
Full order and reduced order mod-
els for the Navier-Stokes equations
in stream function-vorticity formu-
lation

Tesi di Laurea Magistrale in
Ingegneria Matematica

Author: Gaia Buccino

Student ID: 969290
Advisor: Prof. Nicola Parolini, Prof. Gialuigi Rozza
Co-advisors: Prof. Michele Girfoglio
Academic Year: 2021-22

i

Abstract

This work aims to perform an analysis based on the Reduced Order Methods (ROMs)
constructed through a data-driven approach in the context of geophysical applications.
This study has been developed starting from the derivation of the Full Order Model
(FOM) of the Navier-Stokes Equations (NSE) in the alternative formulation based on
the vorticity and stream function variables, whose equivalence with the original model
described through velocity and pressure is verified in the vortex merger benchmark. Once
the model has been validated, the FOM is simulated in order to generate the dataset
required to perform the ROM analysis. The reduced coefficients associated with the two
variables (vorticity and stream function) have been estimated using different variants of
the method based on the combination between the Proper Orthogonal Decomposition
(POD) and different data-driven techniques: (i) Radial Basis Functions (RBF) inter-
polation, (ii) Gaussian Process Regression (GPR) and (iii) Artificial Neural Networks
(ANNs). We compared our results with the ones obtained in previous studies in terms
of accuracy and efficiency. We found that all methods produce acceptable accuracy, with
drastic speed-ups with respect to the FOM. However, we observed poorer estimations of
the vorticity with respect to the stream function. Among the three ROM approaches, the
POD-GPR and POD-RBF resulted in higher speed-ups, while the time required to train
the POD-ANN model can make it unsuitable for real applications. Given the promising
prediction results on the sample dataset, we extended the analysis to larger time horizons
to test the extrapolation accuracy of the ROM prediction. This analysis revealed the high
potential of data-driven methods for geophysical applications and could make significantly
faster and more efficient large-scale predictions.

Keywords: Navier-Stokes equations, vorticity and stream functions, data-driven reduced
order models, neural networks

Abstract in lingua italiana

Questo lavoro si propone di sviluppare un’analisi dei modelli ridotti (ROM) costruiti con
un approccio data-driven nell’ambito di applicazioni geofisiche. Tale studio viene condotto
partendo dalla derivazione di un modello full order (FOM) delle equazioni di Navier-Stokes
nella formulazione alternativa basata sulle variabili vorticità e funzioni di corrente, la cui
equivalenza con il modello originale di velocità e pressione viene dimostrata nel caso test
del vortex merger. Una volta validato, il metodo introdotto viene utilizzato per produrre
il dataset necessario all’analisi con modelli ridotti, in cui i coefficienti delle basi ridotte
relativi alle due variabili (vorticità e funzione di corrente) vengono stimati attraverso la
combinazione del metodo di decomposizione ortogonale (POD) e diversi metodi data-
driven: (i) interpolazione con radial basis functions (RBF), (ii) regressione con processi
gaussiani (GPR) e (iii) reti neurali artificiali (ANN). Abbiamo comparato i risultati ot-
tenuti con quelli di studi precedenti in termini di accuratezza ed efficienza, scoprendo
che tutti i metodi analizzati producono stime delle soluzioni con errori accettabili in un
tempo notevolmente ridotto rispetto al modello full-order. Inoltre, abbiamo osservato
che in termini di predizione, le stime ottenute per la vorticità sono peggiori di quelle
ottenute per le funzioni di corrente. Confrontando i metodi utilizzati, abbiamo verificato
infine che POD-GPR e POD-RBF producono buoni risultati in un tempo ragionevole,
mentre il tempo richiesto per allenare la rete neurale la rende inadatta ad applicazioni
reali. Dati comunque i risultati promettenti nella predizione del dataset analizzato, ab-
biamo esteso l’analisi ad un orizzonte temporale più ampio per verificare l’accuratezza
nell’estrapolazione del comportamento della soluzione in un tempo futuro. Questa analisi
ha rivelato il notevole potenziale dei metodi data-driven nelle applicazioni geofisiche e può
migliorare le predizioni su larga scala rendendole piú rapide ed efficienti.

Parole chiave: equazioni di Navier-Stokes, vorticità e funzioni di corrente, modelli di
ordine ridotto data-driven, reti neurali

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Chapter 1: Full Order Model 5
1.1 Derivation of the model . 5

1.1.1 Advantages and disadvantages of the alternative formulation 7
1.2 Discretization of the model . 7

1.2.1 Time discretization: Finite differences 7
1.2.2 Space discretization: Finite Volume 8
1.2.3 Fully discretized problem . 10

2 Chapter 2: Reduced order methods 11
2.1 Reduced basis approximation . 12

2.1.1 Proper Orthogonal Decomposition (POD) 13
2.1.2 Non-intrusive approach . 14
2.1.3 Intrusive approach: hints . 20

3 Chapter 3: Numerical results 23
3.1 Validation of the vorticity - stream function solver 23

3.1.1 Test case: vortex merger . 23
3.1.2 Results and comments . 24

3.2 POD-non intrusive model order reduction 27
3.2.1 Radial Basis Functions (RBF) interpolation 28
3.2.2 Gaussian Process Regression (GPR) 29
3.2.3 Artificial neural network (ANN) . 31

3.2.4 Extrapolation . 33
3.2.5 Comments . 39

4 Conclusions and future developments 45

Bibliography 47

A Appendix: Derivation of Navier-Stokes equation in primitive variables 53

List of Figures 55

Acknowledgements 57

1

Introduction

An open problem in the field of Computational Fluid Dynamics (CFD) is the exploration
of alternative numerical methods to find the approximated solution to the Navier-Stokes
Equations (NSE) [43]. In the latest years, many researchers address their efforts to find
innovative techniques to reduce the computational cost of high-fidelity simulations while
maintaining an acceptable level of accuracy. One of the possibilities to make computations
feasible is represented by Reduced Order Methods (ROMs) [11, 12, 17, 18, 21, 25, 26, 32,
33, 38, 40, 46] that nowadays constitute a consolidated technique for the approximated
resolution of parameterized Partial Differential Equations (PDEs). In particular, this
research focuses on non-intrusive ROMs, i.e., a class of data-driven ROMs solely built
starting from a dataset of parameters and high-fidelity solutions. This work, carried
out in collaboration with Scuola Internazionale Superiore di Studi Avanzati (SISSA) of
Trieste, explores the potentialities of non-intrusive ROMs to simulate geophysical and
environmental phenomena where the goal is to describe the flow of either the air in the
atmosphere or the water in the sea. In particular, starting from this general context,
we analyze the problem using an alternative formulation, where the original variables,
velocity and pressure, are replaced by the vorticity and the stream function[12]. This
different approach is used to build an alternative Full Order Model (FOM), and is applied
to compute the high-fidelity solutions of geophysical and atmospheric problems.

First of all, we derive the vorticity and stream function model from a theoretical point of
view and discretize it in time and space. Next, we proceed with the implementation of a
solver to address the problem in the new configuration and demonstrate that it is able to
produce comparable results with respect to the original formulation. The vortex merger
test case [36] is used as a benchmark to compare the performances of the above-mentioned
solvers. Once the interchangeability of the two solvers has been verified, we integrate the
alternative FOM in ITHACA-FV [38, 40], a finite-volume based library integrated with
OpenFOAM. In particular, we follow a standard offline-online procedure. In the offline
stage, we run the FOM simulations to collect the high-fidelity solutions, the so-called
snapshots. Then, the Proper Orthogonal Decomposition (POD) technique is exploited to
find an optimal orthonormal basis that captures the most relevant features, namely the

2 | Introduction

modes. The snapshots are then projected onto the space spanned by a reduced number
of modes, which is a priori chosen. The estimation of the reduced coefficients associ-
ated with the reduced basis is done by making use of either interpolation or regression
techniques. In particular, we adopt three different techniques for the coefficients’ predic-
tion: Radial Basis Functions (RBF) interpolation [22, 48], Gaussian Process Regressor
(GPR) [8, 34, 35, 41] and Neural Networks (NNs) [7, 14, 17, 19, 37]. Then, we build
the corresponding ROM in its variants POD-RBF, POD-GPR and POD-NN, and make
a comparison between the performances of the three in terms of accuracy and CPU time.
In the online stage, we exploit the above-mentioned models to compute the approximated
solution corresponding to unknown values of the parameters under analysis and compare
them to the corresponding ones directly simulated with the high-fidelity solver. In par-
ticular, we analyze the solutions predicted by the ROM in a time interval outside the one
used for the simulations to see how far the model is able to extrapolate the evolution of
the variables advancing in time. We finally quantify the accuracy of these predictions by
validating them through the FOM and computing the trend of error in time.

The analysis carried out in this work is a comparison between the performance of the data-
driven approach and the intrusive approach carried out in [12]. As a further development,
we plan to expand this work to explore the behavior of the method when we insert in
the model a stochastic variable describing the angle of an external wind. This additional
parameter allows to include possible perturbations of the motion of the fluid.

The work presented is organized as follows:

• Chapter 1: Full Order Model
After a brief introduction to the FOM, we describe the derivation and the discretiza-
tion of the model and discuss its advantages and disadvantages.

• Chapter 2: Reduced Order Method
In this chapter, we introduce different approximation methods for the non-intrusive
ROM, in particular, we focus on the description of the POD-RBF, POD-GPR,
POD-NN algorithms.

• Chapter 3: Numerical results
This chapter is dedicated to the presentation of the obtained results.

• Chapter 4: Conclusions and future developments
Here we present the conclusions of this work, its future developments and how we
plan to proceed in the analysis.

Regarding the tools applied, we use OpenFOAM ® [1], a widely used open-source Finite

| Introduction 3

Volume C++ library, to develop the code of the full order part, both for the implementa-
tion of the alternative solver and for its validation. To compute the full-order solutions,
we use ITHACA-FV [38, 40], making the solver compatible with the structure of the
library. For what concerns the ROM, we perform the computations using EZyRB [9], a
Python package developed and maintained by the mathLab group at SISSA.

5

1| Chapter 1: Full Order Model

This chapter is dedicated to the description and derivation of the Full Order Model (FOM)
that we used to tackle the problem. In particular, starting from the Navier-Stokes equa-
tions in primitive variables [30], i.e., velocity and pressure (whose derivation is fully de-
scribed in Appendix A), we investigated an alternative formulation [24, 27] described by
the variables vorticity and stream function and analyzed the advantages and disadvan-
tages that this approach introduces.

1.1. Derivation of the model

We started by considering the motion of a two-dimensional, incompressible, viscous fluid
in a fixed domain Ω ⊂ R2 over a time interval of interest (t0, T] described by the Navier-
Stokes Equations:

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f , (1.1a)

∇ · u = 0, (1.1b)

where u and p are the unknowns of the model and represent the velocity and the pressure
of the fluid (rescaled by the density), respectively, while ν is its kinematic viscosity.

We derived the alternative formulation, depending on vorticity and stream function,
through the application of the operator ∇× to the momentum equation (1.1a):

∂tω +∇ · ((∇×Ψ)ω)− 1

Re
∆ω = F, (1.2)

where

• ω(x, y, t) = ∇× u = (0, 0, ω) = (0, 0, ∂xv − ∂yu),

• Ψ(x,y, t) = (0, 0,Ψ),

• u = ∇×Ψ = (∂yΨ,−∂xΨ).

6 1| Chapter 1: Full Order Model

Considering the definitions introduced above, and substituting component-wise the ex-
pression of u in (1.1b), we could express the link between the vorticity and the stream-
function as a Poisson equation:

−∆Ψ = ω. (1.3)

We highlight that the divergence-free constraint on the velocity, ∇·u = 0, is automatically
satisfied, and, therefore, there is no need to impose it as an additional constraint.
Combining together the two equations just derived, we obtained the following alternative
system: ∂tω +∇ · ((∇×Ψ)ω)− 1

Re
∆ω = F in Ω× (t0, T],

−∆Ψ = ω in Ω× (t0, T],
(1.4)

Finally, to close the model, we had to impose the boundary and initial conditions. The
first issue has been solved by endowing the system with homogeneous Dirichlet boundary
conditions, both for ω and for Ψ:ω = 0 on ∂Ω× (t0, T],

Ψ = 0 on ∂Ω× (t0, T],
(1.5)

the latter, by setting ω(x, y, t) = ω0(x, y), whose expression will be defined in the Section
3.1.1.

Once we outlined the configuration of the model, we could exploit the structure of the
introduced variables.
Since we have defined ω(x, y, t) = ∇× u = (0, 0, ω) = (0, 0, ∂xv − ∂yu) and Ψ(x,y, t) =

(0, 0,Ψ) we could simplify our problem by considering two different scalar variables as
unknowns, namely ω and Ψ, and restore their vectorial characterization only after the
computations. This permitted us to solve the following system: ∂tω +∇ · ((∇×Ψ)ω)− 1

Re
∆ω = F in Ω× (t0, T],

−∆Ψ = ω in Ω× (t0, T],
(1.6)

that is characterized by a remarkably reduced number of degrees of freedom, allowing us
to significantly reduce computational costs.

1| Chapter 1: Full Order Model 7

1.1.1. Advantages and disadvantages of the alternative formu-

lation

The alternative approach used to solve the Navier-Stokes Equations introduces some nov-
elties in the resolution of the problem. First of all, it allowed us to treat the main unknowns
as scalars. This appreciably reduces the computational cost, since it scales with the num-
ber of degrees of freedom. In particular, the CPU time required for the simulations is of
805 s for the original solver against 60 s for the alternative one. Another advantage is that
the incompressibility constraint is automatically satisfied thanks to the definition of the
stream function. On the other hand, it introduces some limitations on the adaptability of
the model to complex geometrical configurations. In fact, in more complicated domains,
the usage of the vorticity and stream function configuration can introduce some issues in
the treatment of boundary conditions. This is the case of non-simply connected domains,
where the presence of holes dramatically complicates the imposition of boundary condi-
tions based on ω = ∇ × u and on u = ∇ × Ψ. To overcome this issue, in the current
work, we have chosen a very simple test case that will be described in detail in Chapter 3.
For the sake of simplicity, we have imposed on it homogeneous Dirichlet boundary condi-
tions, but the same simulations can be performed imposing non-homogeneous boundary
conditions as well and re-adapting the lifting procedure to the two variables. Moreover,
we have to specify that, even if this formulation is limited to the models expressed in 2D,
it results particularly suitable to the description of meteorological and geophysical phe-
nomena, since it simplifies dealing with vortical structures that abound in the atmosphere
and in the ocean motion.

1.2. Discretization of the model

Once obtained the starting model, we have to address the discretization of the domain
in which our problem has to be solved. The strategies chosen for the discretization
are the finite differences approach [31] for the time and the finite volume discretization
[20, 25, 39, 40] for the space.

1.2.1. Time discretization: Finite differences

We started with the discretization of the time derivative. We divided the time interval
(t0, T] into NT ∈ N smaller intervals of length ∆t = T−t0

NT
and defined a generic time

tn = t0 + n∆t with n = 0, ..., NT . Given ω = ω0 and Ψ = Ψ0, we look for (ωn+1,Ψn+1),
i.e, variables computed at tn+1 that represents the solution of the problem (1.6) discretized

8 1| Chapter 1: Full Order Model

in time using the Backward Euler differentiation formula of order 1 (BDF1): 1
∆t
ωn+1 +∇ · ((∇×Ψn+1)ωn+1)− 1

Re
∆ωn+1 = bn+1 in Ω× (t0, T],

−∆Ψn+1 = ωn+1 in Ω× (t0, T],
(1.7)

where bn+1 = F n+1 + ωn

∆t
.

This model is very complex from a computational point of view because of the presence
of the non-linear term that encodes the coupling of the two variables. To overcome this
issue, we decided to apply the segregated algorithm, namely to substitute the value of
the stream function at time tn+1 in the first equation of the system with its extrapolation
based on BDF1. This allowed us to get rid of the non-linear term in (1.7) and solve the
equations one after the other as follows:

• Find ωn+1 such that

1

∆t
ωn+1 +∇ · ((∇×Ψn)ωn+1)− 1

Re
∆ωn+1 = bn+1 in Ω× (t0, T]. (1.8)

• Then, solve the second one for Ψn+1:

−∆Ψn+1 = ωn+1 in Ω× (t0, T]. (1.9)

1.2.2. Space discretization: Finite Volume

To address the space discretization we decided to use the Finite Volume (FV) approach. It
is related to the discretization of a 3D domain based on its partition into non-overlapping
finite volumes, called control volumes (see an example in Figure 1.1). In each of these
control volumes, we addressed the solution of our discretized system of partial differential
equations. This is performed by integrating them over each considered volume and manip-
ulating them in order to obtain an algebraic expression. For our problem, we considered
a structured and orthogonal set of cells, whose advantages will be introduced below.

Let Nc be the total number of control volumes. For each control volume Vj, j = 1, ...Nc,
we performed the following computations:

1

∆t

∫
Vj

ωn+1dΩ +

∫
Vj

∇ · ((∇×Ψn)ωn+1)dΩ− 1

Re

∫
Vj

∆ωn+1dΩ =

∫
Vj

bn+1dΩ. (1.10)

1| Chapter 1: Full Order Model 9

P-28 Discretisation procedures

2.3 Discretisation of the solution domain

Discretisation of the solution domain is shown in Figure 2.1. The space domain is discretised
into computational mesh on which the PDEs are subsequently discretised. Discretisation
of time, if required, is simple: it is broken into a set of time steps ∆t that may change
during a numerical simulation, perhaps depending on some condition calculated during the
simulation.

z

y

x
Space domain

t

Time domain

∆t

Figure 2.1: Discretisation of the solution domain

N

SfP

f

d

Figure 2.2: Parameters in finite volume discretisation

On a more detailed level, discretisation of space requires the subdivision of the domain
into a number of cells, or control volumes. The cells are contiguous, i.e. they do not overlap
one another and completely fill the domain. A typical cell is shown in Figure 2.2. Dependent
variables and other properties are principally stored at the cell centroid P although they

OpenFOAM-3.0.1

Figure 1.1: Example of Finite Volume discretization of a two-cells domain (image source
[15]).

−
∫
Vj

∆Ψn+1dΩ =

∫
Vj

ωn+1dΩ. (1.11)

Exploiting the Gauss divergence theorem, we could manipulate expressions (1.10) and
(1.11) and obtain 1

∆t

∫
Vj
ωn+1dΩ +

∫
∂Vj

((∇×Ψn)ωn+1) · dAf − 1
Re

∫
∂Vj

∇ωn+1 · dAf =
∫
Vj
bn+1dΩ,

−
∫
∂Vj

∇Ψn+1 · dAf =
∫
Vj
ωn+1dΩ,

where Af represents the surface vector of each face i of the control volume under analysis.

After that, we could separately linearize each term of the equations as follows:

• Mass term: it remains defined as 1
∆t

∫
Vj
ωn+1dΩ.

• Convective term:∫
∂Vj

((∇×Ψn)ωn+1) · dAf ≃
∑
f

((∇×Ψn
f)ω

n+1
f) ·Af =

∑
f

(φn
fω

n+1
f), (1.12)

where φn
f = ∇ × Ψn

f · Af . This variable represents the convective flux of ∇ ×
Ψn through each face f of the control volume that can be computed as a linear
interpolation using different schemes. In our case, we addressed this problem using
the Central Differencing (CD) scheme that, for a generic variable Φf , corresponds
to Φf = fxΦP + (1− fx)ΦN with fx = fN

PN
, where fN corresponds to the distance

between the face f and the centroid N , and PN is the distance between the two

10 1| Chapter 1: Full Order Model

centroids P and N , with reference to Figure 1.1.

• Diffusive term: ∫
∂Vj

∇ωn+1 · dAj ≃
∑
f

(∇ωn+1)f ·Af . (1.13)

To deal with the approximation of the gradient normal to the face f, the hypothesis
of structured and orthogonal mesh introduced before comes into play. In this con-
text, it is possible to approximate (∇ωn+1)f =

ωn+1
N −ωn+1

P

|d| where N and P refer to
Figure 1.1 and d is the distance between P and N.

The same procedure has been used to discretize (1.11) obtaining:∫
∂Vj

∇Ψn+1
· dAj ≃

∑
f

(∇Ψn+1)f ·Af . (1.14)

1.2.3. Fully discretized problem

Before considering the fully-discretized problem, we have to introduce some new notations.
In particular, we denoted as ωn+1

j the average value of the vorticity and Bn+1
j the average

value of the source term in the control volume Vj. We introduced also ωn+1
j,f to represent

the vorticity associated with the centroid of the face f divided by the volume Vj. By
doing so, we could write the fully discretized model as:

1

∆t
ωn+1
j +

∑
f

φn
fω

n+1
j,f − 1

Re

∑
f

(∇ωn+1
f)j ·Af = bn+1

j , (1.15a)

−
∑
f

(∇ωn+1
f)j ·Af = ωn+1

j . (1.15b)

The solution of this model is addressed through the usage of two different linear solvers:
the symmetric Gauss-Seidel method to solve the problem with respect to the vorticity
and the Geometric Agglomerated Algebraic Multigrid (GAMG) solver for the stream
function.

11

2| Chapter 2: Reduced order

methods

The full order model presented simulates a time-dependent multi-query problem, that in
most cases, has to be repeated for a huge number of configurations depending on a generic
parameter µ ∈ P. Usually, dealing with such problems using the FOM is unfeasible, be-
cause the full description of the solutions makes the computations dramatically involving,
both in terms of required CPU time and memory demand, due to the large number of de-
grees of freedom. In this framework, the Reduced Order Method (ROM) [3–5] represents
a valuable solution: starting from the original model, it builds a lower-dimensional one
that is faster and cheaper to evaluate and, at the same time, provides accurate solutions.
The procedure of the model reduction is divided into two phases, described as follows:

• Offline phase: During this phase, the high-fidelity simulations of the problem
are performed for different values of the parameters under investigation. This step
produces the matrix of snapshots (one column for each parameter). Once this first
part is carried out using the FOM, the computation of the modes can be performed
through the POD. This step consists of finding the set of the most informative basis
to span a lower-dimensional space and projecting the matrix of snapshots onto it.
It can be easily understood that the offline procedure is very expensive, but it has
to be performed only once.

• Online phase: In this second phase, the reduced matrix resulting from the offline
phase is used to compute the solutions corresponding to new values of the parameter
with less computational effort.

Both the offline and the online phases can be addressed using different methods that are
divided into two main categories: intrusive and non-intrusive. The first class is based
on the manipulation of the FOM to implement the ROM in an analytical way, while the
latter is based on a data-driven approach that, given the matrix of snapshots, aims at
learning the reduced coefficients corresponding to each snapshot. In this work, the ROM is
analyzed using the non-intrusive approach in its different variants: POD-RBF, POD-GPR,

12 2| Chapter 2: Reduced order methods

and POD-NN. This means that we performed the reduced basis computation through
the Proper Orthogonal Decomposition (POD) and approximated the reduced coefficients
through three different methods: the Radial Basis Functions (RBF) interpolation, the
Gaussian Process (GP) and the usage of Neural Networks (NN). In particular, the analysis
proceeded with the evaluation of the predictive power of these models in view of future
developments.

2.1. Reduced basis approximation

Let us start by analyzing the offline phase of the method. One of the main ingredients
to understand the reduced basis approximation, which is the main issue addressed in
the offline phase, is the concept of solution manifold that is the set of all solutions of
the parameterized problem under the variation of the parameter considered. The offline
phase is typically computed using the FOM.
As already specified, we addressed a parameterized problem, where the parameter µ is
represented by the time t. The exact solution to (1.6) can be described by the generic
expression u = u(µ), but in most cases, it is not available in an analytical way, so we had
to discretize the model and compute uh(µ), we recall that we obtained it through finite
volume approximation. From now on, we will refer to it as the true solution. Using the
notations just introduced, we can define the solution manifold described above as

M = {u(µ), µ ∈ P}, (2.1)

in the case of the exact solution and as

Mh = {uh(µ), µ ∈ P}. (2.2)

if we consider the true solution. We took on the approximation of the solution manifold
of the discretized problem with the FOM based on the alternative formulation of the
NSE explained in Chapter 1, obtaining the matrix of the snapshots. This matrix has
dimension Nd × Ns, where Nd represents the number of degrees of freedom involved in
the computation, while Ns is the number of simulations (snapshots). Once we collect the
matrix of snapshots, we can exploit it to compute the reduced space. This can be done
with two different methods: the POD and the greedy algorithm. In the current work,
we focused on the former, but we referred the interested reader to [18] for a detailed
explanation of the latter.

2| Chapter 2: Reduced order methods 13

2.1.1. Proper Orthogonal Decomposition (POD)

The POD method [2, 10, 16, 47, 49] is used to compute the reduced basis space as follows.
First of all, we introduce a discrete and finite-dimensional point-set Ph = {µ1, . . . , µN} ⊂ P
belonging to the space of the parameters. In our case, this space reduces to scalar values
that represent the time. Depending on the chosen set of parameters, it is possible to
construct a set of Ns snapshots {uh(µ1), . . . ,uh(µNs)} and obtain the space generated by
an approximation of the solution manifold related to the true solutions:

M{µ1,...,µNs} = span{uh(µ1), . . . ,uh(µNs)}. (2.3)

The larger the number of snapshots, the more accurate is this approximation. If we
consider the value of the true solutions corresponding to each value of the parameters
considered, we can construct the matrix of snapshots:

S = {uh(µ1)| . . . |uh(µNs)} Nd ×Ns. (2.4)

This matrix is typically rectangular, therefore, in order to factorize it, the Singular Valued
Decomposition (SVD) is required. Its factorization is

S = WΣV T , (2.5)

where W = {w1| . . . |wNd
} ∈ Nd ×Nd and V = {v1| . . . |vNs} ∈ Ns ×Ns are two orthog-

onal matrices whose columns are respectively the left singular vectors and right singular
vectors, while Σ ∈ Nd ×Ns is a diagonal matrix with r non-zero ordered singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 where r represents the rank of the matrix S. The aim of the POD
is to approximate the columns of S with a number of orthonormal vectors, called modes,
much smaller than r. The Schmidt-Eckart-Young theorem [11] states that the reduced
basis of dimension L ≤ r is composed by the first L left singular vector of the matrix S.
So we can truncate the W matrix by taking into account only the first L columns and
obtain the reduced basis

Wrb = {w1| . . . |wL}, (2.6)

that generates the reduced space

Wrb = span{w1| . . . |wL} ⊂ RL, (2.7)

.

14 2| Chapter 2: Reduced order methods

The chosen number of modes depends on the tolerance required to describe our problem
since the error introduced in model reduction is quantified by the sum of the squares of
the neglected singular values. Therefore, from a theoretical point of view, we can approx-
imate the matrix of snapshots with arbitrary accuracy neglecting a different number of
singular values. It is useful to observe that, if we take all singular values, then we recover
the original matrix S.
Many problems show an exponential decay of the singular values allowing us to approxi-
mate the matrix of snapshots through the ROM with adequate accuracy.

Since the analysis carried out in [12] deeply investigated the intrusive approach based on
the POD-Galerkin, we decided to study a different procedure based on a non-intrusive
approach to compute the reduced basis and analyze the differences between FOM and
ROM, both in terms of performance and CPU time required for the simulations.

2.1.2. Non-intrusive approach

By taking into account the analysis addressed in [12], we decided to explore the data-driven
approach to compare the obtained results and analyze the advantages and disadvantages
of the two different strategies. There are several methods to perform the ROM through
the data-driven approach, in particular, we have tested the RBF interpolation, GPR and
ANN.

Radial basis functions (RBF) interpolation

Radial basis function (RBF) interpolation [22, 48] is an effective method used to solve
Navier–Stokes Equations in both two and three dimensions, since many studies have
shown that this method can effectively capture the non-linearities of PDEs and provide
a spectral convergence rate. A generic radial function f : RP −→ R is a multivariate
function depending only on the norm of its arguments, i.e., f = f(∥µ∥). Since the
main requirement of the chosen distance is that, defined a certain point µC , the function
f = f(∥µ − µC∥) is radially symmetric, the most common options of distance employed
for this method are:

• Gaussian: f(µ) = e−
∥µ−µC∥)

σ2 .

• Linear spline: f(µ) = ∥µ− µC∥.

• Multiquadric: f(µ) =
√
∥µ− µC∥2 + σ2.

• Inverse multiquadric: f(µ) = 1√
∥µ−µC∥2+σ2

.

2| Chapter 2: Reduced order methods 15

• Cubic spline: f(µ) = ∥µ− µC∥3.

• Thin plate spline: f(µ) = ∥µ− µC∥2 log(∥µ− µC∥).

For the interpolation task, multiple radial basis functions are used: fm = f(∥µ − µm∥),
with 1 ≤ m ≤ M , where M is the number of different basis functions considered by shifting
the center within the discretized parameter space Ph. The idea behind the application of
this method to the ROM is to approximate the vector of reduced coefficients component-
wise using the radial functions as basis:

ur,k(µ) = π̄k(µ;wk) =
M∑

m=1

(wk)mf(∥µ− µm∥). (2.8)

The estimated coefficients of the expansion could be computed by imposing the exact
interpolation of the training data:

π̄k(µ;wk) = ur,k(µm) 1 ≤ m ≤ M. (2.9)

By substituting the last expression in equation (2.8) we obtained:

Awk = ur,k, where

A(i,j) = f(∥µi − µj∥) 1 ≤ i, j ≤ M,

(ur,k)j = ur,k(µj) 1 ≤ j ≤ M,
(2.10)

Finally, we had to solve n systems (one for each component of the reduced solution ur),
but, as shown in (2.10), the matrix A ∈ RM×M and its decomposition must be computed
only once, making the resolution computationally efficient.

We can then collect all the weights in a unique matrix W = [w1| . . . |wn] ∈ RM×n and
write the map of the reduced coefficients as:

π(µ) = WTF(µ), where (F(µ))m = f(∥µ− µm∥) 1 ≤ m ≤ M. (2.11)

Gaussian Process Regression (GPR)

A Gaussian Process (GP) is a widely used technique to address regression tasks based
on the Bayesian approach. The main idea behind the GP regression [8, 34, 35, 41] is the
attempt to learn the data generating distribution starting from the punctual values of
the underlying (unknown) function at any point of its domain. This strategy leads to a
flexible model that allows to capture any function that interpolates the available dataset.
In the case of ROMs, considered a fixed point µ∗ ∈ P, our goal is to estimate the k-th

16 2| Chapter 2: Reduced order methods

coefficient ur,k(µ∗) of the reduced solution ur(µ∗) through the GPR technique. To do
this, we can consider the regression function f : P −→ R as a scalar function whose
distribution is Gaussian: f(µ∗) ∼ N (m(µ∗), σ2).
Collecting a finite number of inputs into a vector x = [µ1, . . . , µM] we can obtain the
resulting output expressed by M different Gaussian distributions. However, since all the
outputs are represented by the values of the same function evaluated at different points,
these distributions must necessarily be correlated to each other. Therefore, if we consider
a value in the parameter space for which the function assumes a certain value with relative
uncertainty, we expect that small perturbations of the input will correspond to a limited
change in both the output and the uncertainty value. This means that the input x is
associated with a multivariate distribution for the output y = [f(µ1), . . . , f(µM)] that is

y ∼ N (m,K), where

 (m)i = E[yi],

K(i,j) = E[(yi −mi)(yj −mj)],
(2.12)

where m is the mean vector and K represents the covariance matrix. All these consider-
ations lead to define the regression function as a GP:

f(µ) ∼ GP(m(µ), k(µ, µ′)) ∀µ, µ′ ∈ P. (2.13)

More precisely, a GP is a stochastic process f(µ) in which any finite number of random
variables taken from the random process has a joint Gaussian probability distribution.
Equation (2.13) represents a distribution over functions for which, as for any regular
Gaussian distribution, we specify a mean and a covariance. However, since we are dealing
with infinite dimensions both of the vector and of the covariance matrix, m is replaced
by the mean function m(·) and K is replaced by the two-dimensional kernel covariance
function k(·, ·) such that:m(µ) = E[f(µ)],

k(µ, µ′) = E[(f(µ)−m(µ))(f(µ′)−m(µ′))].
(2.14)

In particular, considering (2.12), we can observe that the parameters involved are specific
realizations of a GP, over a finite subset of inputs. Namely, if we consider a vector
xtr = [µ1, . . . , µM] containing all elements of the training set Ph, we obtain:m = m(xtr) := [m(µi)]1≤i≤M ∈ RM ,

K = k(xtr,xtr) := [k(µi, µj)]1≤i,j≤N ∈ RM×M .
(2.15)

2| Chapter 2: Reduced order methods 17

In order to tackle the regression task, we have to choose a prior distribution for both m(·)
and k(·, ·). The former is usually taken equal to zero, m(µ) = 0, while for the latter there
are different options. Two examples of covariance functions widely used are:

• squared exponential k(µ, µ′) = σ2
f exp{− 1

2ℓ2
∥µi − µ′

i∥2RP },

• squared exponential kernel k(µ, µ′) = σ2
f exp{−

∑P
i=1

(µi−µ′
i)

2

2ℓ2
},

where two different hyper-parameters have been introduced: σf is the standard deviation
that controls the uncertainty in the vertical direction and ℓ represents the correlation
length scale, namely how far we need to move (along a particular axis) in the input space
for the function values to become uncorrelated. The choice of these hyper-parameters
strongly influences the performance of the model and has to be tuned depending on the
covariance kernel function used. We refer to [42], [23] for further details.
To carry out the regression, namely to adapt the probability distribution given by the GP
to new observations, we have to compute the probability of this function conditioned by
new observations

P(f(·)|xtr,ytr) = GP(f̄(·), k′(·, ·)), (2.16)

where f̄(·) and k′(·, ·) are the corrected mean and covariance respectively given by: f̄(·) = k(·,xtr)K
−1ytr,

k′(·, ·) = k(·, ·)− k(·,xtr)K
−1k(xtr, ·).

(2.17)

Since the main aim is to use this method for prediction purposes, we can collect a set of
testing parameters in the vector xpr and compute the expected value of the corresponding
output we want to predict, ypr, namely the value of m(xpr). Combining (2.17) with
the properties of the GPs, we can evaluate the mean and covariance of the posterior
distribution ypr|xpr,xtr,ytr ∼ N (mpr,K

′
pr) as:

• mpr = f̄(xpr) = k(xpr,xtr)K
−1ytr,

• K′
pr = k(xpr,xpr)− k(xpr,xtr)K

−1k(xtr,xpr).

The procedure just described, allowed us to construct component-wise the regression map
πGP : P −→ Rn, where the k-th entry is given considering xtr = [µ]µ∈Ph

and ytr =

[ur,k(µ)µ∈Ph
] as training data. Finally, using the mean of the M independent distributions

obtained with the procedure just described, we are able to predict the reduced coefficients
at new parameter values.

18 2| Chapter 2: Reduced order methods

Artificial Neural Networks (ANN)

The Artificial Neural Network (ANN) [7, 14, 17, 19, 37], or simply Neural Network (NN),
is a model that learns information from observational data, offering an alternative to the
algorithmic programming paradigm. It consists of artificial neurons connected by a set of
directed weighted synapses that can be represented by an oriented graph, with neurons as
nodes and "synapses" as oriented edges, whose weights are tuned by means of a training
process to specialize the network for a specific application. A representation of a neuron,
that is the fundamental unit of a neural network, is shown in Figure 2.1.

.

.

.

ys1

ws1,j
ws2,j

j (θj)

ys2

ysm

wsm,j

wj,r1

wj,r2

wj,rn

.

.

.

wj,r1
 yj.

wj,r2
 yj.

wj,rn yj.

.

.

.

ys1

ws1,j
ws2,j

j (0)

ys2

ysm

wsm,j

wj,r1

wj,r2

wj,rn

.

.

.

wj,r1
 yj.

wj,r2
 yj.

wj,rn yj.
-θj

+1

Figure 4.1. Visualization of the generic j -th neuron of an artificial neural network, including (right) or not (left) a bias neuron. On the left,
the neuron accumulates the weighted inputs

©
ws1, j ys1 , . . . , wsm , j ysm

™
respectively coming from the sending neurons

©
s1, . . . , sm

™
; on

the right, the neuron accumulates the weighted inputs
©

ws1, j ys1 , . . . , wsm , j ysm , °µ j
™

respectively coming from the sending neurons©
s1, . . . , sm , b

™
, with b the bias neuron. In both situations, the neuron then fires y j , sent to the target neurons

©
r1, . . . ,rn

™
through the

synapsis
©

w j ,r1 , . . . , w j ,rn

™
. The neuron threshold is reported in brackets within its body.

At each timestep, the activation state a j , often referred to as activation, quantifies to which extent neuron j is currently
active or excited. It results from the activation function fact , which combines the net input u j with a threshold µ j 2R [28]:

a j = fact (u j ; µ j) = fact
° mX

k=1
wsk , j ysk ; µ j

¢
.

Note that the threshold µ j is a parameter of the network and as such one may choose to adapt it through a training process,
exactly as it can be done for the synaptic weights. To ease the runtime access of µ j , it is common practice to introduce a
bias neuron in the network. A bias neuron is a continuously firing neuron, with constant output yb = 1, which is directly
connected with neuron j , assigning the bias weight wb, j =°µ j to the connection. As can be deduced by the representation
on the right in Fig. 4.1, µ j is now treated as a synaptic weight, while the neuron threshold is set to zero. Therefore, the net
input and the activation state can respectively be expressed as

u j =
mX

k=1
wsk , j ysk ° µ j and a j = fact

° mX
k=1

wsk , j ysk ° µ j
¢

.

There exist various choices for the activation function. The sigmoid activation functions have been widely used for the
realization of artificial neural networks due to their graceful combination of linear and nonlinear behaviour [22]. Sigmoid
functions are s-shaped, monotically increasing, and assume values in a bounded interval; a well-known instance is given by
the hyperbolic tangent,

fact (v) = ev °e°v

ev +e°v .

Finally, the output function fout calculates the scalar output y j 2R based on the activation state a j of the neuron:

y j = fout (a j) .

Often, fout is the identity function, so that activation and output of a neuron coincides, i.e., y j = fout (a j) = a j . The output
y j could then be sent either to other neurons or constitute a component of the overall output vector of the network, as for
the neurons in the output layer of a feedforward neural network, illustrated in the following subsection.

It should be pointed out that the neural model presented so far refers to the so called computing neuron, i.e., a neuron
which processes input information to provide a response. However, in a neural network one may also identify source
neurons, supplying the network with the respective components of the input vector, without performing any computation
[22].

7

Figure 2.1: Scheme of a neuron: the fundamental unit of the NN (image source [17]).

As deeply explained in [17], each neuron j in the network is connected with m sending
neurons {s1, . . . , sm} from which receives different inputs. These latter must be elabo-
rated by the neuron through the combination of three different functions, the propagation
function, the activation function and the output function to produce an output. The role
of each of the three functions, that fully characterize the action of each neuron, is clarified
below:

Propagation function: converts the input received by the sending neurons [y1, . . . , ysm]
to a scalar uj = fprop(wsk,j, ysk). The most common choice for fprop is the weighted
sum, namely uj =

∑m
k=1wsk,jysk .

Activation function: at each time step, it prescribes to which degree the neuron j is
active. This is specified by the activation state aj = fact(uj; θj), where θj represents
a threshold parameter of the network chosen in the training phase. To properly
treat θj, it is common to introduce a bias neuron in the network, with constant
output yb = 1, which is directly connected with neuron j, assigning the bias weight
wb,j = −θj to the connection. So, θj is treated as a weight during the training
phase of the network obtaining new expressions for uj =

∑m
k=1wsk,jysk − θj and

aj = fact(uj). There are different functions that can be used as activation functions,
typically non-linear. Some examples are Tanh, Sigmoid, ReLU, Linear, SoftMax.

2| Chapter 2: Reduced order methods 19

Output function: it evaluates the scalar output yj based on the activation state aj of
the neuron, yj = fout(aj). Usually, it is the identity function, so that activation and
output of a neuron coincide.

After selecting the characterization of neurons, it remains to define the topology of the
network, namely how the neurons are interconnected. Among all the possible architectures
in the literature, the feed-forward neural network is the one preferred to address regression
tasks. Its peculiarity is that neurons are arranged into layers: the input layer made of M I

neurons, a variable number of hidden layers H and an output layer made of MO neurons.
In this kind of network, the neurons belonging to a particular layer can only communicate
to neurons belonging to the next layer and so on towards the output layer. Therefore,
basically, the neural network constructs a non-linear map π between the input space and
the output space (that encodes the role of hidden layers)

π : MI 7→ MO. (2.18)

This map-like behavior makes the feed-forward neural networks particularly suitable for
continuous function approximation. Depending on the number of hidden layers, we can
distinguish two different categories of feed-forward neural networks: Single-Layer Per-
ceptrons (SLPs) and Multi-Layers Perceptrons (MLPs). Since the former are suitable to
handle problems based on linearly separable data, we focused on networks belonging to
the second category. Another important parameter that has to be tuned is the number
of neurons belonging to each layer. There are no clues about how to choose the optimal
number of neurons so we tackled this issue by testing different combinations and making
decisions based on errors. An example of MLP with three hidden layers, with five neurons

Figure 2.2: Example of a MLPs neural network with three hidden layers (image source
[28]).

each, is shown in Figure 2.2. The role of the network we have just described is to com-
pute the reduced coefficients, minimizing the loss function on the training set, computed

20 2| Chapter 2: Reduced order methods

through the Mean Squared Error (MSE) between labels (real value of the training point)
and outputs. In practice, since with the reduced basis we can describe each vector in the
reduced space Vrb as

vrb = V α =
L∑

j=1

vj
rbwj =

L∑
j=1

vj
rb

Nh∑
i=1

Vi,jϕi =

Nh∑
i=1

(V vrb)iϕi, (2.19)

where {ϕ1, . . . , ϕNh
} is a basis of Vh, we want to use the network to approximate α, the

vector of reduced coefficients.

We recall that the projection of a vector uh ∈ Vh on the space Vrb corresponds to the pro-
jection of the same vector onto col(V), where V is the matrix that has as columns a basis
of Vrb. Since V V T is the projection matrix and can be written as V V T =

∑
i ⟨wi, ·⟩wi,

the reduced solution urb can be expressed as:

uh ≃ urb = V V Tuh =

Nh∑
i=1

(V V Tuh)iϕi =
L∑

j=1

(V Tuh)jwj. (2.20)

Moreover, considering that uh = uh(µ), the aim becomes to approximate the function:

π : µ ∈ P −→ V Tuh ∈ RL, (2.21)

with a neural network.
This allows the computation of new instances during the online phase as V π̄(µ) where
the π̄ represents the estimated function.
The network we needed is characterized by an input layer of the same dimension on the
parameter vector (in our case 1 since the time is a scalar), h hidden layers whose value
has to be decided and an output layer of dimension given by the function π̄(µ) that in
our case is the number of degrees of freedom of the FOM solution.

2.1.3. Intrusive approach: hints

To complete the discussion about the ROM, we briefly introduce also the analytical non-
intrusive approach.
In a context in which we know the model generating the snapshots, it is natural to
address the ROM using an intrusive approach, as done in [12]. This method consists of
implementing the projection of the algebraic model onto the reduced space, previously
computed using one of the two methods already explained, POD or greedy algorithm. In
particular, having the algebraic expression of the governing equations, the reduced model

2| Chapter 2: Reduced order methods 21

can be analytically computed through the Galerkin projection. This method consists of
solving at tn+1 the following system for βn+1 and γn+1:

Mr(
βn+1 − βn

∆t
) + (γn)TGrβ

n+1 − 1

Re
Arβ

n+1 = 0, (2.22)

Brγ
n+1 + M̃rβ

n+1 = 0, (2.23)

where βn and γn are two vectors containing the coefficients of the solutions with respect
to the reduced basis function φ and ξ and the matrices involved encode the differential
operators as follows:

• Mass matrix for ω: MW
rij

= (φi, φj)L2 ,

• Diffusion matrix for ω: Arij = (φi,∆φj)L2 ,

• Mass matrix for Ψ: MΨ
rij

= (ξi, ξj)L2 ,

• Diffusion matrix for Ψ: Brij = (ξi,∆ξj)L2 ,

• Non-linear term: Grijk = (φi,∇ · ((∇× ξj)φk)L2).

23

3| Chapter 3: Numerical results

Before discussing the results obtained, we briefly recall the leitmotif of our analysis. We
derived an alternative formulation of the Navier-Stokes equations based on the variables
ω and Ψ (1.4) to tackle the description of the motion of a fluid in a 2D, discretized it
and validated it by comparing its computed solutions with those obtained through the
original implemented solver icoFoam. Then, we integrated this model into the ITHACA-
FV library [38, 40] to perform the offline phase of the reduced order method that made
us construct the matrix of snapshots required to the proper application of the ROM.
Actually, once we obtained the dataset of the full order simulations, we used it to train a
neural network to perform the POD and reconstruct the original solutions starting from
the reduced ones. Moreover, we explored the capability of this model to predict instances
related to new values of the parameter and compare them with the corresponding one
obtained through the FOM. In the following, we reported all results obtained.

3.1. Validation of the vorticity - stream function solver

After the derivation of the ω−Ψ model and its discretization through the finite difference
scheme BDF1 in time and the finite volume method in space, we addressed the compu-
tations on the widely used vortex merger benchmark, where we also performed the same
simulations using the u− p solver. By doing so, we could compare the obtained solutions
and demonstrate the equivalence between the two formulations.

3.1.1. Test case: vortex merger

The vortex merger benchmark on which we tested the models consists of two co-rotating
vortices of the same sign at a certain distance that evolve into a single one [36]. It
represents a typical initial condition for astrophysical, meteorological, and geophysical
phenomena.

24 3| Chapter 3: Numerical results

Geometry and computational settings

The geometry of the case under consideration is very simple. It consists of a 2π×2π×0.2

volume discretized with a grid made of 256× 256× 1 elements. This is a 3D domain that
can be considered as a 2D domain since we neglect the variation of the solution in the
z-direction.
On this mesh, we set as boundary conditions the already prescribed Dirichlet homoge-
neous boundary conditions (1.5), we enforced F = 0 for sake of simplicity and, as initial
conditions, we imposed ω = ω0 with

ω(x, y, 0) = ω0(x, y) =
2∑

i=1

e−π[(x−xi)
2+(y−yi)

2]. (3.1)

In the expression above, (xi, yi) represents the initial location of each vortex i : (x1, y1) =

(3π
4
, π) and (x2, y2) = (5π

4
, π). In Figure 3.1 we report the representation of the initial

condition ω = ω0 and of the condition for Ψ0, while Figure 3.2 shows the computed u at
t = 0.

(a) ω at t = 0 (b) Ψ at t = 0

Figure 3.1: Initial conditions of the variables ω and Ψ.

3.1.2. Results and comments

Once the initial condition has been imposed, we simulated the problem setting the starting
time to 0 s, the time step to 0.01 s and the end time to 20 s. Letting the system evolve,
we obtained the computed solutions for the variables under analysis: ω,Ψ, u. In order to
verify if the solver just implemented is equivalent to icoFoam, the one already implemented
in OpenFOAM, that addresses the solution of the Navier-Stokes equation in the original

3| Chapter 3: Numerical results 25

Figure 3.2: Initial value of the magnitude of u computed as ∇×Ψ.

u − p formulation, we run the same simulation using the original variables. The main
issue we had to face when performing the second computation was the setting of the initial
condition: we had to describe the vortex merger introduced in the first case in terms of
the velocity. To do so, since the initial value for Ψ is set to zero and this prevents us to
use it to reconstruct the vortex merger initial condition depending on u, we decided to
perform a simulation with the solver written in the alternative formulation in a very short
time interval, namely (10−6, 2 · 10−6]. We obtained the values of the solution u computed
as u = ∇ × Ψ at time t = 2 · 10−6 and we set it as the initial condition of the solver
in the original (u, p) formulation. This strategy allowed us to approximate the initial
condition for the velocity in a much simpler way than describing the vortex merger using
directly the variable u. For what concerns p, instead, we imposed homogeneous Neumann
condition.
In Figure 3.3, Figure 3.4 and Figure 3.5 the motion of the variables u, ω,Ψ computed in
the two different formulations of the problem are compared.

As it can be easily observed, the simulations of each variable considered in the two different
formulations are basically equivalent. If we focus on the representation of u, we have to
take into account that the solution computed using the ω −Ψ formulation is the result
of a post-processing of Ψ while, using icoFoam, it is directly computed by the solver.
This could make us appreciate the possibility to reconstruct the motion of u using the
alternative solver. This observation can be repeated to analyze the performance of the
computation of the two alternative variables starting from the u − p formulation, but
in this case we have to consider the opposite behavior: u is directly computed by the
icoFoam solver and post-processed to obtain the evolution of ω and Ψ as ω = ∇ × u

26 3| Chapter 3: Numerical results

(a) t = 5 (b) t = 10 (c) t = 15 (d) t = 20

Figure 3.3: Evolution in time of u computed in the ω−Ψ formulation (top) and in u− p

formulation (bottom) at the different time steps of the simulation.

(a) t = 5 (b) t = 10 (c) t = 15 (d) t = 20

Figure 3.4: Evolution in time of ω computed in the ω−Ψ formulation (top) and in u− p

formulation (bottom) at the different time steps of the simulation.

3| Chapter 3: Numerical results 27

(a) t = 5 (b) t = 10 (c) t = 15 (d) t = 20

Figure 3.5: Evolution in time of Ψ computed in the ω−Ψ formulation (top) and in u− p

formulation (bottom) at the different time steps of the simulation.

and Ψ = ∆ω respectively. We point out that, since the main focus of this procedure is
the validation of the model in the alternative formulation, we discard the representation
of the pressure, even if it can be reconstructed by solving a pressure Poisson equation
at each time step once Ψ is computed, as prescribed by the Chorin-Temam projection
method [43].

3.2. POD-non intrusive model order reduction

Once shown the equivalence between the original and the alternative model, we used the
full order model in the alternative formulation to obtain the matrix of the snapshots.
In particular, we recreated the framework described in [12] in which the time interval
considered, (0,20] s, is divided into sub-intervals of length 0.08 s to obtain 250 snapshots
arranged in a matrix. This represented the starting point for the analysis we made
to investigate the predictive power of the different data-driven methods explained in
Section 2.1.2. To do this we divided our dataset into train and test. We decided to use
50% of the dataset for the training and the remaining 50% for the testing, distributing
the snapshots alternatively, one in the training set and one in the test set, in order to
have a uniform distribution both of the computed information and of the one to predict.
The result is a training set of 126 snapshots and a test set of 124. At this point, by
means of EZyRB [9], a Python package developed and maintained by the mathLab group

28 3| Chapter 3: Numerical results

at SISSA to deal with data-driven ROM, we applied the reduced order method in three
different variants, POD-RBF, POD-GPR, POD-NN and evaluated their performances.
In order to perform the ROM, we considered separated computations for the two variables
ω and Ψ since the construction of the reduced models of different variables can be tackled
independently. In particular, by doing so, we could set a different number of modes for
the two variables to perform the POD, as suggested by the analysis of the decay of the
eigenvalues taken on in [12]. Figure 3.6 highlights that, considering a threshold for the
error of 10−5, the right combination to consider is 14 modes for the vorticity and 6 for
the stream function.

Figure 3.6: Eigenvalues decay for the vorticity (left) and stream function (right).

In the following, we present and compare the results obtained in this framework using the
three different methods.

3.2.1. Radial Basis Functions (RBF) interpolation

The first method we applied is POD-RBF. In this framework, we used the RBF in-
terpolation in the default EZyRB configuration, namely, we considered the Euclidean
distance d(µ, µC) = ∥µ − µC∥ and the thin plate spline as radial functions, f(µ) =

∥µ− µC∥2 log(∥µ− µC∥). Once set these parameters, we computed the relative L2 error
in percentage as

EΦ(t) = 100 · ∥Φh(t)− Φr(t)∥L2

∥Φh(t)∥L2

, (3.2)

where Φh represents the FOM solution while Φr the ROM one, see Figure 3.7. Over the
entire time interval considered, the error remains below 0.175% for the vorticity and below
0.15% for the stream functions. For what concerns ω, the resulting error is significantly
better than the ones obtained with the intrusive approach, while those computed for Ψ

3| Chapter 3: Numerical results 29

are very similar. In terms of CPU time, we verified that the POD-RBF requires 0.24 s
to compute the solution for ω and 0.23 s for Ψ, so summing the two values, 0.47 s are
needed to reconstruct the entire solution, that is the same amount of time required using
the intrusive approach. So the total speed-up is 102 also for the POD-RBF method.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

w
er

ro
r %

RBF error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

ps
i e

rro
r %

RBF error

Figure 3.7: Relative percentage error between the full order and the one reconstructed
through POD-RBF ROM: ω (left), Ψ (right).

In Figure 3.8 and Figure 3.9, we show the qualitative reconstruction of the POD-RBF
solutions at three different times and compare them with FOM.

3.2.2. Gaussian Process Regression (GPR)

The second method we applied to our dataset is the POD-GPR in the default EZyRB
configuration [29]. We computed the error between the exact solution and the one recon-
structed by the ROM over the entire time horizon considered, see Figure 3.10. From these
representations, we can observe that the error computed for the vorticity remains below
the 0.175 % for the entire time interval and for the stream function its maximum value
is 0.125 %. For both the variables, the resulting error computed through GPR is very
similar to the one computed with RBF even if for Ψ it is slightly lower. Also in this case,
the results obtained for the vorticity are better than the one computed with the intrusive
approach, while, for the stream function they are comparable. Analyzing the speed-ups,
we can assess that POD-GPR requires 0.31 s to compute the solution for ω and 0.25 s for
Ψ, so finally 0.56 s are required to reconstruct the entire solution, that is slightly more
than the amount of time required using the intrusive approach. The order of magnitude
of the speed-up of POD-GPR is 102.

In Figure 3.11 and Figure 3.12 we reported the visualization of the comparison between the
FOM and POD-GPR solutions at the same instants considered for the previous method.

30 3| Chapter 3: Numerical results

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0010

0.0005

0.0000

0.0005

0.0010

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Figure 3.8: Representation of the solution ω at three different times computed through
the FOM (top), reconstructed with the POD-RBF ROM (middle) and the error between
the two (bottom).

3| Chapter 3: Numerical results 31

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

Figure 3.9: Representation of the solution Ψ at three different times computed through
the FOM (top), reconstructed with the POD-RBF ROM (middle) and the error between
the two (bottom).

3.2.3. Artificial neural network (ANN)

Finally, we addressed the problem with the POD-NN configuration. To do so, we trained
a Multi-Layers Perceptron (MLP) made of three hidden layers of respectively 16, 64 and
64 neurons. This choice has been made based on the results given by different simulations.
Once we decided the topology of the network and decided to use the Mean Squared Error
(MSE) as loss function, namely

∑
i=1(yi − ŷi)

2, (where ŷi is the approximated value), we
trained the NN on the dataset and obtained the evolution of the loss function over the
epochs depicted in Figure 3.13.

Then, we computed the relative L2-error in percentage between the solution computed
with the FOM and with the POD-NN ROM obtaining the results shown in Figure 3.14.
It can be easily observed that the error in percentage achieved very low values for both
the two variables, namely it reaches the maximum value of 0.25% for ω and 0.15% for
Ψ. These results are slightly higher than the previous approach for ω, while they are
quite similar for Ψ. The disadvantage of the ANN lies in the speed-up. Requiring 28

32 3| Chapter 3: Numerical results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

w
er

ro
r %

GPR error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

ps
i e

rro
r %

GPR error

Figure 3.10: Relative percentage error between the full order and the one reconstructed
through POD-GPR ROM: ω (left), Ψ (right).

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0010

0.0005

0.0000

0.0005

0.0010

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Figure 3.11: Representation of the solution ω in three different time computed through
the FOM (top), reconstructed with the POD-GPR ROM (middle) and the error between
the two (bottom).

s to be trained for the vorticity and 34 s for the stream function, the speed-up for the
neural network is almost 1. This result makes this method in this baseline configuration
unsuitable for real applications. In Figure 3.15 and Figure 3.16 we report the plot of the
full-order and reduced-order solutions to make a comparison.

3| Chapter 3: Numerical results 33

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

Figure 3.12: Representation of the solution Ψ in three different times computed through
the FOM (top), reconstructed with the POD-GPR ROM (middle) and the error between
the two (bottom).

3.2.4. Extrapolation

Given the promising prediction results on the sample dataset, we wondered if the three
data-driven methods investigated in the previous sections could be exploited to make
predictions on a wider time horizon. With this in mind, we decided to answer this question
by testing the performance of each method in extrapolating the solution advancing in
time, given the model trained as explained in Section 3.2. In particular, we addressed
the predictions in the time interval (20 s, 24 s] with the usual time step ∆t = 0.08 s and
compared the computed solutions with the different methods at three different instants,
one very close to the training set, 20.48 s, one in the middle of the extrapolation interval,
22 s, and one at the end 24 s.

In the following, we briefly discuss the performances of each method.

34 3| Chapter 3: Numerical results

0 5000 10000 15000 20000 25000 30000
epochs

10 4

10 3

10 2

10 1

100

101

102

NN
 lo

ss
 fo

r W

train loss

0 5000 10000 15000 20000 25000 30000
epochs

10 5

10 4

10 3

10 2

10 1

100

101

102

NN
 lo

ss
 fo

r P
si

train loss

Figure 3.13: Loss function of the NN for ω (left) and Ψ (right) with respect to the training-
set.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w
er

ro
r %

ANN error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

ps
i e

rro
r %

ANN error

Figure 3.14: Relative percentage error for ω (left) and of Ψ (right) computed through
POD-NN method.

RBF extrapolation

With the same configuration of the method described in Section 3.2, we took on the pre-
diction of the following interval, obtaining the evolution of the error shown in Figure 3.17.
From these plots, we could observe that the evolution of Ψ can be captured advancing in
time with a small error, while for ω the error introduced is quite significant.

In Figure 3.18 and Figure 3.19 we showed the comparison of the solutions.

GPR extrapolation

Addressing the same extrapolation task with the GPR method we obtained the errors
shown in Figure 3.20.

In Figure 3.21 and Figure 3.22 we reported the simulated solutions in the time under
analysis.

3| Chapter 3: Numerical results 35

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 1.68 (s)

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

0 50 100 150 200 250
0

50

100

150

200

250
time 9.68 (s)

0.0010

0.0005

0.0000

0.0005

0.0010

0 50 100 150 200 250
0

50

100

150

200

250
time 19.28 (s)

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Figure 3.15: Representation of the solution ω in three different time computed through
the FOM (top), reconstructed with the POD-NN ROM (middle) and the error between
the two (bottom).

36 3| Chapter 3: Numerical results

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 1.84 (s)

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

0 50 100 150 200 250
0

50

100

150

200

250
time 9.84 (s)

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

0 50 100 150 200 250
0

50

100

150

200

250
time 19.44 (s)

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

Figure 3.16: Representation of the solution Ψ in three different times computed through
the FOM (top), reconstructed with the POD-NN ROM (middle) and the error between
the two (bottom).

3| Chapter 3: Numerical results 37

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
time

0

5

10

15

20

25

30

35
w

er
ro

r %

RBF extrapolation error

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
time

0.5

1.0

1.5

2.0

2.5

ps
i e

rro
r %

RBF extrapolation error

Figure 3.17: Relative percentage error for ω (left) and of Ψ (right) computed through
POD-RBF method in the extrapolation of the solutions.

ANN extrapolation

Finally, we performed the analysis through the neural network, obtaining the errors de-
picted in Figure 3.23.

The reconstructed solutions computed with the ANN can be visualized in Figure 3.24 and
Figure 3.25.

38 3| Chapter 3: Numerical results

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Figure 3.18: Representation of the extrapolated solution ω in three different time com-
puted through the FOM (top), reconstructed with the POD-RBF ROM (middle) and the
error between the two (bottom).

3| Chapter 3: Numerical results 39

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.010

0.005

0.000

0.005

0.010

0.015

Figure 3.19: Representation of the extrapolated solution Ψ in three different times
computed through the FOM (top), reconstructed with the POD-RBF ROM (middle)
and the error between the two (bottom).

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
time

0

5

10

15

20

25

30

35

40

w
er

ro
r %

GPR extrapolation error

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
time

0

1

2

3

4

5

6

7

ps
i e

rro
r %

GPR extrapolation error

Figure 3.20: Relative percentage error for ω (left) and of Ψ (right) computed through
POD-GPR method in the extrapolation of the solutions.

3.2.5. Comments

To summarize, the methods analyzed to address the non-intrusive ROM give promising
results in predicting the values of the solutions that encourage to further investigation. We

40 3| Chapter 3: Numerical results

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.010

0.005

0.000

0.005

0.010

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Figure 3.21: Representation of the extrapolated solution ω in three different time com-
puted through the FOM (top), reconstructed with the POD-GPR ROM (middle) and
the error between the two (bottom).

3| Chapter 3: Numerical results 41

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.000

0.005

0.010

0.015

0.020

0.025

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.02

0.01

0.00

0.01

0.02

0.03

Figure 3.22: Representation of the extrapolated solution Ψ in three different times
computed through the FOM (top), reconstructed with the POD-GPR ROM (middle)
and the error between the two (bottom).

42 3| Chapter 3: Numerical results

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
time

0

5

10

15

20

25

w
er

ro
r %

ANN extrapolation error

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
time

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

ps
i e

rro
r %

ANN extrapolation error

Figure 3.23: Relative percentage error in the extrapolation of the solutions for ω (left)
and of Ψ (right) computed through POD-NN method.

can observe that each technique reveals better performance for the variable Ψ while the
computations of ω produce worse predictions. This can be due to the higher complexity
of the variable, as stated in [12]. Considering the percentage of the error committed
on the test set and the speed-ups for the vorticity, the best method is the RBF, while
for the prediction of the stream function, the performances of the RBF and GPR are
comparable. We can also assess that the worse method to tackle the predictive task is the
NN since the error computed is similar to the others, but it loses in the speed-up. While,
for what concerns the extrapolation issue, the NN achieves the lowest error value for both
variables among the three methods. In this analysis, the worst is the GPR which reaches
a maximum error value of 40% for the vorticity and of 7% for the stream function.

3| Chapter 3: Numerical results 43

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Figure 3.24: Representation of the extrapolated solution ω in three instants under
analysis computed through the FOM (top), reconstructed with the POD-ANN ROM
(middle) and the error between the two (bottom).

44 3| Chapter 3: Numerical results

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.1

0.2

0.3

0.4

0 50 100 150 200 250
0

50

100

150

200

250
time 20.56 (s)

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0 50 100 150 200 250
0

50

100

150

200

250
time 22.16 (s)

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0 50 100 150 200 250
0

50

100

150

200

250
time 23.76 (s)

0.010

0.005

0.000

0.005

0.010

Figure 3.25: Representation of the extrapolated solution Ψ in three instants under
analysis computed through the FOM (top), reconstructed with the POD-ANN ROM
(middle) and the error between the two (bottom).

45

4| Conclusions and future

developments

The work just presented aimed to analyze a different approach to the solution of the
Navier-Stokes equations in the context of atmospheric and geophysical problems where
the alternative variables under analysis have great use. We constructed and validated
the alternative model on a simple test case and used the solutions computed as a starting
point for the application of the data-driven ROM in the POD-RBF, POD-GPR and POD-
NN configurations, we made a comparison between these data-driven methods and the
analytical approach followed in [12]. For what concerns the conclusions we can draw from
this study, we can state the equivalence of the alternative ω−Psi solver and the original
one in the full order approach. We can also assess that the capabilities of the non-intrusive
approach in the configurations investigated produced significant results in making predic-
tions, both on the sample dataset and on the advanced time horizon. In future analysis,
it would be interesting first to test and compare the extrapolation capabilities of the
intrusive approach and to further investigate the data-driven methods, for instance, by
changing the parameters involved in the training. In particular, for what concerns the
RBF, it would be challenging to try different radial functions and different definitions of
the distance, for the GPR the changing of the kernel functions could lead to better results,
while for the NN a deeper study can be carried out to find out the optimal network to
address the problem. For instance, as suggested in [13], the usage of Long-Short Term
Memory neurons could reveal more suitable in the prediction of sequential data. Given
the promising results obtained by training the model on the particular configuration of
the dataset (one snapshot for training and one for testing alternatively), different patterns
for the division of data in train and test can be considered to quantify how the dimension
of the training set influences the performances in the prediction. However, we are aware
that these advantages are paid in generalization, since, as for any data-driven method,
their performance depends on the set used for the training, furthermore, the fact that
they work as black-boxes, makes them poorly interpretable with respect to the intrusive
approach.

46 4| Conclusions and future developments

We plan to expand this work in the future making the model more realistic by including
a stochastic variable to describe the angle of incidence of the wind. This allows us to
take into account a possible external source of perturbations. Since this parameter is, by
definition, affected by uncertainty, its introduction requires the application of a different
variant of the ROM. In particular, we tackle this issue by applying the weighted ROMs
for forward uncertainty problems. Weighted ROMs are slight modifications of classical
ROM methods that take into account some previous knowledge of the distribution of the
parameters and use this information to accelerate the reduced simulations [6], [45]. We
point out that the proposed weighted ROMs operates weighing the ROM outcome with-
out changing their form. However, this is not the unique strategy to deal with this kind
of problems. Another possibility is to reconstruct the stochastic PDEs operating in the
discretization procedure, as done in [44]. For what concerns our analysis, we decided to
address the new problem by restoring the original intrusive approach analyzed in [12] and
expand the analysis dealing with the issue just introduced. To do this, we will, first of
all, perform the weighted POD and then decide which strategy is better to use for the
sampling among the most common: Monte Carlo uniform sampling to approximate the
momenta of the error between the ROM and FOM solution, tensor product quadrature
rule, sparse Smolyak quadrature rule.

47

Bibliography

[1] OpenFOAM Library. https://openfoam.org/.

[2] J. A. Atwell and B. B. King. Proper orthogonal decomposition for reduced basis
feedback controllers for parabolic equations. volume 33, pages 1–19. 2001. doi: 10.
1016/S0895-7177(00)00225-9. URL https://doi.org/10.1016/S0895-7177(00)

00225-9. Computation and control, VI (Bozeman, MT, 1998).

[3] P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, and
L. Miguel Silveira. Model Order Reduction: Volume 2: Snapshot-Based Methods
and Algorithms. De Gruyter, 2020.

[4] P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, and
L. Miguel Silveira. Model order reduction: volume 3 applications. De Gruyter, 2020.

[5] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M.
Silveira. Model order reduction: Volume i: System-and data-driven methods and
algorithms. 2021.

[6] P. Chen, A. Quarteroni, and G. Rozza. A weighted reduced basis method for elliptic
partial differential equations with random input data. SIAM Journal on Numerical
Analysis, 51:3163–3185, 01 2013. doi: 10.1137/130905253.

[7] G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient,
department of computer science. Trfts. University, 31, 1988.

[8] A. G. de G. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani.
Gaussian process behaviour in wide deep neural networks. In International Confer-
ence on Learning Representations, 2018.

[9] N. Demo, M. Tezzele, and G. Rozza. EZyRB: Easy Reduced Basis method. The
Journal of Open Source Software, 3(24):661, 2018. doi: https://doi.org/10.21105/
joss.00661.

[10] A. Dumon, C. Allery, and A. Ammar. Proper generalized decomposition method for

https://openfoam.org/
https://doi.org/10.1016/S0895-7177(00)00225-9
https://doi.org/10.1016/S0895-7177(00)00225-9

48 | Bibliography

incompressible flows in stream-vorticity formulation. European Journal of Control -
EUR J CONTROL, 19:591–617, 11 2010. doi: 10.3166/ejcm.19.591-617.

[11] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1:221–218, 1936.

[12] M. Girfoglio, A. Quaini, and G. Rozza. A POD-Galerkin reduced order model for
the Navier–Stokes equations in stream function-vorticity formulation. Computers &
Fluids, 2022.

[13] I. C. Gonnella, M. W. Hess, G. Stabile, and G. Rozza. A two stages deep learning
architecture for model reduction of parametric time-dependent problems, 2023.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[15] C. J. Greenshields. OpenFOAM programmer’s guide. OpenFOAM Foundation Ltd,
2015.

[16] M. D. Gunzburger. Perspectives in flow control and optimization. SIAM, 2002.

[17] J. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear
problems using neural networks. Journal of Computational Physics, 363:55–78, 2018.
ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.02.037. URL https://www.

sciencedirect.com/science/article/pii/S0021999118301190.

[18] J. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for
Parametrized Partial Differential Equations. Springer, (2016).

[19] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[20] H. Jasak. Error analysis and estimation for the finite volume method with applica-
tions to fluid flows. Direct, M, 01 1996.

[21] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for
a general equation in fluid dynamics. SIAM Journal on Numerical analysis, 40(2):
492–515, 2002.

[22] D. Lazzaro and L. B. Montefusco. Radial basis functions for the multivariate inter-
polation of large scattered data sets. Journal of Computational and Applied Mathe-
matics, 140(1-2):521–536, 2002.

[23] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein.
Deep neural networks as gaussian processes, 2018.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/S0021999118301190
https://www.sciencedirect.com/science/article/pii/S0021999118301190

| Bibliography 49

[24] J. Lequeurre and A. Munnier. Vorticity and stream function formulations for the
2d navier–stokes equations in a bounded domain. Journal of Mathematical Fluid
Mechanics, 22(2):15, 2020.

[25] S. Lorenzi, A. Cammi, L. Luzzi, and G. Rozza. POD-Galerkin method for finite
volume approximation of Navier–Stokes and RANS equations. Computer Methods in
Applied Mechanics and Engineering, 311:151–179, 2016.

[26] D. J. Lucia, P. S. Beran, and W. A. Silva. Reduced-order modeling: new approaches
for computational physics. Progress in Aerospace Sciences, 40(1):51–117, 2004. ISSN
0376-0421. doi: https://doi.org/10.1016/j.paerosci.2003.12.001. URL https://www.

sciencedirect.com/science/article/pii/S0376042103001131.

[27] P. Minev and P. N. Vabishchevich. An operator-splitting scheme for the stream
function–vorticity formulation of the unsteady navier–stokes equations. Journal of
computational and applied mathematics, 293:147–163, 2016.

[28] E. Muravleva, I. Oseledets, and D. Koroteev. Application of machine learning to
viscoplastic flow modeling. 09 2018.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[30] A. Quarteroni. Le equazioni di Navier-Stokes. Springer, 2012.

[31] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics, volume 37 of Texts
in Applied Mathematics. Springer-Verlag, Berlin, second edition, 2007. ISBN 978-3-
540-34658-6; 3-540-34658-9. doi: 10.1007/b98885.

[32] A. Quarteroni, A. Manzoni, and F. Negri. Reduced basis methods for partial differ-
ential equations: an introduction, volume 92. Springer, 2015.

[33] S. M. Rahman, O. San, and A. Rasheed. A hybrid approach for model order reduction
of barotropic quasi-geostrophic turbulence. Fluids, page 86, 2018. doi: 10.3390/
fluids3040086.

[34] C. E. Rasmussen. Gaussian Processes in Machine Learning, pages 63–71. Springer
Berlin Heidelberg, 2004.

[35] C. E. Rasmussen, C. K. Williams, et al. Gaussian processes for machine learning,
volume 1. Springer, 2006.

https://www.sciencedirect.com/science/article/pii/S0376042103001131
https://www.sciencedirect.com/science/article/pii/S0376042103001131

50 | Bibliography

[36] J. N. Reinaud and D. G. Dritschel. The critical merger distance between two co-
rotating quasi-geostrophic vortices. Journal of Fluid Mechanics, 522:357–381, 2005.
doi: 10.1017/S0022112004002022.

[37] S. Sharma, S. Sharma, and A. Athaiya. Activation functions in neural networks.
International Journal of Engineering Applied Sciences and Technology, 04:310–316,
05 2020. doi: 10.33564/IJEAST.2020.v04i12.054.

[38] G. Stabile and G. Rozza. Finite volume POD-Galerkin stabilised reduced order
methods for the parametrised incompressible Navier-Stokes equations. Computers &
Fluids, 2018. doi: 10.1016/j.compfluid.2018.01.035.

[39] G. Stabile and G. Rozza. Finite volume POD-Galerkin stabilised reduced order
methods for the parametrised incompressible Navier–Stokes equations. Computers
& Fluids, 173:273–284, 2018.

[40] G. Stabile, S. Hijazi, A. Mola, S. Lorenzi, and G. Rozza. POD-Galerkin reduced
order methods for CFD using Finite Volume Discretisation: vortex shedding around
a circular cylinder. Communications in Applied and Industrial Mathematics, 8(1):
210–236, (2017). doi: 10.1515/caim-2017-0011.

[41] W. T. Stephenson, S. Ghosh, T. D. Nguyen, M. Yurochkin, S. Deshpande, and
T. Broderick. Measuring the robustness of gaussian processes to kernel choice. In
G. Camps-Valls, F. J. R. Ruiz, and I. Valera, editors, Proceedings of The 25th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings
of Machine Learning Research, pages 3308–3331. PMLR, 28–30 Mar 2022.

[42] W. T. Stephenson, S. Ghosh, T. D. Nguyen, M. Yurochkin, S. K. Deshpande, and
T. Broderick. Measuring the robustness of gaussian processes to kernel choice, 2022.

[43] R. Temam. Navier-Stokes equations: theory and numerical analysis, volume 343.
American Mathematical Soc., 2001.

[44] S. Tokareva, A. Zlotnik, and V. Gyrya. Stochastic finite volume method for uncer-
tainty quantification of transient flow in gas pipeline networks, 2022.

[45] L. Venturi, D. Torlo, F. Ballarin, and G. Rozza. Weighted Reduced Order Methods
for Parametrized Partial Differential Equations with Random Inputs, pages 27–40.
01 2019. ISBN 978-3-030-04869-3. doi: 10.1007/978-3-030-04870-9_2.

[46] R. Vinuesa and S. L. Brunton. Enhancing computational fluid dynamics with machine
learning. Nature Computational Science, 2(6):358–366, 2022.

4| BIBLIOGRAPHY 51

[47] S. Volkwein. Model Reduction using Proper Orthogonal Decomposition. Lecture notes,
University of Konstanz, 2011.

[48] S. Walton, O. Hassan, and K. Morgan. Reduced order modelling for unsteady fluid
flow using proper orthogonal decomposition and radial basis functions. Applied Math-
ematical Modelling, 37(20-21):8930–8945, 2013.

[49] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal
decomposition. AIAA journal, 40(11):2323–2330, 2002.

53

A| Appendix: Derivation of
Navier-Stokes equation in
primitive variables

In order to obtain the Navier-Stokes equation describing the motion of an incompressible
fluid, we started considering the mass conservation law and the second Newton’s law.

Continuity equation: We consider the fact that in any finite volume, the mass does
not change in time. This principle can be formulated as:

d

dt

∫
Vt

ρdV = 0, (A.1)

by applying the Reynolds transport theorem for a material element, we obtain that

d

dt

∫
Vt

ρdV =

∫
Vt

(
∂ρ

∂t
+∇ · (ρu))dV = 0. (A.2)

Where ρ = ρ(x, t) is intended as the density of the mass while u = u(x, t) is the Eulerian
velocity. Thanks to the arbitrariness of the volume under analysis, we can consider the
differential form of the equation

∂ρ

∂t
+∇ · (ρu) = 0, (A.3)

and since we are considering an incompressible fluid, namely with constant density in
space and time, this expression leads to the continuity equation:

∇ · u = 0. (A.4)

Momentum equation: The second step is to analyze the second Newton’s law stating
that the variation of the linear momentum of a system is equal to the resultant forces

54 A| Appendix: Derivation of Navier-Stokes equation in primitive variables

acting on it that we consider as the sum of volume and surface.

d

dt

∫
Vt

ρudV =

∫
Vt

ρfdV +

∫
∂Vt

T · ndσ, (A.5)

where f are the volume forces per unit of mass and T is the stress tensor. Applying again
the Reynolds theorem and considering the arbitrariness of the volume under analysis, we
can focus on the differential form of the expression:

∂

∂t
(ρu) +∇ · (ρuuT) = f +∇ ·T. (A.6)

We now introduce the approximations typical of a Newtonian viscous fluid and we obtain
the momentum equation:

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f , (A.7)

where we divided the entire equation by ρ and obtained a new parameter ν = µ
ρ

that
represents the viscosity of the fluid. Solving the two equations together we obtain the
Navier-Stokes equation: ∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f ,

∇ · u = 0,
(A.8)

that has to be solved in Ω × (t0, t
∗], where Ω is the space domain and (t0, t

∗] represents
the interval of time considered.

55

List of Figures

1.1 Example of Finite Volume discretization of a two-cells domain (image
source [15]). 9

2.1 Scheme of a neuron: the fundamental unit of the NN (image source [17]). . 18
2.2 Example of a MLPs neural network with three hidden layers (image source

[28]). 19

3.1 Initial conditions of the variables ω and Ψ. 24
3.2 Initial value of the magnitude of u computed as ∇×Ψ. 25
3.3 Evolution in time of u computed in the ω − Ψ formulation (top) and in

u− p formulation (bottom) at the different time steps of the simulation. . 26
3.4 Evolution in time of ω computed in the ω − Ψ formulation (top) and in

u− p formulation (bottom) at the different time steps of the simulation. . 26
3.5 Evolution in time of Ψ computed in the ω − Ψ formulation (top) and in

u− p formulation (bottom) at the different time steps of the simulation. . 27
3.6 Eigenvalues decay for the vorticity (left) and stream function (right). . . . 28
3.7 Relative percentage error between the full order and the one reconstructed

through POD-RBF ROM: ω (left), Ψ (right). 29
3.8 Representation of the solution ω at three different times computed through

the FOM (top), reconstructed with the POD-RBF ROM (middle) and the
error between the two (bottom). 30

3.9 Representation of the solution Ψ at three different times computed through
the FOM (top), reconstructed with the POD-RBF ROM (middle) and the
error between the two (bottom). 31

3.10 Relative percentage error between the full order and the one reconstructed
through POD-GPR ROM: ω (left), Ψ (right). 32

3.11 Representation of the solution ω in three different time computed through
the FOM (top), reconstructed with the POD-GPR ROM (middle) and the
error between the two (bottom). 32

56 | List of Figures

3.12 Representation of the solution Ψ in three different times computed through
the FOM (top), reconstructed with the POD-GPR ROM (middle) and the
error between the two (bottom). 33

3.13 Loss function of the NN for ω (left) and Ψ (right) with respect to the
training-set. 34

3.14 Relative percentage error for ω (left) and of Ψ (right) computed through
POD-NN method. 34

3.15 Representation of the solution ω in three different time computed through
the FOM (top), reconstructed with the POD-NN ROM (middle) and the
error between the two (bottom). 35

3.16 Representation of the solution Ψ in three different times computed through
the FOM (top), reconstructed with the POD-NN ROM (middle) and the
error between the two (bottom). 36

3.17 Relative percentage error for ω (left) and of Ψ (right) computed through
POD-RBF method in the extrapolation of the solutions. 37

3.18 Representation of the extrapolated solution ω in three different time com-
puted through the FOM (top), reconstructed with the POD-RBF ROM
(middle) and the error between the two (bottom). 38

3.19 Representation of the extrapolated solution Ψ in three different times
computed through the FOM (top), reconstructed with the POD-RBF

ROM (middle) and the error between the two (bottom). 39
3.20 Relative percentage error for ω (left) and of Ψ (right) computed through

POD-GPR method in the extrapolation of the solutions. 39
3.21 Representation of the extrapolated solution ω in three different time com-

puted through the FOM (top), reconstructed with the POD-GPR ROM
(middle) and the error between the two (bottom). 40

3.22 Representation of the extrapolated solution Ψ in three different times
computed through the FOM (top), reconstructed with the POD-GPR

ROM (middle) and the error between the two (bottom). 41
3.23 Relative percentage error in the extrapolation of the solutions for ω (left)

and of Ψ (right) computed through POD-NN method. 42
3.24 Representation of the extrapolated solution ω in three instants under

analysis computed through the FOM (top), reconstructed with the POD-
ANN ROM (middle) and the error between the two (bottom). 43

3.25 Representation of the extrapolated solution Ψ in three instants under
analysis computed through the FOM (top), reconstructed with the POD-
ANN ROM (middle) and the error between the two (bottom). 44

57

Acknowledgements

This thesis has been developed in collaboration with the SISSA mathLab group in Trieste.
First of all, I would like to thank my thesis advisor Prof. Nicola Parolini of Politecnico di
Milano for giving me the opportunity to test myself on this stimulating and challenging
project. I want to thank also Prof. Gianluigi Rozza of Scuola Internazionale Superiore di
Studi Avanzati (SISSA) for believing in my potential and capabilities (more than myself)
and for introducing me to the research environment and to a group where I have found
many colleagues that now I can call friends. I feel grateful also to Dr. Michele Girfoglio for
his kindness and availability in answering my questions and solving my doubts. Moreover,
I would like to really thank Caterina Balzotti and Davide Torlo for their support and for
their help at any moment both from a professional and personal point of view. I want
also to thank Pierfrancesco, Anna, Francesco, Isabella, Dario, Guglielmo e Nicola for
welcoming me and for creating strong relationships and a pleasant environment that will
be hard to leave. I want to really thank my family and friends for always supporting
and encouraging me not to give up, in particular Antonella, Lucrezia e Tommaso, for
celebrating with me each goal and supporting me in each difficult moment and Alessandro
for proposing to me this great opportunity. Last but not least I want to thank my rugby
team LeBlacks and the Old Blacks for their continuous encouragement and moral support.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Chapter 1: Full Order Model
	Derivation of the model
	Advantages and disadvantages of the alternative formulation

	Discretization of the model
	Time discretization: Finite differences
	Space discretization: Finite Volume
	Fully discretized problem

	Chapter 2: Reduced order methods
	Reduced basis approximation
	Proper Orthogonal Decomposition (POD)
	Non-intrusive approach
	Intrusive approach: hints

	Chapter 3: Numerical results
	Validation of the vorticity - stream function solver
	Test case: vortex merger
	Results and comments

	POD-non intrusive model order reduction
	Radial Basis Functions (RBF) interpolation
	Gaussian Process Regression (GPR)
	Artificial neural network (ANN)
	Extrapolation
	Comments

	Conclusions and future developments
	Bibliography
	Appendix: Derivation of Navier-Stokes equation in primitive variables
	List of Figures
	Acknowledgements

