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Abstract

The purpose of this study is the experimental and numerical characterization of Solvay’s
PC(PEKK-FC)/S2. Some tests have been performed on uni-directional laminates of the
cited material. After the experimental phase, it has been implemented through cohesive
elements numerical study to be able to describe the test response.
In composite constructions, delamination is a prevalent failure mechanism. It can be
caused by a variety of factors such as impact damage, manufacturing faults, fatigue load-
ing, or out-of-plane force, such as when the structure buckles. It is critical to characterize
the delamination development behavior in order to assure safe design. Simulations are
an important element of this characterization because they reduce the need for time-
consuming and expensive experimental studies.
The simulated test is the double cantilever beam. In order to carry out the simulations a
subroutine has been implemented that takes into account the fiber-bridging phenomena
observed during the experimental campaign. The subroutines, based on literature models,
are both for the quasi-static analysis and fatigue.
A parameter-fitting algorithm has been implemented to achieve the best fidelity results.
The Nelson Mead algorithm has been used to ensure this result, creating a recursive FEM-
solver call algorithm.
The results of the listed simulations return good results with respect to the experimental
one.
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Abstract in lingua italiana

Lo scopo di questo studio è la caratterizzazione sperimentale e numerica del PC(PEKK-
FC)/S2 di Solvay. Alcuni test sono stati eseguiti su laminati unidirezionali del materiale
citato. Dopo la fase sperimentale, è stato implementato attraverso lo studio numerico di
elementi coesivi per poter descrivere la risposta al test.

Nelle costruzioni composite, la delaminazione è un meccanismo di guasto prevalente. Può
essere causato da una varietà di fattori come danni da impatto, difetti di fabbricazione,
carico di fatica o forza fuori dal piano, ad esempio quando la struttura si piega. È
fondamentale caratterizzare il comportamento di sviluppo della delaminazione al fine di
garantire una progettazione sicura. Le simulazioni sono un elemento importante di questa
caratterizzazione perché riducono la necessità di studi sperimentali costosi e dispendiosi
in termini di tempo.
La prova simulata è la doppia trave a sbalzo. Per effettuare le simulazioni è stata imple-
mentata una subroutine che tiene conto dei fenomeni di fiber-bridging osservati durante
la campagna sperimentale. Le subroutine, basate su modelli di letteratura, sono sia per
l’analisi quasi-statica che per la fatica.
È stato implementato un algoritmo di adattamento dei parametri per ottenere i migliori
risultati di fedeltà. L’algoritmo Nelson Mead è stato utilizzato per garantire questo risul-
tato, creando un algoritmo di chiamata ricorsivo del risolutore FEM.
I risultati delle simulazioni elencate restituiscono buoni risultati rispetto a quella speri-
mentale.

Parole chiave: delaminazione, compositi termoplastici, fatica, elementi coesivi





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

List of Figures ix

List of Tables xiii

List of Symbols xv

1 Introduction 1
1.1 Thermo-plastic composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thermo-plastic structural applications . . . . . . . . . . . . . . . . . . . . 3
1.3 Study case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Composites delamination 5
2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Origin of delamination . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Types of delamination . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Experimental campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Double cantilever beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 End notched flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Numerical approaches to delamination 17
3.1 Review of numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Mechanical Description of Discontinuous Deformation . . . . . . . 17
3.1.2 Virtual crack closure technique . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Cohesive zone modeling . . . . . . . . . . . . . . . . . . . . . . . . 21



vi | Contents

3.1.4 Cohesive constitutive law . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.5 Bi-linear cohesive law . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Numerical analysis of a tri-linear cohesive law . . . . . . . . . . . . . . . . 28
3.2.1 Bi-linear model issues . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Tri-linear cohesive law . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Algorithm implementation . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 1D FEM test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 3D FEM analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.6 Mesh dimension convergence study . . . . . . . . . . . . . . . . . . 41

3.3 Parameters fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Nelder–Mead method . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Error defintion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Bi-linear curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.4 Tri-linear curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Fatigue Analysis 59
4.1 Fatigue model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Experimetal results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Fatigue in Cohesive Zone Modelling . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Review of fatigue cohesive models . . . . . . . . . . . . . . . . . . . 62
4.3.2 Kawawhita-Harper model . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Tri-linear extension model . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Fatigue case analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Numerical and experimental comparison . . . . . . . . . . . . . . . 68

5 Conclusions and future developments 73
5.1 What has been achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 What comes next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75

A Numerical representation of non-conformity 83
A.1 Imperfect closure of mode-I test . . . . . . . . . . . . . . . . . . . . . . . . 83
A.2 Defects study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Acknowledgements 91





ix

List of Figures

1.1 Classical composites classification . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Market overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Internal delamination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Near-surface delamination. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Delamination modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 DCB test configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 DCB test beginning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Mixed beam theory energy release rate . . . . . . . . . . . . . . . . . . . . 13
2.7 Compliance calibration theory energy release rate . . . . . . . . . . . . . . 14
2.8 Final configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Experimental fiber bridging . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 ENF test configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 End notched flexure experimental tests . . . . . . . . . . . . . . . . . . . . 16

3.1 Body with discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 VCCT scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Hillerborh’s cohesive model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Cohesive element nodes jump . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Cohesive law models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Rigid cohesive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Bi-linear cohesive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 G function on TSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Mixed mode cohesive zone model . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Constant R-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Variable R-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.12 Bi-linear traction separation results . . . . . . . . . . . . . . . . . . . . . . 29
3.13 Bi-linear process zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14 First version tri-linear TSL . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15 Second version version tri-linear TSL . . . . . . . . . . . . . . . . . . . . . 32



x | List of Figures

3.16 Static UMAT implementation. . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.17 1D test configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.18 1D traction separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.19 3D FEM mesh and BC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.20 3D displacement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.21 SDV1 beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.22 SDV1 detachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.23 SDV1 end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.24 Mesh refinement error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.25 Mesh refinement Traction separation . . . . . . . . . . . . . . . . . . . . . 43
3.26 Process zone for different mesh size . . . . . . . . . . . . . . . . . . . . . . 43
3.27 Neldel-Mead reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.28 Neldel-Mead expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.29 Neldel-Mead contraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.30 Neldel-Mead shrink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.31 Bi-linear cohesive parameters . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.32 Bi-linear constitutive law optimization. . . . . . . . . . . . . . . . . . . . . 52
3.33 Bi-linear error minimization. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.34 Bi-linear load-displacement curve. . . . . . . . . . . . . . . . . . . . . . . . 54
3.35 Tri-linear constitutive law parameters. . . . . . . . . . . . . . . . . . . . . 55
3.36 Tri-linear constitutive law optimization. . . . . . . . . . . . . . . . . . . . . 56
3.37 Tri-linear error minimization. . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.38 Tri-linear load-displacement curve. . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Experimental fatigue law fitting . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Progressive damage status. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Fatigue tri-linear cohesive law . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Fatigue UMAT implementation. . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Displacement control cases. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Propagation of the degradation during fatigue. . . . . . . . . . . . . . . . 68
4.7 Fatigue crack length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8 Fatigue crack speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9 Fatigue load decrement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.10 Fatigue fracture toughness decrement. . . . . . . . . . . . . . . . . . . . . . 70
4.11 Paris law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.1 Cohesive law with elastic un-loading . . . . . . . . . . . . . . . . . . . . . 84
A.2 Load displacement with elastic un-loading . . . . . . . . . . . . . . . . . . 84



| List of Figures xi

A.3 Cohesive law with Non-elastic un-loading . . . . . . . . . . . . . . . . . . . 85
A.4 Load displacement with non-elastic un-loading cohesive . . . . . . . . . . . 86
A.5 Load displacement curve jump . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.6 Optic microscope fractography . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.7 Defects numerical configuration . . . . . . . . . . . . . . . . . . . . . . . . 88
A.8 Defect study comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89





xiii

List of Tables

2.1 DCB specimen geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Tri-linear cohesive optimization parameters. . . . . . . . . . . . . . . . . . 36
3.2 PEKK parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Cohesive element parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Mesh refinement error and computational time. . . . . . . . . . . . . . . . 44
3.5 Bi-linear cohesive optimization parameters. . . . . . . . . . . . . . . . . . . 52
3.6 Bi-linear cohesive optimization parameters error. . . . . . . . . . . . . . . . 53
3.7 Tri-linear cohesive optimization parameters. . . . . . . . . . . . . . . . . . 55
3.8 Tri-linear cohesive optimization parameters. . . . . . . . . . . . . . . . . . 56
3.9 Tri-linear cohesive optimization parameters error. . . . . . . . . . . . . . . 57

4.1 Experimental fatigue configuration. . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Paris law fitted parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Fatigue cohesive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62





xv

List of Symbols

Variable Description SI unit

G Fracture toughness J/mm2

P Load N

δ Separation mm

σ Stress MPa

t Traction MPa

D Cohesive degradation -

Ds Static degradation -

Df Fatigue degradation N

E Young’s modulus MPa

ν Poisson’s ration -

K Stiffness MPa





1

1| Introduction

The major guideline in aerospace structure material selection is focused on the right
compromise between weight and strength. Weight saving is a fundamental aspect due to
many reasons, in particular the correlated cost and fuel saving. For example, even with
the reduction in launch costs due to new technologies, such as the Space X Falcon 9, the
average price for reaching low earth orbit (LEO) is about 5000-10000 $. Through the
reduction of the structure mass, there is the possibility to transport much more payload
and to have a better income from the mission itself. Moreover, lower masses allow better
fuel consumption that is strictly connected with mission costs and life duration. Besides
the lightness, another crucial aspect is the ability of a particular material to withstand high
loads. High-strength materials are fundamental for primary and secondary structures, due
to the high loads witnessed during many phases of a mission. While in the early days of
aerospace history aluminum was dominant all over the structures, in the last decades there
has been a high increase in composite material. The definition of composite materials is
blurred due to the wide variety of them in academia and in the industry field. For the
interest of this work, it is considered composite a material composed by two or more
constituents. These kinds of materials make possible a more precise design that takes in
consideration the loads applied. In order to obtain a particular strength, fatigue response,
or thermal properties the constituents can be changed or organized differently. An initial
classification of composites is reported in Figure 1.1 accordig to the geometry of the
constituents. In these cases, considering two constituents are present, the high-strength
brittle material and the matrix that is a ductile carrier of the other component. Here
there are reported: particle-reinforced where the high-strength material is composed of
spherical or ellipsoidal particles suspended in the matrix; fiber-reinforced in which the
suspended material is composed of fibers that can be long or short, depending on the
case; finally structural elements, where different layers of different material or composite
materials itself are laid-up together.
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Composites

Fiber reinforcedParticle reinforced Structural

Continuous
(aligned)

Discontinuous
(short)

Large
particle

Dispersion-
strengthened

Laminates
Sandwich
panels

Aligned
Randomly
oriented

Figure 1.1: Classical composites classification

Combining materials of different characteristics it is possible to achieve new materials with
intermediate properties. In this thesis, the main focus is posed on laminates composed by
continuous fiber-reinforced ply, in particular thermoplastic carbon fiber reinforced poly-
mers.

1.1. Thermo-plastic composites

Most of the commercial composites used in aerospace, but also automotive, and other fields
are based on a thermo-sets matrix. Thermo-set are [1] [2] polymers obtained through a
curing process starting from a low viscous and good penetration liquid. The curing proce-
dure is an irreversible hardening process that can be achieved thanks to the heat, and that
can be accelerated by high pressure and catalysts. Thermo-set composites are obtained
by the composition of reinforcing fibers with this polymer, in particular for this kind of
application, epoxy resin is used as a pre-polymer. Due to the nature of the curing process,
thermos-set composites present issues, correlated to manufacturing, repairing, and waste
management. From a manufacturing point of view, difficult methodologies are required
in order to obtain the hardening effect: epoxies need to be preserved at low temperatures
before production, and the curing is obtained through an expensive autoclave cycle. A
cracked matrix cannot be repaired directly acting on the polymer, but it needs exter-
nal input, such as patches in the aeronautical sector. Furthermore, sustainability has a
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relevant role in any current decision and thermo-set reinforced parts cannot be recycled
and they are difficult to be treated. All this generating a huge amount of waste that
cannot be post-processed. For all these reasons the industry is moving towards different
technologies characterized by similar performances without being affected by the problem
cited above. Even if some alternatives are now possible, the aerospace industry has an
inertia that is difficult to be stopped and inver. The Technology Readiness Level (TRL)
of a process or material is strictly connected to the heritage of previous cases. Many years
and experiments are required for new technology to be presented to the general public.
Thermoplastic composites are based on thermoplastic matrix and in most cases reinforced
with glass or carbon fibers. Because they use a thermoplastic matrix, these materials are
not chemically unstable. A thermoplastic resin, often known as a thermosoft plastic,
is any plastic polymer substance that becomes flexible or moldable at a high tempera-
ture and hardens when cooled [3]. The most used high-performance thermoplastic resin
used in structural applications are polyetheretherketone (PEEK), Polyetherketoneketone
(PEKK), that will be the main character of this thesis, and Polyphenylene sulfide (PPS).
The processing temperature, handling, and storage requirements of the two materials
varies substantially. Temperatures ranging from ambient temperature to 150°C are used
to produce thermosets. In most cases, they are "set" and treated in an autoclave. The
curing period might last up to 12 hours. However, thermosets must be cooled before
curing to avoid resin advancement and retain mechanical characteristics. They typically
have a shelf life of around 12 months from prepreg manufacturing through part comple-
tion. Furthermore, they cannot be remelted, remoulded, or recycled after they have been
cured. The production of thermoplastic prepregs and finished thermoplastic components
is often more challenging. They require increased processing temperatures of 320°C or
more. However, autoclave curing is not usually required. The fundamental benefit of
thermoplastics above thermosets is that they have an infinite storage life at ambient tem-
perature prior to curing and do not necessitate refrigeration. Additionally, thermoplastics
may be recycled. They may be remelted and rebuilt after curing, providing flexibility and
sustainability benefits.

1.2. Thermo-plastic structural applications

These composites materials have not used yet in primary structure, but thanks to the
previously mentioned characteristics the use will grow in the next few years in particular
in the European market as presented in Figure 1.2.
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Figure 1.2: Market overview.

In this moment the main applications are in secondary structures such as the Airbus’s
leading edge of the A300-series.

1.3. Study case

In this thesis, it will be presented a study concerning the numerical and experimental char-
acterization of APC(PEKK-FC)/S2 laminates produced with a hot-press process. This
material is commercially available since 2017 but it has not been characterized completely
[4]. In particular, it has been developed a numerical optimization process to determine
the fracture toughness of uni-directional laminates in a static environment, and a study
regarding the fatigue process.
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Delamination is one of the leading failure root causes of fiber-reinforced composites. De-
lamination consists in the separation between two or more plies during a particular load
case. This can happen during all the life of a particular component, starting from the
manufacturing process, due to residual stresses or manufacturing errors, until the service
itself, in which the part is subjected to various types of load of various nature. Even if
fiber-reinforced composites have great performances in the prescribed design stress direc-
tion, thanks to the possibility of arranging the ply direction, they perform poorly in out
of design conditions,because of low mechanical properties of the matrix. Delamination
takes place because the interlaminar strength is low and it can bear only low-intensity
phenomena.

2.1. Literature review

FRC’s multilayer, non-homogeneous, and orthotropic body can undergo a variety of frac-
ture modes, including matrix cracking. This form of crack is the first typically fracture
mechanism to arise and can aid in the occurrence of subsequent modes of fracture. Fi-
bre matrix debonding occurs when the connection between the matrix and the fibre is
disrupted, resulting in a drop in material strength. Fibre breaking is the most common
fracture mechanism in FRCs: fibres are the elements that carry the weight and the rupture
usually results in a significant loss in load bearing capability, if not an outright failure.
Delamination occurs with the contact between two laminae breaks, caused for example
by an excessive stress concentration near the interface or manufacturing flaws.

2.1.1. Origin of delamination

The technical reasons of delamination, according to Pagano and Schoeppner [5], can be
divided into two groups. Delamination owing to curved parts, such as curved sections,
tubular segments, cylinders and spheres, and pressurised containers, is included in the
first category. Normal and shear loads at the interface between two adjacent plies can
cause loss of adhesion and the development of an interlaminar fracture in any of these
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circumstances.
The second group comprises sudden changes in section, such as ply drop-offs, couplings
between flexural reinforcement and thin plates, open edges, and joined and bolted joints.
Temperature and moisture impacts might be included as a third category. The variation in
thermal coeffis AQ cients of reinforcement and the matrix causes differential contractions
between plies during the laminate curing process. These unequal contractions’ residual
stresses might be a cause of delamination [6]. Similarly, the variable expansion of the
laminate plies during moisture absorption might be a source of delamination [7]. Delam-
ination can also occur during the production stages as result of matrix shrinkage during
curing or the creation of resin-rich patches as a result of improper plying methods. Delam-
ination can occur during service in a variety of situations, such as transverse concentrated
stresses induced by low velocity collisions. Delamination in composites constructions is
frequently caused by impact. Structural damage in the boundary between neighboring
plies as a result of collision, the dropping of a tool while manufacture, mounting, or fixing,
or ballistic hits in military aircraft or buildings can all cause interlaminar fractures.

2.1.2. Types of delamination

Both internal and near-surface delaminations might be taken into consideration, according
to Bolotin [8][9]. Internal delamination can result from the interaction of matrix fractures
and ply interfaces in the inner ply interfaces of the laminate. This form of delamination
frequently manifests as transverse matrix cracks in plies that are orthogonal to the tensile
force. Composite constructions have much lower load capacities as a result of internal
delamination. The overall flexural behavior of the laminate is severely impacted, especially
when compression stresses are applied, as schematically depicted in Figure 2.1. Even
though delamination divides the laminate into two pieces, the deformation of one half of
the laminate interacts with the other. As a result of this interaction, both sections of the
laminate may deflect similarly.



2| Composites delamination 7

Figure 2.1: Internal delamination. Fig. by Bolotin

Near-surface delaminations, as the name implies, occur near the laminate’s surface and
constitute a more complicated scenario than internal delaminations. The delaminated
part’s deformation is less influenced by the deformation of the remainder of the laminate.
As a result, the near-surface delaminated section does not always follow the remainder
of the laminate’s deformation. As a result, not only must the progression of the near-
surface delamination be considered, but also its local stability. As illustrated in Figure 2.2,
Bolotin[8][9] categorized the various forms of near-surface delamination that might occur
in plate composite components under different stress circumstances. Internal or near-
surface delaminations can spread under static or fatigue pressures after commencement.
In both circumstances, the composite part’s strength and stability to flexural loading are
significantly reduced. Furthermore, because it is difficult to identify during the inspec-
tion, the delamination damage mechanism is very critical for the structural stability of
composite constructions.
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Figure 2.2: Near-surface delamination. Fig. by Bolotin

The near-surface categories specified by Bolotin can be further divided by the nature of
the fail, which can be provoked by tension, in both compression and extension, and due
to buckling, which can be present at the edge of the laminate or within it.
The establishment of a damage zone ahead of the crack tip precedes the formation of an in-
terlaminar crack at the microscopic level. The size and shape of the deformation/damage
zone are seen to be very varied, depending on both resin toughness and stress condition.
The classical classification of the fracture modes is still present in delamination, as re-
ported by Irwin [10]. Delamination fracture can occur in three modes: opening or peel
mode (mode I), forward sliding shear mode (mode II), and ripping mode (mode III). The
damage zone ahead of the fracture tip is higher for mode II or mode III loading than for
mode I loading. This difference is due to a substantially slower decrease of the stress held
forward of the tip of the crack for shear modes of loading Figure 2.3.
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Figure 2.3: Delamination modes

For mode I loading in brittle systems, the zone ahead of the crack tip contains microcracks
whose coalescence and growth results in crack advance. Sometimes,crack advance occurs
by fibre-matrix debonding before microcrack coalescence occurs. When debonding takes
place, fibre bridging and fiber breakage are observed. For ductile systems, plastic defor-
mation around the crack tip precedes crack advance. Crack advance generally occurs by
ductile tearing, but crack advance by interfacial debonding was also commonly observed
in composites made with more ductile resins [8]. Shear modes, modes II and III, of quasi-
brittle systems occur in a unique manner. Microcracks form a significant distance ahead
of the crack tip, at a 45o angle to the ply plane. These fissures spread until they reach
the fibres that hold the resin-rich area between plies together. It appears that the breaks
in the resin occasionally stop short of the next visible fiber. However, there are fibers
slightly above or below the surface that seem to be responsible for stopping the growth
of these micro-cracks. Micro-crack coalescence is essential for macro-crack advancement.
This agglomerate typically happens at the interface between fiber and matrix, producing
the appearance of a corrugated roof as well as the production of "hackles" in the resin
between fibers. Griffith [11] presented the energy release rate to characterise fracture
based on the theory of energy conservation. The reduction in the total potential energy
per unit area of crack expansion is described as the energy release rate.

G = −1

b

dU
da

(2.1)
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2.2. Experimental campaign

Each material needs a specific study and a test campaign in order to obtain a clearer
understanding on the behaviour of it in some prefixed circumstances. Testes are needed
to characterize the property of the material, even if the test set-up is not representative of
a real situation. As previously mentioned, delamination appears in three different modes,
however the pure modes are only an idealization. A pure mode I delamination does not
appear in any real application case, instead every fracture is always a mixed one. In some
situation one mode could be predominant but a mixing part would be in any case present.
Although the previous sentence is correct, the mixed mode is difficult to be studied, and it
requires necessarely a preliminary study on the pure delamination modes. Once the pure
modes are characterized it is possible to study how the two effects combine in a mixed
mode case. in this section it is presented the experimental campaign conducted in the
Aerospace Polimi’s laboratory for the mode i an mode II charaterization of the PEKK
unidirectional laminate.

2.3. Double cantilever beam

The double cantilever beam is the most used experimental method to evaluate the mode
I fracture toughness. In this particular case, it is used to study the interlaminar fracture
toughness of a unidirectional laminate. The experimental setup exploited is coherent with
the ASTM standard [12].

Figure 2.4: DCB test configuration

The unidirectional laminate has been produced with an insert in the middle of the plies.
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This insert is used to have a pre-crack in the middle of the laminate. The pre-crack is
the starting point of the delamination, from the end of the pre-crack the front crack will
develop and continue on the interlaminar matrix. The laminate is then composed by an
undamaged part, in which the plies are all bonded together and a part in which there is
a separation between plies in the middle of the laminate. Two flaps, with half of the ply
of the entire laminate each, compose the damage part. These two sub-parts are free to
bend.
The dimension of the specimen is reported in Table 2.1.

Parameters Unit Value

Arm height mm 1.91

Length mm 140

Width mm 21.89

Pre-crack mm 48

N o of ply [−] 32

Table 2.1: DCB specimen geometry.

In the test configuration the two beams are glued with two hinges that are attached to
the tensile testing machine. the hinges are then gradually separated, depending on the
testing machine the separation can happen in different ways, in the considered test the
bottom hinge remain fixed while the other moves upwards. The tensile testing is capable
of control how the hinge moves upward, so the increment of deflection rate, and it records
the load needed to obtain such separation at each moment. The beginning of the test is
reported in Figure 2.5.
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Figure 2.5: DCB test beginning.

The test procedure requires a low increment of the separation between the two hinges.
This precaution helps to avoid the contamination induced by the high speed degradation.
The presence of a fast dynamics alters the response of the matrix. The photo above has
been taken with a camera placed right in front of the test specimen. The camera has been
set to take a picture every 5 seconds. The images give information regarding both the
status of the phenomena observed, but also, thanks to the scale written on the specimen’s
side, to detect the position of the front crack respect to the pre-crack.
The data retrieved by the test are the load, displacement and crack length at each time
step. From these information it is possible to compute the real objective of the experiment,
the fracture toughness This property cannot be detected directly by classical methods,
but requires a further computation combining the retrieved parameters.
Various methods, for the computation of the fracture toughness, exist. Depending on the
hypothesis considered the results slightly change between procedures. In fact there are
models that overestimate the fracture toughness, due to a low prediction on the elastic
response of the laminate.

The first data reduction method is the modified beam theory [13]. The expression of the
energy release rate for this method is reported in Equation 2.4.

GMBT =
3Pδ

2ba
(2.2)
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Where P is the load applied, δ is the displacement at the load point, a is the crack
opening, and b is the specimen width. This is one of the most conservative methods
that overestimate fracture toughness. This small excess in the prediction is due to the
abstraction used by the method, in fact, this result is obtained considering the two parts
of the laminate as 2 beams, so the energy release rate is the energy required to separate
the two beams. The result of this computation on 4 different specimens is reviewed in
Figure 2.6.
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Figure 2.6: Mixed beam theory energy release rate

The second method used is compliance calibration, based on Berry [14]. It makes a least
squares plot of log(δi/Pi) vs log(ai) based on the visually detected delamination starting
values and all propagation data. Draw a line through the data to achieve the greatest
least-squares fit. Then calculate n as the slope of the line in the log(C) − log(a) graph
with the compliance C defined as C = δi/Pi .

GCC =
nPδ

2ba
(2.3)

The results of the model for the considered specimen is reported in Figure 2.7.

The previously presented method can be corrected as proposed by Kageyama [15], as
reported in Equation 2.4.
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Figure 2.7: Compliance calibration theory energy release rate

GMCC =
3P 2C

2
3

2A1bh
(2.4)

The most important output of the experimental campaign comes directly from the visual
inspection of the test as presented in Figure 2.8.

During the mode I traction the fiber-bridging phenomena occurred, this experimental
artifact modify the response of the specimen and drastically change the properties of the
material. Fiber bridging has historically been ascribed to next-layer fiber nesting and
weak interfaces as observed by Johnson [16], Crews [17] and Sakai [18]. This mechanism
is more visible in a zoomed image such as Figure 2.9.

Fiber-bridging induces an alteration of the fracture toughness during the experiment. In
fact, it enhances the mechanical properties of the laminate as it is possible to see in
Figure 2.7. The fracture toughness increases during the crack growth, and it arrives at a
constant value when the process zone is fully developed.

2.4. End notched flexure

The second test performed during the experimental campaign is the end-notched flexure.
The configuration is the one described by the ASTM in [19]. This method aims to find the
fracture toughness for pure mode II delamination. In this case, it is expected a common
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Figure 2.8: Final configuration.

Figure 2.9: Experimental fiber bridging
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material response. In fact, the delamination in the ENF happens suddenly, without the
formation of the fiber bridging, the contact plies just slide one above each other. The
configuration of the test is resumed in Figure 2.10.

Figure 2.10: ENF test configuration

The specimen has the same characteristics as the DCB one, the only difference is that this
one does not require attachments, such as the hinges in the previous configuration. The
pre-cracked laminate is supported by two steel cylinders with a standardized diameter and
a third cylinder is used to apply a controlled displacement load. The position of the load
is changed throughout the test. At first, the compliance of the specimen is computed by
two loading-unloading cycles, the load point is placed at 20 and 30 mm. The experimental
results are reported in Figure 2.11.
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Figure 2.11: End notched flexure experimental tests

The ENF experimental campaign is not been a success, in fact, the crack propagation
happens suddenly. This jump is represented in the load-displacement curve, it manifests
a problem in the specimen creation or in the test configuration that has not been detected.
This issue has not been solved and it will be a matter of interest in further developments.
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delamination

Differently from other study cases in the numerical analysis of fractures, delamination is
a phenomenon that occurs in a prescribed direction. From a mesoscale point of view, this
sentence is not correct, in fact, the propagation of delamination does not follow a precise
fracture plane but it is influenced by many properties of the materials such as defects of any
kind, this causes a propagation that has some fluctuation. This fluctuation is considered
to contribute in a negligible manner to the large-scale phenomena studied, it could be more
interesting for a mesoscale analysis. Historically the numerical assessment of delamination
has been conducted with two different approaches based on different assumptions, the first
is based on fracture mechanics while the second is on damage evolution. Traditionally
these two categories have been exploited the most, however different numerical techniques
such as the extended finite element method [20] have been used in this application. These
tries are more based on a numerical experiment fashion, in fact, they are fitted the most
for problems in which the direction of propagation is a matter of interest.

3.1. Review of numerical methods

3.1.1. Mechanical Description of Discontinuous Deformation

Considering a general continuum body, that has a boundary part with a constrained
displacement and applied distributed force and an already existing crack as defined in
Figure 3.1 [21].
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Figure 3.1: Body with discontinuity

In the infinitesimal small strain regime, the governing equation of the entire body except
for the crack region is described as [22] and it is reported in Equation 3.1.

∇σ = f in Ω (3.1)

In the considered case the governing equation shall be flanked by a series of boundary
conditions that allow the solution of the differential problem. In the region ΓF the body
is subjected to a load, in Γu to a known displacement, and in the crack part Γc on both
sides of the aperture, Γ+

c and Γ−
c , the traction caused by the crack. The conditions are

formalised in Equation 3.2.



σ · n = F on ΓF

u = ū on Γu

t+ = σ · n+ = t on Γ+
c

t− = σ · n− = t on Γ−
c

(3.2)

In the previously mentioned infinitesimal small strain and displacement regime it is as-
sumed an elastic response of the material surrounding the crack. It is then defined a
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constitutive tensor C and the strain tensor ε.

σ = C : ε ( in Ω\Γc) ,

ε = ε(u) =

[
∇u+ (∇u)T

]
2

( in Ω\Γc)
(3.3)

The displacement must be one of the kinematically permissible displacements listed in
Equation 3.4.

u ∈ U = {v ∈ V : v = 0 on Γu} (3.4)

In many computational approaches to differential problems, it is applied the principle of
virtual work. A weak formulation of the problem permits obtaining in a single equation
the governing equation and all the boundary conditions. The integral form is then easier
to be solved with approaches such as the Ritz[23] and FEM methods [24]. In this load
case, the variational principle is written in Equation 3.5 as suggested in [25] [26].∫

Ω

σ : ε(v)dΩ +

∫
Γc

t ·w(v)dΓ =

∫
ΓF

F · vdΓ ∀v ∈ U (3.5)

The variational principle is then rearranged in order to take into consideration the nu-
merical approximations involved by the method selected. Depending on the approach
selected to model the crack however the variational principle can be applied differently.
In this case it is presented the FEM approach with cohesive elements, that will be re-
viewed in subsection 3.1.3. The new formulation as proposed by Spring [27] is reported
in Equation 3.6. [∫

Ω

BTCBdΩ +

∫
Γc

NT ∂t

∂w
NdΓc

]
u =

∫
Γ

FdΓ (3.6)

Where N is the shape functions tensor and B is the strain displacement matrix.

3.1.2. Virtual crack closure technique

One of the most popular methods for predicting fracture propagation is the virtual crack
closure method[28]. This method is based on Irwin’s hypothesis [29] that, when a crack
grows just a little bit, the energy produced in the process is equivalent to the work
needed to shrink the crack back to its original size. The break will spread if the energy
released per unit area is greater than or equal to the critical value, Gc. The nodal forces
and displacements derived from the solution of a finite element model may be used to
calculate the mode I, mode II, and mode III energy release rates, GI , GII , and GIII ,
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respectively [30].
Considering a finite model such as the one represented in Figure 3.2, where non-filled
node is the crack tip, u,v and w are the horizontal,vertical and out-of-plane displacement,
in the x− y − z directions.

Figure 3.2: VCCT scheme

The energy released during the crack propagation is equal to the work required by the
nodal forces to close the gap as reported in Equation 3.7.

GI =
1

2b∆a
F y
cd(vc − vd) GII =

1

2b∆a
F x
cd(uc − ud) GIII =

1

2b∆a
F z
cd(wc − wd)

(3.7)

where F k
ij is the nodal force between nodes i and j in the k direction. However, utilizing

the assumption put out by Rybicki and Kanninen [31], the analysis may be simplified.
They stated that the values of the nodal forces in Equation 3.7 can be substituted by the
equivalent components of nodal forces Fef in the three directions.
Once the nodal forces are computed the three components of the energy released are
computed and summed together to obtain GT .

GT = GI +GII +GIII (3.8)

The model predicts crack propagation when the energy release computed is equivalent or
greater than the fracture toughness of the material GT ≥ Gc.
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The VCCT method is useful because it deals with energy rather than stress, this is a huge
advantage because it easier to be combined with experimental data. One of the main
drawbacks of this approach is related to the self-similar assumption on the computation
of the nodal forces, this method requires an already existing crack to work with, so it is
not suitable for un-cracked bodies and short crack parts. Moreover this method is the
mesh dependent, and it requires a extreme refined one to obtain fair results, there is not
a modular response of the interface but only an abrupt change in the configuration.

3.1.3. Cohesive zone modeling

In the field of damage evolution modeling the most historically important progress has
been obtained through the theorization of the cohesive zone. Cohesive zone modeling
is a numerical artifact that aims to model the degradation of material during the crack
propagation phase. The main reason of the born of this numerical method has been
the need to obtain a clear representation of the high non-linearities experimented on
the crack regions during crack propagation. This method has been exploited in various
sectors interested in fracture mechanics, for example, to underline the wideness both in
the frame of delamination for fiber reinforced polymers and for localized degradation in
concrete for structural application. The first conceptualization of this method has been
proposed by Dugdale [32], who understood that in crack propagation phenomena the
stresses are limited by the yield stress and then it begins a plastic phase. Barembratt
[33] subsequently, studying the equilibrium of elastic cracked bodies, firstly introduced
the concept of the cohesive zone as forces generated at the molecular level that granted
an intensification of stresses in the crack tip location. Finally, Hilderborg [34] stated
the equilibrium problem differently moving from the molecular forces to tensile stresses,
moreover from a static point of view it dealt also with crack evolution and cracks onset,
Figure 3.3.

Cohesive zone modeling is based on the introduction on the material of interest of fictitious
material, used only in the crack propagation path location, that has different properties
with respect to the one of interest. This added material shall be used in a part of the nu-
merical assessment characterized by a negligible thickness or in some cases, with numerical
addition to avoiding singularities, of null thickness. This new material has a particular
constitutive law based on a traction-separation relationship. This numerical model fits
particularly well in the finite element (FE) context, due to the flexibility of FE respect
to material description. Due to the easy implementation of the model, in particular in
the commercial software environment it has been implanted in a various manners. In
fact, normally cohesive law can be applied to standard iso-parametric elements. These
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Figure 3.3: Hillerborh’s cohesive model

elements behave such as a planar stress or strain element with a variable matrix stiffness
that varies depending on the elongation of the element itself, so the implementation needs
only the characterization of the constitutive law of a fictitious material. This last aspect
links cohesive elements to plasticization phenomena due to the non-linearities present in
the material description. From now on it will be referred to as ‘cohesive law’ as the
constitutive relationship that links elongation and stresses.

3.1.4. Cohesive constitutive law

The constitutive law relates the displacement jump between the two surfaces, Γ+ and Γ−

to the interface traction. The relative displacement jump is defined as Equation 3.9 and
the element representation in Figure 3.4.

Figure 3.4: Cohesive element nodes jump
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δrel(ξ, η) =
4∑

i=1

Ni(ξ, η) (ui+4 − ui) (3.9)

Once the relative displacement is transformed in local coordinates by means of a rota-
tion, δ = T T δrel, It is possible to formally express the constitutive laws in the material
discontinuity as Equation 3.10.

t = t̃(δ) (3.10)

Depending on the application different models have been proposed, some of them are
illustrated in Figure 3.5.

Figure 3.5: Cohesive law models
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Besides the already mentioned Dugdale and Barenblatt, Tvergaard and Hutchinson pro-
posed a trapezoidal law [35], then slightly modified by Cui et all [36], in the field of
elastoplastic materials and in the study of adhesive joints. Xu and Needleman [37] pro-
posed an exponential model, which considered the mixed mode effect too. Geubelle [38]
and Turon [39] developed bi-linear law. From now on it will be considered the cohesive
law as a traction separation law (TSL) in particular a damage law. The major emphasis
is reserved for the evolution of the damage as a function of the element separation. The
traction separation law in the field of damage evolution can be written as Equation 3.11.

 tn

ts1

ts2

 =

I−

D1 0 0

0 D2 0

0 0 D3




k1 0 0

0 k2 0

0 0 k3


δ1δ2
δ3

 (3.11)

That can be rearranged in a compact form as Equation 3.12.

t = (I−D(δ))Kδ (3.12)

The K is the matrix of the stiffness parameter, in the 3 direction, of the cohesive element
before the onset of the damage. Depending on the material analyzed and the purpose
of the analysis the 3 parameters can present the same characteristics both in the normal
and shear directions, or they can be characterized by a normal to shear stiffness ratio.

3.1.5. Bi-linear cohesive law

The easiest cohesive law is a perfectly rigid element endowed with a linear damage in-
crease. This method allows considering the element only for its decrement in stiffness,
starting from an infinite one. The law is represented in Figure 3.6. This relationship how-
ever shares with infinitely rigid elements some computational issues and it causes several
convergence problems during simple analysis. In many FE models of real structure even
if theoretically speaking a rigid connection shall be needed a high modulus spring is in-
troduced to speed up the computation and smooth the analysis. Usually, a high modulus
spring that substitutes a rigid link it is called penalty stiffness.

The same approach is applied in this field where a high elastic response is added before
the start of damage begins. This penalty term gives the origin to the classical ‘bi-linear’
cohesive law represented in Figure 3.7. There is an elastic response until a certain sepa-
ration and then the degradation starts. The separation at which the degradation starts
has a small magnitude compared to the rest of the cohesive law and due to the limited
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Figure 3.6: Rigid cohesive law

maximum traction experimented by the element as expected the elastic modulus of the
first part is of high order, in literature, such as Dogan [40] and [41],it is widely referred
to 104MPa or even more. As in the first case after the end of the linear damage evolu-
tion the traction response of the element is null, the first point of this zone, the ultimate
degradation of the element determines the end of life of the element itself, after that in
fact the element reaches the complete degradation and the model can eliminate it.

Different implementations can lead to the same law, in this case, is selected the method
as represented in Figure 3.7. The considered approach is only valid for the pure mode
I crack. The end of the elastic response part is dictated by a maximum strength σ0 at
a separation δ0 and the end of life of the element is indicated through the maximum
separation δf .


D = 0 if δ ≤ δ0

D =
δf (δ − δ0)

δ (δf − δ0)
if δ0 < δ < δf

D = 1 if δ ≥ δf

(3.13)

From zero through the fracture opening, the energy absorbed per unit area of the crack
is in Equation 3.14.

G =

∫ δ∗

0

σdδ (3.14)
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Figure 3.7: Bi-linear cohesive law

The surface area under the traction-separation curve is equivalent to this energy. When
the CZM is fully developed, the cohesive zone dissipates its maximum amount of energy.
At that point, the stress begins at 0 at the tip and steadily decreases to 0 at δf . In that
situation, the energy is equal to the entire region under the traction-separation law, and
new traction-free crack surfaces are produced for displacements greater than δf . This
energy is equivalent to the material’s crucial Energy release rate Gc. Figure 3.8 shows
two distinct situations at two different separation conditions.

Figure 3.8: G function on TSL.

For mixed mode crack propagation, it is required a refined analysis of the crack onset and
damage propagation, which can be faced with a separation combination such as Turon or
Benzeggagh [39] [42], or through a potential-based model such as Park[43][44].

This model is suitable in particular in the case of brittle fracture, this condition is highly
representative for many applications, such as concrete but also for carbon-reinforced
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Figure 3.9: Mixed mode cohesive zone model

thermo-setting composites. This model is used for materials characterized by an R-curve
that has a shape similar to Figure 3.10. However, this condition is not representative of
the phenomena observed so a different model shall be considered.

Figure 3.10: Constant R-curve
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3.2. Numerical analysis of a tri-linear cohesive law

In the chapter 2 the evolution of the fracture toughness obtained during the experimental
campaign has been analyzed. During the delamination, the laminate is subjected to the
phenomenon of fiber bridging, which determines an increase in fracture toughness during
the test. The R curve does not have the shape typical of common composites such as
Figure 3.10 but it has an increasing behavior in the first part and then it reaches a steady
state value Figure 3.11. Many models have been proposed to fill the gap left by the bi-

Figure 3.11: Variable R-curve

linear model in the description of the R curve, one of the most interesting is the tri-linear
one which is just a continuation of the bilinear model in the increasing fracture toughness
domain.

3.2.1. Bi-linear model issues

First, it is important to understand the bi-linear behavior to better qualify the objectives
of a proposed cohesive law. It is used as a starting point the built-in Abaqus bi-linear
cohesive law as a reference. The definition used is based on fracture toughness, so the
area under the traction separation law. In the previous sections, the fracture toughness
behavior has been formulated. In the experimental test it is possible to distinguish an
initial and a steady state fracture toughness. The comparison, reported below, uses the
same formulation of the cohesive except for the fracture toughness G. In the first case,
it is considered the fracture toughness equal to the initial one, while in the second it is
taken as the final one. This analysis’s results are reported in Figure 3.12.

In this figure, the load-displacement curves of the two cases are represented. Both the
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Figure 3.12: Bi-linear traction separation results

curves are far from the experimental one, however they catch a different particular of
process. In fact, the lower value fracture toughness gives the beginning of the decreasing
part of the curve, while the higher one the end part. This result explain better the
necessity of a more complex cohesive law for this kind of material.
Another factor to be considered is the process zone of the fracture. Bi-linear models work
fine with material characterized by a brittle behavior, where the crack is well localized
and the process zone has a small extension. The higher fracture toughness process zone,
the bigger one, is represented in Figure 3.13.

The process zone has a length close to 1mm, far from the objective one.
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Figure 3.13: Bi-linear process zone
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3.2.2. Tri-linear cohesive law

The conventional three-linear CZM suggested by Davila [45] and Heidari [46] is depicted
in Figure 3.14. The two bilinear CZMs are supposed to peak at the same displacement
jump δ0. A three-linear CZM is produced by adding two arbitrary bi-linear CZMs that
describe bridging phenomena. The blue line is a bilinear CZM that characterizes the quasi-
brittle matrix fracture or microcracking development and has a small critical opening
displacement (δa). The red line indicates a bilinear CZM that better describes fiber
bridging by having a greater critical opening distance δf . The initial interfacial stiffness K,
the interfacial strength, and the fracture toughness G are the three crucial characteristics
that each bilinear CZM includes.

Figure 3.14: First version tri-linear TSL

The two bilinear laws are presented with proportional characteristic parameters, one for
the maximum strength and one for the fracture toughness. The peak values of the two laws
are respectively t10 = nt0 and t20 = (1−n)t0. While for the fracture toughness the relations
are Gini = mGprop and Gbri = (1−m)Gprop. The m and n parameters are called fracture
toughness ratio and the strength ratio and can be defined as Equation 3.15,Equation 3.16.

m =
Gini

Gprop

(3.15)
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n =
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γ
m

lcz

Ez ·Gprop
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m

n
>

1−m

1− n

(3.16)

Where Ez is the laminate’s Young modulus in the z direction,lcz is the length of the pro-
cess zone and γ is an experimental parameter that is usually equivalent to γ = 0.884lcz.
Different studies have been conducted on the selection of the parameters of the traditional
cohesive law. Airoldi and Davila [47] have used two procedures to identify the parame-
ters, one through an experimental procedure looking at the R-curve and one numerical
approach with the minimization of the error between the FEM and experimental load-
displacement curves. A semi-analytical procedure for the estimation of the parameters
has been proposed by Gutkin et al. [48]. The maximum stress in the fiber bridging region
of the TSL can be computed as Equation 3.17.

tFB = t0(1− n)

(
1− 1− n

n
· m

1−m

)
(3.17)

For simulating delamination propagation with large-scale fiber bridging, the CZM gen-
erated through superposition is effective. However, it is presumed that the two bi-linear
law peak at the exact same displacement jump 0. The actual microscopic process of
delamination failure does not support this notion.

In order to obtain a TSL that is more compliant with the experimental phenomena, it
is used the law implemented by Gong et al. [49]. The reviewed three-linear CZM is
depicted in Figure 3.15. The red and blue lines indicate bilinear CZMs that, respectively,
characterize the quasi-brittle matrix fracture and the fiber bridging Both the interface
and the fibers are subject to tensile tension at the beginning. The fibers, however, are
unable to span the delamination faces because they are not pulled away from the matrix.
The interfacial traction is dominating and significantly greater than the bridging adhesion
in this situation. The interface rapidly deteriorates with a diminishing load capability as
the crack opening displacement rises. The bridging fibers are enveloped by the matrix
and the bridging tension is rather small because the complete delamination has not yet
occurred. Only when the two faces are separated the fibers detach from the matrix and
originate the bridging. There is an onset of a new interface with a new tensile strength
only after the matrix detachment. When the two bridged surfaces reach a determined
separation the tensile resistance of the fibers is overcome and no traction remains. There
is a clear separation between the two moments, during the first stage the matrix opposes
to the separation and it occurs the classic brittle resistance then there is a second stage
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in which the matrix is no more present but some fibers remain attached to the opposite
surface and generate a second-hand traction. The two phenomena are disconnected, this
consideration is omitted in the previously mentioned tri-linear cohesive law, where the two
bilinear super-imposed TSL peak at the same displacement. In this method, the peak of
the fibers strength is moved to the moment in which the matrix completely fails.

Figure 3.15: Second version version tri-linear TSL

The TSL for the mode I tensile response can be written as Equation 3.18.

t = (1− d)K0δ (3.18)

The damage function is formalized as a piece-wise defined function, characterized in each
part by a slope. The damage function is written in Equation 3.19.

d =



0 δ ≤ δ0(
1− KAB

K0

)(
1− δ0

δ

)
δ0 < δ ≤ δf1

1− KBC

K0

(
1− δf

δ

)
δf1 < δ ≤ δf

1 δ > δf

(3.19)

Where the slope of segments are delineated in Equation 3.20.
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K0A = K1 +K2

KAB =
tb − (t0 +K2δ0)

tfb − t0

KBC =
tb

δf1 − δf

(3.20)

3.2.3. Algorithm implementation

The constitutive law discussed in the previous section is implemented in the commercial
FEM software ABAQUS [50]. Many elements for both structural and fluid dynamics
applications are implemented in Abaqus. In this field there is also the possibility to use
cohesive elements implemented both as 2D-3D elements but also there is the possibility
to use cohesive law as surface contact. In the mentioned platform two cohesive model are
already present, the bi-linear and the exponential ones. The bilinear law will be used in
the next sections in order to discuss the advantages found by the implementation used.
One of the main advantages of the software, in the academic environment, is the possibility
to use user-defined material law. The user subroutine is called UMAT, where the user can
implement the subroutine written in FORTRAN programming language [51]. The UMAT
subroutine is called during each iteration of the FE analysis in all the integration points
considered. The subroutine requires the definition of some parameters at the beginning
of the analysis, that are not updated during the iterations. At each step, the routine
has as input parameters, besides the UMAT properties, the strain, and stresses at the
previous step plus the strain increment of the iteration step. The routine can update some
parameters called state variables during the process, these state variables are both an input
for the subsequent step but also a user-visible output. The main outputs of the subroutine
are the stresses increment and the tangent stiffness matrix required for the solution of the
variational principle Equation 3.5. The flow chart of the discussed application is reported
in Figure 3.16. Due to the high non-linearity of the problem, the analysis of this cohesive
law is subjected to severe convergence problems. Different solutions can be found to curb
the phenomena, for example, it is required a fine mesh and the use of small integration
steps. It is also implemented in the subroutine a viscous regularization that allows the
smoothness of the response and a higher convergence rate during the analysis that, if used
with the correct parameters, does not influence the goodness of the results. It is used a
Duvaut-Lions viscous regularization technique [52], already implemented in the field of
cohesive elements by Caggiano [53] and Viñuela [54]. This regularization works with the
damage parameter and its increment from the previous step. The regularized damaged
variable formula is reported in Equation 3.21.



34 3| Numerical approaches to delamination

Start Increment

Start of the iteration

Calculate ∆ε,δ Enter UMAT UMAT Parameters

δ > δf

Erase element δ > δ0

Compute d d = 0

Compute t, δt
δ∆ε

Update state variables

Exit UMAT

Define Loads δP
δx

Compute stiffness matrix

Solve equilibrium equation

Residual < tol

End

NoYes

No Yes

Yes

No

Decrease increment

Figure 3.16: Static UMAT implementation.
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Figure 3.17: 1D test configuration

dv =

(
µ

µ+∆time

)
dn +

(
∆time

µ+∆time

)
dn+1 (3.21)

3.2.4. 1D FEM test

The first analysis to be carried out when dealing with a new UMAT is the 1D approach.
This analysis is taken into consideration a single element that is stretched in order to
see the response in correspondence to a prescribed displacement. In Figure 3.17 it is
represented the 1D analysis configuration.

The single element, in this case, is presented in a 2D configuration, the same could be
replicated also the 3D environment. The bottom two nodes are fixed while at the upper
two is applied a vertical displacement. The magnitude of the displacement is equal to
the maximum separation expected for the cohesive law. If the UMAT implementation is
correct the traction separation law obtained is the same as the one prescribed theoretically.
It is retrieved the displacement and the stress in the vertical direction. The two arrays
combined together are reviewed in Figure 3.18.

The UMAT after this brief analysis is considered validated.

3.2.5. 3D FEM analysis

In this section, the FEM model of the DCB test is built in ABAQUS. After a small pre-
sentation of the model the results of the analysis conducted with the tri-linear cohesive
law presented are reported.
The model has a simple shape and it is composed of two laminae connected by a layer
of cohesive elements. The implementation uses only two typologies of elements, the com-
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Figure 3.18: 1D traction separation

Part Element type Number

Laminate Plane Stress

Interlaminar Cohesive elements

Table 3.1: Tri-linear cohesive optimization parameters.

posites are modeled with plane stress elements endowed with an orthotropic material
definition and the cohesive elements. The geometry is taken equal to the one presented
in chapter 2, the only difference is the cohesive layer with a height of 0.001 , a measure
that does not alter the behavior. The Abaqus’s elements used are reviewed in Table 3.1.

In Figure 3.19 the model with the boundary conditions is represented. As it is possible
to see there is different element popularity between the first part of the laminates and
the second, this has been done in order to increase the number of elements the cohesive
region. Increasing the number of elements in the crack direction allows the system to have
fewer distorted elements during the delamination analysis.
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Figure 3.19: 3D FEM mesh and BC

The encastre constraint on the bottom cantilever is directly applied at an element level
while the upper part is constrained through a rigid element to a reference point. The
displacement is then applied to the reference point, this has been done to retrieve easier
the reaction force committed by the specimen against the separation. A displacement of
40mm is applied, the same as to the experimental test, this moving constraint is applied
with a ramp law, in order to have a progressive convergence during the non-linear analysis.

The nine engineering constants required to describe an orthotropic material are reported
in Table 3.2. The laminate has been produced with unidirectional plies, so the parameters
obtained are the one of a single ply.

The parameter of the cohesive elements are the one discussed in the previous section, and
they are summarized in Table 3.3.

The displacement map at the end of the test is pictured in Figure 3.20.

The displacement contour plot is compliant with the experimental one. The part of the
laminate interested in which the delamination occurs remain parallel to the floor, only
the two flaps change the disposition. Some modeling approach for the DCB test uses an
rigid element to block the relative motion of the laminate part in contact with the test
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Parameters Unit Value

E11 MPa 13000

E22 MPa 10300

E33 MPa 10300

ν12 − 0.3

ν13 − 0.3

ν23 − 0.3

G12 MPa 5200

G12 MPa 5200

G12 MPa 5200

Table 3.2: PEKK parameters.

Parameters Unit Value

KI MPa/mm 104

KII MPa/mm -

t0 MPa 50

tFB MPa 0.7

Gini kJ/m2 1.0

GSS kJ/m2 1.5

Table 3.3: Cohesive element parameters.

Figure 3.20: 3D displacement results
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Step: j        Frame: 269

Total Time: 13.390625

Figure 3.21: SDV1 beginning

Step: j        Frame: 358

Total Time: 16.207720

Figure 3.22: SDV1 detachment

hinges. This constraint aims to avoid a deflection of last part of the beams. Even if in
this model it has not been added this feature the two beam does not deflect at the end.
The constrained is avoided to introduce a possible source of error due to the excessive
rigidity that increase the numerical weight of he entire system.
One of the main advantage of a cohesive law characterized by a higher maximum sep-
aration δf is the possibility to model the long process zone that is characteristic of the
fiber-bridging phenomena. The length of this region is difficult to be detected from the
experimental measure because it is not possible to understand at which stage of the
degradation of the bridging fibers they end to contribute to the traction. That being
said changing the parameters of the degradation law it is possible to obtain a correct
fiber-bridging process zone.
During the first part of the displacement increasing the degradation of the elements re-
mains almost unaltered, there is only the linear deflection of the beam and the interlaminar
part is barely not interested. Once the deflection starts affecting the interlaminar part
the degradation of the cohesive elements starts showing. In Figure 3.21 the beginning of
the degradation of the cohesive layer is pictured.

The picture represents the degradation parameter D on the cohesive elements, right after
the end of the linear part of the load-displacement curve. As already discussed in the
previous sections this moment is highly affected by the magnitude of the initial cohesive
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strength, the greater the value the slower this phenomenon. It represents the toughness
of the matrix itself.
In this image is also possible to see the curve behavior of the degradation, which is more
intense in the middle of the section and less severe at the borders. Even if the deflection
induced by the hinge is the same all over the hinge the boundary effects contribute to
the establishment of this curvature in the process zone region. This phenomenon is much
more visible when the crack propagation as in Figure 3.22.

It is possible to see the process zone at its full development, and the curve boundary is
present both at the crack front and at the detachment part. The detachment of the process
zone from the crack marks the beginning of a new part of the delamination. From the
beginning of the crack establishment to this moment the fracture toughness has increased
due to the increase in the region’s interest by the fiber bridging. The increasing part of
the fracture toughness induces a plateau in the load-displacement curve. The stationarity
of the load in this context can be explained by the increase of the area resisting the
detachment with a parallel degradation of the matrix. However, there is a point at which
the degraded area stops expanding, the new area, which is subjected to delamination, is
equal to the area that reaches the end of life of the cohesive law. Once the process zone
arrives at its maximum extension then there is a decrease in the load, because the arms
become longer the resistance remains the same. As experimentally verified at this point,
in fact, the fracture toughness arrives at a steady state condition. Figure 3.23 shows the
propagation of the crack in the next steps.
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Step: j        Frame: 489

Total Time: 21.016087

Figure 3.23: SDV1 end

The length of the process zone keeps the same shape and the crack propagates at a
constant speed.

3.2.6. Mesh dimension convergence study

One of the main drawbacks of the cohesive model but in general of the finite element
method is mesh dependence. Many studies underline the need of a particular mesh in
order to avoid these issues as Rimoli [55], Harper [56] and Pascuzzo [57]. Rimoli proposes
the progressive split of the elements to achieve an isotropic behavior of the mesh [58] and
Park solved the problem with a dynamic adaptive mesh [59]. In the context of static
analysis and fixed mesh, one possibility is to increase the refinement of the elements in
the fracture process zone. The goodness of finite element analysis, besides the topological
decisions on the model, is strictly related to the mesh size. The shape function of this
method is simple polynomials that in most cases are linear or quadratic depending on
the application. So in order to obtain a more accurate result, the mesh size is decreased,
but a priori it is impossible to determine the ideal element size. For this reason, it is
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common to proceed by trial and error until the mesh size does not influence anymore the
model response. Five analyses have been performed to decide the correct mesh size. Five
models, with progressive refined meshes have been built. The mesh has been refined until
the result of the last two analyses is close enough. Once the convergence is reached it is
selected the element size that grants a good accuracy with a fair computational time. In
Figure 3.24 it is represented the error decrease by increasing the refinement, where the
error is computed as the average difference between the considered model and the most
refined one. It is possible to notice how the last two models even with a less refined mesh
can be a good approximation of the finer one.
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Figure 3.24: Mesh refinement error

One of the main outputs of the analysis is the load-displacement curve. In Figure 3.25 it is
represented this output for the five models and they are compared with the experimental
curve.
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Figure 3.25: Mesh refinement Traction separation

The coarser the mesh the higher the induced numerical stiffness of the model. In fact,
the less refined meshes give a higher value of the reaction force at the moving constraint.
Another important feature is the aliasing in the load decrement. Due to the big dimension
of the elements, when a row of elements is deleted a significant variation in the geometry
and in the stress distribution is induced, the smaller the element the smaller this effect.
A further interesting consideration can be deducted from the observation of the process
zone. The five models process zone at the end of the opening of 40mm is reported in
Figure 3.26.
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Figure 3.26: Process zone for different mesh size



44 3| Numerical approaches to delamination

In order to achieve a correct concave process zone, a reduced element size shall be used.
Even if a finer mesh grants always a better result, the time efficiency is relevant, mainly
because the already present non-linearity of the constitutive law provides a high compu-
tational cost. In order to obtain simulations of feasible duration, it is mandatory to select
a mesh with the right amount of nodes that grants both accuracy and admissible compu-
tational time. In Table 3.4 the error of the five models and their respective computational
times are summarized.

Mesh area [mm2] Average Error [N ] Computational time [s]

4.26 64.11 2507

2.83 23.35 6960

1.29 3.15 19500

0.36 0.24 39300

0.21 95850

Table 3.4: Mesh refinement error and computational time.

The coarser and finer meshes lie at the opposites, the former is fast but completely
inaccurate while the latter requires a huge amount of time. It is selected the mesh area of
0.36mm2 due to the accuracy,the computational time and well-represented process zone.

3.3. Parameters fitting

Even if the cohesive law formulated has a strong relationship with the experimental data a
further step is needed in order to obtain a better fitting between the FEM and experimen-
tal load-displacement curve. In fact, the cohesive law is based on the computation of the
fracture toughness at the beginning and at the end of the experiment, however, the frac-
ture toughness is not directly computed but extrapolated and approximated by various
models. That being said the cohesive law found is just a good first approximation to be
better analyzed. An optimization algorithm is used to find the correct parameters of the
cohesive law that can retrieve the most similar load-displacement curve with respect to the
experimental one. For the parameter fitting purpose, the FEM model is considered as a
black box that given the parameters of the cohesive law returns only the load-displacement
curve at the hinge of the specimen. The FEM analysis however presents a high level of
non-linearity and a high computation cost, from an optimization point of view this shall
be taken into account because it is needed an algorithm capable of obtaining a fair result
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with a low number of function calls. Moreover, the difference function between the FEM
and experimental curve has not a prescribed gradient and a local approximation of the
derivative of the function would require too many function calls that would generate an
infeasible computation time. For all of these reasons, a gradient-free simple algorithm
has been exploited for the computation of the parameters. The Neldel-Mead method has
been selected for this purpose, which is based on an algorithm with a huge heritage and
high reliability without convergence issues. The parameters fitting procedure is applied
both to the bi-linear and tri-linear cohesive law, in order to see how a good parameter
selection can improve the efficiency of the model.

3.3.1. Nelder–Mead method

The Nelder-Mead method is an optimization method developed in the 60s by Nelder and
Mead [60][61]. This method has been highly applied in many computation-related fields,
such as this case for engineering optimization [62]. A stable and efficient implementation
is present in the SciPy library [63]. This method is part of the direct search methods
family because it only evaluates function values and their pattern and it does not require
the derivative of the function. The method works for unconstrained multi-variable non-
linear problems.
The objective of the method is to find the minimum of a function, this is achieved by
an iteration process in which a simplex is modified gradually with the aim of diminishing
the function value at the vertexes of the simplex. A simplex is the simplest spatial
configuration of n − dimensions that can be built with n + 1 vertex in a space of n

dimension, for example in 2D − space the simplex is the triangle, and in the 3D − space

the tetrahedron. At each iteration, a simplex, of n− dimesion in which n is the variable
number, is built. The algorithm is reviewed in Algorithm 3.1.
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Algorithm 3.1 Nelder Mead optimization algorithm
1: Initial simplex construction
2: while Termination test == False do
3: Ordering simplex vertex respect to the function value

fh = maxi fi fs = maxi ̸=h fi fl = mini ̸=h fi

4: Compute the centroid on the best side
c ≡ 1

n

∑
i ̸=h xi

5: Compute reflection point xr and its function value fr

6: if fl ≤ fr < fs then
7: Accept xr

8: else if fr < fl then
9: Expand the simplex compute xe and fe

10: if fe < fr then
11: Accept xe

12: else if fe > fl then
13: Accept xr

14: end if
15: else if fr ≥ fs then
16: Compute the contraction point xc and fc

17: if fc ≥ fr then
18: Accept xc

19: else
20: Shrink the simplex
21: end if
22: end if
23: end while
24: Return best vertex of the final simplex

Different methodologies can be applied to terminate the optimization without spending
a useless amount of computation time. In this analysis, as stop condition is used the
difference between the function values of the simplex vertexes. The iteration process is
quit when this difference is less than a prescribed tolerance as Equation 3.22.

fh − fl ≤ tol (3.22)

The most important part of the algorithm is the transformation of the simplex, by chang-
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ing the transformation procedure different convergence behaviour can be obtained. The
transformations are controlled by four parameters, that are subjected to some constrained
and can be modified in order to achieve a different response of the algorithm. At each step,
it is performed a reflection as reported in Figure 3.27. The reflection point is obtained as
Equation 3.23.

xr ≡ c+ α(c− xh) (3.23)

Figure 3.27: Neldel-Mead reflection.

The reflection is controlled by the α parameter, in this case it is considered α = 1.

To decide if the direction used is favorable it is performed an expansion thanks to Equa-
tion 3.24 and Figure 3.28, the expansion is controlled by the γ parameter, which shall be
greater than one to increase the dimension of the simplex, increasing its magnitude can
imply a faster convergence but also the default discard of the expanded simplex. In this
case it is applied a parameter γ = 2.

xe ≡ c+ γ(xr − c) (3.24)
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Figure 3.28: Neldel-Mead expansion.

If the direction pursued leads to an increment of the function value a contraction of the
simplex is tried to investigate better the region in which the simplex lies. The contraction
point is obtained through Equation 3.25 and it is governed by the parameter β, which
shall be included in the zero to one range, in this case, γ = 1

2
. This transformation is

represented in Figure 3.29.

xc ≡ c+ β(xr − c) (3.25)

Figure 3.29: Neldel-Mead contraction.

In the case of collapsing simplex after the contraction, further investigation of the method
has led to the implementation of the shrinkage that built a smaller simplex with two new



3| Numerical approaches to delamination 49

vertexes as reported in Figure 3.30. The new vertexes are found in Equation 3.26, with
parameter δ = 1

2
.

xi ≡ xl + δ(xi − xl)with i ̸= l (3.26)

Figure 3.30: Neldel-Mead shrink.

The major drawback is that the method is heuristic, so it does not guarantee the retrieve
of a global optimum, in fact, the search can stagnate to a local minimum without arriving
at the desired solution. Although there is the possibility of obtaining a result that is far
away from the solution, due to the nature of the problem the method is used in any case
in particular for its simplicity and for its high convergence rate.

3.3.2. Error defintion

The first step and one of the most crucial parts of the parameter fitting is the parameter of
merit definition. The optimization algorithm is a blind solver that can only find the best
parameter that expresses the minimum of a determined function. The study case aims to
find the parameters that allow the best fitting between the numerical and experimental
curve, the fitting problem is then translated into an error minimization problem. The
optimization algorithm shall be used to minimize the error between the two different
curves. Depending on the definition of the error different behaviors can be obtained. For
example by exploiting a local error, such as the maximum difference between the two
curves Equation 3.27, the proximity of the two curves is taken into consideration but not
the behavior.
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err = max
i

LoadFEM(δi)− Loadexp(δi) (3.27)

In this study, however, the most interest is reserved to understand if the proposed cohesive
law can return a good approximation of the phenomena observed. The magnitude of the
distance is not considered of great interest for this analysis, it is then defined a global
error that considers all the intervals and aims to find an error that captures the difference
between the two behaviors. The error function is defined in Equation 3.28.

err =

√√√√ N∑
i=1

(
LoadFEM(δi)− Loadexp(δi)

)2(
δi − δi−1

)
√√√√ N∑

i=1

(
δi − δi−1

) (3.28)

The error definition presented above it is only valid for the comparison of one FEM
and one experimental curve, however, as previously mentioned different tests have led to
slightly different results. Since the attention of the analysis is reserved to the material
and not on the single laminate, the fitting shall consider different experimental curves to
be a better representation of the material. For this reason, it is defined an average error
that comprehends different tests. The new formula is reported in Equation 3.29.

erravg =

∑N
i=1 erri
N

(3.29)

A single curve fitting would lead to a better result, however, the general comprehension
of the material is considered of primary importance.

3.3.3. Bi-linear curve fitting

The first optimization has been performed on the bi-linear cohesive law. In this case the
error minimization has been conducted on two parameters of the law while the others
have been considered fixed. As reported in Figure 3.31 the inputs of the optimization are
the maximum strength, σ0 and the fracture toughness,G that is the area underneath the
curve.
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Figure 3.31: Bi-linear cohesive parameters

The penalty stiffness is the only term that remains fixed throughout the fitting, in fact, it
is only a numerical artifact. Its change could eventually obtain a better result but would
invalidate the goodness of the analysis, removing it from the variables of the problem
allow a better understanding of the optimization and the characteristics of the material.
The output of the process is reported in Figure 3.32, in which the cohesive law before and
after the parameter fitting are compared. While in Table 3.5 the parameters obtained are
reported.
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Figure 3.32: Bi-linear constitutive law optimization.

Maximum strength σ0 [MPa] Fracture toughness G [kJ/m2]

Initial 50 2.0

Final 17.34 1.69

Table 3.5: Bi-linear cohesive optimization parameters.

The initial maximum strength selected does not have a physical meaning in this case but
it is a common value found in literature [64] [65] [66]. Even if the parameter indicates the
strength at which the interface matrix starts to degrade, it is not easy to retrieve it from
experimental measures so it is often found through a trial and error procedure.
As it is possible to see from Figure 3.32 the new cohesive law presents a lower degradation
rate with respect to the initial one and a higher rupture separation δf . The maximum
elongation witnessed by the element is almost four times higher with respect to the initial
one. This is caused by both the parameters, the maximum strength is lowered and the
fracture toughness is increased. The algorithm has converged to a σ0 that is not compliant
with previous studies on similar composites, this topic will be better analyzed at the end
of the section. The fracture toughness found instead has a value that lies in the middle
between the maximum and minimum fracture toughness experimentally recorded, so it is
considered a valuable result. A better understanding of the optimization procedure can
be gained looking at Figure 3.33.
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Figure 3.33: Bi-linear error minimization.

The image shows the various function calls performed by the algorithm during the it-
erations and their relative error. From the starting point, the algorithm builds its first
simplex and finds a steep descent decreasing the G parameter. After a fast error decrease
in the first iteration due to the change in the fracture toughness, the method starts a long
series of iterations mainly changing the σ0 parameter. The second phase does not provide
a significant decrease in the error but it finds in any case a minimum of the function. The
final error is reported in Table 3.6.

Initial error 2.333

Final error 0.89

Table 3.6: Bi-linear cohesive optimization parameters error.

The physical understanding of the parameters obtained is expressed in Figure 3.34. The
final result displayed is acceptable, even with a bi-linear cohesive model it is possible to
reach a good approximation level. The reduction of the fracture toughness has lowered
the waning side of the curve. The G parameter in fact in this configuration controls,
in particular, the degradation of the interface, and how much after the beginning of the
damage the element fails completely. One of the biggest disadvantages of the bi-linear
cohesive model is the peak formation and the end of the linear part, this model is not
capable of describing the part in which the degradation zone propagates without breaking
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with the pre-crack. To avoid this overshoot, the algorithm has found the loophole of
decreasing the maximum strength σ0. This trick returns in slightly better error, due to a
lower peak at the end of the linear part, but compromises the linear growth of the load.
As already mentioned the linear part of the curve is only a function of the dimension of
the pre-crack, the thickness of the beams, and the strength along the fibers, and not the
strength of the interface. The result found is a numerical trick used by the algorithm
found to fill in the gaps in the model. A huge decrease in the maximum strength inserts
a numerical weak region in the interface, that eclipses the linear nature of the first part.
The main lesson given by these results, in particular looking at Figure 3.32, is that a
longer separation is required by the elements to have a load-displacement curve that is
closer to the original one, so also this analysis underlines the importance of developing a
cohesive law with an extended degradation region as tri-linear one.
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Figure 3.34: Bi-linear load-displacement curve.

3.3.4. Tri-linear curve fitting

The tri-linear cohesive model is governed by more parameters concerning the bi-linear
one. The adaptive nature of the model implies the need for a greater number of variables.
Excluding the numerical parameters, such as the penalty stiffness, four variables are
required to define this law. In this analysis, however, two of them are frozen, to avoid the
effects encountered in the previous section. In the previous analysis, the variability of the
maximum strength has led to a numerical weakness in the model that has compromised
the linear nature of the first part of the deformation. Even if the parameters regarding the
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maximum strength, of both the two super-imposed bi-linear laws, are considered known
a priori. This choice wants to avoid numerical tricks lacking a physical meaning. It
could be argued that it is possible to achieve meaningful variables if constrained correctly,
however, the range bounds are not clear and this should be the focus of further analysis.
In the previous sections, the tri-linear cohesive law has been explained as a superposition
of two bi-linear cohesive laws. The variables decided for the parameter fitting are the
areas underneath the two cohesive laws, so the fracture toughness at the beginning and at
the steady state as reported in Figure 3.35. The fixed parameters of the law are reported
in Table 3.7.

Figure 3.35: Tri-linear constitutive law parameters.

σ0 [MPa] σFB [MPa]

50 0.7

Table 3.7: Tri-linear cohesive optimization parameters.

The parameters decided do not influence the linear part of the load-displacement curve and
they are related to two different behavior of the curve itself. The initial fracture toughness
influences the first degradation region it is responsible for the higher damage increase,
while the second is for the residual stresses present in the fiber bridging phenomena.
The change of the cohesive law is reported in Figure 3.36, while the final parameters
obtained in Table 3.8.
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Figure 3.36: Tri-linear constitutive law optimization.

Initial G Gini [kJ/m
2] Steady state G GSS [kJ/m

2]

Initial 1.0 1.6

Final 1.24 1.70

Table 3.8: Tri-linear cohesive optimization parameters.

The figure represents only a zoomed part of the entire cohesive law, for clearness reasons
it has been given more relevance to the bridging part. The second part is more subjected
to a change of parameters. Also in this case it is possible to see an adjustment in the
maximum separation of a single element and the degradation slope. Differently from the
previous case, the change of the parameters is less significant, this is caused by the fact
that the law has an intrinsic relationship with the experimental phenomena observed,
so the adjustment of the parameter is a fine calibration and not a fictitious numerical
revolution. Even if the algorithm has found the GFB Table 3.8 reports the initial and
steady-state fracture toughness. This decision is more relevant concerning the material
point of view because experimentally it is observed only an increment in R − curve and
the fiber-bridging fracture toughness is an eternal explanation that cannot be measured.
The Nelder-Mead iterations conducted to obtain the final result are reported in Fig-
ure 3.37.
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Figure 3.37: Tri-linear error minimization.

As in the previous study, the algorithm finds a path in which the error reduction is
steeper and it follows it until the reduction ends, then the second parameter optimization
follows. Firstly it is modified the fiber-bringing toughness because it allows a faster
error decrement, this is related to the error definition. Indeed while the initial toughness
works with the plateau after the linear part, the fiber one works in a higher region, and
small changes in the parameter give the origin of higher error modification. The error
contraction is reported in Table 3.9.

Initial error 1.13

Final error 0.71

Table 3.9: Tri-linear cohesive optimization parameters error.

As anticipated the error reduction is less significant with respect to the previous case, on
the tri-linear parameters fitting it has only reached a reduction of 37% against a reduction
of 61% of the previous one. Although the best performances of the optimization algorithm
in the bi-linear case, and the numerical tricks adopted, the tri-linear model confirms its
superiority. The optimized error with the tri-linear model is 20% less with respect to the
bi-linear one.
The final load-displacement curve obtained is reported in Figure 3.38, where the fitting
performances are clearly visible. It is possible to notice how the two increments in the
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parameters have led to an enlargement of the load witnessed by the FEM model. The
change in the initial fracture toughness has elongated the linear part of the curve, this
elongation loses the behavior of two of the three experimental curves in the linear part,
however, this allows a higher plateau. The elevation of the plateau implies a reduction
of the error in a very sensitive part, in this region, many defects emerge and it is very
difficult to predict a correct behavior.
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Figure 3.38: Tri-linear load-displacement curve.
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4.1. Fatigue model

Delamination in the presence of cyclic stress is a complex problem. It can cause the
strength and stiffness of laminated composites to deteriorate and potentially cause them
to fail. On the other side, delamination absorbs strain energy, which can be helpful in
some cases, such as impact performance, and influences their failure processes. Over the
last several decades, extensive research has been conducted to comprehend the fatigue
delamination process and methods for controlling it in composites to assure the depend-
ability of composite structures and extend their service life. This chapter provides an
overview of prior work on the experimental characterization and numerical simulation of
fatigue delamination, emphasizing unidirectional laminated composites with 0/0lay-up.
The beginning of delamination in composite materials relies on the expansion of an exist-
ing fracture. Typically, a fixed maximum load/displacement is provided to the specimen
in the fatigue onset test, and loading cycles are performed with a constant R-ratio, which
refers to the ratio of maximum and minimum applied load/displacement until some signs
of crack propagation are discovered. Its output is presented as a G-N curve, akin to the
S-N curve for metallic materials, describing the connection between the driving power,
G, and the number of cycles, N. It is possible to develop the G-N curve, where Gmax is
the maximum SERR delivered to the crack tip and Nonset is the number of loading cycles
prior to the commencement of the delamination as Equation 4.1.

Gmax = f̂(Nonset) (4.1)

The fatigue delamination spread test is used to determine how the delamination expands
after the onset with increased loading cycles. In accordance with the Paris’ law for metals,
a linear log-log plot of the delamination growth rate da/dN vs the provided SERR G, such
as the maximum SERR Gmax, is used to describe composite materials. Equation 4.2 is
the mathematical formulation of Paris’ law.
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da

dN
= C(Gmax)

m (4.2)

4.2. Experimetal results

In order to characterize the material in the fatigue environment a mode I fatigue test is
carried out. The procedure uses a specimen that is equivalent to the one presented in
the first chapter and the machine test configuration is the same, however, it combines a
static part and a cyclic one. In the former the specimen is opened to obtain a determined
aperture, that is small enough to appreciate the further fatigue part, but not big enough
to obtain a development of the crack process zone. In the latter, the specimen is subject
to a cyclic aperture with a ratio between the bigger and smaller aperture equal to R. The
configuration data are reported in Table 4.1.

Aperture [mm] R [−]

3.2 0.1

Table 4.1: Experimental fatigue configuration.

From the experiment load, crack propagation and aperture are retrieved with respect
to the number of cycles. From this information, it is possible to compute the speed
of propagation of the crack and the fracture toughness, with the modified beam theory.
Once both are retrieved they can be combined together to shape the relation between
the two parameters of merit. However this combination appears as a scatter of points,
then to obtain the classic formulation of the Paris law Equation 4.2, a parameter fitting
is performed. The result of the fitting is reported in Table 4.2.

C [m3/kJ ] m [−]

0.0229 2.8438

Table 4.2: Paris law fitted parameters.

The experimental and fitted result is then represented in Figure 4.1, where it is possible
to notice a common behavior of the material in the condition presented.
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Figure 4.1: Experimental fatigue law fitting

4.3. Fatigue in Cohesive Zone Modelling

A cohesive zone model of delamination’s static constitutive law, which is based on the
initial stiffness K0, peak traction t0, and fracture toughness Gc, serves as the foundation
for all fatigue degradation strategies. As previously mentioned, static constitutive law
can take many different forms. With regard to static behavior, a cohesive zone forms
before the fracture point. It relies on the opening displacement in the cohesive zone and
the ultimate displacement δf at which the components break under fatigue loading, both
of which are initially unknown, therefore the length lcz of this zone will differ from that
for the static case. All of the models covered in the preceding chapter employ a two-step
simulation process: the components are initially subjected to a quasi-static load while
adhering to the static traction-displacement response. Following the discovery of this
static equilibrium, blocks of loading cycles are applied, which, ideally, cause deterioration
and eventual failure of the interface parts within the specified number of cycles outlined
by the Paris legislation. This triggers a brand-new constitutive reaction. The fatigue
model and load level dictate the form. The applied energy release rate Ga must be equal
to the integral under the constitutive response in the steady state.



62 4| Fatigue Analysis

4.3.1. Review of fatigue cohesive models

Table 4.3 lists the five most often used fatigue damage models in the literature. The
fatigue damage rate, dDf

dN
, is proportional to the fracture crack development rate, da

dN
, in

all models. Fatigue cohesive zone length, lf . Paris’ law, static damage, and element size
all influence fatigue damage rate. The static damage variable is replaced by the overall
amount of static damage, Ds, in Kiefer’s fatigue damage model. Equation 4.3 may be used
to calculate the fatigue cohesive zone length, which is dependent on the static cohesive
zone length ls, static fracture toughness Gc, and maximum applied strain energy released
rate during the cyclic loading.

lf =
Gmax

GC

lS (4.3)

The cited models have different strategies for the computation of the static cohesive length.

Model Cohesive law

Kiefer δdf
δN

= 1− ds.t
lf

da
dN

[67]

Turon δdf
δN

=

(
δf1 (1− ds) + dsδ

0
1

)2

δf1 δ
0
1lf

da
dN

[68]

Perov δdf
δN

=
δf1 δ

0
1

δ21lf
da
dN

[69]

Pirondi-Moroni δdf
δN

= 1
lf

da
dN

[70]

Table 4.3: Fatigue cohesive models

4.3.2. Kawawhita-Harper model

The selected method for modeling the material’s fatigue behavior is the one developed by
Kawawhita and Harper [71] [72]. The authors both implemented a local model and a non-
local one, due to the nature of the user-defined cohesive law it is selected for this study
the former. In fact, the user-defined constitutive law is exploited by the FEM solver at
each integration point at the same time, so in order to preserve this methodology the local
cohesive law is exploited. As in the previous methods listed the fatigue implementation
is obtained by adding a fatigue degradation at the cohesive level as in Equation 4.4.

Dtot = Ds +Df (4.4)
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The variation of fatigue degradation depending on the number of cycles is expressed by
the model in Equation 4.5.

dDf

dN
=

1−Ds

le

da

dN
(4.5)

Where Ds is the static degradation and le is the element length in the crack propaga-
tion direction. The increment in fatigue degradation after a certain amount of cycles is
obtained by integrating the variation on the interval of cycles Equation 4.6.

Df (N +∆N) = Df (N) +

∫ N+∆N

N

δDf

δN
dN (4.6)

Considering the cycle jump is small it is possible to rearrange the previous expression as
Equation 4.7.

Df (N +∆N) ≈ Df (N) +
δDf

δN
dN = Df (N) +

dDf

dN
∆N (4.7)

In some implementations, the FEM integration is performed with a fixed pseudo time
incrementation, in this way the previous formulation is enough to conclude the algorithm.
However in order to avoid a tedious calibration of the time step, in this study the time
step is free to change and the previous formula is rearranged to take into consideration
different cycle jumps. It is added a fictitious cycle frequency f to compute the number of
cycles performed in the integration step.

Df (N +∆N) ≈ Df (N) +
dDf

dN
f∆time (4.8)

Both the static and the fatigue degradation contribute to the crack growth, the situation
of the elements at the crack front is represented in Figure 4.2.
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Figure 4.2: Progressive damage status.

The fatigue degradation gets harsher as the element is more deformed in fact Equation 4.5
depends on the Paris law which is a function of the area under the traction separation
law.

dDf

dN
= f̃

(
Gmax

)
≈ f̃

( N∑
i=1

(
ti + ti−1

)(
δi − δi−1

)
2

)
(4.9)

The area under the TSL is computed numerically at each iteration. The model described
has been initially formulated for bi-linear cohesive law, however, in this context is then
developed in the already studied tri-linear model.

4.3.3. Tri-linear extension model

Teimouri [73] proposed an evolution of the Harper model in the tri-linear cohesive law
context. This progress is considered an advantage because it develops the fatigue model
starting from the static one, and it is more suitable for materials that experience fiber-
bridging even if this phenomenon influences less the fatigue response. This model is just
an extension of Harper’s model with two different degradation laws as Equation 4.10.

dDf

dN
=


1−Ds1

le
da
dN

if δ0 ≤ δ < δf1

1−Ds2
le

da
dN

if δf1 ≤ δ < δf
(4.10)

Where the parameters are the same as the previous one.
In this thesis, it is applied the same methodology is changed to the static cohesive law
that lies upon the fatigue one. In fact, Teimouri uses the Davila [45] and Heidari [46]
model, in this case, instead, it will be used the Gong one [49].
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The algorithm of the new law is expressed in Figure 4.4, where it is possible to see how
the fatigue implementation is just an extension of the static one.
Figure 4.3 represents the cohesive law of a single element subjected to a pre-aperture
and then a fatigue step. During the static part it proceeds as in the previous analysis
however, once the fatigue starts, at a constant aperture, the element starts degrading
without further aperture. The solver algorithm in the fatigue analysis is reported in
Figure 4.4.

Figure 4.3: Fatigue tri-linear cohesive law
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Figure 4.4: Fatigue UMAT implementation.
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4.4. Fatigue case analysis

The major distinction in fatigue tests is determined by the type of cyclic load applied.
The two possible tests are load-driven and displacement-driven. In the former, the tensile-
test machine, controlling the load applied to the specimen, cycles the load with a varying
aperture while the latter does the opposite.

In both cases, the fatigue phase is anticipated by a quasi-static one which it is reached the
maximum aperture/load that the specimen will withstand during the next step. After the
maximum load is obtained then the cyclic phase starts having the maximum load as the
one registered at the end of the quasi-static, Loadmax and as a minimum a load equivalent
to Loadmin = RLoadmax, where R is defined as the R− ratio.

There is no unique methodology to approach the numerical analysis of fatigue. What
is certain in this case is the presence of a strong non-linearity caused by the cohesive
law, the choice made has been dictated principally by this characteristic and the need for
a reasonable computation time. Fatigue can be studied with dynamic analysis in both
linear and non-linear environments, both with implicit and explicit solvers depending on
the frequency of the numerical cycles. In this thesis, it is used a non-linear solver in a
quasi-static environment, in which the aperture-closure is not reproduced. In fact, the
displacement/load is considered fixed during the fatigue step, and degradation is only
simulated by the cohesive law depending on pseudo time. So instead of replicating the
cyclic behavior of the test, it used only the envelope of the load such as Figure 4.5.

Figure 4.5: Displacement control cases.

As presented in the previous image the fatigue analysis can be split into multiple steps.
The multiple aperture/load analysis returns a result more compliant with real applica-
tions. In aeronautical applications, in fact, fatigue is always present during the life cycle,
however sudden variations in the loads happen, for example, due to out-of-design condi-
tions. The characterization of the material does not change with multiple steps, but it
results in a more realistic outcome.
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4.5. Numerical Results

In section 4.2 the results of the mode I fatigue test have been presented, with the related
fitting of the Paris law. The Paris law parameters are used in the cohesive model previously
mentioned. The FEM software first solves the static part and then the fatigue one, the
result in the aperture of the model is reported in Figure 4.6.
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Figure 4.6: Propagation of the degradation during fatigue.

4.5.1. Numerical and experimental comparison

Figure 4.7 represents the crack length growth during the test. The experimental curve,
similarly to all the other characteristic curves, presents a jump at 34000 cycles. This
phenomenon can be explained by the presence of voids or defects in a particular region
of the specimen. Contrary to that the numerical curve is smooth and it reconnects to the
experimental one after the jump. The main issue of the numerical curve is the abrupt start
of the crack growth, in fact during the experiment the curve starts only after a certain
amount of cycles, while the numerical one does not preserve the original pre-crack during
the first cycles. The onset of the crack growth is not represented well by the model, and
this issue is conserved during the first part of the curve. The gap between the curves built
in the first cycle is maintained until the jump of the experimental one. This behavior is
easy to see in the crack length history but not in the crack speed Figure 4.8. The speed
of the two curves is really close through the all number of cycles, as already anticipated,
the speed is the same, and the problems appear at the beginning of the fatigue step.
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Figure 4.7: Fatigue crack length.
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Figure 4.8: Fatigue crack speed.

Other variables taken into consideration are the load decrement Figure 4.9 and the fracture
toughness Figure 4.10. Since the test configuration provides a constant aperture and the
fatigue induce crack growth the load decrease since the resistance of the material to the
aperture decreases. Also in this case the fitting increases the quality at a higher number
of cycles.
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Figure 4.9: Fatigue load decrement.

The fracture toughness, which is a combination of crack propagation and load decrement
has a behavior common to the previously mentioned parameters.
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Figure 4.10: Fatigue fracture toughness decrement.

Finally, the last result, which summarizes at best the performances of the method, is
reported as the Paris law in Figure 4.11.
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Figure 4.11: Paris law.

A parameter-fitting procedure for the fatigue analysis has not been implemented in this
study. The rate of degradation for the fatigue part could be optimized to retrieve a
better fitting between numerical and experimental results, but the model itself should be
revisited to do so. The static characteristic of the cohesive elements has been considered
equal to the one found during the optimization of the static part, without considering a
possible discrepancy in the specimen itself. The major problem of the model lies in the
onset of the crack propagation, the model is not able to predict the quiescent part at the
begging of the fatigue cycle, but it performs well when the crack is fully developed. In
the next studies, huge efforts should be added to avoid this difference between numerical
and experimental. Nucleation capabilities shall be added to the model, in order to catch
the initial response of the model.
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5| Conclusions and future

developments

5.1. What has been achieved

During the development of this thesis, it has been performed, initially, an experimental
campaign. The tests performed were the double cantilever beam and the end-notched
flexure of uni-directional laminates composed of Solvay’s PC(PEKK-FC)/S2 plies. The
former returned good results in terms of fracture toughness in particular conditioned by
the fiber bridging phenomena appearance. The latter, instead, witnessed an awkward
behavior, characterized by sudden propagation of the crack tip, not common in literature.

The next step has been the numerical simulation of the obtained result, where the main
objective has been to find a numerical representation of what has been observed experi-
mentally. This has been achieved first of all with the implementation of a constitutive law
for cohesive elements and then with a parameter-fitting algorithm. A modified tri-linear
cohesive law has been coded to simulate the variation of the fracture toughness during
the tests caused by the fiber-bridging, which is responsible for the increase of the inter-
laminar properties. The model used, with parameters found through the manipulation
of the experimental result, retrieves fair results. However, in order to achieve the best
possible correlation between numerical and experimental representation an optimization
algorithm has been exploited to find the parameters for the cohesive law. The Nelson-
Mead algorithm has been the selected one, due to its good minimization properties in a
highly demanding computational environment.

After the quasi-static analysis, fatigue has been the next point to be faced. The Kawashita-
Harper model has been extended to the context of tri-linear cohesive elements and a nu-
merical study has been performed. Despite the need of a further fix the results of the
simulations return good results in terms of the extracted Paris law.
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5.2. What comes next

As anticipated in the previous section, the results of the ENF test have not been considered
valid, this has led to the impossibility to find the right fracture toughness for mode II
delamination, as a consequence numerical analysis of this it has not been performed. That
being said further development should move to the solution of these visible issues allowing
a better characterization of the material to see if the cohesive law obtained, after some
modification, could be applied also to this study case.
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A| Numerical representation of

non-conformity

The experimental results presented in the thesis contain some behavior that cannot be
predicted with standard methods. In this section, an embryonic study on two different
issues is presented. Due to the low impact of the research, these studies are reported in
the appendix as exercises, which emphasize the possibility related to cohesive elements
when dealing with composite fractures.

A.1. Imperfect closure of mode-I test

Following various DCB tests, each specimen exhibits a similar behavior in the un-loading
phase, i.e. the presence of residual strain compared to the initial configuration when the
piece is completely unloaded.
During the modeling phase of the tensile response of the material, a constitutive law
for three-linear cohesive elements was constructed, as reported in Figure A.1. Cohesive
elements are used to model the entire area in which the crack is destined to propagate, their
contribution, however, occurs only during the activation phase or the phase in which their
degradation begins to take place. Their degradation, therefore, shapes the enlargement
of pre-existing defects and their union. The traditional description uses an elastic return
during the element unloading, as shown in red in Figure A.1. The result for DCB loading
and unloading according to the current modeling is shown in Figure A.2:
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Figure A.1: Cohesive law with elastic un-loading

Figure A.2: Load displacement with elastic un-loading

As can be seen from the image, considering each material capable of having an elastic
recovery means that in the FEM model the response of the specimen to the unloading is
to return to the original configuration, this determines a great discrepancy between the
simulated and experimentally observed unloading. Several hypotheses can be advanced
to try to explain the phenomenon of the non-elastic return of the DCB test, including the
plasticization of the flaps, excluded first for not excessive strain levels, plasticization of
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the crack propagation zone, or interference of the fibers detached from the matrix which
create a dividing layer between the two arms.
To model this phenomenon, leaving the cohesive load law unchanged, which discretely de-
scribes the opening phase, the cohesive unloading response is modified. Here is presented
a response that for separations lower than a certain value gives a response equal to the
traditional one, ie elastic with an inverse elastic modulus to the degradation factor, while
for values higher than this threshold it provides a plastic response. Since the cohesive law
in traction has not been modified, there is no plateau typical of a plastic deformation but
linear degradation is confirmed. This model is shown in Figure A.3.

Figure A.3: Cohesive law with Non-elastic un-loading

This cohesive response can model both resistance to flattening of the fibers separated from
the matrix and plasticization in the crack propagation zone. The second phenomenon
should mainly characterize the first phase of opening, therefore at lower separation levels,
this phenomenon is normally modeled on a cohesive level with a trapezoidal law. In this
case of analysis, the trapezoidal law is not taken into consideration since it is typical of
materials in which almost all of the energy is spent on crack opening and the process area
is limited, therefore not in conformity with the phenomenon of fiber-bridging. Figure A.4
shows the trend taking into account the new cohesive law.

The response of the new cohesive law appropriately calibrated allows obtaining a return
configuration equivalent to the experimental one. In fact, once the load has ceased, the
distance between the pre-test and post-test configuration is the same for the numerical
case and the experimental one. A discrepancy between the numerical and experimental
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Figure A.4: Load displacement with non-elastic un-loading cohesive

unloading phases is however present; in fact, the experimental curve is slightly more
concave than the numerical one.
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A.2. Defects study

The second issue encountered during the experimental campaign is the presence of jumps
in the load-displacement curve and the correlated instantaneous propagation of the crack.
This phenomenon is represented in Figure A.5, where it is visible a moment in which a
huge decrement in the load appears suddenly.
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Figure A.5: Load displacement curve jump

The physical reason for what is experienced can be motivated by the presence of defects
inside the laminate. In a particular, a weak region is present in a precise reason of the
interface between the plies. This weakness causes a sudden propagation of the crack
inside the laminate; the tip does not find any barrier on its path and can release the
energy collected at the crack’s tip faster. The sudden crack propagation generates a jump
in the load curve. The presence of a different propagation behavior can be seen also from
a fractography point of view. It is possible to distinguish two different fracture surfaces,
one almost smooth and polished and one matt and rough. The polished part is related
to the region in which the crack propagates instantly.

The open questions related to the subjects are: what is the reason for the weakness and
is it possible to obtain a numerical representation of the phenomena? The first step to
answer the former question is the identification of the typology of defects present at the
interface where the jump happens. This investigation could be performed with SEM.
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Figure A.6: Optic microscope fractography

Defects that originate this sudden variation are most of the time voids and contamination
of the matrix. In order to avoid this problem in future studies if the problem is connected
to voids the solution could lie in a different pressure or temperature in the hot-press
process for the production of the laminates. The root cause determination is still an
open question for the study; however, a numerical study on the modeling part has been
performed. In order to achieve the same behavior of the experimental curve 4 entire rows
of elements have been subtracted by the cohesive region as represented in Figure A.7.
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Figure A.7: Defects numerical configuration
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The FEM configuration to find the strongest correlation with the experimental curve has
been found with a trial and error procedure. It is visible from the figure that many
elements are not present in the configuration, creating a large void in the inter-laminar
region.
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Figure A.8: Defect study comparison

In Figure A.8 the comparison between the numerical curve and the experimental one is
present. The main objective, in this case, is not to find a perfect match between numerical
and experimental but just to find a representation that can return a similar jump. The
entity of the phenomena is obtained, however, the representation has a strong impact on
the model itself. The dimension of the void used is very large with respect to the total
area of the contact between plies. Such a defect if present determines poor performance
during manufacturing.
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