of shape-based techniques. However, only basic examples
involving constant radial acceleration and planar motion are solved. De Pascale and Vasile [48]
have developed a three-dimensional shape-based method using pseudoequinoctial elements ca-
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pable of handling also boundary constraints. This allows to apply the technique also to solve
low-thrust rendezvous trajectories and gravity assist manoeuvres. Petropoulos and Longuski
[48] extended the work presenting a shape-based algorithm for automated design of low-thrust
trajectories including gravity assists. Some selected trajectories from the shape-based method
are considered as initial estimates for an optimisation program employing direct methods. Wall
and Conway [49] discusses a new shape-based technique for low-thrust rendezvous trajecto-
ries using a 6th degree inverse polynomial for the in-plane motion and a polynomial with four
coefficients for small out-of-plane motion [50]. A further improvement of the shape-based tech-
nique is provided by Novak and Vasile [51] who developed a general three-dimensional shaping
method in spherical coordinates. They show that the planar exponential sinusoid and the in-
verse polynomial shaping are just two-dimensional particular cases of the three-dimensional
approach. The solution obtained from the shaping method is improved considering a feedback
linear-quadrati controller. Finally, Vellutini and Avanzini [52] proposes a shape-based design of
low-thrust trajectories for spacecraft transfers from low-Earth orbit (LEO) to Lagrangian point
L1 of the Earth-Moon system assuming the two primary masses on a circular relative orbit.

1.3.2 Orbital elements as state representation

This research investigates the coupling of DDP optimisation algorithmwith orbital elements
as state representation of the dynamics. Orbital elements represents one of the main keywords of
this dissertation because of the poorness of this topic in literature and the choice of problem to be
solved. The non-linear optimal control problem that must be solved is the design of a spacecraft
trajectory. This means that orbit dynamics is characterising the equations of motions and they
do not admit a single formulation in terms of Cartesian coordinates but also in orbital elements
that is rarely used. However, orbital elements represent a valid alternative to represent the orbit
dynamics because they offer more physical insight about the orbit geometry (e.g., orbit shape,
orbital plane inclination) and its time evolution. Cartesian coordinates have not the same power
and no information about the orbit geometry is available until the three-dimensional trajectory
is plotted.

The current literature presents few examples of trajectory optimisation in terms of orbital
elements as state representation of the dynamics. The first relevant example is provided by Betts
[53] which uses a collocation method applied to modified equinoctial elements. This technique
is slitted in three operations which are a direct transcription into a NLP problem, the solution
of sparse NLP using sequential programming, and a mesh refinement. This technique was ap-
plied to a very low-thrust problem which required 416123 variables and 249674 constraints.
The second reference can be found in Petropoulos [54] who introduces the so-called "Q-law"
as simple approximation or initial guess for propellant-optimal non-linear optimal control prob-
lem. This method is also based on modified equinoctial elements and consists in identifying a
candidate Lyapunov function whose properties are check according to the value of the proximity
quotient. A different approach based on the analytic orbit averaging technique for simulating
many-revolution trajectories using low tangential acceleration is discussed by Gao [55]. Liu
and Tongue [56] provide a complete treatment of escape trajectory design making use of Mod-
ified Equinoctial Elements (MEE)-based adjoint equations incorporating the third-body and
higher-order Earth gravitational perturbations. This work exploits a classic indirect method as
optimisation technique to minimise the transfer time [56].
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A first-order approximated analytical solution of Gauss planetary equations is analysed by
Avanzini et al. [57] that in integrated in a direct transcription method based on the decomposi-
tion of the trajectory into a number of finite elements. Gauss’ planetary equations are solved over
each element by means of a perturbative approach, for constant thrust modulus and direction.
Another application of indirect methods to solve multiple coast arcs optimal space trajectories
in terms of modified equinoctial elements is investigated by Pontani [58] who derives the com-
plete set of necessary conditions for optimality to minimise the transfer time in the presence of
eclipse conditions. The only application of orbital elements to HDDP is formualted by Aziz et
al. [59] who introduces a Sundman transformation to change the independent variable of the
spacecraft equations of motion from time to an orbit angle. A Geostationary Transfer Orbit
(GTO) where modified equinoctial elements are used as state representation is solved. In par-
ticular, the optimal control problem is solved targeting a final orbit but not a specific position
on the final orbit, that is equivalent to impose a constraint on the final angular variable used as
independent variable.

1.3.3 Eclipse algorithms

In this work a new analytical eclipse algorithm is investigated for the computation of en-
try/exit points of a spacecraft from the umbra shadow. There are many works dealing with the
analysis of the eclipses in literature. The first reference can be found in Escobal [60], who de-
fines an analytical procedure to determine the true anomalies corresponding to the entry point
and exit point from an eclipse in the framework of classic Keplerian elements assuming the
Earth’s surface as a perfect sphere and a cylindrical shadow. These assumptions simplify the
modelling from a three dimensional problem to a planar one due to the spherical symmetry and
it results in a quartic equation where the unknown is the cosine of the entry/exit true anomalies.
Escobal suggests also a procedure to handle the same problem modelling the Earth’s surface as
an oblate ellipsoid of rotation, but this time the algorithm is numerical, iterative and it gives the
possibility to define the penumbra region starting from user-made assumptions related to the
amplitude of the region itself.

Vallado [61] presents a numerical shadow analysis for both cylindrical and conical cases
starting from the same assumptions and shadow function developed by Escobal and solving the
quartic polynomial equation in the true anomaly with a Newton-Raphson numerical scheme,
and so no further modelling is added to the solution of the problem. Fixler [62] introduces an
analytical procedure to determine the umbra and penumbra regions assuming a conical shadow
and a spherical Earth resulting in another transcendental equation to be solved numerically.
However, this method is based on projection of the Sun position vector onto the satellite orbital
plane which modifies slightly the real geometry of the problem. Kraft [63] solves the same prob-
lem arriving at the results given by Fixler by a different derivation. The angular displacement of
the Sun direction with respect to the orbit pericenter is used by Colombo and McInnes [64] to
include eclipse in the orbit dynamics expressed in terms of orbital elements assuming a planar
motion in the ecliptic plane. Ortiz Longo et al. [65] extended the methods developed by Fixler
and Kraft to a perturbed environment taking into account the effect of J2 orbital perturbation.
Montenbruck and Gill [66] used a spherical Earth conical shadow model based on the angular
separation and diameters of the Sun and the Earth. A more complete analysis has been carried
out by Dreher [67] considering also the effect of the atmospheric refraction on the light rays, but
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the modelling is always based on an unperturbed environment and a spherical Earth. Vokrouh-
licky et al. [68] proposed the concept of "osculating spherical Earth" to account for the errors
introduced by assuming a spherical model with respect to an oblate Earth’s surface. Adhya et
al. [69] are the first ones introducing an analytical procedure for the eclipse phenomenon mod-
elling the Earth’s surface as an oblate ellipsoid of rotation. Their methodology can only be used
to state if the satellite is in light, penumbra or umbra region and it is limited for low-Earth or-
biting satellites. However, a numerical investigation by Vokrouhlicky et al. [70] has shown that
the oblateness of the Earth did not bring significant differences compared to a spherical Earth
for the LEO satellites. On the contrary, Woodburn [71] showed that the cylindrical assumption
which neglects totally the penumbra region has important consequences for the precise numeri-
cal integration of orbit trajectories depending on the numerical scheme and the definition of the
boundaries to be used for the occulted region.

1.4 Methodologies developed and implemented

The present research focuses on the design of optimal low-thrust spacecraft trajectories using
the DDP numerical technique based on orbital elements as state representation of the dynamics
including eclipse as internal path constraint.

The orbit dynamics is modelled through Gauss’ planetary equations to account both for
conservative and non-conservative accelerations. A discrete DDP algorithm based on small
control variations is used as optimisation technique and a new analytical algorithm is used to
model the eclipse through a conical shadow to minimise the total time spent by the spacecraft
in the umbra during the transfer. The DDP technique used in this dissertation modifies the
algorithm proposed in previous works [43],[42],[59], in which the main differences are related
to the use of strong variations instead of weak variations, or other computational strategies for
the cost functional partial derivatives and the choice of the state representation.

In this work, the transition function used for the discretisation of the dynamics and of the
DDP algorithm is Runge-Kutta 8th order explicit scheme. The evaluation of the cost functional
partial derivatives is carried out considering the analytical derivative of the numerical scheme.
The model is parametrised to account any kind of system dynamics and disturbance acceleration
if an analytical formulation is provided thanks to the use of MATLAB symbolic manipulator.
Multiple endpoint constraints formulation are proposed to solve the optimal control problem
according to the type of transfer. Heuristics techniques are defined to improve the convergence
of the DDP algorithm and a new Hessian shifting technique is proposed to make the choice
of the diagonal shifting user independent. Multiple-revolution transfers with more than 500
revolutions are solved for the first time using the DDP algorithm thank to the coupling with
orbital elements.

A complete description of the theory coupling DDP algorithmwith orbital elements denoted
as quasi-independence theory is presented in Chapter 4. First, the orbital dynamics expressed
in terms of Gauss’ planetary equations is shown to be stiff because of the relative magnitude in
the orbital elements rates. The stiff dynamics has consequences on the application of the DDP
algorithm when a rendezvous optimal control problem is solved. Indeed, the algorithm tries
to correct and reduce the violation related to the fast variable without leading the spacecraft to
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the proper and correct final target orbit. The formulation of the dynamics in terms of orbital
elements results also in a second bottleneck that is the difficulty to optimise both slow variables
and fast variables at the same time. From a numerical point of view the consequence of trying
to optimise all the orbital elements at the same time is the presence of ill-conditioned matrices
that need to be inverted to define the optimal feedback control law. The two phenomena can be
explained looking at the expressions of the pericenter anomaly and true anomaly rates. Imaging
that the out-of-plane policy is very small the Jacobian matrices of the two orbital elements rates
with respect to the control are opposite. Therefore, if a given optimal control policy minimises
the pericenter anomaly, on the other hand it will maximise the true anomaly. It is not possible to
minimise or maximise the pericenter anomaly and the true anomaly at the same time. This oc-
curs because the change in true anomaly is not the direct effect of the application of the control
law, but it is caused by the change of the eccentricity vector which is the reference axis used for
the measurement of the true anomaly. For all the other orbital elements it is possible to apply a
control action which produces a variation of a single orbital element that is independent from the
others. Such phenomenon occurs only in orbital elements because they provide a better insight
of the orbit dynamics and they are revealing an aspect that is actually hidden when Cartesian
coordinates are used as state representation of the dynamics. Indeed, if the initial condition of
the spacecraft and the nominal control law are showing that the pericenter anomaly and the fast
variable must not follow the same trend to achieve the target it is better to choose a different
combination of initial condition and control law. However, if a rendezvous problem must be
accomplished and the initial conditions cannot be changed a continuation scheme is proposed
in two main layers to solve the problem. The first layer solves the optimal control problem con-
sidering only the endpoint constraints associated to the slow orbital elements so that an optimal
control law is defined to reach the target orbit. In the second layer the optimal control law de-
rived in the first layer is used as initial guess to solve a new optimal control problem to target
a new final anomaly. This novel approach allows to reduce the magnitude of the fast variable
variation and make it comparable to the other elements avoiding the creation of ill-conditioned
matrices. In case the design involves multiple revolutions, this dissertation suggests to change
the independent variable from the absolute time to the eccentric anomaly to improve the refine-
ment of the discretisation and the convergence properties of the algorithm. It is shown that the
choice of time in multiple-revolution problems creates discontinuities in the evaluation of the
cost functional partial derivatives in the backward sweep due to the large distance between two
consecutive nodes. The change of variable is accomplished by using a Sundman transforma-
tion that is not making more difficult the dynamics formulation because Gauss’ equations can
be expressed as function of the eccentric anomaly. Differently from a Cartesian coordinates
transformation, the Sundman transformation [59] allows to be consistent with the type of ref-
erence set of coordinates without the need to transform at each time step eccentric anomaly in
time to solve the dynamics. This is another main advantage of the use of the orbital elements
that is highlighted in this dissertation. When highly non-linear dynamics are considered as in
the case of Gauss’ planetary equations the use of STMs as done in the HDDP is not advised
because of the complexity in the numerical solution of the partial differential equations. This
is why a comparative assessment is presented to prove that the cost in deriving the analytical
formulation of the partial derivatives of the explicit numerical scheme bring many benefits from
a computational point of view and it can be applied to any kind of system dynamics.

The second main research objective is related to the inclusion of an internal path constraint
prescribing a maximum time for the spacecraft to be in the shadow of a generic eclipse. A new
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analytical cost function is derived as result of the research to optimise themaximum shadow time
during the spacecraft transfer. First, a new analytical method to account for the eclipse umbra
entry and exit point is derived considering a conical shadow and an oblate ellipsoid of rotation.
Using the same approach to model analytically the conical surface of the shadow a forbidden
region within the eclipse umbra is generated according to the maximum prescribed shadow
time. The minimum distance of the spacecraft from this forbidden region is defined as figure of
merit to be the eclipse cost function that must be added in the general Augmented Lagrangian
formulation. The minimisation of this cost function is equivalent to the minimisation of the
distance of the spacecraft from the forbidden region that if it is close to zero mean that the
spacecraft respects the maximum shadow time. The formulation is first derived in terms of
Cartesian coordinates and then it is adapted to use orbital elements. Moreover, the definition of
the proposed eclipse cost function is not strictly related to the DDP algorithm but can be used
in any kind of numerical optimisation technique.

1.5 Structure of the thesis

The dissertation is divided into nine chapters, which introduce different topics regarding
low-thrust optimisation. At the beginning of each chapter there is a brief introduction explain-
ing the theoretical content developed in this thesis and the applications used as results of the
methodology introduced. Chapter 2 introduces the several formulations of the orbit dynamics
used for all the results derived in this research. The chapter continues with the definition of the
analytical formulations for the computation of the partial derivatives of a generic Runge-Kutta
explicit scheme. The last part of the chapter is devoted to present the structure of the DDP al-
gorithm to handle a parametrised dynamics and perturbation. In the Appendix A the complete
derivation of all the Gauss’ equations expressing the orbit dynamics in several reference frames
and in terms of many sets of orbital elements is contained.

In Chapter 3 the main topic is the differential dynamic programming algorithm. The for-
mulation of the optimal control problem is presented and the analytical formulation of all the
backward equations is derived starting from Bellman’s principle of optimality. The chapter
describes also some heuristic techniques that come from the experience of the author to solve
different types of optimal control law trajectories. In the final part of the chapter, the different
ways to formulate the constraints are presented highlighting the main difference between the
formulations and the summary of the DDP algorithm is proposed.

Chapter 4 deals with the most important theoretical contribution of this research work. A
complete mathematical framework, denoted as quasi-independence theory, of what happens
when orbital elements are used as state representation of the dynamics to apply DDP is derived.
The chapter continues describing how to handle the angular variables which are not present in
the classic state representation in terms of Cartesian coordinates. A continuation scheme is pro-
posed to overcome the bottleneck when rendezvous problem must be solved in terms of orbital
elements and a numerical example is presented to show the effectiveness of the methodology.

The dissertation expands the basic DDP algorithm presented in Chapter 3 introducing the
optimisation of free final time and static parameters in Chapter 5. Starting from the same as-
sumptions the complete backward equations are derived. From this complete formulation all
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the simplified versions of the DDP algorithm can be defined according to the variables to be
optimised. The second part of the chapter presents the Sundman transformation to change the
independent variable from time to eccentric anomaly and explains its advantages in the applica-
tion of the DDP algorithm. This tool is particularly relevant for the solution of multi-revolution
optimal trajectory design.

Chapter 6 presents a comparative analysis between the state-of-the art method for the evalua-
tion of the cost functional partial derivatives. This operation deserves a separate chapter because
it represents the most expensive part in the execution of the DDP algorithm and a simplifica-
tion of this part provides a significant advantage in the overall algorithm execution. The last
part of the chapter is devoted to a robustness analysis of the optimal control law derived by the
DDP algorithm. Starting from the feedback control law obtained by the DDP a perturbation is
introduced in the initial conditions to check if the optimal control law is still reliable or a new
optimal control problem must be solved.

The second important aspect of the dissertation is contained in Chapter 7 which describes
an innovative way to include an internal path constraint associated to the eclipse in the DDP
algorithm. The chapter starts with the analytical derivation of a new algorithm for the eclipse
entry and exit point evaluations and end with a figure of merit to minimise the maximum pre-
scribed shadow time. This novelty is very flexible because the formulation of the cost function
can be used also with different optimisation methods. Some results are presented at the end of
the chapter to show the effectiveness of the new figure of merit.

Finally, Chapter 8 summarises the contributions of this dissertation and proposes several
insights to improve the DDP algorithm in terms of orbital elements both from the theoretical
and applicative point of view that will be subject of future work.

1.6 Contributions

The contents of this dissertation are going to be published in two journal papers and have
been presented in several international conferences. An introduction to the DDP based on orbital
elements has been presented at the 70th International Astronautical Congress (IAC) in 2019
at Washington [72]. A first part of the theoretical framework coupling DDP algorithm and
orbital elements was discussed in the 31st AAS/AIAA Space Mechanics Meeting [73] that was
held remotely due to the Covid-19 pandemics restrictions. The full derivation of the quasi-
independence theory has been described in the paper submitted to the Journal of Guidance,
Control, and Dynamics [74]. The analytical derivation of the eclipse algorithm was presented
first at the 33rd AAS/AIAA Space Mechanics Meeting [75] in 2022 at Charlotte and the full
derivation of new approach together with the differences with respect to the state-of-the art
methods and some applications is the main topic of a new journal publication submitted to the
Journal of Guidance, Control, and Dynamics [76]. The integration of the eclipse algorithm
with the DDP method was part of the research stay at Jet Propulsion Laboratory (JPL) and the
outcome of the research have been discussed at the 73rd IAC in 2022 at Paris [77]. The full
description of the cost function derivation together with some relevant applications involving
eclipse in the design of low-thrust optimal trajectories will be part of a new journal publication
co-authored with Dr. Gregory Lantoine who supervised the research stay at JPL.
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CHAPTER 2

Orbit dynamics

This chapter presents the equations of motions used to represent the system dynamics within
the non-linear optimal control problems solved in the following chapters. The orbit dynamics
will be presented using orbital elements as state representation of the dynamics. Indeed, employ-
ing orbital elements as a formulation of the dynamics is one of the main target of this research.
Part of this chapter was published as modelling section for the journal articles presenting the
theoretical derivation between the coupling of DDP with orbital elements as state representa-
tion of the dynamics [74]. This chapter is organised as follows: first, Gauss’ equations in terms
of Keplerian elements and modified equinoctial elements are presented together with the refer-
ence quantities used to derive the non-dimensional equations of motions, then the parametric
analytical derivation of a generic Runge-Kutta explicit integration scheme is presented. The
chapter ends with an overall structure of how the parametrised DDP algorithm works together
with the analytical expressions of J2 orbital acceleration in terms of classic Keplerian elements
and modified equinoctial elements.

2.1 Gauss’ equations

The novelty of this work is the definition of a mathematical theory which describes the cou-
pling between orbital elements as state representation of the dynamics and the DDP algorithm.
Differently from traditional direct and indirect methods where spherical coordinates and orbital
elements are usually preferred with respect to Cartesian coordinates, most of the works related
to low-thrust trajectory optimisation using DDP adopt Cartesian coordinates as state represen-
tation for the integration of the orbital dynamics. However, orbital elements represent a valid
alternative with respect to Cartesian coordinates presenting many advantages. First, orbital el-
ements are related to geometrical quantities or anomalies that can be easily visualised from the
physical point of view and give insight into the orbit problem. Moreover, the rate of variation
of the orbital elements is usually very slow with respect to Cartesian coordinates. Therefore, it
should be reasonable to use orbital elements for the integration of the dynamics coupled with
the DDP for the solution of the optimal control problem. On the other side, in the Cartesian
state representation all the variables are oscillating and have similar rate of variation. However,
it is almost impossible to understand the evolution and motion of the spacecraft starting from
its initial orbit looking at the Cartesian elements variation.
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2.1.1 Keplerian elements

Orbit dynamics is represented using Gauss’ planetary equations which handle both conser-
vative and non-conservative accelerations [78]. For low-thrust applications it is important to
introduce the rate of the mass variation to consider the reduction in time of the propellant mass.
Gauss’ planetary equations can be represented in many reference frames and using different
sets of orbital elements. A complete summary of the different set of Gauss’ planetary equations
is reported in the Appendix A.1. For brevity in this paragraph only the expression of Gauss’
planetary equations in terms of classic Keplerian elements in the tangential, normal, orthogo-
nal reference frame denoted as

[
t̂, n̂, ĥ

]
it is reported while in Appendix A the expressions of

Gauss’ planetary equations in terms of both true anomaly and eccentric anomaly in
[
t̂, n̂, ĥ

]
and radial, transversal, and orthogonal reference frame denoted as

[
r̂, θ̂, ĥ

]
are presented [79].
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where a, e, i, Ω, ω, ν are the osculating semi-major axis, eccentricity, inclination, Right As-
cension of the Ascending Node (RAAN), pericentre anomaly, and true anomaly, respectively.
The vector [ut, un, uh] represent the components of the control actions while m is the mass of
the satellite, Isp is the specific impulse, µ is the gravitational parameter, and g0 the Earth gravity
acceleration. The former formulation of the dynamics in Eq. (2.1) is not efficient for numerical
integration because of the difference in terms of order of magnitudes between the orbital param-
eters. Therefore, Gauss’ equations are rewritten considering adimensional orbital elements and
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control actions. The adimensionalisation requires the definition of a set of reference variables
to be used. There are two different philosophies that can be adopted for the definition of the
reference quantities: all the reference variables depends on the engine specification and plane-
tary constant, or the reference variables depend both on the planetary constant and a reference
length chosen such that the semi-major axis lies in the interval [0,1]. Before describing the
two different sets of reference quantities it is useful to derive the dimensional Gauss’ planetary
equations in terms of the new adimensional variables so defined:

ã =
a

Lref
, m̃ =

m

mref

, t̃ =
t

tref
, ũ =

u

uref
(2.2)

where Lref ,mref , tref and uref are the reference length, mass, time and thrust, respectively
used for the adimensionalisation, and the subscript ∼ indicated the non-dimensional variable.
Replacing the non-dimensional variables defined in Eq. (2.2) in the previous set of Gauss’
planetary equation the result is:
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Lref
µ

trefuref
mref

√
ã(1− e2)

cos(ω + ν)

1 + e cos ν

ũh
m̃

dΩ

dt̃
=

√
Lref
µ

trefuref
mref

√
ã(1− e2)

sin(ω + ν)

sin i(1 + e cos ν)

ũh
m̃

dω

dt̃
=

√
Lref
µ

trefuref
mref

√
ã(1− e2)

{
1

e
√

1 + 2e cos ν + e2

[
2 sin ν

ũt
m̃

+

2e+ e2 cos ν + cos ν

1 + e cos ν

ũn
m̃

]
− cos i

sin i

sin(ω + ν)

1 + e cos ν

ũh
m̃

}
dν

dt̃
=

√
µ

L3
ref

tref
(1 + e cos ν)2√

[ã(1− e2)]3
−

√
Lref
µ

trefuref
mref

√
ã(1− e2)

e
√

(1 + 2e cos ν + e2)

[
2 sin ν

ũt
m̃

+
2e+ e2 cos ν + cos ν

1 + e cos ν

ũn
m̃

]
dm̃

dt̃
= −trefuref

mref

√
ũ2
t + ũ2

n + ũ2
h

Isp · g0

(2.3)

Looking at the equations three groups of coefficients appear:√
Lref
µ

trefuref
mref

,

√
µ

L3
ref

tref ,
1

Isp · g0

trefuref
mref

(2.4)
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2.1. Gauss’ equations

It is useful to impose each group equal to 1 so that it is possible both to simplify the differential
equations notation and derive a way to define the reference variables. Even if the number of
reference variables to be defined is equal to four, the actual number of unknowns is equal to three
because it is impossible to decouple the reference thrust from the reference mass. Therefore,
from Eq. (2.4) it is possible to write a system of three equations in 3 unknowns (reference length,
time and acceleration) which admits a unique solution.

√
Lref
µ

trefuref
mref

= 1√
µ

L3
ref

tref = 1

1

Isp · g0

trefuref
mref

= 1

−→



Lref =
µ

(Isp · g0)2

tref =
µ

(Isp · g0)3

aref =
uref
mref

=
(Isp · g0)4

µ

(2.5)

It is clear that using this approach to define the reference quantities there is no possibility to
tune the magnitude of each reference quantity. The last step is to define a way to compute the
reference mass and thrust. Being the method applied for low-thrust trajectory optimisation it is
convenient to set the reference thrust equal to the maximum magnitude the thruster can provide
and derive the reference mass from the reference acceleration.

The second approach to define the reference quantities defines a value for the reference
length, Lref , "a priori" so that the value of the non-dimensional semi-major axis is in the in-
terval [0,1]. This choice is quite easy because according to the final target the satellite has to
reach moving inwards/outwards it is possible to select the initial or the final semi-major axis
respectively as the reference length. Therefore, the selection of the other reference quantities
will be carried out considering only two of the group coefficients defined before in Eq. (2.4)
and forcing them being equal to 1, while the remaining group will assume a generic value.

Lref = amin/max, tref =

√
L3
ref

µ
, aref =

uref
mref

=
µ

L2
ref

(2.6)

The reference variables have been derived using the first two group of coefficients. Therefore,
the last group associated to the mass rate will change and it is possible to define an equivalent
specific impulse so that formally the aspect of the mass rate is the same.

˜Ispg0 =

√
Lref
µ

Isp · g0 (2.7)

The second set of reference quantities is particularly useful when the first set of adimensionalis-
ing quantities in Eq. (2.6) is not numerically efficient. Indeed, whenever the first group results
in a reference time such that the time step used for the numerical integration is too coarse, it is
possible to use the second set of reference variables where the reference length can be selected
a priori so that also the reference time and time step can be tuned accordingly. Then, the final
set of adimensional Gauss’ planetary equations considering the first set of reference quantities
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2.1. Gauss’ equations

in Eq. (2.4) is the following:

dã

dt̃
= 2

√
ã3

1− e2
(1 + 2e cos ν + e2)

ũt
m̃

de

dt̃
=

√
ã(1− e2)

1 + 2e cos ν + e2

[
2(e+ cos ν)

ũt
m̃
− 1− e2

1 + e cos ν
sin ν

ũn
m̃

]
di

dt̃
=
√
ã(1− e2)

cos(ω + ν)

1 + e cos ν

ũh
m̃

dΩ

dt̃
=
√
ã(1− e2)

sin(ω + ν)

sin i(1 + e cos ν)

ũh
m̃

dω

dt̃
=
√
ã(1− e2)

{
1

e
√

1 + 2e cos ν + e2

[
2 sin ν

ũt
m̃

+
2e+ e2 cos ν + cos ν

1 + e cos ν

ũn
m̃

]
−cos i

sin i

sin(ω + ν)

1 + e cos ν

ũh
m̃

}
dν

dt̃
=

(1 + e cos ν)2√
[ã(1− e2)]3

−
√
ã(1− e2)

e
√

(1 + 2e cos ν + e2)

[
2 sin ν

ũt
m̃

+
2e+ e2 cos ν + cos ν

1 + e cos ν

ũn
m̃

]
dm̃

dt̃
= −

√
ũ2
t + ũ2

n + ũ2
h

Isp · g0

(2.8)

The only difference in the previous set of equations in Eq. (2.8) considering the second set of
reference of quantities is in the mass rate equation which becomes the following:

dm̃

dt̃
= − 1

˜Ispg0

√
ũ2
t + ũ2

n + ũ2
h (2.9)

2.1.2 Nonsingular elements

The formulation in Eq. (2.8) considers classic Keplerian elements as representation of the
state. This introduces limitations for two specific class of orbits that cannot be considered be-
cause of the singularities related to the equations of motion. Indeed, Gauss’ variational equa-
tions in terms of classic Keplerian elements are singular for circular orbits (e = 0) and equatorial
orbits (i = 0). Even if there are only two singularities, both circular orbits and equatorial orbits
are of particular interest for spacemissions. It is then necessary to introduce a set of non-singular
elements to handle the previous two cases. In this work the set of modified equinoctial elements
proposed by Walker et al. [80] is considered to overcome the singularities. These elements are
valid for circular, elliptic, and hyperbolic orbits. These direct modified equinoctial equations
exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees.
However, two of the components are singular for an orbital inclination of 180 degrees. The
modified equinoctial elements are derived starting from the classic Keplerian elements using
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2.1. Gauss’ equations

the following expressions:

p = a
(
1− e2

)
f = e cos (ω + Ω)

g = e sin (ω + Ω)

h = tan (i/2) cos Ω

k = tan (i/2) sin Ω

Γ = Ω + ω + ν

(2.10)

where p is the semi-latus rectum, f and g represents the projections of the eccentricity vector
onto the nodal orbital frame, h and k are the projections of the nodal vector onto the orbital
frame, and Γ is the true longitude. The inverse formulations expressing the classic orbital el-
ements as function of the modified equinoctial elements are required to move from one repre-
sentation to the other one:

a =
p

1− f 2 − g2

e =
√
f 2 + g2

i = 2 arctan
(√

h2 + k2
)

= atan2
(

2
√
h2 + k2, 1− h2 − k2

)
Ω = atan2 (k, h)

ω = arctan (g/f)− arctan (k/h) = atan2 (gh− fk, fh+ gk)

ν = Γ− (Ω + ω)

(2.11)

with atan2 representing the inverse arctangent trigonometric function using as inputs the sine
and cosine of the angular variable, respectively as atan2(sin ζ, cos ζ) with ζ a generic angle.
Gauss’ equations in terms of modified equinoctial elements are derived starting from their for-
mulation in terms of classic Keplerian elements. The direct relations in Eq. (2.10) are differenti-
ated with respect to time and the orbital elements rate given by Gauss’ expressions are replaced.
Finally, classic orbital elements are replaced in terms of modified equinoctial elements used
the inverse formulations given by Eq. (2.11). For the angular variables it is better to derive a
specific expression for the sine and cosine trigonometric function.

sin ν =
f√

f 2 + g2
sin Γ− g√

f 2 + g2
cos Γ (2.12)

cos ν =
f√

f 2 + g2
cos Γ +

g√
f 2 + g2

sin Γ (2.13)

Also in this case many sets of equations exist according to the reference frame and type of
anomaly used and they are reported in the Appendix A.2. Gauss’ equation in reference frame
[̂t, n̂, ĥ] in terms of the true longitude, Γ:

20



2.2. Transition functions

da

dt
= 2

√
a3

µ

√
1 + 2f cos Γ + 2g sin Γ + f 2 + g2

1− f 2 − g2

ut
m

df

dt
=

√
a

µ

√
1− f 2 − g2

1 + 2f cos Γ + 2g sin Γ + f 2 + g2

{
2(f + cos Γ)

ut
m
− [2g

+
sin Γ(1− f 2 − g2)

1 + f cos Γ + g sin Γ

]
un
m

}
−

√
a(1− f 2 − g2)

µ
g

h sin Γ− k cos Γ

1 + f cos Γ + g sin Γ

uh
m

dg

dt
=

√
a

µ

√
1− f 2 − g2

1 + 2f cos Γ + 2g sin Γ + f 2 + g2

{
2(g + sin Γ)

ut
m

+ [2f

+
cos Γ(1− f 2 − g2)

1 + f cos Γ + g sin Γ

]
un
m

}
+

√
a(1− f 2 − g2)

µ
f

h sin Γ− k cos Γ

1 + f cos Γ + g sin Γ

uh
m

dh

dt
=

1

2

√
a(1− f 2 − g2)

µ

1 + h2 + k2

1 + f cos Γ + g sin Γ
cos Γ

uh
m

dk

dt
=

1

2

√
a(1− f 2 − g2)

µ

1 + h2 + k2

1 + f cos Γ + g sin Γ
sin Γ

uh
m

dΓ

dt
=

√
µ

[a(1− f 2 − g2)]3
(1 + f cos Γ + g sin Γ)2 +√

a(1− f 2 − g2)

µ

h sin Γ− k cos Γ

1 + f cos Γ + g sin Γ

uh
m

dm

dt
= −

√
u2
t + u2

n + u2
h

Isp · g0

(2.14)

A non-dimensional set can be obtained as well using the same reference quantities defined
in the previous section.

2.2 Transition functions

The most important aspect in the definition of the DDP algorithm is the computation of the
cost functional partials. This is true for two main reasons:

• The partials computation is the most expensive part from a computational point of view

• A misprediction of the partials can lead to the divergence of the algorithm

The partials computation is an operation that must be carried out at each iteration of the DDP
algorithm and it is impossible to parallelise the different operations because each prediction de-
pends on the value of the previous state. However, according to the different way the partials
can be evaluated the convergence can be made faster or slower. The second aspect defined in the
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2.2. Transition functions

list is crucial because it is affecting the convergence of the algorithm. Indeed, a misprediction
of the cost functional partials or a discontinuity at a single time step during the backward re-
gression causes the divergence of the algorithm. This phenomenon can occur even if the system
dynamic is continuous but highly non-linear due to a wrong discretisation of the problem. The
partials computation is different if the continuous or discrete version of the DDP algorithm is
used. If the continuous version is adopted the partials computation requires only the Jacobian
and Hessian matrix of the continuous dynamics. For the discrete version of the algorithm a tran-
sition function that is used to map the state at step j to step j + 1 is required. In the early 1970s
when the DDP algorithm was developed a simple Euler scheme was used for the computation
of the partials of the transition function [40]. This approach was not efficient to apply the DDP
algorithm to large non-linear dynamical systems due to the low accuracy of the Euler scheme.
The advancement in the numerical integration of differential equations allowed to use as transi-
tion function higher-order explicit schemes like Runge-Kutta-Fehlberg (RKF) [81]. In this case
the partials computation is not equivalent to the Jacobian and Hessian matrices associated to
the continuous dynamic, but the Jacobian and Hessian matrices of the numerical schemes are
required. This issue can be solved in two ways: computing analytically the expressions of the
partial derivatives of the numerical schemes which is tedious and complicated as the order of
the numerical scheme increases, or exploiting tools as STMs [82] which require the solution to
a system of differential equations for each iteration of the DDP algorithm.

2.2.1 Analytical computation of the partials

This research uses the analytical expression of the Jacobian andHessianmatrices of a generic
Runge-Kutta explicit scheme to evaluate the cost functional partials required for the application
of the DDP algorithm. The derivation of the analytical expression of such schemes is cumber-
some but it has been decided to be used for two main reasons:

• The analytical evaluation of the partial derivatives makes the algorithm faster.

• A recursive formulation can be identified to compute the partial derivatives for all the
stages of the numerical schemes.

A generic Runge-Kutta explicit scheme can be formulated as follows [81].

xj+1 = xj + s

nRK∑
z=1

bRKz kz(xj; tj) (2.15)

with xj and xj+1 representing the system state at time j and j + 1, h is the time step, nRK the
number of stages of the Runge-Kutta scheme, and kz are intermediate function evaluated in the
interval [tj, tj+1].

kj = f

(
xj + h

j−1∑
z=1

aRKjz kz, tj + scRKj

)
, k1 = f(x0, t0) (2.16)

The coefficients aRKi , bRKi , cRKi are specific of a given Runge-Kutta scheme and can be found in
the Butcher Tableau, and x0 represents the initial state. The Butcher Tableau for the Runge-Kutta
8th order scheme used in this work is reported in Table 2.1 at the end of the chapter.
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2.2. Transition functions

Starting from Eq. 2.16 the analytical differentiation can be carried out to define the generic
expression of Jacobian and Hessian matrices. The recursivity of the expression allows to eval-
uate the partial derivatives of the intermediate function, ki, at the next state of the numerical
scheme from the current one.

dkj
dx

=
∂f
∂x |x̄

(
I + s

j−1∑
z=1

ajz
dkz
dx

)
(2.17)

dkj
du

=
∂f
∂u |x̄

+
∂f
∂x |x̄

s

j−1∑
z=1

ajz
dkz
du

(2.18)

d2kj
dx2

=

(
I + s

j−1∑
z=1

ajz
dkz
dx

)T
∂2f
∂x2 |x̄

(
I + s

j−1∑
z=1

ajz
dkz
dx

)
+
∂f
∂x |x̄

s

j−1∑
z=1

ajz
d2kz
dx2

(2.19)

d2kj
dxdu

=

(
I + s

j−1∑
z=1

ajz
dkz
dx

)T(
∂2f
∂x2 |x̄

s

j−1∑
z=1

ajz
dkz
du

+
∂2f
∂x∂u |x̄

)

+
∂f
∂x |x̄

s

j−1∑
z=1

ajz
d2kz
dxdu

(2.20)

d2kj
du2

=
∂2f
∂u2 |x̄

+

(
j−1∑
z=1

ajz
dkz
du

∂2f
∂x∂u |x̄

)T

+

j−1∑
z=1

ajz
dkz
du

∂2f
∂x∂u |x̄

+

(
s

j−1∑
z=1

ajz
dkz
du

)T
∂2f
∂x2 |x̄

s

j−1∑
z=1

ajz
dkz
du

+
∂f
∂x |x̄

s

j−1∑
z=1

ajz
d2kz
du2

(2.21)

where x̄ denotes an intermediate function evaluation of the dynamics between state xj and state
xj+1, the symbol ∂/∂(·) and d/d(·) represent the partial derivative and total derivative of a
function with respect to a specific variable, respectively. The following notation has been used
for the derivation of the transition function partial derivatives.

∂f
∂x |x̄

=


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xn

... ... ... ...
∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn


|x̄

,
∂2f j

∂x2 |x̄
=


∂2fj
∂x21

∂2fj
∂x1∂x2

...
∂2fj

∂x1∂xn
∂2fj
∂x1∂x2

∂2fj
∂x22

...
∂2fj

∂x2∂xn

... ... ... ...
∂2fj

∂xn∂x2

∂2fj
∂xn∂x2

...
∂2fj
∂x2n


|x̄

(2.22)

The expression of the Hessian matrix for the scalar function f jxx represent the classic Hessian
function applied to each scalar component of the vectorial function, f, denoting the continuous
dynamics of system. Therefore, the Hessian matrix is multi-dimensional array where the sin-
gle Hessian matrix of the scalar functions represent the different layers described by the third
dimension.

Particular attention must be devoted to the operations involving the Hessian matrices be-
cause the products of vectors and third-order dimensional arrays or matrices and third-order
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2.2. Transition functions

dimensional arrays exist. Keeping the philosophy to assign last index of a third-order dimen-
sional array to the Hessian matrix of each scalar component of the continuous dynamics, the
only operation that must be reshuffled is the last one occurring in Eqs. (2.19-2.21). In this case
each layer of the multi-dimensional arrays is generated considering the product of each row of
the Jacobian ∂f/∂x and the matrix which is created cutting vertically the multi-dimensional ar-
ray. A simple example to show how this operation is carried out is proposed imaging a vectorial
function with 3 components, 3 states and 2 control variables.

∂f
∂x

d2kj
dxdu

=

f 1
x1

f 1
x2

f 1
x3

f 2
x1

f 2
x2

f 2
x3

f 3
x1

f 3
x2

f 3
x3

f 1
x1u1

f 1
x1u2

f 1
x2u1

f 1
x2u2

f 1
x3u1

f 1
x3u2

f 2
x1u1

f 2
x1u2

f 2
x2u1

f 2
x2u2

f 2
x3u1

f 2
x3u2

f 3
x1u1

f 3
x1u2

f 3
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f 3
x2u2

f 3
x3u1

f 3
x3u2

 =

=
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f 1
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x2

f 1
x3

] f 1
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x1u2

f 2
x1u1

f 2
x1u2

f 3
x1u1

f 3
x1u2

 , [f 2
x1

f 2
x2

f 2
x3

] f 1
x2u1

f 1
x2u2

f 2
x2u1

f 2
x2u2

f 3
x2u1

f 3
x2u2

 ,
[
f 3
x1

f 3
x2

f 3
x3

] f 1
x3u1

f 1
x3u2

f 2
x3u1

f 2
x3u2

f 3
x3u1

f 3
x3u2


(2.23)

2.2.2 Scheme of the algorithm

It is possible now to summarise the procedure to evaluate the cost functional partials in Fig-
ure 2.1. Starting from the definition of the system dynamics, MATLAB symbolic toolbox is
used to evaluate the analytical expressions of the system dynamics for the continuous version.
Starting from the analytical Jacobian and Hessian of the continuous dynamics Eqs. (2.17-2.21)
are used to evaluate the analytical Jacobian and Hessian matrix of the transition scheme provid-
ing the coefficient of the Runge-Kutta numerical scheme.

Figure 2.1: Partials computation flow diagram.

The algorithm can handle also the expression of orbital perturbations inside the system dy-
namics whose partials are computed analytically if a formulation in terms of orbital elements
exist. An example of such disturbances is offered by the Earth geopotential model. This method
express the Earth gravity field as an expansion of several harmonics which are function of the
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orbital elements. The inclusion of the first harmonic, denoted as J2, contributes already to im-
prove the accuracy of the orbit propagation. This happens because the first harmonic is 3 order
of magnitudes higher than the following harmonics. The analytical expression of the disturbing
accelerations in the radial, transversal and normal reference frame is reported in terms of classic
orbital elements [78].

ar|J2 = −3

2

J2µ⊕R
2
⊕

r4

[
1− 3 sin2 i sin2 (ω + ν)

]
aθ|J2 = −3

2

J2µ⊕R
2
⊕

r4
sin2 i sin 2 (ω + ν)

ah|J2 = −3

2

J2µ⊕R
2
⊕

r4
sin 2i sin (ω + ν)

(2.24)

The same expression in the same reference frame can be expressed also as function of the
modified equinoctial elements [80].

ar|J2 = −3

2

J2µ⊕R
2
⊕

r4

[
1− 12

(h sin Γ− k cos Γ)2

(1 + h2 + k2)2

]

aθ|J2 = −12
J2µ⊕R

2
⊕

r4

(h sin Γ− k cos Γ) (h cos Γ + k sin Γ)

(1 + h2 + k2)2

ah|J2 = −6
J2µ⊕R

2
⊕

r4

(h sin Γ− k cos Γ) (1− h2 − k2)

(1 + h2 + k2)2

(2.25)

where J2 is main spherical harmonic coefficient used to model the Earth gravitational field,
R⊕ is the Earth mean equatorial radius, and r is the spacecraft position vector magnitude. The
analytical expression of the orbit perturbations can be added inside Gauss’ equations so that
the symbolic toolbox can directly compute the new updated partial derivatives. If no analytical
expression is present the same scheme can be kept using the derivation chain rule.

d

dξ

(
df
dt

)
=
∂f(ξ, ap(ξ))

∂ξ
+
∂f
∂ξ

ap +
∂ap
∂ξ

f (2.26)

where ∂f/∂ξ is the partial derivative with respect to an orbital elements of the unperturbed
Gauss’ equation, while ap and ∂ap/∂ξ are the expressions of the disturbing accelerations and
their partial derivatives with respect to the generic orbital element. Using this generic scheme a
complete parametrisation of the orbit perturbations is provided because it does not matter if the
expression of the partial derivative of the disturbances are computed analytically or numerically.
In Chapter 8 a multi-revolution planetary transfer including J2 orbital perturbation is presented
taking into account also the effect of eclipses which are the only orbit perturbations considered
in this work.
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2.3 Summary

In this chapter the orbital dynamics used as equations of motions is presented. Gauss’ equa-
tions are derived in several reference frame and in terms of different sets of orbital elements.
The two different types of adimensionalisation are analysed and guidelines are provided to select
the best philosophy according to the scenario. Transition functions to discretise the equations of
motions using a parametrised Runge-Kutta scheme are presented and the analytical derivation
of their partial derivatives is carried out. Finally, the overall structure of the DDP algorithm is
shown together with the expressions of J2 orbital perturbation in terms of classic Keplerian and
nonsingular elements.
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1
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1
6
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1
1
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6
4
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7
5
1
1
3
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8
7
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2
8
7
4
7
7
4
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2
2
2
0
6
0
7
1
7
0

1 4

Table 2.1: Butcher tableau for Runge-Kutta 8th order integration scheme.
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CHAPTER 3

Differential dynamic programming

This chapter presents the analytical derivation of the DDP algorithm either for continuous
and discrete formulation. Starting from Bellman principle of optimality the cost functional
is defined and the backward equations representing the necessary conditions of optimality are
obtained.

The derivation of the backward equations for the unconstrained optimal control problem is
carried out considering a continuous formulation of the dynamics and it follows Jacobson and
Mayne [39], whereas for the constrained problem algorithm the discrete formulation is used
following Colombo et al. [42].

The last part of the chapter explains some techniques to improve the converge of the algo-
rithm and presents a list of the different step to apply the DDP implemented in this thesis.

3.1 Mathematical derivation continuous version

The first formulation of the DDP has been formulated for continuous-time dynamic sys-
tems by Jacobson and Mayne [39] that is used as reference for the current section. A generic
continuous-time dynamic systems is described by a set of non-linear ordinary differential equa-
tions and a set of initial conditions: {

ẋ = f(x,u; t)

x(t1) = x1

(3.1)

where x(t) is a nx-dimensional vector function of time describing the state of the dynamic
system, u(t) is a nu-dimensional vector function of time that represents the control actions at
each time instant. A cost functional, J , is introduced to assess the performance of the dynamic
system:

J(x1; t1) =

∫ tf

t1

L(x,u; t) + F̄ (x(tf ); tf ) (3.2)

with L being a scalar time function relating the cost functional at each time instant, and F̄ a
scalar function depending only on the final time instant, tf , which may be given explicitly or
implicitly. The bar symbol, F̄ is used to distinguish the terminal cost function at the final state
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3.1. Mathematical derivation continuous version

from the transition function that will be denoted with F. The general purpose of a non-linear
optimal control problem is to find the optimal control policy which minimises or maximises the
cost functional. Dynamic programming represents one of the possible methods to accomplish
the optimisations problems. This methods is based on Bellman’s principle of optimality [83]:

"An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from

the first decision."

The main idea of dynamic programming is to decompose the overall problem in a sequence of
many decision sub-problems where the cost functional (also known as "value function") rep-
resents the value of each decision sub-problem. The optimal control for each decision sub-
problem is independent of the initial states and controls used for the previous sub-problems.
Therefore, the optimal control of the overall problem can be represented as the sequence of the
sub-problems optimisation at that decision step plus the optimal cost function until the final
time. For continuous-time systems Bellman’s principle of optimality is described by a Partial
Differential Equation (PDE) known as Hamilton-Jacobi-Bellman (HJB) equation:

− ∂J∗

∂t
= min

u(t)

[
L(x,u; t) +

∂J∗

∂x

T
f(x,u; t)

]
(3.3)

with ∂J∗/∂t is the partial derivative of the optimal cost functional with respect to time, and
∂J∗/∂x is the Jacobian of the optimal cost functional. The classic way to solve HJB equation is
to discretise both states and controls so that necessary and sufficient conditions for global opti-
mality can be satisfied. However, this process is not straightforward when the high-dimensional
spaces are considered because huge storage requirements are required to solve the overall prob-
lem leading to the unfeasibility to solve HJB equation. This concept is known in literature as
"curse of dimensionality" [46]. The DDP overcomes the issue thanks to a linear-quadratic ex-
pansion of the HJB equations starting from a nominal non-optimal first guess solution. This
way, the optimal solution will no longer be a global optimum but a local optimum solution be-
cause the search space has been restricted to the neighbourhood of the first guess solution used
for the Taylor expansion.

The starting point for the derivation of the DDP equations is to express both the state and
the control in Eq. (3.3) as the sum of the nominal trajectory and a variation.

x = x̄ + δx u = ū + δu (3.4)

where δx and δu are the state and control variaions, respectively, measured with respect to the
nominal state, x̄, and control, ū. Replacing Eq. (3.4) inside the HJB equation (3.3) the following
expression is obtained:

− ∂J∗

∂t
(x̄+ δx; t) = min

δu

[
L(x̄ + δx, ū + δu; t) +

∂J∗

∂x

T
(x̄ + δx; t)f(x̄ + δx, ū + δu; t)

]
(3.5)

We assume that each term in Eq. (3.5) admits a Taylor series expansion [39].

J∗(x̄ + δx; t) = J∗(x̄; t) + J∗Tx (x̄; t)δx + 0.5δxTJ∗xx(x̄; t)δx (3.6)
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3.1. Mathematical derivation continuous version

L(x̄ + δx, ū + δu; t) = L(x̄, ū; t) + LT
x(x̄, ū; t)δx + LT

u(x̄, ū; t)δu
+ 0.5δxTLxx(x̄, ū; t)δx + 0.5δuTLuu(x̄, ū; t)δu + δxTLxu(x̄, ū; t)δu

(3.7)

J∗x(x̄ + δx; t) = J∗x(x̄; t) + J∗xx(x̄; t)δx + 0.5δxTJ∗xxx(x̄; t)δx (3.8)
f(x̄ + δx, ū + δu; t) = f(x̄, ū; t) + fx(x̄, ū; t)δx + fu(x̄, ū; t)δu
+ 0.5δxTfxx(x̄, ū; t)δx + 0.5δuTfuu(x̄, ū; t)δu + δxTfxu(x̄, ū; t)δu

(3.9)

where J∗x, J∗xx are the gradient and Hessian of the optimal cost functional with respect to the
state, Lx, Lxx are the gradient and Hessian of the cost function, L, with respect to the state, and
fx, fxx are the Jacobian and Hessian matrices of the continuous dynamics with respect to the
state. The variables with subscripts u represent the same variational functions computed with
respect to the control in place of the state. In general, in this work the subscript f2 will be used
to denote the partial derivative of a function with respect to that generic variable. The general
description of DDP divides the methodology in two possible approaches:

• a local version, where the nominal trajectory used as first guess solution is selected with-
out any criterion [43].

• a global version, where the nominal trajectory used for the Taylor expansion is the result
of an early optimisation where all the state and control variations are set to zero [42].

The adjective global is not related to the type of optimum solution obtained from the algo-
rithm because the main assumptions of the DDP is that the solution represents a local optimum
solution. The meaning of local and global is related to the size of the control variation.In the
global approach the partial derivatives of the cost functional and of the transition functions are
not evaluated considering the nominal control, but using a control policy which is obtained min-
imising the expanded HJB equation putting all the variations equal to zero. This preliminary
minimisation allows the DDP algorithm to increase the search space to find the optimal control
variation, δu, keeping the Taylor linear-quadratic expansion still consistent. The advantage of
using a larger control variation requires to solve a preliminary minimisation problem at each
decision step. The personal experience of the author suggests that in the trade-off between local
and global version of DDP algorithm it is better to adopt the local one. The main reason is that
after the solution of the preliminary optimal control problem it is no guaranteed that the first
guess solution will admit a large control variation. Moreover, it is not possible to quantify how
much the control variation must be to be considered "large". This is the reason why only the
local version of the DDP algorithm will be presented hereafter both for the continuous and the
discrete version.

The expanded HJB equation can be obtained replacing Eqs. (3.6-3.9) in Eq. (3.5). For the
sake of simplicity the dependencies of each function will be dropped from now on.

− ∂J∗

∂t
− ∂J∗x

∂t

T

δx− 0.5δxT∂J
∗
xx

∂t
δx = min

δu

[
L+ LT

xδx + LT
uδu

+0.5δxTLxxδx + 0.5δuTLuuδu + δxTLxuδu + (J∗x + J∗xxδx)T (f + fxδx+

+fuδu + 0.5δxTfxxδx + 0.5δuTfuuδu + δxTfxuδu
)] (3.10)

The term J∗xxx has been dropped because it can be proven that it is a higher-order infinitesimal
[39]. The terms multiplying more than two variations are dropped from the expansion because
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3.1. Mathematical derivation continuous version

represent higher-order infinitesimal. The optimal control variation, δu∗, is determined differen-
tiating the right-hand side of Eq. (3.10).

Lu + Luuδu∗ + Luxδx + J∗Tx fu + J∗Tx fuuδu∗ + J∗Tx fuxδx + fTuJ∗xxδx = 0 (3.11)

δu∗ = −
(
Luu + J∗Tx fuu

)−1 [(
Lu + J∗Tx fu

)
+
(
Lux + J∗Tx fux + fTuJ∗xx

)
δx
]

(3.12)

Once the optimal control variation is obtained, this can be replaced in the expanded HJB equa-
tion and the minimum operator can be removed because one of the main assumptions used for
the derivation of the DDP algorithm, next to the continuity and twice differentiability of all the
function, is the positive-definiteness of the matrix, Luu+J∗Tx fuu (which will be shown to be also
the Hessian matrix of the Hamiltonian function with respect to the control variable at the end
of the section). The positive definiteness is a second order necessary and sufficient conditions
guaranteeing that the optimal control variation δu∗ is minimising the argument of the minimum
operator. In order to simplify the notation it is better to write the optimal control variation in
Eq. (3.12) as the sum of a constant term, α, and state feedback term, β.

δu∗ = α+ βδx (3.13)

α = −
(
Luu + J∗Tx fuu

)−1 (
Lu + J∗Tx fu

)
β = −

(
Luu + J∗Tx fuu

)−1 (
Lux + J∗Tx fux + fTuJ∗xx

)
Other two important steps are required for the final derivation of the backward equations. The
optimal cost functional, J∗, is expressed as the sum of a nominal cost functional, J̄ , and a term
which is denoting the expected error between the optimal cost and the nominal one, ϑ [39].

J∗ = J̄ + ϑ (3.14)

Secondly, the partial derivatives with respect to time of all the terms appearing at the left-hand
side of Eq. (3.10) must be expressed in terms of total time derivatives which are required to
compute the time variation of the optimal cost functional partials. This can be done applying
the chain rule to the total time derivative of the functional cost.

dJ∗

dt
=
∂J̄

∂t
+ J∗Tx f (3.15)

dJ∗x
dt

=
∂J̄x
∂t

+ J∗xxf (3.16)

dJ∗xx
dt

=
∂J̄xx
∂t

+ J∗xxxf (3.17)

Replacing Eq. (3.13) into Eq. (3.10) and using Eqs. (3.14-3.17) the following backward partial
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3.1. Mathematical derivation continuous version

differential equations are obtained:

−dϑ
dt

=
(
LT
u + J∗Tx fu

)
α+

1

2
αT
(
Luu + J∗Tx fuu

)
α

−dJ
∗
x

dt
=

[(
Lx + J∗Tx fx

)
+
(
Lu + J∗Tx fu

)T
β +αT

(
Luu + J∗Tx fuu

)
β

+
(
Lxu + J∗Tx fxu

)
α+ J∗xx

(
fuα+

1

2
αTfuuα

)]
−dJ

∗
xx

dt
=

[(
Lxx + J∗Tx fxx

)
+ βT

(
Luu + J∗Tx fuu

)
β+

+2
(
Lxu + J∗Tx fxu

)
β + 2J∗xx(fx + fuβ) + J∗xx

(
αT fuuβ + fxuα

)]
(3.18)

The system in Eq. (3.18) can be rewritten in terms of the Hamiltonian operator, H , that is very
used in optimal control theory.

H(x,u; t) = L(x,u; t) + J∗Tx (x; t)f(x,u; t) (3.19)

Replacing Eq. (3.19) in Eq. (3.18) the system of backward equations is rewritten in the following
way: 

−dϑ
dt

= αTHu +
1

2
αTHuuα

−dJ
∗
x

dt
=
[
Hx + Huβ +αTHuuβ +αTHux + J∗xxfuα

]
−dJ

∗
xx

dt
= [Hxx + βTHuu + 2Hxuβ + 2J∗xx(fx + fuβ)

(3.20)

The optimal control variation coefficients can be expressed in terms of the Hamiltonian function
as well:

α = −H−1
uuHu, β = −H−1

uu (Hux + fTuJ∗xx) (3.21)

The system of partial differential equations is solved backward starting from a set of boundary
conditions known at the final time.

ϑ(tf ) = 0

J∗x(tf ) = F̄x (x̄(tf ); tf )

J∗xx(tf ) = F̄xx (x̄(tf ); tf )

(3.22)

where tf represents the final time, and x̄(tf ) is the spacecraft nominal trajectory evaluated at
the final time. If the global version of the DDP algorithm is considered, the equations can be
rearranged considering that the optimal control variation admits only the linear feedback term,
α = 0, and the value of the Hamiltonian partial derivative with respect to the control is equal
to 0. In the global version of the DDP algorithm the second-order Taylor expansion is not
considered starting from the nominal control and trajectory, but starting from a pseudo-optimal
control that is the value of the control minimising the expanded HJB expression in Eq. (3.10)
where all the variations are set equal to 0. The problem to be solved to derive the pseudo-optimal
control, u∗, is the following:

u∗ = min
u

[
L(x,u; t) + J∗Tx f(x,u; t)

]
= min

u
H(x,u; t) (3.23)
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3.2. Mathematical derivation of the DDP discrete version

The minimising control is obtained differentiating the right-hand side of Eq. (3.23) assuming
that the Hessian matrix with respect to the control function, Huu, is positive-definite.

Hu(x,u∗; t) = Lu(x,u∗; t) + J∗Tx fu(x,u∗; t) = 0 (3.24)

The first-order necessary conditions of optimality ensures that the expression defined in Eq.
(3.24) is equal to 0 when it is evaluated in u∗. In the global version of the algorithm all the
variables must be evaluated in the pseudo-optimal control ũ, and if it is replaced in the function
α defined in Eq. (3.13) or in Eq. (3.21) the result is 0. The derivation of the continuous DDP
algorithm in its global version can be found in [39].

3.2 Mathematical derivation of the DDP discrete version

The extension of theDDP algorithm to the satisfaction of endpoint constraints and static/dynamic
variables will be defined in this section considering only the discrete formulation of the DDP
algorithm. The notation used for the second-order Taylor expansions follows [43], while the in-
troduction of the auxiliary matrices and the final expression of the backward equations follows
[42]. The HJB equation defined in Eq. (3.3) also admits a discrete version [39]:

J∗i (xi,b; ti) = min
ui

[Li(xi,ui; ti) + J∗i+1(xi+1,b; ti+1)] (3.25)

where Ji+1 represents the optimal value function obtained at the successive step ti+1, and bi is
the vector of Lagrange multipliers used to adjoin the endpoint constraints to the cost function
using the same notation as in [39], L, for the definition of the augmented value function, J .
In this work the discrete version of the DDP algorithm is used so that the continuous system
dynamics, f , is replaced by the transition function,F. The transition function is a function which
maps the state at step xi to the state at the following step xi+1. In this work a generic Runge-
Kutta explicit integration numerical scheme is used as transition function because it transforms
the continuous system dynamics into a system of discrete equations, and compute each state of
the dynamics marching forward starting from the initial condition.

xi+1 = Fi(xi,ui; ti) (3.26)

The starting point for the derivation of DDP equations is to define the linear-quadratic expan-
sion of the HJB equation expressing the optimal variables as the sum of a nominal value and a
variation with respect to the nominal variable:

δxi = xi − x̄i δui = ui − ūi δb = b− b̄ δxi+1 = xi+1 − x̄i+1 (3.27)

where {ūi} is a nominal policy used as first guess solution, {x̄i} is the relative trajectory ob-
tained using the nominal policy, and b̄ is the initial guess for the Lagrange multipliers. The
use of the curly brackets {ūi} as in [39] denotes the collection of control actions used for each
time step, while ui describes the control action at the single time step i. Analogously, {x̄i}
represents the whole trajectory while xi is the satellite state at the single time step i. Replacing
the variations introduced in Eq. (3.27) in Eq. (3.25) the result is:

J∗i (x̄i + δxi, b̄ + δb; ti) = min
ui

[Li(x̄i + δxi, ūi + δui; ti)

+ J∗i+1(x̄i+1 + δxi+1, b̄ + δb; ti+1)]
(3.28)
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3.2. Mathematical derivation of the DDP discrete version

At this point it is possible to expand each term in Eq. (3.28) in Taylor series stopping at the
second order around the point (xi,ui,b). The dependence on time will be omitted to simplify
the notation [39] and the optimal cost function J∗ will be written as J :

J∗i (x̄i + δxi, b̄ + δb) = Ji(x̄i, b̄) + Jix
T
(x̄i, b̄)δxi + Jib

T
(x̄i, b̄)δb

+
1

2
δxT

i Jixx(x̄i, b̄)δxi + +
1

2
δbTJibb(x̄i, b̄)δb + δxT

i Jixb(x̄i, b̄)δb
(3.29)

Ji+1(x̄i+1 + δxi+1, b̄ + δb) = Ji+1(x̄i+1, b̄) + Ji+1
x

T
(x̄i+1, b̄)δxi+1

+ Ji+1
b

T
(x̄i+1, b̄)δb +

1

2
δxT

i+1Ji+1
xx (x̄i+1, b̄)δxi+1 +

1

2
δbTJi+1

bb (x̄i+1, b̄)δb

+ δxT
i+1Ji+1

xb (x̄i+1, b̄)δb

(3.30)

Li(x̄i + δxi, ūi + δui) = Li(x̄i, ūi) + Lix
T
(x̄i, ūi)δxi + Liu

T
(x̄i, ūi)δui

+
1

2
δxT

i Lixx(x̄i, ūi)δxi + +
1

2
δuT

i Liuu(x̄i, ūi)δui + δxT
i Lixu(x̄i, ūi)δui

(3.31)

where Jix
T and Jib

T are the gradient of the value functionwith respect to the state and the Lagrange
multipliers respectively, Jixx and Jibb are the Hessian matrices of the value function with respect
to the state and the Lagrangian multipliers respectively, and Jixb is the mixed Hessian matrix
computed first with respect to the state and the Lagrange multipliers. The same notation is
applied for the partials of the cost function, Li, replacing the Lagrange multipliers with the
control policy. To complete the linear-quadratic expansion of Eq. (3.28), the state variation of
the successive step, δxi+1, must be expressed in terms of the current state variation, δxi. This
can be done using the expression of the dynamics of the system.

δxi+1 = xi+1 − x̄i+1 = Fi(x̄i + δxi, ūi + δui)− Fi(x̄i, ūi) = Fi(x̄i, ūi)

− Fi(x̄i, ūi) + Fi
x(x̄i, ūi)δxi + Fi

u(x̄i, ūi)δui +
1

2
δxT

i F
i
xx(x̄i, ūi)δxi

+
1

2
δuT

i F
i
uu(x̄i, ūi)δui + δxT

i F
i
xu(x̄i, ūi)δui

(3.32)

where Fi
x and Fi

u are the Jacobian matrices of the system dynamics with respect to the state and
the control policy respectively, Fi

xx and Fi
uu are the Hessian matrices of the system dynamics

with respect to the state and the control policy respectively, andFi
xu is the mixed Hessian matrix

computed first with respect to the state and the control policy. All the Hessian matrices asso-
ciated to the system dynamics are third-order tensors which are built considering the Hessian
matrix of each scalar component of the vectorial function, F, and are computed analytically. At
this point it is possible to replace Eqs. (3.29-3.31) in Eq. (3.28) to obtain the final expanded
HJB equation:

Ji(x̄i, b̄) + Jix
T
(x̄i, b̄)δxi + Jib

T
(x̄i, b̄)δb +

1

2
δxT

i Jixx(x̄i, b̄)δxi+

+
1

2
δbTJibb(x̄i, b̄)δb + δxT

i Jixb(x̄i, b̄)δb = min
δui

[Ji(x̄i, ūi) + Ji+1(x̄i+1, b̄) + Eiδxi

+ Diδui + Ji+1
b

T
(x̄i+1, b̄)δb + δxT

i Aiδxi + δxT
i Biδui + δuT

i Ciδui

+ δbTRiδb + δuT
i Kiδb + δxT

i Xiδb]

(3.33)
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To simplify the notation some matrices and vectors are introduced following the notation in
Colombo et al. [42].

Ai =
1

2

[
Lixx(x̄i, ūi) + Ji+1

x

T
(x̄i+1, b̄)Fi

xx(x̄i, ūi) + Fi
x

T
(x̄i, ūi)Ji+1

xx (x̄i+1, b̄)Fi
x(x̄i, ūi)

]
Bi =

[
Lixu(x̄i, ūi) + Ji+1

x

T
(x̄i+1, b̄)Fi

xu(x̄i, ūi) + Fi
x

T
(x̄i, ūi)Ji+1

xx (x̄i+1, b̄)Fi
u(x̄i, ūi)

]
Ci =

1

2

[
Liuu(x̄i, ūi) + Ji+1

x

T
(x̄i+1, b̄)Fi

uu(x̄i, ūi) + Fi
u

T
(x̄i, ūi)Ji+1

xx (x̄i+1, b̄)Fi
u(x̄i, ūi)

]
Di =

[
Liu

T
(x̄i, ūi) + Ji+1

x

T
(x̄i+1, b̄)Fi

u(x̄i, ūi)
]

Ei =
[
Lix

T
(x̄i, ūi) + Ji+1

x

T
(x̄i+1, b̄)Fi

x(x̄i, ūi)
]

Ki = Fi
u

T
(x̄i, ūi)Ji+1

xb (x̄i+1, b̄)

Xi = Fi
x

T
(x̄i, ūi)Ji+1

xb (x̄i+1, b̄)

(3.34)

At this point the minimisation problems has to be solved. The operation is carried out differen-
tiating the right hand side of Eq. (3.33) with respect to the control variation so that the optimal
control variation can be determined [42].

∂

∂(δui)
= DT

i + 2Ciδu
∗
i + BT

i δxi + Kiδb = 0 (3.35)

Solving for the optimal control variation it is possible to derive a feedback control law which
depends on the variation of the state and on the variation of the Lagrange multipliers.

δu∗i = αi + βiδxi + γiδb (3.36)

αi = −1

2
C−1
i DT

i βi = −1

2
C−1
i BT

i γi = −1

2
C−1
i Ki (3.37)

It is possible to replace the optimal control variation in the right hand side of Eq. (3.33) and
remove the minimisation operator. After some mathematical manipulations the final result is
the following [42]:

Ji(x̄i, b̄) + Jix
T
(x̄i, b̄)δxi + Jib

T
(x̄i, b̄)δb +

1

2
δxT

i Jixx(x̄i, b̄)δxi +
1

2
δbTJibb(x̄i, b̄)δb

+ δxT
i Jixb(x̄i, b̄)δb = Li(x̄i, ūi) + Ji+1(x̄i+1, b̄)− 1

4
DiC

−1
i DT

i + Eiδxi

− 1

2
DiC

−1
i BT

i δxi + Ji+1
b

T
(x̄i+1, b̄)δb− 1

2
DiC

−1
i Kiδb + δxT

i Aiδxi + δbTRiδb

− 1

4
δxT

i BiC
−1
i BT

i δxi −
1

4
δbTKT

i C
−1
i Kiδb + δxT

i Xiδbi −
1

2
δxT

i BiC
−1
i Kiδb

(3.38)

The last operation to be carried out before deriving the final equations is to replace the optimal
value function Ji(x̄i, b̄) with a nominal value function because the optimal one is not known.
Therefore, it is possible to introduce a new variable, ϑi, which represents the error between the
nominal value function computed at step i and the optimal value function at the same step [42].

ϑi = Ji(x̄i, b̄)− J̄i(x̄i, b̄) (3.39)
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Moreover, it is possible to rewrite the discrete version of the HJB without the minimisation
operator if the relation is applied to the nominal value function instead of the optimal value
function:

J̄i(xi,b) = Li(xi,ui) + J̄i+1(xi+1,b) (3.40)

Using Eqs. (3.39-3.40) it is possible to rewrite Eq. (3.38) in the following way [42]:

ϑi + Qiδxi + Ziδb + δxT
i Piδxi + δbTRiδb + δxT

i Siδb = ϑi+1 −
1

4
DiC

−1
i DT

i

+ Eiδxi −
1

2
DiC

−1
i BT

i δxi + Zi+1δb−
1

2
DiC

−1
i Kiδb + δxT

i Aiδxi + δbTRiδb

− 1

4
δxT

i BiC
−1
i BT

i δxi −
1

4
δbTKT

i C
−1
i Kiδb + δxT

i Xiδb−
1

2
δxT

i BiC
−1
i Kiδb

(3.41)

The following additional matrices and vectors have been introduces to represent the partials of
the optimal value function which represent the real unknowns to be determined [42]:

Pi =
1

2
Jixx(x̄i, b̄) Pi+1 =

1

2
Ji+1
xx (x̄i+1, b̄)

Qi = JiTx (x̄i, b̄) Qi+1 = Ji+1T

x (x̄i+1, b̄)

Zi = JiTb (x̄i, b̄) Zi+1 = Ji+1T

b (x̄i+1, b̄)

Ri =
1

2
Jibb(x̄i, b̄) Ri+1 =

1

2
Ji+1
bb (x̄i+1, b̄)

Si = Jixb(x̄i, b̄) Si+1 = Ji+1
xb (x̄i+1, b̄)

(3.42)

The previous matrices defined in Eq. (3.34) change their formulation as well:

Ai =
1

2

[
Lixx(x̄i, ūi) + Qi+1F

i
xx(x̄i, ūi) + 2Fi

x

T
(x̄i, ūi)Pi+1F

i
x(x̄i, ūi)

]
Bi =

[
Lixu(x̄i, ūi) + Qi+1F

i
xu(x̄i, ūi) + 2Fi

x

T
(x̄i, ūi)Pi+1F

i
u(x̄i, ūi)

]
Ci =

1

2

[
Liuu(x̄i, ūi) + Qi+1F

i
uu(x̄i, ūi) + 2Fi

u

T
(x̄i, ūi)Pi+1F

i
u(x̄i, ūi)

]
Di =

[
Liu

T
(x̄i, ūi) + Qi+1F

i
u(x̄i, ūi)

]T
Ei =

[
Lix

T
(x̄i, ūi) + Qi+1F

i
x(x̄i, ūi)

]T
Ki = Fi

u

T
(x̄i, ūi)Si+1

Xi = Fi
x

T
(x̄i, ūi)Si+1

(3.43)

The final equations of the "local" DDP algorithm to compute the partial derivatives of the value
function are determined equaling the coefficients of the linear quadratic expansion of the same
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differentials:

ϑi = ϑi+1 −
1

4
DiC

−1
i DT

i

Qi = Ei −
1

2
DiC

−1
i BT

i

Zi = Zi+1 −
1

2
DiC

−1
i Ki

Pi = Ai −
1

4
BiC

−1
i BT

i

Ri = Ri+1 −
1

4
KT
i C
−1
i Ki

Si = Xi −
1

2
BiC

−1
i Ki

(3.44)

The previous equations must be solved backward starting from the final time step to the first one
considering the following set of final conditions for the partial derivative of the value functions:

ϑN+1 = 0

QN+1 = JN+1T

x (x̄N+1, b̄)

ZN+1 = JN+1T

b (x̄N+1, b̄)

PN+1 =
1

2
JN+1
xx (x̄N+1, b̄)

RN+1 =
1

2
JN+1
bb (x̄N+1, b̄)

SN+1 = JN+1
xb (x̄N+1, b̄)

(3.45)

3.2.1 Step-size adjustment method

In this paragraph the step-size adjustment method adopted for the derivation of the following
results is prepared. The procedure follows the original work in [39] with the addition of some
modifications introduced by the author to improve the performance of the algorithm. The step-
size adjustment method is a procedure to adjust the magnitude of the control variation such that
the linear-quadratic Taylor expansion is valid. Starting from the initial condition, for each time
step in the forward numerical integration it is required to evaluate the difference between the
state computed with the nominal control policy and the one obtained using the optimal control.

δxi+1 = xi+1 − x̄i+1 = Fi(xi,ui)− Fi(x̄i, ūi) (3.46)

The next step is to compute the new optimal policy that is obtained summing the optimal control
variation to the nominal control:

ui = ūi + δui = ūi +αi + βiδxi (3.47)

The addendum related to the variation of the Lagrange multipliers is omitted at the moment
because as it will be explained in the next section the first loop of the DDP algorithm consid-
ers the Lagrange multipliers constantly equal to the nominal value. Once the optimal policy is
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3.2. Mathematical derivation of the DDP discrete version

derived, there will be a nominal trajectory resulting from the forward integration of the dynam-
ics using the nominal policy, and an optimal trajectory resulting from the forward integration
of the dynamics using the optimal policy as shown in Figures 3.1 and 3.2. The last step is to
evaluate the difference in the value function computed using the nominal trajectory and policy
and the optimal ones. This difference must be compared with the value of ϑ1, which represents
the estimated difference between the optimal cost and the nominal cost. If the two quantities are
not comparable, this means that the linear-quadratic Taylor expansion is not valid causing the
algorithm to diverge. It is convenient to define a criterion to decide if the difference between
the optimal and nominal value functions is too large taking their ratio and imposing that is at
least higher than a constant value that is put conventionally equal to 0.5 [39].

J(x, b̄)− J̄(x̄, b̄)

ϑ1

≤ c, c = 0.5 (3.48)

It is obvious that the difference between the optimal value function and the nominal one is
supposed to be negative. If this is not occurring the new optimal policy is not addressing a
reduction in the value function. It can happen that the new optimal policy leads to a variation
in cost that is too large making the Taylor expansion no longer valid. In this case it is required
to decrease the magnitude of the control variation such that that linear quadratic-expansion is
consistent. This is carried out ensuring that the largest terms of the optimal control variation,
αi, should be small enough to be of the same order of magnitude of the truncation error of the
Taylor expansion. The new control policy is rewritten introducing a coefficient, ε1, to tune the
magnitude of the control variation:

δui = ε1αi + βiδxi, 0 < ε1 ≤ 1 (3.49)

The reduction of the control policy will decrease also the variation between the new optimal
trajectory and the nominal trajectory. The new difference between the optimal value function
and the nominal value function should not be compared with ϑ1 which does not take into ac-
count the introduction of the tuning coefficient ε1. The new expected error between the optimal
value function and the nominal one is obtained multiplying the original value by the factor
ε1

(
1− ε1

2

)
. Therefore, the new criterion to assess if the new control policy should be accepted

or not becomes [39]:

J(x, b̄; ε1)− J̄(x̄, b̄)

ε1

(
1− ε1

2

)
ϑ1

≤ c, 0.5 < c < 1, 0 < ε1 ≤ 1 (3.50)

Differently from the standard selection criterion [39], the value of the constant c is allowed to
vary within a given interval. The ratio described in Eq. (3.50) describes how the actual cost
reduction is departing from the expected cost which is computed from the truncated Taylor
expansion. The higher is the value of the threshold, c, the better is the accuracy of the actual
cost function with its quadratic approximation. This way it is possible to be sure that the control
variation is not relatively large such that the linear-quadratic expansion provided is no longer
valid. However, the reduction in the control variation makes the algorithm slower despite of an
increase in convergence stability. One way to choose the value of the tuning coefficient ε1 is to
halve the precedent value starting from 1.

εz+1
1 =

εzi
2
, ε0

1 = 1 (3.51)
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Figure 3.1: Nominal vs optimal trajectory
representation during the step-size adjust-
ment method

Figure 3.2: Nominal vs optimal control rep-
resentation during the step-size adjustment
method

The second part of the DDP algorithm is related to the constraints verification. This part is
carried out after a first loop iteration where the optimal control policy is derived fixing the value
of the Lagrange multipliers. Therefore, the value of the nominal control will be almost equal to
the optimal control. The complete set of Eq. (3.44) is solved backward to compute the missing
matrices related to the partial derivatives of the value function with respect to the Lagrange
multipliers.It is required to define the optimal value of the Lagrange multipliers variation to
be replaced in the optimal control policy. This operation is carried out starting from a Taylor
expansion of the value function to check how a small multiplier variation, δb, affects the value
function.

J1(x̄, b̄ + δb) = J1(x̄, b̄) + J1
b
T
(x̄, b̄)δb +

1

2
δbTJ1

bb(x̄, b̄)δb (3.52)

with J1 denoting the value of the optimal cost function at the first time step, while J1
b and J1

bb are
the Jacobian and Hessian matrices of the optimal cost functional with respect to the Lagrange
multipliers vector at the initial time step, respectively. The optimal variation of the Lagrange
multipliers can be computed differentiating the linear-quadratic expansion and putting the result
equal to zero as shown in Gershwin and Jacobson [40].

∂

∂(δb)
= J1

b(x̄, b̄) + J1
bb(x̄, b̄)δb = 0, δb = −

[
J1
bb

]−1
(x̄, b̄)J1

b(x̄, b̄) (3.53)

where again Eq. (3.39) has been used to express the optimal cost function as sum of the nom-
inal cost functional, J̄1, and the expected error between the optimal cost and the nominal one,
ϑ1, both evaluated at the initial time step. Once the optimal Lagrange multipliers variation is
obtained the new control variation is computed such that a reduction in the constraints violation
is obtained. A new forward integration of the dynamics is carried out considering the optimal
policy and a new difference between the optimal value function and the nominal value function
can be evaluated. This time, the difference should be compared with a measure of the error
between the optimal cost using the new set of Lagrange multipliers and the nominal value of
the cost function. Such figure of merit can be obtained starting from Eq. (3.52) [40].

J1(x̄, b̄ + δb) = J̄1(x̄, b̄) + ϑ1 + J1
b
T
(x̄, b̄)δb +

1

2
δbTJ1

bb(x̄, b̄)δb (3.54)

Taking the nominal cost at the left-hand side and replacing the value of the optimal Lagrange
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multipliers variation, it is possible to compute the expected variation in the cost function asso-
ciated to the optimal Lagrange multiplier variation, δb :

J1(x̄, b̄ + δb)− J̄1(x̄, b̄) = ϑ1 − J1
b
T
(x̄, b̄)

[
J1
bb

]−1
(x̄, b̄)J1

b(x̄, b̄)

+
1

2
J1
b
T
(x̄, b̄)

[
J1
bb

]−1
(x̄, b̄)J1

b(x̄, b̄)
(3.55)

Using the matricial notation introduced in Eq. (3.45) it is possible to rewrite the expression of
the optimal Lagrange multipliers variation and the expected cost reduction as follows:

δb = −1

2
R−1

1 ZT
1 (3.56)

J1(x̄, b̄ + δb)− J̄1(x̄, b̄) = ϑ1 −
1

2
Z1R

−1
1 ZT

1 +
1

4
Z1R

−1
1 ZT

1 = ϑ1 −
1

4
Z1R

−1
1 ZT

1 (3.57)

There is the possibility that the variation in the value function is not consistent with Eq. (3.54)
within a certain tolerance. This implies that the variation of the Lagrange multipliers is so large
to make the Taylor expansion no longer valid. Also in this case a tuning coefficient, ε2, can be
introduced to control the magnitude of the Lagrange multipliers variation:

δb = −1

2
ε2R

−1
1 ZT

1 , 0 < ε2 ≤ 1 (3.58)

The estimation of the value function reduction changes as well after the introduction of the
tuning coefficient [42]:

J1(x̄, b̄ + δb)− J̄1(x̄, b̄) = ϑ1 −
1

2

(
ε2 −

ε2
2

2

)
Z1R

−1
1 ZT

1 (3.59)

3.2.2 Hessian positive definiteness

In this paragraph some heuristic techniques to ensure the positive definiteness of the Hessian
matrix with respect to the control to achieve the convergence are reported. First, a summary
of the existing techniques provided by the literature is provided. Finally, a personal heuristic
technique devised by the author and implemented in this research work is presented. The DDP
algorithm points to the minimisation of the cost functional just if the matrix Ci is positive
definite. Indeed, this is a necessary condition of optimality to achieve a local minimum using
the optimal control variation. It can happen that the matrix Ci is not positive definite or it is
almost semi-positive definite due to the low order of magnitude of the numbers inside thematrix.
The literature presents several techniques to guarantee the positive definiteness of the Hessian
matrix:

• Constant shifting

• Adaptive shifting

• Trust-region
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All the techniques share the same principle to find a positive scalar to ensure that the matrix
Ci is positive definite shifting its main diagonal. The constant shifting was first proposed by
Yakowitz and Rutherford [46] sums the original Hessian matrix to the identity matrix multiplied
by a positive constant factor decided by the user a priori. The original matrix Ci is used for the
computation of the backward equations stated in Eq. (3.34) while the corrected matrix C̃i is
adopted for the derivation of the coefficient multiplying the control variation.

C̃i = Ci + εcI3x3 (3.60)

The adaptive shifting was introduced by Liao and Shoemaker [84] as modification of the con-
stant shifting. In this approach the positive scalar is decided slightly larger than the minimum
eigenvalue of the Hessian matrix. A common choice as shifting term is the absolute value of
the minimum eigenvalue of the matrix Ci to ensure positive definiteness following Colombo et
al. [42].

C̃i = Ci + 2 |λmin| I3x3 (3.61)

The last technique is used by Lantoine and Russell [43] in the definition of its HDDP and it is the
trust region sub-problem. This method solves a convex quadratic problem optimising a control
variation to not go beyond a given trust-region radius which is delimiting a region of confidence.
The outcome of the method is also a positive scalar which is used to shift the main diagonal of
the Hessian matrix. However, this time the scalar value is function of the trust-region used for
the method which is defined by the user. All the previous methods share one important problem
that is the positive scalar used as shift for the main diagonal is provided by the user and it is not
adapted according to the problem that must be solved. This is not an optimal way to apply the
shifting technique because a small positive value may generate numerical difficulties, while if
the positive scalar is too large the convergence can be very slowed. This research work is the
definition of a new way to make the Hessian matrix with respect to the control positive definite.
The main idea is to find a way to select the positive scalar to shift the main diagonal which is
independent from the user selection and it is flexible with respect to the problem to be solved.
This can be done exploiting a modified Cholesky factorisation proposed by Schnabel and Eskow
[85]. The classic Cholesky factorisation decomposes a positive definite matrix in the product
of two lower triangular or upper triangular matrices. The decomposition fails in case the matrix
is not positive definite. The modified Cholesky factorisation can also be applied to negative
definite matrices. The decomposition will not affect the original matrix but the sum of the
matrix itself and a positive diagonal matrix, Ẽ, which is shifting the main diagonal. The main
aspect of this method is that the value of the diagonal matrix is chosen to satisfy Gorshgorin
theorem [85] which is a mathematical condition that can be applied independently from the type
of problem and it is not user dependent.

Ci + Ẽ = L̃L̃T (3.62)

The second important point is that the three matrices Ai, Ci and Ri must be symmetric by
construction. This can not happen due to numerical errors introduced by the different addenda
in Eq. (3.34). Therefore, it is possible to restore the symmetry property for those matrices
adding the transpose of the matrix itself and halving the sum. This heuristics is not reported in
previous literature to the best of the author knowledge. Indeed, this heuristic is not introduced
to guarantee the convergence of the algorithm but to satisfy the underlying assumptions of the
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DDP backward equations derivation.

Ai =
1

2

(
Ai + AT

i

)
Ci =

1

2

(
Ci + CT

i

)
Ri =

1

2

(
Ri + RT

i

) (3.63)

3.2.3 Lagrange multipliers corrections

The last important note regards the update of the Lagrange multipliers in the second loop of
the DDP algorithm. Indeed, it can happen that one of the components of the Lagrange multi-
pliers variation is negative and larger in magnitude with respect to the same component of the
nominal vector of Lagrange multipliers. The result will be that one of the components of the
new optimal Lagrange multipliers vector will be negative. This situation should be avoidable
because it creates ambiguity in the evaluation of the cost reduction. Indeed, being the value
function defined as a positive scalar, a cost reduction is necessarily related either to a functional
cost reduction or to a constraints violation reduction. In this case the approach implemented
in this thesis merges two different methods present in literature. The first case adjoins the end-
points constraints to the cost function by means of a vector of Lagrange multipliers, and the
endpoint constraints are expressed as a quadratic form.

J∗ = J + bT (x− xf )
T (x− xf ) (3.64)

All the terms appearing in Eq. (3.64) are always positive except for the vector of Lagrangemulti-
pliers. The presence of negative Lagrange multiplier could break the logic previously described
because it can make the cost functional negative. A negative cost functional creates issues when
Eq. (3.59) is evaluated because it can lead to accept iterations which are not consistent with the
Taylor expansions. Therefore, it is safer to impose that all the negative components of the new
Lagrange multipliers vector are set equal to zero as shown in Eq. (3.65) following Colombo et
al. [42].

b =

{
0, if bi < 0

b̄ + δb, otherwise
(3.65)

Using Eq. (3.65) the cost functional is always positive even if the update in the Lagrange mul-
tipliers variation causes one or more components of the Lagrange multipliers to be negative.
The second formulation is assuming that constraints are adjoined to the cost function through
a vector of Lagrange multipliers multiplying linearly the endpoints constraints, and a positive
penalty term which is multiplying the squared norm of the endpoint constraints as proposed by
Lantoine and Russell [43].

J∗ = J + bT (x− xf ) + σ||x− xf ||2 (3.66)

In this case even if a negative Lagrange multiplier appears, the presence of the penalty term is
guaranteeing that the overall cost is always positive because the relative magnitude of the linear
term, bT (x− xf ), is smaller than the quadratic one creating an embedded safeguard process.
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3.3 Constraints formulation

Another important aspect in the definition of the nonlinear control problem is given by the
formulation used for the endpoint constraints. The constraints are adjoint with the cost function
using Lagrange multipliers creating the final value function used in the derivation of the DDP
algorithm. Therefore, the partial derivatives computation and the Lagrange multipliers’ initial
guess depend on the analytical formulation of the endpoint constraints. The main idea is to
ensure that the cost functional is always positive so that the minimisation process translates
in the reduction of the cost towards zero. Numerical simulations carried out by the author
suggest to use two different formulations according to the orbital problem to be solved. For
interplanetary problems the best way to define the endpoint constraints is to use the square of
the variation between the actual final trajectory and the prescribed final state. The quadratic
constraint formulation grants always that the cost function is positive.

ϕ = (x− xf )
T (x− xf ) (3.67)

whereϕ is the function expressing the endpoint constraints, x is the satellite state vector in terms
of classic orbital elements [a, e, i,Ω, ω, ν] or modified equinoctial elements [a, f, g, h, k,Γ], and
xf is the final prescribed satellite state vector. In this problem the final cost functional formu-
lation will resemble the formulation in Eq. (3.64). For planetary problems the best way to
introduce the endpoint constraints is to rely on the Augmented Lagrangian formulation. In this
case the linear variation of the final state with respect to the prescribed state is adjoined thanks
to the Lagrange multipliers and an additional term depending on the square of such variation
multiplying a positive penalty factor.

ϕ = (x− xf ) + σ||x− xf ||2 (3.68)

The penalty term is introduced to guarantee that the final cost functional is always positive even
if the vector of Lagrange multipliers is negative. The expression of the cost functional used
for planetary problems is the one defined in Eq. (3.66). Other formulations for the endpoint
constraints can be used, but particular attention should be devoted to the order of magnitude of
each component of the vectorial function. This is more important when working with orbital
elements.

3.4 Summary of the algorithm

This section summarises how the DDP algorithm proceeds in solving the optimal control
problem. A graphical representation of the algorithm is presented in Figure 3.3.

1. Integration of the nominal trajectory

The first step in solving the DDP algorithm is to integrate the system dynamics guessing an
initial value for the control law and the vector of Lagrange multipliers. All the tuning parameters
such as tolerances and penalty coefficients are decided before the nominal integration of the
dynamics. The cost functional is evaluated along the nominal trajectory using the augmented
Lagrangian formulation and its value is stored.
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2. Backward Sweep

The second step is to evaluate the cost functional partial derivatives. This operation is car-
ried by solving the algebraic backward equations which represent the necessary conditions of
optimality. For this purpose the auxiliary matrices introduced in Eq. (3.43) are evaluated at
each step and replaced inside the backward equations. The coefficients of the optimal feedback
control law (α,β) are evaluated and stored to be used in the next phase of the algorithm.

3. Check global convergence

After the backward sweep it is checked if convergence has been achieved. The value of
the expected error at the first time instant, ϑ1, is compared with the tolerance provided by the
user. If this check is true the second check on the violation of the endpoint constraints is carried
out. If also all the endpoint constraints are satisfied according to a threshold given by the user,
the algorithm stops. The optimal control law, its coefficients, the optimal cost and vector of
Lagrange multipliers are provided as output of the optimisation process. Otherwise it proceeds
to the next step.

4. First forward integration

The system dynamics is integrated forward again using the new optimal control law. The
new cost functional is evaluated and it is compared to the nominal cost functional to check if
the a minimisation is achieved or not. The step-size adjustment method is applied to during this
process. The nominal control, cost and trajectory are replaced with the optimal ones coming
out from the step-size adjustment procedure.

5. Check local convergence

After the integration of the dynamics with the new optimal control the value of the expected
reduction, ϑ1, is controlled if it is below the given tolerance or not. If this is not true, a new
iteration of the DDP algorithm begins computing a new set of optimal control law coefficients
solving the backward equations. Therefore the process moves back to Step 2. If the value of the
expected reduction is below the given threshold the first stage of the DDP ends and the algorithm
enters the second stage where the correction of the Lagrange multipliers is carried out.

6. Complete backward sweep

At the beginning of the second stage of the DDP a complete backward sweep is carried out
using the control law coming from the first stage. This time all the backward equations are used
and the optimal control law coefficients (α,β,γ) are evaluated and stored.
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7. Lagrange multipliers correction

The next step is to compute the optimal variation of the Lagrangemultipliers fromEq. (3.58)
and integrate again forward the system dynamics considering the complete optimal control law.
The new functional cost is computed and the condition on the consistence of the Lagrange mul-
tiplier variation magnitude is checked thanks to Eq. (3.59). The new optimal control variables,
state, cost and vector of Lagrange multipliers are replaced with the nominal ones and the first
stage of DDP is repeated moving to step 2.

Figure 3.3: Graphical representation of the DDP algorithm.
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CHAPTER 4

Heuristic techniques for the constrained problem in using
orbital elements

In this chapter the core of this PhD is presented. A mathematical theory to explain what
happens when DDP is coupled with orbital elements as state representation of the dynamics
is derived. A technique to solve full rendezvous trajectory problems is proposed together with
some applications to demonstrate its effectiveness. The work in this chapter was submitted as
journal publication in [74].

4.1 Quasi-linear independence

The main scope of this chapter is to present a systematic theory that couples the use of the
DDP algorithm with orbital elements as state representation of the orbit dynamics. This theory
is based on two fundamental concepts: one related to the nature of orbital elements and the
second to the DDP algorithm procedure. The first important point to highlight is the difference
in the rate of variation of the orbital elements. This behaviour can be simply justified looking at
the expression of Gauss’ equations (2.1) presented in Chapter 2. All the orbital elements apart
from the true anomaly contain coefficients that are multiplying control actions or perturbing
accelerations, while in the true anomaly rate equation there is an addendumwhich is independent
on the control action and it is related to the orbital motion. This means that if the control action
at a single time instant is identically equal to zero or is very small, the rate of variation of all
the orbital elements will be very small while the variation of the true anomaly will be relatively
larger. This behaviour denotes that the system dynamics is stiff. The second aspect that must be
stressed is also the reason why the name "quasi-independence" theory has been used to explain
what happens when orbital elements are coupled with the DDP algorithm. Consider the last
two Gauss’ equations defined in Eq. (2.1) describing the rate of variations associated to the
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4.1. Quasi-linear independence

pericentre anomaly and the true anomaly:
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The part in the true anomaly rate multiplying the control actions is exactly the opposite of the
pericentre anomaly rate. This is expected as the sum of the true anomaly and pericentre anomaly
results in another angle denoted as true latitude, and both ω and ν are measured on the same
plane. Imaging to consider the gradient of the two equations with respect to the control actions
the first term in in the true anomaly rate equation will disappear and the result will be equal and
opposite.

∇u

(
dω

dt

)
= −

(
∇u

dν

dt

)
(4.2)

The consequence is that it is impossible to define a control policy which is minimising at the
same time the pericentre anomaly and the true anomaly constraint. This result can be explained
also from a geometrical point of view. Indeed, while each orbital parameter can be described
like and independent geometric quantity (i.e., the semi-major axis is represents the size of the
orbit, the eccentricity represent the shape of the orbit, the inclination is one of the Euler angles
with respect to a reference plane, etc.) the true anomaly is an angle defined with respect to a
moving reference axis which is defined by the pericentre anomaly itself. This means that if for
all the main 5 orbital parameters a single variation is related exclusively to a control action, the
true anomaly can change also because it is changing the pericentre anomaly. The consequence
is that it is impossible to define a direct cause-effect link between the control action and true
anomaly like for all the other orbital elements and this is why even if from a formal point of
view all the equations are linearly independent this is not true from a numerical optimisation
point of view and from this consideration the name "quasi-independence" theory is proposed.
A reduction of the pericentre anomaly will move apart the eccentricity vector and increase the
angular distance between the eccentricity vector and the satellite position vector leading to an
increase of the true anomaly.

Another important aspect to be underlined is the way the DDP proceeds in its second loop
for the reduction of the constraints violation. The DDP computes an optimal Lagrange multipli-
ers variation and defines a new control law to reduce the constraints violation. The higher is the
constraint violation the higher will be the action of the control policy in reducing it. This philos-
ophy becomes critical when orbital elements are considered. Indeed, due to the stiff dynamics
the true anomaly variation and constraints violation will be always larger with respect to the
other orbital elements and will make the linear-quadratic expansion no longer valid. Therefore,
the new control law provided by the DDP algorithm will be such that the new trajectory will
decrease the true anomaly constraint violation instead of moving the satellite from the original
orbit to the final one. This reasoning is logically wrong for two reasons:
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4.2. Angular variables management

1. The true anomaly represent only a way to identify the position of the satellite on the final
orbit and is not the main orbital parameter to be achieved.

2. The true anomaly cannot be changed independently using the control action.

4.2 Angular variables management

One of the most important differences in working with orbital elements instead of Cartesian
coordinates is the presence of many angular variables in the state vector. Indeed, angular vari-
ables are limited in the interval [0, 2π] and their rate can be very different. The DDP algorithm
defines for each iteration a feedback control law that is based on the difference between the
nominal trajectory obtained using a nominal policy and the optimal trajectory evaluated using
the new control variation. Therefore, it is fundamental that the evaluation of the variation of
each component of the state vector is correct. For Cartesian coordinates where the state is rep-
resented by position and velocity which are not limited in any kind of interval the evaluation is
straightforward. In case of angular variables there is the possibility to miscalculate this differ-
ence because the same angle associated to the nominal trajectory is in the interval [0, 2π] while
the the same angle computed with the new optimal policy is out of the classic interval. There-
fore, in this work a systematic control procedure based on the introduction of two indices has
been developed to enforce the proper evaluation of the difference between the optimal and nom-
inal state. The procedure introduces one index, ijnom, and a second index, ijopt, which represent
integer numbers that are summed to the nominal trajectory and optimal trajectory respectively
to recover the real value of each angle. Let δxi be the state variation computed at the time step
i during the forward integration of the dynamics.

δxi =
(
xi + 2πijopt

)
−
(
x̄i + 2πijnom

)
(4.3)

with xi the spacecraft state evaluated with the feedback control law, x̄i the state associated to
the nominal control policy. The two indices are set identically equal to zero at the starting time
and during the forward integration of the dynamics. According to the control policy adopted,
their value is decreased or increased of one unit each time that one angular variable is either
negative or larger than 2π respectively.

ijnom =

{
ijnom − 1, if xj(z) < 0

ijnom + 1, if xj(z) ≥ 2π
z = 3, 4, 5, 6 (4.4)

where the index z is denoting the four angular variables composing the state vector in terms of
orbital elements (inclination, RAAN, pericenter anomaly and true anomaly). The introduction
of the index forces at each time step to put the angles in the same interval and to have the proper
sign associated to the variation. For example, if the optimal angle at step i is −20 degrees and
the nominal value is 40 degrees, the angular variation is equal to −60 degrees. If the index is
not introduced and the angle are set automatically in the interval [0, 2π] the optimal angle at step
j will be 340 degrees resulting in a difference equal to 300 degrees. Even if the value of −60
degrees is equivalent to 300 degrees this is not correct for the application of the DDP algorithm.
Indeed, the sign is wrong because the angular variable is decreasing and not increasing and the
amplitude of the angular variation is very different. The consequence is that when the state
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variation is multiplied by the coefficients of the DDP algorithm the control variation magnitude
will be different. Therefore, even if the DDP algorithm is implemented in the correct way a
wrong computation of the angular distances can lead to a divergence of the result for a logical
error. A flow diagram presenting the control loop introduced for the angular variables thank to
the two indices is shown in Figure 4.1.

Figure 4.1: Angular index flow diagram.

4.3 Continuation technique

The previous considerations lead to define a systematic procedure based on a continuation
scheme for the application of DDP to dynamics expressed in terms of orbital elements. The
scheme is divided in 2 main layers:

i In the first layer the optimal control problem considering all the endpoint constraints except
for the one related to the true anomaly is solved.

ii In the second part a continuation algorithm is applied starting from the optimal control law
obtained in the first part used as nominal solution to solve the fully constrained optimal
control problem.

The continuation technique has been extensively used in the context of indirect optimisation
even if it is not strictly needed as direct convergence to the required value. In case the DDP
algorithm is used as optimisation technique the continuation method is a safeguard tool that
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must be used to guarantee direct convergence when it cannot be easily achieved. It is important
to stress this aspect to avoid to consider the DDP algorithm a weaker optimisation technique
with respect to classic indirect optimisation. The introduction of the continuation method in the
DDP algorithm is useful also to divide the search set of the optimal solution in two classes. The
first class contains candidate solutions for which the direct convergence is achieved and it can
be identified considering the first guess solutions which are decreasing the pericenter anomaly
and increasing the true anomaly or the other way around. Indeed, in this case the movement
of the eccentricity vector is pushing positively the true anomaly toward the target value. The
second class contains the candidate solutions for which both the true anomaly and the pericenter
anomaly must increase or decrease. In this case the direct converge is more difficult and the
continuation method is required to bypass the issue.

At the end of the first layer, the optimal control policy imposes the satellite to arrive at a pre-
scribed final orbit configuration even if the position on the orbit may be wrong. In the second
layer, the nominal trajectory of the satellite will be already on the final orbit and the only differ-
ence will be represented by the difference in true anomaly. The only detail to stress at this point
is to ensure that the true anomaly variation is small enough to make the new computed optimal
control law to accept the linear-quadratic expansion. This can be achieved considering a vector
of final true anomalies starting from the initial and the final prescribed true anomalies [ν1, ..., νf ].
The larger the vector of true anomalies, the smaller will be the true anomaly variation. In this
way, the new control law will optimise both the true anomaly and the other orbital elements be-
cause the satellite is already starting from the final orbit configuration. The continuation scheme
aims at solving many optimal control sub-problems considering each time one of the final true
anomalies defined in this vector and using the optimal solution of each sub-problem as initial
guess for the next one until the real final true anomaly is achieved. One important advice to
improve the convergence of the algorithm is to select the initial and arrival dates such that the
true anomaly has to decrease/increase with respect to the targeted value while the pericenter
anomaly must increase/decrease respectively. This is not a limitation on the application of the
algorithm but the exploitation of orbital mechanics described by the orbital elements and must
be considered a positive value of orbital elements with respect to the Cartesian coordinates. The
proposed approach based on the continuation scheme for the coupling between DDP and orbital
elements is correct because no limitations are present for the choice of the initial guess to be
used for the algorithm. The continuation scheme is summarised in Figure 4.2 and represents
the second layer of the proposed solving procedure. The solution obtained from the first layer
by solving the optimal control problem with the endpoints constraints to target the prescribed
final orbit is characterised by perfect matching of all the orbital parameters apart from the true
anomaly. A new optimal control problem is solved keeping the same endpoint constraints for
the target orbit and introducing the last constraint on the final true anomaly which is not equal
to the prescribed one but a different value. This intermediate final anomaly is computed start-
ing from the one obtained from the first layer solution and increasing or decreasing its value
of small quantity according to the direction to achieve the prescribed target true anomaly. The
author suggests 0.5 degrees as reasonable value to be used as variation for the intermediate tar-
get true anomaly to ensure the convergence of the algorithm. The optimal control problem is
solved, and the intermediate solution replaces the first-guess solution. A new optimal control
problem is defined changing again the value of the final true anomaly until this value matches
the prescribed one.
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4.4. Results

Figure 4.2: Continuation scheme for the true anomaly convergence.

4.4 Results

In this section the DDP algorithm is applied for solving two different orbit scenarios and
demonstrate the effectiveness of the new proposed methodology:

• Mars interplanetary transfer

• Near-Earth asteroid transfer

This use case is not representative of real non-linear optimisation problems, where departure
and arrival dates and time of flight are often subject to optimisation and not given. The following
examples are simplified cases to present how the continuation method works. More interesting
problems will be dealt in the following chapters. For each scenario, the same type of reference
variables and set of tolerances is used. The numerical values are reported in Table 4.1.

Table 4.1: Satellite data and DDP tolerances.

Inputs Numerical value
Specific Impulse 1500 s
Initial Mass 150 kg
Initial Thrust (tangential) 30 mN
Number of discrete time steps, N 50
tolϑ 1 x 10−6

tolcon 0.1

Both the two examples solve the minimum thrust optimal control considering the square of
the control magnitude as cost function to be minimised.

J =
1

2
wu

N∑
z=1

uTz uzs, G = 10 · Inu (4.5)
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with wu representing a weighting coefficient which defines the relative importance during the
minimisation process of the control magnitude with respect to the constraints violation, and s
the constant time step used for the numerical integration that is introduced when moving from
the continuous formulation of the cost function to the discrete one. The s is obtained dividing
evenly the time of flight by the number of discrete time steps, N . The value function used for
the problem is defined adjoining the constraints to the cost function using a set of Lagrange
multipliers:

Jaug = J∗ + bT (x− xf )
T (x− xf ) (4.6)

All the simulations are carried out using a processor Intel R© Core (TM) i7-8700 CPU @ 3.20
GHz. A Runge-Kutta explicit 8th order integration scheme is used for the numerical integra-
tion of the system dynamics and its analytical partial derivaties are used for the solution of the
backward equations and reported in Chapter 2.

4.4.1 Earth to Mars interplanetary transfer

The first reference scenario considers an interplanetary transfer to Mars starting from the
Earth. The initial and final conditions for the problem are reported in Table 4.2. The state
vectors in terms of orbital elements are computed from analytic ephemerides which approximate
JPL ephemerides DE405. The adimensionalisation of the problem is carried out considering
the first philosophy introduced in Section 2 and the reference variables adopted are reported in
Table 4.3.

Table 4.2: Input for Earth to Mars interplanetary transfer.

Inputs Numerical value
Departure date Midnight 20/5/2003
Time of Flight 200 days
Arrival date Midnight 6/12/2003
Relative velocity w.r.to Earth 1.66 km/s
µ 1.3271244 · 1011km3/s2

unom 30 mN
tola 100 km
tole 1 · 10−4

toli 0.01◦

tolΩ 0.01◦

tolω 0.01◦

tolν 0.1◦

Table 4.3: Reference variables for Earth to Mars transfer.

Reference variable Numerical value
Lref 6.133209 · 108 km
tref 4.16942177 · 107 s
mref 3 kg
uref 30 mN
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The reference mass is not set to the initial mass to avoid the adimensional mass being a
number in the interval [0,1]. Indeed, the mass is always present at the denominator of each
control thrust component so that it is better to have the denominator far from 0 to avoid numerical
issues. In particular, for this specific use case convergence is achieved for values of reference
mass mref < 3.75kg keeping fixed all the other parameters. The effect of the wrong choice of
reference mass affect the computation of the cost functional partial derivatives. The comparison
between the transition function partial derivatives considering values of the referencemass equal
to 150 kg and 3 kg is presented in Figures 4.3-4.12, respectively.
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Figure 4.3: Jacobian matrix of the transition
function with respect to the state for mref =
150 kg.
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Figure 4.4: Jacobian matrix of the transition
function with respect to the state for mref =
3 kg.
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tion function with respect to the control for
mref = 150 kg.
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Figure 4.7: Hessian matrix of the transition
function with respect to the state for mref =
150 kg.
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function with respect to the state for mref =
3 kg.
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tion function with respect to the control for
mref = 150 kg.
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tion function with respect to the control for
mref = 3 kg.
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The trend of all the partial derivatives of the transition functions is the similar. However, the
absolute values are different due to the difference of the reference mass that is at the denominator
of the system dynamics. The discrepancy between the magnitude of the transition functions
partial derivatives affects the cost functional partial derivative computed during the backward
processing using Eqs. (3.44). The comparison between the cost functional partial derivatives at
the end of the first state of the DDP algorithm using values of the reference mass equal to 150
kg and 3 kg is presented in Figures 4.13-4.16, respectively.
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Figure 4.13: Jacobian matrix of the cost
functional with respect to the state formref =
150 kg.
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functional with respect to the state formref =
3 kg.
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Figure 4.15: Hessian matrix of the cost func-
tional with respect to the state for mref =
150 kg.
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Figure 4.16: Hessian matrix of the cost func-
tional with respect to the state for mref =
3 kg.

It is clear that the cost functional partial derivatives computed using the reference mass equal
to 150 kg are discontinuous. Therefore, the DDP algorithm is not able to converge because one
of the basic assumptions of the algorithm is that all the cost functional partial derivatives must
be smooth continuous functions. The initial guess for the control is a simple tangential thrust
that is provided at each time step. The DDP algorithm is not constraining the initial guess used
for the nominal control. It is obvious that the closer the nominal control to the optimal solution,
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the lower is the computational time employed by the DDP algorithm to provide the optimal
solution. The constraints are defined according to what presented in Section II as the quadratic
difference between the actual state and the prescribed final state vector. The initial condition for
the Lagrange multipliers is set to be proportion to the constraint violation.

b̄ = 10 ·ϕ(xN+1) (4.7)

The solution to the first part of the DDP algorithm is reported in Figure 4.17 showing both
the magnitude of the initial tangential control law (blue) and the optimal control time history
at the end of the first layer using 5 endpoint constraints (green), respectively. This represents
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Figure 4.17: Nominal vs optimal control
magnitude time history for Earth to Mars
transfer: part 1.
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Figure 4.18: First part vs final optimal con-
trol magnitude time history for Earth to Mars
transfer: part 2.

the solution to the optimal control problem considering five endpoint constraints. The optimal
control obtained in this first part is used as initial guess to solve the fully constrained optimal
control problem following the continuation scheme proposed in the Section III. In Figure 4.18
it is reported the difference between the optimal control law obtained solving the 5 endpoint
constraints and the final optimal thrust obtained solving the fully constrained problem after the
application of the continuation scheme. It is possible to appreciate that the DDP is just slightly
adjusting the control law such that also the final true anomaly is matching the prescribed one
without losing the final targeted orbit even if all 6 elements can now be changed. In this specific
example the initial condition for the inclination has been set to a value slightly higher than zero to
avoid the singularity embedded in the Gauss’ dynamics in terms of classic Keplerian elements.
However, the important aspect to be underlined is the possibility to couple orbital elements with
the DDP algorithm. The final optimal trajectory given by the DDP algorithm for each orbital
parameter is presented in Figures 4.19-4.24. The final interplanetary trajectory in the xy plane
is reported in Figure 4.25. It is possible also to compare the two different time histories for the
nominal and optimal control that are reported in Figures 4.26-4.27.
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Figure 4.19: Nominal vs optimal semi-major
axis trajectory for Earth to Mars transfer.
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Figure 4.20: Nominal vs optimal eccentric-
ity trajectory for Earth to Mars transfer.
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Figure 4.21: Nominal vs optimal inclination
trajectory for Earth to Mars transfer.
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Figure 4.22: Nominal vs optimal RAAN tra-
jectory for Earth to Mars transfer.

0 20 40 60 80 100 120 140 160 180 200

t [days]

160

180

200

220

240

260

280

300

320

 [d
eg

]

Nominal trajectory
Optimal trajectory with 5 constraints
Optimal trajectory with 6 constraints
Target value

Figure 4.23: Nominal vs optimalω trajectory
for Earth to Mars transfer.
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Figure 4.24: Nominal vs optimal ν trajectory
for Earth to Mars transfer.
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Figure 4.25: Final interplanetary Earth to Mars interplanetary trajectory.
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Figure 4.26: Nominal control time law for
Earth to Mars transfer.
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Figure 4.27: Optimal control time law for
Earth to Mars transfer.

4.4.2 Earth to near-Earth asteroid transfer

The second example consists in an interplanetary transfer towards the near-Earth asteroid
Apophis. The initial conditions and final conditions for the problem are reported in Table
4.4. Also in this case the state vectors in terms of orbital elements are computed from ana-
lytic ephemerides which approximate JPL ephemerides DE405. The adimensionalisation of the
problem is carried out considering the first philosophy introduced in Section II and the reference
variables adopted are reported in Table 4.5.

The orbit dynamics used to solve this exercise is the set of Gauss’ equations in terms of
modified equinoctial elements. This is necessary to avoid to change the initial condition related
to Earth orbit like for the previous example for which there is the singularity if classic Keplerian
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Table 4.4: Input for Earth to Apophis transfer.

Inputs Numerical value
Departure date Midnight 20/5/2022
Arrival date Midnight 1/11/2022
Time of Flight 165 days
Relative velocity w.r.to Earth 1.66 km/s
µ 1.3271244 · 1011km3/s2

unom 30 mN
tola 100 km
tolf 1 · 10−5

tolg 1 · 10−5

tolh 1 · 10−5

tolk 1 · 10−5

tolΓ 0.1◦

Table 4.5: Reference variables for Earth
to Apophis transfer.

Reference variable Numerical value
Lref 6.133209 · 108 km
tref 4.16942177 · 107 s
mref 15 kg
uref 30 mN

elements are used. The aim of the example is to check how the DDP algorithm can fit different
dynamics considering different set of orbital elements. Also, in this case the initial guess for
the control is set equal to a tangential control law to show that this simple nominal control can
be used for different problems. The initial condition for the Lagrange multipliers is set always
proportional to the constraints violation.

b̄ = 104 ·ϕ(xN+1) (4.8)

The solution to the first part of the problem provided byDDP algorithm is reported in Figure 4.28
showing both the magnitude of the initial tangential control law and the optimal control time
history, respectively. Also in this case, the expectation is that starting from an optimal policy
targeting the final orbit, the DDP algorithm is able to adjust the control thrust only to match
the true longitude. The results of the final optimal control law is reported in Figure 4.29. The
analysis of the final optimal control law shows that this time in the initial and final parts of the
transfer the satellite has to thrust more to adjust the final true longitude due to the initial orbital
configuration of Earth and Apophis at the initial time. However, the DDP algorithm succeeds to
provide an optimal solution that is not possible to get solving directly the problem with all the
six endpoint constraints. The comparison between the nominal and optimal trajectories of the
modified equinoctial elements are reported in Figures 4.30-4.35. Looking at the time evolution
of the parameters h and k it is possible to check this time that the initial orbital inclination is
effectively equal to zero and the singularity of Gauss’ equations occurring when using classic
Keplerian elements is avoided.
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Figure 4.28: Nominal vs optimal control
magnitude time history for Earth to Apophis
transfer: part 1.
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Figure 4.29: First layer vs final optimal
control magnitude time history for Earth to
Apophis transfer: part 2.
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Figure 4.30: Nominal vs optimal semi-major
axis trajectory for Earth to Apophis transfer.
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Figure 4.31: Nominal vs optimal f trajectory
for Earth to Apophis transfer.
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Figure 4.32: Nominal vs optimal g trajectory
for Earth to Apophis transfer.
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Figure 4.33: Nominal vs optimal h trajectory
for Earth to Apophis transfer.

60



4.4. Results

0 20 40 60 80 100 120 140 160

t [days]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

k

Figure 4.34: Nominal vs optimal k trajectory
for Earth to Apophis transfer.
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Figure 4.35: Nominal vs optimal true longi-
tude trajectory for Earth to Apophis transfer.

The final 3D orbital trajectory related to Apophis transfer is reported in Figure 4.36. Finally,
the three components of the nominal and optimal control are presented respectively in Figures
4.37-4.38.

Figure 4.36: Optimal vs nominal 3D trajectory for Earth to Apophis transfer.
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Figure 4.37: Nominal control law for Earth
to Apophis transfer.
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Figure 4.38: Optimal control law for Earth
to Apophis transfer.
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CHAPTER 5

Static/dynamic variables optimisation and multiple
revolutions

This chapter presents another innovative contribution of this work: a modification of the
DDP to account for static/dynamic variables optimisation. In the latter part of the chapter a sys-
tematic procedure to solve multiple revolutions optimal trajectory problem is proposed. This
work was presented at the 73rd IAC [77] and will be the main subject of a future journal pub-
lication. This modification allows to solve multi-revolution orbit transfers with several spirals
which are very difficult to be solved with classic direct and indirect optimisation methods.

5.1 Free final time and static parameters

One of the main advantages in using the DDP algorithm as optimisation technique is the
adaptability to include many variables inside the optimisation process provided that these vari-
ables appear in the system dynamics and/or the cost functional so that partial derivatives can
be evaluated with respect to such variables. The procedure for the derivation of the backward
equations is always the same. Indeed, it is based on the linear-quadratic expansion of HJB equa-
tion. The difference is in the amount of terms appearing in each Taylor expansion that is related
to the independent variables used. Two interesting variables which are worth to include in the
optimisation process are the static parameters and the final time.

A static parameter is a generic variable which is not affecting the system dynamics during its
propagation, but it is changing only the initial or final condition. An example of static variable
is the departure time of a spacecraft, which is changing the initial condition for the propagation
of the dynamics. The final time is an interesting variable to be optimised in all the cases where
there is not a requirement on the transfer time for the spacecraft. Even if there is a constraint on
the maximum transfer time it is useful to ask what is the optimal final time within this window.
The discrete HJB equation is rewritten including also the dependencies on the static parameters
and final time.

J∗i (xi,b,w, tf ; ti) = min
ui

[Li(xi,ui,w, tf ; ti) + J∗i+1(xi+1,b,w, tf ; ti+1)] (5.1)

Similarly to what has been discussed in Chapter 3 the variations for the free final time, tf , and
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5.1. Free final time and static parameters

the generic static variables, w, are introduced:

δtf = tf − t̄f , δw = w − w̄ (5.2)

At this point, the Taylor expansion of each term up to the second order inside the HJB Eq. (5.1)
is derived as follows:

Ji(x̄i + δxi, b̄ + δb, w̄ + δw, t̄f + δtf ) = Ji(x̄i, b̄, w̄, t̄f ) + JiTx (x̄i, b̄, w̄, t̄f )δxi

+ JiTb (x̄i, b̄, w̄, t̄f )δb + JiTw (x̄i, b̄, w̄, t̄f )δw + J itf (x̄i, b̄, w̄, t̄f )δtf

+
1

2
δxT

i Jixx(x̄i, b̄, w̄, t̄f )δxi +
1

2
δbTJibb(x̄i, b̄, w̄, t̄f )δb +

1

2
δwTJiww(x̄i, b̄, w̄, t̄f )δw

+
1

2
δtfJ

i
tf tf

(x̄i, b̄, w̄, t̄f )δtf + δxT
i Jixb(x̄i, b̄, w̄, t̄f )δb + δxT

i Jixw(x̄i, b̄, w̄, t̄f )δw

+ δxT
i Jixtf (x̄i, b̄, w̄, t̄f )δtf + δbTJibw(x̄i, b̄, w̄, t̄f )δw + +δbTJibtf (x̄i, b̄, w̄, t̄f )δtf

+ δwTJiwtf (x̄i, b̄, w̄, t̄f )δtf

(5.3)

Ji+1(x̄i+1 + δxi+1, b̄ + δb, w̄ + δw, t̄f + δtf ) = Ji+1(x̄i+1, b̄, w̄, t̄f )

+ Ji+1T

x (x̄i+1, b̄, w̄, t̄f )δxi+1 + Ji+1T

b (x̄i+1, b̄, w̄, t̄f )δb + Ji+1T

w (x̄i+1, b̄, w̄, t̄f )δw

+ J i+1
tf

(x̄i+1, b̄, w̄, t̄f )δtf +
1

2
δxT

i+1Ji+1
xx (x̄i+1, b̄, w̄, t̄f )δxi+1

+
1

2
δbTJi+1

bb (x̄i+1, b̄, w̄, t̄f )δb +
1

2
δwTJi+1

ww (x̄i+1, b̄, w̄, t̄f )δw

+
1

2
δtfJ

i+1
tf tf

(x̄i+1, b̄, w̄, t̄f )δtf + δxT
i+1Ji+1

xb (x̄i+1, b̄, w̄, t̄f )δb

+ δxT
i+1Ji+1

xw (x̄i+1, b̄, w̄, t̄f )δw + δxT
i+1Ji+1

xtf
(x̄i+1, b̄, w̄, t̄f )δtf

+ δbTJi+1
bw (x̄i+1, b̄, w̄, t̄f )δw + δbTJi+1

btf
(x̄i+1, b̄, w̄, t̄f )δtf

+ δwTJi+1
wtf

(x̄i+1, b̄, w̄, t̄f )δtf

(5.4)

Li(x̄i + δxi, ūi + δui, w̄ + δw, t̄f + δtf ) = Li(x̄i, ūi, w̄, t̄f ) + LiTx (x̄i, ūi, w̄, t̄f )δxi

+ LiTu (x̄i, ūi, w̄, t̄f )δui + LiTw (x̄i, ūi, w̄, t̄f )δw + Litf (x̄i, ūi, w̄, t̄f )δtf

+
1

2
δxT

i Lixx(x̄i, ūi, w̄, t̄f )δxi +
1

2
δuT

i Liuu(x̄i, ūi, w̄, t̄f )δui

+
1

2
δwTLiww(x̄i, ūi, w̄, t̄f )δw +

1

2
δtfL

i
tf tf

(x̄i, ūi, w̄, t̄f )δtf

+ δxT
i Lixu(x̄i, ūi, w̄, t̄f )δui + δxT

i Lixw(x̄i, ūi, w̄, t̄f )δw + δxT
i Lixtf (x̄i, ūi, w̄, t̄f )δtf

+ δuT
i Liuw(x̄i, ūi, w̄, t̄f )δw + δuT

i Liutf (x̄i, ūi, w̄, t̄f )δtf + δwTLiwtf (x̄i, ūi, w̄, t̄f )δtf

(5.5)
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5.1. Free final time and static parameters

Also the Taylor expansion of the state variation at step i + 1 in terms of state variation at
step i is modified accordingly to for account the dependencies on the static parameters and final
time.
δxi+1 = Fi(x̄i + δxi, ūi + δui, w̄ + δw, t̄f + δtf )− Fi(x̄i, ūi, w̄, t̄f ) =

Fi(x̄i, ūi, w̄, t̄f )− Fi(x̄i, ūi, w̄, t̄f ) + Fi
x(x̄i, ūi, w̄, t̄f )δxi + Fi

u(x̄i, ūi, w̄, t̄f )δui

+ Fi
w(x̄i, ūi, w̄, t̄f )δw + FiT

tf
(x̄i, ūi, w̄, t̄f )δtf +

1

2
δxT

i F
i
xx(x̄i, ūi, w̄, t̄f )δxi

+
1

2
δuT

i F
i
uu(x̄i, ūi, w̄, t̄f )δui +

1

2
δwTFi

ww(x̄i, ūi, w̄, t̄f )δw

+
1

2
δtfF

i
tf tf

(x̄i, ūi, w̄, t̄f )δtf + δxT
i F

i
xu(x̄i, ūi, w̄, t̄f )δui + δxT

i F
i
xw(x̄i, ūi, w̄, t̄f )δw

+ δxT
i F

i
xtf

(x̄i, ūi, w̄, t̄f )δtf + δuT
i F

i
uw(x̄i, ūi, w̄, t̄f )δw + δuT

i F
i
utf

(x̄i, ūi, w̄, t̄f )δtf

+ δwT
i F

i
wtf

(x̄i, ūi, w̄, t̄f )δtf

(5.6)

It is possible to get the new expanded HJB equation replacing the Taylor expansion given by
Eqs. (5.3-5.6) in Eq. (5.1).

Ji(x̄i, b̄, w̄, t̄f ) + Jix
T
(x̄i, b̄, w̄, t̄f )δxi + Jib

T
(x̄i, b̄, w̄, t̄f )δb + +Jiw

T
(x̄i, b̄, w̄, t̄f )δw

+ J itf (x̄i, b̄, w̄, t̄f )δtf +
1

2
δxT

i Jixx(x̄i, b̄, w̄, t̄f )δxi +
1

2
δbTJibb(x̄i, b̄, w̄, t̄f )δb

+
1

2
δwT

i Jiww(x̄i, b̄, w̄, t̄f )δwi +
1

2
δtfJ

i
tf tf

(x̄i, b̄, w̄, t̄f )δtf + δxT
i Jixb(x̄i, b̄, w̄, t̄f )δb

+ δxT
i Jixw(x̄i, b̄, w̄, t̄f )δw + δxT

i Jixtf (x̄i, b̄, w̄, t̄f )δtf + δbTJibw(x̄i, b̄, w̄, t̄f )δw

+ δbTJibtf (x̄i, b̄, w̄, t̄f )δtf + δwTJiwtf (x̄i, b̄, w̄, t̄f )δtf = min
δui

[Li(x̄i, ūi, w̄, t̄f )

+ Eiδxi + Ji+1(x̄i+1, b̄, w̄, t̄f ) + Diδui + Ji+1
b

T
(x̄i+1, b̄, w̄, t̄f )δb + M̃iδtf + G̃iδw

+ δxT
i Aiδxi + δwTW̃iδw + δtf Ỹiδtf + δuT

i Ciδui +
1

2
δbTJi+1

bb (x̄i+1, b̄, w̄, t̄f )δb

+ δxT
i Biδui + δxT

i Ñiδtf + δxT
i Õiδw + δuT

i Kiδb + δuT
i Πiδtf + δuT

i Φiδw

+ δwT
i Ṽiδtf + δxT

i Xiδb + δbT
i T̃iδw + δbT

i Ũiδtf + δwT
i J

i+1
wtf

(x̄i+1, b̄, w̄, t̄f )δtf ]

(5.7)

As for the algorithm derived in Chapter 3, some new additional matrices have been introduced
next to the ones defined in Eq. (3.34) to simplify the notation of the expanded HJB equation.
Thesematrices are obtained considering the addendawhich aremultiplying the same differential
variation on the right-hand side of Eq. (5.7). The new additional matrices are defined as follows:

G̃i =
[
LiT

w (x̄i, ūi, w̄, t̄f ) + Ji+1T

x (x̄i+1, b̄, w̄, t̄f )F
i
w(x̄i, ūi, w̄, t̄f ) + Ji+1T

w (x̄i+1, b̄, w̄, t̄f )
]

M̃i =
[
Litf (x̄i, ūi, w̄, t̄f ) + Ji+1T

x (x̄i+1, b̄, w̄, t̄f )F
iT

tf
(x̄i, ūi, w̄, t̄f ) + J i+1

tf
(x̄i+1, b̄, w̄, t̄f )

]
Ũi =

[
Ji+1T

xb (x̄i+1, b̄, w̄, t̄f )F
i
tf

(x̄i, ūi, w̄, t̄f ) + Ji+1
btf

(x̄i+1, b̄, w̄, t̄f )
]

T̃i =
[
Ji+1T

xb (x̄i+1, b̄, w̄, t̄f )F
i
w(x̄i, ūi, w̄, t̄f ) + Ji+1

bw (x̄i+1, b̄, w̄, t̄f )
]

Ñi =
[
Li
xtf

(x̄i, ūi, w̄, t̄f ) + Ji+1T

x (x̄i+1, b̄, w̄, t̄f )F
i
xtf

(x̄i, ūi, w̄, t̄f )

+FiT

x (x̄i, ūi, w̄, t̄f )J
i+1T

xx (x̄i+1, b̄, w̄, t̄f )F
i
tf

(x̄i, ūi, w̄, t̄f )

+FiT

x (x̄i, ūi, w̄, t̄f )J
i+1
xtf

(x̄i+1, b̄, w̄, t̄f )
]

(5.8)
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Õi =
[
Li
xw(x̄i, ūi, w̄, t̄f ) + Ji+1T

x (x̄i+1, b̄, w̄, t̄f )F
i
xw(x̄i, ūi, w̄, t̄f )

+FiT

x (x̄i, ūi, w̄, t̄f )J
i+1T

xx (x̄i+1, b̄, w̄, t̄f )F
i
w(x̄i, ūi, w̄, t̄f )

+FiT

x (x̄i, ūi, w̄, t̄f )J
i+1
xw (x̄i+1, b̄, w̄, t̄f )

]
Π̃i =

[
Li
utf

(x̄i, ūi, w̄, t̄f ) + Ji+1T

x (x̄i+1, b̄, w̄, t̄f )F
i
utf

(x̄i, ūi, w̄, t̄f )

+FiT

u (x̄i, ūi, w̄, t̄f )J
i+1T

xx (x̄i+1, b̄, w̄, t̄f )F
i
tf

(x̄i, ūi, w̄, t̄f )

+FiT

u (x̄i, ūi, w̄, t̄f )J
i+1
xtf

(x̄i+1, b̄, w̄, t̄f )
]

Φ̃i =
[
Li
uw(x̄i, ūi, w̄, t̄f ) + Ji+1T

x (x̄i+1, b̄, w̄, t̄f )F
i
uw(x̄i, ūi, w̄, t̄f )

+FiT

u (x̄i, ūi, w̄, t̄f )J
i+1T

xx (x̄i+1, b̄, w̄, t̄f )F
i
w(x̄i, ūi, w̄, t̄f )

+FiT

u (x̄i, ūi, w̄, t̄f )J
i+1
xw (x̄i+1, b̄, w̄, t̄f )

]
Ṽi =

[
Li
wtf

(x̄i, ūi, w̄, t̄f ) + Ji+1T

x (x̄i+1, b̄, w̄, t̄f )F
i
wtf

(x̄i, ūi, w̄, t̄f )

+FiT

w (x̄i, ūi, w̄, t̄f )J
i+1T

xx (x̄i+1, b̄, w̄, t̄f )F
i
tf

(x̄i, ūi, w̄, t̄f ) + Ji+1
wtf

(x̄i+1, b̄, w̄, t̄f )

+FiT

w (x̄i, ūi, w̄, t̄f )J
i+1
xtf

(x̄i+1, b̄, w̄, t̄f ) + Ji+1T

xw (x̄i+1, b̄, w̄, t̄f )F
iT

tf
(x̄i, ūi, w̄, t̄f )

]
W̃i =

1

2

[
Li
ww(x̄i, ūi, w̄, t̄f ) + Ji+1T

x (x̄i+1, b̄, w̄, t̄f )F
i
ww(x̄i, ūi, w̄, t̄f )

+FiT

w (x̄i, ūi, w̄, t̄f )J
i+1T

xx (x̄i+1, b̄, w̄, t̄f )F
i
w(x̄i, ūi, w̄, t̄f ) + Ji+1

ww (x̄i+1, b̄, w̄, t̄f )

+FiT

w (x̄i, ūi, w̄, t̄f )J
i+1
xw (x̄i+1, b̄, w̄, t̄f ) + Ji+1T
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(x̄i, ūi, w̄, t̄f ) + J i+1
tf tf

(x̄i+1, b̄, w̄, t̄f )

+Fi
tf
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]
The optimal control variation, δu∗i , is obtained differentiating the right-hand of Eq. (5.7) side
with respect to the control variation. The difference with respect to the expression derived in
Chapter 3 is that now the feedback law contains addenda related to the final time and static
parameters variations, δtf and δw.

∂

∂ (δui)
= DT

i + 2Ciδu∗i + BT
i δxi + Kiδb + Πiδtf + Φiδw = 0 (5.9)

The expression of the optimal feedback control law is:

δu∗ = −1

2
C−1

[
DT
i + BT

iδxi + Kiδb + Φiδw + Πiδtf
]

(5.10)

The optimal control law can be rewritten introducing the coefficients which are multiplying the
different variations.

δu∗ = αi + βiδxi + γiδb + ηiδw + ρiδtf (5.11)
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αi = −1

2
C−1
i DT

i βi = −1

2
C−1
i BT

i γi = −1

2
C−1
i Ki

ηi = −1

2
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i Φi ρi = −1

2
C−1
i Πi

(5.12)

where η and ρ represent the feedback matrices relating the optimal control variation to the static
parameters and final time variation, respectively. The optimal control variation in Eq. (5.10)
must be replaced inside the expanded HJB Eq. (5.7) for the derivation of the backward equations
expressing the necessary conditions of optimality.

ϑi + Qiδxi + Ziδb + Giδw +Miδtf + δxT
i Piδxi + δbTRiδb + δwT

iWiδwi + δtfYiδtf

+ δxT
i Siδb + δxT

iOiδw + δxT
iNiδtf + δbTTiδw + δbTUiδtf + δwTViδtf =

ϑi+1 −
1

4
DiC−1

i DT
i +

(
Ei −

1

2
DiC−1

i BT
i

)
δxi +

(
Zi+1 −

1

2
DiC−1

i Ki

)
δb

+

(
G̃i −

1

2
DiC−1

i Φi

)
δw +

(
M̃i −

1

2
DiC−1

i Πi

)
δtf + δxTi

(
Ai −

1

4
BiC

−1
i BT

i

)
δxi

+ δbT
(
Ri+1 −

1

4
KT
i C
−1
i Ki

)
δb + δwT

(
W̃i −

1

4
ΦT
i C
−1
i Φi

)
δw + δtf

(
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Ṽi −

1

2
ΦT
i C
−1
i Πi

)
δtf
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As for the simpler case derived in Chapter 3 the partials of the optimal cost functional have
been modified introducing new auxiliary variables. The final backward equations are obtained
equating the coefficients multiplying the same differential variations.
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(5.14)

The system of difference Eqs. (5.14) is integrated backwards starting from the following final
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conditions:
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The auxiliary matrices defined before in Eqs. (5.8) can be rewritten considering the new
expressions introduced to express the cost functional partials:
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(5.16)

The new backward equations are obtained replacing the optimal control law in the expanded
HJB equation and removing the minimisation operator. As usual the coefficients multiplying
the same differential are equating to derive the optimal cost functional variation at the previous
step. Some aspects must be discussed to apply the general DDP algorithm. First, how to include
the final time inside the expression of the system dynamics. The other open points are how to
compute the optimal variations to update the static variables and final time. Finally, which are
the conditions to be respected to accept a DDP iteration. The first point is straightforward.
Given a general system of ordinary differential equations representing the system dynamics a
change of variable is introduced considering an adimensional time, τ . This adimensional time
is the ratio of the independent time variable and a nominal final time, t̄f , that is used as first
guess solution.

τ =
t

t̄f
(5.17)

Thanks to this change of variable the independent variable is no longer the dimensional time,
t, but the adimensional time, τ , that will be always a variable limited in the interval [0,1]. The
final time will appear explicitly inside the system dynamics.

dx
dt

= f(x, t)→ dx
dτ

= tf f(x, τ) (5.18)
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Thanks to this trick the partial derivatives of the system dynamics and of the cost functional
with respect to the free final time can be computed.

The second aspect to be included to complete the updated version of the DDP algorithm is
how to compute the optimal variations for the final time and static variables. The static variables
are not affecting the dynamics during the propagation but only the initial conditions. Therefore,
their role is similar from an algorithm point of view to the vector of Lagrange multipliers and its
variation is computed at the second stage of the DDP algorithm. A different reasoning must be
done for the final time variation. In this case this is a variable which is affecting the propagation
of the dynamics. Its role is similar to an optimal policy and this is why the optimal variation of
the final time is carried out at the first stage of the DDP algorithm. The starting point is always
the Taylor expansion of the cost functional considering its variationwhen there is a single change
of the static parameter or the free final time.

J∗(x1(w + δw); t) = J∗(x1(w); t) +
∂J

∂x1
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∂w
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∂w
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2
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T∂2J

∂x2
1
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∂w

+
∂2J

∂w∂x1

∂x
∂w

+
∂J

∂x1

T∂2x1

∂w2

]
δw

(5.19)

with J∗(x0(w + δw); t) representing the expected optimal cost functional due to a variation of
the only static parameter vector, δw. Generally, the static parameter affects only the variation
of the initial condition. The cost functional does not depend explicitly on the initial condition.
This means that all the partial derivatives with respect to the initial conditions are equal to 0.
The previous expansion is simplified in the following way:

J∗(x1(w + δw); t) = J∗(x1(w); t) + JTwδw +
1

2
δwTJwwδw (5.20)

The differentiation with respect to the static variable variation allows to determine the value of
the updated static parameter.

δw = −J−1
wwJw (5.21)

A similar reasoning is done also for the free final time. The Taylor expansion of the cost func-
tional depending only on the free final time is reported.

J∗(x1; tf + δtf ) = J∗(x1; tf ) + Jtf δtf + JTxFtf δtf +
1

2
δtf
(
Jtf tf + JtfxFtf

+JxxFtf tf + Jxtf
)
δtf

(5.22)

with J∗(x1; tf + δtf ) representing the expected optimal cost functional due to a variation of
the only final free time, δtf . The expansion can be simplified because according to the system
dynamics formulation the term Ftf tf = 0. However, according to the formulation of the aug-
mented cost functional with linear or quadratic endpoint constraint the partial derivatives of the
cost functional with respect to the final time can be equal or not equal to 0. Therefore, no further
simplification is done to derive the optimal variation of the free final time.

δtf = −
[
Jtf tf + JtfxFtf + Vxtf

]−1
[
Jtf + FT

tf
JTx
]

(5.23)

The last step for the complete update of the DDP algorithm is the evaluation of the acceptance
conditions for the optimal variation defined for the free final time and static parameters. Con-
sidering the Taylor expansions developed before an estimate of the difference between the new
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functional cost with the updated variation and the nominal one can be evaluated. These esti-
mates are used to check if the new cost functional computed after the forward integration of the
dynamics considering the new control law is consistent with the Taylor expansion.

θw = J∗(x0(w + δw); t)− J∗(x0(w); t) = JTwδw +
1

2
δwTJwwδw (5.24)

θtf = J∗(x1; tf + δtf )− J∗(x1; tf ) = Jtf δtf + JTxFtf δtf +
1

2
δtf
(
Jtf tf + JtfxFtf

+JxxFtf tf + Jxtf
)
δtf

(5.25)

The new estimates are summed with the estimates defined in Chapter 3 for the optimal con-
trol variation and Lagrange multiplier variations to verify if the overall variation of the cost
functional is consistent or not.

From a schematic point of view, only 2 modifications to the DDP algorithm presented at the
end of Chapter 3 must be introduced:

1. in step 4 the optimal control law is including also the optimal final time variation while
the static variables are considered to be constant.

2. in step 7 the Lagrangemultipliers correction is performed together with the static variables
correction.

5.2 Sundman transformation

One of the largest differences between interplanetary and planetary transfers is the multi
revolutionary aspect of the spacecraft trajectories. Most of the interplanetary missions involve
ballistic arcs which are not involving a large number of revolutions. For planetary missions
given the same transfer time the number of revolutions experienced by the spacecraft is higher.
This difference affects the performance of the DDP algorithm regarding the time discretisation.
The time discretisation of a single spacecraft interplanetary arc generates nodes which are not
exactly distributed but the overall mesh is not coarse. When multiple revolutions are involved
in the transfers, the difference in velocity of the spacecraft creates a large set of nodes close to
the apocenter and the mesh is coarse close to the pericenter. The consequence is that during
the backward sweep there is the possibility that a discontinuity in the partials computation is
generated not due to the non linearity of the system dynamics, but due to the large distance
between two consecutive nodes. This issue can be solved relying on a common instrument used
in orbital mechanics which is the Sundman transformation [61]. A Sundman transformation is
a method to change the independent variable from time to an orbital anomaly. The expression
using the true anomaly, eccentric anomaly and mean anomaly are reported [59]:

dt =
1
√
µp

(
p

1 + f cosL+ g sinL

)2

dν (5.26)

dt =
1
√
µ

(
p

1− f 2 − g2

)2

dl (5.27)
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dt =
1
√
µ

p

1 + f cosL+ g sinL

√
p

1− f 2 − g2
dE (5.28)

The Sundman transformation introduces the choice between four different independent vari-
ables: time, true anomaly ν, mean anomaly l, and eccentric anomaly E. The fastest way to
justify the choice of the best parameter as independent variable is to check how the nodes are
distributed in a single revolution of an orbit when a uniform vector of the independent variable
is considered. The result of the analysis is presented in Figures 5.1-5.4.

Figure 5.1: Nodes distribution using time as
independent variable.

Figure 5.2: Nodes distribution using true
anomaly as independent variable.

The nodes distribution using time or mean anomaly as independent variables is the same
because the two variables are directly correlated through the orbital mean motion. The nodes
are crowding the region close to the apocenter while the number of nodes nearby the pericenter
is sparse as it is shown in Figures 5.1 and 5.3. The result is that the angular separation between
two consecutive nodes close to the pericenter is relatively larger than the angular distance at the
apocenter. The opposite reasoning can be done if true anomaly is considered as independent
variable looking at Figure 5.2. The uniform distribution of the true anomaly generates a large
number of nodes close to the pericenter while the node distribution at the apocenter is sparse.

Figure 5.3: Nodes distribution using mean
anomaly as independent variable.

Figure 5.4: Nodes distribution using eccen-
tric anomaly as independent variable.
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The result is that the angular separation between two consecutive nodes close to the apocenter is
relatively larger than the angular distance at the pericenter. Finally, Figure 5.4 present the nodes
distribution when an equally spaced eccentric anomaly vector is used as independent variable.
The mesh is uniform so that the angular separation between two consecutive nodes is always
the same despite the position on the orbit. This property is very important because it allows to
generate a finer mesh increasing the number of nodes used to discretise the eccentric anomaly
vector.

Therefore, the most efficient way to use the Sundman transformation is to change the inde-
pendent variable from time to eccentric anomaly. A discretisation in terms of eccentric anomaly
has the property to allow a uniform discretisation of the spacecraft orbit despite the difference
in velocity between pericenter and apocenter. This allows to overcome the issue to generate dis-
continuities in the partials computation due to a large distance between two consecutive nodes.
The analytical formulation of the Sundman transformation allows to keep an analytical expres-
sion for the system dynamics also when eccentric anomaly is used as main independent variable.
This means, that the overall scheme based on the symbolic formulation still works properly. The
discussion about the node distribution is more relevant as the orbit considered is more eccentric
as the ones used for GTO to GEO transfers. This is why this specific test case is used at the
end of the chapter to prove the effectiveness of the DDP algorithm coupled with the eccentric
anomaly Sundman transformation.

5.3 Multiple revolutions

For planetary transfers multiple revolutions represent one of the critical points during the
resolution of optimal control problems. The larger is the number of revolutions themore difficult
is the convergence to be achieved in classic indirect problems when the state is represented in
terms of position and velocity. In particular, when classic direct collocation methods are used
the higher the number of orbit revolutions is the higher is the dimension of the non-linear optimal
control problem. One of the disadvantages in using direct collocation methods is the difficulty in
handling large dimensional problems. The introduction of a Sundman transformation to change
the independent variable from time to an anomaly improves the convergence properties but it is
not sufficient to overcome the issue related to the dimension of the problem.

When orbital elements are used as state representation of the dynamics is a complete set of
orbital elements as independent variables can be introduced. The orbital elements rates does not
depend explicitly on time, but they depend on one of the main orbit anomalies introduced, so
that the transformation is simplifying the formulation of the dynamics instead of making it more
difficult as in the case of Cartesian coordinates formulation. It is obvious that the design of the
problem changeswhen eccentric anomaly becomes the independent variable. Indeed, when time
is used as independent variable, a given transfer time is prescribed by the mission requirements
and the number of nodes for the mesh generation is completely decoupled from their distribution
in the different revolutions. This means that it is not possible to refine the mesh in an even way
modifying the number of discrete time steps. If eccentric anomaly is the independent variable,
the new design variable is not the transfer time, but the number of total revolutions. The use of
the eccentric anomaly as independent variable is particularly advantageous because thanks to its
property to generate a uniform number of nodes in a single revolution as shown in the previous
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section. The same analysis can be carried out to check what happens to the nodes distribution
when a uniform distribution of time or eccentric anomaly is used as independent variable and
multiple revolutions are involved.

Figure 5.5: Nodes distribution using time as independent variable when multiple revolutions
are considered.

When time or mean anomaly is considered as independent variable for multiple revolutions
transfers the behaviour is similar to the single revolution case. The node distribution is crowding
the apocenters of the different spirals but the angular separation between two consecutive nodes
close to the pericenter increases as the size of the orbit as shown in Figure 5.5. The consequence
is that it is even more difficult to keep the continuity and differentiability properties required to
solve the backward propagation.

If the eccentric anomaly is used as independent variable the nodes distribution is the one
presented in Figure 5.6. The angular separation between two consecutive nodes is constant for a
single revolution. If correspondent nodes on different spirals are considered, these points create
a straight line. This geometric feature has a very important consequence because it means that
the angular separation between two consecutive nodes in not only constant for all the revolutions
but its value is the same. This is very helpful to improve the convergence of the DDP algorithm
and it can be used to identify a criterion to tune the mesh refinement. The resulting total number
of discrete nodes is the product of the number of discrete nodes required per single revolution
multiplied times the number of total revolution which is the design parameter. In this case the
variation of the number of discrete steps per single revolution is a valid method to refine the
mesh in an even way.

Differently from collocation methods, DDP algorithms do not suffer from the dimension of
the non-linear optimal control problem, but smooth continuous and differentiation properties
for the cost functional must be present. If time is used as independent variable the discretisation
results in a coarse mesh where the difference between two consecutive nodes in the transfer
trajectory is so large to make the DDP algorithm think that a discontinuity in the cost functional
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Figure 5.6: Nodes distribution using eccentric anomaly as independent variable when multiple
revolutions are considered.

partials is present. The lost of continuity property does not make the DDP algorithm to con-
verge. A refinement of the discrete time vector associated to a larger number of discrete steps
is not a solution to this convergence problem because there is no way to know "a priori" what
it the maximum distance between two consecutive nodes to make the convergence attainable.
Moreover, the larger the number of discrete steps the larger will be the overall computation time
of the DDP algorithm that can lead to an halt of the algorithm. This is exactly what happened in
the only existence reference in literature [86] where Hybrid Differential Dynamic Programming
(HDDP) is used to solve a GTO to GEO transfer: the use of numerical STMs for the computation
of the cost functional partial derivatives, and the large number of discrete steps forced the com-
putation to stop after 24 hours even if the design number of revolutions was equal to 200. The
criterion for the selection of the number of discrete steps for multiple revolutions orbit transfers
after the application of Sundman transformation in terms of eccentric anomaly is summarised
in Figure 5.7.

Figure 5.7: Number of steps definition procedure in case Sundman transformation in terms of
eccentric anomaly is applied.

It is clear that after Sundman transformation time is a dependent variable and it must be
recovered from the dynamics to know what is the actual transfer time associated to the designed
number of revolutions. In the next section a GTO to GEO transfer problem is solved consid-
ering both time and eccentric anomaly as independent variables. The aim of the test case is to
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check first the ability of the DDP algorithm to handle many-revolution transfers, and to compare
the advantages of the Sundman transformation coupled with the orbital elements state represen-
tation. The two key parameters used to compare the two different representations will be the
convergence properties, and the computational time to solve the same orbital transfer.

5.4 Results

A simple GTO to GEO transfer starting from a LEO orbit is used as test case to prove the
effectiveness of Sundman transformation in improving the converge properties of DDP formulti-
revolution transfers. The same transfer is solved first with time used as independent variable,
and finally with eccentric anomaly after the application of the Sundman transformation. The
input used for the GTO transfer are reported in Table 5.1. The nominal control provided to the
DDP algorithm is always a simple tangential thrust.

Table 5.1: Initial orbital elements for the GTO to GEO transfer.

Inputs Numerical value
Apogee height 35793 km
Perigee height 300 km
Orbit inclination 27.5◦
RAAN w.r.to Earth 30◦
Pericenter anomaly 0◦
True anomaly 0◦
Initial tangential thrust 50 mN

The target orbit to be achieved is a GEO orbit whose characteristics are reported in Table
5.2.

Table 5.2: Input for the GTO to GEO reference transfer.

Semi-major axis, km Eccentricity Inclination, deg RAAN, deg Pericenter anomaly, deg
42164 0 0 30 0

The results for the two simulations run with time as independent variable and eccentric
anomaly as independent variable, respectively, are summarized in Table 5.3.

Table 5.3: Comparison between the two different simulations.

Inputs Time Independent Eccentric Anomaly
Time of flight 60 days 585 days
Number of revolutions 83 600
Number of steps 9000 2000
Computational time 6.2151 hours 30.2581 minutes
Propellant Mass 200.11622 kg 269.0989 kg
Maximum Thrust 1 N 416.178 mN
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It is obvious that the there is no correspondence between time of flight and number of revo-
lutions due to incapacity to know a priori the relationship between the two variables. However,
when time is used as independent variable theminimumnumber of time steps required to achieve
convergence was equal to 9000. This number is very large and it is the main reason for an in-
crease in the total computational time. Another difference that it is always related to the transfer
is the magnitude of the control thrust. The larger is the transfer time the lower is the maximum
thrust magnitude provided by the engine. In the formulation using eccentric anomaly as main
independent variable a first guess for the number of steps equal to 2000 has been used. This is
not the minimum number of steps guaranteeing convergence. Therefore, the same result can be
achieved reducing further the total number of steps. Despite the larger number of revolutions
the convergence does not require a relatively large computational time and this happens thanks
to the new mesh discretisation. The total propellant mass results high because of the large time
of flight but the maximum engine thrust is smaller and compatible with state-of-the art electric
thrusters that have been already used for space missions. The current literature presents some
examples of HDDP coupled with Sundman transformation to solve a GTO transfer but the num-
ber of revolution is small [86]. In the HDDP the partials computation is carried out thansk to the
use of STMs which are an optimal tool when an analytical formulation of the STM is provided.
If such analytical formulation is not available the STMs must be computed integrating a large
system of partial differential equations which is decreasing the performance of the algorithm.
In this case the analytical expressions to evaluate the transition function partial derivatives are
considerably improving the computational speed because they avoid to solve for each iteration
of the algorithm a system of partial differential equations. The results of the GTO to GEO trans-
fer discussed so far are shown in Figures 5.8-5.13. In particular, in Figures 5.8-5.10 the time
history of orbital elements starting from the GTO orbit to GEO is presented. The magnitude of
the control thrust together with the variation of each single component is plotted in Figures 5.11
and 5.12 and, finally, the 3D trajectory of the optimal transfer is presented in Figure 5.13.
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Figure 5.8: Nominal vs optimal semi-major
axis trajectory.
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Figure 5.10: Nominal vs optimal orbital inclination trajectory.
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Figure 5.11: Nominal vs optimal thrust mag-
nitude trajectory.
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Figure 5.12: Nominal vs optimal thrust com-
ponents trajectory.

Figure 5.13: Final interplanetary GTO to GEO 3D trajectory.
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CHAPTER 6

Robustness and partials computation analysis

This chapter will compare the methodology used to compute the cost functional partial
derivatives in this research with the HDDP algorithm considered the state-of-the-art of DDP
algorithms [43][86][59]. This method is a modification of the classic DDP algorithm based on
the State TransitionMatrices (STMs) for the evaluation of the cost functional partial derivatives.
The HDDP extends the application of the algorithm to multiple phases non-linear problems and
introduces a trust-region method to tune both the control variation magnitude and the positive
definiteness of the Hessian matrix with respect to the control action. The chapter will briefly
describe how STMs are defined and the system of differential equations to be used for their
evaluation. The next part will be devoted to the comparison between the two approaches for the
cost functional partials computation: the analytical formulation of the numerical scheme, and
the use SMTs.

6.1 State transition matrix formulation

One of the possibilities to solve the system dynamics is to predict the variation of the state as
function of the initial condition. This variation is then summed to the satellite initial state to get
the state at the local time. This method is very useful whenever a robustness analysis is carried
out for a given control law. Indeed, a system is defined robust if a small variation of the initial
condition is not generating a large variation of the final state. This verification is immediate
when STMs are involved in the problem.

A generic dynamical system such as the spacecraft motion can be modelled considering a
system of first-order partial differential equations:

dx(t)

dt
= f (x(t); t) (6.1)

The general solution to the system is called flow, φ, because it maps the initial state at the
initial time, t1, to the time, t:

x(t) = φ(x1, t1; t) (6.2)
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6.1. State transition matrix formulation

The system dynamics can be rewritten in terms of the solution flow:

dφ

dt
= f (φ(x1, t1; t); t) (6.3)

The local trajectory dynamics, δx, can be defined by applying a Taylor series expansion about
the reference trajectory given an initial deviation, δx1:

δx = φ(t; x0 + δx1, t1)− φ(t; x1, t1) (6.4)

The z-th order solution can be written using the Einstein summation to simplify the compu-
tations [82].

δxj(t) =
z∑
v=1

1

v!
φj,γ1...γv(t,t1) δxγ11 ...δx

γv
1 (6.5)

where γj ∈ 1, ..., nx, superscripts γj denote the γj-th component of the state vector, and

φj,γ1...γv(t,t1) (t; x1, t1) =
∂vφj(t; x1, t1)

∂xγ11 ...∂x
γv
1

(6.6)

We call the higher-order partials of the solution flow Eq. (6.7) the State Transition Tensors
(STTs) which represent the generalisation of the STMs. These variables are mapping the initial
deviations to the current time. The first-order case (p = 1) reduces to the usual state transi-
tion matrix. Park and Scheeres [82] describe carefully the procedure to obtain the differential
equations for the evaluation of the STTs. In particular, for the HDDP we are interested in the
evaluation of the STTs up to the second-order.

φ̇i,a = f i,αφα,a (6.7)

φ̇i,ab = f i,αφα,ab + f i,αβφα,aφβ,b (6.8)

with α and β which are generic indices not to be confused with the optimal control law coeffi-
cient matrix defined in Chapter 4. The initial conditions of the STTs are φi,a(t1,t1) = 1, if i = 1 and
zero otherwise, which is equivalent to say that the first order STT is the identity matrix and all
the higher order STTs are initialised to zero. Once these STTs are computed, they serve a role
identical to the STMs except that higher-order effects are now included, and thus the solution
is non-linear. Therefore, the main advantage in using STTs is that the local non-linear motion
of a spacecraft trajectory can be mapped analytically and requires no integration apart from the
determination of the STTs.

Majii et. al [87] offer a methodology to solve the system of Ordinal Differential Equations
(ODEs) involving the STTs. This approach is created to fit MATLAB way to solve ODEs and
it requires the introduction of some auxiliary functions to transform the STTs into column vec-
tors and second-order tensors. The first auxiliary function turns a generic STT into a column
vector. This operation is carried out easily plugging each column at the bottom of the previous
one starting from the last column index to the first one. In case a multi-dimensional array is
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6.1. State transition matrix formulation

considered the same operation is repeated for each slice of the multi-dimensional array. This
simple operation is denoted as Vec(·) and it is defined according to the following [87]:

Vec(φi1i2i3) = φ(i1 + nx(i2 − 1) + n2
x(i3 − 1), 1) (6.9)

with i1, i2, and i3 denoting the indices associated to the first, second and third dimension,
respectively. The following example proposed considering both a 2x3matrix and a 2x2x2multi-
dimensional array to understand how the auxiliary function works.

Vec
([

1 3 5
2 4 6

])
=


1
2
3
4
5
6

 , Vec
([

1 3
2 4

] [
5 7
6 8

])
=



1
2
3
4
5
6
7
8


(6.10)

The second auxiliary operation transforms a higher-order STT into a matrix. This operation
is denoted as Mat(·) and it reshuffles the different layers of the multi-dimensional array starting
from the last one plugging them next to the previous layer until the first layer. This operation
can be defined as follows:

Mat(φi1i2i3) = φ(i1, i2 + nx(i3 − 1)) (6.11)

Also in this case a simple example is used to show how the auxiliary operation works:

Mat
([

1 3
2 4

] [
5 7
6 8

])
=

[
1 3 5 7
2 4 6 8

]
(6.12)

Thanks to these two auxiliary operations it is possible to rewrite Eqs. (6.7-6.8) in the fol-
lowing ways:

Vec(φ̇(1)) = [Inx ⊗Mat(∇xf)]Vec(φ(1)) (6.13)

Vec(φ̇(2)) = [Inx ⊗ Inx ⊗Mat(∇xf)]Vec(φ(2)) + [Mat(φ(1))T ⊗Mat(φ(1))T ⊗ Inx ]Vec(∇xxf) (6.14)

where⊗ denotes the Kronecker product operation [87], Inx is the identity matrix, φ(1) and φ(2)

are the first-order and second-order STTs, respectively. The other two variables ∇xf and ∇xxf
represent the Jacobian and Hessian matrices of the system continuous dynamics which are a
second-order and third-order STTs, respectively. The expression of the second-order derivative
for the application of the approach derived byMajii et al. [87] is different from the one presented
in Chapter 2. Indeed, the third-order STT is not computed as the collection of the Hessian
matrices of each scalar component of the vector dynamics put along the last dimension. The
third-order STT is built considering each layer as the differentiation of each element of the the
rows of the Jacobian matrix.
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6.2. Results

∇xxf =



∂2f1
∂x21

∂2f1
∂x2∂x1

... ∂2f1
∂xn∂x1

∂2f2
∂x21

∂2f2
∂x2∂x1

... ∂2f2
∂xn∂x2

... ... ... ...
∂2fn
∂x21

∂2fn
∂x2∂x1

... ∂2fn
∂xnx1

 , ...,


∂2f1
∂x1∂xn

∂2f1
∂x2∂xn

... ∂2f1
∂x2n

∂2f2
∂x1∂xn

∂2f2
∂x2∂xn

... ∂2f2
∂x2n

... ... ... ...
∂2fn
∂x1∂xn

∂2fn
∂x2∂xn

... ∂2fn
∂x2n


 (6.15)

Thanks to this formulation both the first-order and second-order STMs variations are ex-
pressed as column vectors following a systematic procedure so that it is possible to apply ode
built-in functions in MATLAB. This is the numerical procedure followed by Lantoine and Rus-
sell [43] in the definition of the HDDP algorithm to compute the STMs required to propagate
the cost functional partial derivatives in the backward recursion.

6.2 Results

In this section some numerical examples are presented to compare the pros and contros of the
analytical formulations of the numerical schemes and the use of STMs for the cost functional
partials computation. If the HDDP uses the STMs instrument to check the robustness of the
control law, in this research paper a different robustness analysis starting from the feedback
control law which are derived by the DDP algorithm.

6.2.1 Analytical vs STM partial evaluation

The first analysis proposed in this section is the comparison between the two different ways to
evaluate the cost functional partial derivatives: analytical formulation of the integration scheme
and STMs. Even if the HDDP represents the state-of-the art for the DDP algorithm application
it is not efficient to adopt all his routines for all the type of problems. This analysis is very
important because th evaluation of the partials is the most expensive part of the DDP algorithm
and it is repeated several times at each iteration.

The main advantage in using the analytical evaluation of the transition function partials as
in this research paper is the flexibility to adapt such method to any kind of dynamical system.
Indeed, the analytical evaluation is based on the type of numerical integration scheme used to
solve the dynamics and not the formulation of the system of ordinary differential equations.
Moreover, according to the order of the numerical scheme it is possible to increase or decrease
the number of function evaluations which are strictly related to the numerical scheme.

The use of the STMs can be very useful whenever an analytical formulation of the STM
from the equations of motion is available. For example, a simple propagation of a spacecraft
trajectory can be formulated using Laplace coefficients which are expressing the dynamics in
terms of the initial position and velocity vectors. This means that an analytical STM is possible
and the higher-order derivatives can be defined from the analytical differentiation of the STM.
Another advantage is the possibility to compute the STM recursively starting from the values at
previous steps. Themain drawback is the availability of an analytical STMwhich depends on the
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6.2. Results

problem. If the system dynamics is highly non-linear and it does not admit an analytical STM,
the only way to compute such instrument is by solving numerically the ordinary differential
equations presented before. This task is very expensive from a numerical point of view because
it requires the solution to a large number of ordinary differential equations which are reducing
the performance of the DDP algorithm. Therefore, this type of partials evaluation is strictly
attached to the formulation of the dynamics.

An Earth to Mars interplanetary transfer is used to check the difference between the two
approaches. The inputs for the test case are presented in Table 6.1. The state vectors in terms of
orbital elements are computed from analytic ephemerides which approximate JPL ephemerides
DE405.

Table 6.1: Input for the Earth to Mars interplanetary transfer used for the comparison between
STMs and analytical formulation.

Inputs Numerical value
Departure date 8331.5 MJD
Arrival date 8612.5 MJD
Time of flight 281 days
Number of steps 200
Specific Impulse, Isp 3800 s
Maximum Thrust, umax 100 mN
Spacecraft Mass,m0 500 kg

The analysis is carried out on a Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz. The results
of the optimisation carried out with the two different approaches are summarised in Table 6.2.

Table 6.2: Input for the Earth to Mars interplanetary transfer used for the comparison between
STMs and analytical formulation.

Inputs Analytical formulation STMs
Elapsed Time 16.06 minutes 136.44 minutes
Maximum Thrust, umax 395.77 mN 396.12 mN
Propellant mass used,m0 124.59 kg 125.10 kg
Numerical scheme order RK8 RK45

The result of the optimisation is the same but the computation time is completely different.
The analytical computation of the cost function partial derivatives improves the performance of
the DDP algorithm with respect to the STM formulation because Gauss’ equations cannot pro-
vide an analytical STM. This means that the STMsmust be computed numerically increasing the
number of function evaluations. The order of the numerical scheme used for the two approaches
is different because if an ode78 method is used also to compute the STMs the computational
time will definitely increase.

A final discussion regarding the exact number of function evaluations underlines the impor-
tance in the correct choice of the tool to compute the cost functional partial derivatives. When
a continuous formulation of the DDP is adopted only the partial derivative of the system dy-
namics are required because no transition function exists. This approach is the same used in the
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Mystic software and it requires to solve nx+n2
x traditional Riccati-like equations, with nx being

the number of states. The computation of STMs requires to solve n2
x + n3

x ordinary differential
equations. This number can be reduces to n3

x/2 + n2
x/2 if symmetry properties of the second-

order STM are considered. However, the number of equations to be solve is still higher than the
classic continuous formulation. When the analytical formulation of the integration scheme is
used there is not a fixed number of equations to be solved. First, there is not a system of ODEs
to be integrated as in the STM approach but only a number of function evaluation that depends
on the order of the integration scheme adopted to define the transition function. In any case the
number of function evaluations is definitely smaller than the ones used in the STM approach.

6.2.2 Robustness of the control law

One of the most important properties of an optimal control law is the robustness. Robustness
is the ability of a control law to provide an efficient result even if the initial condition is perturbed.
This topic is fundamental because only when numerical simulations are carried out the initial
conditions are fixed while in the real life the initial conditions can depart from the nominal one
due to the existence of phenomena that cannot be modelled and create a disturbance in the initial
condition.

If the optimal control law is not able to provide an efficient result when the initial condition
is perturbed it represents a result that cannot be applied onboard of a satellite computer. One of
the many advantages in using DDP is the way the optimal control law is determined. In Chapter
3 it has been discussed that both for the continuous version and the discrete version the optimal
control variation is a feedback control law. This property is very important because it means
that the optimal control changes accordingly to the variation of the spacecraft state.

It is possible to carry out an analysis to check the robustness property of the optimal control
law derived by the DDP algorithm. The example considers the same Earth to Mars interplane-
tary transfer presented in the previous section and whose input variables are defined in Table 6.1.
The initial condition is fully perturbed with a vector of small orbital elements that is presented
in Table 6.3.

Table 6.3: Initial orbital elements and list of initial disturbances added.

Orbital element Initial condition Perturbation
Semi-major axis, a1 1.41745575e8 km 1000 km
Eccentricity, e1 0.0596897 0.05
Inclination, i1 0◦ 1◦
RAAN, Ω1 0◦ 1◦
Pericenter anomaly, ω1 242◦ 1◦
True anomaly, ν1 148.56◦ 0.5◦

The robustness analysis is performed considering the new initial condition and computing
the new control law starting from the feedback coefficients of the optimal control law, uopt. This
process requires to ask the coefficients of the control law, αopt and βopt, as output of the DDP
optimisation where no disturbance is added to the initial conditions.
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Figure 6.1: Optimal control components as-
sociated to the unperturbed initial conditions.

0 50 100 150 200 250

t [days]

-200

-100

0

100

200

300

400

500

u
ne

w
 [m

N
]

u
t

u
n

u
h

Figure 6.2: Optimal control components as-
sociated to the perturbed initial conditions.

unew = uopt +αopt + βoptδx (6.16)

where δx is the difference between the satellite state computed using the optimal control
law and the one evaluated using the new perturbed control action. The result of the analysis
is presented in Figures 6.1 and 6.2. In Figure 6.1 (left), the control components time history
associated to the original optimal control problem is presented, while Figure 6.2 (right) shows
the same variables associated to the optimal control problemwhere the disturbances in the initial
conditions have been introduced. In Figure 6.3 the difference between the magnitude of the two
different optimal control law is plotted and it can be seen that the introduction of a disturbance
in the initial condition does not change the trend significantly apart from the last part. This
behaviour can be explained looking at the magnitude of the disturbances introduced in the initial
orbital elements. The eccentricity disturbance is of the same order of magnitude of the original
one, and a variation of orbital plane equal to 1 degree has been introduced. The optimal control
law coming from the DDP algorithm is a feedback policy depending on the state variation. If
the same optimal optimal control law obtained in the original problem without disturbances
in the initial conditions is used, the final value of the orbit inclination will be larger than the
prescribed final one. This means that a change-of-plane manoeuvrer is needed to reduce the
orbital inclination. The solver predicts that the most convenient way to apply the change of
plane is at the end of the transfer when the satellite is at the larger distance from the main
attractor so that the transversal component of the orbital velocity is smaller. At the same time,
the algorithm adjusts the control law to increase the semi-major axis before with respect to the
original problem with no disturbances in the initial conditions. This is why the out-of-plane
control components increases at the end of the transfer while the in plane components decrease
causing an overall reduction of the control thrust. On the contrary, the rapid increase of the
semi-major axis is the reason why the in plane tangential component is larger at the beginning
of the transfer causing also an increase of the total control thrust.

The previous analysis is confirmed looking also at the variation of the orbital elements when
the disturbances are introduced in the initial conditions. The orbit inclination is reduced at the
end of the transfer (Figure 6.6) where the satellite is close to the apocenter of the orbit (Figure
6.9). It is interesting to check how the final orbital elements depart from the prescribed target
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Figure 6.3: Comparison between the control magnitudes associated to the unperturbed and
perturbed optimal control problem.

state whenever the initial condition is perturbed. The orbital elements variations are presented
in Figures 6.4-6.9 where it is clear that the final state is still close to the prescribed target state
but the time variation of the orbital elements is different.
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Figure 6.4: Semi-major axis unperturbed vs
perturbed initial condition.
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Figure 6.5: Eccentricity unperturbed vs per-
turbed initial condition.

A better insight of the robustness analysis can be provided listing the error between the
final state and the target state if the initial condition is perturbed. Table 6.4 describes also what
happens if the optimal control law derived in the unperturbed initial condition scenario is used
also after the introduction of the disturbance.

It is clear that the optimal control law derived in the unperturbed scenario cannot be used
without any modification because the errors generated at the end of the propagation are com-
pletely apart from the prescribed target state. On the other hand, the generation of the feedback
control law provides a result that is consistent with the DDP assumptions defined in Chapter 2.
Starting from a perturbation of the initial state the error obtained at the the final state is com-
parable with the disturbances defined in Table 6.3. Therefore, the outcome of the analysis is
that the DDP algorithm can find an optimal solution that may or may not be robust according to
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Figure 6.6: Inclination unperturbed vs per-
turbed initial condition.
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Figure 6.7: RAAN unperturbed vs perturbed
initial condition.
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Figure 6.8: Pericenter anomaly unperturbed
vs perturbed initial condition.
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Figure 6.9: True anomaly unperturbed vs
perturbed initial condition.

Table 6.4: Error between the prescribed target state and the actual state considering the different
control laws.

Orbital element Unperturbed Perturbed Perturbed with same control
Semi-major axis, δaf 221.17675 km 18104.711 km 3.83194e8 km
Eccentricity, δef 6.08596e-7 7.76972e-5 0.01824
Inclination, δif 6.1448e-6◦ 8.9843e-4◦ 0.77◦
RAAN, δΩf 8.89168e-6◦ 0.73927◦ 17.0922◦
Pericenter anomaly, δωf 3.9327e-4◦ 0.41171◦ 7.0049◦
True anomaly, δνf 0.0015◦ 7.1921◦ 23.7599◦

the magnitude of the perturbations introduced in the initial state. If the disturbances affecting
the initial state are relatively large, the error with respect to the target orbit will behave as well.
However, the analysis shows how the DDP optimisation technique is able to correct an optimal
solution to account for changes in the initial state thanks to the feedback control law described
in Eq. (6.16) provided as output.
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6.3. Summary

6.3 Summary

In this chapter the comparison between the analytical formulations used in this research and
the STMs as computational technique for the evaluation of the cost functional partial derivatives
has been assessed. The main outcome of the analysis explains how the analytical formulations
improves the computational speed of the algorithm because the number of function evaluations
is always smaller with respect to the numerical integration of a system of partial differential
equations.

The second part of the chapter presents a robustness analysis which is a peculiar character-
istics of every kind of DDP algorithm, but it is improved when orbital elements are used as state
formulation of the dynamics because the state variation of the orbital elements are smaller with
respect to the Cartesian coordinates counterpart.
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CHAPTER 7

Path constraints inclusion: eclipses

This chapter proposes a new method for including the eclipse as an internal path constraints
inside the DDP algorithm. The eclipse requirement is formulated as maximum time for a space-
craft to be in the umbra shadow. Such requirement is very important during the preliminary
design of a space mission because some subsystems such as the power and/or telecommunica-
tion subsystems can impose restrictions on the main trajectory of the spacecraft. For example,
the batteries onboard of spacecraft represent an hardware with a limited power that is imposing
the maximum energy that can be provided whenever solar power is not available such as in an
eclipse. The work presented in this chapter was developed during a visiting research period at
NASA Jet Propulsion Laboratory (JPL) under the supervision of Dr. Gregory Lantoine. The
work related to the eclipse has been presented at the 2022 AAS/AIAAAstrodynamics Specialist
Conference [75] and has been submitted to Acta Astronautica for peer-review [76]. The research
related to the eclipse internal path constraint for the DDP algorithm has been presented at the
73rd IAC [77] and will be the main subject of a future journal publication.

7.1 Eclipse algorithm for the analytical derivation of entry/exit
umbra points

In this section all the basic mathematical transformations that will be used for the deriva-
tion of the final equation are described. The full derivations consists in considering the generic
Cartesian equation of a conical surface defined in its own reference frame that must be inter-
sected with the Cartesian equation of the elliptical orbit defined in the perifocal reference frame.
This operation requires the two geometrical figures to be defined in the same reference frame
so that a rotation and a translation are required.

7.1.1 Rotation and translation

The first mathematical transformation that is used for the derivation of the model is the
rotation and translation of the Cartesian equation of the cone from its reference frame x, y, z to
another generic reference system x̃, ỹ, z̃. The generic Cartesian of a cone in a generic reference
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7.1. Eclipse algorithm for the analytical derivation of entry/exit umbra points

frame x, y, z is defined as follows:

x2

a2
cone

+
y2

b2
cone

− z2

c2
cone

= 0 (7.1)

where acone, bcone represent the semi-major and semi-minor axis of the ellipse obtained cutting
the indefinite conical surface with the plane z = ccone. This equation defines a right cone having
the vertex in the origin of the reference frame and the circular base obtained cutting the cone
with a plane normal to the z axis is an ellipse of semi-major axis and semi-minor axis equal to
acone and bcone, respectively. The first task is to express Eq. (7.1) in another reference system
x′, y′, z′ whose origin is coincident with x, y, z reference frame and parallel to the final x̃, ỹ, z̃
reference frame. Such transformation is a pure rotation that can be described mathematically by
using a the rotation matrix R which aligns the reference frame x′, y′, z′ to the reference system
x, y, z: 

x
y
z

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33


x′

y′

z′

 (7.2)

The rotation matrix is obtained projecting the unit vectors î′, ĵ′, k̂′ aligned with the x′, y′, z′
reference frame onto the unit vectors î, ĵ, k̂ aligned with the x, y, z reference system. An illus-
tration of the rotation transformation is shown in Figure 7.1.

Rrot =

ix iy iz
jx jy jz
kx ky kz

 (7.3)

Figure 7.1: General rotation problem from one reference frame to another one.
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7.1. Eclipse algorithm for the analytical derivation of entry/exit umbra points

Developing the matricial operations in Eq. (7.1), the transformation equations to obtain the
rotation are obtained: 

x = R11x
′ +R12y

′ +R13z
′

y = R21x
′ +R22y

′ +R23z
′

z = R31x
′ +R32y

′ +R33z
′

(7.4)

It is possible to replace Eq. (7.4) in place of the variables x, y, z in Eq. (7.1) to obtain the conical
surface in terms of the x′, y′, z′ reference frame. After some mathematical manipulation the
following expression is derived to represent the Cartesian equation of a conical frame defined
in a different reference frame described by the rotation matrix in Eq. (7.3):

(b2
conec

2
coneR

2
11 + a2

conec
2
coneR

2
21 − a2

coneb
2
coneR

2
31)x′

2
+ (b2

conec
2
coneR

2
12 + a2

conec
2
coneR

2
22+

− a2
coneb

2
coneR

2
32)y′

2
+ (b2

conec
2
coneR

2
13 + a2

conec
2
coneR

2
23 − a2

coneb
2
coneR

2
33)z′

2
+

+ 2(b2
conec

2
coneR11R12 + a2

conec
2
coneR21R22 − a2

coneb
2
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+ 2(b2
conec

2
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conec
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coneb
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+ 2(b2
conec

2
coneR12R13 + a2

conec
2
coneR22R23 − a2

coneb
2
coneR32R33)y′z′ = 0

(7.5)

Eq. (7.5) can be rewritten in an easier way introducing the following coefficients which are
constant numbers once the rotation matrix and cone geometrical parameters are defined:

Ãx′
2

+ B̃y′
2

+ C̃z′
2

+ 2D̃x′y′ + 2Ẽx′z′ + 2F̃ y′z′ = 0

Ã = b2
conec

2
coneR

2
11 + a2

conec
2
coneR

2
21 − a2

coneb
2
coneR

2
31

B̃ = b2
conec

2
coneR

2
12 + a2

conec
2
coneR

2
22 − a2

coneb
2
coneR

2
32

C̃ = b2
conec

2
coneR

2
13 + a2

conec
2
coneR

2
23 − a2

coneb
2
coneR

2
33

D̃ = b2
conec

2
coneR11R12 + a2

conec
2
coneR21R22 − a2

coneb
2
coneR31R32

Ẽ = b2
conec

2
coneR11R13 + a2

conec
2
coneR21R23 − a2

coneb
2
coneR31R33

F̃ = b2
conec

2
coneR12R13 + a2

conec
2
coneR22R23 − a2

coneb
2
coneR32R33

(7.6)

After the rotation, Eq. 7.1 is expressed in the reference frame x′, y′, z′ which is parallel to final
one x̃, ỹ, z̃, but with a different origin. It is necessary to perform a translation transformation
to align the origin of the two reference systems. The translation equations can be derived con-
sidering a general position vector defined in the final shifted reference frame, r̃, and the same
position vector defined in original frame, r̃′. The transformation requires the position vector
of the shifted reference frame with respect to the original one, r̃v. In the general problem, the
position vector of the vertex of the cone is defined with respect to the inertial reference system.
Therefore, it is better to express the translation equations considering the position vector of the
origin of the x′, y′, z′ with respect to the shifted one.

r̃ = r̃v + r′ (7.7)

A better representation of the translation transformation is shown in Figure 7.2. Extending the
vectorial equation and taking into account that the final aim is to express everything in the x̃, ỹ, z̃
reference frame, the following relations are obtained:

x′ = x̃− x̃v
y′ = ỹ − ỹv
z′ = z̃ − z̃v

(7.8)
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Figure 7.2: General translation problem from one reference frame to another one.

It is now possible to get the final expression of the generic conical surface defined in Eq. (7.1)
in a new different reference frame replacing the formulas defined in Eq. (7.8) inside Eq. (7.6):

Ãx̃2 + B̃ỹ2 + C̃z̃2 + 2D̃x̃ỹ + 2Ẽx̃z̃ + 2F̃ ỹz̃ − 2(Ãx̃v + D̃ỹv + Ẽz̃v)x̃

− 2(D̃x̃v + B̃ỹv + F̃ z̃v)ỹ − 2(Ẽx̃v + F̃ ỹv + C̃z̃v)z̃ + (Ãx̃2
v + B̃ỹ2

v + C̃z̃2
v

+ 2D̃x̃vỹv + 2Ẽx̃vz̃v + 2F̃ ỹvz̃v) = 0

(7.9)

Again, it is possible to introduce a new variable set which are constant coefficients once the
position vector of the conical surface vertex is known. This way Eq. (7.9) can be rewritten as
follows:

Ãx̃2 + B̃ỹ2 + C̃z̃2 + 2D̃x̃ỹ + 2Ẽx̃z̃ + 2F̃ ỹz̃ + 2H̃x̃+ 2Ĩ ỹ + 2J̃ z̃ + G̃ = 0

G̃ = Ãx̃2
v + B̃ỹ2

v + C̃z̃2
v + 2D̃x̃vỹv + 2Ẽx̃vz̃v + 2F̃ ỹvz̃v

H̃ = −(Ãx̃v + D̃ỹv + Ẽz̃v)

Ĩ = −(D̃x̃v + B̃ỹv + F̃ z̃v)

J̃ = −(Ẽx̃v + F̃ ỹv + C̃z̃v)

(7.10)

The expression obtained in Eq. (7.10) represents the analytical expression of a cylindrical con-
ical surface characterised by a specific semi-major axis, semi-minor axis and height defined in
a generic roto-translated reference system.
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7.1.2 Intersection of the conical surface with the spacecraft orbit

The next topic to be discussed regards the intersection of the mathematical expression of
the generic conical surface representing the eclipse shadow with an elliptical orbit. The inter-
section of the conical surfaces with the elliptical orbit requires that both the two mathematical
expressions are defined with respect to the same reference frame. In the previous paragraph Eq.
(??) represents the Cartesian equation of a cone that can be defined in whatever reference frame
once the rotation matrix and position vector of the cone vertex are defined. The mathematical
expression of an elliptical orbit can be retrieved starting from the canonic equation of an ellipse.

x̄2

ã2
orb

+
ȳ2

b̃2
orb

= 1 (7.11)

where ãorb and b̃orb are the semi-major axis and semi-minor axis of the ellipse, respectively. The
canonic equation of the ellipse is defined with respect a reference frame centered in the center
of the ellipse. Therefore, Eq. (7.11) must to be modified using a translation transformation
because the mathematical expression of an orbit requires the Earth or the celestial body located
in one of the two foci to be the origin of the reference frame. The analytical expression of the
elliptical orbit can be obtained applying a simple translation of the origin of the reference frame
knowing that the distance between the the ellipse centre and the celestial body is equal to the
focal distance, c̄orb:

c̃orb = [−
√
ã2
orb − b̃2

orb, 0, 0] (7.12)

Figure 7.3: Translation from ellipse centred to focal reference frame.

Looking at Figure 7.3, the translation relations between the two reference systems are ob-
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tained considering: 
x̄ = x̃− c̃orb
ȳ = ỹ

z̄ = z̃

(7.13)

The analytical equation of the orbit is derived replacing Eq. (7.13) in Eq. (7.11):

b̃2
orb(x̃

2 + c̃2
orb − 2x̃c̃orb) + ã2

orbỹ
2 = ã2

orbb̃
2
orb (7.14)

The new reference frame obtained is centered in the celestial body and has the x-axis aligned
with the apse lines direction and the z-axis normal to the ellipse plane. Therefore, Eq. (7.14)
represents the analytical expression of the elliptical orbit defined in the perifocal reference sys-
tem usually denoted as ê, p̂, ĥ. Therefore, it is convenient to choose to express also the conical
surface in the perifocal reference frame so that the intersection between the two curves is pos-
sible. First of all, the ellipse is defined in the plane x̃ỹ. This means that only the portion of the
conical surface defined in that plane will eventually intersect the ellipse orbit. The expression
of the curve associated to the conical surface in the orbital plane is obtained by imposing in Eq.
(7.10) that z̃ = 0.

Ãx̃2 + B̃ỹ2 + 2D̃x̃ỹ + 2H̃x̃+ 2Ĩ ỹ + G̃ = 0 (7.15)

At this point, the intersection with the elliptical orbit is carried out expressing in an explicit
way the variable ỹ in Eq. (7.14):

ỹ = ± b̃orb
ãorb

√
b̃2
orb − x̃2 + 2x̃c̃orb (7.16)

Replacing Eq. (7.16) in Eq. (7.15) leads to the following expression.

Ãx̃2 + B̃
b̃orb
ãorb

(b̃2
orb − x̃2 + 2x̃c̃orb)± 2D̃x̃

b̃orb
ãorb

√
b̃2
orb − x̃2 + 2x̃c̃orb+

+ 2H̃x̃± 2Ĩ
b̃orb
ãorb

√
b̃2
orb − x̃2 + 2x̃c̃orb + G̃ = 0

(7.17)

It is convenient to move all the terms containing the square root at the right-hand side so
that it is possible to put the square root as common factor.

Āx̃2 + B̄x̃+ C̄ = ∓2
b̃orb
ãorb

√
b̃2
orb − x̃2 + 2x̃c̃orb

(
D̃x̃+ Ĩ

)
Ā =

(
Ã− B̃ b̃

2
orb

ã2
orb

)

B̄ = 2

(
B̃
b̃2
orb

ã2
orb

˜corb + H̃

)

C̄ =

(
G̃+ B̃

b̃2
orb

ã2
orb

)
(7.18)
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In order to solve for the variable x which represents the unknown of the problem and corre-
sponds to the abscissa of the entry/exit point in the perifocal reference frame, both sides of Eq.
(7.18) are squared. In this way, the ambiguity given by the two halves of the ellipse is removed.
The final equation will be a quartic equation in the unknown x.

C1x̃
4 + C2x̃

3 + C3x̃
2 + C4x̃+ C5 = 0

C1 = Ā2 + 4D̃2 b̃
2
orb

ã2
orb

C2 = 2

(
ĀB̄ + 4c̃orbD̃

2 b̃
2
orb

ã2
orb

+ 4D̃Ĩ
b̃2
orb

ã2
orb

)

C3 = B̄2 + 2ĀC̄ − 4D̃2 b̃
4
orb

ã2
orb

+ 4Ĩ2 b̃
2
orb

ã2
orb

+ 16c̃orbD̃Ĩ
b̃2
orb

ã2
orb

C4 = 2B̄C̄ − 8D̃Ĩ
b̃4
orb

ã2
orb

+ 8c̃ellĨ
2 b̃

2
ell

ã2
ell

C5 = C̄2 − 4Ĩ2 b̃
4
orb

ã2
orb

(7.19)

7.1.3 Solutions decision making

In the previous paragraph Eq. (7.19) has been derived to compute the abscissa of the en-
try/exit points generated by a conical shadow. This quartic equation can be solved analytically
using Cardan’s procedure [60]. Three possible scenarios can occur:

• 4 real solutions

• 2 real solutions and 2 complex solutions

• no real solutions and 4 complex solutions

In case of zero real solutions, the conical shadow is not intersecting the elliptical orbit, and
so the satellite cannot be in eclipse. In case of two or four real solutions, there are four and eight
possible points that are candidates for umbra and penumbra entry/exit points. Indeed, each real
abscissa obtained from Eq. (7.19) can correspond only to a point on the upper-half or lower-half
of the elliptical orbit. The ambiguity can be cancelled computing for each abscissa the point
of the upper-half or lower-half of the ellipse using Eq. (7.16) and replacing the points in Eq.
(7.15). If the results is not exactly zero, but a small value under a certain threshold the point
belongs to the conical surface and it represents a real candidate for being an entry/exit point for
the eclipse. If the condition is not satisfied the point will not lie on the conical surface and it
will be discarded. This represents a first criterion that should be applied to filter for the wrong
points and select the real candidates. A second ambiguity is generated because the conical
surface can intersect the orbit both in the shadow and sunlight side. This time the ambiguity
can be solved considering that the shadow must always be on the opposite side of the Sun. This
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physical condition can be exploited to write a mathematical constraint for the selection of the
real entry/exit eclipse points.

r⊕−� · rP < 0 (7.20)

with r⊕−� representing the position vector of the Sun with respect to the Earth considered as
origin of the Geocentric Equatorial Reference frame and rP the generic position vector connect-
ing the Earth with the candidate entry/exit points on the elliptical orbit. The entry/exit points
will lie in the opposite plane with respect to the Sun so that the dot product of the two vec-
tors should be negative. The last step for the derivation of the final solution is to decide which
of the two points represent the entry and exit. The simplest way is to convert the two points
into anomalies which represent the true anomalies and verifying which is the entrance and exit
anomaly.

νP = arccos

(
xP
rP

)
(7.21)

A picture of the ambiguities generated by the intersection of the conical surface with the
elliptical orbit is presented in Figure 7.4. The circular markers represent the real intersections
of the conical surface with the elliptical orbit, while the triangular markers are the fake solutions
coming out from the quadratic Eq. (7.16). The four solutions to the quartic Eq. (7.19) are the
abscissas of the four real intersections that generate a real ordinate and a fake ordinate when the
quadratic equation of the the ellipse is solved.

Figure 7.4: Intersection of the conical surface with the elliptical orbit.
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7.2 Orbital scenario

In the previous section, the analytical procedure devised by the author to derive a quartic
equation resulting in the intersections of a conical shadow with an elliptical orbit has been
carried out. This section points out how to compute all the coefficients needed to solve for the
intersection points.

7.2.1 Intersection eclipse with the oblate Earth

The input required for the algorithm are three:

• The position vector of the Sun, r�

• Spacecraft Keplerian elements

• The geometrical parameters of the occulting body.

The first step is to define the ellipse representing the base of the conical shadow. This cone is
delimited by the Earth surface so that the elliptical base is given by the intersection of the plane
normal to the cone axis and the oblate ellipsoid associated to the Earth surface. It is natural to
assume that the axis of the conical shadow is parallel to the position vector of the Sun, r�. The
Cartesian equation of the plane normal to this direction is:

nxx+ nyy + nzz = 0 (7.22)

where nx, ny, nz represent the components of the unit vector associated to r�. The second
equation that is required is the one modelling the Earth surface as an oblate ellipsoid of rotation.
This equation requires the geometrical parameters of the occulting body to be known.

x2 + y2

R2
eq

+
z2

R2
pol

= 1 (7.23)

with Req and Rpol defining the equatorial and polar radii, respectively. The semi-major axis
and semi-minor axis of the ellipse resulting from the intersection of the plane normal to the
conical axis and the oblate ellipsoid can be computed as follows [88]:

aell = Req

√
1− d2

R2
eq(1− E2

⊕n
2
z)

bell = Rpol

√
1− d2/R2

eq − E2
⊕n

2
z

1− E2
⊕n

2
z

(7.24)

where d is the distance between the plane and the origin of the reference system and it is equal
to zero because this point belongs to the axis of the conical shadow, and E⊕ is the eccentricity
of the occulting body. Eq. (7.24) provides the values of a and b to be used for the definition of
the Cartesian equation of the conical surface described by Eq. (7.1).
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7.2.2 Characterisation of cone vertex and rotation matrix

The last geometrical parameter that is required to define the conical surface is the cone height
that is assumed to be coincident with the position vector of the cone vertex connecting the Earth
center with the cone vertex, rv. The following assumption is considered to determine the vertex
of the cone:

The ellipse resulting from the intersection of the plane normal to the conical axis and passing
through the Sun center can be obtained from the ellipse representing the conical shadow basis

delimited by the occulting body through an homothetic transformation.

Even if this assumption is true just in specific cases, it can be numerically proved that this
assumption is good and is not affecting the accuracy of the results provided by the algorithm.
Using the previous assumption, it is possible to compute the points where the sun rays generating
the conical surface depart from the intersection ellipse between the Sun surface and the plane
normal to the conical axis.

rup� = r� +R�̂l

rdown� = r� −R�̂l
(7.25)

where rup� and rdown� are the position vectors of the leading edge of the upward and downward
sun rays starting from the Sun surface, respectively. Other two points on the Earth surface are
required to define the equations of the sun rays generating the conical shadow. These points can
be defined similarly using the following equations:

rup⊕ = R⊕̂l

rdown⊕ = −R⊕̂l
(7.26)

where l̂ identifies the apse line direction associated to the ellipse obtained from the inter-
section of the oblate ellipsoid and the plane normal to conical shadow and can be derived as
follows:

l̂ =
1√

n2
x + n2

y

[−ny, nx, 0] (7.27)

The vertex of the cone is computed considering the intersection of the two sun rays connect-
ing the apsidal points of the two ellipses defined on the Sun surface and Earth surface.

mup = rup� − rup⊕
mdown = rdown� − rdown⊕

tint =
xdown⊕ − xup⊕
mxup −mxdown

rv = rup⊕ + tintmup

(7.28)

The magnitude of the vertex position vector, rv is the last geometrical quantity needed to
define the Cartesian equation of the conical surface, c. A sketch of the different variables men-
tioned so far is shown in Figure 7.5.

c = ‖rv‖ (7.29)
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Figure 7.5: Graphical representation of the variables used to define the shadow cone.

There is not a unique way to define the vertex of the conical shadow depending on the way
the couple of points delimiting the sun rays are defined. An alternative approach to compute
the position vector of the cone vertex is to consider the sun rays as the tangent lines to the
ellipse obtained from the intersection of the occulting body and the conical axis passing through
the points on the Sun surface defined in Eq. (7.25). The equations to derive the geometrical
parameters of the tangent lines are described hereafter. The first step is to intersect the general
equation of a line with the analytical equation of the ellipse considered.

y − yp = m(x− xp)
x2

a2
ell

+
y2

b2
ell

= 1
(7.30)

where xp and yp are the coordinates of the position vectors defined by Eq. (7.25) rotated in
the intersection ellipse reference frame. Indeed, the canonical equation of the ellipse is valid
only in a reference frame with the origin coincident with the center of the ellipse, the x-axis
aligned with the apse line direction, the y-axis aligned with the ellipse semi-minor axis and
the z-axis aligned with the axis of the cone. The rotation matrix moving from the geocentric
equatorial inertial frame to the ellipse local reference frame can be obtained considering the
expressions of the unit vectors defined in the inertial reference frame.

ê =
1√

n2
x + n2

y

[−ny, nx, 0]

p̂ =
1√

n2
x + n2

y

[nxnz, nynz,−(n2
x + n2

y)]

n̂ =
r�
|r�|

(7.31)

The rotation matrix moving from the geocentric inertial reference frame to the local ellipse
reference frame is obtained as follows:

Rin→loc =

ex ey ez
px py pz
nx ny nz

 (7.32)

Replacing the general expression of a line in the canonical equation of the ellipse defines a
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second-order equation in the unknown x.{
y = mx+ (yp −mxp)
(b2
ell + a2

ellm
2)x2 − 2a2

ellm(mxp − yp)x+ a2
ell

[
(mxp − yp)2 − b2

ell

]
= 0

(7.33)

The second-order equation can admit only two equal solutions if the condition of tangency
is applied. This means that the discriminant associated to the second-order equation is equal to
0. This condition defines a new second-order equation where the unknown is angular coefficient
of the tangent lines,m.

a2
ellb

2
ell(a

2
ell − x2

p)m
2 + 2a2

ellb
2
ellxpypm+ a2

ellb
2
ell(b

2
ell − y2

p) = 0 (7.34)

The solution to Eq. (7.34) is:

m =
−xpyp ±

√
a2
elly

2
p + b2

ellx
2
p − a2

ellb
2

a2
ell − x2

p

(7.35)

At this point it is possible to replace Eq. (7.35) in Eq. (7.34) to derive the coordinates of the
tangent points.

xt =
a2
ellm(mxp − yp)
b2
ell + a2

ellm
2

yt = mxt + (yp −mxp) (7.36)

The last step is to rotate from the local ellipse reference frame to the inertial reference frame
the tangent points so that Eq. (7.28) can be applied to get the position vector of the cone vertex.

rup⊕ = RT
in→loc


xtup
ytup
0

 rdown⊕ = RT
in→loc


xtdown
ytdown

0

 (7.37)

The different ways to compute the cone vertex position vertex arise from the assumptions
which are modifying the real path and geometry of the sun rays which are not creating a perfect
conical surface. However, a numerical analysis where different couple of points are used to
generate the cone vertex shows that the maximum error in the definition of the magnitude of the
cone vertex position vector is in the order of 1000 km corresponding to a relative error less than
1%. This small error justifies the assumption used for the derivation of the algorithm and why
the results are not considerably affected by the selection of a specific way to compute the vertex
of the cone.

The last variable to be defined to get all the coefficients needed to solve the quartic equation is
the rotation matrixR to move from the conical surface reference frame to the perifocal reference
frame. This matrix can be obtained combining two different rotation matrices. Indeed, the
conical surface reference frame is parallel to the local ellipse reference frame but with a different
origin of the reference system. Rotation matrices are not accounting for translation so that the
rotation matrix defined in Eq. (7.32) allows to move from the inertial frame to the local ellipse
or conical surface reference frame. It is well known in orbital mechanics how to compute the
rotation matrix to move from the geocentric equatorial system to the perifocal reference frame
using the orbital elements of a specific orbit [78].
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Rin→per =

cosω cos Ω− sinω cos i sin Ω − sinω cos Ω− cosω cos i sin Ω sin i sin Ω
cosω sin Ω + sinω cos i cos Ω − sinω sin Ω + cosω cos i cos Ω − sin i cos Ω

sinω sin i cosω sin i cos i

 (7.38)

with i, Ω, ω representing the orbit inclination, right ascension of the ascending node, and
the pericenter anomaly, respectively. Combining the two rotation matrices it is possible to get
the final rotation matrix which rotates the conical surface reference frame into the perifocal
frame.

R = Rin→per
TRin→loc (7.39)

In this way all the geometric quantities needed to define the coefficients of Eq. (7.6) are
known and the analytical procedure to solve the quartic equation can be applied to solve for
the x-coordinate of the umbra entry/exit points defined in the perifocal reference frame. The
analytical procedure to solve a quartic equation is summarised in Appendix B.

7.2.3 Penumbra characterisation

In this section the derivation of the entry/exit penumbra points is carried out. All the ana-
lytical equations presented in the previous section for the umbra cone are still valid also for the
determination of the penumbra region. This is true because those equations are just modelling
the intersection of a generic conical surface and an oblate ellipsoid of rotation.

The two methods depart in the definition of the geometrical characteristics of the conical
surface and the criterion to be used for the selection of the correct solutions coming from the
quartic equation. In particular, the difference in the two approaches occurs after the definition of
the couple of points on the Sun surface and occulting body surface delimiting the sun rays. The
axis of the penumbra conical surface is aligned with the umbra one and also the ellipse at the
base of the conical surface is the same. However, the umbra conical surface is built connecting
the upper points on the Sun surface with the upper points on the Earth surface and the lower
points on the Sun surface with the lower points on the Earth surface. This type of connection can
be summarized in "up→ up" and "down→ down". A graphical representation to understand
how to define the umbra and penumbra regions is presented in Figure 7.6 where the upper points
on the Sun and Earth surfaces are identified by sup and Eup, while the downward points on the
same surfaces are sdown and Edown, respectively.

The penumbra conical surface is generating connecting the upper points on the Sun surface
to the lower points on the Earth surface, and the lower points on the Sun surface are connected
to the upper points on the Earth surface. This type of connection is "up→ down" and "down
→ up". The new equations for the computation of the penumbra cone vertex are as follows:

mp1 = rup� − rdown⊕
mp2 = rdown� − rup⊕

tpint =
xdown⊕ − xup⊕
mxup −mxdown

rpv = rup⊕ + tpintmup

(7.40)
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Figure 7.6: Graphical representation of umbra and penumbra regions.

where mp1 and mp2 are the angular coefficients of the two penumbra lines generator, tpint is
the value of the parameter to identify the penumbra vertex considering the parametric represen-
tation of a Cartesian line in 3D space, and rpv is the position vector of the penumbra cone vertex
in the inertial frame.

In a similar way the second approach based on the computation of the tangent lines can be
modified to get the penumbra cone vertex. For each point, Eq. (7.35) provides two different
angular coefficients. One angular coefficient is related to the tangent line delimiting the umbra
conical shadow and the second is associated to the penumbra conical surface. Therefore, after
the identification of the correct angular coefficient it is possible to apply Eq. (7.40) to get the
penumbra cone vertex.

It is obvious that also the criterion used for the selection of the exact solutions coming from
the quartic equations should be modified is the penumbra conical surface is considered. The
first criterion based on the selection of the points which really belong to the penumbra conical
surface is unchanged. The second criterion that selects the exact points based on their positions
with respect to the Sun position vector is the same if the anomalies are used but it is reversed if
the distances with respect to the Sun centre are used.

7.3 Results

In this section the devised eclipse analytical algorithm is applied to different orbital scenarios
for the determination of the entry/exit umbra and penumbra points together with the correspond-
ing time spent in the umbra and penumbra regions. The same examples are solved also with
state-of-art eclipse algorithms based on different assumptions to verify the correctness of the
results.

Four different orbital scenarios are considered:

• Low-Earth slightly inclined orbit

101



7.3. Results

• Low-Earth highly inclines orbit

• Geostationary orbit

• Highly elliptical orbit

All the simulations are carried out using a processor Intel R© Core (TM) i7-9750H CPU @
2.60 GHz. The orbital parameters assumed to identify the Sun position vector are summarized
in Table 7.1:

Table 7.1: Sun state vector used for all the orbital scenarios.

rx� 148979647.6842771 km
ry� 5289205.7023694 km
rz� -1142.3033745 km
vx� -0.561916547046 km/s
vy� 29.87780687 km/s
vz� -0.002623168305249 km/s

7.3.1 Low-Earth slightly inclined orbit

The first orbital scenario deals with a satellite in a slightly inclined low-Earth orbit. The
orbital parameters used for the solution of the exercise are reported in Table 7.2.

Table 7.2: Spacecraft initial orbital elements for scenario 1.

Semi-major axis 8000 km
Eccentricity 0.2
Inclination 5◦
RAAN 60◦

Pericenter anomaly 30◦
True Anomaly 140◦

The entry and exit points for satellite umbra are computed using different methods. The
first one is of course the new proposed analytical approach. The second method is the classic
Escobal cylindrical shadow model for the umbra determination. The third method is using
Fixler approach to define the same quantities. The fourth method is the iterative approach used
to model the conical shadow taking into account for the Earth oblateness proposed always by
Escobal. The results computed using the different methods are presented in Table 7.3.

The same considerations can be done for the entry and exit penumbra points. In this case the
Escobal cylindrical model cannot be consider because the assumption of cylindrical shadow is
not generating a penumbra region. The results presenting the different entry and exit anomalies
for the penumbra region are shown in Table 7.4.
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Table 7.3: Umbra entry and exit points for scenario number 1.

νuentry νuexit ∆t

New Approach 8.2289◦ 136.8815◦ 2254.77 s
Escobal Cylindrical 7.8676◦ 137.1116◦ 2265.32 s

Fixler 8.2122◦ 136.8832◦ 2255.02 s
Escobal Conical 8.2210◦ 136.8821◦ 2254.88 s

Table 7.4: Penumbra entry and exit points for scenario 1.

νpentry νpexit ∆tentry ∆texit
New Approach 7.53◦ 137.34◦ 9.00 s 11.82 s

Fixler 7.51◦ 137.34◦ 8.97 s 11.78 s
Escobal Conical 7.52◦ 137.34◦ 9.01 s 11.83 s

7.3.2 Low-Earth highly inclined orbit

The second orbital scenario considers a satellite in a highly inclined low-Earth orbit. The
orbital parameters used for the solution of the exercise are reported in Table 7.5.

Table 7.5: Satellite initial orbital elements for scenario 2.

Semi-major axis 8000 km
Eccentricity 0.2
Inclination 56◦
RAAN 60◦

Pericenter anomaly 30◦
True Anomaly 140◦

The entry and exit points for satellite umbra computed using different methods are presented
in Table 7.6.

Table 7.6: Umbra entry and exit points for scenario number 2.

νuentry νuexit ∆t

New Approach 46.7973◦ 124.8715◦ 1438.04 s
Escobal Cylindrical 44.5680◦ 125.5206◦ 1485.38 s

Fixler 45.4431◦ 124.9756◦ 1459.93 s
Escobal Conical 46.7893◦ 124.8733◦ 1438.18 s

The same considerations can be done for the entry and exit penumbra points. The results
presenting the different entry and exit anomalies for the penumbra region are shown in Table
7.7.
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Table 7.7: Penumbra entry and exit points for scenario 2.

νpentry νpexit ∆tentry ∆texit
New Approach 45.02◦ 125.98◦ 25.41 s 26.38 s

Fixler 43.86◦ 126.06◦ 25.08 s 26.03 s
Escobal Conical 45.01◦ 125.98◦ 25.38 s 26.38 s

7.3.3 Geosynchronous orbit

The third orbital scenario considers a satellite in a Geosynchronous orbit. The orbital pa-
rameters used for the solution of the exercise are reported in Table 7.8.

Table 7.8: Satellite initial orbital elements for scenario 3.

Semi-major axis 42164 km
Eccentricity 0
Inclination 0◦
RAAN 60◦

Pericenter anomaly 30◦
True Anomaly 140◦

The entry and exit points for satellite umbra computed using different methods are presented
in Table 7.9.

Table 7.9: Umbra entry and exit points for scenario number 3.

νuentry νuexit ∆t

New Approach 83.5979◦ 100.4686◦ 4037.98 s
Escobal Cylindrical 83.3327◦ 100.7338◦ 4164.81 s

Fixler 83.5967◦ 100.4698◦ 4038.47 s
Escobal Conical 83.5978◦ 100.4687◦ 4037.94 s

The same considerations can be done for the entry and exit penumbra points. The results
presenting the different entry and exit anomalies for the penumbra region are shown in Table
7.10.

Table 7.10: Penumbra entry and exit points for scenario 3.

νpentry νpexit ∆tentry ∆texit
New Approach 83.06◦ 101◦ 127.95 s 127.95 s

Fixler 83.06◦ 101◦ 127.51 s 127.51 s
Escobal Conical 83.06◦ 101◦ 128.05 s 128.05 s
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7.3.4 Highly elliptical orbit

The fourth orbital scenario considers a satellite in a highly elliptical orbit. The orbital pa-
rameters used for the solution of the exercise are reported in Table 7.11.

Table 7.11: Satellite initial orbital elements for scenario 4.

Semi-major axis 50000 km
Eccentricity 0.7
Inclination 10◦
RAAN 20◦

Pericenter anomaly 330◦
True Anomaly 140◦

The entry and exit points for satellite umbra computed using different methods are presented
in Table 7.12.

Table 7.12: Umbra entry and exit points for scenario 4.

νuentry νuexit ∆t

New Approach 189.472◦ 195.437◦ 6696.34 s
Escobal Cylindrical 189.094◦ 195.829◦ 7556.60 s

Fixler 189.140◦ 195.668◦ 6723.60 s
Escobal Conical 189.471◦ 195.438◦ 6697.28 s

The same considerations can be done for the entry and exit penumbra points. The results
presenting the different entry and exit anomalies for the penumbra region are shown in Table
7.13.

Table 7.13: Penumbra entry and exit points for scenario 4.

νpentry νpexit ∆tentry ∆texit
New Approach 188.7◦ 196.1◦ 847.5 s 802.2 s

Fixler 188.4◦ 196.3◦ 797.2 s 842.3 s
Escobal Conical 188.7◦ 196.1◦ 846.2 s 802.0 s

7.3.5 Discussion

In this section the results obtained in Section V are discussed to compare the effectiveness of
the proposed analytical method with respect to the state-of-the art algorithms. The first consid-
eration that should be stressed looking at all the results is that the Escobal cylindrical shadow
method represent the lowest accurate approach to determine the umbra entry and exit points.
This result was expected due to the underlying assumption of cylindrical shadow that is very
coarse. Therefore, the real comparison should be done with Fixler method and the Escobal con-
ical shadow method. It is important to underline the assumption used by the two methods to
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compute the umbra and penumbra regions exit/entry points. Fixler method assumes a conical
shadow and a spherical Earth. It is based to solve a highly non-linear transcendental equation
which represents a geometrical condition associated to the entry and exit points to/from the um-
bra and penumbra regions. Such non-linear equation requires an initial guess to identify the
four possible roots of the equations which are not known a priori. Escobal conical model also
is based on the numerical solution to a non-linear transcendental equation based on a specific
shadow function and takes into account for the Earth oblateness using an iterative procedure.
In this case the first guess solution needed for the solution to the non-linear equation is known
because it comes from the cylindrical model. Thanks to the iterative procedure Escobal conical
shadow model can be considered an accurate solution for each orbital scenario considered in
the previous section. A summary of the characteristics of the different approaches is presented
in Table 7.4.

Table 7.14: Summary of the main characteristics of the eclipse algorithms. Legenda: O =
Oblate, S = Sphere, CO = Conical, CY = Cylinder, A = Analytical, N = Numerical

Method Earth Type of Shadow
Model Solution Model

New Algorithm O A CO
Escobal Cylindrical S A CY
Fixler S N CO
Escobal Conical Oblate O N CO

Looking at the different results in terms of entry and exit true anomalies and time spent in
the umbra, the new proposed approach is very close to the outputs provided by Escobal conical
model. However, the proposed approach is not based on the solution of a non-linear transcen-
dental equation and on an iterative procedure to get the correct solutions. The proposed method
simply solves analytically a quartic equation and defines the correct solution of such equations
providing the same accurate solution. Even if all the different approaches are providing similar
solutions it should be stressed that an error of 1-2◦ has a different impact according to the orbital
scenario. For a low-Earth orbit where the satellite moves quite fast such error can be considered
negligible, but for a highly elliptical orbit the same error in terms of anomalies can result in a
significant increase in the shadow time because satellites are moving slower. It is interesting to
check what happens to the eclipse time error for many satellite revolutions. A simple test has
been carried out propagating the trajectory of a satellite orbiting on the highly-inclined LEO
and GEO orbit proposed in scenarios 2 and 4 for a number of revolutions equal to to 500 and
300, respectively. The propagation includes the effect of J2 orbital perturbation to improve the
accuracy of the trajectory. All the different algorithms are used to compute the time spent in
the umbra shadow for each revolution and the relative error with respect to the new algorithm
is stored. The logarithm of the cumulative error at the end of propagation for the two scenarios
are presented in Figures 7.7 and 7.8.

It can be noted looking at the different scenarios that the error between the different ap-
proaches increases moving to highly inclined orbits or highly elliptical orbits. This result was
expected because in these two situations the cylindrical geometry for sure is not a reliable way
to model the actual shadow. Therefore, it is useful to perform sensitivity analysis to check how
the error changes according to a change in the orbit eccentricity or inclination. This reasoning
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Figure 7.7: Cumulative eclipse time error for
scenario 2.
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Figure 7.8: Cumulative eclipse time error for
scenario 4.

has been applied starting again from scenarios number 2 and 4. Looking at Figures 7.9 and 7.10
the logarithm of the error between the time spent in the umbra shadow with respect to the one
evaluated with the proposed algorithm is presented as function of the orbit inclination and ec-
centricity, respectively. The pictures show that the real parameter which is increasing the error
in the prediction of the correct entry/exit points is the orbit inclination rather than the orbit ec-
centricity. This happens because Escobal cylindrical model is based on a planar approximation
of the geometry which implies that the Sun, the Earth and the satellite are always in the same
plane, while Fixler method derives its non-linear transcendental equation using the projection
of the Sun position vector onto the satellite orbital plane.
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Figure 7.9: Eclipse time error as function of
orbit inclination for scenario 2.
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Figure 7.10: Eclipse time error as function of
orbit eccentricity for scenario 2.

The same considerations can be applied for scenario number 4. Looking at Figures 7.11 and
7.12 also in this case the main parameter generating error between the different approaches is
the orbit inclination. However, in this case the orbit inclination cannot increase as for the LEO
case because the umbra region is definitely smaller due to the larger size of the orbit.

The last but not least important advantage of the devised approach is related to the number
and type of inputs provided. Indeed, the Sun position vector, Earth position vector and spacecraft
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Figure 7.11: Eclipse time error as function of
orbit inclination for scenario 4.
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Figure 7.12: Eclipse time error as function of
orbit eccentricity for scenario 4.

osculating orbital elements are variables which are always known during the high-fidelity prop-
agation because SRP and Earth oblateness perturbing accelerations must be include. Therefore,
no additional variables must be computed to derive the coefficients of the quartic equation.

7.4 Definition of the constraining area

The main task of the internal path constraint associated to eclipse is to minimise the total
time spent in the shadow during the transfer obtained by the optimiser. As far as the knowledge
of the author it is the first time that an optimal control problem is solved considering a constraint
on the total shadow time during the evaluation of the trajectory itself.

This limitation is related to the existing algorithms associated to the eclipse computation.
Both the algorithm based on Cartesian coordinates and orbital elements assume a fixed space-
craft orbit not changing with time. During the optimisation of the trajectory a thrust is provided
by the low-thrust engines which is actually changing the shape and plane of the spacecraft or-
bit. This means that a variable orbit eclipse algorithm should be used for the evaluation of the
entry/exit points.

This hard task can be solved thinking at the geometry of the 3D problem. During a generic
transfer it is useful to identify the main characters during an eclipse:

• the Sun

• the occulting body

• the spacecraft

A further analysis must stress what happens to these 3 characters during the spacecraft transfers.
The Sun and occulting body motions will be always the same despite the trajectory provided
by the DDP algorithm. This means that the Sun and occulting body position vectors are just
function of time. This information is very useful and it can be used to solve the problem of
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optimising the spacecraft shadow time. Indeed, the umbra associated to the eclipse is generated
by the relative position of the Sun and of the occulting body.

Therefore, also the shadow cone is independent of the trajectory generated by the DDP
algorithm and it is just a function of time and it is completely unrelated with the spacecraft
state. If a maximum shadow time is allowed according to some prescribed requirements that
can be associated to the power budget of the batteries onboard of the spacecraft, the total shadow
region can be decomposed in two sub-regions. A first region where the satellite is allowed to
move satisfying the spacecraft requirements, and a second region denoted as "constraining area"
where the satellite must not enter to violate the eclipse time requirements.

An example of constraining area is presented in Figure 7.13 where the red region is rep-
resenting the constraining region while the black region is the total umbra generated by the
occulting body where the satellite is allowed to move.

Figure 7.13: Intersection of the conical surface with the elliptical orbit.

If the shadow cone region is just function of time and independent from the satellite state, the
constraining area will change with time because it will be always enclosed in the shadow but it
will be also function of the spacecraft state. This dependence is fundamental because the DDP
algorithm requires in the formulation of the cost functional the presence of the cost function
to be optimised to admit partial derivatives with respect to the spacecraft state. If the partial
derivatives are not existing no addendum appears in the backward equations which represent
the satisfaction of the necessary conditions of optimality for the DDP algorithm.
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7.5 Definition of the function linking shadow time with the
constraining area

Once the idea of constraining region has been identified as a way to minimise the total
spacecraft shadow time during the optimisation, some other issues must be solved to use this
property inside the DDP algorithm:

• How to connect maximum shadow time to the geometric characteristics of the constrain-
ing area

• Identification of a figure of merit related to the maximum shadow time

• Inclusion inside the DDP algorithm

In this section the function to link the maximum eclipse time to the geometric characteristics
of the constraining region is described. It is very complex to model the exact function describing
how the variation of the spacecraft state is affecting the size of the constraining region. Several
models can be identified according to the level of approximation which are also affecting the
correlation between maximum shadow time and spacecraft state. This model is not the ending
point of an objective but it is just an intermediate part in a very large process. This means
that the properties of such function as smoothness, non-linearity and complexity must be taken
into account. Partial derivatives of such function must be analytically evaluated several times
for each iteration of the DDP algorithm. A trade-off between feasibility and simplicity of the
model must be found. The following assumptions are adopted in this work:

(a) The constraining region is assumed to be a conical region inside the conical shadow

(b) The satellite is assumed to move with a constant velocity equal to the equivalent circular
velocity at initial time throughout the eclipse region.

(c) The satellite arc throughout the shadow is approximated with a rectilinear path.

Even if the assumptions seem to simplify considerably the problem, they are not describing
a scenario that is different from the reality. Indeed, most of the cases the total time spent by
the spacecraft in the umbra is in the order of few minutes. In this small amount of time it is
reasonable to assume that the velocity is equal to a constant value because it is not changing so
much from the reference value. Finally, the cone half-aperture angle is usually of small degrees
and this means that is possible to approximate the circular arc with the cord connecting the
extremes of the curvilinear orbit arc.

Thanks to these assumptions the constant tangential circular velocity can be evaluated as
follows:

v̄ =

√
µ

a0

(7.41)

with v̄ representing the equivalent tangential circular velocity assumed to be constant and a0 is
the initial semi-major axis. The rectilinear cord which is approximated by the curvilinear arc
will be the product of the constant velocity and the maximum prescribed shadow time, ∆Teclipse:

L̄ = v̄∆Teclipse (7.42)
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It is possible to compute the radius of the circular base of the constraining cone projecting
each half of the rectilinear cord on the Earth surface. The half-aperture angle of the shadow cone
can be used to compute the new spacecraft cone so that the constraining region is completely
characterised.

c̄ = cshadow −
v̄∆Teclipsecshadow

2R⊕
(7.43)

with c̄ being the height of the new constraining cone, cshadow the height of the umbra cone and
R⊕ the Earth mean radius. The circular base radius of the constraining cone is computed as
follows:

R̄ = R⊕ −
L̄

2
(7.44)

It is clear that the approximated model will not minimise the exact required shadow time but it
provides a way to include the internal path constraint for the first time the optimisation process
during the spacecraft transfer.

7.6 Cost function formulation

The last aspect to be investigated is how to define a figure of merit that can be used as cost
function to be inserted in the augmented Lagrangian formulation. The cost function must have
some properties:

i. It should be a evaluated throughout the overall transfer

ii. It must assume a value inside the forbidden region and a different value outside the region.

iii. It should be a positive scalar variable

The first characteristic of the cost function suggests that it is a term that should be contained in
the integral term in the continuous version or inside the summation in the discrete version. The
second characteristic suggests that a possible candidate to be the cost function associated to the
maximum shadow time is the minimum distance from a generic conical surface and in particular
the constraining area defined in the previous section. There are several ways to compute the
minimum distance of a generic point from the conical surface. One of the classic ways is to apply
the method of Lagrange multipliers which results in a very complicated system of equations
with a closed form solution that is not practical for the final objective. If the conical surface is
assumed to have a right circular base the minimum distance can be evaluated using a geometric
approach that allows to have both a very simple analytical expression and a figure of merit
assuming a positive value outside the conical surface, zero on the surface and a negative value
inside the constraining region.

Given the spacecraft position at point X, the minimum distance, d, is the shortest path from
the conical surface. In case a right-circular cone is considered the shortest path is along the
normal direction that intersects the conical axis in point W. The distance d can be written as:

d = ||X −W || − (h−Wh) sinϕ (7.45)
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Figure 7.14: General representation of the minimum distance of a point from a right-circular
cone.

It is known that the norm of a vector is invariant with respect to the reference frame. This means
that the norm is the same despite the reference frame used and in this case a cylindrical reference
frame is adopted. In this specific frame all the variables are decomposed in a radial and axial
components.

d =
√

(Xr −Wr)2 + (Xh −Wh)2 − (h−Wh sinφ) (7.46)

It is obvious that no radial component for point W exists because it belong to the conical axis.
The sine of the half-aperture angle can be written as a function of the tangent that is related to
the geometrical characteristics of the cone.

tanφ =
r

h
(7.47)

The axial component of pointW can be rewritten in terms of point X using classic trigonometry:

d =
√
X2
r + (Xh −Xh +Xr tanφ)2 − (h−Xh +Xr tanφ) sinφ (7.48)

Using the properties of planar trigonometry a compact formulation for the minimum distance
can be obtained.

d =
√
X2
r (1 + tan2 φ))2 − (h−Xh +Xr tanφ) sinφ (7.49)

d = Xr secφ− (h−Xh) sinφ−Xr
sin2 φ

cosφ
(7.50)

d = Xr

(
1− sin2 φ

cosφ

)
− (h−Xh) sinφ (7.51)

d = Xr cosφ− (h−Xh) sinφ (7.52)

The formulation obtained for the minimum distance can be graphically seen from the Figure
7.15 where all the different segments are identified.

The final expression can be further simplified if the sine and cosine function are expressed
in terms of the tangent and the geometric characteristics of the cone.

cosφ =
1√

1 + tan2 φ
, sinφ =

tanφ√
1 + tan2 φ

(7.53)
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Figure 7.15: Geometrical representation of the segments to compute the minimum distance
from a right-circular cone.

Given the Cartesian coordinates of the spacecraft position vector in the cone reference frame
the radial and axial components in the cylindrical reference frame are evaluated in the following
way:

Xr =
√
x2
s + y2

s , Xh = zs (7.54)

with xs, ys and zs being the position vector coordinates of the spacecraft in the conical reference
frame. Using Eqs. (7.47, 7.53, 7.54) inside Eq. (7.52) the minimum distance is expressed as
function of the position vector coordinates and the geometrical parameters of the cone.

d =

√
x2
s + y2

s

1 + r2

h2

− zs
r
h√

1 + r2

h2

(7.55)

d = h

√
x2
s + y2

s

r2 + h2
− r zs√

r2 + h2
(7.56)

d =
h
√
x2
s + y2

s − rzs√
r2 + h2

(7.57)

This candidate function is perfect because it is possible impose a value equal to 0 anywhere
apart from the value inside the constraining area. This variable can be squared to be sure that is
assuming always positive and the minimisation of the cost function is equivalent to minimise to
zero the distance from the constraining area. An example of the evolution of minimum distance
squared for a single revolution spacecraft in LEO orbit is presented in Figure 7.16.

If theminimumdistance from the constraining area is pushed to zero the spacecraft ismoving
outside the region itself and thanks to the way the constraining are is defined the spacecraft is
respecting the shadow time requirements.
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Figure 7.16: Minimum distance from a cone surface squared for a single revolution LEO space-
craft.

7.7 Integration in the DDP algorithm

After the definition of the figure of merit related to the maximum shadow time, it is possible
to formulate the eclipse cost function that can be inserted inside the Augmented Lagrangian
function to be optimised by the DDP algorithm.

Leclipse =
N∑
j=0

(
c
√
x̃2 + ỹ2 − rz̃
r2 + c2

)2

(7.58)

The coordinates x̃, ỹ and z̃ are not directly the spacecraft position state in the inertial frame,
but in the cone reference frame. Using the rotation matrix defined in the eclipse algorithm
derivation it is possible to express the eclipse cost function in terms of the true satellite state
vector. 

x̃ = (x− xv)R11 + (y − yv)R12 + (z − zv)R13

ỹ = (x− xv)R21 + (y − yv)R22 + (z − zv)R23

z̃ = (x− xv)R31 + (y − yv)R32 + (z − zv)R33

(7.59)

This cost function is valid whenever Cartesian coordinates are used as state representation of the
dynamics. What happens if orbital elements are used in place of position and velocity vectors?
A different formulation must be found because the expression relating the position vector to the
orbital elements are highly non linear and are complicating the formulation of the cost function.

In the original Escobal algorithm [60] assuming a cylindrical shadow and a spherical Earth
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the concept of shadow function is introduced for the derivation of the quartic equation needed
to be solved to compute the entry/exit eclipse points. The shadow function is just a geometri-
cal condition that is imposed so that when the function is equal to 0, the entry/exit points are
identified and when then function is not zero the spacecraft is in the shadow or in sunlight. This
concept is very similar to the one developed for the definition of the eclipse function in terms
Cartesian coordinates. The shadow function defined in Escobal [60] is the following:

Leclipse = R2
⊕(1 + e cos ν)2 + p2(β cos ν + ε sin ν)2 − p2 (7.60)

where the coefficient β and ε are defined as

β =
X�Px + Y�Py + Z�Pz√

X2
⊕ + Y 2

⊕ + Z2
⊕

(7.61)

ε =
X�Qx + Y�Qy + Z�Qz√

X2
⊕ + Y 2

⊕ + Z2
⊕

(7.62)

and the unit vectors P and Q are defined as follows

Px = cosω cos Ω− sinω sin Ω cos i

Py = cosω sin Ω + sinω cos Ω cos i

Pz = sinω sin i

(7.63)

Qx = − sinω cos Ω− cosω sin Ω cos i

Qy = − sinω sin Ω + cosω cos Ω cos i

Qz = cosω sin i

(7.64)

The augmented Lagrangian function representing the cost function to be optimised by the
DDP can be formulated as follows:

J =
N∑
k=1

(
uTkRuk + νkwL

k
eclipse

)
h+ bTφ (xN+1) + σ||φ (xN+1)||2 (7.65)

where the coefficient νk has been introduced in front of the eclipse cost function because it
should discriminate when the term must be evaluated or not, and w a weighting factor for the
eclipse cost function. The eclipse cost function assumes a value equal to 0 whenever the satel-
lite is outside the constraining area. This is true not only for the evaluation of the final cost
functional but also for the evaluation of the partial derivatives. The consequence is that there
will be a time instant when the partial derivatives of the cost functional will introduce a new
contribution that can generate a first-order discontinuity. This is a criticality that must be care-
fully analysed because the creation of a discontinuity inside the backward sweep can lead to
the divergence of the optimisation. The classic way to handle this issue is to introduce some
smoothing functions which are transforming the hard discontinuity in a continuous function to
improve the mathematical properties of the eclipse phenomenon.In this research the sigmoid
function has been considered as smoothing function:

S(x) =
1

1 + e−x
(7.66)
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The general formulation of the sigmoid function is modified to include some coefficients that
are tuning the amplitude of the smoothing and interval where the correction must be applied.

S(x) =
1

1 + γ1e−x+γ2
(7.67)

with γ1 being the amplitude coefficient, and γ2 the translation coefficient. Once the formulation
of the final cost functional is provided the remaining part of the DDP algorithm and it can be
applied for the optimisation of the maximum shadow time.

7.7.1 Application of the DDP with the shadow time requirement

In this section an orbit raising is presented to show the effectiveness of the eclipse cost
function. First, the non-linear optimal control problem is solved without inserted the eclipse
cost function inside the cost functional formulation. The same optimal control problem is then
solved considering different values for the weighting coefficient multiplying the eclipse cost
function to check how the new trajectory departs from the reference one, and to check if the
spacecraft is departing from the constraining area defined in the previous section to respect the
maximum shadow time. The results will be carefully discussed to enhance the advantages and
bottlenecks of the method. The inputs used for the reference case are listed in Table 7.15.

Table 7.15: Input for the LEO orbit raising.

Inputs Numerical value
Initial semi-major axis, a 8000 km
Initial eccentricity, e 0.1
Inclination, i 55◦
RAAN, Ω 10◦
Pericenter Anomaly,ω 20◦
True anomaly, ν 0◦
Final semi-major axis, a 8200 km
Final eccentricity, e 0.2
Specific Impulse, Isp 1500 s
Maximum Thrust, umax 100 mN
Spacecraft Mass,m0 450 kg

The first analysis is carried out considering the eclipse weighting factor equal to zero,w = 0.
This analysis is carried out to check if a minimisation of the eclipse cost function is obtained
independently from the addition of the new term inside the Augmented Lagrangian. The final
3D trajectory is presented in Figure 7.17 together with the shadow cone and the constraining
region.

The eclipse cost function for the problem with the eclipse weighting factor equal to 0 at the
end of the optimisation process increases. Indeed, the eclipse cost function corresponding to
the nominal trajectory is equal to L̄eclipse = 81.43 while the eclipse cost function corresponding
to the optimal trajectory is equal to L∗eclipse = 81.76. The same example is solved increasing
the eclipse weighting factor from zero to w = 1000. This is the first time the eclipse cost
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Figure 7.17: Optimal orbit raising considering the eclipse weighting factor equal to zero.

function is acting in the optimisation and a reduction of the time spend in the forbidden region
is expected. The final 3D trajectory is presented in Figure 7.18 together with the shadow cone
and the constraining region.

The eclipse cost function evaluated along the nominal trajectory is always the same while
the one evaluated along the optimal trajectory is equal to L∗eclipse = 52.1864. It should be
remembered that this cost function is related to a squared distance and not to the eclipse time.
if time is required it should be recovered considering an inverse formulation. Looking at the
optimal trajectory, the optimiser chooses to minimise the time spend in the forbidden region
decreasing the height so that the spacecraft will move faster in that region. The eclipse cost
function can be further increase to check if a further reduction can be achieved. The final 3D
trajectory considering an eclipse weighting factorw = 2000 is presented in Figure 7.19 together
with the shadow cone and the constraining region.

The new eclipse cost function evaluated along the optimal trajectory is equal to L∗eclipse =
39.80. The optimiser changed the optimal transfer decreasing again the height of the spacecraft
orbit inside the forbidden region so that it will move faster. Therefore, the eclipse cost function
formulation is effectively reducing the time inside the forbidden region. Another philosophy that
can be adopted from the DDP algorithm to minimise the cost function is to change the spacecraft
orbital plane instead of increasing its speed. However, this philosophy can be dangerous because
the change of orbital plane is associated to a large control variation which can be not consistent
with the linear-quadratic Taylor expansion.
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Figure 7.18: Optimal orbit raising considering the eclipse weighting factor equal to 1000.

Figure 7.19: Optimal orbit raising considering the eclipse weighting factor equal to 2000.

From the several plots it is clear that the weighting factor is playing an important role in
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driving the optimisation. Indeed, the weighting factor is establishing the relative importance of
the different cost function inside the Augmented cost function. If the eclipse weighting factor
increases the DDP algorithm will focus on the minimisation of the eclipse cost function rather
than minimise the control magnitude. The introduction of the penalty term including the norm
of the final constraints represents a new character to be balanced. In this case the optimiser
must decide what is better to minimise between final constraints, eclipse cost function and thrust
magnitude. Despite the difficulty in the selection of the weighting factors, the examples show
how eclipse cost function included in the DDP allows the minimisation of the time spent inside
the forbidden area. The advantage of such approach is that the formulation of the cost function
can be applied to all the different indirect methods and not only to the DDP algorithm.
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CHAPTER 8

Conclusions and future work

8.1 Conclusions

This research work investigated the coupling between orbital elements used as state repre-
sentation of the dynamics and the DDP optimisation technique. Gauss’ equations have been
used to model the orbit dynamics to account both for conservative and non-conservative effects.
Starting from the basic formulation of the original algorithm, a mathematical theory denoted
as "quasi-independence" theory has been derived to describe the sources of the issues to solve
rendezvous problems. A continuation technique is presented as methodology to overcome the
issues that arise due to the presence of orbital elements. The "quasi-independence" theory high-
lights hidden properties associated to the choice of the initial guess that are not clear when using
Cartesian coordinates. Indeed, if the initial guess is such that the pericenter anomaly and the
true anomaly must be both increased or decreased, the optimisation will not be successful be-
cause the two variables cannot follow the same trend. This is a property that makes the user
able to constraint the domain of functions that can be selected as first guess solution.

A recursive formulation to compute the cost-functional partial derivatives as analytical deriva-
tives of the explicit RK integration schemes up to the 8th order is derived. The main differences
between the analytical formulation of the partial derivatives and the use of STMs used in the
state-of-the art HDDP is analysed. Heuristic techniques are defined to choose the proper formu-
lation of the constraints according to the type of problem to be solved (planetary or interplan-
etary) together with a new approach to evaluate the constant value to shift the main diagonal
of the Hessian with respect to the control variable which is independent from user selection.
The formulation of Gauss’ dynamics in several reference frames and in terms of both classic
Keplerian elements and modified direct equinoctial elements is derived. A systematic way to
use MATLAB symbolic toolbox to evaluate the cost functional partial derivatives for both con-
tinuous and discrete formulation is defined to apply the DDP algorithm. A numerical example
to check also the robustness of the optimal feedback control law is presented to stress the ability
of the control law to be reliable also when disturbances are included in the initial conditions.

A change of independent variable from time to eccentric anomaly through Sundman transfor-
mation is proposed to solve multi-revolutionary planetary problems. In this case the Sundman
transformation is fundamental to create a fine mesh to avoid that the large distance between
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two consecutive nodes can create discontinuities in the evaluation of the cost functional partial
derivatives during the backward regression. The formulation based on Sundman transformation
is changing the design variable of the problem that becomes the number of revolutions in place
of the transfer time. The introduction of the eccentric anomaly as independent variable allows
to create an equispaced mesh and to refine it increasing the number of discrete steps. The tech-
nique improves the convergence properties of the DDP algorithm when applied to solve many-
revolutions orbital transfers even if hundreds of revolutions are considered. This represents one
of the strongest advantages in using the DDP formulation adopted in this research with respect
to other optimisation techniques. Orbital perturbations are included in the system dynamics
whenever their analytical formulation is available. Earth geopotential is used as reference case
to prove the effectiveness of the DDP algorithm when orbital perturbations are included. An
internal path constraint related to eclipse orbit perturbation is included in the DDP optimisation
algorithm. The method is based on a novel analytical formulation to define the entry/exit points
of a conical shadow and the objective of the path constraint is to impose a maximum shadow
time for the spacecraft when eclipse occurs.

Finally, some applications to several space missions are presented to prove the effectiveness
of the DDP algorithm as numerical optimisation technique that can be coupled with orbital el-
ements to solve low-thrust trajectory optimal control problems. The test cases explain how the
continuation technique devised by the author can be used to solve any kind of orbital transfer
and how the orbital elements improve the computational speed of the algorithm together with
the accuracy of the results. The use of analytical formulations allows a full parametrisation of
the algorithm apart from the selection of the tolerances to be used to satisfy the endpoint con-
straints and the check variables for the DDP technique.

8.2 Future work

The DDP algorithm is still not very used at the moment as optimisation technique for the
design of low-thrust trajectories. If orbital elements are considered as state representation of
the dynamics coupled with DDP the applications in the current literature is limited to less than
five works. This small number of applications is first related to some limitations associated
to the DDP algorithm. The DDP algorithm suffers from the lack of a systematic approach to
decide how to fix the check tolerances to accept or reject of an iteration of the algorithm to be
consistent with the Taylor expansions, the choice of the constant number to apply the Hessian
shifting technique, and the ability to solve rendezvous problems. In this research a way to make
user-independent the choice of the constant number to apply the Hessian shifting technique and a
systematic method to solve rendezvous problem applying a continuation technique is proposed.
One of the future tasks to improve any kind of DDP algorithm is the investigation of heuristic
techniques or methods to select the check tolerances for the acceptance of a DDP iteration.

The "quasi-independence" theory presented in this research explains that the DDP algorithm
based on orbital elements is very efficient in solving orbital transfer problems when all endpoint
constraints apart from the one related to the fast variable (mean anomaly, true anomaly, eccentric
anomaly) are imposed. This feature suggests several future opportunities for the design of both
planetary and interplanetary missions in the field of averaged dynamics. When average dynam-
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ics is considered the fast variable is no longer present making the DDP optimisation technique
a perfect choice to solve problems as de-orbiting and re-entry of a spacecraft. The averaged
dynamics fields presents also semi-analytical formulations which are modelling orbital pertur-
bations, which can be inserted in the parametrised structure of the proposed DDP algorithm
thanks to their formulations.

A last subject of investigation is the application of DDP optimisation technique to problems
using relative orbital elements. Such problems are based on small variations of the orbital ele-
ments which should fit with the assumptions used to derive the backward difference equations
representing the necessary conditions of optimality of the DDP algorithm.
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APPENDIXA

Gauss’ planetary equations in different reference frames and
orbital elements set

A.1 Gauss equations in terms of classic Keplerian orbital el-
ements

In this subsection the expressions of Gauss planetary equations in different reference frames
in terms of classic Keplerian elements are reported. Gauss’ equation in reference frame [̂r, ϑ̂, ĥ]
in terms of the eccentric anomaly, ν:

da

dt
= 2

√
a3

µ(1− e2)

[
e sin ν

ur
m

+ (1 + e cos ν)
uϑ
m

]
de

dt
=

√
a(1− e2)

µ

[
sin ν

ur
m

+
e+ 2e cos ν + e cos2 ν

1 + e cos ν

un
m

]
di

dt
=

√
a(1− e2)

µ

cos(ω + ν)

1 + e cos ν

uh
m

dΩ

dt
=

√
a(1− e2)

µ

sin(ω + ν)

sin i(1 + e cos ν)

uh
m

dω

dt
=

√
a(1− e2)

µ

{
1

e

[
− cos ν

ur
m

+
2e+ e cos ν

1 + e cos ν

uϑ
m

]
− cos i

sin i

sin(ω + ν)

1 + e cos ν

uh
m

}
dν

dt
=

√
µ

[a(1− e2)]3
(1 + e cos ν)2 −

√
a(1− e2)

µ

1

e

[
− cos ν

ur
m

+
2 + e cos ν

1 + e cos ν
sin ν

uϑ
m

]
dm

dt
= −

√
u2
r + u2

ϑ + u2
h

Isp · g0
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A.1. Gauss equations in terms of classic Keplerian orbital elements

Gauss’ equation in reference frame [̂r, ϑ̂, ĥ] in terms of the eccentric anomaly, E:

da

dt
= 2

√
a3

µ

1

1− e cosE

[
e sinE

ur
m

+
√

1− e2
uϑ
m

]
de

dt
=

√
a(1− e2)

µ

1

1− e cosE

[√
1− e2 sinE

ur
m

+ (2 cosE − e− e cos2E)
uϑ
m

]
di

dt
=

√
a

µ(1− e2)

[
cosω(cosE − e)−

√
1− e2 sinE sinω

] uh
m

dΩ

dt
=

√
a

µ

1√
1− e2

1

sin i

[
sinω(cosE − e) +

√
1− e2 cosω sinE

] uh
m

dω

dt
=

√
a

µ

{
1

e(1− e cosE)

[
−
√

1− e2(cosE − e)ur
m

+ (2− e cosE − e2) sinE
uϑ
m

]
+

−cos i

sin i

1√
1− e2

[
sinω(cosE − e) +

√
(1− e2) cosω sinE

]uh
m

}
dE

dt
=

√
µ

a3

1

1− e cosE
+

√
a

µ

1

e(1− e cosE)

[
(cosE − 2e+ e2 cosE)

ur
m

+

−
√

1− e2(2− e cosE) sinE
uϑ
m

]
dm

dt
= −

√
u2
r + u2

ϑ + u2
h

Isp · g0

Gauss’ equation in reference frame [̂t, n̂, ĥ] in terms of the eccentric anomaly, E:

da

dt
= 2

√
a3

µ

√
1 + e cosE

1− e cosE

ut
m

de

dt
=

√
a(1− e2)

µ

√
1− e cosE

1 + e cosE

[
2
√

1− e2
cosE

1− e cosE

ut
m
− sinE

un
m

]
di

dt
=

√
a

µ(1− e2)

[
cosω(cosE − e)−

√
1− e2 sinE sinω

] uh
m

dΩ

dt
=

√
a

µ

1√
1− e2

1

sin i

[
sinω(cosE − e) +

√
1− e2 cosω sinE

] uh
m

dω

dt
=

√
a

µ

{
1

e

√
1− e cosE

1 + e cosE

[
2
√

1− e2
sinE

1− e cosE

ut
m

+ (e+ cosE)
un
m

]
+

−cos i

sin i

1√
1− e2

[
sinω(cosE − e) +

√
1− e2 cosω sinE

] uh
m

}
dE

dt
=

√
µ

a3

1

1− e cosE
−
√
a

µ

1

e

√
1− e cosE

1 + e cosE

[
2

sinE

1− e cosE

ut
m

+
√

1− e2 cosE
un
m

]
dm

dt
= −

√
u2
t + u2

n + u2
h

Isp · g0
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A.2. Gauss equations in terms of modified equinoctial elements

A.2 Gauss equations in terms ofmodified equinoctial elements

In this section the expressions of Gauss planetary equations in different reference frames
in terms of modified equinoctial elements are reported. Gauss’ equation in reference frame
[̂r, ϑ̂, ĥ] in terms of the true longitude, L:

da

dt
= 2

√
a3

µ(1− f 2 − g2)

[
(f sinL− g cosL)

ur
m

+ (1 + f cosL+ g sinL)
uϑ
m

]
df

dt
=

√
a(1− f 2 − g2)

µ

{
sinL

ur
m

+
1

1 + f cosL+ g sinL
[f + cosL(2 + f cosL+

+g sinL)]
uϑ
m

+
g

1 + f cosL+ g sinL
(k cosL− h sinL)

uh
m

}
dg

dt
=

√
a(1− f 2 − g2)

µ

{
− cosL

ur
m

+
1

1 + f cosL+ g sinL
[g + sinL(2 + f cosL+

+g sinL)]
uϑ
m

+
g

1 + f cosL+ g sinL
(h sinL− k cosL)

uh
m

}
dh

dt
=

1

2

√
a(1− f 2 − g2)

µ

1 + h2 + k2

1 + f cosL+ g sinL
cosL

uh
m

dk

dt
=

1

2

√
a(1− f 2 − g2)

µ

1 + h2 + k2

1 + f cosL+ g sinL
sinL

uh
m

dL

dt
=

√
µ

[a(1− f 2 − g2)]3
(1 + f cosL+ g sinL)2 +

+

√
a(1− f 2 − g2)

µ

h sinL− k cosL

1 + f cosL+ g sinL

uh
m

dm

dt
= −

√
u2
r + u2

ϑ + u2
h

Isp · g0
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A.2. Gauss equations in terms of modified equinoctial elements

Gauss’ equation in reference frame [̂r, ϑ̂, ĥ] in terms of the eccentric longitude, F :

da

dt
= 2

√
a3

µ

1

1− f cosF − g sinF

[
(f sinF − g cosF )

ur
m

+
√

1− f 2 − g2
uϑ
m

]
df

dt
=

√
a

µ

1

1− f cosF − g sinF

{√
1− f 2 − g2

[
−g + sinF

(
1− f 2

1 +
√

1− f 2 − g2

)
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fg
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√

1− f 2 − g2

]
ur
m

+
[
−f
√
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+2

(
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√
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))
+ fg sinF

(
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√
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)

+g sinF cosF
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f 2
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√
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√

1− f 2 − g2

)
+
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√
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sin2 F

]
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m
− g1− f cosF − g sinF√

1− f 2 − g2
[(fk − gh)+
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(
h
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1 +
√

1− f 2 − g2
− k

(
1− g2

1 +
√

1− f 2 − g2

))

+ sinF

(
h

(
1− f 2

1 +
√

1− f 2 − g2

)
− k fg

1 +
√

1− f 2 − g2

)]
uh
m

}
dg

dt
=

√
a

µ

1

1− f cosF − g sinF

{√
1− f 2 − g2

[
f − cosF

(
1− g2

1 +
√

1− f 2 − g2

)
+

− sinF
fg

1 +
√

1− f 2 − g2

]
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−g
√

1− f 2 − g2 + sinF
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−f 2+
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1− g2

1 +
√

1− f 2 − g2
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+ fg cosF
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1− 2

1 +
√

1− f 2 − g2

)
+

+f sinF cosF

(
−1 + 2

g2

1 +
√

1− f 2 − g2

)
− g sin2 F

(
1− g2

1 +
√

1− f 2 − g2

)
+

+f
fg

1 +
√

1− f 2 − g2
cos2 F

]
uϑ
m

+ f
1− f cosF − g sinF√

1− f 2 − g2
[(fk − gh)+

+ cosF

(
h

fg

1 +
√

1− f 2 − g2
− k

(
1− g2
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√

1− f 2 − g2
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+ sinF

(
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(
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1 +
√
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)
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1 +
√

1− f 2 − g2
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m

}
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A.2. Gauss equations in terms of modified equinoctial elements

dh

dt
=

1

2

√
a

µ(1− f 2 − g2)
(1 + h2 + k2)

[
−f + cosF

(
1− g2

1 +
√

1− f 2 − g2

)
+

+ sinF
fg

1 +
√

1− f 2 − g2

]
uh
m

dk

dt
=

1

2

√
a

µ(1− f 2 − g2)
(1 + h2 + k2)

[
−g + sinF

(
1− f 2

1 +
√

1− f 2 − g2

)
+
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fg

1 +
√

1− f 2 − g2

]
uh
m

dF

dt
=

√
µ

a3

1

1− f cosF − g sinF
+

√
a

µ

1

1− f cosF − g sinF
{[(f cosF+

+g sinF )
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1 +

1

1 +
√

1− f 2 − g2

)
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√
1− f 2 − g2)

]
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m

+

+

[(
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√

1− f 2 − g2

)
(g cosF − f sinF ) +
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√

1− f 2 − g2

(
cos2 F+

− sin2 F
)
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1− f 2
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√

1− f 2 − g2

)
− (1+
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√

1− f 2 − g2
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+
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(
h
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√
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√
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√
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√
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dm

dt
= −

√
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r + u2

ϑ + u2
h

Isp · g0
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A.2. Gauss equations in terms of modified equinoctial elements

Gauss’ equation in reference frame [̂t, n̂, ĥ] in terms of the true longitude, L:

da

dt
= 2

√
a3

µ

√
1 + 2f cosL+ 2g sinL+ f 2 + g2

1− f 2 − g2

ut
m

df

dt
=

√
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µ

√
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1 + 2f cosL+ 2g sinL+ f 2 + g2

{
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ut
m

+
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]
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m

}
−
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µ
g

h sinL− k cosL

1 + f cosL+ g sinL
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m
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=
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µ

√
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1 + 2f cosL+ 2g sinL+ f 2 + g2
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+
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+
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=
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=
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m
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=
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[a(1− f 2 − g2)]3
(1 + f cosL+ g sinL)2 +

+

√
a(1− f 2 − g2)

µ

h sinL− k cosL

1 + f cosL+ g sinL

uh
m

dm

dt
= −

√
u2
t + u2

n + u2
h
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A.2. Gauss equations in terms of modified equinoctial elements

Gauss’ equation in reference frame [̂t, n̂, ĥ] in terms of the eccentric longitude, F :

da

dt
= 2

√
a3

µ

√
1 + f cosF + g sinF

1− f cosF − g sinF

ut
m

df

dt
=

√
a

µ

1− f cosF − g sinF

1 + f cosF + g sinF
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2

√
1− f 2 − g2

1− f cosF − g sinF
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√

1− f 2 − g2

)
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√

1− f 2 − g2
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fg

1 +
√

1− f 2 − g2
+ sinF

(
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1 +
√

1− f 2 − g2
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m

}
+

−
√
a

µ
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{
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[
h

fg
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√

1− f 2 − g2
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√
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+ sinF

[
h

(
1− f 2

1 +
√

1− f 2 − g2

)
+

−k fg

1 +
√

1− f 2 − g2
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uh
m
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=

√
a

µ

1− f cosF − g sinF

1 + f cosF + g sinF
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2

√
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(sinF (1+
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√
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)
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fg
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√

1− f 2 − g2
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m
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fg

1 +
√

1− f 2 − g2
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(
1− g2

1 +
√

1− f 2 − g2
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un
m

}
+

+

√
a

µ

f√
1− f 2 − g2

{
(fk − gh) + cosF

[
h

fg

1 +
√

1− f 2 − g2
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1 +
√
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+ sinF

[
h

(
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1 +
√
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)
+

−k fg
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√
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m
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=

1

2

√
a
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[
−f + cosF

(
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1 +
√

1− f 2 − g2

)
+
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fg
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√
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m
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A.2. Gauss equations in terms of modified equinoctial elements

dk

dt
=

1

2

√
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µ(1− f 2 − g2)
(1 + h2 + k2)

[
−g + sinF

(
1− f 2

1 +
√

1− f 2 − g2

)
+
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fg

1 +
√
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]
uh
m
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=

√
µ
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1
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−
√
a
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1
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√
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√
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+
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√
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√
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√
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√
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m

dm

dt
= −
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APPENDIXB

Cardan’s method to solve quartic equations

In this appendix the general analytical solution to a quartic equation is presented. Such
procedure is applied to Eq. (7.19) to get the solution representing the entry and exit points for
the umbra and penumbra regions. The general form of the quartic equation is:

C1x
4 + C2x

3 + C3x
2 + C4x+ C5 = 0 (B.1)

The first step is to rewrite the quartic equation so that the first term has a unit coefficient:

x4 + αx3 + βx2 + γx+ δ = 0

α = C2/C1

β = C3/C1

γ = C4/C1

δ = C5/C1

(B.2)

Define the variable h as:

h = −α
4

(B.3)

Rewrite the quartic equation in a polynomial form that lacks the x3 term:

x4 + Px2 +Qx+R = 0

P = 6h2 + 3αh+ β

Q = 4h3 + 3αh2 + 2βh+ γ

R = h4 + αh3 + βh2 + γh+ δ

(B.4)

The solution to the equation depends on the Q parameter. Indeed, if Q = 0 the quartic
equation becomes a bi-quadratic equation that can be solved by substitution of variables setting
y = x2. If the parameter Q is different from zero, the following cubic equation is solved:

138



t3 + ut2 + vt+ w = 0

u = 2P

v = P 2 − 4R

w = −Q2

(B.5)

The solution to the cubic equation is obtained applying Cardan’s solution which writes the
cubic equation in a "depressed" form that lacks the t2 term and applying a substitution of vari-
able.

Z3 +mZ + n = 0

t = Z − u

3

m =
1

3

(
3v − u2

)
n =

1

27

(
2u3 − 9uv + 27w

)
(B.6)

A discriminant, ∆ is introduced to take into account the number of real solutions and com-
plex solutions associated with the cubic equation.

∆ =
m3

27
+
n2

4
(B.7)

The solution to the cubic equation are different according to the sign and value of the dis-
criminant, ∆. If the discriminant is equal to 0 the cubic equation admits 3 real roots computed
as follows:

Z1 = 2 3

√
−n

2

Z2 = 3

√
n

2

Z3 = Z2

(B.8)

If the discriminant is negative the cubic equation will also admit 3 real solutions that are
computed using the following expressions:
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E0 = 2

√
−m

3

cosφ = − n

2
√
−m3

27

sinφ =
√

1− cos2 φ

φ = atan2(sinφ, cosφ)

Z1 = E0 cos

(
φ

3

)
Z2 = E0 cos

(
φ

3
+

2

3
π

)
Z3 = E0 cos

(
φ

3
+

4

3
π

)

(B.9)

The last case is when the discriminant is positive. In this case the cubic equation admits one
real solution and two complex solutions.

Z1 = 3

√
−n

2
+
√

∆ + 3

√
−n

2
−
√

∆

Z2 = −Z1

2
+

√
−3

2

(
3

√
−n

2
+
√

∆ + 3

√
−n

2
−
√

∆

)
Z3 = −Z1

2
−
√
−3

2

(
3

√
−n

2
+
√

∆ + 3

√
−n

2
−
√

∆

) (B.10)

Once the depressed cubic equation is solved and the original roots t1, t2 and t3 are obtained,
the solutions of the quartic equation are computed as follows:

ξ =
1

2

(
P +max[t1, t2, t3]− Q√

max[t1, t2, t3]

)

ζ =
1

2

(
P +max[t1, t2, t3] +

Q√
max[t1, t2, t3]

)
k2 +

√
max[t1, t2, t3]k + ξ = 0

k2 −
√
max[t1, t2, t3]k + ζ = 0

xi = ki + h

(B.11)
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