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Abstract

In the educational domain, question difficulty estimation consists in esti-
mating a numerical or categorical value representing the difficulty of an
exam question. It is traditionally performed with manual calibration or
pretesting, which have several limitations: indeed, they are either subjective
or introduce a long delay between the time of question creation and when
the new question can be used to assess students. Recent research tried to
overcome these shortcomings by leveraging Natural Language Processing
techniques to perform question difficulty estimation using as input only the
textual content of the questions, which is the only information that is always
available at the time of question creation. Specifically, research proceeded
along two main directions: supervised and unsupervised approaches, which
have peculiar advantages and limitations. This thesis explores previous lit-
erature in both research directions and evaluates several models, including
novel approaches, on real world datasets coming from different educational
domains. The experimental results show that model accuracy heavily de-
pends on the characteristics of the questions under consideration and, most
importantly, the educational domain: while simple models based on read-
ability indexes and linguistic measures are generally fairly accurate on read-
ing comprehension questions, the calibration of questions assessing domain
knowledge requires more advanced models based on the attention mecha-
nism and Transformers.

I





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 About the Importance of Question Difficulty Estimation 2
1.1.2 Traditional Approaches to QDE and their Limitations 3
1.1.3 Natural Language Processing for QDE . . . . . . . . 4

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . 5
1.3 Publication Record . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 7

2 An Introduction to the Concept of Question Difficulty 9
2.1 The Meaning of Question Difficulty . . . . . . . . . . . . . 9
2.2 Sources of Question Difficulty . . . . . . . . . . . . . . . . 11

2.2.1 Exercise Content . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Exercise Format . . . . . . . . . . . . . . . . . . . . 13

2.3 Theories of Testing . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Classical Test Theory . . . . . . . . . . . . . . . . . 18
2.3.2 Item Response Theory . . . . . . . . . . . . . . . . . 19
2.3.3 Manual Definition . . . . . . . . . . . . . . . . . . . 22

3 Statistics and Machine Learning Background 25
3.1 Term Frequency-Inverse Document Frequency . . . . . . . 25
3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . 26

3.2.1 Bidirectional Recurrent Neural Networks . . . . . . . 26
3.2.2 Long Short-Term Memory . . . . . . . . . . . . . . . 27

III



Contents

3.2.3 Gated Recurrent Units . . . . . . . . . . . . . . . . . 27
3.3 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 ELMo . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 BERT . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 DistilBERT . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 XLNet . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Calibration of Neural Networks . . . . . . . . . . . . . . . 30
3.6 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.2 Precision and Recall . . . . . . . . . . . . . . . . . . 31
3.6.3 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.4 Mean Squared Error . . . . . . . . . . . . . . . . . . 32
3.6.5 Root Mean Squared Error . . . . . . . . . . . . . . . 32
3.6.6 Mean Absolute Error . . . . . . . . . . . . . . . . . 33
3.6.7 R2 Score . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.8 nDCG . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Data collections 35
4.1 Cloud Academy . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Cloud Academy_A . . . . . . . . . . . . . . . . . . . 36
4.1.2 Cloud Academy_Q . . . . . . . . . . . . . . . . . . . 37
4.1.3 Cloud Academy_LEC . . . . . . . . . . . . . . . . . 38

4.2 ASSISTments . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 ASSISTments_A . . . . . . . . . . . . . . . . . . . . 40
4.2.2 ASSISTments_Q . . . . . . . . . . . . . . . . . . . . 42

4.3 RACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Supervised Question Difficulty Estimation from Text 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Taxonomy of Literature on Supervised QDET . . . . . . . . 48

5.2.1 Language Assessment (LA) . . . . . . . . . . . . . . 50
5.2.2 Content Knowledge Assessment (CKA) . . . . . . . 51

5.3 Literature on QDET in Language Assessment . . . . . . . . 52
5.3.1 Reading Comprehension Questions . . . . . . . . . . 52
5.3.2 Listening Comprehension Questions . . . . . . . . . 53
5.3.3 Single Word Knowledge Questions . . . . . . . . . . 54
5.3.4 Sentence Knowledge Questions . . . . . . . . . . . . 56

IV



Contents

5.4 Literature on QDET in Content Knowledge Assessment . . 62
5.4.1 Text Only Questions . . . . . . . . . . . . . . . . . . 62
5.4.2 Heterogeneous Questions . . . . . . . . . . . . . . . 69

5.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.1 Linguistic Features . . . . . . . . . . . . . . . . . . 72
5.5.2 Readability Indexes . . . . . . . . . . . . . . . . . . 73
5.5.3 Information Retrieval Features . . . . . . . . . . . . 74
5.5.4 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.5 Transformers . . . . . . . . . . . . . . . . . . . . . . 77
5.5.6 Hybrid Models . . . . . . . . . . . . . . . . . . . . . 79

5.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 80
5.6.1 Setup for Calibration, Training, and Evaluation . . . . 80
5.6.2 Experimental Datasets . . . . . . . . . . . . . . . . . 81

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.7.1 Comparison with gold standard difficulties . . . . . . 84
5.7.2 Study of Question Difficulty Distribution . . . . . . . 89
5.7.3 Additional Analyses . . . . . . . . . . . . . . . . . . 90

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Unsupervised Question Difficulty Estimation from Text 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 Readability Indexes and Similarity Measures . . . . . 103
6.2.2 Question Answering Models . . . . . . . . . . . . . 104

6.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.1 Readability . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2 Similarity . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.3 Score Variance of QA Models . . . . . . . . . . . . . 107
6.3.4 IRT on QA models . . . . . . . . . . . . . . . . . . . 108

6.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 108
6.4.1 Experimental datasets . . . . . . . . . . . . . . . . . 109
6.4.2 Training and evaluating the QA models . . . . . . . . 110
6.4.3 Evaluating unsupervised QDET . . . . . . . . . . . . 111

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5.1 Evaluating QA accuracy and model calibration . . . . 112
6.5.2 Evaluating QDET on the Pairwise Difficulty Predic-

tion Task . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5.3 Evaluating with ranking metrics . . . . . . . . . . . . 118
6.5.4 Distribution of estimated difficulty . . . . . . . . . . 120

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 121

V



Contents

7 A Brief Comparison of Supervised and Unsupervised QDET 125
7.1 Real World Applicability . . . . . . . . . . . . . . . . . . . 125
7.2 Numerical Comparison . . . . . . . . . . . . . . . . . . . . 126

8 Conclusions 129
8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133

VI



CHAPTER1
Introduction

This Chapter introduces this thesis. We start by presenting the motivation
behind it: why the estimation of question difficulty is important in the edu-
cational domain and why, in particular, we might want to perform it using
the textual content of the questions (§1.1). Then, we present the main re-
search contributions of this work (§1.2), the list of publications which it is
based upon (§1.3), and its structure (§1.4).

1.1 Motivation

Recent years have witnessed an exponential growth in the availability of
digital services, and the educational domain was no exception [1]. The
popularity of Massive Open Online Courses increased massively, enabling
hundreds of thousands of students to access online learning content and
online exams [41]. Similarly to what happened in other domains, this in-
crease in the amount of available data enabled the development of many
data driven techniques to improve students’ learning experience and the
effectiveness of learning material. Two examples of this trend are the au-
tomatic recommendation of learning content targeted to the needs of each
student [27,79], and the development of virtual teaching assistants that can
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Chapter 1. Introduction

support students by automatically answering their questions [11,12,29,38].
Another example is students’ assessment, which is the task of estimat-

ing the knowledge level of the students taking an exam. Even though
testing theories for students’ assessment – such as Item Response Theory
(IRT) [45] – had already been developed in psychometrics research and had
been in use for decades (especially for high-stakes exams), they could now
be used on larger pools of students. These theories make diverse assump-
tions but, in most of them, a crucial step is Question Difficulty Estimation
(QDE), which is the task of estimating a value, either numerical or categor-
ical, representing the difficulty of a question. Intuitively, QDE – which is
also referred to as “question calibration” – can be interpreted as the analo-
gous of students’ assessment, with the difference that we consider question
difficulty rather than students’ skill.

The role of QDE in the educational domain is crucial, and in the follow-
ing subsections we describe the reasons behind this importance (§1.1.1),
the traditional methods to perform it along with their limitations (§1.1.2),
and how Natural Language Processing can be leveraged to overcome such
limitations (§1.1.3).

1.1.1 About the Importance of Question Difficulty Estimation

The best way to understand the importance of QDE is through some ex-
amples. The first one is Computer Adaptive Testing (CAT) [73], which
consists in providing students with questions whose difficulty is targeted to
their proficiency. Research showed that CAT is highly beneficial to the stu-
dents’ learning outcome [18] and requires a lower amount of questions to
accurately assess their skill. In case of miscalibrated questions (i.e. assess-
ment items whose difficulty has been erroneously estimated), the effective-
ness of CAT is reduced massively. Indeed, according to Vygotsky’s zone of
proximal development [119], the range of suitable exercises for a learner is
very narrow: exercises that are not challenging easily lead to boredom and
stagnation, whereas overly complex exercises might result in frustration. In
both cases, the learning experience is worse than if the selected questions
are of appropriate difficulty.

Moreover, even considering exercises whose difficulty is suitable to the
skill level of a given student, it was shown that slightly easier exercises
lead to better short term engagement, whereas more difficult exercises are
better for long term engagement [87]. Therefore, being able to accurately
estimate the difficulty of exam questions enables developers of educational
technology to focus on the desired type of engagement.

2



1.1. Motivation

Another example of the importance of QDE are the testing theories –
such as IRT – which leverage the difficulty of exam questions to numeri-
cally estimate the skill level of the students who answered them. In other
words, a student that correctly answers difficult questions is assigned an es-
timated knowledge level higher than a student who correctly answers only
easy questions. As a direct consequence, miscalibrated items affect the ac-
curacy of students’ assessment. Moreover, regardless of the testing theory
that is used in a given exam, a test that is too easy or too difficult results in a
limited range of scores, and such a skewed score distribution is not informa-
tive [4]. This is also the reason why, in high-stakes exams, all the questions
have to pass a thorough quality control before being used to assess students,
in order to keep only the ones that are informative [124].

1.1.2 Traditional Approaches to QDE and their Limitations

Traditionally, QDE is performed with either i) manual calibration [3] or ii)
pretesting [69].

Manual calibration consists of having one (or more) domain experts
manually selecting a numerical or categorical value representing the dif-
ficulty of each question. This can be fairly quick if performed at the time
of manual question creation, but it is not scalable to large amounts of ques-
tions, and it cannot be used in the context of automatic question generation.
Also, it is intrinsically subjective and it was shown that human annotations
are often in disagreement with each other. Indeed, instructors already know
the solutions to the assessment items and cannot always anticipate the con-
fusion an exercise might cause for learners.

Pretesting, on the other hand, consists of estimating question difficulty
based on posterior performance measures. Specifically, the questions under
pretesting are deployed in an exam, as if they were standard questions, but
are not used for assessment. The other questions in the exam are used to
assess the students, and their answers – together with the estimated skill
level – are used to calibrate the questions under pretesting. This approach
leads indeed to an accurate and reliable estimation of question difficulty,
which is the reason why it is generally used for high-stakes exams, but it
introduces a long delay between the time of question generation and when
the questions can be used to assess students. Also, it requires the new
questions to be shown to students before being actually used to score them,
which is in some cases undesirable, as they might be leaked or exposed too
often [120].

3



Chapter 1. Introduction

1.1.3 Natural Language Processing for QDE

In order to overcome the limitations of traditional approaches to question
calibration, recent research has attempted to leverage Natural Language
Processing (NLP) to automatically estimate question difficulty at creation
time. Such works are all based on the idea that question text is the only in-
formation that is always available at the time of question generation and, if
we were able to perform an accurate QDE from textual content, we would
overcome the need for pretesting and manual calibration, and their limita-
tions.

In this thesis, we focus on the task of QDE from Text (QDET), evalu-
ating and comparing different approaches proposed to address it, both the
ones modeling it as a supervised task and the ones modeling it as an un-
supervised task, including a novel approach proposed in this thesis for the
first time.

Almost all the approaches proposed in previous research are trained in
a supervised manner. Starting from a set of questions of known difficulty
– generally calibrated with pretesting, which is more reliable than manual
calibration – a machine learning model is trained in a supervised manner to
estimate question difficulty from text. The trained model can then be used
to estimate the difficulty of newly created questions (of unknown difficulty)
without the need for pretesting or manual calibration. In this work, we cat-
egorize the approaches proposed in previous literature according to a tax-
onomy based on question characteristics, and experiment on three datasets
(two being publicly available) from diverse educational domains to evaluate
how different architectures perform, especially focusing on the relevance of
different types of features.

Supervised QDET targets the limitations of traditional approaches to
QDE, but it has some limitations of its own: crucially, it requires a large
dataset of calibrated questions for training, which might hinder its effec-
tiveness. The required amount of questions depends on the specific ar-
chitecture (e.g. models based on neural networks generally require larger
datasets than simple regression models), but even the simplest models re-
quire hundreds or thousands of training questions. Also, many architectures
for supervised QDET leverage information related to the semantic meaning
of the questions, therefore such models can only be used to calibrate ques-
tions belonging to the same educational domain as the training items. As an
example, let us assume that we trained a model to calibrate math questions
from their text; there is no guarantee that the same model – without retrain-
ing – would work on questions about medicine or geography, and this is

4



1.2. Research Contributions

true even at a smaller scale (e.g. different mathematical topics).
Targeting these issues, some recent research experimented with unsu-

pervised approaches to QDET. Compared to the supervised techniques, the
main advantage of unsupervised approaches is that they do not require a
large training set of calibrated questions, although they might require su-
pervision in a related (but different) task. There is very limited research
on unsupervised QDET, and it mainly focuses on one of three aspects: i)
the readability of the question, ii) the similarity between the correct an-
swer and the question or (in the case of multiple choice questions) between
the correct choice and the distractors, or iii) the performance of Question
Answering (QA) models trained to answer the questions under calibration.

In this thesis, we experiment on two real world datasets (one being pub-
licly available) to evaluate the techniques proposed by previous research
for unsupervised QDET, and propose and evaluate a novel approach.

We experiment on the supervised and the unsupervised approaches in
two separate chapter because they make different assumptions and have
different requirements; indeed, they cannot be always used on the same set
of questions. However, to conclude this thesis, we also perform a com-
parison of their performance, hoping to provide some useful guidelines for
practitioners and researchers addressing these tasks.

1.2 Research Contributions

In this section we detail the research contributions of this study, which are
related to i) the analysis of the performance of different architectures and
the importance of different features in the task of QDET, and ii) the pro-
posal of a new approach to perform QDET in an unsupervised manner.

• Analysis of the importance of different types of features and of
the effectiveness of different architectures in the task of super-
vised QDET. First, we categorize the approaches proposed in previ-
ous literature according to a taxonomy based on question characteris-
tics. Then, we evaluate how different families of algorithms, including
two approaches we proposed in previous research, perform in the task
of supervised QDET using three real world datasets from different ed-
ucational domains.

• Analysis of the performance of the state of the art models to per-
form unsupervised QDET. We evaluate and compare the models re-
cently proposed for unsupervised QDET, including an approach we

5



Chapter 1. Introduction

proposed in previous research, using two experimental datasets from
different educational domains.

• Proposal of a new approach to perform QDET in an unsupervised
manner. We propose a novel approach for unsupervised QDET, and
compare it with the previously proposed approaches.

• Comparison of supervised and unsupervised approaches to QDET.
We compare the performance of supervised and unsupervised tech-
niques to QDET, highlighting their strengths and weaknesses.

1.3 Publication Record

This thesis is partially based upon the following published articles (ordered
by publication date).

• [10] L. Benedetto, A. Cappelli, R. Turrin, P. Cremonesi; “R2DE: a
NLP approach to estimating IRT parameters of newly generated ques-
tions”; in Proceedings of the Tenth International Conference on Learn-
ing Analytics and Knowledge; 2020.

• [9] L. Benedetto, A. Cappelli, R. Turrin, P. Cremonesi; “Introducing
a framework to assess newly created questions with Natural Language
Processing”; in International Conference on Artificial Intelligence in
Education; 2020.

• [8] L. Benedetto, G. Aradelli, P. Cremonesi, A. Cappelli A. Giussani,
R. Turrin; “On the application of Transformers for estimating the dif-
ficulty of multiple choice questions from text”; in Proceedings on the
16th Workshop on Innovative Use of NLP for Building Educational
Applications; 2021.

• [75] E. Loginova, L. Benedetto, D. Benoit, P. Cremonesi; “Towards
the application of calibrated Transformers to the unsupervised esti-
mation of question difficulty from text”; in Proceedings of the Inter-
national Conference on Recent Advancements in Natural Language
Processing (RANLP); 2021.

It is also partially based on the following survey paper, which is currently
under revision for publication at the ACM Computing Surveys Journal:

• L. Benedetto, P. Cremonesi, A. Caines, P. Buttery, A. Cappelli, A.
Giussani, R. Turrin; “A survey on recent approaches to Question Dif-
ficulty Estimation from text”.
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Considering the research activity that led to the writing of this thesis,
other papers were published, even though this thesis is not directly based
on them:

• [12] L. Benedetto, P. Cremonesi, M. Parenti; “A virtual teaching as-
sistant for personalized learning”; SIR Workshop at the 27th ACM In-
ternational Conference on Information and Knowledge Management
(CIKM); 2018;

• [11] L. Benedetto, P. Cremonesi; “Rexy, a configurable application
for building virtual teaching assistants”; in IFIP Conference on Human-
Computer Interaction; 2019

1.4 Thesis Outline

• Chapter 1 introduced this thesis, describing the motivations and re-
search contributions, as well as listing the publications that are directly
or indirectly related to the work carried out for writing this thesis.

• Chapter 2 defines the concept of question difficulty, describing the
question characteristics that affect it and presenting the theories of
testing that are referred to or used in this thesis.

• Chapter 3 provides a statistics and machine learning background, in-
troducing the techniques and models used in the rest of this document.

• Chapter 4 presents the experimental datasets which are used in this
work.

• Chapter 5 focuses on supervised QDET, from presenting the relevant
literature and categorizing it according to a taxonomt based on ques-
tion characteristics, to describing the experimental setup and the ex-
perimental results.

• Chapter 6 focuses on unsupervised QDET, introducing the relevant
literature and the newly proposed model, as well as showing the ex-
perimental results.

• Chapter 7 provides a comparison of the techniques presented in the
previous two chapters for supervised and unsupervised QDET.

• Chapter 8 concludes this thesis and discusses future works.
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CHAPTER2
An Introduction to the Concept of Question

Difficulty

In this Chapter we introduce the concept of difficulty. We start by providing
the definition of question difficulty and its meaning in an educational setting
(§2.1). We then describe which are the question characteristics that affect
question difficulty (§2.2), and introduce the theories of testing that are most
commonly used to perform the numerical estimation of question difficulty
(§2.3).

2.1 The Meaning of Question Difficulty

As a first step towards defining the concept of question difficulty in the
educational domain, let us start by defining question. In the Cambridge
Dictionary, it is defined “a sentence or phrase used to find out information”
but, if we narrow our focus down to the educational domain, the definition
is different: “in a test or exam, a problem that tests a person’s knowledge
or ability”. Thus, we can have an intuition of the meaning of question
difficulty in the educational setting, which is a quantitative measure of the
skill level that is required to solve the task at hand (i.e. correctly answer

9



Chapter 2. An Introduction to the Concept of Question Difficulty

the question).

Quantitatively measuring question difficulty is extremely challenging:
indeed, it is an unobservable characteristic of exam questions – a latent
trait – and it is not possible to perform a direct measure in order to assign
it a numerical value. In this sense, it is very different from other commonly
used measures: as an example, if we want to measure distance, it is suffi-
cient to have a reference object of known length and compare the target of
our measurement with the reference object. In the case of question diffi-
culty, it is not possible to do anything like this, nor to use a reference exam
and say that another exam is “N times more difficult than the reference”.

Research in psychometrics proposed several techniques to numerically
estimate question difficulty1, and they are all based on the same assump-
tion: the answers provided by a group of students (and their correctness)
are used to estimate with pretesting the difficulty of the question under
consideration. This implies that the estimated difficulty depends on the
skill levels of the students answering the question and different difficulties
might be associated to the same question, depending on the students which
were considered and the exam in which the question appeared. Fortunately,
these issues do not affect the usability of these techniques and the validity
of the difficulties estimated with them, but they highlight the challenges of
the task of difficulty estimation, which are reflected in the task of QDET.

Another important remark is the fact that there might be “several diffi-
culties” associated to a specific exam question, each one being associated
to a specific topic, skill, or cognitive process [52, 60, 127]. In these cases,
students can correctly answer the question if and only if they are skilled
enough in all the required skills.

Lastly, it is important to clarify here that the concept of question diffi-
culty exists in different domains, and its definition – as well as the question
characteristics that affect it – heavily depends on the domain under con-
sideration. As an example, the question difficulty defined in a community
question answering website such as StackOverflow2 is different from the
concept of question difficulty defined in the educational setting. In this the-
sis, we only focus on the educational domain and therefore consider only
the difficulty as defined in that setting.

1Some of these theories are presented in detail in §2.3
2https://stackoverflow.com/
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2.2. Sources of Question Difficulty

Question:
A 55-year-old woman with small cell carcinoma of the lung is admitted to the hospital to 
undergo chemotherapy. Six days after treatment is started, she develops a temperature of 38C 
(100.4F). Physical examination shows no other abnormalities. Laboratory studies show a 
leukocyte count of 100/mm3 (5% segmented neutrophils and 95% lymphocytes). Which of the 
following is the most appropriate pharmacotherapy to increase this patient’s leukocyte count?

Options:
A. Darbepoetin B. Dexamethasone C. Filgrastim
D. Interferon alfa E. Interleukin-2 (IL-2) F. Leucovorin

Figure 2.1: Example of a test item from the Clinical Knowledge component of the United
States Medical Licensing Examination.

2.2 Sources of Question Difficulty

In this Section we provide an overview of the question characteristics that
have an impact on item difficulty, discussing both the effects of exercise
content (i.e. the knowledge assessed by the question and its verbalization)
and exercise format (i.e. the structure of the question).

In the previous section, we have mentioned that the definition of ques-
tion difficulty can be diverse depending on the domain under consideration
and there is a significant difference between educational questions and non-
educational questions. However, even narrowing our focus down to the ed-
ucational setting, exam questions can be very diverse from each other, and
this directly influences the components which have the biggest impact on
item difficulty.

As a simple example, let us consider two questions. The first one, shown
in Figure 2.1, is an exam question from the Clinical Knowledge component
of the United States Medical Licensing Examination3. Arguably, the dif-
ficulty of this question mostly depends on the specific domain knowledge
which is being assessed. However, it is a Multiple Choice Question (MCQ),
and its difficulty also depends on the distractors (i.e. the wrong options) that
are presented to the students. Indeed, if the distractors are blatantly wrong,
the question is easy, if they are closer to the correct answer, the question
is more difficult. Another peculiarity of MCQ is the fact that students can
pick the correct answer by random guessing, which has an influence on dif-
ficulty. Lastly, the question difficulty is also affected by its verbalization,
i.e. the words that are used and their position in the text.

The second example is a question from an exam of the International En-
glish Language Testing System (IELTS)4, shown in Figure 2.2. In this case,

3https://www.usmle.org/step-2-ck/
4https://www.ielts.org/
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Figure 2.2: Example of a reading comprehension question from an IELTS exam.

we have a reading comprehension question (i.e. the student has to infer the
correct answer from the reading passage), and the answer is open (i.e. no
answer options are given). If we reflect on which are the aspects that affect
question difficulty, we can immediately see that there are some differences
with respect to the previous example. Indeed, domain knowledge is not
important – there is no “domain knowledge” in this case, at all – and there
are no distractors to affect item difficulty. On the contrary, the verbaliza-
tion and the readability of the question and of the reading passage have the
biggest impact on question difficulty.

The two examples above show the diversity of the factors that affect
question difficulty and how the importance of each factor depends on the
question format and the educational domain. When dealing with question
difficulty, we can identify two macro-domains: i) Language Assessment
(LA), both first language and foreign language, and ii) Content Knowl-
edge Assessment (CKA), e.g. history, medicine, which is sometimes also
referred to as domain knowledge assessment. The question in the first ex-
ample belongs to the CKA domain, while the second belongs to the LA
domain.

In LA the difficulty comes from linguistic demands of the task and the
topic being assessed along with any stimulus text, while in CKA the diffi-
culty mostly comes from the specific topic which is being assessed and the
verbalization of the question only has a secondary role. Moreover, ques-
tions in CKA are often built in order to minimize the effects of language
on the difficulty, especially in high-stakes exams [123], which is obviously
not the case in LA.

Regardless of the educational domain under consideration, question dif-
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ficulty is determined by two components [106]: i) exercise content, which
is the verbalization of the question and the knowledge assessed by it, and
ii) exercise format, which is related to the structure of the question.

2.2.1 Exercise Content

Exercise content refers to the specific knowledge which is being assessed
by the question, and its verbalization.

With knowledge, we indicate the topic which is assessed, both in CKA
(e.g. solution of a differential equation in a math exam) and LA (e.g.
present perfect in an English exam).

Verbalization, on the other hand, refers to how the question is written:
its readability, whether it is unambiguous, clear, and exhaustive, as well as
the complexity of the language used in the text. The relevance of these two
components is different between language assessment and content knowl-
edge assessment.

2.2.2 Exercise Format

Exercise format refers to the structure of the question; i.e. how it is pre-
sented to students. Specifically, we can categorize the questions along the
following dimensions: i) format of students answers, ii) type of question,
and iii) input information.

Format of Student’s Answer

Considering the format of students’ answers, we can distinguish between
Multiple Choice Questions (MCQ) (such as the example in Figure 2.1) and
open answer questions (as the example in Figure 2.2).

In MCQ, students are given the question (referred to as stem) and a set
of possible answer choices, among which there is the correct one; the other
choices are referred to as distractors and have the goal of inducing the stu-
dent to make mistakes. The number of correct choices might vary, as well
as the number of distractors, and students are generally asked to select all
the correct choices in case of multiple correct options. The difficulty of
MCQ depends on all three components: the stem, the correct choice(s),
and the distractor(s). More precisely, research showed that the similarity
between the correct choice(s) and the distractor(s) have a significant im-
pact on question difficulty [2, 54, 118]. Also, when dealing with MCQ,
students can guess the correct answer by randomly picking one or more of
the options, and this influences the difficulty, as well.
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Open answer questions, on the other hand, contain only the text of the
exercise; thus, students are asked to provide the correct answer without
having the chance to select it from a set of given options. In this case,
question difficulty depends only on the question and the correct answer, as
there are no distractors and the chance of randomly guessing is virtually
nonexistent.

Type of Question

As for the question types, there is a variety of options which are commonly
used in the educational domain. Interestingly, the widest variety of ques-
tion types is observed in language assessment, while content knowledge
assessment is generally limited to interrogative and cloze items. Below,
we list the types of questions which are most commonly considered in the
literature.

Interrogative questions, as the two examples shown in Figure 2.3, are
the ones that are most commonly used. It is important to mention that they
do not always end with a question mark, as visible in the example.

Figure 2.3: Example of interrogative questions.

Cloze items contain one or more gaps, each representing one or more
words, and the student has to answer with the word(s) that correctly fill the
gap. An example of cloze item is shown in Figure 2.4.

Figure 2.4: Example of cloze item.

C-tests are somewhat similar to cloze items, as they contain gaps which
have to be filled by the student. However, the gaps do not represent whole
words (or groups of words), as in cloze items, but are obtained by removing
the second half of some words in the question text; the number of gaps in
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each sentence/paragraph can be different and it is an exam design choice.
An example of c-test is shown in Figure 2.5.

Figure 2.5: Example of c-test.

Prefix deletion items are basically the same as c-tests, with the only dif-
ference that the first halves of the words are masked instead of the second
halves; an example is shown in Figure 2.6. Cloze items, c-tests, and prefix
deletion items are all form of reduced redundancy testing [107], which is
based on the idea that natural language can be redundant thanks to contex-
tual cues, and more advanced learners can be distinguished from beginners
by their ability to deal with reduced redundancy.

Figure 2.6: Example of prefix deletion item.

Cued Gap-Filling Item (CGFI) are used in language assessment, and
have the goal of assessing the grammar knowledge of students rather than
their vocabulary breadth. In CGFI, students read a short text and fill in the
gap(s) using cues consisting of a single word which must be transformed to
fit the context (generally verbs which have to be conjugated in the correct
form), as in the example shown in Figure 2.7.

Question:
 The Taj Mahal __________________ (build) around 1640.

Figure 2.7: Example of CGFI.

In Closest in meaning (CIM) items, students are given a text passage and
are asked to pick, from a set of possible choices, the word that is closest in
meaning to a word highlighted in the text. An example of CIM item is
shown in Figure 2.8.
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Text: [...] The exact role of other factors is much more difficult to pinpoint; for instance, [...]

Question: The word “pinpoint” in the paragraph is closest in meaning to:
1. identify precisely 2. make an argument for 3. describe 4. understand

Figure 2.8: Example of CIM item.

Yes/No items have a very simple structure: students receive a list of
words and have to select the ones that are real words. An example is shown
in Figure 2.9.

Question:
 Select the real English words:

Options:
A. Frequently B. Apply C. Positively D. Morride E. Shampoo F. Brican

Figure 2.9: Example of Yes/No item.

In Vocabulary Knowledge Scale (VKS), students are asked to report how
well they know a word and – if they report knowing it – they have to provide
a synonym, a translation, or an example of the word in context [58,110], as
shown in the example in Figure 2.10.

Word: apply

Options:
1. I have not seen this word before
2. I have seen it, but I don't know what it means 
3. I have seen it before and I think it means: __________ (synonym or translation) 
4. I know this word. It means __________ (synonym or translation)
5. I can use this word in a sentence: __________

Figure 2.10: Example of VKS item.

In Vocabulary Level Test (VLT), students are shown one or more defini-
tions together with one or more target words, and they have to match the
definitions with the target words [5, 84, 98]. The number of definitions and
target words can vary, as shown in Figure 2.11.
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Definitions: 
A. Set of beliefs
B. Having a very close relationship
C. Separate parts of something larger

Words:
1. Intimacy 2. Doctrine 3. Section
4. Focus 5. Volume 6. Mathematics

Definitions: 
A. Machine for making food hot
B. Machine that makes sounds louder
C. Machine that makes things look bigger

Word:
1. Microphone

Figure 2.11: Example of two VLT items.

Format of Input Information

Another dimension which exam questions can be categorized along is the
format of input information. Indeed, as we have seen in the first two exam-
ples in this chapter (Figure 2.1 and Figure 2.2), questions can either be i)
comprehension questions or ii) knowledge questions.

Comprehension questions are given to the user together with an accom-
panying textual passage, and the task of the user is to find in the passage
(or infer from it) the answer to the question. Two types of comprehen-
sion questions are generally used: i) reading comprehension questions or
ii) listening comprehension questions, depending on whether the additional
passage is written or spoken.

Knowledge questions, on the other hand, do not come with an accompa-
nying passage, and for this reason they are sometimes referred to as stan-
dalone questions. They can be categorized in i) text-only questions and
ii) heterogeneous questions, depending on whether they contain only tex-
tual information or also information of other nature. Specifically, heteroge-
neous questions generally contain images or tables which provide informa-
tion needed to correctly answer the question.

It is important to remark here that in this thesis we use this definition of
comprehension question and knowledge question, which is different from
the one given in Bloom’s taxonomy [13]. Indeed, Bloom’s taxonomy delin-
eates a hierarchy of cognitive-learning levels, ranging from the knowledge
of specific facts to more advanced levels of synthesis, while here we exclu-
sively categorize the questions depending on their format (i.e. whether they
are provided with additional text which contains the information required
to answer the question)5.

5The original Bloom’s taxonomy categorizes questions according to six cognitive levels, ranging from the
knowledge of specific facts to more advanced levels. i) Knowledge “involves the recall of specifics and universals,
the recall of methods and processes, or the recall of a pattern, structure, or setting”. ii) Comprehension “refers
to a type of understanding or apprehension such that the individual knows what is being communicated and can
make use of the material or idea being communicated without necessarily relating it to other material or seeing its
fullest implications”. iii) Application “refers to the use of abstractions in particular and concrete situations”. iv)
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2.3 Theories of Testing

In the previous sections, we discussed the sources of question difficulty,
but did not provide any indications of how the difficulty is numerically esti-
mated in practice. The theories that model questions difficulty and provide
a way to numerically estimate it are referred to as theories of testing. Sev-
eral theories exists, and they all define the difficulty in different manners.
Crucially, there is not one theory which is overall “better” than the others,
and the process of choosing the testing theory to use is an exam design
choice beyond the scope of this thesis. Arguably, the most commonly used
theories are Classical Test Theory (CTT) and Item Response Theory (IRT),
but it is also quite common for exam designers to use manually defined dif-
ficulties, which are not based upon any theory and are not estimated from
the correctness of students’ responses. Regardless of the testing theory
used (if any), the difficulty can be either a continuous value or a discrete
(categorical) value.

In the rest of this section, we introduce the theories and techniques that
are most commonly used for modeling question difficulty: i) CTT (§2.3.1),
ii) IRT (§2.3.2), and iii) manual definition (§2.3.3).

2.3.1 Classical Test Theory

Classical Test Theory (CTT) [44] is a well established testing theory that
predicts outcomes of psychological testing, such as the difficulty of items
or the ability of test-takers. The term “classical” refers to the contrast with
modern psychometric theories such as IRT.

CTT assumes that each individual is associated with a true ability score
T , which would be the expected correctness (i.e. fraction of correct an-
swers) of an infinitely long run of repeated independent administrations of
the same test. In practice, we can use the observed score X , which is the
sum of the true score T and an error E:

X = T + E (2.1)

where T and E are two unobservable (or latent) variables.
The major assumptions of CTT are the following:

• T and E are not correlated;

Analysis represents the “breakdown of a communication into its constituent elements or parts such that the relative
hierarchy of ideas is made clear and/or the relations between ideas expressed are made explicit”. v) Synthesis is
the “putting together of elements and parts so as to form a whole”. vi) Evaluation relates to “judgments about
the value of material and methods for given purposes”.
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• E is normally distributed with zero mean;

• the errors of different tests are not correlated.

The concept of item difficulty in CTT is expressed by the p-value, which
is a continuous value in the range [0; 1] (sometimes scaled to [0; 100]).
The p refers to “probability” and is the fraction of correct responses in the
considered population. The p-value is typically referred to as correctness:
the higher the p-value, the easier the item is. Similarly, we can define the
wrongness as 1 - p-value: the higher the value, the more difficult the item
is.

The main limitation of CTT is the fact that it does not leverage the stu-
dents’ skills when estimating the item difficulty, meaning that it considers
all the students as having the same skill level; its main advantage is being
simple to compute and to interpret, with respect to other techniques such as
IRT.

2.3.2 Item Response Theory

Item Response Theory (IRT) [45] is another well established technique
that associates latent traits to both students and questions. Its simplest
implementation, the one-parameter model (also referred to as the “Rasch
Model” [94]), associates a skill level θ to each student and a difficulty level
b to each question.

An important property of IRT is the “invariance property”: the estimated
latent traits do not depend on the ability distribution of test takers. In prac-
tice, this means that the difficulties estimated with IRT do not depend on
the specific skill level of the pool of students used to estimate them, which
is a strong advantage with respect to CTT.

The two major assumptions of IRT are that:

• the individuals are independent from one another;

• the item responses of a given individual are independent from one
another.

For a given question j and its latent trait bj , we can define the item
response function (i.r.f.) which indicates the probability (PC) that a student
i with skill level θi answers the question correctly. The formula of the i.r.f.
is as follows:

PC =
1

1 + e−1.7·(θi−bj)
(2.2)
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Figure 2.12: Example of the item response functions of two questions with different diffi-
culty.

The background intuition is that a student with a given skill θi has a
lower probability of correctly answering more difficult questions. If a ques-
tion is too difficult or too easy (i.e. bj →∞ or bj → −∞), all the students
will answer in the same way (i.e. PC → 0 or PC → 1) regardless of θi. This
shows, from a mathematical perspective, why it is important to use only
assessment items that are not too easy nor too difficult. As an example,
Figure 2.12 plots the item response functions of two questions of different
difficulty (b1 = −1 and b2 = 3). As expected, the shape of the two i.r.f.
is the same, but the one related to the easier question is shifted towards the
left, meaning that a student with a certain skill level (e.g. θa = 1, as in the
image) has a higher probability of correctly answering it with respect to the
more difficult question.

More complex models also consider additional latent traits for ques-
tions, allowing for i.r.f. of different shapes. Specifically, we can associate
to each question a discrimination a, which affects the steepness of the item
response function, and a guess factor c, which represents the probability
that a student correctly answers a question by guessing. The general for-
mula of the i.r.f. is as follows (the one-parameter model is obtained by
setting ci = 0 and ai = 1):

PC = ci +
1− ci

1 + e−1.7·ai·(θi−bj)
(2.3)

Figure 2.13 displays the i.r.f. of three questions which have the same
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Figure 2.13: Example of the item response functions of three questions with equal diffi-
culty and different discrimination.

difficulty and different discriminations: it shows that question with dis-
crimination closer to 0 are less capable of discriminating between highly-
skilled and lowly-skilled students, and therefore are less informative for
estimating their knowledge level. Also, if we have a question with negative
discrimination, it means that highly-skilled students are less likely to cor-
rectly answer than low-skilled students, which suggests that there might be
something wrong with the question. For this reason, the discrimination is
often used a quality indicator for exam questions.

Lastly, Figure 2.14 displays the i.r.f. of two questions which have the
same difficulty and the same discrimination, but different guess factor;
specifically, they have c1 = 0 and c2 = 0.25. We can observe that, con-
sidering the question with c2 = 0.25, even students with a very low skill
level have a chance of randomly picking the correct choice. For this reason,
the guess factor is often used when modeling MCQ.

IRT models are trained using as input information the answers given by
a set of students to a set of questions. Specifically, both the skill levels of
the students and the difficulty of the questions are estimated via likelihood
maximization, by selecting the configuration (i.e.the θs, bs, and possibly as
and cs) that maximizes the probability of the observed results.

Also, with IRT, it is possible – given the responses of a student i to a
set of calibrated questions Q = q1, q2, ..., qNq – to assess the knowledge
level θ̃i of the student from the correctness of its answers. This is done
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Figure 2.14: Example of the item response functions of two questions with equal difficulty,
equal discrimination, and different guess factor.

by maximizing the results of the multiplication between the i.r.f. of the
questions that were answered correctly and the complementary of the i.r.f.
of the questions that were answered erroneously, as follows:

θ̃ = max
θ

 ∏
qj∈QC

1

1 + e−1.7·(θ−bj)
·
∏

qj∈QW

(
1− 1

1 + e−1.7·(θ−bj)

) (2.4)

where QC and QW are the sets of question that were correctly and wrongly
answered, respectively.

All the latent traits obtained in IRT are real values in a given range (se-
lected at the time of model calibration). In practice, the continuous dif-
ficulty obtained with IRT is sometimes converted to discrete values, thus
representing difficulty in a discrete manner.

2.3.3 Manual Definition

In many cases, discrete difficulties are obtained by converting the value
obtained with either IRT or CTT into a discrete class. However, in some
cases, question difficulty is not based upon any learning theories and it
is just manually selected by educational experts. In all these cases – at
least considering recent literature – the difficulty is modeled as a discrete
variable, and the number of possible classes can vary, depending on the
specific implementation.
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An example of “manual definition” are CEFR6 levels – six levels, from
A1 to C2 – which are based on expert-defined rules rather than being based
on the statistics of students’ responses.

6https://www.coe.int/en/web/common-european-framework-reference-languages/
table-1-cefr-3.3-common-reference-levels-global-scale
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CHAPTER3
Statistics and Machine Learning

Background

In this Chapter we provide a brief introduction to the techniques and ma-
chine learning architectures that are referred to or used in this study. It
is written for the reader’s convenience and it is meant to provide for each
technique a quick reference for the rest of this thesis, but we do not have
the goal of being exhaustive. Thus, we also include references to relevant
papers.

3.1 Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TF-IDF) [59] is a technique
coming from information retrieval that can be used to represent the impor-
tance of a word (or a set of words) to a document in a corpus (i.e. a set of
documents). It is based on the intuition that the importance grows with the
number of occurrences of the word in the document but it is limited by its
frequency in the whole corpus, meaning that words that are very frequent
in all the documents are not important to any of them.

The formula used to compute the TF-IDF weight of wordw in document
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d belonging to the corpus C = {d1, d2, ..., dNd
} is the following:

TFIDF(w, d, C) = count(w, d) ·
(
loge

Nd + 1

count(w,C) + 1
+ 1

)
where count(w, d) is the number of occurrence of w in document d, Nd is
the number of documents in the corpus C and count(w,C) is the number
of documents in the corpus C where w appears.

TF-IDF is used in a variety of domains and has many applications; how-
ever, in all the research covered in this study it is exclusively used as a
technique to obtain features that are later used to train supervised models
to perform QDET.

3.2 Recurrent Neural Networks

The Recurrent Neural Network (RNN) [95] is an artificial neural network
architecture which uses sequential data, and it is most commonly used for
ordinal or temporal problems (e.g. language translation). The key differ-
ence with respect to other neural networks is the fact that RNNs have a
“memory”, which enables them to consider information from prior steps in
the sequence when dealing with current input. Therefore, the output to a
given input does not depend only on the input itself (as it does for traditional
neural networks), but also on the history that led to that point.

RNN are trained with backpropagation, but in a slightly different way
with respect to traditional neural networks. Indeed, RNN leverage back-
propagation through time, which is specific to sequential data. Similarly
to traditional backpropagation, the model is trained by calculating the er-
rors from the output layer to the input layer, but the difference is that – in
backpropagation through time – the errors at each timestamp are summed.

This process might cause two issues, known as vanishing gradients and
exploding gradients. The gradient is the slope of the loss function along the
error curve; when it is too small, it keeps getting smaller, until it is too small
to update the weights of the network. When that happens (vanishing gra-
dients), the algorithms is no longer learning. On the other hand, exploding
gradients occur when the gradient is too large, which creates an unstable
model.

3.2.1 Bidirectional Recurrent Neural Networks

Bidirectional Recurrent Neural Networks (BRNN) [99] are a variant of
standard RNN which uses future data to improve the accuracy of the current
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prediction. While it is not possible in all scenarios (e.g. time series predic-
tion), it proved very useful particularly on written text. Indeed, BRNN are
capable of using all the words in a sentence to perform the task, e.g. predict
a masked word, rather than using only the words that precede the one that
was masked, which provides more context to the model and therefore ease
the task.

3.2.2 Long Short-Term Memory

Long short-term memory (LSTM) [50] is a popular RNN architecture, that
was proposed to address the issue of vanishing gradients occurring in stan-
dard RNNs. In practice, if the current prediction is affected by a previous
state which is not in the recent past, standard RNN models may be unable
to perform accurately, due to how they encode previous history. LSTMs
address this issue by using memory cells in the hidden layers of the neural
network, which contain three gates to control the flow of information which
is needed to predict the output in the network.

3.2.3 Gated Recurrent Units

Gated recurrent units (GRU) [22] are a type of RNN similar to LSTM, built
to address the short-term memory problem of standard RNNs. Rather than
using a cell state to manage information, GRU use hidden states, and in-
stead of the three gates used in LSTM, two gates, a reset gate and an update
gate, that control how much information and which information should be
retained by the model.

3.3 Word Embeddings

In Natural Language Processing (NLP), word embeddings are representa-
tions of words in the form of real-valued vectors. They encode the semantic
meaning of words and are built in a way such that words which are closer
in the vector space are expected to be closer in meaning. They can be
obtained with diverse techniques, generally using some form of neural net-
work. In this thesis, we use or mention three embedding techniques, which
differ in size, architecture, and approach used for training: Word2Vec [81],
GloVe [90] and ELMo [92].

3.3.1 Word2Vec

Word2Vec [81] is a word-based embedding model, meaning that it takes
words as input and outputs word embeddings. It does not take into account
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word order during training and, as a consequence, it is context independent,
meaning that it outputs only one vector for each word, combining all the
different meanings of that word into one vector. As a practical example,
this means that the word bank in the two sentences “I went to the bank
for a mortgage.” and “The river bank.” would be converted into the same
word embedding. The training of the neural network is done incrementally,
repeatedly iterating over a training corpus.

3.3.2 GloVe

GloVe (Global Vectors for Word Representation) [90] is similar in several
ways to Word2Vec, in that it is a context independent word-based embed-
ding model. A key difference from Word2Vec is the fact that at training
time it works to fit vectors to model a word co-occurrence matrix built from
the whole training corpus.

3.3.3 ELMo

ELMo (Embeddings from Language Models) [92] is quite different from
both Word2Vec and GloVe: indeed, it is character-based and uses LSTMs,
meaning that it takes into account word order. As a consequence, ELMo
embeddings can capture the context of a word (i.e. its position in a sen-
tence) and the same word used in different sentences will be translated into
different embeddings.

3.4 Transformers

The Transformer [117] is a deep learning architecture originally introduced
in 2017 and mostly used in NLP tasks. Transformers are built to handle
sequential data, such as natural language, without requiring it to be pro-
cessed in order. This allows parallelization, reducing training time and
making training on large corpora easier. Also, Transformers can manage
long-range dependencies as they are based on the attention mechanism,
which is a technique that enables the model to “focus” on specific portion
of the textual input, giving them more importance than the other words.

In this thesis, three Transformer-based models are referred to: BERT
[26], DistilBERT [97], and XLNet [126].

3.4.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) [26] is
a language model that, when introduced, reached state of the art perfor-
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mance in many language tasks by applying the bidirectional training of the
Transformer to language modeling.

BERT is originally trained on two tasks: i) Masked Language Modeling
(MLM) and ii) Next Sentence Prediction (NSP). MLM consists in randomly
masking words in the input text (one at a time) and asking the model to
predict the masked words; NSP consists in giving two input sentences to the
model and asking it to estimate whether the second sentence is a reasonable
continuation to the first one.

One of the huge advantages of BERT is the possibility of using it for
different down-stream tasks. Indeed, starting from the pre-trained model,
it is possible to fine-tune it on desired tasks by stacking a layer on top of
the original network. During fine-tuning, not only the weights of the added
layer are updated, but also the internal weights of the pre-trained model in
order to adapt them to the desired task, which is both more accurate than
re-training the whole network (because the pre-existing knowledge is not
discarded) and more efficient.

3.4.2 DistilBERT

One limitation of BERT is its being a large model, which requires many re-
sources for training and fine-tuning. For this reason, some “lighter” version
of BERT were built: in this thesis we consider DistilBERT [97], which is a
language model obtained from BERT with knowledge distillation. Knowl-
edge distillation is a compression technique in which a small model (re-
ferred to as student) is trained to reproduce the full output distribution of a
larger model (referred to as teacher) [49]. With this approach, DistilBERT
is able to retain – according to the authors of the original paper – 95% of
BERT’s performance on a language understanding task using about half the
number of parameters. Also, similarly to BERT, DistilBERT can be fine-
tuned on downstream tasks different from the ones it was originally trained
on.

3.4.3 XLNet

XLNet [126] is a generalized autoregressive model for natural language
understanding. When introduced, its main contribution was not the archi-
tecture but rather the modified training objective, which learns conditional
distributions for all permutations of tokens in a sequence.

One of the training task used for BERT is masked language modeling:
the model receives a sentence in which a token has been masked, and has
to predict the token which was masked. In doing so, BERT uses as context
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both left and right tokens, but considers only the original sentence. XLNet
takes this a step further: it predicts each word in a sequence using any
combination of the other words in that sequence. In practice, this means
that XLNet is presented more difficult (and sometimes ambiguous) contexts
to infer whether a word is or not in a sequence, and this enables it to extract
more information out of the training corpus.

3.5 Calibration of Neural Networks

Large neural classification models are often capable of impressive results,
but tend to be overconfident in their predictions [25]. This means that they
are generally not calibrated: indeed, calibrating a model means aligning the
posterior probabilities with the empirical likelihoods [43]. As an example,
if we consider all the predictions for which a model has the confidence of
75%, then if the model is calibrated, the true accuracy is 75%.

Several techniques can be used in practice for calibrating neural models,
and they have diverse advantages and weaknesses. The most commonly
used ones are the following:

• vanilla: maximum softmax probability, which usually does not lead
to calibrated classifiers [48];

• Temperature scaling: a posterior calibration technique using a valida-
tion set [25, 43];

• Bayesian deep learning, which requires alterations to the training pro-
cedure and is computationally expensive [121];

• Ensembles: consists in independently training M models on the entire
dataset using different random initializations [66] or dropout [37,108].

Two approaches are generally used for evaluating model calibration.
The most common is Expected Calibration Error (ECE) [82], which com-
pares the confidence and the accuracy of the model. More precisely, it
defines miscalibration as the difference in expectation between confidence
and accuracy. Thus, ECE approximates the miscalibration by partitioning
the predictions in a number M of bins and averaging the difference be-
tween the accuracy and confidence obtained in each bin. The other option
are reliability diagrams, which provide a visual representation of model
calibration [43]. Reliability diagrams plot the accuracy as a function of
confidence; if the model is perfectly calibrated, the diagram should display
the identity function. Any differences from the identity function are a signal
of miscalibration.
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3.6 Evaluation metrics

In this last section, we introduce the evaluation metrics that are used – or
referred to – in this thesis.

3.6.1 Accuracy

Accuracy is a metric used to evaluate classification models, both binary
classification and multi-label classification tasks. Considering a set of el-
ements that have to be classified by the model, the accuracy indicates the
fraction of elements that have been correctly classified over the total.

The best possible score is 1.0 and the worst possible score is 0.0.

3.6.2 Precision and Recall

Precision and Recall are two evaluation metrics used in information re-
trieval and binary classification. Precision is the fraction of relevant in-
stances among the retrieved instances, while recall is the fraction of rele-
vant instances that were retrieved. In other words, the precision indicates
the ability of a model to identify only the relevant elements, while the recall
indicates the ability of the model to detect all the relevant elements.

Let True Positives (TP) be the number of relevant elements that have
been identified by the model, False Positives (FP) the number of not rel-
evant elements that have been identified as relevant by the model, True
Negatives (TN) the number of not relevant elements that have been classi-
fied as not relevant by the model, and False Negatives (FN) the number of
relevant elements that have not been identified by the model. Using these
measures, precision can be defined as follows:

precision =
TP

TP + FP
(3.1)

The recall, on the other hand, is defined as follows:

recall =
TP

TP + FN
(3.2)

Even though precision and recall are both defined for binary classifica-
tion, they can be used in multi-label classification tasks as well, by comput-
ing a precision score and recall score for each class.

For both metrics, the best possible score is 1.0 and the worst possible
score is 0.0.
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3.6.3 F1 Score

The F1 score, also known as balanced F-score or F-measure, represents a
weighted average of precision and recall, according to the following for-
mula:

F1 = 2 · precision · recall
precision + recall

(3.3)

The best possible value is 1 and the worst possible score is 0.
Similarly to precision and recall, it is originally defined for binary clas-

sification, but it can be used in multi-class classification as well, by com-
puting the F1-score of each class and averaging them (possibly according
to a weighing average parameter).

3.6.4 Mean Squared Error

The Mean Squared Error (MSE) is an evaluation metric used in regres-
sion tasks indicating the average of the squared error between the predicted
value and the true value.

Let us assume that yi is the true value of the i-th sample and ỹi the
corresponding predicted value. Then, the MSE estimated over N samples
is defined as:

MSE =
1

N

N−1∑
i=0

(yi − ỹi)2 (3.4)

The best possible score is 0.0 and there is no limit to the worst possible
score, as the model can make arbitrarily large errors.

3.6.5 Root Mean Squared Error

Similarly to the MSE, the Root Mean Squared Error (RMSE) is an evalua-
tion metric used in regression tasks, and it is defined as the squared root of
the MSE.

RMSE =
√

MSE =

√√√√ 1

N

N−1∑
i=0

(yi − ỹi)2 (3.5)

The best possible score is 0.0 and there is no limit to the worst possible
score.
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3.6.6 Mean Absolute Error

The Mean Absolute Error (MAE) is another metric used in regression tasks.
It indicates the averaged error between the predicted value and the true
value.

Assuming that yi is the true value of the i-th sample and ỹi the corre-
sponding predicted value, the MAE estimated over N samples is defined
as:

MAE =
1

N

N−1∑
i=0

|yi − ỹi| (3.6)

Compared to the MSE and RMSE, it penalizes large errors less. The
best possible score is 0.0 and there is no limit to the worst possible score,
as the model can make arbitrarily large errors.

3.6.7 R2 Score

The R2 score (R2), also referred to as coefficient of determination, repre-
sents the proportion of variance that has been explained by the independent
variables in the model. It provides a measure of how well unseen samples
are likely to be predicted by the model, and for this reason it is often used
as the target metric while performing cross validation on regression tasks.

Since the variance considered by R2 is dataset dependent, the values of
this metric may not be meaningfully compared across different datasets.
The best possible score is 1.0 and it can be negative and arbitrarily small
for large errors; a constant model that always predicts the expected value
regardless of the input features, would get an R2 of 0.0.

If ỹi is the predicted value of the i-th sample and yi is the corresponding
true value, the R2 score estimated over N samples is defined as:

R2 = 1−
∑N−1

i=0 (yi − ỹi)2∑N−1
i=0 (yi − Yi)2

(3.7)

where Yi = 1
N

∑N−1
i=0 yi.

3.6.8 nDCG

The normalized Discounted Cumulative Gain (nDCG) is a measure of rank-
ing quality. It is computed by summing the true scores ranked according
to the order obtained by the predicted scores, after applying a logarithmic
discount, and dividing this value by the best possible score (referred to as
iDCG, ideal DCG).
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Let us define the DCG of a ranking of p elements as follows, where reli
is the relevance of the i-th item:

DCG =

p∑
i=1

reli
log2(i+ 1)

(3.8)

The nDCG is then obtained as:

nDCG =
DCG
IDCG

(3.9)

where IDCG is the Discounted Cumulative Gain obtained with an ideal
ranking (i.e. sorting the elements according to their relevance).

The best possible score is 1.0, and the worst possible score is 0.0.
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Data collections

The data collections used for the experiments on supervised Question Dif-
ficulty Estimation from Text (QDET) (Chapter 5) and unsupervised QDET
(Chapter 6) are partially overlapping. We therefore introduce them here, so
that in the following chapters we can focus exclusively on the aspects that
are specific to each task.

We experiment on three data collections, chosen to have a variety in
the typology of questions and educational domains under consideration.
Specifically, we experiment on i) Cloud Academy, ii) ASSISTments, and
iii) RACE. Cloud Academy (§4.1) is a private data collection containing
MCQs about cloud technologies, ASSISTments (§4.2) is a publicly available
data collection containing questions of different type mostly about math,
and RACE (§4.3) is a publicly available data collection containing reading
comprehension MCQs. All data collections contain exclusively questions
in English.
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Table 4.1: Example question from Cloud Academy.

Role Text

Question A user has launched an EBS backed EC2 instance in the US-
East-1 region. The user wants to implement a disaster recovery
(DR) plan for that instance by creating another instance in a
European region. How can the user accomplish this?

Correct choice Create an AMI of the instance and copy the AMI to the EU re-
gion. Then launch the instance from the EU AMI.

Distractor Use the “Launch more like this” option to copy the instance from
one region to another.

Distractor Copy the instance from the US East region to the EU region.
Distractor Copy the running instance using the “Instance Copy” command

to the EU region.

4.1 Cloud Academy

Cloud Academy Inc.1 is an e-learning provider offering online courses
about IT technologies. The Cloud Academy data collection used in this
work is a subset of the company’s data collection, generated in order to
have only questions about cloud technologies (e.g. Amazon Web Services2,
Google Cloud Platform3, and Microsoft Azure4). All the questions are
MCQs and we have access to the text of the possible choices. An example
question is shown in Table 4.1.

The data collection used in this work contains three datasets: i) Cloud
Academy_A collects the log of interactions between students and questions,
ii) Cloud Academy_Q contains the textual information related to the ques-
tions, and iii) Cloud Academy_LEC contains the transcript of some of the
video lectures available on the Cloud Academy web platform about cloud
technologies.

4.1.1 Cloud Academy_A

This dataset contains the log of interactions between students and ques-
tions; that is, it contains all the answers given by the students to the exam
questions. We use this dataset only as training data for an IRT model that
provides the question difficulty considered as gold standard when evaluat-
ing the models that perform QDET (i.e. the “true” difficulty). Basically, we

1https://cloudacademy.com/
2https://aws.amazon.com/
3https://cloud.google.com/
4https://azure.microsoft.com/
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4.1. Cloud Academy

use this data for pretesting, in order to have a reliable estimation of question
difficulty, which we use as reference at training and evaluation time.

The dataset contains 7,323,502 interactions, involving 24,696 users and
13, 603 questions. For each interaction, we have access to:

• user id, to uniquely identify the students;

• item id, to uniquely identify the questions;

• a binary correct label (i.e. correct or wrong);

• a timestamp of the interaction.

The overall correctness of the datasets – i.e. the fraction of correct answers
– is 66.51%.

This dataset was built in order to have only the first answer in chrono-
logical order (i.e. the first attempt) for each student-question pair, and only
items with at least 50 interactions are considered, in order to have a more
accurate IRT estimation. The distribution of items per number of interac-
tions is shown in Table 4.2.

N. of interactions (n) Fraction of items
50 <= n <= 100 36.75%
100 < n <= 200 20.99%
200 < n <= 500 23.60%
n > 500 18.66%

Table 4.2: Distribution of questions per number of interactions in Cloud Academy_A.

On average, each question is answered by 304 different students (stan-
dard deviation of 365), and each student answers 114 different questions
(standard deviation of 161).

4.1.2 Cloud Academy_Q

The Cloud Academy_Q dataset contains all the textual information about
the questions. Specifically, it provides:

• unique item id, which can be used to merge this dataset with the diffi-
culty obtained from Cloud Academy_A;

• text of the question;

• text of all the answer choices (in Cloud Academy, all the questions are
MCQs).
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Figure 4.1: Distribution of questions by length in Cloud Academy_Q.

Figure 4.1 plots the distribution of questions per length. All the ques-
tions have at least four words, and the peak corresponds to lengths between
10 and 15 words. More specifically, about 10% of the questions are shorter
than 10 words (included), and 75% of the questions are in the range be-
tween 10 words and 50 words. Less than 1% of the questions are made of
more than 100 words.

On average, the text of the answer choices are shorter, and the average
value is 6.8 words.

4.1.3 Cloud Academy_LEC

We leverage our access to the Cloud Academy data collection to retrieve a
subset of the lectures about cloud technologies that are available on the plat-
form. These are collected in the Cloud Academy_LEC dataset, which con-
tains the transcript of some selected lectures about the same topics which
are assessed by the questions in Cloud Academy_Q; an analogous dataset
is not available for ASSISTments nor for RACE.

Cloud Academy_LEC is composed of 2,826,126 words, and we divide
it into sentences, based on punctuation (full stop, question mark, exclama-
tion mark) for a total of 141,306 sequences, with an average of 20 words
per sequence. Table 4.3 shows the distribution of sentences per number of
words.
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Length (N. of words) Fraction of sentences
len <= 10 23.24%
10 < len <= 50 72.79%
50 < len <= 100 3.70%
len > 100 0.27%

Table 4.3: Distribution of sentences per number of words in Cloud Academy_LEC.

Table 4.4: Example questions from ASSISTments.

ID Question Type

330 The computer game Peter wants to buy will cost at least $50
and not more than $70. He earns $3 an hour running errands
for his grandmother. Which inequality shows the number of
hours, n, he will have to work to pay for the game?

Original

326 What is the minimum cost of the game? Scaffolding

327 What is the maximum cost of the game? Scaffolding

328 Write an expression that represents the amount of money Peter
earns in n hours.

Scaffolding

329 Which inequality shows the number of hours, n, Peter will have
to work to pay for the game?

Scaffolding

4.2 ASSISTments

ASSISTments5 is an online intelligent tutoring system developed by the
Worcester Polytechnic Institute [35]. It provides teachers with contents
from open educational resources and also gives the possibility to add new
questions to the platform. When students complete assignments on the plat-
form, it provides them immediate feedback, and sends reports on students’
progress to the teachers.

As described by the authors, ASSISTments “provides instructional as-
sistance while assessing students”. In practice, this means that questions –
called problems – can be broken down into steps: if the student does not get
the original problem correctly, he has to answer a sequence of scaffolding
questions that break the problem down into steps. In the current work, we
consider both original and scaffolding problems for QDE from text. An
example problem and the corresponding scaffolding questions are shown
in Table 4.4.

Similarly to the Cloud Academy data collection, the ASSISTments data
5https://new.assistments.org/
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collection contains i) a dataset with the logs of interactions between stu-
dents and questions (ASSISTments_A), and ii) a dataset containing the tex-
tual information related to the questions (ASSISTments_Q). Differently from
Cloud Academy, there is no lectures dataset; that is because the ASSIST-
ments platform only provides assessment items and not online courses.

4.2.1 ASSISTments_A

ASSISTments_A, which is publicly available for download6, contains the
log of students’ answers. We use this dataset to train the IRT model and
obtain the question difficulties which are used as target values when training
and evaluating the model for QDET.

The dataset contains 6,123,270 students’ answers, and for each interac-
tion we have access to several fields of information. The most interesting
(for our study) are described below.

• Problem_id is the unique id of the question.

• User_id: the unique id of the student.

• The correct field indicates the correctness of student’s answer: 1 if
correct at the first attempt, otherwise 0. Some interactions have dec-
imal values, which are calculated depending on the number of hints
and attempts needed to correctly answer the question, but we convert
them to 0, as standard IRT cannot deal with partial scores. The overall
fraction of correct answer in the dataset is 67.64%.

• Problem_type indicates the type of problem, and there are six possible
values: i) algebra are math expressions, ii) choose_1 are MCQs with
one correct choice, iii) fill_in are cloze items, iv) open_response ques-
tions, v) choose_n are MCQs with multiple correct choices, and vi)
rank are questions requiring to rank multiple objects. Even though six
types of questions exist, the vast majority of interactions (more than
99%) is from algebra items (57%), choose_1 items (30%), and fill_in
(12%).

• Start_time and end_time are timestamps indicating when the problem
is shown to the student and when the student submits the answer, re-
spectively.

6https://sites.google.com/site/assistmentsdata/home/
2012-13-school-data-with-affect
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• The original field indicates whether the question is an original prob-
lem or a scaffolding problem. If a question has no scaffolding items,
it is marked as a main problem. Most of the interactions in the dataset
are with main problems (more than 95%), and only a small portion of
the dataset contains scaffolding items.

• The skill attribute is sometimes used to indicate the skill associated
with the question; however, it is null in 72% of the interactions, thus
it is not really usable to model different skills.

• Template_id is a unique id identifying the template the question is
created from, and questions generated from the same template are
very similar with each other. Each question is associated to one tem-
plate_id only, while several questions can be associated to the same
template_id. In practice, questions with the same template_id are ba-
sically the same item with minor differences due to some keywords
and numerical values.

We use this dataset to obtain, with IRT, the question difficulties which
will be later used as gold reference evaluating the models for QDET, there-
fore it is important to focus on the choice of the identifier to use to dis-
tinguish the problems. Indeed, both template_id and problem_id are rea-
sonable candidates. Considering that problems generated from the same
template_id have very similar text and are created – by design – in order
to have the same level of difficulty, we use template_id to distinguish the
items while training the IRT model.

The raw data publicly available for download requires some preprocess-
ing before being usable for our needs. Specifically, we consider only first-
timers, meaning that for each student-question interaction we consider only
the first answer, and we keep only the items that have been answered by at
least 50 different students. This reduced the size of the dataset, and the final
dimensions are shown in Table 4.5

Raw dataset After pre-processing
N. interactions 6,123,270 2,820,051
N. users 46,674 43,868
N. problems 179,999 55,178
N. templates 76,403 18,659

Table 4.5: Measures of ASSISTments_A.

The distribution of questions per number of interactions is shown in Ta-
ble 4.6. On average, each question is answered by 151 students (standard
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deviation of 303), and each student answers 64 different questions (standard
deviation of 113).

N. of interactions (n) Fraction of items
50 <= n <= 100 38.03%
100 < n <= 200 19.54%
200 < n <= 500 8.15%
n > 500 4.29%

Table 4.6: Distribution of questions per number of interactions in ASSISTments_A.

4.2.2 ASSISTments_Q

This dataset, which is publicly available upon request7, contains all the
textual information about the questions. Specifically, it provides:

• the problem_id, which can be used to merge this dataset with the dif-
ficulty obtained from ASSISTments_A;

• the text of the question.

Differently from Cloud Academy_Q, the text of the possible answer
choices is not available. Even though this is a very large dataset, as it
contains the text of almost 180,000 different problem_id, most of them are
not usable. First of all, many texts are duplicate, and there are only 138,084
different texts. Secondly, several problems refer to content which is not
available in the text (e.g. images, graphics, etc.), and therefore the informa-
tion for the task of QDET would be very limited: 9.2% of the problems in
the dataset have this issue. Also, some problems refer to external textbooks
and are therefore unusable: indeed, the ASSISTments platform offers to
instructors the possibility of manually creating custom questions, and often
these questions simply refer to exercises in external textbooks, without re-
porting the text. Lastly, some items are incorrectly considered “questions”
(as they have a problem_id), even though they are system messages or mo-
tivational messages. From the raw dataset, we remove all the problems
which have one of the issues mentioned above.

As mentioned in the previous section, we use the template_id to uniquely
identify the questions, and therefore we might have several similar texts as-
sociated to the same template. Previous research on this same dataset sug-
gested that keeping all the texts would hinder the training of the model for
QDET [88], therefore we keep only one text (randomly chosen) for each

7https://sites.google.com/site/assistmentsdata/home/assistments-problems
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Figure 4.2: Distribution of questions by length in ASSISTments_Q.

template_id. In the end, after all the filtering operations, we are left with
11,393 different items.

The distribution of questions per length, which is shown in Figure 4.2,
is fairly similar to Cloud Academy; indeed, the majority of questions is
short and there is a peak for questions that are about 15 words long. Still, a
significant difference is the fact that ASSISTments contains more questions
which are very short: 27% of the questions are made of 10 or less words.

4.3 RACE

RACE8 [65] is a publicly available dataset of English reading comprehen-
sion questions from middle and high school exams; it contains about 25,000
passages and up to four MCQs associated with each text, having 97,744
questions in total. Differently from Cloud Academy and ASSISTments, for
RACE there is only one dataset which contains both the text of the questions
and a manually selected difficulty.

Specifically, the dataset has the following attributes:

• id: unique id identifying the reading passage;

• question_id: unique id identifying the question;

• article: the text of the reading passage;

• question: the text of the question;
8https://www.cs.cmu.edu/~glai1/data/race/
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Figure 4.3: Distribution of questions by difficulty level in RACE.

• options: the text of the possible options;

• answer: indicates which option is the correct choice;

• level: the difficulty.

The level attribute, specifically, is a manually selected value which can
be either high or middle and indicates the level of examination (high or mid-
dle school). Even though it is arguably less precise than the difficulty we
can obtain for Cloud Academy and ASSISTments training an IRT model, it
is an indication of the question difficulty and the authors point to the “dras-
tic difficulty gap” between the two levels and give evidence for “higher
difficulty of high school examinations” [65]. Figure 4.3 shows the distribu-
tion of question by difficulty level: the number of high questions in the raw
dataset is considerably larger than the number of middle questions.

All the questions are MCQs with four possible choices, and they can
be separated into interrogative or cloze items. An example question from
RACE is shown in Figure 4.4.

Figure 4.5 presents the distribution of questions in the RACE dataset
by question length, using number of words as indicator of length. The
difference from Cloud Academy and ASSISTments is immediately visible:
indeed, in this case, the questions are generally much longer, which is due
to the fact that RACE contains reading comprehension questions, and the
text of the reading passage contributes to question length.
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Article:
… Bungee jumping is an activity about jumping from a tall structure while connected to a large 
elastic cord . The tall structure is usually a fixed object, such as a building, bridge or crane; but 
it is also possible to jump from a movable object, such as a hot-air balloon or helicopter … 

Question:
Which of the following is NOT suitable for bungee jumping?

Options:
A. The fixed-wing aircraft B. The helicopter
C. The hot-air balloon D. The mobile crane

Answer: A

Figure 4.4: Example of a question from RACE.
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Figure 4.5: Distribution of questions by length in RACE.
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CHAPTER5
Supervised Question Difficulty Estimation

from Text

In this Chapter, we focus on supervised Question Difficulty Estimation
from text (QDET). First, we give an introduction to the task (§5.1), and
provide a categorization of previous literature according to a taxonomy
based on question characteristics (§5.2). We then present the recently pro-
posed approaches, focusing separately on the language assessment domain
(§5.3) and the content knowledge assessment domain (§5.4), and describe
the models that are quantitatively evaluated in this study (§5.5). We de-
scribe the experimental setup (§5.6) and, by presenting the experimental
results (§5.7), we evaluate how the proposed approaches (based on differ-
ent features and different architectures) perform on questions of different
nature. Lastly, we conclude the chapter with a recap and discussion of the
experimental results (§ 5.8).

5.1 Introduction

Supervised QDET was originally proposed as a way to target the limita-
tions of manual calibration and pretesting, which are the traditional ap-
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proaches to question calibration. It consists in leveraging the textual con-
tent of questions with Natural Language Processing (NLP) techniques to
automatically estimate their difficulty. Textual content is the only infor-
mation that is available at the time of question creation – both for manual
question creation and for automated question creation – and the idea of su-
pervised QDET is to use such information to estimate question difficulty
and thus overcome – or at least reduce – the need for pretesting and manual
calibration.

In recent years, researchers proposed many approaches, which are based
on diverse machine learning architectures and features. However, such ap-
proaches have been tested on a variety of question types and in the commu-
nity there is a lack of a common framework for evaluating models proposed
for QDET. Therefore, considering that the factors affecting question diffi-
culty are diverse for different types of questions – as we discussed in Chap-
ter 2 – it is not easy to understand which approaches and which features are
the most effective in each scenario. Moreover, an exhaustive comparison
of the proposed approaches to QDE from text is very difficult also due to
the scarce number of publicly available educational datasets providing both
question text and question difficulty.

In this Chapter, we evaluate several models proposed in previous re-
search on three dataset coming from different educational domains, and
analyze how the QDET performance depends on the domain and some
question characteristics (i.e. question type, question format, and number
of correct choices in MCQs).

We observe that, generally, the best accuracy is obtained with Transformer-
based models, which are the most effective in capturing both the semantic
meaning and the linguistic complexity of the questions. Nonetheless, we
find that in the case of reading comprehension questions, simpler models
based on linguistic features and readability indexes can perform almost as
well as Transformer models at a fraction of the computational cost. We
also observe that the performance of all the models depends on the ques-
tions characteristics and, specifically, Transformer models perform bet-
ter on MCQs with one correct choice than MCQs with multiple correct
choices, and for questions with longer texts.

5.2 Taxonomy of Literature on Supervised QDET

The research on techniques to perform QDET and to modify questions dif-
ficulty in a controllable manner has a fairly long history. However, in re-
cent years there has been a very rapid development, which was mostly due

48



5.2. Taxonomy of Literature on Supervised QDET
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Text only §5.4.1

Heterogeneous §5.4.2

Others

Figure 5.1: The taxonomy, based on question format, we use for categorizing all the
papers presented in this Chapter.

to the improvements in the capabilities of NLP techniques (such as word
embeddings and Transoformers), that have been reflected in the progress
on QDET. Overall, there has been a shift form the usage of theoretically
supported features, such as readability and word-complexity measures, to-
wards approaches which rely upon modern NLP techniques based on ma-
chine learning.

Figure 5.1 presents the taxonomy we use for categorizing all the papers
presented in this Chapter. We group the papers depending on the charac-
teristics of the questions that the proposed models work on, since the type
of question heavily affects the models that can be used in each application
scenario. We provide here a brief overview of the proposed approaches and
their categorization, and describe them in more detail in Section 5.3 and
Section 5.4.

The first distinction is the educational domain considered by each work:
specifically, we distinguish between i) Language Assessment (LA) and ii)
Content Knowledge Assessment (CKA). In LA, the difficulty comes from
linguistic demands of the task and topic being assessed along with any stim-
ulus text, while in CKA the difficulty mostly comes from the topics which
are being assessed.

This has an implication on the models that are developed in the two
domains. Approaches developed for LA often rely upon predefined word
complexity measures, which are not used in CKA. On the other hand, CKA
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works leverage more frequently learnt features, such as TF-IDF and word
embeddings, or end-to-end neural networks.

All the approaches presented in this Chapter address the task of QDET
as a supervised problem (either classification or regression, depending on
the testing theory of choice): a training set containing texts and difficulties
of exam questions is used to train a model which is capable of performing
QDET for previously unseen questions. In some cases, some additional
textual datasets are used, generally to pre-train the model or part thereof. In
such cases, the models built for LA leverage general purpose datasets (e.g.
Wikipedia), while the ones built for CKA leverage datasets related to the
topics that are assessed by the questions (e.g. books, lecture transcripts).

5.2.1 Language Assessment (LA)

Focusing on the approaches proposed for LA, they deal with either i) com-
prehension questions or ii) knowledge questions.

Comprehension questions

Models built for comprehension questions are built to leverage the addi-
tional information that is provided in the accompanying passage. Specif-
ically, comprehension questions can be further divided into reading com-
prehension and listening comprehension, and this difference affects the fea-
tures that are used by the models performing QDE from text. Only one
recent work focused on listening comprehension questions [77]. Reading
comprehension questions received more consideration in previous research,
and there are three relevant works which focused on it [56, 57, 72], two of
which leverage end-to-end neural networks for the task.

Knowledge questions

Considering this type of questions, many of the proposed models use fairly
simple and theoretically-grounded features such as word-complexity for
learners of specific languages and readability measures. No end-to-end
neural networks were proposed so far and most of the works did not ex-
periment with word embeddings or word frequency features. Knowledge
questions for LA can be further divided depending on their format: some
are vocabulary questions made of single words [24, 28, 101, 125], others
represent whole sentences [6, 7, 34, 53, 56, 70, 86, 101, 111–113, 115].

50



5.2. Taxonomy of Literature on Supervised QDET

Others

There are two types of questions which are explored in one paper only [101]
and do not really fall in any of the previous categories: i) elicited speech
and ii) dictation exercises. The elicited speech task evaluates reading and
speaking skills of students by requiring them to produce a sentence out
loud. The dictation task consists of asking the students to transcribe an
audio recording, and thus evaluates both listening and writing skills.

Considering the additional information that is available (i.e. text to read
and audio to listen to) these types of questions might seem to belong to
the category of comprehension question. However, they do not require the
students to infer the answer to a specific question from the text/audio, but
only to perform a transformation from written to spoken form or vice-versa.

5.2.2 Content Knowledge Assessment (CKA)

In CKA, there is no separation between comprehension questions and knowl-
edge questions, all items are knowledge questions. They can be categorized
depending on the content of the questions and, specifically, can be divided
into i) text only questions, and ii) heterogeneous questions, which contain
information – such as images – that cannot be captured at text level1.

Questions with images are quite rare and this is reflected by the fact that
only three works [33, 109, 129] experimented on QDE for heterogeneous
questions. Most of the research focused on text only questions, and it can
be categorized depending on the type of information that is leveraged by
the models. Specifically, we can distinguish between i) models that only
consider the question text for the task of QDE [30], ii) models that also
leverage texts coming from other sources (e.g. lecture content, books, etc.)
[54,93,123,124,130], and iii) models that leverage non-textual information
(e.g. knowledge components [21, 114], and others [109, 122]).

Lastly, there are two works which do not belong to any of the previous
categories because they deal with specific types of questions and can be
used only in the niches they were designed for. One of them [91] deals with
questions whose answers are in the form of First Order Logic formulas and
leverages such formulas for QDE. The other [85] performs QDE for short-
answer questions and leverages the text of the students’ answers instead of
the question.

1Equations and formulas are generally considered as “text”, since they can be expressed in LaTeX-like verbal
format [128]: for instance,

√
1/4 corresponds to \sqrt \frac 1 4.
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5.3 Literature on QDET in Language Assessment

In this section, we describe the approaches proposed for language assess-
ment, grouping them according to the taxonomy presented above: read-
ing comprehension questions (§5.3.1), listening comprehension questions
(§5.3.2), word knowledge questions (§5.3.3), and sentence knowledge ques-
tions (§5.3.4).

5.3.1 Reading Comprehension Questions

In reading comprehension questions, the accompanying passage is an im-
portant component of question difficulty and was leveraged by all the pa-
pers addressing QDET on this type of questions. One of them [56] directly
models question difficulty as the reading complexity of the reading passage,
while the others [57, 72] leverage neural networks that receive as input the
text of both the question and the accompanying passage. An overview of
these models is shown in Table 5.1.

Paper Year
Reading
passage

Question
text Distractors Approach

[56] 2018 3 - - Reading difficulty estimation
[72] 2019 3 3 - Word2Vec - LSTM - FCNN

[57] 2017 3 3 3
Word2Vec - Sentence CNN -

Attention - FCNN

Table 5.1: Overview of the approaches proposed for reading comprehension questions.

In [56] the authors assume that examinees correctly answer a reading
comprehension question only if they can understand the whole textual pas-
sage, therefore they directly use reading complexity as an indicator of ques-
tion difficulty. For the estimation of reading complexity, the authors adopt
a measure designed for learners of English as a foreign language [55]. This
can be considered a fairly simple approach, since it estimates the same dif-
ficulty for all questions associated with a certain passage. Still, the authors
observe that there is a relation between question difficulty estimated with
this approach and average correctness. However, the authors consider a test
set containing questions of different types (reading comprehension, gram-
mar, and vocabulary questions)2, therefore a clear evaluation of QDE for
reading comprehension questions is lacking.

In [72], the authors propose a neural model to estimate the difficulty
2The approaches proposed in this paper for grammar and vocabulary questions will be presented in Section

5.3.4
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of Chinese reading comprehension items. The proposed model is made of
three components. First of all, i) each word is transformed into a semantic
vector with Word2Vec (trained on the Sinica Balanced Corpus [19]), and
there is no distinction between the words of the document and the words
of the question. Then, ii) the embedding vectors are input into two uni-
directional LSTMs. Lastly, iii) the output of the LSTMs is input into is a
Fully Connected Neural Network (FCNN) made of three layers that outputs
the estimated difficulty.

The model proposed in [57] is the only one that explicitly takes into
consideration the relation between the reading passage and the question. It
does so by using an attention mechanism [117] to model the importance of
each sentence in the reading document for a specific question. The intuition
of the authors is that different questions concern different parts of the text,
and by implementing a model that is capable of modeling this relation,
it is possible to improve the accuracy. The proposed model is made of
four components: i) input component, ii) sentence CNN (Convolutional
Neural Network) component, iii) attention component, and iv) prediction
component3. All the questions are MCQs, and the model leverages both
the text of the question (i.e. the stem) and the text of the options.

First, in the input component, all the text material of a question (i.e.
document, stem, and options) is converted into pretrained embeddings us-
ing Word2Vec trained on the English Gigaword dataset [40]. Then, the
sentence CNN component reduces the dimensionality of the input data by
applying a series of convolution and max-pooling operations. The atten-
tion component aims at finding which parts of the text are relevant for each
question. In practice, there are two attentions involved in the model, both
computed using cosine similarity: the first one measures the similarity be-
tween the text stimulus and the question, the second one measures the simi-
larity between the question and the available answers. Lastly, the prediction
component concatenates the two outputs of the attention components and
uses a FCNN to learn the difficulty, which is modeled as a continuous value.

5.3.2 Listening Comprehension Questions

One paper [77] about QDE from text for listening comprehension questions
was published in recent years. The authors focus on MCQs in English, con-
sidering four types of questions: i) “picture description”: a picture and four
recorded statements are presented to the student, who is asked to select the
one that bests describes the image; ii) “dialogue completion”: examinees

3The authors refer to these as “layers” instead of “components”; we change notation to clarify that these
components can themselves be composed of several hidden layers.
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hear a dialogue and have to complete it by selecting the best continuation
from a list of candidates; iii) “conversation”: examinees listen to a conver-
sation and answer some questions about its content; iv) “monologue”: ex-
aminees listen to a recorded monologue and answer some questions about
its content.

Item difficulty depends on both the audio transcript and the text of the
question, and indeed the proposed approach leverages both sources of infor-
mation. First, the authors compute 339 raw features from the text (written
and spoken) using TextEvaluator, an automated text complexity prediction
system [83, 105]. These can be categorized into the following groups: aca-
demic vocabulary, concreteness, word familiarity, syntactic complexity, co-
hesion, argumentation, conversational style, and narrative structure. Then
the authors experiment with several regressors for estimating item difficulty
from the raw features, and show that a Random Forest regressor consis-
tently outperforms all the other models. All the groups of features seem to
bring valuable information for QDET, and the most relevant are the ones
dealing with the lexical content of the item, for all item types. Specifically
these features are related to vocabulary diversity, vocabulary difficulty, and
the concreteness of the text [104].

An interesting finding is that the best performance was observed for
“picture description” items, although the image was not considered as a
feature. Considering the “monologue” items, the authors observed that the
complexity of the question was more predictive than the complexity of the
listening passage, which is in contrast with research about reading compre-
hension questions.

5.3.3 Single Word Knowledge Questions

The single word knowledge questions are all vocabulary questions. Since
no information is available in addition to the target word and (possibly)
some definitions, the proposed models are generally simple from an archi-
tectural point of view. It is also interesting to mention that no one of the
proposed approaches leveraged the definitions, when available, for QDET.
An overview of the models is shown in Table 5.2.

Neural networks are rarely used and, when they are, there is gener-
ally little focus on semantics. Indeed, [28] is the only work that leverages
Word2Vec embeddings without any other features. Specifically, the author
focuses on VLT, with one word and four definitions, and leverages a two-
step machine learning approach for QDET. First, it computes Word2Vec
embeddings of the questions, then uses a Support Vector Machine (SVM)

54



5.3. Literature on QDET in Language Assessment

Paper Year Approach Type of
question

[24] 2015 Ortographic features and word frequencies Yes/No,
VKS,
VLT

[28] 2018 Features: word2vec embeddings, model: SVM VLT
[125] 2018 Features: word length, word frequency, utilization

on the web, Age-of-acquisition, concreteness rat-
ing, number of POS tags, most frequent POS tag,
word2vec embeddings, number of double consonants,
number of vowels, presence of shorter homophones.
Model: SVM

Yes/No,
VKS,
VLT

[101] 2020 Features: word length, log-likelihood from character-
level language model, Fischer score. Model:
weighted softmax

Yes/No

Table 5.2: Overview of the approaches proposed for single word knowledge questions.

regression model with linear kernel for the actual difficulty estimation. The
author evaluates the model on real world questions but the dataset used for
the experiments is very small (92 words, 22 being held-out for testing),
which limits the significance of the findings.

The first work that evaluates the correlation between the difficulty of
vocabulary questions (Yes/No, VLT, and VKS) and some textual features is
[24], which found that character length and corpus frequency significantly
correlate with vocabulary difficulty. However, this work did not have the
task of performing difficulty prediction, and it is therefore mostly used as a
starting point by more recent research.

An example is [125], in which the authors propose an approach that can
be used for VKS, VLT with one word, and Yes/No items (although only for
real words). The approach consists of i) computation of features related to
the word difficulty level, ii) reduction of these features with Principal Com-
ponents Analysis (PCA), and iii) classification with a SVM. The model
uses the following features: word length, word frequency (obtained from
NLTK corpora), utilization on the web (i.e. number of relevant documents
retrieved by Google), Age-of-acquisition from [64], concreteness rating
from [15], number of part-of-speech (POS) tags (obtained from NLTK [76]
corpora), most frequent POS tag, Word2Vec embeddings, number of dou-
ble consonants in the word, number of vowels, and existence of shorter
homophones. The second step of the proposed approach consists of reduc-
ing the dimensionality of the data using PCA [89]: specifically, the authors
reduce the dimensionality of the input data from 111 features to only 2 fea-
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tures; no experiments were performed with other dimensions. Lastly, the
classification is performed with an SVM model with RBF kernel.

The most recent paper in this section [101] focuses exclusively on Yes/No
items. The proposed model uses three groups of features: i) character
length of the target word, ii) corpus frequency, and iii) “Fischer score”.
While character length is straightforward to calculate, corpus frequencies
may only be obtained for real words, whereas the pseudo-words found in
Yes/No items inherently do not occur in corpora and therefore have no fre-
quency value. Therefore, the authors propose a character level Markov
chain language model to compute the log-likelihood of a word (or pseudo-
word), and use this for the feature values instead of the corpus frequency.
The character-level language model is trained on the OpenSubtitles cor-
pus [74]. The last feature, the Fischer score of a word, is a vector repre-
senting the gradient of its log-likelihood under the language model. Con-
ceptually, it is similar to trigrams weighted by TF-IDF [31]. The authors
experiment both with a linear regression model and a weighted-softmax,
and observe that linear regression appears to overfit the training data. They
also find that the Fischer score features are the most useful for QDE, while
character length has little impact (possibly because length is implicitly cap-
tured by the Fischer score features).

5.3.4 Sentence Knowledge Questions

Knowledge questions that are presented to students in the form of one or
more sentences can be divided into three groups: i) reduced redundancy
testing, ii) grammar questions, and iii) vocabulary questions.

Reduced redundancy testing

QDET for reduced redundancy testing has received a fair amount of re-
search attention, and the proposed approaches have different levels of com-
plexity; an overview is shown in Table 5.3.

The approach that is arguably the least complex is not based on any ma-
chine learning technique, and was proposed by Huang et al. in 2018 [56],
in the same paper that deals with grammar questions and reading compre-
hension questions. The authors claim that the difficulty of cloze items is
determined only by the difficulty of the correct answer. To estimate word
difficulty, the authors use a graded word list made by an educational organi-
zation, the College Entrance Examination Center of Taiwan, which contains
6480 words in English divided into six levels of complexity. For QDET, the
authors simply use the word difficulty from the aforementioned list, and
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[56] 2018 - 3 maps missing word to difficulty using a ta-
ble containing the difficulty of 6480 words
in English

cloze

[53] 2019 3 - Features: mean token length, mean sentence
length; Model: linear regression

cloze

[115] 2017 3 3 25 linguistic variables at passage and item
level (also reduced to 6 with PCA); Model:
linear regression

cloze

[34] 2019 3 - Shannon’ entropy to assign a score to each
gap based on the number of valid words that
could fill the gap given the context (can-
didates obtained with a 5-gram language
model)

cloze

[7] 2015 3 3 70 features related to the difficulty of the text
passage, the difficulty of the target word and
test parameters; model: SVM

cloze,
c-tests,
prefix
deletion

[70] 2019 3 3 59 features (reduced from the 70 in [7]);
models: SVM, BiLSTM, MLP

c-tests

[101] 2020 3 3 Features: average word length, sentence
length, log-likelihood from a language
model, and Fischer score; model: linear re-
gression

cloze

Table 5.3: Overview of the approaches proposed for reduced redundancy testing.

observe that higher difficulty generally corresponds to lower correctness of
students’ answers.

Hou et al. in [53] proposed an approach for cloze items, which does
not use any information about the gap but only the reading complexity of
the passage. Specifically, it uses the mean token length and the mean sen-
tence length of the textual passage to estimate question difficulty with a
linear regression model. The ground truth difficulty is manually defined
by human experts and there are two possible levels. Preliminary results
presented in the paper show that, even though the chosen approach is ar-
guably simple and cannot distinguish between different questions coming
from the same textual passage, there is a positive correlation between the
difficulty estimated with the proposed approach and the results observed in
a test context.
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Another paper addressing QDET of cloze items using only information
from the text passage is [34], which performs a pilot study of an entropy
based approach to estimate the difficulty. Specifically, the authors build on
the assumption that the complexity of a gap is correlated to the number of
possible answers determined by the surrounding context and the likelihood
of each answer. In practice, they use Shannon’s entropy [103] to assign a
score to each gap based on the number of valid words that could fill in the
slot given the surrounding context. As a result, gaps with many possible an-
swers will yield higher entropy than those with fewer answers. The authors
compute entropy using a 5-gram language model trained on the 1 Billion
Word WMT 2011 News Crawl corpus4 using KenLM [47], and considering
only the 100 most probable words when computing the entropy of each gap
(complete vocabulary has more than 82200 words). Using CEFR levels of
the exams as difficulty gold standard, the authors study the correlation be-
tween the difficulty level and the entropy, and observe that indeed higher
difficulty levels correspond to greater entropy.

Trace et al. in [115] study which features affect the difficulty of cloze
items, and perform a regression analysis to observe the correlation between
item difficulty and such features. Specifically, the authors consider 25 lin-
guistic variables at both passage level and item level (mostly related to the
number of words, sentences and syllables, and to the word frequency) and
find that both passage level and item level are helpful for QDET. They also
observe that three features accounted for 24% of the total variance of item
difficulty: i) the frequency of the item elsewhere in the items, ii) the num-
ber of syllables per word, and iii) the number of sentences per 100 words
in the passage.

The first paper addressing not only cloze tests but also c-tests and prefix
deletion tests is [7], which extended previous work [6] and proposed a tech-
nique for QDET that is applicable to all three test types. Specifically, the
proposed approach performs QDET with a SVM regression model and uses
a subset of the features proposed in [6]: specifically, it uses 70 of the orig-
inal 87 features, only the ones that can be computed for all test types. The
features are related to i) the difficulty of the text passage, ii) the difficulty of
the target word, and iii) test parameters. Evaluating the model on datasets
containing tests in English, French, and German, the results show that there
is a positive correlation between the selected features and the ground truth
difficulty.

Taking inspiration from [6, 7], in [70] the authors proposed a technique
to modify the difficulty of c-tests by varying the number and position of

4https://www.statmt.org/lm-benchmark/
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the gaps. As for QDE, they evaluate a model similar to the one proposed
in [7], extracting from the original set of 70 features 59 features related
to: i) item dependency, ii) candidate ambiguity, iii) word difficulty, iv) and
text difficulty. The regression is still performed with SVM. They evaluate
the model both on the same data as [6, 7] and on a new private dataset,
and obtain results in agreement with previous research. Additionally, the
authors experiment with neural models for the regression component, but
observe that they are outperformed by the SVM on both datasets.

Lastly, [101] proposes a linear regression model for QDET of cloze tests.
The proposed model is also used for elicited speech and dictation items,
and very similar to the one presented in the same paper for single word vo-
cabulary questions. Indeed, it uses as features i) the average word length,
ii) the sentence length, iii) log-likelihood obtained from a word-level uni-
gram language model, and iv) Fischer score features. The authors evaluate
the model using AUC and the CEFR level of English cloze tests as gold
standard, and observe that all features are helpful for difficulty estimation.
Additionally, with an ablation study, they find that the Fischer score has the
biggest impact on the estimation (same observation as in the case of single
word vocabulary questions).

Grammar Questions

An overview of the two approaches recently proposed for QDE of grammar
questions is presented in Table 5.4.
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[56] 2018 - 3 uses a table containing 44 pre-evaluated
grammar patterns (of known difficulty); the
difficulty of the question is the difficulty of
the corresponding pattern

CGFI

[86] 2019 3 3 99 features from gap and context; then ridge
regression

CGFI

Table 5.4: Overview of the approaches proposed for grammar questions.

In [56], the authors assume that the difficulty of a grammar question is
determined by the difficulty of the grammar pattern of the correct answer.
They identify 44 grammar patterns and estimate the difficulty of each one
of them observing their rate of occurrence in English textbooks of different
grade levels (assuming that the difficulty of the grammar pattern depends on
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the grade level of the textbook in which it frequently appears). Lastly, the
estimation of the difficulty of new questions consists in parsing the ques-
tions to identify the correct grammar pattern and searching the table for the
corresponding difficulty.

The other paper that focused on grammar questions [86] adopted a tra-
ditional machine learning approach, modeling question difficulty with IRT.
Specifically, the proposed approach consists in computing up to 99 fea-
tures at gap-level (54), item-level (18), and context level (27), and using
a ridge regression algorithm for difficulty estimation. Some features were
directly extracted by the authors, while others were obtained from publicly
available tools; for the complete list of features we refer the reader to the
original paper. The authors experiment with several configurations (i.e. dif-
ferent subsets of the 99 features) and observe that the best results are not
obtained using all of them. Indeed the authors propose a smaller model,
which uses only 36 features (26 gap-level features, 4 context features, and
6 item level features). These features are selected via recursive feature
elimination, which consists in recursively eliminating the least influential
features. Some of the most important features for the estimation are: the
tense of the verb (e.g. simple present, simple past, etc.); the presence of
forms such as “used to” or “was going to” and adverbs; the word order; the
frequency (from [51] and [14]), the word length, the age of acquisition [64],
and the concreteness [15] of the words appearing in the question.

Vocabulary

Three papers have dealt with CIM questions [111–113]. An overview is
presented in Table 5.5.

The first paper in this category [111] is a study that investigates the re-
lations between several factors of question items in English CIM tests and
the corresponding item difficulty. Specifically, the authors consider four
elements: i) the target word, ii) the reading passage, iii) the correct an-
swer, and iv) the distractors, and 10 features obtained from them. Most of
these features (9 out of 10) are related to the word difficulty of the differ-
ent elements (e.g. average word difficulty of the words in the reading pas-
sage), and the other feature is the number of word senses of the target word.
The “word difficulty” is obtained from JACET 8000 [116], which is a list
of 8000 words grouped in difficulty levels, specifically built for Japanese
learners of English. The experimental results show that the number of word
senses does not correlate well with the difficulty, probably because gener-
ally each word has one meaning that is much more frequent than the others.
Considering the other features, the ones that correlate more with question
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Paper Year Approach Type of
question

[111] 2017 10 features from target word, reading passage, correct
answer, and distractors; studies correlation between
features and difficulty.

CIM

[113] 2019 Features are reading passage difficulty, similarity be-
tween correct answer and distractors, and distractor
word difficulty level. Two levels (low/high) for each
of them, the number of “low” features represents the
difficulty (from 0 to 3).

CIM

[112] 2020 Features are target word difficulty, similarity between
correct answer and distractors, and distractor word
difficulty level. Two levels (low/high) for each of
them, the number of “low” features represents the dif-
ficulty (from 0 to 3).

CIM

Table 5.5: Overview of the approaches proposed for closest-in-meaning questions. All
proposed approaches leverage the text of the passage, the correct choice, and the dis-
tractors.

difficulty are i) the difficulty of the target word, ii) the average difficulty of
the words in the correct answer, and iii) the average difficulty level of the
distractors.

In more recent work [113], the authors explore how three factors – re-
lated to the features mentioned above – can be leveraged to control the
difficulty of CIM questions. The three factors are i) reading passage dif-
ficulty, ii) similarity between the correct answer and the distractors, and
iii) distractor word difficulty level. For each of these factors, the authors
only consider two levels (high and low), and the combination of levels is
finally used for the task of QDE. For reading difficulty, the authors apply
three well-established readability formulas to documents from two sources:
Times in Plain English5 to represent lower complexity English, and the New
York Times6 representing higher complexity English. The readability for-
mulas used in this study are: Flesch-Kincaid Grade Level, Flesch-Kincaid
Reading Ease [62], and Dale-Chall readability formula [16]. The average
values obtained for the two levels of English are then considered as ref-
erence while performing QDET. For the similarity between correct answer
and distractors, the authors use cosine similarity on the vectors representing
the words; these vectors correspond to the frequency of the co-occurrence
words within a certain window in the corpus. Finally, for the distractor

5http://www.thetimesinplainenglish.com/
6http://nytimes.com/
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word difficulty level, the authors use JACET 8000. As for the estimation
of question difficulty, the authors use the aforementioned factors to obtain
four level of difficulty (corresponding to the number of “high” factors in the
question), from “LLL” to “HHH”. To evaluate the approach for QDE, the
authors observe the correctness of students’ answers for questions of dif-
ferent difficulty levels, and note that indeed there is a positive correlation
between the difficulty estimated by the model and the fraction of wrong
answers by the students.

The latest work [112] is an extension of [113]. Indeed, the authors have
the same target of controlling item difficulty, but use slightly different fea-
tures. The factors taken into consideration are: i) target word difficulty, ii)
similarity between correct answer and distractors and iii) distractor word
difficulty level. As before, for each factor two levels (high and low) are
considered and the question difficulty is obtained from the combination of
such levels (i.e. four levels). Again, for the target word difficulty and the
distractor word difficulty level, the authors use JACET 8000, while the ap-
proach for computing the similarity is different from before and arguably
more advanced. Indeed, the authors use GloVe [90] embeddings for calcu-
lating cosine similarity. The experimental results suggest that this approach
is capable of more accurately estimating the difficulty of questions from
text.

5.4 Literature on QDET in Content Knowledge Assessment

All the approaches proposed in the domain of content knowledge assess-
ment focus on knowledge questions, and they can be categorized depending
on the format of the questions they work on. Specifically, there is an im-
portant distinction between text only questions, whose content is only text
(§5.4.1), and heterogeneous questions, which contain information of other
types such as images and tables (§5.4.2).

5.4.1 Text Only Questions

Text only question are the ones that have received the most attention in
recent years, when it comes to the task of QDET. An example of a text only
question from [123], specifically an MCQ from a medical exam, can be
seen in Figure 5.2. The proposed approaches can be categorized depending
on the information they leverage and how they use such information, as
shown in Figure 5.3.

Indeed, some approaches use only the text of the questions for the es-
timation [30], while others also use some additional information (which is
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Question:
A 55-year-old woman with small cell carcinoma of the lung is admitted to the hospital to 
undergo chemotherapy. Six days after treatment is started, she develops a temperature of 38C 
(100.4F). Physical examination shows no other abnormalities. Laboratory studies show a 
leukocyte count of 100/mm3 (5% segmented neutrophils and 95% lymphocytes). Which of the 
following is the most appropriate pharmacotherapy to increase this patient’s leukocyte count?

Options:
A. Darbepoetin B. Dexamethasone C. Filgrastim
D. Interferon alfa E. Interleukin-2 (IL-2) F. Leucovorin

Figure 5.2: Example of text only question from [123].

Root
only Q text [30]

other information

other texts
optional (for pre-training) [54, 130]

necessary [93, 123, 124]

non-textual
information

students’ interactions [21, 114]

knowledge components [21, 114]

response times [122]

Figure 5.3: Categorization of the approaches proposed for text only questions.
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not part of the questions themselves); importantly, the question text is al-
ways leveraged by all these approaches. The approaches based on question
text can be applied in the most scenarios and have the least constraints but,
on the other hand, the fact that they cannot leverage additional information
might be a limitation if that is available. The works that leverage some kind
of additional information can be divided into models that leverage texts
from other sources, or non-textual information. As for the texts, they can
be used either as data for pre-training a neural model [54, 130] or as data
that is necessary for the implementation of the model [93,123,124]. Lastly,
the non-textual information leveraged by some models can come from dif-
ferent sources: knowledge graphs [32, 63, 102, 118], students’ interactions
and knowledge components [21, 114], and response times [122].

Using only the question text

The models that leverage only question texts are the ones with the least con-
straints, since they can be trained using only the text and the target difficulty
of each question. Only one model was proposed in previous research [30],
and studies the correlation between the question difficulty (obtained with
CTT) and several features obtained from the text of the questions. Specifi-
cally, the authors experiment with over a hundred linguistic indicators gen-
erated using the Coh-Metrix software [39] and categorised into five dimen-
sions: i) narrativity: extent to which the item uses language comparable to
everyday language; ii) syntactic simplicity: the degree to which the item is
concise and makes use of simple and familiar syntactic structures; iii) word
concreteness: the degree to which the vocabulary use is concrete and mean-
ingful; iv) referential cohesion: the degree of overlap of words and ideas
across sentences forming explicit connections; v) deep cohesion: the extent
to which the item contains causal and intentional connectives that help the
reader build connections and understand relationships and processes in the
text. Additionally, the authors experiment with sentence length (number of
words per sentence) and paragraph length (sentence count per paragraph) of
descriptive statistics generated by Coh-Metrix. A linear regression model is
used to estimate the difficulty of the 216 items of the experimental dataset
from the aforementioned indicators, and the language variables do not seem
to strongly correlate with item difficulty. The authors argue that this might
be due to the fact that the question texts are fairly short, and therefore the
language-related variables are not very meaningful. Also, the experimental
dataset is quite small and this might have had an impact on the outcome of
the research.
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Additional texts

An alternative to using only the question text consists of leveraging addi-
tional resources such as books or lecture transcripts, with the constraint that
such resources concern the same topics that are assessed by the questions.
This is a crucial difference from language assessment, as in that case the
additional resources used by models for QDET are domain-general cor-
pora. Five works explored this area, along two different directions. On
the one hand, the models proposed in [54, 130] make use of publicly avail-
able pre-trained models and leverage such additional texts only for further
pre-training, therefore they can be fine-tuned on QDET and used even if
such additional texts are not available. On the other hand, the models pro-
posed in [93,123,124] heavily rely on such additional data and, if missing,
they cannot be implemented without major modifications to the architec-
ture. Even though it may be seen as a limitation, this approach might en-
able such models to extract more information from the additional texts. An
overview of the proposed approaches is shown in Table 5.6.

Paper Year
Other texts
necessary Approach

[54] 2018 - Features: Cosine similarity between Word2Vec em-
beddings of stem, correct choice, and distractors;
model: SVM

[130] 2020 - multi-task BERT
[123] 2019 3 Features: word embeddings (Word2Vec, ELMo), lin-

guistic features, Information Retrieval-based features;
model: random forest regressor

[124] 2020 3 Same as [123]
[93] 2019 3 Two neural networks, which estimate two compo-

nents of question difficulty (recall difficulty and con-
fusion difficulty); their estimations are then averaged.

Table 5.6: Overview of the proposed approaches that use additional texts.

The first paper that leverages additional textual corpora for the task of
QDE from text is [54], in which the authors propose an approach built
for MCQs on social sciences in Chinese. It is made of two steps: first,
i) a Word2Vec model is used to obtain semantic vectors representing the
question, the correct choice, and the distractors, then ii) the cosine similar-
ities between these vectors are used as input to an SVM classifier that out-
puts the estimated difficulty. If such a corpus is not available, a pretrained
Word2Vec model can be used but this compromise would most likely affect
the accuracy of the model. The authors observe that i) there is a negative
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correlation between the item difficulty and the similarity between stem and
answer and ii) there is a positive correlation between the item difficulty and
the similarity between the correct answer and the distractors.

Another approach that leverages additional corpora for pre-training is
proposed in [130], which is a preliminary work about the effects of using
multi-task BERT [26] for performing QDET; specifically dealing with En-
glish programming questions. The proposed approach i) starts from the
pre-trained BERT model and ii) further pre-train it on a corpus of related
documents, finally iii) it fine-tunes it on the task of QDET, modeling it as a
binary classification task.

Three papers have presented approaches that leverage additional tex-
tual information and cannot be implemented if such data are not available.
Two of them, written by the same team of researchers, focus on the task
of QDET for MCQs in high stakes medical exams. The first one [123] di-
rectly focuses on difficulty estimation, while the second one [124] deals
with item survival, which heavily depends on the difficulty (items with dif-
ficulty above or below a given threshold are not considered suitable for
scoring, and thus do not “survive”). The proposed approach is divided into
two steps: i) first, there is a feature engineering phase, when the input text
is converted into feature arrays, then ii) the feature arrays are used as in-
put to a regression model that performs the actual estimation of difficulty
(which is modeled with CTT in the range [0; 100]). The features can be
categorized into three groups: i) word embeddings, ii) other linguistic fea-
tures, and iii) Information Retrieval (IR) features. As for the embeddings,
the authors use Word2Vec and ELMo, both pretrained on a corpus of about
22M MEDLINE abstracts7. The linguistic features are a set of about 60
values coming from different sources: lexical features, syntactic features,
semantic ambiguity features, readability formulae, cognitively-motivated
features, word frequency features, and text cohesion features. Lastly, the IR
features are obtained from an automated Question Answering system that
is trained to respond to the item by retrieving relevant documents from the
MEDLINE corpus. The authors experiment with different regression mod-
els, and observe that Random Forests are the best performing. The authors
also perform an ablation study and find that all the features are helpful for
the estimation, and that the IR features are, on their own, the most useful.
On the other hand, embeddings and linguistic features led to comparable
performance when used singularly.

The other approach to QDET using additional texts was proposed in
[93], targeting MCQs in medical exams. The proposed approach is com-

7https://www.nlm.nih.gov/bsd/medline.html
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posed of two neural networks, which are used in parallel to compute dif-
ferent components of question difficulty, which are later averaged to obtain
a final difficulty score. The first of them, referred to as Recall Difficulty
Module, receives as input i) a corpus of related medical documents, ii) the
text of the questions and iii) of the correct choices, and it has the goal of es-
timating how difficult it is to recall the knowledge assessed by the question.
The other component, named the Confusion Difficulty Module, receives as
input the stem of the question and the possible choices (both the correct
one and the distractors) and has the target of estimating how difficult it is to
distinguish between the different choices. Finally, the two components of
the difficulty are combined with a weighted average (the weight is learned
and depends on the stem and the correct choice). The authors observe that,
when using only the Recall Difficulty Module or the confusion difficulty
module, the error is higher than when using the complete network, although
the difference is not great.

Additional information, students’ interactions and knowledge components

Two papers [21, 114] proposed approaches for QDET using, as additional
information, the knowledge components (i.e. topics) associated to each
question and the results of students’ answers; an overview is presented in
Table 5.7.

Paper Year Approach
[21] 2019 Two components: i) LSTM that receives the text of the question,

ii) attention based model that capture relevance between texts
and knowledge components. Then, average pooling.

[114] 2020 Pre-trained BERT to embed questions, and TextCNN to perform
QDE.

Table 5.7: Overview of the approaches that use knowledge components and students’
interactions as additional information.

The fact that such models leverage students’ interactions make them
unusable for QDE in the case of new items, since in that case no log of
interactions is available. Indeed, although both papers proposed a model for
QDE, their final target is students’ performance prediction, which motivates
the need for a history of previous answers.

The first of these papers [21] proposed DIRT – Deep Item Response
Theory – which is a model that takes inspiration from IRT for estimating
the probability that a given student correctly or wrongly answers a question,
but relies on neural networks for the estimation of the IRT latent traits.
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DIRT is made of three modules: i) an input module, ii) a deep diagnosis
module, and iii) a prediction module. Here, we are interested only in the
deep diagnosis module and, specifically, in the component that performs
QDET, therefore we will not present the other components of DIRT. The
model used for QDET is made of two parts, which estimate the difficulty
from two different perspectives. The first one exploits semantics of ques-
tion texts for the estimation, which is performed with an LSTM network
that receives as input the text of the questions. The second perspective con-
siders the width and depth of knowledge concepts, which is reflected by the
relevance between question texts and knowledge concepts. In practice this
is done with an attention mechanism, that captures the relationship between
question texts and knowledge concepts. Lastly, an average pooling opera-
tion is performed to obtain the difficulty. Since the final target of the paper
is student answer prediction, there are no experiments to directly compare
the estimated difficulty with a ground truth value.

The other approach that leverages students’ interactions and knowledge
components for the task of QDET was proposed in [114], whose final target
is knowledge tracing, consisting in modeling the evolution of students’ skill
levels and predicting the correctness of their answers to exam questions. In
this case, the ground truth difficulty is obtained with CTT, and the model
itself for QDET is fairly simple. Indeed, the authors employ a pre-trained
BERT model for embedding the questions and apply a TextCNN [61] model
for performing QDE.

Additional information, response times

One paper [122] has proposed a transfer learning based model for QDE of
MCQs in medical exams, using question text and response times as fea-
tures. The proposed model is made of an ELMo network, pretrained on the
One Billion Word Benchmark [17], followed by an encoding layer added to
learn the sequential information from the ELMo embeddings; the encoding
layer is made of a BiLSTM. A dense layer then follows the encoding layer
to convert the feature vectors to the targets through a non-linear combina-
tion of the feature vectors’ elements. Considering the target, the model is
first trained for response time prediction, and later fine-tuned for the task of
QDE. The authors experimented with three different ELMo configurations
(small, middle, and original) and various input configurations (stem only,
options only, stem and options). The results indicate that transfer learning
can be applied to improve the prediction of question difficulty when re-
sponse time is used as pretraining and the difficulty is best predicted when
using only the item stem. Contrary to the findings from [9,10,54], using the
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answer options does not increase the performance of the model and actually
hinders it, even though the difference is not great. Also, it is interesting to
observe that, even though the best results are obtained with the larger model
(i.e. ELMo original, 93.6M parameters), there is not clear correlation be-
tween the size of the models and the accuracy of the estimation: indeed, the
errors obtained with ELMo middle (20.8M parameters) are generally larger
than the ones obtained with ELMo small (13.6M parameters).

5.4.2 Heterogeneous Questions

Considering the publications that deal with heterogeneous questions, they
all focus on questions with accompanying images [33, 109, 129] but one of
them [109] also focuses on the effects that tables have on question difficulty.
An overview is shown in Table 5.8.

Paper Year Approach
[109] 2016 Studies how the presence of images, tables, formulas, and some

textual features (text length, presence of specialist terms and ab-
stract concepts) affect the item difficulty.

[33] 2019 ResNet for extracting image representations, BERT for embed-
ding textual content. Capsule Neural network to obtain a fixed-
length vector which represents the exercise. Bayesian inference-
based softmax regression classifier to perform the estimation.

[129] 2019 i) embedding of heterogeneous content (Word2Vec for texts,
convolutional layers for images, fully connected layers for meta-
data), ii) BiLSTM, iii) self-attention, and iv) max pooling to ob-
tain pre-trained question representations. Fine-tuning on QDE
with a FCNN for the regression task.

Table 5.8: Overview of the various approaches proposed for QDE of heterogeneous ques-
tions.

The first work to focus on question images and their effects on the dif-
ficulty was [109], which performed a study of how some textual features
and the presence of images, tables, and formulas (not their content) affect
the IRT difficulty of MCQs in a scientific reasoning exam. Considering
textual features, the authors takes into consideration text length, and the
presence of specialist terms and abstract concepts. By studying the cor-
relation between the aforementioned features and the IRT difficulty of the
items, the authors observed that the difficulty is significantly increased by
the presence of abstract concepts and specialist terms, suggesting that they
might be a good predictor of question difficulty. The presence of images as
well has a positive effect on item difficulty, meaning that items that contain
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visual images tend to be harder to solve. This result is in contrast with pre-
vious research [71], and the authors claim that this might happen because
the images in the experimental dataset are generally used to show complex
scientific models and therefore the increase in difficulty might come from
that, not from the images.

Being able to model the content of the images and not only their pres-
ence might be very helpful for improving the accuracy of QDE for ques-
tions containing images, which is the focus of two papers from 2019. The
first of them [33] proposed an approach for predicting the difficulty of
visual-textual exercises, using as input both the text and the image of each
question. The authors experiment on two datasets, one containing mathe-
matics questions and the other containing medicine related questions. The
proposed model is made of two modules: i) a feature extraction module
and ii) a difficulty classifier module. More precisely, the feature extraction
module contains two components: a Residual Network [46] for extracting
the representation of the images, and a BERT model [26] for embedding
the textual content. Since the two vector representations can have different
lengths, they are then fed into a Capsule Neural Network [96] to obtain a
fixed-length vector which contains the unified representation of the exer-
cise. The fixed-length representation of each exercise is then used as input
to the difficulty classifier module, that is a Bayesian inference-based soft-
max regression classifier and performs the actual estimation of difficulty.

A different approach to perform QDE in heterogeneous questions was
proposed in [129], which introduced a general pre-training method – namely
QuesNet – to learn question representations that could be fine-tuned for
several downstream tasks, one of them being difficulty estimation, simi-
larly to what is done in general purpose pre-trained language models (e.g.
BERT). Specifically, the paper focuses on mathematics MCQ, all contain-
ing an image. At a high level, QuesNet is made of three components: i)
an embedding module, ii) a content module, and iii) a sentence module.
The embedding module projects heterogeneous input content into a unified
space, which enables the model to work on inputs from different sources.
Specifically, the input can be i) text from the body of the question, ii) an
image which is part of the question, and iii) question metadata (e.g. the
knowledge components associated with a question). Text embedding is
performed with Word2Vec, image embedding is done with three convolu-
tional layers followed by activations and a max-pooling layer, the meta-
data embedding is performed with two fully connected layers. The content
module is made of a BiLSTM which receives the concatenation of vectors
produced by the embedding module. Then, the sentence module leverages
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a self-attention module for aggregating the item representation vector into
a sentence representation; this is done with a multi-head attention module
to perform global self attention [117]. Finally, there is a max pooling layer
to produce a single vector representing the heterogeneous input image. The
proposed architecture is pre-trained with a two level hierarchical approach:
first a masked language model is used as objective for learning low level
linguistic features; then a domain oriented objective is used for learning
high level domain logic and knowledge. The embedding modules are pre-
trained separately: the text embedding is a Word2Vec model trained on the
specific corpus, the image and metadata embeddings are fully connected
neural networks pre-trained using an encoder-decoder architecture and an
auto-encoder loss. Once pre-trained, the model can be fine-tuned for spe-
cific downstream tasks. Among other tasks, the authors experiment with
QDET, and do so by adding a fully connected layer on top of the question
embeddings.

5.5 Models

In this Section, we describe the details of the models that we experiment
with in this study. We do not evaluate all the approaches proposed in pre-
vious literature, as that would be unfeasible due to both their number and
the fact that many are built to leverage question characteristics that are not
available in the experimental datasets we consider. Indeed, we experiment
with three textual datasets – two belonging to the CKA domain and one
to the LA domain – and our goal is to understand how different models
perform across them. Therefore, we do not re-implement the approaches
that leverage predefined measures for language learners [56] or the rigid
mapping from feature to difficulty level used in [111–113]. Similarly, we
do not implement all the approaches that leverage non-textual informa-
tion [21,32,33,63,85,91,102,109,114,118,129], or features that cannot be
computed on the type of questions that we experiment on: TextEvaluator
features used in [77], the Coh-Metrix features from [30], the entropy used
in [34], the gap features used in [86], the response time used in [122].

Nonetheless, even though the list of papers which are not implemented
in this study might seem long, we experiment with several approaches
which were used in previous research. Specifically, we experiment with:

• linguistic features followed by a regression or classification model,
which are used in diverse forms in [24, 53, 115];

• readability indexes as features to a regression or classification model,
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as in [56];

• Information Retrieval (IR) features as input to a regression or clas-
sification model, similarly to [101], using a model we proposed in
previous research [10];

• Word2Vec embeddings, as in [28], which are used as input to a regres-
sion or classification model;

• Transformer-based neural networks, which we evaluated in previous
research [8], following the examples of [130] and several other ap-
proaches that leveraged BERT or the attention mechanism [33, 57,
114];

• several hybrid models which merge some of the approaches listed
above: linguistic and readability features [7, 9, 70]; linguistic, read-
ability, and IR features [9]; linguistic features and word embeddings
[125]; linguistic, IR features, and word embeddings [123, 124].

It is important to mention here that we do not exactly re-implement all
these models, since that is in most cases unfeasible due to some missing
details which might hinder the exact replication of previous experiments
(e.g. model hyperparameters, training setup, etc.). Moreover, even if we
could exactly re-implement all these models, we are experimenting on dif-
ferent datasets from the ones used in the original papers. Therefore, we
do not have the goal of finding an approach which is overall the “best” but
rather understand how these approaches perform on the three datasets that
are available to us and whether there are some specific question character-
istics which cause them to work particularly well or – on the other hand –
lead to inaccurate estimations.

5.5.1 Linguistic Features

The usage of linguistic features for the task of QDET proved useful in pre-
vious research and, according to their indications, we experiment with the
following features:

• Word Count Question;

• Word Count Correct Choice;

• Word Count Wrong Choice;

• Sentence Count Question;
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• Sentence Count Correct Choice;

• Sentence Count Wrong Choice;

• Average Word Length Question;

• Question Length divided by Correct Choice Length;

• Question Length divided by Wrong Choice Length.

These features are not directly used to perform QDET, but rather we use
them as input features to a regression model that performs the actual es-
timation of difficulty. Specifically, we experiment with a Random Forest
model, which is the most commonly used model in previous research.

5.5.2 Readability Indexes

Readability indexes are measures designed to evaluate how easy a text is to
understand, thus they can prove useful for estimating question properties.
In particular, we use five indexes.

• The Flesch Reading Ease [36] gives a text a score between 1 and 100,
with 100 being the highest readability score; it is computed from the
average number of words per sentence and the average number of syl-
lables per word together with some constants and coefficients.

• The Flesch-Kincaid Grade Level [62] approximates the reading grade
level of a text and it is very similar to the Flesch Reading Ease, as it
uses again the average number of words per sentence and the average
number of syllables per word but different constants and coefficients.

• Automated Readability Index (ARI) [100] assesses the U.S. grade level
required to read a piece of text; it is computed from the average num-
ber of characters per word and the average number of words per sen-
tence.

• The Gunning FOG Index [42] generates a grade level between 0 and
20, which estimates the education level required to understand the
text; it is computed from the average number of words per sentence
and the average number of complex words per sentence, being com-
plex words the ones containing three or more syllables.

• Coleman-Liau Index [23] is a readability formula which shows the
reading level of a text; it uses number of sentences and number of
letters as variables.
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Some papers also experimented with the SMOG Index (“Simple Measure
of Gobbledygook”) [80], which measures how many years of education the
average person needs to have to understand a text. However, we do not use
it as it is best for texts of 30 sentences or more, which is not the case for the
assessment items in the experimental datasets we consider in this work.

Similarly to what we do for the linguistic features, we use these indexes
as input features to a Random Forest model.

5.5.3 Information Retrieval Features

Considering the features based on information retrieval techniques, we re-
implement R2DE, which we proposed in a previous paper [10]. R2DE is
a Regressor for Difficulty and Discrimination Estimation and it leverages
TF-IDF for the estimation. It estimates both difficulty and discrimination,
as defined in two-parameter IRT, but here we focus only on the components
that perform difficulty estimation. This does not affect the efficacy of the
model as the two components are separate and work in parallel, as visible
in Figure 5.4. The image also shows that, in addition to having two parallel
pipelines for difficulty estimation and discrimination estimation, R2DE is
made of two parts: i) a feature engineering part (concatenation, preprocess-
ing, and TF-IDF) and ii) a regression part.

Feature Engineering

The first step is the creation of a single text from the input question, and we
test three alternatives (later referred to as encodings):

• QOnly considers only the question;

• QCorrect appends the correct options to the question;

• QAll concatenates all the options (both correct and wrong) to the ques-
tion.

As an example, we can consider the MCQ “Which is the capital city
of Germany?” with possible choices “London”, “Berlin”, “Madrid” and
“Paris”. This question would be transformed, with the three encodings,
in the following input texts: i) “Which is the capital city of Germany?”,
ii) “Which is the capital city of Germany? Berlin”, and iii) “Which is the
capital city of Germany? London Berlin Madrid Paris”. In all three cases,
the question is converted into a single text.

As a second step, the input text is preprocessed using some standard
steps of NLP: stop words and punctuation are removed, and the words are
stemmed [78].
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Figure 5.4: Representation of the architecture of R2DE, from the input text to the output
difficulty and discrimination.
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The third step consists in using TF-IDF to convert the input text into an
array of features. TF-IDF, by default, generates vectors whose dimension
is equal to the number of stemmed words from the original corpus, which
would be intractable for the regression component. Therefore, we sort the
features according to their number of occurrences in the corpus, and keep
only the ones whose frequency is both below an upper threshold maxF and
above a lower threshold minF . The idea of this approach is to remove both
the corpus-specific stop-words and the words that are so infrequent that the
model is unlikely to learn them. Additionally, since the number of features
obtained with this approach might still be too large, we keep at most the
first NW . All these thresholds (maxF , minF ., and NW ) are considered as
parameters of the model and therefore can be chosen with cross-validation
in order to be tuned for a specific dataset.

The Regression Algorithm

The regression component of R2DE is straightforward: indeed, it is made of
a Random Forest regressor, whose parameters (i.e. number of trees and max
depth) are chosen with cross validation. In addition to that, the encoding to
use (QOnly, QCorrect, or QAll) is also chosen with cross-validation.

5.5.4 Word2Vec

The majority of previous research used Word2Vec [81] as the technique for
building word embeddings, therefore that is the non-contextualized word
embedding technique we experiment with as well (as for contextualized
embeddings, we use Transformer models). In our experiments, we use
Word2Vec embeddings as input features to a Random Forest model, simi-
larly to what we do for the other feature types.

Following the examples of previous research, we use Word2Vec arrays
with dimension of 100 and we train them on the training questions of the
datasets. We obtain the embedding of the whole question by averaging the
embeddings of the single words.

Similarly to the approach we take for the Information Retrieval based
features, we test three approaches:

• QOnly considers only the question;

• QCorrect appends the correct options to the question;

• QAll concatenates all the options (both correct and wrong) to the ques-
tion.
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Figure 5.5: Fine-tuning of the pre-trained Transformer language model for the task of
QDET.

5.5.5 Transformers

Transformers are pre-trained language models that can be fine-tuned to
target various downstream tasks. This generally leads to better perfor-
mance with shorter training times with respect to training the neural model
from scratch, because it leverages the pre-existing “knowledge” of the pre-
trained model. We experiment with two pre-trained language models –
BERT and DistilBERT – and we fine-tune them with two different ap-
proaches, similarly to what we did in a previous paper [8]. The first ap-
proach is straightforward and consists in directly fine-tuning the pre-trained
model for the task of QDET. The second approach, on the other hand, is di-
vided into two steps: first of all, we i) perform an additional pre-training of
the pre-trained model on the task of Masked Language Modeling (MLM),
and then we ii) fine-tune it on the task of QDET. The difference between
the two approaches is that, in the second case, we try to improve the domain
knowledge of the model – by leveraging the MLM task – before the final
fine-tuning on QDET, and this can lead to improved performance.

Fine-tuning for Supervised QDET

The architecture used for fine-tuning with this approach is shown in Figure
5.5. We follow the guidelines provided in the the original paper which
introduced BERT [26]. Specifically, we use only the first output of the pre-
trained language model and stack an additional fully connected layer on top
of the network, using that as the output for QDET. This works because the
first output of the pre-trained model is a special token [CLS] that is added
in the first position of the input text and is the only one used for regression
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and classification.
The number of neurons of the additional output layer depends on the

specific choice of learning theory, as it depends i) on whether the difficulty
is defined as a continuous or discrete variable and ii) on the number of
classes in the case of discrete difficulty. In the experimental datasets we
consider, the difficulty is defined either as a continuous variable or as a bi-
nary variable; therefore the additional output layer has one neuron, and the
weights of the connections with the previous layer are randomly initialized.
When we fine-tune the model, we update both the weights of the additional
layer and the weights of the pre-trained language model.

For tokenizing and encoding the input, we use the same approach as in
the original models. Specifically, we add the special token [CLS] in the
first position of all the input samples, and all the input samples are made
of pairs of sentences, separated by the special token [SEP]: the first sen-
tence represents the question (after tokenization) while the second contains
the (tokenized) text of the possible answer choices8. Similarly to what we
do for R2DE and Word2Vec, we experiment with three encodings for the
second sentence. Specifically, we consider: i) only the text of the ques-
tion, by leaving the second sentence empty (QOnly); ii) only the correct
choice(s) (QCorrect, as in the example in Figure 5.5), iii) all the possible
choices, concatenating them in a single sentence (QAll). In our paper [8] we
also experimented another approach, considering all the possible choices
and separating them with several [SEP] tokens (one before each choice);
however, this approach performed largely worse than the others, thus we
do not report it here. Most likely the model, in that case, is not capable of
learning the meaning of the additional separators due to the limited number
of training questions (BERT and DistilBERT, indeed, are pre-trained to use
only one [SEP] token).

Pre-training for MLM

Masked Language Modeling (MLM) is a fill-in-the blank task, where a
word of the input text is substituted by a [MASK] token and the model is
trained to use the surrounding words to predict the word that was masked,
as shown in Figure 5.6.

The second approach based on Transformers that we evaluate in this the-
sis consists of performing an additional MLM pre-training before the fine-
tuning on QDET. This is based on the idea that the additional MLM pre-

8If a question is made of several sentences, the whole question is considered as “Sentence 1”, and the [SEP]
token is still used only to indicate the end of the question. We use this naming (“Sentence 1” and “Sentence 2”)
since it is the one used in the original paper.
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Figure 5.6: Additional pre-training of the pre-trained Transformer language model for
the task of masked language modeling.

training can improve the domain knowledge of the models and therefore
lead to better accuracy in the QDET task. The limitation of this approach
is that it requires an additional dataset of documents (i.e. lectures, books,
etc.) about the same topics that are assessed by the questions. Considering
the data collections we experiment on in this work, this is available only for
Cloud Academy: it is Cloud Academy_LEC, which contains the transcript
of some of the video-lectures on the e-learning platform.

In practice, the additional MLM pretraining is performed as follows. In
the available lectures, 15% of the words are randomly masked and the lan-
guage model is trained to predict the masked words, sentence by sentence.
The actual prediction is performed by stacking a fully connected layer and
a softmax layer on top of the original pre-trained model: for each masked
sentence, this additional layer consumes as input the contextual embed-
ding corresponding to the [MASK] token, and tries to predict the word that
should be inserted in its place. Once the additional pre-training on MLM
is completed, the additional dense and softmax layers are not needed any
more and therefore we remove them from the network, obtaining a pre-
trained model with the same architecture as the original. Therefore we can
perform the final fine-tuning for QDET with the same architecture shown
in Figure 5.5. The crucial difference is that, now, all the internal weights
were updated by the additional MLM pre-training.

5.5.6 Hybrid Models

As mentioned in the beginning of this Section, in addition to experiment-
ing separately with each model, we also experiment with some hybrid ap-
proaches, which are commonly used in the literature. All the hybrid ap-
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proaches considered here consist in concatenating features from two (or
more) of the groups presented above, and use them as input to a single
regression/classification model. Specifically, we experiment with:

• linguistic and readability features, as in [7, 9, 70];

• linguistic, readability, and IR features, as in [9];

• linguistic features and Word2Vec embeddings, as in [125];

• linguistic, IR features, and Word2Vec embeddings, similarly to [123,
124], even though they also use additional embeddings.

5.6 Experimental Setup

In this section we describe the experimental setup, which is used for all
the experiments whose results are presented in the next section. First, we
describe the setup and data splitting used for the experiments (§5.6.1); then
we briefly reintroduce the experimental datasets (§5.6.2), focusing on the
aspects that are peculiar to supervised QDET.

5.6.1 Setup for Calibration, Training, and Evaluation

All the models presented in Section 5.5 require the training and evaluation
data to be in a certain format: they need the set of questions and, for each of
them, the difficulty and the ground truth difficulty. The only exception are
the Transformer-based models, which might require a corpus of additional
documents for the additional pre-training on Masked Language Modeling
(MLM).

Considering the datasets presented in the previous section, the ground
truth difficulty is readily available for RACE only; for Cloud Academy and
ASSISTments we have to estimate it from the logs of student answers. Fig-
ure 5.7 shows the experimental setup for these two datasets: first of all,
we use the log of student answers to perform question difficulty estimation
with Item Response Theory (IRT). Then, we split the questions into train
and test set, in order to train and evaluate the models that perform QDET,
which use the IRT difficulties as gold standard. We keep 80% of the ques-
tions as training questions and 20% of them as test questions; additionally,
at training time, we keep 10% of the training set (i.e. 8% of the total number
of questions) as evaluation which is used for hypermarameter tuning.

The setup is simpler for RACE, as the ground truth difficulties are al-
ready available (either 0 or 1, representing “middle” and “high” levels)
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Figure 5.7: Experimental setup for Cloud Academy and ASSISTments.

and there is no need to estimate them from the log of student answers.
Crucially, this implicates a difference in the difficulty format in the three
datasets: while ASSISTments and Cloud Academy have difficulty values in
the range [−5;+5] (selected by us while training the IRT model), RACE
contains categorical difficulties whose value can either be 0 or 1. As a
consequence, also the metrics that are used for evaluating the models are
different in the two scenarios: for Cloud Academy and ASSISTments we use
regression metrics, while on RACE we use classification metrics.

Additionally, we also convert the IRT difficulties and the predicted diffi-
culties of Cloud Academy and ASSISTments into categorical difficulties, in
order to have a better indication of how the model performance compares
between the three datasets.

5.6.2 Experimental Datasets

We already presented in detail the three data collections in Chapter 4, there-
fore we discuss here only the aspects that are specific of supervised QDET.

Cloud Academy

The Cloud Academy data collection contains three datasets.
Cloud Academy_A contains the log of students’ answers to exam ques-

tions; we use it to train the IRT model and obtain, with pretesting, the gold
reference difficulty which is used for training and evaluating the models.

Cloud Academy_Q contains the textual information about the questions,
which is the input to all the models we evaluate. Figure 5.8 displays the
distribution of training questions by IRT difficulty, obtained from the inter-
actions in Cloud Academy_A. The questions are distributed according to a
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Figure 5.8: Distribution of questions in Cloud Academy by IRT difficulty.

Gaussian-like shape.
Cloud Academy_LEC contains the text of some online lectures available

on the Cloud Academy platform. We use this dataset to perform some ad-
ditional experiment on the Transformer-based models, to explore whether
leveraging additional corpora of learning contents related to the same top-
ics assessed by the questions can lead to improve performance in the task
of QDET.

ASSISTments

Two datasets are available from ASSISTments: ASSISTments_A and AS-
SISTments_Q.

ASSISTments_A, similarly to the analogous Cloud Academy_A, contains
the log of students’ answers (used to obtain the “true” question difficulty),
and ASSISTments_Q contains the question texts. No lecture dataset is avail-
able, meaning that it is not possible to perform the additional pre-training
of the Transformer models.

Figure 5.9 displays the distribution of training questions by IRT diffi-
culty, which is the target of our estimation. It is clearly visible that the
questions are distributed similarly to what we observed for Cloud Academy,
in a Gaussian-like shape, but there are two small peaks at the extremes, rep-
resenting questions which were correctly (or wrongly) answered by all the
students, which were not present in Cloud Academy_A.
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Figure 5.9: Distribution of questions in ASSISTments by IRT difficulty.

RACE

Only one dataset is available for RACE, and it contains, for each question:
i) the text of the reading passage, ii) the text of the question, iii) the text of
the possible options, and iv) the manually calibrated difficulty, which is a
binary categorical value. For the experiments on supervised QDE, we use
a reduced version of the original dataset, obtained by keeping one fourth
of the questions. Specifically, in order not to have questions too similar
to each other, we only keep one question for each textual passage, and the
reduced dataset is unbalanced, as the original one is.

The following section presents the analysis of the experimental results
carried out on the three datasets, from the comparison of the difficulties esti-
mated with the different approaches to supervised QDET, to a more detailed
analysis of how different models perform on different types of questions.

5.7 Results

This section presents the results of all the experiments that were carried out
to evaluate the performance of different models in the task of supervised
QDET. We start by comparing the estimated difficulties with the target val-
ues (§5.7.1), we then study the distribution of the difficulties estimated with
each model (§5.7.2) and to which extent the model performance depends on
question characteristics such as the question length, the number of correct
choices (for MCQ), and the type of question (§5.7.3).
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5.7.1 Comparison with gold standard difficulties

In this subsection, we evaluate the different models by comparing the esti-
mated difficulties with the gold standard.

Cloud Academy

Table 5.9 presents the evaluation of all the models on the Cloud Academy
test dataset. Each row present a different model, and each column corre-
sponds to one metric; we use Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), nDCG, and R2 score.

It is immediately visible that QDE from text in the Content Knowledge
Assessment (CKA) domain is a challenging task: indeed, some models
perform even worse than the ZeroR baseline (which estimates for all the
questions the average difficulty of the training set), and the best perform-
ing model – BERT (QCorrect) with MLM – reduces the MAE of the ZeroR
baseline of less than 7%.

Readability and Linguistic, which do not consider in any way the se-
mantic meaning of the question, are outperformed by almost all the other
models, which is reasonable considering that in CKA the question question
difficulty derives mostly from the knowledge which is being assessed.

The only models that are outperformed by Readability and Linguistic are
the Transformers models, when used in the QOnly configuration; most likely,
Transformers perform poorly with this configuration (three of them even
have negative R2 scores) because they receive only one sentence, instead
of the two sentences (separated by the special token [SEP]) which they
are pre-trained on. This is also supported by the fact that this issue does
not occur for DistilBERT (QOnly) with MLM, which is a smaller model with
respect to BERT, and therefore the number of training questions is sufficient
to reduce the impact of this issue.

Considering the models that can be implemented with different input
configuration (QOnly, QCorrect, and QAll), we can see that the text of the
answer choices is helpful for the estimation of question difficulty. How-
ever, some models performs best when all the answers choices are used
(Word2Vec, DistilBERT without MLM), while other when only the cor-
rect choice(s) is used (R2DE, DistilBERT with MLM, and BERT); still, the
difference is generally minor.

All the hybrid models perform fairly well, with the exception of Read-
ability + Linguistic, which is outperformed by most of the other models.

The nDCG metric is always fairly high (the theoretical maximum value
is 1.0), which might suggest that all these models perform really well. How-
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ever, that is not really the case, and we observe that the nDCG values are
overall high due to the distribution of the gold standard difficulties: indeed,
the “real” difficulties are distributed with a Gaussian-like shape, meaning
that many questions have similar values of difficulty and, therefore, swap-
ping their order does not affect too much the nDCG.

Model MAE RMSE nDCG R2
ZeroR 0.8901 1.1258 0.9549 0.0000
Linguistic 0.8796 1.1064 0.9637 0.0342
Readability 0.8840 1.1143 0.9589 0.0204
R2DE (QOnly) 0.8572 1.0896 0.9615 0.0632
R2DE (QCorrect) 0.8554 1.0853 0.9647 0.0706
R2DE (QAll) 0.8604 1.0907 0.9643 0.0614
W2V (QOnly) 0.8746 1.2167 0.9597 0.0401
W2V (QCorrect) 0.8739 1.1047 0.9638 0.0371
W2V (QAll) 0.8643 1.0919 0.9658 0.0591
DistilBERT (QOnly) 0.9220 1.1708 0.9676 -0.0820
DistilBERT (QCorrect) 0.8640 1.0955 0.9666 0.0527
DistilBERT (QAll) 0.8482 1.0846 0.9681 0.0714
BERT (QOnly) 0.8908 1.1322 0.9666 -0.0119
BERT (QCorrect) 0.8471 1.0630 0.9685 0.1080
BERT (QAll) 0.8515 1.0874 0.9666 0.0667
DistilBERT (QOnly) with MLM 0.8702 1.1085 0.9681 0.0301
DistilBERT (QCorrect) with MLM 0.8434 1.0706 0.9684 0.0953
DistilBERT (QAll) with MLM 0.8596 1.1011 0.9671 0.0429
BERT (QOnly) with MLM 0.8952 1.1256 0.9677 -0.0001
BERT (QCorrect) with MLM 0.8351 1.0535 0.9686 0.1238
BERT (QAll) with MLM 0.8427 1.0762 0.9700 0.0857
Ling. + Read. 0.8774 1.1033 0.9639 0.0395
Ling. + Read. + R2DE (QAll) 0.8370 1.0563 0.9652 0.1197
Ling. + W2V (QAll) 0.8566 1.0796 0.9650 0.0803
Ling + R2DE (QAll) + W2V (QAll) 0.8352 1.0583 0.9678 0.1163

Table 5.9: Evaluation of different models on Cloud Academy, comparing the difficulty
estimated from text with the target value. All evaluation metrics are computed on the
held-out test set. We write in bold the best performing model (separately for each
metric) and in gray the ones that perform worse than ZeroR.

ASSISTments

Table 5.10 presents evaluation of the models on the ASSISTments dataset,
using the same evaluation metrics as on the Cloud Academy dataset. In
this case, the table has a smaller number of rows due to the fact that the
text of the possible options is not available in ASSISTments, therefore the
QCorrect and QAll configurations of the models cannot be evaluated. Also, an
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additional corpus is not available, therefore the MLM pre-training of BERT
and DistilBERT cannot be performed.

The findings are fairly similar to Cloud Academy. Almost all the models
perform better than ZeroR and in this case the difference between the best
performing model – Ling + R2DE (QOnly) + W2V (QOnly) – and the baseline
is greater (almost 15% considering MAE).

Again, Linguistic and Readability, as well as their hybrid, are outper-
formed by the other models, even by the Transformer-based ones in this
case, showing once again that they are not the best choice for the CKA
domain.

About the Transformers, since ASSISTments does not provide the text
of the possible options, they do not perform as well as on Cloud Academy,
and indeed they are outperformed by Word2Vec, R2DE, and their hybrids
(except for the nDCG).

Lastly, it is worth noting that, overall, all the models have worse per-
formance on ASSISTments than on Cloud Academy, and we believe that
there are two reasons for this. First of all, ASSISTments contains mostly
mathematical questions, while Cloud Academy contains questions whose
text is closer to natural language, possibly making them easier to model.
Secondly, we can see from the larger error of the ZeroR baseline that the
distribution of ground truth difficulties has a larger variance on ASSIST-
ments than on Cloud Academy, which directly affects the errors made by
the models.

Model MAE RMSE nDCG R2 score
ZeroR 1.1064 1.4881 0.9400 -0.0004
Linguistic 1.0655 1.4431 0.9559 0.0591
Readability 1.0545 1.4381 0.9532 0.0655
R2DE (QOnly) 0.9725 1.3234 0.9634 0.2087
W2V (QOnly) 0.9688 1.3167 0.9666 0.2166
DistilBERT(QOnly) 1.0035 1.3753 0.9674 0.1454
BERT (QOnly) 0.9758 1.3352 0.9676 0.1946
Ling. + Read. 1.0354 1.4100 0.9562 0.1018
Ling. + Read. + R2DE (QOnly) 0.9481 1.2975 0.9637 0.2394
Ling. + W2V (QOnly) 0.9561 1.3092 0.9663 0.2257
Ling + R2DE (QOnly) + W2V (QOnly) 0.9525 1.3009 0.9676 0.2355

Table 5.10: Evaluation of different models on ASSISTments, comparing the difficulty esti-
mated from text with the target value. We write in bold the best performing models.
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RACE

Table 5.11 presents the evaluation of the models on the RACE dataset. In
this case, since question difficulty is modeled as a binary variable, we use
binary classification metrics for evaluating the models: accuracy, precision,
recall, and F1-score.

The ZeroR baseline, in this case, predicts for all the questions the ma-
jority label (i.e. high). RACE provides both the text of the question and the
text of the answer choices (as well as the reading passage), therefore we
can evaluate all the input configuration of the models: QOnly, QCorrect, and
QAll. However, since RACE is a dataset of English reading comprehension
questions, we do not perform the additional MLM fine-tuning: indeed, it
is Language Assessment and therefore the models do not have the need of
improving their domain knowledge (in contrast with Cloud Academy which
is a CKA dataset).

Observing the models performance, there are several differences with
respect to ASSISTments and Cloud Academy.

First of all, all the R2DE configurations are outperformed by Readability
and Linguistic (as well as their hybrid Ling. + Read.); this makes sense
since R2DE is based on TF-IDF, which focuses on specific keywords in
the question to estimate its difficulty. While this approach seems to work
reasonably well in CKA, since specific technical keywords might be an
indication of question difficulty, the results here show that it does not work
for language assessment. A similar result is visible for all the configurations
of Word2Vec, which are outperformed by all other models except R2DE and
Readability.

The Transformer based models perform the best – being BERT (QAll)
the best performing according to F1-score – and, as we observed on Cloud
Academy, the text of the answer choices is helpful in improving the ac-
curacy of the estimation. A significant difference with respect to Cloud
Academy, though, is the fact that here the Transformers perform reason-
ably well even in the QOnly configuration.

Cloud Academy and ASSISTments, considering categorical difficulties

Although we mainly consider continuous difficulties – obtained with IRT
– for the Cloud Academy and ASSISTments datasets, we also experiment
with categorical difficulties, in order to see if there are any significant dif-
ferences. In order to do so, we convert the IRT difficulties and the estimated
difficulties in Cloud Academy and ASSISTments as follows: the difficulty
values lower than 0 are considered as easy questions while the difficulty
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Model Accuracy Precision Recall F1 score
ZeroR 0.7507 0.7507 1.0000 0.8576
Linguistic 0.8225 0.8141 0.9895 0.8933
Readability 0.7988 0.7940 0.9885 0.8806
R2DE (QOnly) 0.7809 0.7753 0.9971 0.8723
R2DE (QCorrect) 0.7780 0.7734 0.9962 0.8708
R2DE (QAll) 0.7802 0.7747 0.9971 0.8720
W2V (QOnly) 0.8060 0.7978 0.9933 0.8849
W2V (QCorrect) 0.8089 0.7998 0.9942 0.8865
W2V (QAll) 0.8046 0.7966 0.9933 0.8842
DistilBERT (QOnly) 0.8585 0.8933 0.9215 0.9072
DistilBERT (QCorrect) 0.8491 0.8408 0.9856 0.9075
DistilBERT (QAll) 0.8599 0.8536 0.9818 0.9132
BERT (QOnly) 0.8570 0.8560 0.9732 0.9109
BERT (QCorrect) 0.8599 0.8608 0.9703 0.9123
BERT (QAll) 0.8721 0.8853 0.9531 0.9180
Ling. + Read. 0.8297 0.8201 0.9904 0.8973
Ling. + Read. + R2DE (QAll) 0.8254 0.8162 0.9904 0.8949
Ling. + W2V (QAll) 0.8405 0.8305 0.9894 0.9031
Ling + R2DE (QAll) + W2V (QAll) 0.8405 0.8316 0.9875 0.9029

Table 5.11: Evaluation of different models on RACE, comparing the difficulty estimated
from text with the target value.

values higher or equal than 0 are considered as difficult questions. This
works as the continuous difficulties estimated with IRT are, by definition,
distributed in the range [−5;+5]. With this conversion, we obtain two test
datasets which are slightly unbalanced: indeed, Cloud Academy has 1324
easy questions and 929 difficult questions, while ASSISTments has 563 and
698 questions, respectively.

The results for both Cloud Academy and ASSISTments are shown in Ta-
ble 5.12, considering the same metrics as RACE and the same models as
in the previous sections, and the observations are fairly similar to what we
observed when modeling difficulty as a continuous variable. Indeed, Lin-
guistic and Readability do not perform very well, and the Transformers are
the best performing models.

Comparing the classification results with RACE, we can observe that
here are much worse, which might suggest that QDET in CKA is, overall,
a much more difficult task than in LA.
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Model Accuracy Precision Recall F1 score
Cloud Academy

Linguistic 0.5470 0.5922 0.5863 0.5892
Readability 0.5533 0.5600 0.9058 0.6920
R2DE (QOnly) 0.5921 0.5983 0.8031 0.6857
R2DE (QCorrect) 0.5976 0.6057 0.7845 0.6836
R2DE (QAll) 0.5929 0.5987 0.8046 0.6865
W2V (QOnly) 0.5565 0.5735 0.7789 0.6606
W2V (QCorrect) 0.5628 0.5809 0.7574 0.6575
W2V (QAll) 0.5826 0.5975 0.7560 0.6675
DistilBERT (QOnly) 0.5963 0.6551 0.5716 0.6105
DistilBERT (QCorrect) 0.6082 0.6541 0.6203 0.6368
DistilBERT (QAll) 0.6415 0.6614 0.7221 0.6904
BERT (QOnly) 0.6074 0.6385 0.6705 0.6540
BERT (QCorrect) 0.6217 0.6657 0.6361 0.6505
BERT (QAll) 0.6344 0.6545 0.7191 0.6853
DistilBERT (QOnly) with MLM 0.6058 0.6907 0.5214 0.5942
DistilBERT (QCorrect) with MLM 0.6312 0.6691 0.6604 0.6647
DistilBERT (QAll) with MLM 0.6494 0.6451 0.8152 0.7202
BERT (QOnly) with MLM 0.6288 0.6402 0.7521 0.6916
BERT (QCorrect) with MLM 0.6590 0.6796 0.7263 0.7022
BERT (QAll) with MLM 0.6502 0.7011 0.6418 0.6702
Ling. + Read. 0.5620 0.5806 0.7546 0.6563
Ling. + Read. + R2DE (QAll) 0.6158 0.6242 0.7703 0.6896
Ling. + W2V (QAll) 0.5826 0.6074 0.6975 0.6494
Ling + R2DE (QAll) + W2V (QAll) 0.6094 0.6239 0.7432 0.6783

ASSISTments
Linguistic 0.6089 0.5638 0.2282 0.3249
Readability 0.6120 0.5676 0.2486 0.3458
R2DE (QOnly) 0.6383 0.6432 0.2755 0.3858
W2V (QOnly) 0.6529 0.6432 0.3552 0.4576
DistilBERT(QOnly) 0.6657 0.6014 0.5619 0.5810
BERT (QOnly) 0.6790 0.6229 0.5618 0.5908
Ling. + Read. 0.6196 0.5723 0.3068 0.3994
Ling. + Read. + R2DE (QOnly) 0.6454 0.6236 0.3531 0.4509
Ling. + W2V (QOnly) 0.6586 0.6389 0.3961 0.4890
Ling + R2DE (QOnly) + W2V (QOnly) 0.6613 0.6509 0.3853 0.4841

Table 5.12: Evaluation of different models on Cloud Academy and ASSISTments, com-
paring the difficulty estimated from text with the target value, after converting both to
binary classes.

5.7.2 Study of Question Difficulty Distribution

In this subsection we analyze the distribution of the target difficulty and of
the difficulty estimated with the models evaluated in the previous subsec-
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tion. This is especially relevant on Cloud Academy and ASSISTments, to
understand whether the models really predict question difficulty or rather
predict difficulties that are always around the mean.

Cloud Academy

Figure 5.10 presents the distribution of the target IRT difficulty (on the top
left corner) and of the difficulties predicted by some of the best performing
models for the Cloud Academy test dataset. Specifically, we consider (from
left to right, top to bottom): R2DE (QAll), BERT (QCorrect), BERT (QCorrect)
with MLM pretraining, Ling. + Read. + R2DE (QAll), and Ling + R2DE
(QAll) + W2V (QAll).

It is immediately visible that the output difficulty distribution for all
the models is more skewed than the target one, meaning that it has lower
standard deviation, and this is particularly visible for R2DE which mostly
predicts difficulties around 0. Still, it is interesting to observe that the output
difficult distributions indicate as best performing models the same models
(i.e. the two BERT models) which resulted being the best ones from the
error analysis as well.

ASSISTments

Figure 5.11 presents contains the same plots but for the test ASSISTments
dataset, and considering different models. Specifically, from left to right
and from top to bottom, it displays: target IRT difficulty, R2DE (QOnly),
Word2Vec (QOnly), BERT (QCorrect), Ling. + Read. + R2DE (QOnly), and
Ling + R2DE (QOnly) + W2V (QOnly).

The observations are very similar to what we observed for Cloud Academy:
the output difficulty distribution of all the models is more skewed than the
target one, and R2DE is the model that performs worst from this point of
view. On the other hand of the scale, BERT (QCorrect) seems to be the best
performing model from this analysis as well, and it even manages to re-
produce the small spike for difficulties close to −5, which, interestingly, is
present in the output distribution of R2DE as well.

5.7.3 Additional Analyses

In this subsection we study how the model performance depends on partic-
ular questions characteristics. Specifically, we consider the question type
(i.e. cloze or interrogative in the datasets under consideration), the num-
ber of correct answer choices (in Cloud Academy), and the question length
(using the number of words as indication of the length).
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Figure 5.10: Cloud Academy, distribution of questions by predicted difficulty.
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Figure 5.11: ASSISTments, distribution of questions by predicted difficulty.
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Question type

Table 5.13 presents the evaluation of the models on Cloud Academy, sepa-
rately for cloze items and interrogative questions; due to the lack of space,
we only report MAE and R2 for each model and question type.

The first thing to notice is the fact that the two question types have dif-
ferent mean and standard deviation for the target IRT difficulty, and this is
visible from the MAE of the ZeroR baseline, which is 0.96 for cloze items
and 0.87 for interrogative items. As a direct consequence of this, all the
models have lower MAE on interrogative items, with the only exceptions of
DistilBERT (QCorrect) with MLM, which seems to work particularly well on
cloze items. Indeed, DistilBERT (QCorrect) with MLM is the best performing
model on cloze items, while Ling + R2DE (QAll) + W2V (QAll) is the best
performing on interrogative questions (closely followed by BERT (QCorrect)
with MLM). We observe that Transformers seem to perform poorly when
using only the text of the question (QOnly) on interrogative items, but the
same behavior is not visible for cloze items. Also, the text of the answer
choices is still useful for all the models that can leverage it ans, as observed
in the previous experiments, some models perform best when using only
the correct answer(s) while other when using all the possible choices. It is
also worth noting that, even though BERT (QCorrect) with MLM is the best
performing model overall, when considering cloze items and interrogative
items separately, it is outperformed by other approaches.

Table 5.14 compares the results on cloze items and interrogative ques-
tions for the ASSISTments dataset. Contrarily to the previous example, in
this case the ZeroR baseline performs better on cloze items and all the other
models perform accordingly, with the exception of BERT and DistilBERT.
Indeed, the two Transformer models perform better on interrogative items
and worse than the ZeroR baseline on the cloze items.

Lastly, Table 5.15 presents the results on cloze items and interrogative
items on the RACE dataset. In this case there are no significant differences
between the two types and, indeed, the differences seem mostly due to the
different difficulty distribution between cloze items and interrogative items
(which is visible from the ZeroR baseline).

Number of correct choices

Table 5.16 presents the MAE and R2 scores on the test set for the different
models, separately considering questions with one, two, and three correct
answer choices (all the MCQs have four possible options). Due to the lack
of space, we only keep two decimal digits for each entry. This analysis
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cloze interrogative
(n = 233) (n = 1032)

Model MAE R2 MAE R2
ZeroR 0.9616 -0.0183 0.8739 -0.0013
Linguistic 0.9354 0.0218 0.8670 0.0314
Readability 0.9529 0.0008 0.8685 0.0197
R2DE (QOnly) 0.9334 0.0363 0.8400 0.0646
R2DE (QCorrect) 0.9335 0.0359 0.8378 0.0740
R2DE (QAll) 0.9422 0.0238 0.8419 0.0655
W2V (QOnly) 0.9583 0.0096 0.8557 0.0422
W2V (QCorrect) 0.9463 0.0243 0.8575 0.0345
W2V (QAll) 0.9288 0.0430 0.8497 0.0576
DistilBERT (QOnly) 1.0016 -0.1084 0.9039 -0.0816
DistilBERT (QCorrect) 0.9111 0.0895 0.8533 0.0369
DistilBERT (QAll) 0.8537 0.1463 0.8470 0.0453
BERT (QOnly) 0.9220 0.0552 0.8837 -0.0363
BERT (QCorrect) 0.8710 0.1418 0.8417 0.0933
BERT (QAll) 0.8664 0.0987 0.8482 0.0522
DistilBERT (QOnly) with MLM 0.9276 0.0687 0.8571 0.0136
DistilBERT (QCorrect) with MLM 0.8423 0.1790 0.8436 0.0671
DistilBERT (QAll) with MLM 0.8751 0.1081 0.8561 0.0194
BERT (QOnly) with MLM 0.9185 0.0899 0.8899 -0.0306
BERT (QCorrect) with MLM 0.8822 0.1432 0.8244 0.1131
BERT (QAll) with MLM 0.8735 0.1586 0.8357 0.0602
Ling. + Read. 0.9360 0.0280 0.8641 0.0366
Ling. + Read. + R2DE (QAll) 0.8697 0.1279 0.8296 0.1119
Ling. + W2V (QAll) 0.9254 0.0629 0.8411 0.0792
Ling + R2DE (QAll) + W2V (QAll) 0.8872 0.1185 0.8228 0.1101

Table 5.13: Cloud Academy, MAE and R2 scores on the test set for different types of
questions.

can be performed only on the Cloud Academy dataset, as in ASSISTments
the text of the answer choices is not available and in RACE there is always
only one correct choice. Since the focus here is on the effect of the number
of correct choices, we present the results only for the models that actually
leverage the text of the answer options for the prediction.

The three groups are very unbalanced: there are only 92 questions with
two correct answer choices and 61 with three correct answer choices, com-
pared to the 1112 questions with one correct choice. However, we can still
make some interesting observations.

Indeed, almost all the models perform worse than the ZeroR baseline,
considering both MAE and R2, on the questions with multiple correct choices.
The only exceptions are R2DE (QAll) and the hybrid models for questions
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cloze interrogative
(n = 135) (n = 2113)

Model MAE R2 MAE R2
ZeroR 0.9893 -0.0143 1.1138 -0.0008
Linguistic 0.9648 0.0510 1.0719 0.0585
Readability 0.9738 -0.0015 1.0596 0.0677
R2DE (QOnly) 0.9716 0.0156 0.9725 0.2170
W2V (QOnly) 0.9285 0.0595 0.9713 0.2232
DistilBERT (QOnly) 1.0108 -0.1750 1.003 0.1597
BERT (QOnly) 1.0093 -0.1199 0.9736 0.2086
Ling. + Read. 0.9501 0.0621 1.0408 0.1027
Ling. + Read. + R2DE (QOnly) 0.9352 0.0257 0.9489 0.2487
Ling. + W2V (QOnly) 0.8988 0.1515 0.9597 0.2283
Ling + R2DE (QOnly) + W2V (QOnly) 0.9053 0.1427 0.9555 0.2390

Table 5.14: ASSISTments, MAE and R2 scores on the test set for different types of ques-
tions.

cloze interrogative
(n = 964) (n = 407)

Model Acc F1 Acc F1
ZeroR 0.7396 0.8503 0.7690 0.8694
Linguistic 0.8153 0.8876 0.8353 0.9030
Readability 0.7935 0.8763 0.8034 0.8853
R2DE (QOnly) 0.7707 0.8654 0.7985 0.8838
R2DE (QCorrect) 0.7686 0.8642 0.7936 0.8813
R2DE (QAll) 0.7707 0.8654 0.7960 0.8826
W2V (QOnly) 0.7966 0.8784 0.8230 0.8962
W2V (QCorrect) 0.8008 0.8805 0.8230 0.8965
W2V (QAll) 0.7987 0.8795 0.8132 0.8911
DistilBERT (QOnly) 0.8620 0.9079 0.8452 0.9014
DistilBERT (QCorrect) 0.8485 0.9056 0.8452 0.9077
DistilBERT (QAll) 0.8589 0.9113 0.8599 0.9153
BERT (QOnly) 0.8547 0.9083 0.8599 0.9142
BERT (QCorrect) 0.8599 0.9105 0.8574 0.9139
BERT (QAll) 0.8703 0.9154 0.8722 0.9202
Ling. + Read. 0.8215 0.8911 0.8427 0.9069
Ling. + Read. + R2DE (QAll) 0.8163 0.8883 0.8402 0.9056
Ling. + W2V (QAll) 0.8350 0.8982 0.8476 0.9098
Ling + R2DE (QAll) + W2V (QAll) 0.8360 0.8985 0.8476 0.9098

Table 5.15: RACE, Accuracy and F1 score on the test set for different types of questions.
The RACE dataset also contains some title questions, such as “What is the most appro-
priate title for the reading passage?”; we do not include them here as there are only
21 of them in the test dataset and therefore the findings would not be reliable.
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1 correct 2 correct 3 correct
(n = 1112) (n = 92) (n = 61)

Model MAE R2 MAE R2 MAE R2
ZeroR 0.92 0.00 0.70 -0.02 0.58 0.00
R2DE (QCorrect) 0.88 0.08 0.70 -0.04 0.58 -0.05
R2DE (QAll) 0.89 0.07 0.69 -0.02 0.59 -0.04
W2V (QCorrect) 0.90 0.04 0.71 -0.06 0.59 0.00
W2V (QAll) 0.89 0.06 0.70 -0.03 0.58 0.01
DistilBERT (QCorrect) 0.89 0.07 0.74 -0.27 0.65 -0.23
DistilBERT (QAll) 0.87 0.09 0.75 -0.27 0.62 -0.33
BERT (QCorrect) 0.87 0.12 0.70 -0.11 0.59 0.00
BERT (QAll) 0.87 0.09 0.71 -0.12 0.73 -0.67
DistilBERT (QCorrect) with MLM 0.86 0.12 0.75 -0.22 0.63 -0.28
DistilBERT (QAll) with MLM 0.88 0.07 0.76 -0.29 0.67 -0.46
BERT (QCorrect) with MLM 0.85 0.14 0.68 -0.09 0.64 -0.23
BERT (QAll) with MLM 0.86 0.10 0.70 -0.17 0.64 -0.24
Ling. + Read. + R2DE (QAll) 0.86 0.13 0.67 0.07 0.61 -0.09
Ling. + W2V (QAll) 0.89 0.08 0.69 0.02 0.57 0.06
Ling + R2DE (QAll) + W2V (QAll) 0.86 0.12 0.66 0.06 0.59 -0.01

Table 5.16: Cloud Academy, MAE and R2 of different models on questions with different
number of correct choices.

with two correct choices and W2V (QAll) and Ling. + W2V (QAll) for the
items with three correct choices. Interestingly, we observe this issue both
for models that use the text position for the prediction (i.e. Transform-
ers) and models that do not take into consideration the context, such as
Word2Vec and R2DE. The reason for this is not clear and further research
should focus on it, especially considering the limited number of test ques-
tions with multiple correct choices that are available in this dataset.

Question length

The last analysis we perform in this Chapter is a study of the correlation
between question length and the model accuracy, which is shown in Figure
5.12 and 5.13. In both figures, the top-left plot represents the distribution
of questions per question length and difficulty, and the support (i.e. number
of questions) in each bin is represented by its color, with darker colors
indicating a lower amount of questions. The other five plots in each figure
represent the error of the models depending on question length and target
difficulty, with darker colors indicating lower errors.

The models considered for the two datasets are different, and are the
same ones considered in the previous analysis of the output difficulty dis-
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Figure 5.12: Cloud Academy, MAE distribution by question length and difficulty.
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Figure 5.13: ASSISTments, MAE distribution by question length and difficulty.
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tribution. Specifically, for Cloud Academy we consider (from left to right,
top to bottom): R2DE (QAll), BERT (QCorrect), BERT (QCorrect) with MLM
pretraining, Ling. + Read. + R2DE (QAll), and Ling + R2DE (QAll) + W2V
(QAll). For ASSISTments, instead, we consider (from left to right and from
top to bottom): R2DE (QOnly), Word2Vec (QOnly), BERT (QCorrect), Ling. +
Read. + R2DE (QOnly), and Ling + R2DE (QOnly) + W2V (QOnly).

Starting from Figure 5.12, we can see that the error heavily depends on
the target difficulty, with lower errors for questions whose real difficulty
is closer to 0. This is partially true for all the five models shown in the
plot, but for the two Transformer-based models it is less visible than for
the others, showing once again that they are more capable of predicting
question difficulty. Considering the relations between question length and
estimation error, there are no clear correlations. However, in some cases,
it seems that the models perform slightly better for longer questions, for
instance looking at the line corresponding to Difficulty = −0.3 for
BERT (QCorrect) and Ling. + Read. + R2DE (QAll).

Moving to Figure 5.13, which presents the same information for the AS-
SISTments dataset, we can see that the situation is fairly similar: indeed,
the error seems to depend mostly on the target difficulty and BERT (QOnly)
is the model that is the least affected by this; indeed, the color (which indi-
cates the error) is fairly constant across different values of target difficulty.
In this case, however, it is more visible the fact that the models generally
are more accurate for longer questions: indeed, we can see that questions
with longer texts (i.e. the ones towards the right end of the plots) gener-
ally have darker colors (indicating lower errors), and this is true for all the
models, even though more visible for BERT (QOnly).

5.8 Conclusions

In this Chapter we have analyzed several recently proposed approaches to
supervised QDET, considering three datasets from different domains: the
Language Assessment (LA) RACE dataset and the Content Knowledge As-
sessment (CKA) datasets Cloud Academy and ASSISTments.

We observed that the accuracy of the models depends on the type of the
questions under consideration and, most importantly, on the educational do-
main. Specifically, we observe that in the LA domain – at least considering
reading comprehension questions – readability indexes and linguistic fea-
tures can capture most of question difficulty. Indeed, in LA, and particularly
in reading comprehension questions, the item difficulty heavily depends on
the linguistic demands of the reading passage, therefore techniques which
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can capture this information are capable of an accurate difficulty estimation.
Still, the same linguistic demands are captured – even more accurately – by
more advanced models, such as BERT, which are generally capable of bet-
ter performance. In this sense, we argue that Transformer-based models
are probably the better choice from an accuracy point of view, but much
simpler models, such as the ones based on readability indexes, might still
be a reasonable choice in case of constraints from the computational point
of view.

Unfortunately, this is not true for the CKA domain. Indeed, supervised
models based on simple techniques such as linguistic features and readabil-
ity indexes are not capable of accurately capturing the demands of exam
questions and therefore lead to inaccurate estimations. This is because in
CKA the question difficulty mostly depends on the specific topics which
are being assessed by the question, and techniques that focus on language
only cannot capture such information. Specifically, we observed that the
Transformers are, again, the models that generally lead to the best perfor-
mance for supervised QDET in the CKA domain, and are in some cases
matched by techniques based on word embeddings (such as Word2Vec) or
frequency based features (such as TF-IDF). In addition to that, Transform-
ers can be pre-trained on additional documents related to the same topics
as the ones assessed by the questions, and this increases their accuracy.

Also, we observed that – in the case of MCQ – having access to the text
of the possible choices generally leads to improved results for the methods
that can leverage it (Transformers, word embeddingd, and frequency based
features), but there are some interesting observations. Indeed, we observed
that, possibly due to the specific encoding we use, almost all the models
are not capable of modeling questions which have multiple correct choices
(i.e. they require the student to select all the correct choices)

Also, we observed that generally Transformers model lead to better re-
sults for interrogative questions rather than cloze items and the best overall
performing model (BERT (QCorrect) with MLM), was outperformed on both
cloze items and interrogative items by other models. This suggests that,
probably, training different models on specific types of questions and using
those models for the QDET might lead to better results.
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CHAPTER6
Unsupervised Question Difficulty

Estimation from Text

In this Chapter we focus on the task on unsupervised Question Difficulty
Estimation from Text (QDET). First, we give an introduction to the task
(§6.1), and present previous literature, which is fairly limited compared to
the literature about supervised QDET (§6.2). Then we describe the details
of the models that we experiment on, including a novel approach which was
not proposed in previous research (§6.3). The two experimental datasets
– one being publicly available and one being privately owned – and the
experimental setup are described in §6.4. Finally, we present and discuss
the experimental results in §6.5 and conclude this Chapter with §6.6.

6.1 Introduction

The task of unsupervised QDET consists in estimating the question diffi-
culty in an unsupervised manner using only question text as input for the
estimation. In this sense, it is important to distinguish it from unsuper-
vised techniques that leverage other types of information. For instance,
Item Response Theory performs QDE in an unsupervised manner – indeed,
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pretesting itself consists in performing QDE in an unsupervised manner –
but it does so by leveraging a log of students’ answers, which is not avail-
able for newly created questions. On the contrary, the text of the question
and (possibly) of the possible answer choices is always available at the time
of question creation, both for manual and automated question generation,
therefore unsupervised QDET can be applied to newly created assessment
items.

In the previous Chapter, we have seen that the task of supervised QDET
received a significant research interest as it is one of possible approaches
to overcome the limitations of the traditional approaches to question cali-
bration. Indeed, once the trained model is available, it can be used to infer
the difficulty of new questions from their text, overcoming (or at least re-
ducing) the need for pretesting and manual calibration. However, all the
supervised techniques still have two major limitations: i) they require thou-
sands of calibrated questions as a training set, and ii) they cannot perform
cross-domain QDE. In other words, the training questions must assess the
same topics as the new questions which the model will later be used on, lim-
iting its applicability (e.g. when creating questions related to new courses).
Crucially, these limitations are intrinsic of such approaches and cannot be
addressed by just improving the estimation accuracy of the models.

Unsupervised QDET targets both limitations, and previous research was
carried out along two main directions. Some works based difficulty esti-
mation on deterministic metrics such as the readability of the questions or
the similarity between the correct choice and the distractors. Others, more
recently, trained Question Answering (QA) models to answer exam ques-
tions and leverage the answers of such models and their uncertainties to
perform question calibration. In this Chapter, we evaluate previously pro-
posed approaches on two real world datasets: the privately owned Cloud
Academy, and the publicly available RACE. On top of studying how differ-
ent approaches perform on questions from diverse domains, we also pro-
pose a novel technique and compare it with previous research. This new
approach takes inspiration from IRT and its usage as a way to evaluate
the “skill” of classification models and the difficulty of classification tasks
(more precisely, the difficulty of different input samples which have to be
classified). In practice, we train several QA models to answer the ques-
tions under calibration and instead of using their uncertainty as a proxy of
question difficulty, we observe the correctness of their answers and train
an IRT model on such information, as if the QA models where “students”
trying to answer the questions. Finally, the question difficulty obtained in
this manner can directly be used as a proxy of human perceived difficulty.
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Our experimental results show that, in the LA domain, readability in-
dexes might be sufficient to have an intuition of question difficulty, while in
the CKA domain more complex models are needed. Specifically, the new
approach we evaluate in this Chapter leads to the better results on Cloud
Academy.

6.2 Related works

The literature on unsupervised QDET is fairly limited, if compared to the
supervised formulation of the same task. As anticipated in the introduc-
tion to this Chapter, previous research can be categorized in two groups: i)
works that base difficulty estimation deterministic measures such as read-
ability indexes and similarity measures, and ii) research that leveraged Ques-
tion Answering (QA) models.

6.2.1 Readability Indexes and Similarity Measures

As we have seen in the previous Chapter, readability indexes and similarity
measures are sometimes used as input features to a model that performs
QDET in a supervised manner. However, they can also be directly used for
unsupervised QDET, by defining the difficulty as a function of readability
and/or similarity.

In previous literature, there is only one work that models difficulty as
a function of readability indexes [56]. Specifically, the authors deal with
reading comprehension questions and directly define the difficulty as the
readability of the reading passage, without using any testing theories. In the
scenario under study in the paper – English reading comprehension ques-
tions – the difficulty estimated with this approach correlates with the ac-
tual students’ performance (i.e. more difficult questions are answered with
lower accuracy), suggesting that indeed it is a good indication of question
difficulty. Still, it is worth noting that readability indexes cannot model,
by definition, domain knowledge and, therefore, they are likely to lead to
inaccurate results in the CKA domain, as we will see in this Chapter.

The other approach consists in using similarity measures, as in [54].
Specifically, three aspects can be taken into consideration as good indica-
tors of question difficulty:

• the semantic similarity between the question and the correct answer;

• the semantic similarity between the question (or the true answer) and
the reading passage, in the case of reading comprehension questions;
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• the semantic similarity between the correct choice and the distractors,
in the case of MCQs.

In the first two cases, the highest the similarity the easier the question, while
in the third example, higher similarity leads to more difficult questions.
Previous research mostly experimented with Word2Vec embeddings and
cosine similarity, and the accuracy of this technique for estimating question
difficulty heavily depends on the accuracy of the embedding technique used
to capture the semantic meaning of the question/answer/passage and on the
similarity measure that is used.

6.2.2 Question Answering Models

In previous literature, the main alternative to readability indexes and simi-
larity measures consisted in leveraging the answers of Question Answering
(QA) models. All the research carried out along this direction is based on
the idea that there could be a relation between the human perceived diffi-
culty – which is the final target in QDE – and machine perceived difficulty;
therefore, being able to accurately measure machine difficulty, we might
have an accurate estimate of human perceived difficulty as well.

The first paper which hypothesized such relation between the two dif-
ficulties is [123], which experimented with an Information Retrieval based
QA system. However, the authors do not use the QA model directly for
QDE but consider its scores as features which are given as input to a Ran-
dom Forest regressor that is trained in a supervised manner, thus without
experimenting on the direct usage of QA scores for unsupervised QDE.

In a previous work [75], we made that missing step and experimented on
using QA models for estimating in an unsupervised manner the difficulty
of assessment items, specifically using calibrated Transformers. The idea
of the paper was to train a calibrated QA Transformer model to answer the
exam question we wanted to calibrate, and leverage the uncertainty of the
model – which is an indicator of model-perceived question difficulty – as a
proxy of human perceived difficulty1. Calibrating the QA model was done
in order to have a reliable measure of its uncertainty since, by definition,
a model is calibrated only if the posterior probabilities (i.e. uncertainty of
the model) are aligned with the empirical likelihood (i.e. the accuracy of
the model in the QA task). Experiments on the RACE dataset, using the

1It is important to remark here that, in this Chapter, the word “calibration” might refer to one of two things.
On one hand, we can refer to question calibration, which consists in estimating a value representing question
difficulty. On the other, we might refer to model calibration, which means aligning the posterior probabilities
with the empirical likelihoods [43].
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level field as an indication of question difficulty, showed that indeed the un-
certainty of such models is a reasonable indicator of question difficulty and
it is more reliable than other information retrieval-based techniques, even
though it is not accurate enough to be directly used to assign a difficulty to
exam questions.

Other relevant research [67,68] experimented with IRT on machine learn-
ing models and observed that there is indeed a positive correlation between
the difficulty estimated using the models answers and the difficulty esti-
mated using human answers. However, the authors experiment on two tasks
which are not related to the educational domain and, most importantly, do
not involve questions; therefore, the question of whether this correlation
holds true in education as well is still unanswered. Indeed, they experi-
mented with the tasks of sentiment analysis and textual entailment, whose
difficulty derives from sources that are very different from the ones that af-
fect the difficulty of educational questions. In this sense, these two papers
fit more neatly into the previous research on the evaluation of the perfor-
mance of machine learning models with IRT [20], rather that unsupervised
QDET, but are still relevant for us since they provide another hint that using
IRT on machine learning models might indeed lead to an accurate estima-
tion of human-perceived difficulty.

6.3 Models

In this Section, we describe the models used in the experiments from this
Chapter. Specifically, we experiment with several models based on fours
approaches: a readability-based approach (§6.3.1), a similarity based ap-
proach (§6.3.2), an approach based on the score variance of calibrated QA
models (§6.3.3) and, lastly, the novel approach using IRT on QA models
(§6.3.4).

6.3.1 Readability

This approach is arguably the simplest. Indeed, it consists in measuring
the readability of the question under consideration with one of the readily
available indexes, and using that value as an estimation of the difficulty.

We experiment with five models built with this approach, and they differ
for the readability index that is used. Specifically, we consider the same
readability indexes used for supervised QDET.

• The Flesch Reading Ease [36] gives a text a score between 1 and 100,
with 100 being the highest readability score; it is computed from the
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average number of words per sentence and the average number of syl-
lables per word combined using precise constants and coefficients.

• The Flesch-Kincaid Grade Level [62] approximates the reading grade
level of a text and it is very similar to the Flesch Reading Ease, as it
uses again the average number of words per sentence and the average
number of syllables per word but different constants and coefficients.

• Automated Readability Index (ARI) [100] assesses the U.S. grade level
required to read a piece of text; it is computed from the average num-
ber of characters per word and the average number of words per sen-
tence.

• The Gunning FOG Index [42] generates a grade level between 0 and
20, which estimates the education level required to understand the
text; it is computed from the average number of words per sentence
and the average number of complex words per sentence, complex words
being the ones containing three or more syllables.

• Coleman-Liau Index [23] is a readability formula which shows the
reading level of a text; it uses number of sentences and number of
letters as variables.

The Flesch Reading Ease indicates how easy a document is to read,
therefore higher values are interpreted as an indication of lower difficulties,
and we define the difficulty estimated with this approach as 1 - ease. For all
the other indexes, higher values are interpreted as indication of the higher
difficulties, and we directly use the value obtained from the indexes as an
indication of question difficulty.

6.3.2 Similarity

We experiment with two models based on similarity, considering i) the sim-
ilarity between the question and the correct answer, and ii) the similarity
between the correct answer and the distractors. More precisely, we use
Word2Vec embeddings to embed the question and the answer choices, and
cosine similarity to measure their similarity.

When considering the similarity between the question and the correct
choice, we assume that higher similarities indicate lower difficulty, and de-
fine the difficulty as 1 - similarity. On the other hand, when considering
the similarity between the correct choice and the distractors, we assume
that higher similarities indicate higher difficulty, and use the value of the
similarity as the direct indication of question difficulty.
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In both cases, it might happen that several answer options have to be
merged into a unique vector, in case of multiple correct choices or (most
frequently) in case of multiple distractors. In these cases, we do so by
averaging the embeddings of each answer option.

6.3.3 Score Variance of QA Models

This is the approach we proposed in [75], and it consists in leveraging the
confidence of a QA model for estimating question difficulty. Specifically,
when used on MCQ, it is based on the softmax scores produced by the QA
model over the possible options, which indicate the probability – according
to the model – of each option being the correct one. The raw softmax scores
are then converted into a single numerical value by computing their vari-
ance, and assuming that larger values of variance indicate easier questions
(since they indicate that the model is more certain in the estimation). The
difficulty is then modeled as 1 - variance2.

We experiment with this approach by implementing QA models based
on two Transformer architectures: i) BERT [26], and ii) DistilBERT [97].
In order to reduce miscalibration, we use the ensembling technique sug-
gested in [66] and proceed as follows, separately for each architecture.

1. We train five instances of the architecture, and each instance is trained
on the entire training dataset (randomly shuffled), with a different ran-
dom initialization.

2. We pick the three best performing instances, considering the test ac-
curacy on the QA task.

3. We build the ensembles by averaging (separately for each question)
the softmax scores produced by the three instances so that each of
the four answer options is assigned a single score from 0 to 1. These
scores indicate the probability (according to the ensemble model) of
each option being correct.

We build an ensemble for both architectures and also an “hybrid” en-
semble, which is obtained with the same steps but averaging the prediction
of the three best instances BERT and the three best instances of DistilBERT.

The approach originally proposed in [75] was based on calibrated en-
sembles but it can be used on the single instances as well. Therefore, in this

2In the paper, we also experimented with some alternatives, but they were outperformed by the score variance,
therefore we do not consider them in this thesis. Specifically, we evaluated i) keeping only the highest softmax
score, and ii) computing the difference between the highest and the second-highest softmax score, assuming in
these cases as well that larger values indicate easier questions.
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thesis, we also evaluate the difficulties estimated with the single instances
to analyze how they compare with the calibrated ensembles.

Thus, in total, we experiment with nine models based on this approach,
and they differ for the QA model whose scores are considered for diffi-
culty estimation: the BERT ensemble, the DistilBERT ensemble, the hy-
brid BERT-DistilBERT ensemble, three single BERT instance, and three
single DistilBERT instances.

6.3.4 IRT on QA models

This is the new approach that we experiment with in this Chapter. It con-
sists in using the answers of several QA models to train a one-parameter
IRT model that estimates question difficulty, basically considering each QA
model as a student taking the exam and using IRT as it would be used on
regular students.

The advantage of this approach, compared to the ones presented above,
is that it is the only one that produces difficulty values which are on the
desired IRT range without needing any rescaling.

In this thesis, we evaluate this approach by using the same QA models
that are used for implementing the approach based on the score variance
of QA models: five instances of BERT and five instances of DistilBERT.
We do not consider the answers of the ensembles as they are obtained by
averaging the responses of the single models and therefore violate the inde-
pendence assumption of IRT.

In practice, we consider nine models based on this approach, and they
differ in the QA models that are used for the IRT estimation (BERT, Dis-
tilBERT, or both), and the questions which are calibrated with IRT (train
questions, test questions, or both).

6.4 Experimental setup

In this section, we describe the experimental setup used for the experiments
presented in the next section. In §6.4.1 we describe the experimental dataset
that are used in this Chapter, focusing on the aspects that are specific to un-
supervised QDET. In §6.4.2 we present the setup for training and evaluating
the QA models, which are used by two of the four approaches evaluated in
this Chapter. Lastly, in §6.4.3 we describe the setup used for the evaluation
of QDET.
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6.4.1 Experimental datasets

In this Chapter, we experiment on Cloud Academy and RACE only. Indeed,
the ASSISTments data collection does not provide the text of the possible
answers and therefore it is not possible to train the approaches that are based
on the predictions of QA models.

Cloud Academy

We use two of the datasets available in the Cloud Academy data collection:
Cloud Academy_A and Cloud Academy_Q.

The first one of the two is used only to obtain the gold standard IRT
difficulty of the questions under calibration, as we did in the experiments
on supervised QDET.

Cloud Academy_Q, on the other hand, is used to train the QA models
and to estimate the difficulty with the unsupervised techniques. We use the
same split as in the previous Chapter: 80% of the questions are used to train
the QA models and the word embeddings, and 20% of them to test them.

Starting from the test portion of Cloud Academy_Q, we also prepare
another dataset, containing pairs of questions and a label indicating which
question of the pair is more difficult (according to the gold standard IRT
estimation). This was done in order to evaluate how well the unsupervised
models for QDET can estimate the relative difficulty of pairs of questions
(i.e. which question of the pair is more difficult).

RACE

RACE is a dataset of English reading comprehension questions from middle
and high school exams; all questions are MCQ with four possible choices.

The publicly available RACE dataset is already split into train, dev, and
test set: we use the train set and development set to train the QA models,
and the test set to evaluate them in the QA task. All the questions in RACE
are assigned a difficulty label, which is used to evaluate – a posteriori – the
models accuracy.

Starting from the original RACE dataset, we also build a smaller dataset
(PairRACE_HM), which contains a list of pairs of questions and a label
indicating which question of the pair is more difficult, similarly to what we
do for Cloud Academy.

PairRACE_HM is built from the original RACE dataset using the level
label, which indicates the level of examination (high or middle school) of
the question. Specifically, we prepare 2,062,096 pairs of questions, each
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one containing one middle question and one high question. In all the pairs
in this dataset, the two questions are related to different reading passages.

While the level is not directly a numerical estimation of the difficulty of
a question itself, the authors point to the “drastic difficulty gap” between
the two levels, and they also give evidence for “higher difficulty of high
school examinations” [65]. Therefore, we use these labels as indication
of the question difficulty level when evaluating the models on the task of
unsupervised QDET. We remark that the unsupervised models do not see
the labels associated with the questions at training time nor try to predict the
label directly. Instead, they are evaluated on the task of Pairwise Difficulty
Prediction: given a pair of question, we check whether the model labels the
high question as being the more difficult one.

6.4.2 Training and evaluating the QA models

Two of the approaches evaluated in this Chapter for unsupervised QDET
are based on QA models, therefore the first step towards implementing them
consists of training and evaluating the QA models.

Considering that we are dealing with Transformers, the training is fairly
straightforward. Indeed, we start from the pre-trained BERT and Distil-
BERT models, and fine-tune them for the task of question answering, given
the text of i) the question, ii) the possible answer choices, and – for RACE
– iii) the reading passage. In practice, this is done by adding a multiple-
choice classification layer on top of each original model and training the
network using a cross-entropy loss. Given that our main focus is not ob-
taining the best performing QA model on the two datasets, but rather have
a variety of models to better capture and estimate question difficulty, we
use different numbers of epochs and different hyper-parameters (learning
rate, weight decay, and Adam epsilon) at training time. Specifically, we
train five instances for each Transformer architecture, using different ran-
dom initializations, different hyper-parameters, and randomly shuffling the
training set, and evaluate them on the held-out test set.

As for the evaluation, we both consider the QA accuracy and the Ex-
pected Calibration Error, and compute them on both the QA test set and the
QA train set.

Differently from the experimental setup in the previous Chapter on su-
pervised QDET, here we do not perform the additional pre-training for the
Cloud Academy dataset; and leave that exploration for future research.

An important point about the approaches based on QA models is the split
used in the evaluation. We divide the experimental dataset used in this study
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(RACE and Cloud Academy_Q) into a train set (80%) and a test set (20%),
but this separation is needed to train and evaluate the QA models, and is
not related (nor required) by the actual difficulty estimation. Therefore, in
order to better understand how all the considered techniques perform, we
evaluate them both on the QA train set and the QA test set.

6.4.3 Evaluating unsupervised QDET

Both datasets provide the “true” difficulty of the questions, and we leverage
such information for evaluating the approaches to unsupervised QDET.

Our goal here is to investigate i) whether the machine estimations lead
to a notion of difficulty that aligns well with the human one and ii) whether
it can be useful in practical applications when logs of answers or calibrated
questions are not available for training.

Pairwise Difficulty Prediction

First of all, since the various approaches produce difficulties on different
scales and with different distributions, we evaluate their accuracy on the
task of Pairwise Difficulty Prediction (PDP). Given a list of question pairs,
PDP consists in evaluating whether the various approaches assign to the
more difficult question a higher difficulty than to the easier question. In
order to numerically evaluate model performance, we use the accuracy on
the PDP task, which represents the fraction of question pairs in which the
difficulty relation was labeled correctly. In order to do this, we use the two
datasets of questions pairs described above.

We use this approach because the difficulties estimated with the vari-
ous models produce difficulties on different scales (both different between
them and different from the target scales of the experimental datasets), and
rescaling them to a common scale is not always straightforward. The PDP
task, on the other hand, is not affected by the fact that the target difficul-
ties and the difficulties generated by each model are on different scales and
therefore is a reasonable candidate for evaluating the models.

Ranking evaluation

Whilst the question in the RACE dataset are labeled as being either middle
or high, the target difficulties of the questions in Cloud Academy are ob-
tained from an IRT model trained on real students’ answers and therefore
have continuous values spreading along the range [−5;+5].

Therefore, we can compare the target difficulty ranking with the diffi-
culty ranking obtained with each approach. In order to do so, we rescale all
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the difficulties (both estimated with the proposed approaches and the target
values) to the range [0; 1] and evaluate the estimations with nDCG, which
is a commonly used metric for ranking evaluation.

6.5 Results

In this section, we present the results of all the models that are evaluated on
the task of unsupervised QDET. First of all, we perform a preliminary eval-
uation of the Question Answering (QA) models, both measuring their QA
accuracy and their calibration (§6.5.1). Then, we perform the evaluation on
the pairwise difficulty prediction task (§6.5.2). Lastly, we show the results
of the ranking evaluation (§6.5.3), and of the study of the output difficulty
distribution, to see how it compares with the target difficulty distribution
(§6.5.4).

6.5.1 Evaluating QA accuracy and model calibration

We present here the results of a preliminary analysis to evaluate the ac-
curacy and the calibration of the QA models used to build two of the ap-
proaches evaluated in the rest of this section. Table 6.1 presents, for both
datasets, the accuracy and the calibration of the QA models, both consider-
ing the single instances (the three best performing ones) and the ensembles,
indicated by “E”. For evaluating calibration, we use Expected Calibration
Error (ECE).

Comparing the performance across the two datasets, it is clear that the
average QA accuracy on RACE is much better than on Cloud Academy,
suggesting that it is an easier dataset for the QA models. The fact that we
did not any additional pre-training for Cloud Academy most likely has an
influence on this, as that could have been a way to positively affect the per-
formance of the model by providing some additional domain knowledge.
Still, even on Cloud Academy, the accuracy is much better than random
guessing (25%). On the other hand, focusing on model calibration, the
models on Cloud Academy are generally better calibrated that on RACE,
meaning that they have worse performance but are aware of that.

Focusing on the effects of the ensembles, they seem to bring more value
on RACE than on Cloud Academy, both considering QA accuracy and cali-
bration error. Indeed, in the right hand side of the table we can see that the
ECE of the ensemble models on RACE is lower than all the single models,
even for BERT (E) which is the most accurate model both on training set
and on test set.
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Cloud Academy RACE
QA Accuracy ECE QA Accuracy ECE

Model train test test train test test
0.4090 0.3752 0.0398 0.8362 0.6184 0.1436

BERT 0.3872 0.3476 0.0288 0.8309 0.6208 0.1393
0.3824 0.3652 0.0459 0.8332 0.6232 0.1370
0.3976 0.3526 0.0217 0.6216 0.4585 0.1042

DistilBERT 0.3600 0.3534 0.0353 0.6570 0.4593 0.1271
0.3738 0.3618 0.0135 0.6803 0.4759 0.1354

BERT (E) 0.3956 0.3752 0.0377 0.8531 0.6344 0.0976
DistilBERT (E) 0.3794 0.3660 0.0214 0.6752 0.4743 0.0987
BERT-DistilBERT (E) 0.3942 0.3727 0.0127 0.8481 0.6178 0.0274

Table 6.1: Evaluation of accuracy and calibration of the Transformer-based Question
Answering models used for QDE from text, considering both the single instances (three
for each architecture) and the ensembles (indicated by “E”). The three single instance
of each architecture differ for random initialization, number of epochs, and hyper-
parameters. We highlight in bold the best performing models.

Considering Cloud Academy, the effect of the calibration is particularly
visible for the hybrid ensemble, as it is the one with the lowest ECE. We
believe that the decrese for the other ensembles is not as visible as on RACE
because the ECE of the single instances is fairly low and thus more difficult
to reduce.

6.5.2 Evaluating QDET on the Pairwise Difficulty Prediction Task

In this subsection we evaluate the approaches to QDET on the task of Pair-
wise Difficulty Prediction (PDP), starting from PairRACE_HM e then mov-
ing on to Cloud Academy.

PairRACE_HM

The results of all the approaches on the PDP task on PairRACE_HM are
shown in Table 6.2. Each row indicates a different model, and the columns
indicate i) the approach, ii) the specific components of the model (e.g.
which QA models or readability index are being considered), and the PDP
accuracy, separately for the QA train set and the QA test set.

It is important to remark that the train set and test set indicate the splits
that are used for training the QA models; still, we present the results sep-
arately to understand whether the models built upon QA systems perform
differently on the questions used for training them and on the held out test
questions. The other models – i.e. the ones that are not built upon QA
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models – do not see any differences between the train questions and the test
questions, but we still plot the results separately to compare them with the
other models.

PDP Accuracy
Approach Components QA Train QA Test
ZeroR - 0.5000 0.5000
Readability Flesch Reading Ease 0.7202 0.7917
Readability Flesch-Kincaid Grade Level 0.7305 0.8022
Readability Automated Readability Index 0.7304 0.8132
Readability Gunning FOG Index 0.7410 0.8245
Readability Coleman-Liau Index 0.7264 0.8104
Similarity W2V - question-correct choice(s) 0.4967 0.4993
Similarity W2V - correct choice(s)-wrong choice(s) 0.4842 0.4514
Score variance BERT 0.6209 0.5970
Score variance BERT 0.6161 0.6049
Score variance BERT 0.6251 0.6020
Score variance DistilBERT 0.6080 0.5851
Score variance DistilBERT 0.6140 0.5779
Score variance DistilBERT 0.6113 0.5801
Score variance BERT (E) 0.6205 0.5984
Score variance DistilBERT (E) 0.6123 0.5802
Score variance BERT-DistilBERT (E) 0.6163 0.5827
IRT on QA models Train BERT 0.6443 -
IRT on QA models Train DistilBERT 0.5550 -
IRT on QA models Train BERT-DistilBERT 0.5419 -
IRT on QA models Test BERT - 0.7075
IRT on QA models Test DistilBERT - 0.6215
IRT on QA models Test BERT-DistilBERT - 0.5962
IRT on QA models Train-Test BERT 0.6443 0.7044
IRT on QA models Train-Test DistilBERT 0.5570 0.6155
IRT on QA models Train-Test BERT-DistilBERT 0.5604 0.6226

Table 6.2: Evaluation of all the approaches on the task of PDP, on PairRACE_HM. For
each approach, we consider several models, implemented using different components,
and separately evaluate the accuracy on the QA train dataset and the QA test dataset.
We gray out the models that perform worse than the random baseline and write the
best preforming ones in bold.

Going through the table from top to bottom, we evaluate the following
approaches, which are the same one described in §6.3.

• ZeroR baseline, which randomly picks the most difficult question of
the pair.

• Readability indexes, separately considering Flesch Reading Ease, Flesch-
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Kincaid Grade Level, Automated Readability Index, Gunning FOG
Index, Coleman-Liau Index.

• Similarity-based approaches, considering i) the similarity between the
Word2Vec embeddings of the question and of the correct choice(s),
and ii) the similarity between the Word2Vec embeddings of the correct
choice(s) and of the wrong choice(s).

• Score variance of the softmax scores of QA models, and we present
both the results obtained with the single instances (the three lines with
BERT and DistilBERT as “components”) and the results obtained us-
ing the ensembles (the three lines with “(E)”).

• IRT on the answers of QA models; considering several configurations
for this approach as well: specifically, we evaluate if there are any
differences training the IRT model i) on the questions used for train-
ing the QA model, ii) on the questions used for testing the QA model,
or iii) on the union of the two sets (“Train-Test” in the table). Addi-
tionally, for each configuration, we consider i) only the answers of the
BERT models, ii) only the answers of the DistilBERT models, and iii)
the answers of all the QA models (we separately consider the answers
of the models and not the answers of the ensemble built from them).
This is the approach is the only one that cannot always be evaluated on
all the questions, as it depends on the questions that are considered for
training the IRT model: for instance, if we consider only the answers
of the QA models to the test questions, we have no information about
the difficulty of the train questions.

Comparing the evaluation of the different models with the ZeroR base-
line, we can see that all the models perform better than it, with the exception
of the similarity-based approach. We believe that the Word2Vec embed-
dings used for these experiments are not capable of accurately capturing
the semantic meaning of the questions and therefore their complexity, and
more advanced embeddings might lead to improve results; but it might also
be the case that the similarity itself is not a good proxy of question difficulty
for reading comprehension questions.

Considering the other models, the readability based approach is clearly
the best performing one and, interestingly, its accuracy does not depend too
much on the specific index which is being used, which is an indication that
all the readability indexes provide a reasonably accurate proxy of question
difficulty. This is reasonable, as RACE contains reading comprehension
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questions and, in this type of questions, the difficulty is known to be heavily
dependent on the complexity of the reading passage.

As for the approach built upon the score variance of QA models, there
is no clear correlation between the ECE and the PDP accuracy nor the QA
accuracy and the PDP accuracy. Indeed, the model built upon the better
calibrate QA model (BERT-DistilBERT (E)) is outperformed in the PDP
task by most of the models built upon single instances, both on the QA
train set and the QA test set. In this sense, even though this approach based
on the score variance of QA models consistently perform better than the
random baseline, we find that it is not clear how – and if – measures on
the QA models (such as accuracy and calibration) can be used to pick the
model that will perform better for QDET.

Finally, considering the approach that perform QDET by training an IRT
model on the responses of QA models, we can see that it is generally the
second best performing approach (outperformed by the readability-based
one). For both the training set and the test set, the approach based on BERT
leads to the better results – with minor differences depending on whether
both the train set and the test set or only one of them is used to train the IRT
model – and this was somewhat unexpected since the variety of answers
is more reduced than using both the answers of the BERT models and the
DistilBERT models. Lastly, another relevant observation is the fact that
this approach consistently performs better on the test set, which was not
the case for the approach based on the score variance.

Cloud Academy (IRT)

Table 6.3 present the same analysis for the Cloud Academy dataset; the
approaches that are being evaluated are the same (built with components
trained on the Cloud Academy dataset) and the same metric (PDP accu-
racy) is used for the evaluation. Again, we separately consider the QA train
questions and the QA test questions.

Comparing the table with the results obtained on PairRACE_HM, some
significant differences are immediately visible. First of all, the readabil-
ity indexes in this case perform in par with (if not worse than) the ZeroR
baseline, meaning that they cannot be used in any way as a proxy of ques-
tion difficulty. This makes sense, since Cloud Academy is a content knowl-
edge assessment dataset, and therefore the difficulty of the questions mostly
comes from the domain knowledge which is being assessed, which is not
captured by the readability indexes.
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PDP Accuracy
Approach Component(s) QA Train QA Test
ZeroR - 0.5000 0.5000
Readability Flesch Reading Ease 0.4938 0.4807
Readability Flesch-Kincaid Grade Level 0.5067 0.4949
Readability Automated Readability Index 0.5039 0.4926
Readability Gunning FOG Index 0.5051 0.4916
Readability Coleman-Liau Index 0.5053 0.4888
Similarity W2V - question-correct choice 0.4352 0.4393
Similarity W2V - correct choice-wrong choice 0.5725 0.5770
Score variance BERT 0.5240 0.5236
Score variance BERT 0.5355 0.5264
Score variance BERT 0.5255 0.5201
Score variance DistilBERT 0.5298 0.5187
Score variance DistilBERT 0.5180 0.5027
Score variance DistilBERT 0.5237 0.5210
Score variance BERT (E) 0.5317 0.5254
Score variance DistilBERT (E) 0.5265 0.5187
Score variance BERT-DB (E) 0.5332 0.5254
IRT on QA models Train BERT 0.6107 -
IRT on QA models Train DistilBERT 0.5968 -
IRT on QA models Train BERT-DistilBERT 0.5658 -
IRT on QA models Test BERT - 0.6349
IRT on QA models Test DistilBERT - 0.6047
IRT on QA models Test BERT-DistilBERT - 0.5773
IRT on QA models Train-Test BERT 0.6130 0.6328
IRT on QA models Train-Test DistilBERT 0.5971 0.6087
IRT on QA models Train-Test BERT-DistilBERT 0.5639 0.5768

Table 6.3: Evaluation of all the approaches on the task of PDP, on Cloud Academy. For
each approach, we consider several models, implemented using different components,
and separately evaluate the accuracy on the QA train dataset and the QA test dataset.
We gray out the models which perform worse than the random baseline, and write the
best performing model in bold.

Another difference is the performance of the similarity-based approach:
indeed, while the similarity between the embedding of the question and the
embedding of the correct choice(s) perform worse than the random base-
line, the similarity between the correct choice(s) and the wrong choice(s)
reaches an accuracy of 57%, much better than on RACE. Most likely, it
is capable of capturing – at least partially – the semantic meaning of the
answer choices and this lead to improved results.

Moving on to the approach which leverages the score variance of QA
models, we can see that it performs better that the random baseline, but
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worse than on RACE. Most of the observations from the previous analysis
still hold true: the PDP accuracy is always better on the QA train set than
on the QA test set, and the ensembles do not bring clear improvements over
the models based on single instances, meaning that the ECE is not a clear
indicator of which models will lead to the best PDP performance. Indeed,
considering this approach, the best performance is obtained with BERT on
both the QA train set and the QA test set.

Lastly, we can see that the IRT on QA models approach consistently per-
forms better than the others, and all the models implemented with this ap-
proach, regardless of the chosen components, perform better than the other
approaches, with the only exception of Train BERT-DistilBERT, which is
outperformed by one of the similarity-based models. Similarly to what we
observed on RACE, the better performance is consistently obtained on the
test questions, and the models based on the QA answers of BERT models
lead to the better performance.

6.5.3 Evaluating with ranking metrics

The target difficulty label used to evaluate the model performance on Cloud
Academy is obtained by training an IRT model on the answers of real stu-
dents to exam questions. As a consequence, the whole difficulty ranking of
questions is available, and we can use it to evaluate the difficulty ranking
obtained with the models for QDET. Unfortunately, this is not possible on
RACE, since it does not provide a difficulty ranking but only a binary label
that indicates question difficulty.

Since all the models produce difficulties on different scales and differ-
ent from the target one ([−5;+5]), we rescale all the difficulties (including
the target) to the range [0; 1] with min-max normalization (separately for
each model). Then, we use to nDCG to evaluate the difficulty rankings,
by comparing the true ranking with the ranking obtained from the various
approaches.

The results of this evaluation are shown in Table 6.4, which has the
same structure as the two tables presented above but shows the ranking
nDCG rather than the PDP accuracy. Again, we separately consider the
questions which were considered as training set and test set for training the
QA models.
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nDCG
Approach Component(s) QA Train QA Test
ZeroR - 0.9641 0.9503
Readability flesch reading ease 0.9632 0.9492
Readability flesch kincaid grade level 0.9633 0.9505
Readability automated readability index 0.9636 0.9518
Readability gunning fog index 0.9630 0.9497
Readability coleman liau index 0.9641 0.9524
Similarity W2V - question-correct choice 0.9634 0.9489
Similarity W2V - correct choice-wrong choice 0.9647 0.9494
Score variance BERT 0.9669 0.9538
Score variance BERT 0.9681 0.9537
Score variance BERT 0.9668 0.9523
Score variance DistilBERT 0.9675 0.9562
Score variance DistilBERT 0.9666 0.9504
Score variance DistilBERT 0.9675 0.9550
Score variance BERT (E) 0.9677 0.9551
Score variance DistilBERT (E) 0.9671 0.9564
Score variance BERT-DB (E) 0.9685 0.9551
IRT on QA models Train BERT 0.9651 -
IRT on QA models Train DistilBERT 0.9650 -
IRT on QA models Train BERT-DistilBERT 0.9651 -
IRT on QA models Test BERT - 0.9514
IRT on QA models Test DistilBERT - 0.9511
IRT on QA models Test BERT-DistilBERT - 0.9517
IRT on QA models Train-Test BERT 0.9651 0.9514
IRT on QA models Train-Test DistilBERT 0.9650 0.9511
IRT on QA models Train-Test BERT-DistilBERT 0.9651 0.9517

Table 6.4: Evaluation of the difficulty ranking obtained with all the approaches on Cloud
Academy, using nDCG as evaluation metric. The nDCG is computed by comparing the
difficulty ranking produced by each model with the target difficulty ranking (obtained
with IRT from the answers of real students). For each approach, we consider several
models, implemented using different components, and separately evaluate the nDCG
on the QA train dataset and the QA test dataset. We highlight in bold the best perform-
ing models and gray out the ones that perform worse than the ZeroR baseline.

The first thing that catches the eye is probably the fact that all the ap-
proaches and all configurations lead to fairly high values of nDCG (score
1.0 would indicate a perfect ranking), which is due to the distribution of
the “true” IRT difficulties, as we observed in Chapter 5 while evaluating
the models proposed to perform QDET in a supervised manner. Indeed, the
target difficulty is distributed as a Gaussian, meaning that many questions
have similar scores and, therefore, swapping their order does not affect too
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much the nDCG; indeed, even the ZeroR baseline (i.e. assigning 0.5 as
score to all the questions) reaches fairly high nDCG. Still, there are some
observations that are worth making.

First of all, we can see that the readability indexes still are outperformed
by basically all the other approaches and by the ZeroR baseline as well,
which is in agreement with the results from the previous section.

The similarity based approaches, as well, are now outperformed by both
the score variance approach and the IRT on QA models approach, regard-
less of the configuration, and even by the ZeroR baseline, in most cases.

The only two approaches that are consistently better than the baseline
are the two approaches leveraging the answers of QA models, and there is
an interesting difference with respect to the previous results on PDP accu-
racy. Indeed, here the score variance approach leads to the best results, both
on the training questions and on the test questions, and this can be observed
fairly consistently across the different models based on that approach.

6.5.4 Distribution of estimated difficulty

The last analysis we perform in this Chapter is a study of the distribution
of the estimated difficulty and a comparison with the distribution of the
“true” IRT difficulty estimated from real students’ interactions. Again, we
consider separately the questions that were used as QA train set and QA
test set. Given that each approach generates difficulties on a different scale,
we rescale them to a common scale (in the range [−5;+5]), which is the
known range of the true IRT difficulties.

We do not plot the distribution of all the models for all the approaches,
but rather pick one model for each one (considering the best performing in
the PDP task), and two for the IRT on QA models approach, since it is the
approach that is proposed for the first time in this thesis.

Specifically, we consider the following approaches:

• Readability - Automated Readability Index;

• Similarity - Word2Vec: correct choice-wrong choice;

• Score variance - BERT-DistilBERT Ensemble;

• IRT on QA models - Train-Test BERT;

• IRT on QA models - Train-Test BERT-DistilBERT.
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QA Train set

Figure 6.1 plots the difficulty distribution of the items from the train set;
we have on the top-left corner the true IRT difficulty distribution and in the
other plots the approaches to unsupervised QDET.

It is immediately visible that all models have distributions very differ-
ent from the target, meaning that the difficulties generated by them could
not be directly used for calibrating items in an exams. Still, it is worth
highlighting some differences. Indeed, the similarity approach and the
score variance approach lead to difficulties that are too spiked towards the
extremes, while the other three approaches generate distributions that are
more spread across the range of possible values. Specifically, we believe
that the distribution of the IRT on QA models are particularly promising: in-
deed, there are spikes for very low difficulties and very high difficulties, but
these are most likely due to the number of QA models used to train the IRT
model. Indeed, those two spikes correspond to questions that are correctly
answered or wrongly answered by all the QA models under consideration,
and increasing the number of QA models – as well as diversifying their
capabilities – could help improve difficulty estimation.

QA Test set

Figure 6.1 plots the difficulty distributions obtained from the same models
on the test set.

Overall, the observations are very similar to what we observed on the
train set. The main difference is the fact that, here, the spikes for high diffi-
culties generated by the IRT on QA models approach are higher than in the
previous case, which is due to the fact that the QA accuracy is lower on the
test set than on the train set. Still, we believe that the same countermeasure
of having a larger number of QA models with a variety of architectures (and
capabilities) could address this limitation. Figure 6.2.

6.6 Conclusions

The results presented in this Chapter support the idea that it is possible to
estimate the human-perceived difficulty in an unsupervised manner, which
have as main advantage over the supervised approaches the fact that it is
possible to predict the relative difficulty of questions without needing any
calibrated questions or logs of students’ answers. Indeed, it is sufficient
to have access to the corpus of questions and possibly, for the approaches
based on QA models, to an additional corpus of learning materials.
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Figure 6.1: Comparison of the difficulty distribution obtained with various models with
the target difficulty distribution, considering the QA train set of Cloud Academy.
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Figure 6.2: Comparison of the difficulty distribution obtained with various models with
the target difficulty distribution, considering the QA test set of Cloud Academy.
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The experimental results show that the choice of model heavily depends
on the educational domain under consideration, similarly to what we ob-
served for the supervised approaches. Indeed, we in the language assess-
ment domain the readability indexes are a good proxy of question difficulty,
and perform on their own even better than the techniques based on Question
Answering (QA) models, at least considering the reading comprehension
questions available in RACE in which the difficulty is known to be heavily
dependent on the characteristics of the reading passage. On the contrary,
as we observed for supervised QDET, readability indexes are not capable
of producing accurate results in the content knowledge assessment domain.
Indeed, in that case the question difficulty depends only partially on the ver-
balization and the linguistic characteristics of the questions, and therefore
readability indexes lead to poor results, often worse than a random base-
line. In this scenario, we observe that the best performing approach is to
leverage the answers of QA models, which are trained to answer the ques-
tions, and use those answers to train an IRT model, mimicking pretesting
with real students.

Also, the approach of leveraging, with IRT, the answers of QA models
for QDET is the only approach that leads to output difficulty distributions
that are comparable with the target distribution, and not too skewed to-
wards extreme values. Still, we experiment with a limited number of QA
models, and this approach is most likely to be capable of better perfor-
mance if used on a larger number of models (and with a larger variety in
their QA accuracy). A first step towards this would be leveraging the ad-
ditional pre-training on the task of Masked Language Modeling (as we did
for the experiments on supervised QDET) to obtain models that are (most
likely) more accurate in the QA task and would therefore be helpful for the
unsupervised estimation of question difficulty.
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CHAPTER7
A Brief Comparison of Supervised and

Unsupervised QDET

In the previous Chapters, we have seen how different models proposed for
supervised and unsupervised QDET perform, and how their performance
depends on the educational domain under consideration and the character-
istics of the questions which are being calibrated. In this Chapter, we briefly
compare the two approaches and argue about the advantages and disadvan-
tages of each of them. We start by discussing the real world applicability of
these approaches (§7.1), and then perform a numerical comparison of the
best performing supervised and unsupervised approaches to QDET (§7.2).

7.1 Real World Applicability

The first thing to consider when discussing the actual applicability of the
techniques proposed in recent research to QDET are the assumptions that
are made by the supervised and unsupervised models, respectively, and
what these assumptions imply on the possible application scenarios. In-
deed, the two approaches perform different assumptions and therefore can-
not always be used on the same pools of questions.
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Supervised models require a large pool of calibrated training questions,
which must assess the same topics as the questions that the trained model
will later be used on This is a limitation for two main reasons: first of
all, such training data is not always available or expensive to obtain (as it
needs pretesting); secondly, even when it is possible to pretest some training
questions, it is necessary to label them with the correct skill (i.e. topic)
which is assessed by them, in order not to build a training dataset which
contains questions that assess different topics.

Unsupervised models, on the other hand, do not require a training dataset
of calibrated items, which is an significant advantage. However, some
of them, especially the ones which are seemingly the best performing on
content knowledge assessment questions (e.g. IRT on QA models), need a
large pool of training questions for a related task (e.g. question answering),
which is not always available. For instance, considering the data collec-
tions used in this study, we were not able to train two of the unsupervised
models on ASSISTments. Still, some unsupervised techniques, such as the
ones based on readability indexes, can be used without any initial training
and seem to be reasonably accurate in specific domains.

A huge disadvantage of unsupervised techniques with respect to the su-
pervised ones is the fact that they do not always output question difficulties
which are on the same scale as the difficulties which are currently used in
the exam, and the task of converting them is not always straightforward.
Indeed, as we have seen in the previous Chapter, rescaling the output diffi-
culties to the desired range is often not sufficient, as the output distribution
results very different from the target one. Supervised models, on the other
hand, are specifically trained to output difficulties in the desired distribution
and, even though they tend not to use the whole range of possible output
values but rather perform predictions closer to the average value, they still
have output distributions that are closer to the target one.

7.2 Numerical Comparison

In this Section, we perform a numerical comparison of the difficulties ob-
tained with the supervised and the unsupervised techniques on Cloud Academy.

In order to keep the analysis short and focus only on the most important
aspects, we do not consider all the supervised and unsupervised models
but only the ones which seemingly lead to the better estimations, but still
considering two different approaches for both categories. Specifically, we
consider i) R2DE QCorrect and ii) BERT QCorrect with the additional Masked
Language Modeling pretraining as supervised techniques, and i) IRT on
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Type Model nDCG (Test)
ZeroR - 0.9503
Sup. R2DE QCorrect 0.9647
Sup. BERT QCorrect with MLM 0.9686
Unsup. score variance (BERT-DistilBERT Ensemble) 0.9551
Unsup. IRT on QA models (Train-Test BERT) 0.9514

Table 7.1: nDCG on the Cloud Academy test set of the two best performing supervised
and the two best performing unsupervised models for QDET.

QA models (Train-Test BERT) and ii) score variance of QA models (BERT-
DistilBERT Ensemble) as unsupervised techniques.

To compare the performance of the four models, we evaluate them on
two tasks. First, we evaluate the ranking capabilities of the models by mea-
suring the nDCG obtained when comparing the estimated difficulty distri-
bution with the target one. Then, we compare the performance of the four
models on the task of Pairwise Difficulty Prediction (PDP). Since the super-
vised approaches require a training dataset of calibrated questions, we eval-
uate the fours models only on the test set. We use Cloud Academy because
it provides, differently from RACE, a complete ranking of the questions and
not categorical difficulty values.

Table 7.1 presents the nDCG obtained by the four models on the test
set. The nDCG for the two supervised models is larger, meaning that they
perform better than the unsupervised ones, which is somewhat expected.
Indeed, the supervised model can leverage more information and therefore
are capable of generating a difficulty ranking which is, overall, closer to
the target ranking. The absolute difference is not major, but considering
the relative improvement over the ZeroR baseline, we can observe that the
difference between the supervised and unsupervised approaches is still sig-
nificant. Indeed, the best unsupervised approach improves the nDCG of the
random baseline by 0.5%, and the best supervised approach improve it by
1.9%.

Moving the focus to the accuracy on the PDP task, which is shown in
Table 7.2, we can see some notable differences. Indeed, in this case, the
better performing model is the unsupervised approach based on the IRT
difficulty obtained from QA models, and the supervised approaches out-
perform only the unsupervised approach based on the variance of softmax
scores. All models perform better than the random baseline, which has
accuracy of 0.50, with improvements from 5.1% (the unsupervised model
based on score variance) to 26.5% (the unsupervised model based on IRT
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Type Model PDP Accuracy (Test)
ZeroR - 0.5000
Sup. R2DE QCorrect 0.5803
Sup. BERT QCorrect with MLM 0.5892
Unsup. score variance (BERT-DistilBERT Ensemble) 0.5254
Unsup. IRT on QA models (Train-Test BERT) 0.6328

Table 7.2: Pairwise Difficulty Prediction (PDP) accuracy on the Cloud Academy test set of
the two best performing supervised and the two best performing unsupervised models
for QDET.

on QA models). This difference with respect to the results observed in the
previous table is somewhat surprising, but it most likely due to the different
nature of the two metrics which are being considered. Indeed, in PDP we
do not take into consideration the specific value of difficulty, as long as the
relation between the two is correct (i.e. the more difficult question is cor-
rectly identified), therefore the known behavior of the IRT on QA models
approach, which sometimes lead to very high or very low difficulties (as
shown in Figure 6.1 and Figure 6.2 in the previous Chapter) is not heavily
penalized. On the contrary, the nDCG takes into consideration both the po-
sitional ranking and the difficulty value assigned to each question, which
we believe is the reason behind this difference in the two metrics.

Still, the fact that the performance of the unsupervised model are better
than the supervised models according to this one metric is a suggestion that
it is a promising approach that, with some improvements, might indeed lead
to a reliable alternative to supervised QDET for the scenarios in which the
latter is not usable.
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CHAPTER8
Conclusions

8.1 Discussion

In this study, we have assessed the techniques proposed in recent research
for Question Difficulty Estimation from Text (QDET), both the ones model-
ing it as a supervised task and the ones modeling it as an unsupervised task.
We observed that these techniques, overall, are still not accurate enough
to produce a final question difficulty that could be directly used in exam
questions, but can already be helpful in several ways.

Considering educational settings that require pretesting, the techniques
evaluated in this study could be used as an initial estimation of question dif-
ficulty which would be more accurate than a predefined value independent
of the textual content. The educational settings leveraging manual calibra-
tion of exam questions, as well, could benefit from the application of these
techniques for an initial estimation of question difficulty to suggest to the
content curators. For instance, by highlighting the automatically estimated
difficulty in case of a large difference from the manually selected value,
it might point to questions which have been erroneously calibrated by the
content curator.

Considering the two categories of approaches – supervised and unsu-
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pervised – it seems that supervised approaches are better at producing a
difficulty which is adapted to the current difficulty distribution. However,
unsupervised approaches seem to provide a decently accurate overall rank-
ing of question difficulties, with the important limitation that they are not
aligned to the target difficulty distribution and therefore have to be rescaled
or filtered in some way, which might not always be straightforward. Still,
considering that these two categories are generally used in different scenar-
ios, since they have different requirements and constraints, in this study we
mostly focused on the two categories separately, only performing a prelim-
inary comparison between them.

We have experimented on questions of different nature and coming from
different educational domains, and observed that the choice of model to use
heavily depends on the nature of the questions under consideration, which
is in agreement with previous research.

Starting from the supervised approaches and, specifically, the Language
Assessment (LA) domain, we observed that – at least considering reading
comprehension questions – readability indexes and linguistic features can
capture most of question difficulty, and this is true both for supervised ap-
proaches and unsupervised techniques. Indeed, in LA, and particularly in
reading comprehension questions, the item difficulty heavily depends on
the linguistic demands of the reading passage, therefore techniques which
can capture this information are capable of an accurate difficulty estimation.
Still, the same linguistic demands are captured – even more accurately – by
more advanced models, such as BERT, which are generally capable of bet-
ter performance. In this sense, we argue that Transformer-based models
are probably the better choice from an accuracy point of view, but much
simpler models, such as the ones based on readability indexes, might still
be a reasonable choice in case of constraints from the computational point
of view.

Unfortunately, this is not true for the Content Knowledge Assessment
(CKA) domain. Indeed, supervised models based on simple techniques
such as linguistic features and readability indexes are not capable of accu-
rately capturing the demands of exam questions and therefore lead to inac-
curate estimations. This is because in CKA the question difficulty mostly
depends on the specific topics which are being assessed by the question,
and techniques that focus on language only cannot capture such informa-
tion. Specifically, we observed that the Transformers are, again, the models
that generally lead to the best performance for supervised QDET in the
CKA domain, and are in some cases matched by techniques based on word
embeddings (such as Word2Vec) or frequency based features (such as TF-
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IDF). In addition to that, Transformers can be pre-trained on additional
documents related to the same topics as the ones assessed by the questions,
which increases their accuracy.

Still focusing on the supervised techniques, we observed that – in the
case of MCQ – having access to the text of the possible choices generally
leads to improved results for the methods that can leverage it (Transform-
ers, word embeddingd, and frequency based features), but there are some
exceptions. Indeed, we observed that, possibly due to the specific encoding
we use, Transformer models are not capable of accurately modeling ques-
tions which have multiple correct choices (i.e. they require the student to
select all the correct choices), and are outperformed by the models based
on TF-IDF and Word2Vec, which do not take into consideration the context
and therefore are not affected by the specific positioning of words.

Moving our focus to unsupervised QDET, the observations are only par-
tially different. Indeed, we observe that in LA the readability indexes are
a good proxy of question difficulty, and perform on their own even better
than the techniques based on Question Answering (QA) models. However,
as we observed for supervised QDET, readability indexes are not capable
of producing accurate results in the CKA domain. Indeed, in this case the
best results are obtained with techniques that leverage the answers of QA
models which are trained to answer the questions under calibration to train
an IRT model, mimicking pretesting with real students.

In case of MCQ in the CKA domain, the semantic similarity between
the correct answer and the distractors also seemed to provided a reasonably
accurate indication of question difficulty, but it is generally outperformed
by the IRT on QA models approach. In the case of reading comprehension
questions, on the other hand, the semantic similarity did not seem to lead
to accurate results.

8.2 Future Works

In this thesis, we have performed an assessment of recently proposed tech-
niques for QDET, and there are several research directions which we be-
lieve might be worth exploring in the future.

Exploration of techniques to estimate the confidence of the models
in their predictions. We have seen that for both supervised and unsuper-
vised QDET – and especially for the latter – the models were in some cases
capable of accurate predictions and, in other occasions, completely missed
the correct difficulty value. In this sense, having a reliable estimation of
model uncertainty – in other words, having calibrated models – could be
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very helpful in understanding which are the questions for which we can
trust the model predictions and which predictions, on the other hand, are
not reliable. In some cases, such as the supervised binary difficulty pre-
diction on RACE, this could be done with the traditional approach to model
calibration (see §3.5), but for most of the approaches assessed in this thesis,
such as the unsupervised estimation based on the IRT estimation obtained
from QA models, it is not as straightforward.

Extension of the experiments on the usage of IRT on QA models for
the unsupervised estimation of question difficulty. In Chapter 6 we have
seen that the application of a one-parameter IRT model to the answers of
QA models might lead to a good approximation of question difficulty, and
this is the only unsupervised approach that produces an estimated difficulty
distribution at least partially similar to the target distribution (see §6.1 and
§6.2). However, we have been experimenting with a limited number of QA
models (six, at most), which is a very limited number compared to the re-
quirements that are recommended for a one-parameter IRT model (indeed,
when estimating the “true” IRT difficulty using real students’ answers we
keep only the questions that were answered by at least 50 students). A
direct continuation of this work, thus, would be the expansion of the exper-
iments on this technique for unsupervised QDET, using more models and
possibly with a larger variety of architectures.

Rescaling of estimated difficulty to match the target distribution. In
a real world scenario where the difficulty estimated from text are supposed
to be used together with some pre-existing and already calibrated questions,
it is important to have an output difficulty distribution that matches the
target one.

Considering the supervised models, they are supposed to produce out-
put difficulties which are in agreement with the target difficulty distribu-
tion, but we observed that it is not always the case. Indeed, all the models
tend to produce predictions which do not differ too much from the average
difficulty, even though they move towards the correct direction (i.e. diffi-
culty questions are labeled as being more difficult that average, and easy
questions on the other hand as being less difficulty than average). Future
research might explore the possibility of rescaling the predicted difficulty
in order to better match the difficulty distribution of the training items.

The same issue is also present, with even more importance, in the case
of unsupervised QDET: in this thesis, we performed a simpler rescaling
to the desired difficulty range, but we believe that it might not be the best
choice. Future work might explore techniques to adapt the distribution of
the predicted difficulty to the distribution of pre-existing exam questions.
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