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1. Introduction
As the number of space debris orbiting Earth is
increasing, the awareness to this problem rose
too in the latter years.
The space sector started to move towards a
solution by planning more and more Active
Debris Removal (ADR) and on-orbit servicing
missions.
Since the approached bodies are tumbling ob-
jects with high angular velocities, a robust and
accurate relative pose determination pipeline
for uncooperative bodies is absolutely needed.

To this aim two main paths can be pursued:
• Ground based determination, which tracks

the light or radar signature of the target to
reconstruct its motion.

• In-orbit determination, which employs the
on-board systems of a chaser spacecraft to
determine the relative dynamics of the tar-
get body.

Unfortunately, due to higher uncertainties, the
ground-based approach is not suited for close
proximity operations. Thus leaving the in-orbit
path as the only option.
To determine the relative pose and separation
of a target body, within ranges closer than 50

m a visual approach has to be pursued. Thus,
either Light Detection and Ranging (LiDAR)
devices, Stereo cameras or Monocular cameras
have to be implemented.
LiDARs and Stereo cameras are generally
bulky and expensive solutions, thus, the use
of monocular cameras is suggested for simpler
and cheaper missions. They offer a great
alternative, although they require complex and
computationally demanding image processing
algorithms to properly work.
It is also important to highlight that the
above-mentioned procedure needs to be robust
and accurate to better deal with long approach
sequences.

The aim of this thesis is to develop and test
such pipeline starting from the Deep Learning
based pipeline developed by Massimo Piazza in
his MSc thesis [6].

2. Theoretical background
2.1. Relative distance problem
The relative distance problem describes how the
separation between two spacecrafts orbiting a
main body evolves over time in the Local Verti-
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cal Local Horizontal (LVLH) frame.
In such reference frame the relative distance (rr)
and the relative velocity (vr) can be expressed
as:

rr = xr̂ + yθ̂ + zĥ

vr = ẋr̂ + ẏθ̂ + żĥ

(1)

(2)

Where [r̂, θ̂, ĥ] are the versors of the considered
LVLH triad.
The evolution of the relative distance between
the two spacecrafts can then be expressed with
the set of differential equations [7]:

ẍ = 2ν̇ẏ + ν̈y + ν̇2x+
µ

r̄2

− µ(r̄ + x)

[(r̄ + x)2 + y2 + z2]3/2

ÿ = −2ν̇ẋ− ν̈x+ ν̇2y

− µy

[(r̄ + x)2 + y2 + z2]3/2

z̈ = − µz

[(r̄ + x)2 + y2 + z2]3/2

(3)

Where µ is the standard gravitational parame-
ter of the main attractor, ν is the true anomaly
and r̄ represents the distance between the main
attractor and the chaser center.
To complete the problem, the orbital motion of
the chaser must be described both in terms of
true anomaly (ν) and position (r̄) as:

¨̄r = r̄ν̇2 − µ

r̄2

¨̄ν = −2 ˙̄rν̇

r̄

(4)

(5)

2.2. Relative attitude problem
The general equations governing the attitude
motion of a rigid body are known as Euler equa-
tions and have the form:

Jω̇ + ω × Jω = M (6)

Where J represents the object inertia matrix, ω
is its angular velocity, and M is the sum of the
applied torques.
For the aim of this dissertation, torque free dy-
namics will be assumed by imposing M = 0.
This assumption is acceptable as disturbances
are damped out by the attitude control of the
chaser.
The notation relative to the angular velocities
needs to be contextualized as [4]:

ωr = ωt − Γωc

ω̇r = ω̇t − Γω̇c + ω̇app

ω̇app = ωr × Γωc

(7)

Where ωt and ωc are respectively the target and
the chaser angular velocities expressed in their
body fixed reference frame and ωr represents the
relative angular velocity expressed in the tar-
get body frame. Finally Γ is the rotation ma-
trix linking the body-fixed reference frame of the
target to the body-fixed reference frame of the
chaser.
Furthermore, to describe the attitude this the-
sis makes use of the Modified Rodrigues Parame-
ters (MRPs) notation, which is defined from the
quaternions as:

ζ =
q̃

1 + q0
if norm(ζ) < 1

ζS =
−q̃

1− q0
if norm(ζ) > 1

(8)

(9)

A relation connecting the MRPs and the afore-
mentioned attitude matrix Γ is attained as:

Γ(ζ) = I3 − αA
1 [ζ×] + αA

2 [ζ×]2 (10)

where I3 is the Identity matrix and the param-
eters αA

1 , α
A
2 , [ζ×] can be obtained as:

αA
1 = 4

1− ζT ζ

(1 + ζT ζ)2

αA
2 = 8

1

(1 + ζT ζ)2

[ζ×] =

 0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0


(11)

Finally the evolution of the relative attitude can
be described in terms of MRPs and relative an-
gular velocities as:

ζ̇r =
1

4
Σ(ζr)ωr

Jtω̇r + ωr × Jtω̇r =

Mapp −Mg −Mci

(12)

where Jt is the inertia matrix of the target, ζr
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is the MRP describing the relative attitude and:

Σ(ζ) = (1− ζT ζ)I3 + 2ζζT + 2[ζ×]

Mapp = Jtω̇r × Γωc

Mg = Γωc × JtΓωc+

(ωr × JtΓωc + Γωc × Jtωr)

Mci = JtΓω̇c

(13)

where Mapp represents the apparent torque,
Mg are the gyroscopic torque and Mci are the
chaser-inertial torque.

2.3. Kalman filtering
The Kalman filter and its variants are within
the most used and efficient recursive filters in
the space sector. In its basic form the Kalman
Filter (KF) [3] is defined as a predictor-corrector
algorithm as it is composed of both a prediction
and a correction phase.
Starting from a linear discrete-time system in
the form:{

xk+1 = Fxk +Guk +w(k)

yk = Hxk + vk

(14)

Where xk and uk represent respectively the state
and the input at timestep k, instead, wk and
vk are used to identify the process noise and
the measurement noise, whereas yk identifies the
measurement output at timestep k. Finally the
matrices F, G and H respectively represent the
State transition matrix, the Input transition ma-
trix and the Observation matrix.
The aforementioned Prediction phase performs
a propagation of the state and the covariance
(x̂+

k , P+
k ) based on their values in the previous

iteration as:

x̂−
k+1 = Fx̂+

k +Guk

P−
k+1 = FP+

k F
T +Qk

(15)

(16)

Which returns the expected mean value of the
state x̂−

k+1 and the covariance matrix P−
k+1 for

the current iteration.
Note that Qk represents the covariance matrix
associated to the process noise, while Rk is as-
sociated to the measurement noise.
The next step is defined as Correction step as it
corrects the predicted state and covariance ma-
trix. It does so by exploiting the incoming mea-
surements and a weighting parameter defined as

Kalman gain (Kk+1).
The steps to be followed are:

Kk+1 = P−
k+1H

T (HP−
k+1H

T +Rk+1)
−1

x̂+
k+1 = x̂−

k+1 +Kk+1(yk+1 −Hx̂−
k+1)

P+
k+1 = (I−Kk+1H)P−

k+1

(17)

(18)

(19)

Note that the output of the Correction step
becomes the input of the next filter iteration as
the filter uses recursive information to improve
its guesses.

2.3.1 Extended Kalman Filter

As the simple KF cannot deal with non-linear
problems some alternative architectures had to
be devised.
A common solution to this issue is the Extended
Kalman Filter (EKF) [5] which adopts a lin-
earization of the problem to get around the
present non-linearities.
Starting from the non-linear model:{

xk+1 = f(xk,uk,wk)

yk = h(xk,vk)
(20)

The Jacobian matrices of the state transition
function f(·) and the measurement function h(·)
can be computed as:

F =
∂f

∂x

∣∣∣∣
x̂+
k

H =
∂h

∂x

∣∣∣∣
x̂−
k

(21)

Once the Jacobians have been computed the
process becomes very similar to the one adopted
by the KF.
The performed steps are:

x̂−
k+1 = f(x̂+

k ,uk, 0)

P−
k+1 = FP+

k F
T +Qk

Kk+1 = P−
k+1H

T (HP−
k+1H

T +Rk+1)
−1

x̂+
k+1 = x̂−

k+1 +Kk+1(yk+1 − h(x̂−
k+1, 0))

P+
k+1 = (I−Kk+1H)P−

k+1

(22)

(23)

(24)

(25)

(26)

2.3.2 Unscented Kalman Filter

For particularly non-linear systems the EKF
may fall short, thus a new filtering architecture
must be devised.
By leveraging the Unscented Transform (UT)

3



Executive summary Daniel Kaidanovic

for the propagation of the state and covariance,
the Unscented Kalman Filter (UKF) [2] can be
defined.
Considering a generic nonlinear system:{

xk+1 = f(xk,uk,wk)

yk = h(xk,vk)
(27)

according to the UT a set of sigma points around
the state must be defined as:

x̂
(i)
k = x̂+

k + x̃(i), i = 1, ..., 2n

x̃(i) =

(√
cP+

k

)T

i

, i = 1, ..., n

x̃(n+i) = −
(√

cP+
k

)T

i

, i = 1, ..., n

(28)

(29)

(30)

where c is a tuning parameter used to define the
spread and weight of each sigma point.
The latter are then propagated and a weighted
average is computed to define the predicted state
and covariance as:

x̂
(i)
(k+1) = f(x̂

(i)
k ,uk+1)

x̂−
k+1 =

2n∑
i=0

W
(i)
M x̂

(i)
k+1

(31)

(32)

P−
k+1 =

2n∑
i=0

W (i)
c (x̂

(i)
k+1 − x̂−

k+1)

(x̂
(i)
k+1 − x̂−

k+1)
T +Qk

(33)

where W
(i)
M and W

(i)
c are weighting parameters.

The obtained predicted state and covariance are
then used to correct the sigma points as:

x̂
(i)
k+1 = x̂−

k+1 + x̃(i), i = 1, ..., 2n

x̃(i) =

(√
cP−

k+1

)T

i

, i = 1, ..., n

x̃(n+i) = −
(√

cP−
k+1

)T

i

, i = 1, ..., n

(34)

(35)

(36)

The new set of sigma points is then used in the
correction step to define: the expected measure-
ment, the measurement covariance Py and the
cross covariance Pxy.
This is done as:

ŷ
(i)
k+1 = h(x̂

(i)
k+1)

ŷ−
(k+1) =

2n∑
i=1

W
(i)
M ŷ

(i)
k+1

(37)

(38)

Py =
2n∑
i=1

W (i)
c (ŷ

(i)
k+1 − ŷ−

k+1)

(ŷ
(i)
k+1 − ŷ−

k+1)
T +Rk

(39)

Pxy =
2n∑
i=1

W (i)
c (x̂

(i)
k+1 − x̂−

k+1)

(ŷ
(i)
k+1 − ŷ−

k+1)
T

(40)

These quantities are then used to define a
Kalman gain and correct the state and covari-
ance as:

Kk+1 = PxyP
−1
y

x̂+
k+1 = x̂−

k+1 +Kk+1(yk+1 − ŷ−
k+1)

P+
k+1 = P−

k+1 −Kk+1PyK
T
k+1

(41)

(42)

(43)

3. Relative Pose pipeline
The work proposed in this thesis aims to create
a supporting structure for the Deep learning
pipeline proposed by Piazza [6].
To do so an image generation pipeline to provide
the inputs and a filtering procedure to refine
the outputs have been created.

Starting from the image generation, a Blender
based architecture has been proposed.
The pipeline has the aim of generating accurate
spaceborne images of the TANGO spacecraft at
different relative distances and orientations.

Figure 1: Example of a generated frame

Furthermore, the algorithm has been provided
with the capability of generating single uncorre-
lated frames or full coherent sequences, as both
modes were needed for testing and validation
purposes.
The pipeline, shown in Image 3, starts by de-
termining the relative position of the artificial
camera with respect to the target body frame.
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Figure 2: Scheme of the image generation
pipeline

Subsequently it generates it in the scene and ori-
ents it based on the attitude matrix provided.
Afterwards, considering the orbital position of
the chaser and the considered season, a set of
custom lights is placed in the scene to mimic re-
alistic lighting conditions.
Once all components are put in place a rendered
frame is generated using the EEVEE engine. Af-
terwards a noise filter is applied, then the image
is greyscaled and saved.
Finally, both the camera and the set of lights
are removed from the scene and a new render-
ing procedure can start.
The position and attitude of the camera can be
provided for both a static database or a coherent
sequence. This is done by following two different
procedures:
• Static database, the attitude and position

data is provided from a pre-generated json
database and the pipeline treats each frame
individually

• Image sequence, the initial attitude and
position are provided as well as a sequence
length and its correlated frames per second
(fps) rate.
The sequence is then propagated in time
following Equations 3 and 12.
Finally, measurements are extracted and
loaded onto the pipeline according to the
imposed fps rate.

Moving on to the filtering pipeline, it consists
in a KF based architecture whose aim is to im-
prove the output coming from the Neural Net-
work (NN) pipeline.

Figure 3: Scheme of the filtering pipeline

As can be seen from Figure 3 it was chosen to
separate and apply different filtering techniques
to the relative distance and the relative attitude
problem. This was enabled by assuming that
the attitude of the chaser is perfectly known and
available.
This approach was pursued as the relative pose
presented a stronger non-linear behaviour with
respect to the simpler relative distance problem,
meaning that different filtering techniques had
to be applied. In detail, the EKF was applied to
the simpler and more linear relative separation
problem, whereas the UKF was deemed fit to
deal with the more complex relative pose prob-
lem.

4. Results
The first step of the testing campaign was to
make sure the image generation pipeline was up
to par.
To this aim the NN pipeline was employed to
compare the results obtained from the SPEED
database [1] and an analogous one generated by
the image generation pipeline.
The generation of such database was possible as
the relative parameters associated to each frame
of the SPEED database were available.
Some of the results obtained from such compar-
ison are reported in Tables 1 and 2.
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Absolute error
Mean

Et 10.36 cm
Et [0.52, 0.56, 10.25] cm
Eθ 2.24°
Eθ [1.57°, 0.84°, 1.72°]

Standard Deviation
σEt [1.62, 1.71, 30.44] cm
σEθ

[8.92°, 5.11°, 10.82°]

Table 1: Results obtained from the SPEED
database

Absolute error
Mean

Et 10.10 cm
Et [0.58, 0.65, 9.96] cm
Eθ 2.32°
Eθ [1.65°, 0.83°, 1.65°]

Standard Deviation
σEt [1.79, 2.45, 39.82] cm
σEθ

[9.41°, 4.72°, 9.91°]

Table 2: Results obtained from the simulated
database

Overall the results turned out similar with a
minor loss of performance on the simulated
database, thus the image generation pipeline
was successfully validated.
Following this, a set of dynamic sequences were
generated and evaluated by the NN pipeline.
This process was performed in order to provide
further validation, and to produce a set of real
input baselines to test the filters.
The obtained results are reported in Table 3.

Absolute error
Mean

Et 8.36 cm
Et [0.50, 0.48, 8.26] cm
Eθ 2.74°
Eθ [1.47°, 0.69°, 2.47°]

Standard Deviation
σEt [0.70, 1.22, 15.69] cm
σEθ

[5.22°, 1.30°, 14.44°]

Table 3: Results obtained from a sample se-
quence

Figure 4: Graphs of the distance [top] and atti-
tude [bottom] error

As can be seen from the Table 3 the NN results
were in line with the expected ones. However, as
highlighted in Figure 4, some outliers were also
detected.
The obtained results were then filtered to ob-
serve the quality of the filtering pipeline.
The filtering action visualized in Figure 5 has
been obtained considering: an acquisition rate
of 2 fps, a rotational period of 10 s and initial
conditions taken from img000040 of the SPEED
database.

Figure 5: Graphs of the EKF [top] and UKF
[bottom] filtering performance
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As can be seen from Figure 5 both the EKF and
the UKF managed to successfully filter out any
outlier and improve the accuracy of the results
of up to one order of magnitude.
Despite the promising results, it was chosen to
further evaluate the robustness and reliability of
the filtering pipeline.
This was accomplished by performing thousands
of runs on pseudo-measurements, which were
generated after determining the error covariance
matrix (R) associated to the NN pipeline.
Overall the EKF proved to be extremely reli-
able and robust, never failing during thousands
of tests. This performance was attributed to the
slower and simpler dynamics it had to deal with.
Instead the UKF performance was tested over an
array of different rotational periods (trot) of the
target spacecraft. Overall its performance was
deemed acceptable, however a number of fail-
ures were detected, especially for faster trot.
The number of detected failures is reported in
Table 4.

UKF testing results
trot Tests Failures Fail rate
15 s 1000 24 2.4 %
10 s 1000 39 3.9 %
5 s 1000 83 8.3 %

Table 4: Results from the UKF testing campaign

To better understand the underlying mecha-
nisms triggering the observed failures, a dedi-
cated analysis was performed. Overall four main
failure modes were detected and studied:

• Localized spike, [≈ 65%], consists in an iso-
lated sudden increase of the error followed
by its instantaneous falloff (see Figure 6).

Figure 6: Example of a Localized spike

• Extended failure, [≈ 30%], consists in a pro-
longed failure caused by a sequence of suc-
cessive outliers (see Figure 7).

Figure 7: Example of an Extended failure

• Initial failure, a particular case of Extended
failure where it is detected in the very first
iterations of the UKF (see Figure 8).

Figure 8: Example of an Initial failure

• Total fail, [≈ 5%], consists in the com-
plete divergence of the filter. It is generally
caused by an extended sequence of outliers
or a very bad initial guess (see Figure 9).

Figure 9: Example of a Total fail

Finally, an attempt at running the pipeline has
been carried out on hardware that is closer in
performance to space-grade components.
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The chosen platform was the Raspberry Pi 4
2GB single board computer, running the Rasp-
berry Pi OS 64bit operating system.
Both the NN pipeline and the filtering pipeline
were tested and timed.
The obtained results can be found in Table 5.

Raspberry Pi performance
NN pipeline EKF UKF Total

92.71 s 0.02 s 0.37 s 93.10 s

Table 5: Raspberry Pi 4 2GB performance

Overall the performance is very poor, but it is
important to highlight that the whole process
was completely un-optimized.

An improvement in the performance of up to a
factor 100 is to be expected once proper opti-
mization procedures are adopted. Those could
range from the low-level C/C++ implementa-
tion of the algorithm to the use of dedicated
analog matrix processors to speed up the NN
phase.

5. Conclusion
This thesis tackled the problem of relative atti-
tude determination of an uncooperative space-
craft by expanding a pre-existing NN pipeline.
A way to generate realistic spaceborne images
was implemented and tested extensively.
Moreover a filtering pipeline based on a set of
UKFs and EKFs was implemented in order to
improve the performance of the whole system.
Those were also extensively tested on both real
and simulated inputs in order to isolate and an-
alyze any observed failure mode.
In the end the whole pipeline was uploaded to
a Raspberry Pi 4 2GB single board computer
to evaluate its performance on more significant
space hardware.
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Abstract

Nowadays the space sector is experiencing an increase in the demand for missions involving
proximity operations. This trend can be partially attributed to the raised awareness of
the space debris problem, as more and more Active Debris Removal (ADR) and on-orbit
servicing missions are being planned. Consequently, the need for an accurate onboard
relative navigation system is increasingly present in the industry.
This work proposes a pipeline for relative navigation based on Deep Learning techniques
to obtain the relative pose measurements and Kalman Filtering to reconstruct the relative
dynamics and add robustness to the pipeline. Furthermore, a testing procedure involving
a Blender-based spaceborne image generator has been devised and applied to validate the
results in the case of a realistic image sequence.

The overall pipeline is based on a pre-existing Neural Network pipeline that partici-
pated in ESA Pose Estimation Challenge with excellent results. This network achieved a
centimeter-level position accuracy and degree-level attitude accuracy, along with consid-
erable robustness to changes in background and lighting conditions.

To reconstruct the state during navigation, a set of Kalman filters have been implemented
to tackle attitude and position separately.
For the relative distance, an Extended Kalman Filter has been applied, as the underlying
relative dynamics can be accurately modeled by means of a linearized model. Instead, for
the more complicated attitude problem, the choice fell on the Unscented Kalman Filter
thanks to its superior robustness in highly non-linear dynamics.
In addition, robustness was taken as a priority with thousands of tests aimed at identifying
and counteracting the most common failure modes. Moreover, some techniques were also
developed for the detection and rejection of measurement outliers.

The whole navigation pipeline was then tested on a simulated set of image sequences of
the TANGO spacecraft in torque-free tumbling conditions. The frames were obtained
from a Blender-based spaceborne image generation platform exploiting a 3D model of the
target and relying on an accurate propagation of the relative dynamics.
Finally, this work also presents the preliminary results coming from the implementation
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of the pipeline on a Raspberry Pi 4 single-board computer for a preliminary evaluation
of its performance on more representative hardware. The results, although not directly
applicable for real-time navigation, proved to be promising.

Overall the pipeline managed to leverage the predictions of the Neural Network it was
based on, adding robustness and precision with a minor addition of computational time.

Keywords: Neural Networks, spaceborne image generation, relative attitude determi-
nation, Kalman filtering.
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Abstract in lingua italiana

Al giorno d’oggi il settore spaziale sta registrando un aumento nella domanda di missioni
che coinvolgono operazioni di prossimità. Questa tendenza può essere in parte attribuita
alla maggiore consapevolezza del problema dei detriti spaziali, poiché sempre più mis-
sioni di recupero attivo e missioni di manutenzione in orbita sono programmate. Di
conseguenza, la necessità di un accurato sistema di navigazione relativa di bordo è sem-
pre più presente nel settore.
Questo lavoro propone un algoritmo per la navigazione relativa basata su tecniche di Deep
Learning per ottenere le misurazioni di posa relativa e filtri di Kalman per ricostruire la
dinamica relativa e aggiungere robustezza. Inoltre, è stata ideata e applicata una pro-
cedura di test che coinvolge un generatore di immagini spaziali basato su Blender per
convalidare i risultati nel caso di una sequenza realistica di immagini.

Nel complesso l’algoritmo si basa su una rete neurale preesistente che ha partecipato alla
"Pose Estimation Challenge" dell’ESA con ottimi risultati. Questa rete ha raggiunto una
precisione centimetrica sulla posizione e una precisione di assetto a livello di gradi, insieme
a una notevole robustezza ai cambiamenti delle condizioni di sfondo e di illuminazione.

Per ricostruire lo stato durante la navigazione, è stata implementata una serie di filtri di
Kalman per affrontare separatamente i problemi di assetto relativo e posizione relativa.
Per la distanza relativa è stato applicato un filtro di Kalman esteso EKF, in quanto le
dinamiche relative sottostanti sono rappresentate da un modello dinamico linearizzato.
Per il problema di assetto, più complesso del precedente, la scelta è caduta sull’Unscented
Kalman Filter (UKF), grazie alla sua superiore robustezza nel trattare dinamiche alta-
mente non lineari.
Inoltre, l’affidabilità dell’algoritmo è stata considerata una priorità, difatti migliaia di test
volti a identificare e contrastare le modalità di fallimento più comuni sono stati effettuati.
In aggiunta, sono state sviluppate anche alcune tecniche per il rilevamento e lo scarto
di valori anomali nelle misure. L’intero algoritmo di navigazione è stato quindi testato
su un insieme simulato di sequenze di immagini del satellite TANGO in condizioni di
moto incontrollato. I fotogrammi sono stati ottenuti da una piattaforma di generazione
di immagini spaziali basata su Blender sfruttando un modello 3D del target e basandosi
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su un’accurata propagazione delle relative dinamiche.

Infine, questo lavoro presenta anche i risultati preliminari provenienti dall’implementazione
della pipeline su un computer "single-board" Raspberry Pi 4 per una valutazione prelim-
inare delle sue prestazioni su hardware più rappresentativi. I risultati si sono rivelati
promettenti, sebbene non direttamente applicabili per la navigazione in tempo reale.

Nel complesso, l’algoritmo è riuscito a sfruttare le previsioni della rete neurale su cui si
basava, aggiungendo robustezza e precisione con un leggero incremento nel carico com-
putazionale.

Parole chiave: Neural Networks, generazione di immagini spaziali, determinazione della
posa relativa, filtri di Kalman.
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1| Introduction

1.1 Problem statement

Nowadays the space sector is experiencing an increase in the demand of missions involving
close proximity operations. This trend can be partially attributed to the raised awareness
of the space debris problem, as more and more Active Debris Removal (ADR) and on-orbit
servicing missions are being planned [ML21].

On-orbit satellite servicing refers to a mission that has the aim of refueling, repairing and
generally extend the lifetime of in orbit satellites.

Figure 1.1: Rendering of
the OSAM-1 servicer [bot-
tom] (image credit: NASA)

As is often the case, the target satellite is an active one and
thus is capable of establishing a communication link with
the servicing spacecraft (defined as Chaser). This allows an
exchange of information on both status and attitude that
allows a strong cooperation between the two satellites and
generally less risks.
Modern examples of this missions are Northrop Grumman’s
Mission Extension Vehicle-1 and -2 [Gru21], which are
both successfully carrying out their missions as of now and
also NASA’s OSAM-1 mission (ex.Restore-L) [Ree+16]
whose launch is planned in 2025.

Figure 1.2: Rendering of
the Clearspace mission (image
credit: [ESA19a])

ADR refers to a mission that has the aim of capturing
a space debris in order to deorbit it and effectively dis-
pose of it. The target is considered uncooperative, as
no communication can be established and no facilitat-
ing measures (e.g. light beacons) can be enacted by the
target.
Moreover, it is quite often a tumbling body with un-
known attitude, dynamics, and high angular velocities,
making the mission very difficult and quite risky.
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One of the most famous examples is ESA’s ClearSpace mission [ESA19a] scheduled for
2026 which will be the first ADR mission ever.
To ensure the feasibility of these types of missions, a relative pose estimation pipeline,
that does not rely on the collaboration of the target spacecraft, must be implemented and
must ensure high performance and accuracy.

To this aim two main methods can be used. Firstly a ground based estimation can be
considered: it consists in tracking the light signature of a target through the use of ground-
based radar facilities and then reconstructing its motion from the gathered data.
Unfortunately, this method is highly dependent on the target visibility, is associated with
very high uncertainties and the actual pose determination is virtually impossible. These
drawbacks make this approach unsuited to be applied during the close proximity phase
of a space mission.
The only alternative is basing the pose estimation on the chaser sensors, generally Cameras
and LiDAR are the best suited for this tasks [Opr+17].
Light Detection And Ranging (LiDAR) sensors, both scanning and flashing, have been
studied for years and implemented with regards to relative pose estimation. They are:
very robust to different lighting conditions, can work at very high frame rates and generate
a cloud of points which is fitted to a known 3D model of the target to extrapolate the
relative pose [ZXB18].
Although they are very capable and promising, they are quite heavy, very complex and
very expensive, making them unsuited for smaller satellites and cheaper missions.

Monocular cameras can fill this demand by being simple, cheap and generally light, also
they are extremely proven as a space technology as they have been used on spacecrafts
for decades.
Unfortunately, differently from the more complex stereo cameras, they do not give any
information on the depth of the image, so, more complex image processing procedures
must be implemented to estimate the full relative pose of the target spacecraft.

While one image can be used to accurately estimate the relative pose, this information
is not enough to reconstruct the relative motion. This implies that a sequence of images
has to be analyzed and its results need to be filtered in order to obtain the required data
to enable close proximity operations.

The aim of this dissertation is to develop and test the aforementioned pipeline, starting
from the neural network based pose estimation procedure devised by Massimo Piazza in
his MSc thesis [Pia20].
To achieve this, two main components of the whole process had to be developed:
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Firstly an image sequence generation algorithm that takes a physically accurate state
propagation of the relative attitude between target and chaser and translates it to images.
Secondly, a filtering step to post-process the data coming from the neural network.

1.2 State of the art

In this section, a brief overview of the state of the art regarding the core principles
implemented in this dissertation will be pursued.

The three main topics treated in this section will be:

• Space imagery generation, how is currently tackled both through physical and virtual
means.

• Pose determination, pros and cons of different algorithms for the estimation of the
pose using images.

• Filtering techniques, an overview of the reasons for implementing them, and a brief
description of the Kalman filter and its variations.

1.2.1 Space imagery generation

Lately, due to the increase in neural network applications in space systems, the need for
several thousands images of orbiting satellites has arisen.
Unfortunately, the availability of real spaceborne images is quite limited, as few missions
ever performed close proximity operations and collected such a volume of frames.
Moreover, the labeling procedure of each image is an extremely complex and time consum-
ing task, especially considering that each neural network training has its specific labeling
needs.
Due to this absence of data, two main alternative methods for obtaining spaceborne im-
agery have been developed. One physically based, and the second fully virtual.

The physically based platforms are generally composed by a set of directionable lights
and numerically controlled cameras. These components are then mounted in a dark room
with a high fidelity model of the considered spacecraft or planetary surface.
This setup manages to generate high fidelity spaceborne images, both of satellites and of
surfaces (e.g. the lunar one) and, due to its numerically controlled nature, also attaches
to each image a very accurate label of the relative pose considered.
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Figure 1.3: TRON facility (image credit: [AS21])

One of the main facilities that uses
physically based image generation is
the TRON facility, managed by the
SLAB team. It consists in a 10 x 4 m
dark room with 10 Vicon Vero v1.3x
cameras mounted on a controlled 6
DoF robotic arm that provides accu-
rate positional data. Moreover the
model is lighted by high accuracy
light sources that mimic the sunlight
and Earth’s albedo. [KT08], [ESA21]

Instead, virtually based platforms
generally exploit rendering softwares (such as Blender, Unreal engine 4, Octane Render...)
to generate thousands of labeled images in a relatively short time span, and, thanks to
their steady development through the years, photorealism can be achieved in a reasonable
timeframe. Some of the main improvements can be attributed to: physically accurate
ray tracing technology, more and better shading alternatives for textures, more complex
shadow generation procedures and faster algorithms for the image generation.

Some of the main rendering softwares on the market to date are:

• Blender 1, an open source program with a huge community, mainly used for artistic
renders, but, it has very good capabilities and can be considered for spaceborne
imagery generation [Bla+21], [Sco+22].

• Unreal Engine 5 2, a very recent and still early access software, mainly used for
creating videogames. However its real-time capabilities are impressive due to the
sheer quality and photorealism of the frames. Its predecessor, Unreal Engine 4, has
been already applied to the generation of spaceborne imagery through the URSO
pipeline. [PG20]

Solutions specific to the aerospace industry are also present: those are specifically tailored
to achieve the highest fidelity images for a wide array of space missions (e.g. planetary
explorers, asteroid interception, close proximity operations between spacecrafts, ...).
Two of the main existing programs are ESA’s PANGU [ESA19b] and Airbus SurRender
[Air11], both based on the Open-GL platform: they have been used throughout the
industry for hardware in the loop simulations for the development of various missions,

1The software can be found at: https://www.blender.org/
2The software can be found at: https://www.unrealengine.com/



1| Introduction 5

(a) Blender render, (personal production) (b) Unreal Engine 5 render, (credits to: [Tor22])

Figure 1.4: Example spaceborne landscapes obtained from Blender and Unreal Engine 5

such as JUICE, Exomars, MSR ERO... [Leb+21]

For the aim of this dissertation it is also important to focus on the SPEED database, as
it will be extensively used as reference and comparison with the obtained results.
This dataset is based on the PRISMA mission, which was a technology demonstration
mission launched in 2010 and used as a platform for testing formation flying and ren-
dezvous technologies. It comprised of two spacecrafts, Mango, the chaser, and Tango, the
target.
The SPEED database is composed of 15300 high fidelity images of the Tango spacecraft,
of which 15000 are virtually generated and the remaining 300 have been physically ob-
tained at the TRON facility.
It has been publicly released in 2019 as part of the Pose Estimation Challenge organized
by SLAB in collaboration with ESA. In 2021 it received an expansion known as SPEED+
as part of the Pose estimation 2021 challenge, it now consists of 60000 synthetic images
and 9531 real images [AS21].

(a) Virtually obtained image (b) Physically obtained image

Figure 1.5: Example images from the SPEED database (image credit: [AS19])
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As previously mentioned, the Real images have been obtained in the TRON facility where
pictures of a high accuracy model of Tango have been taken using the same camera used
by Mango (the chaser of the PRISMA mission). The whole dataset is accompanied by
accurate labels, obtained thanks to the various controlled robotic arms deployed at the
facility.
Instead the virtual portion of SPEED has been obtained from an OpenGL based pipeline
where the target 3D model is placed at distances ranging from 3 m to 50 m, biased to-
wards closer ranges, and presents a uniform attitude distribution.
Moreover the lighting closely matches the background, which is, for half of the database,
made up of high resolution images of earth caught by the spacecraft Himawari-8 at dif-
ferent times and thus illumination conditions.

1.2.2 Pose determination

The aim of pose estimation algorithms is to determine the relative pose of a target space-
craft generally through visual means.
This process is achieved through complex image-processing softwares that identify the
position and certain features on the target spacecraft, then a pose solver fits a known
3D model of the satellite to the aforementioned features. Doing so an estimated pose is
obtained, generally with a good degree of accuracy.
As this method relies heavily on the visibility of the spacecraft features in the image, it is
usable only during close proximity operations, so considering a target distance between a
few centimeters and tens of meters.

These methods can be divided in two main subclasses depending on the approach chosen
to tackle the problem, they are:

• Feature-based methods, which exploit the detection of high-level features in the image
(e.g. straight edges, perfect circles, ...) to fit a 3D wireframe model of the spacecraft
and determine its pose.

• Deep learning-based methods, they use neural networks to directly estimate the pose,
or, identify known keypoints to then fit to a 3D model of the target.

Feature based methods are the traditional approach to computer vision based relative
pose determination, as they have been widely developed and validated through the years.

They have been pioneered in 1989 with the main idea of detecting triplets of edges and
matching them with a known 3D model to find its attitude [Dho+89].
This method firstly needs to define at least three edges on the target object and then
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needs to solve an 8th degree equation to find a solution. Unfortunately this is quite a
difficult task and is not computationally efficient, thus, improvements were proposed in
the following years.

In 2014 a new method was proposed, it was based on the previous approach but was
expanded to encompass more recent technologies and methodologies [DBJ14].
At first the image is filtered and features are highlighted: this is done through the use of
a low pass filter, Canny edge detection and a Hough transform. These features are then
grouped in "perceptual groups" which are also precomputed on a 3D wireframe model of
the target, allowing to define an initial group of "most likely viewing directions". These
will then be iteratively refined and the more promising ones are passed through steps
of: Newton-Raphson method, Model matching and Least Squares Fit to obtain the final
solution.
Although the precision of this method is very high, it is very computationally heavy and
it has lower performance with more complex backgrounds.

In 2018 a new and improved method was proposed, the SVD algorithm, that offered a
very accurate and fast method for relative pose determination [SVD18].
The main difference with respect to the previous one is the use of the "Weak Gradient
Elimination" technique in parallel to the edge detection phase. This allows an increased
robustness with respect to the background and less outliers, as the results of the parallel
processes are properly merged.
As before, the detected features are grouped into higher level features to reduce the
computational burden on the pose estimation, which now consists in an EPnP algorithm
step and a Newton-Raphson method refinement. In the end the result that minimizes the
reprojection error and satisfies a minimum error threshold is taken as the solution.
This method was then validated using real images from the PRISMA mission and showed
very good performances making it capable of real time applications.

Moving on to deep learning based relative pose estimation methods, their application has
been on the rise in the last decade. This can be partially attributed to recent improvements
in the field of Neural Network based image processing algorithms, but also to the increase
of available databases on which to train them.
A huge contribution can also be accredited to the "Relative pose estimation challenge"
of 2019 which alone saw the contribution of 48 research groups and still accepts and
evaluates "post-mortem" submissions [AS19].

These solutions generally make use of a Convolutional Neural Network (CNN) as it is the
most versed solution to tackle an image processing problem.
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It can perform different jobs in a NN pipeline depending on its aim, which can be:

• Keypoint regression: the pipeline finds notable features of the satellite from the
image and uses a pose solver to define the attitude.

• Direct pose estimation: the pipeline directly estimates the pose of the spacecraft
without relying on any pose solver.

Deep learning based solutions can be very precise, but their performance relies heavily
on their training quality and time, as lack of insight from the programmer or insufficient
training duration may lead to poor results. Furthermore they can be quite computation-
ally intensive; nonetheless, being quite a recent and fast growing application, they can
still be expected to heavily improve with time.

More in depth explanations on the inner workings of a Neural Network pipeline will be
tackled in Section 2.2

1.2.3 Filtering techniques

Although relative pose estimation pipelines can be quite accurate, their raw measurements
still present a certain degree of uncertainty. Thus, considering successive measurements,
it can be noted that significant noise is present, rendering the use of filtering techniques
very important.
Filters aim to accurately estimate the state at a certain time instant given a sequence
of inaccurate and uncertain measurements. Consequently, they are a vital component on
any spacecraft and, as such, they have to be robust and reliable but also computationally
light.

A lot of different filtering techniques are present and are to be used for different measure-
ment conditions, one such condition is the estimation of a state given a sequential set of
measures.

As this is a common situation when developing space navigation systems, a wide arrange-
ment of solutions is available such as the famous Kalman Filter (KF), which has become
a staple of the industry [Kal60]. This can be attributed to its performance, versatility and
attractive characteristics, such as the possibility to return estimates of hidden variables.

Although those are quite desirable properties, the simple Kalman Filter presents some
evident flaws. Firstly, to be an optimal filter it needs to deal with a Gaussian, zero-mean,
uncorrelated and white noise. Fortunately, it still retains good filtering characteristics if
this assumption does not hold. Secondly, and most importantly, this filter can only be
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used when the dynamics underlying the investigated phenomenon is linear. When the
behavior of a system starts becoming non-linear and more complex, this kind of filters
are no longer adequate.

To get around this problem some alternative variations have been developed over the
years, the two most common being the Extended Kalman Filter (EKF) [MG02] and the
Unscented Kalman Filter (UKF) [JUD95].

More specifically, the EKF solves the non-linearity problem by linearizing the system
around the current state estimate. This is done through a Taylor expansion which can be
formulated to include higher order terms in order to maintain a good filtering behaviour
for highly non-linear systems. The main issues with the EKF is that it can’t easily deal
with the aforementioned strong non-linearities and is difficult to properly tune.

Instead, the UKF tackles this issues in a different way, by employing an Unscented Trans-
form (UT) to propagate the mean and covariance of the state. Thanks to the higher
performance of the aforementioned transformation with respect to the linearization, the
UKF is also better suited than the EKF to deal with highly non-linear problems. One
further advantage is also given by the absence of a Jacobian to be computed as is done
in the EKF.
Unfortunately this filter is quite computationally demanding, as an increased number of
propagations is needed due to the UT, making it significantly slower than its alternative.

A more in depth analysis of the Kalman filtering techniques, both linear and non-linear
is provided in Section 3.4

1.3 Outline

This dissertation is composed of 5 chapters:

• Chapter 2: dives into the basic theoretical knowledge necessary to understand this
dissertation, such as: relative pose, deep learning applied to image processing, fil-
tering techniques.

• Chapter 3: presents the work done in detail, in particular: the image generation
procedure, the sequence generation, the filtering pipeline.

• Chapter 4: analyzes the results obtained from the proposed pipeline.

• Chapter 5: summarizes the results obtained and gives some recommendations for
future developments.
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2.1 Relative pose fundamentals

This section will briefly present the core concepts related to the pose determination of a
satellite and the dynamics underlying its translational and angular motion using mostly
equations from [MG00].
The attitude of an object can be described as the relative orientation between the body
centered reference frame of the object and another reference frame. This property can be
represented with a rotation matrix, generally known as Direction Cosine Matrix (DCM).
This rotation can be mathematically formalized as:

B = AB/NN (2.1)

Where B represents the body fixed reference frame, N represents the alternative reference
frame and AB/N is the DCM. It is also important to note that, thanks to the attitude
matrix being orthogonal, the inverse rotation can be easily achieved as AN/B = AT

B/N .
Considering matrix algebra, it is possible to obtain an eigenvector (e) from any real,
orthogonal matrix, which displays the property:

e = Ae (2.2)

This can be seen as if vector e does not change due to the rotation of matrix A, as such
the rotation must be performed around axis e. This theorem is known as Euler’s rotation
Theorem and, correspondingly, the rotation axis is known as Euler axis and the rotation
angle applied in this transformation is known as Euler angle (ϕ).
A peculiar property of the aforementioned parametrization is that the rotation [ϕ, e] is
virtually equivalent to the rotation [−ϕ,−e]. This adds versatility to the derived alterna-
tive notations and will be leveraged in the later parts of the dissertation.
Euler’s parametrization, although quite simple and having an evident physical meaning,
presents a critical drawback as a singularity is present when ϕ coincides with nπ: in this
case e is not uniquely defined.
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2.1.1 Quaternions and MRPs

Quaternions provide one of the most useful notation for representing spatial orientations
of an object in space, as such they are also commonly used through a wide array of
different industries.
They are defined as a unitary norm vector of four components, linked to the Euler axis
and angle as:



q0 = cos(
ϕ

2
)

q1 = e1 sin(
ϕ

2
)

q2 = e2 sin(
ϕ

2
)

q3 = e3 sin(
ϕ

2
)

(2.3)

Note that the notation is made up of three vectorial components (q1, q2, q3) and one scalar
component (q0). The notation used in this dissertation imposes the scalar component as
the first of the quaternion and is called WXYZ notation.

Differently from Euler angles the quaternions do not present any singularity and are
generally easier to implement, but, they lose the evident physical meaning of the Euler
notation leading to less intuitive results. Furthermore, a critical drawback is the need to
keep the quaternion vector norm unitary to ensure it actually represents a rotation. This
means that, for filters, special measures have to be implemented to avoid additive errors
such as in MEKF [LMS82].

Due to this critical drawback, as the attitude parametrization chosen will impact the
dynamics and thus the filtering procedure, an alternative notation will be exploited in
this dissertation.

The Modified Rodrigues Parameter (MRP) [SJ95] parametrization was chosen as its sim-
plicity and qualities proved desirable features. MRPs can be easily derived from quater-
nions or Euler notation as:

ζ =
q̃

1 + q0
= e tan

(ϕ
4

)
where q̃ = [q1, q2, q3] (2.4)

Unfortunately one evident singularity is present: in fact it can be seen that, as ϕ ap-
proaches 2π rad, the norm of the MRP tends to infinity. This is different from the Euler
notation, where the same happened every nπ rad.
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The presence of a singularity can pose a huge problem as small variations in the attitude
near this point may lead to extremely big variations in the MRPs.
Fortunately a way to avoid both these problems has been devised in the Shadow MRP
set, which leverages the fact that the attitude identified as [q0, q̃] is the same as [−q0,−q̃].
Consequently the shadow MRP set has been defined as:

ζS =
−q̃

1− q0
= e tan

(ϕ− 2π

4

)
(2.5)

This alternative set moves the singularity at 0 rad, effectively flipping the behaviour of
the regular MRP set while retaining the same attitude information. It can also be noticed
that in the points where ϕ = [π,−π] the norm of both Shadow and regular set is the same
and equal to 1.
Consequently, to fully and accurately describe the attitude of a target, the two sets can
be exploited as:

if norm(ζ) > 1 → ζS is used to describe the attitude
if norm(ζS) > 1 → ζ is used to describe the attitude

Unfortunately to avoid the singularity two discontinuities have to be introduced, but, this
is deemed as an acceptable drawback to allow a good description of the attitude.

An alternative way to describe this process is to geometrically visualize the problem as a
simplified 2D stereographic projection.

Figure 2.1: Visualized MRPs on a simplified stereographic projection
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Figure 2.1 represents a [q0, qi] space (where qi is an alternative notation for q̃), on which
both the considered attitudes are expressed in quaternions. It is important to note that,
they lie on the unit circle as their norm is unitary.
The y axis is considered the "Mapping line" meaning that the MRPs associated with the
considered attitudes will be projected there.
Two different situations have been visualized. Firstly a situation where ϕ lies within
[−π, π], thus, the choice of the regular MRP (ζ) is advantageous as it lies within the unit
circle and has a norm smaller than one.
Considering the second case, now the attitude changed and ϕ moved within [π,−π], as
such it is evident that the Shadow MRP (ζS) is more favorable as the regular MRP started
to diverge.

It is important to highlight that the presented example is a very simplified model, as
in actuality the quaternions lie on a "Unit sphere" and the stereographic projection is
performed from a sphere to a hyperplane.

2.1.2 Relative distance problem

The relative attitude problem is composed of two main components, translation and pose
determination. This dissertation will treat them separately.

Figure 2.2: LVLH frame visualization

Starting from the relative distance problem, it
aims to find the evolution of both relative sep-
aration between the target and the chaser and
the associated relative velocity.
All the equations are expressed in the Local
Vertical Local Horizontal (LVLH) frame visu-
alized in Figure 2.2.
Consequently the relative parameters can be
expressed as:

rr = xr̂ + yθ̂ + zĥ

vr = ẋr̂ + ẏθ̂ + żĥ

(2.6)

(2.7)

Where rr is the relative distance and [x, y, z] are its vector components, vr is the relative
velocity and [r̂, θ̂, ĥ] are the versors of the considered LVLH triad.
Focusing on the relative translational dynamics equations, they describe the evolution
of the components of the relative distance. Note that the orbit chosen and the initial
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separation between the two spacecrafts is extremely important and heavily impacts the
evolution of the dynamics.
This problem can be expressed with the equations [SJ03]:


ẍ = 2ν̇ẏ + ν̈y + ν̇2x+

µ

r̄2
− µ(r̄ + x)

[(r̄ + x)2 + y2 + z2]3/2

ÿ = −2ν̇ẋ− ν̈x+ ν̇2y − µy

[(r̄ + x)2 + y2 + z2]3/2

z̈ = − µz

[(r̄ + x)2 + y2 + z2]3/2

(2.8)

Where µ is the standard gravitational parameter of the main attractor, ν is the true
anomaly and r̄ represents the distance between the main attractor center and the chaser
center.
To complete the problem, the motion of the chaser spacecraft must be described both in
terms of true anomaly (ν) and position (r̄), this can be done as:

¨̄r = r̄ν̇2 − µ

r̄2

¨̄ν = −2 ˙̄rν̇

r̄

(2.9)

(2.10)

Solving this problem provides a good representation of the chaser-target relative distance
evolution. It is important to keep in mind that in a close proximity operations scenario,
the dynamics can be quite slow and thus, weakly nonlinear.

2.1.3 Relative attitude problem

Focusing now on the relative attitude, it presents a more complex problem with a faster
evolution.

The general equations governing the attitude motion of a rigid body in its body frame
are known as Euler equations. They have the form:

Jω̇ + ω × Jω = M (2.11)

Where J represents the object inertia matrix, ω is its angular velocity vector, and M is
the sum of the applied torques.

The procedure followed in this dissertation needs to put in place a key assumption: the
chaser attitude is already perfectly known and can be described using the Torque free
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Euler equations (M = 0). This is assumed reasonable as on one hand, in a real scenario,
the chaser spacecraft has its own pose determination subsystem and knows its attitude
with a low degree of uncertainty. On the other hand, in a simulated environment, torque
free dynamics can be assumed as their propagation is carried out over a very small time
frame and thus the disturbing effects are close to negligible.

For the aim of the relative attitude problem, at first there is the need to contextualize the
present angular velocities and their relations. This is done as [MZ14]:

ωr = ωt − Γωc

ω̇r = ω̇t − Γω̇c + ω̇app

ω̇app = ωr × Γωc

(2.12)

Where ωt and ωc are respectively the target and the chaser angular velocities expressed in
their body fixed reference frame and ωr represents the relative angular velocity expressed
in the target body frame. Finally Γ is the rotation matrix linking the body-fixed reference
frame of the target to the body-fixed reference frame of the chaser.
The aforementioned matrix can be attained from the MRPs vector(ζ) following the rela-
tion:

Γ(ζ) = I3 − αA
1 [ζ×] + αA

2 [ζ×]2 (2.13)

Where I3 is the [3× 3] Identity matrix and the parameters αA
1 , α

A
2 , [ζ×] can be obtained

as:



αA
1 = 4

1− ζT ζ

(1 + ζT ζ)2

αA
2 = 8

1

(1 + ζT ζ)2

[ζ×] =


0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0



(2.14)

The evolution of the attitude matrix can then be linked to the dynamics of the relative
MRPs, and the variation of the relative angular velocity can be described by properly
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manipulating the Euler equation of the target accounting for the kinematic relationships
found before in Equation 2.12.
Thus a set of equations describing the evolution of the system can be attained as:

ζ̇r =
1

4
Σ(ζr)ωr

Jtω̇r + ωr × Jtω̇r = Mapp −Mg −Mci

(2.15)

where Jt is the inertia matrix of the target, ζr is the MRP vector describing the relative
attitude and:

Σ(ζ) = (1− ζT ζ)I3 + 2ζζT + 2[ζ×]

Mapp = Jtω̇r × Γωc

Mg = Γωc × JtΓωc + (ωr × JtΓωc + Γωc × Jtωr)

Mci = JtΓω̇c

(2.16)

where Mapp represents the apparent torques, Mg are the gyroscopic torques and Mci are
the chaser-inertial torques.

It is important to notice that the relative pose dynamics and its evolution heavily depend
on the angular velocity at which the target is tumbling. The faster the tumbling, the
faster the dynamics, and thus, the higher the non-linearity of the problem.
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2.2 Relative Pose Estimation Pipeline

This dissertation exploits the machine learning based Relative Pose Estimation Pipeline
developed by Massimo Piazza in his Master Degree thesis [Pia20],
It mainly consists of three stages: firstly the image is ran through SLN which recognizes
where TANGO is in the frame, secondly the image is cropped and fed through LRN which
identifies the notable keypoints and gives their position to the next stage, Pose Estimation
which estimates the relative pose given a 3D wireframe model.
More in depth information can be found in the following sections.

2.2.1 Introduction to NN and CNN

Over the past few years Neural Networks (NN) have been in the spotlight for their im-
pressive capabilities and versatility and, thanks to this, they have been used for a wide
array of applications, from aerospace to medicine.
NN are a computational model loosely based on a biological brain, as they exploit inter-
connected nodes called artificial neurons connected through synapses.

Figure 2.3: Neural Networks (NN) sample architecture, (image credit: [BGF17])

Artificial neurons are organized in layers, the first being the input layer, followed by
several hidden layers, where the true data processing occurs, and finally an output layer
where the result is displayed. Each layer is connected to the next one by a set of weighted
synapses, which increase or decrease the strength of the next connected neuron.

Training is the process that allows the NN to draw useful information from the inputs
and give coherent outputs.
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To train a NN a vast amount of data is needed and often, if a supervised learning process
is chosen, Ground Truth (GT) labels are necessary for every single sample. Additionally,
when creating the training set it is very important to be aware of potential biases, as they
are very likely to translate onto loss of performance or unexpected outputs from the NN.
After the definition of a coherent and useful data set, the training can take place.
Initially each synapse weight can be imposed randomly or can be based on pre-trained NN
weights in order to shorten the process (i.e., transfer learning). There are many different
kinds of training procedures, which are all based on evaluating the discrepancy between
the output predicted by the NN and the desired output. This difference is then used
to adjust the weights connecting the various layers according to different training rules.
After an extensive training stage the NN can reliably perform the task it was trained to
do.

Many different types of NN are available nowadays, all with their respective strengths
and weaknesses. Three main typologies can be considered:

• Artificial Neural Network (ANN), the less complex one being the simple input-
output processes already described.

• Recursive Neural Network (RNN), widely used for the study of sequential input
patterns (e.g. processes evolving in time). This sequences can be recognized and
determined because the state of each neuron is influenced by its state at the previous
iteration, allowing the network to achieve a sort of memory of the process.

• Convolutional Neural Network (CNN), widely used for 2D problems. They can
leverage operations such as convolution and pooling to process spacial features such
as those found in images.

Focusing on the latter, CNN have seen significant developments in the last years especially
in the image and video processing field.
They mainly work by extracting simple features of an image and then assembling them into
higher level features, while retaining spatial information. The latter are then combined
and thus can be attributed to an output.
A simple and intuitive example could be the recognition of a hand written number: at
first an image is loaded and lower level features can be extracted, such as straight lines or
arcs. Secondly this lower level features can be grouped into higher level ones to recognize
patterns, for example circles or groups of segments. Finally, based on the detected patterns
a guess can be made: for example, two circles may lead to a 8.

These processes are achieved by two fundamental operations of the CNN:
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• Convolution is a linear operation that multiplies a set of weights with the input.
This operation is performed using a two-dimensional array of weights, called a filter
or a kernel, that slides through the input volume with a certain stride.
According to the notation of Figure 2.4 the green slot on the output layer is obtained
by multiplying the dark blue region on the input layer for the kernel. Following this
operation the blue box is moved one slot to the right and an analogous process can
be performed.

Figure 2.4: Example image of the convolution operation

• Pooling consists in either taking the maximum or the average (max or average
pooling) of the elements enclosed in a certain fixed window of the input volume.
This operation aims to reduce the volume of successive layers and increase the CNN
robustness. Generally the size of a pooling window is 2-3 pixels.

Figure 2.5: Example image of the Pooling operation

CNNs are made up of three main types of layers: Convolutional layers, Pooling layers and
Fully connected layers.
The convolutional and pooling layers usually alternate in order to condense the input
information: they are the layers responsible for the feature extraction and processing.
Afterwards, the information obtained is wrapped into a vector and passed through a set
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of Fully connected layers (analogous to the layers of a ANN) to allow the classification of
the input image according to a set of predetermined classes.

Figure 2.6: Example image of the Alexnet CNN (Image credit: [Pia20])

A notable example of CNN is the open source You Only Look Once (YOLO) object
detection model [Red+16].

Figure 2.7: Example of YOLO v5 (image credit:
[ult20])

This algorithm manages to detect an
object class as well as its Bounding
Box (BB) and can do so for multiple
objects in an image. It is relatively
light managing to reach real-time im-
age processing at 45 frames per sec-
ond on common off the shelf GPUs.
Finally it also manages great perfor-
mances with its simpler yet effective
architecture.

2.2.2 SLN, LRN and EPnP

The RPEP devised by Massimo Piazza is capable of giving an accurate estimate of the
relative pose of a target spacecraft, from a single monocular grayscale image. This feat is
achieved by daisy chaining two CNNs which have been selected and trained in order to
fulfill specific purposes.
The pipeline can be divided into three core sections with different tasks:

• Spacecraft Localization Network (SLN): It leverages the YOLOv5s CNN architecture
[ult20] to define the BB of the spacecraft

• Landmark Regression Network (LRN): It leverages the HRNet CNN architecture
[Sun+19] to identify and localize certain features of the target spacecraft
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• Pose Solver : It uses analytical techniques to fit a known 3D wireframe model to the
features identified previously and thus find the pose

Figure 2.8: Architecture of the RPEP, (image credit: [Pia20])

The description of each submodule starts from Spacecraft Localization Network (SLN),
the first image processing step of the RPEP.
It is based on the YOLOv5s architecture (the smallest version of YOLOv5), due to its
favorable trade-off between computational efficiency and accuracy.
The CNN receives as input a properly resized image of the target, processes it and returns
the coordinates of the detected BB.

During training and testing the pipeline ran on images extracted from the SPEED database,
which presented a number of frames with Earth as background. This was aimed at improv-
ing the pipeline robustness to noise and background and, as can be seen from Figure 2.9
this was achieved as the pipeline is extremely effective, managing to detect the spacecraft
even in cases where the human eye may fall short.
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Figure 2.9: SLN prediction on 6 test images with Earth background, (image credit:
[Pia20])

The pipeline was then tested and the results were noted using the Intersection over Union
(IoU) metric, which defines the overlap ratio between the real and predicted BB by di-
viding their intersection (the area they have in common) by their union (the sum of their
respective areas).

IoU =
BBGT ∩BBPred

BBGT ∪BBPred

= (2.17)

Overall the pipeline managed to achieve a mean IoU of 0.9538 with median IoU of 0.9650
on the whole SPEED dataset. This result outperformed UniAdelaide [Che+19], the winner
of the Pose Estimation Challenge proving how effective the SLN is.

Moving forward, the Landmark Regression Network (LRN) is the second step of the
pipeline. It is responsible for the detection of the notable features of the spacecraft in the
considered frame.
HRNet32 [Sun+19] has been chosen as the basic CNN architecture of this stage thanks
to its unprecedented accuracy in the field of human pose estimation. Also the trade-off
between computational efficiency and accuracy has been considered, driving the choice of
HRNet32 over HRNet48.

A rescaled image of the BB found previously is given as an input to HRNet, which has
been trained to regress heatmaps of these frames, highlighting the identified features as
peaks in each heatmap. It is also important to note that the CNN is able to accurately
predict the position of keypoints occluded by a portion of the spacecraft itself.
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Overall eleven keypoints were considered: three corresponding to the tip of each antenna
(A1, A2, A3), four corresponding to the edges of the solar panel (S1, S2, S3, S4), and
the remaining four related to the edges of the backplate of the spacecraft (B1, B2, B3, B4).

Figure 2.10: Heatmap regressed by HRNet, (image credit: [Pia20])

Although an excellent regression accuracy had been achieved, the LRN proved to be the
least computationally efficient stage of the pipeline, around one order of magnitude slower
than SLN.
Unfortunatelly this happens because the size of HRNet is bigger than its YOLO counter-
part, and thus a higher number of operations has to be performed.

To conclude this overview, the Pose Solver is the last stage of the RPEP and its task is
to predict the relative pose of the target spacecraft.
This is achieved through analytical means given the BB and the detected keypoints, as
illustrated in Massimo Piazza’s work [Pia20].

The first step of this process is the elimination of the lower confidence landmarks as the
EPnP algorithm is not robust to outliers and, even a small number of them, may lead to
incorrect pose estimates. To this avail it was preferred to work on a smaller sample of
high confidence keypoints instead of working with the whole population.

After keypoint rejection the remaining data is fed through the EPnP algorithm which,
without requiring any initial guess, returns the predicted pose.

The pose is then compared to the BB. If it is coherent with it, the result is deemed
correct and is refined using the Levenberg-Marquardt Method [Gav13]. Instead if the
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pose is deemed uncoherent with the detected BB, a lower accuracy estimate is given
based on the detected BB.

2.2.3 Performance metrics

Overall the Relative Pose Estimation Pipeline devised by Massimo Piazza managed to
achieve great results, still standing at 5th place on the post mortem SLAB/ESA Pose
Estimation Challenge [SLA19] with a 3rd place all time best.
Table 2.1 summarizes the pipeline performances in terms of translational (Et) and rota-
tional absolute error (Eθ) and their corresponding standard deviation.

Absolute error

Mean Median
Et 10.36 cm 3.58 cm
Et [0.52, 0.56, 10.25] cm [0.24, 0.27, 3.50] cm
Eθ 2.24° 0.81°
Eθ [1.57°, 0.84°, 1.72°] [0.52°, 0.33°, 0.34°]

Standard Deviation

σEt
[1.62, 1.71, 30.44] cm

σEθ
[8.92°, 5.11°, 10.82°]

Table 2.1: Global end-to-end performance of the RPEP

As can be seen performance in the order of centimeters and degrees level is achieved, as
such the pipeline can be seen as compatible with close proximity operations.
It is important also to point out that accuracy is assessed over the whole SPEED dataset,
but, generally, the error decreases greatly as the target gets closer.
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2.3 Kalman filter basics

In the space industry, the most used and famous filters are the Kalman Filter (KF) and
its variants [Kal60]. They are very efficient recursive filters: in fact they use the output
of the previous iteration as an initial estimate for the next one.
The basic form of the KF is very powerful for dealing with linear problems, whereas its
variants are needed for dealing with more complex non-linear problems.

In this section the basic form of the KF will initially be presented and then its definition
will be expanded to include also the EKF and the UKF.

Considering a linear discrete-time system in the form:

xk+1 = Fxk +Guk +w(k)

yk = Hxk + vk

(2.18)

Where xk and uk represent respectively the state and the input at timestep k, instead,
wk and vk are used to identify the process noise and the measurement noise, whereas
yk identifies the measurement output at timestep k. Finally the matrices F, G and H

respectively represent the State Transition Matrix (STM), the Input transition matrix
(ITM) and the Observation matrix.

This equation can be used during the Prediction step of the filter, where, knowing the
mean value of the state estimation at the previous iteration x̂+

k , a propagation can be
performed as:

x̂−
k+1 = Fx̂+

k +Guk (2.19)

Which returns the expected mean value of the state x̂−
k+1 for the current iteration.

In a similar fashion the covariance matrix at the previous iteration P+
k can be propagated

to obtain its expected value P−
k+1 at the current timestep, this is done as:

P−
k+1 = FP+

k F
T +Qk (2.20)

Note that Qk represents the covariance matrix associated to the process noise, while Rk

is associated to the measurement noise.
The next step is defined as Correction step as it corrects the predicted state based on the
latest measurements available.
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To this avail, a Kalman gain Kk+1 is defined and has the aim of connecting and weighting
the predicted state and the incoming measurements, giving more importance to the less
uncertain one.

Kk+1 = P−
k+1H

T (HP−
k+1H

T +Rk+1)
−1 (2.21)

Once the Kalman gain has been computed, it is used to update the state and the covari-
ance matrix as:

x̂+
k+1 = x̂−

k+1 +Kk+1(yk+1 −Hx̂−
k+1)

P+
k+1 = (I−Kk+1H)P−

k+1

(2.22)

(2.23)

Note that the output of the Correction step becomes the input of the next filter iteration
as the filter is a “predictor-corrector” type and uses recursive information to improve its
guesses.
As previously stated and clearly visible from the dynamics taken into consideration, the
simple KF is only usable for linear conditions. However, the vast majority of the phe-
nomena considered in the industry is non-linear and often can not be approximated with
linear dynamics.
In this case different solutions must be adopted and non-linear estimators have to be
employed.

2.3.1 EKF

One of the most prevalent solutions to tackle the non-linear state estimation problem is
the Extended Kalman Filter (EKF) [MG02], a modified version of the standard KF.
By linearizing the non-linear model around the state estimate of the previous iteration,
and using that to estimate the state, the filter manages to overcome the linearity problem
of the KF.
In this section the discrete-time EKF is presented starting from the non-linear model:

xk+1 = f(xk,uk,wk)

yk = h(xk,vk)
(2.24)

To perform the linearization step the computation of two Jacobians is needed: the first F
related to the state transition function f(·) and the second H related to the measurement
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function h(·).
As the linearization is effectively based on a Taylor expansion, higher order EKF can be
obtained by retaining more terms during the procedure.

F =
∂f

∂x

∣∣∣∣
x̂+
k

H =
∂h

∂x

∣∣∣∣
x̂−
k

(2.25)

Once the Jacobians have been computed, the filter plays out similarly to a KF, with the
main difference being in the use of the matrices H and F obtained through the linearization
procedure.
Here the steps to be performed are reminded:

x̂−
k+1 = f(x̂+

k ,uk,0)

P−
k+1 = FP+

k F
T +Qk

Kk+1 = P−
k+1H

T (HP−
k+1H

T +Rk+1)
−1

x̂+
k+1 = x̂−

k+1 +Kk+1(yk+1 − h(x̂−
k+1,0))

P+
k+1 = (I−Kk+1H)P−

k+1

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

The EKF is proven to be quite capable and efficient, but, presents a few drawbacks.
It is generally difficult to tune as it relies on linearization and it has problems when dealing
with systems that present significant non-linearities.
These drawbacks create the need for a more reliable filter when dealing with such systems,
fortunately the UKF fills this niche.

2.3.2 UKF

The Unscented Kalman Filter (UKF) [JUD95] overcomes the drawbacks of the EKF by
introducing three tuning parameters and avoiding the linearization completely, opting to
rely on an Unscented Transform (UT) for the propagation of the mean and the covariance
of the state.
The Unscented Transform (UT) is an excellent alternative to the linearization of the
dynamics. It considers the state distribution as Gaussian and captures its mean and co-
variance through a set of sample points called sigma points.
The sigma points can then be propagated through the non-linear system, and, through
certain weighted transforms the mean and covariance of the following iteration can be
computed.



2| Theoretical background 29

Figure 2.11: Comparison between the sampling procedure, the UT and the linearization

It can also be noted that, the UT shows greater performances with respect to a lineariza-
tion when it comes to the estimation of the mean and covariance, as it approximates them
to the second order instead of the first. This explains why the UKF can perform much
better than the EKF when subjected to highly non-linear dynamics.
Finally, good estimates of the statistics of a process can be achieved with a relatively low
computational burden as a limited amount of sigma points has to be considered. This
differs significantly from sampling methods such as the Monte Carlo one, that needs a
vast amount of points to obtain an accurate state distribution.
Considering a generic nonlinear system:

xk+1 = f(xk,uk,wk)

yk = h(xk,vk)
(2.31)

A set of sigma points can be defined from the state and the covariance matrix of the
previous iteration.
This step is highly tunable, as the sigma points distribution depends on two coefficients
(α, κ), which can be imposed by the user [WV00].
The sigma points are obtained as:
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x̂
(i)
k = x̂+

k + x̃(i), i = 1, ..., 2n

x̃(i) =

(√
cP+

k

)T

i

, i = 1, ..., n

x̃(n+i) = −
(√

cP+
k

)T

i

, i = 1, ..., n

(2.32)

(2.33)

(2.34)

Where:

c = α2(n+ κ) (2.35)

Sigma points are then individually propagated and then a weighted average is computed
to obtain the predicted mean value of the state. Furthermore the predicted covariance
matrix is obtained in a similar fashion.
This step also retains the dependence on the user defined parameters imposed previously,
as in the weighted average the weight of each single sigma point depends on α, β and κ

x̂
(i)
(k+1) = f(x̂

(i)
k ,uk+1)

x̂−
k+1 =

2n∑
i=0

W
(i)
M x̂

(i)
k+1

P−
k+1 =

2n∑
i=0

W (i)
c (x̂

(i)
k+1 − x̂−

k+1)(x̂
(i)
k+1 − x̂−

k+1)
T +Qk

(2.36)

(2.37)

(2.38)

Where:
W

(0)
M = 1− n

c
W

(i)
M =

1

2c

W (0)
c = (2− α2 + β)− n

c
W (i)

c =
1

2c

(2.39)

Based on the predicted state, the corrected sigma points are defined as:

x̂
(i)
k+1 = x̂−

k+1 + x̃(i), i = 1, ..., 2n

x̃(i) =

(√
cP−

k+1

)T

i

, i = 1, ..., n

x̃(n+i) = −
(√

cP−
k+1

)T

i

, i = 1, ..., n

(2.40)

(2.41)

(2.42)

The prediction of the measurement is then computed using the corrected sigma points.
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Firstly a propagation is performed using the measurement function for each single sigma
state, afterwards the computation of its weighted average is performed and finally the
covariance and cross covariance are obtained.
The process is performed as:

ŷ
(i)
k+1 = h(x̂

(i)
k+1)

ŷ−
(k+1) =

2n∑
i=1

W
(i)
M ŷ

(i)
k+1

Py =
2n∑
i=1

W (i)
c (ŷ

(i)
k+1 − ŷ−

k+1)(ŷ
(i)
k+1 − ŷ−

k+1)
T +Rk

Pxy =
2n∑
i=1

W (i)
c (x̂

(i)
k+1 − x̂−

k+1)(ŷ
(i)
k+1 − ŷ−

k+1)
T

(2.43)

(2.44)

(2.45)

(2.46)

Finally, the updated estimate of the state can be obtained by the usual means of Kalman
gain.

Kk+1 = PxyP
−1
y

x̂+
k+1 = x̂−

k+1 +Kk+1(yk+1 − ŷ−
k+1)

P+
k+1 = P−

k+1 −Kk+1PyK
T
k+1

(2.47)

(2.48)

(2.49)

The UKF presents some solid advantages with respect to the other filtering technique,
as it does not require the computation of Jacobians and can deal with highly non-linear
situations.
However this advantages come with a great computational load as each sigma point needs
to be propagated individually.
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3| Relative pose pipeline

3.1 Pipeline introduction

The aim of this dissertation is to create a relative navigation algorithm that leverages on
a pre-existing NN pipeline. As such, both an image generation algorithm based on the
SPEED database and a filtering architecture to improve the output had to be devised
and implemented.

Figure 3.1: Overall architecture of the relative navigation pipeline

This chapter will initially tackle the image generation and then present the filtering
pipeline.
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3.2 Image generation procedure

The first step of the dissertation is the image generation step. Its main purpose is to
generate: single frames, coherent image sequences and a replica of the SPEED database.
This algorithm was essential as no image database, other than SPEED, was available and
could fulfill our needs.

Figure 3.2: Example images generated from the pipeline

To build the pipeline the open source software Blender was chosen, as it was very ap-
pealing due to: its performance, its great online support and community and its scripting
capabilities that allowed to fully control the scene via Python.
The overall product consists in an image generation environment capable of creating
pseudo-realistic images of the TANGO spacecraft given as inputs the relative distance
and attitude. Moreover, the pipeline is also capable of both propagating the dynamics
and generating a coherent image sequence depicting the evolution of the relative motion.
Salient features and challenges will be explained in the following sections.

3.2.1 Scene layout

First of all a layout for the scene had to be determined and the procedure for placing
either the camera or the 3D model of TANGO had to be laid out.
The choice ultimately fell on placing the 3D model in the center of the scene and then
generate the camera in the proper position. This decision was deemed convenient for
many reasons. Firstly the model is made up of several components, each one with its own
barycenter and coordinate system. This could pose a problem while performing a rigid
body rotation as each piece may rotate around its own coordinate system leading to an
un-coherent rotation of each single component.
Secondly, it was deemed easier to generate a camera in the correct position and orientation
instead of moving and rotating around the whole 3D model.
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Once a layout was chosen, it was necessary to identify the different reference frames at
play, both in the attitude problem and in the Blender software.

Figure 3.3: Scheme of the various coordinate systems in the scene

As can be seen from Figure 3.3, four main reference frames are involved, although for
convenience they can be reduced to three as TANGO body frame was imposed coincident
to Blender scene frame. Furthermore, a key assumption was considered as MANGO body
frame was set coincident to the camera frame defined by the sensor on-board. This was
deemed reasonable and its correctness was further proved by testing this assumption. The
results can be found in Section 4.1.1.
Note that, for the remainder of this dissertation, the terms MANGO body frame and
Chaser camera frame will be used to indicate the same reference frame.

Once the reference frames were identified, the relations between each of them had to be
laid out since they are of paramount importance to properly generate the virtual camera.
Focusing on the relation between Blender camera frame and the chaser camera frame:
the software uses a completely different notation, as it imposes the Z axis opposite of the
boresight of the camera. Fortunately the relation between the two frames is quite simple
as a rotation of [π rad] about their common X axis is enough to realign them.
Meanwhile, the relation between TANGO and MANGO body frames is more complex
and is related to the dynamics explained in Section 2.1.3 through the rotation matrix Γ.

Moving on to camera placement, it is important to recall that the relative separation is
expressed in the chaser body frame. Meanwhile, in the Blender pipeline, the target body
frame is imposed as the fixed one, therefore the relative distance has to be expressed in
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that reference frame. This is done as:

rrTb
= −(ΓTrrMb

) (3.1)

Where rrTb
is the inverted relative distance vector expressed in the TANGO body frame

and indicates the position at which the camera must be placed. Meanwhile, rrMb
is the

relative distance vector expressed in the MANGO body frame.

Once the relative distance has been evaluated, the actual camera can be positioned in
the obtained point. Its attitude is then adjusted to point to the target, in the following
manner:

Rcamera = RπΓ where Rπ =

1 0 0

0 −1 0

0 0 −1

 (3.2)

Where Rcamera is the attitude to be imposed to the camera to correctly point to the target
and Rπ is the π rad rotation needed to correct the boresight of the camera.

3.2.2 Lighting conditions

To allow the creation of realistic images of the TANGO spacecraft special care had to be
put into the illumination conditions.

Figure 3.4: Light sources scheme

As can be seen from Figure 3.4, three light sources have been implemented: the main
two being the Sun and Earth, along with a third dimmer light placed in correspondence
of the chaser. Its main purpose is to reduce the sharp contrast between illuminated and
dark regions.
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Focusing now on the Sun, its position has been obtained from the spacecraft orbit and
from the considered season as:

Sn = [cos(ω⊕t), sin(ω⊕t) cos(ϵ⊕), sin(ω⊕t) sin(ϵ⊕)]

Sc = AB/NSn and St = ΓTSc

(3.3)

Where Sn is the Sun versor in the Earth Centered Inertial (ECI) frame, Sc is the Sun
versor in the chaser body frame and St is instead expressed in the target body frame.
ω⊕ represents the Earth angular velocity about the Sun and ϵ⊕ represents its inclination
with respect to the Ecliptic plane. AB/N represents the rotation between the chaser body
frame and the ECI frame, which is found by propagating the chaser dynamics.
Note that, for simplicity, the spacecraft has been considered coincident to Earth when
dealing with its seasonal illumination and Earth orbit has been considered circular.
As such, frames present both seasonal and orbital variations in their illumination condi-
tions.

Figure 3.5: Example of seasonal variations in the lighting condition (Note: the effect has
been exaggerated for better visibility)

Considering now Earth albedo, its direction was easier to implement as the relative posi-
tion between the spacecraft and Earth is fully available from the dynamics considered in
subsection 2.1.2. For what concerns the related illumination, it was chosen to consider it
as 25% that of the Sun, which is roughly the amount of energy coming from the Sun and
reflected by the Earth.
At last, considering the smaller intensity light positioned on the chaser, although not
physically accurate it was deemed necessary to reduce the sharp contrast between light
and shadow in the frames.

As can be seen from Figure 3.6, the SLN encountered difficulty when trying to recognize
the spacecraft in such illumination conditions.
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(a) SPEED image (b) Simulated image (c) Detected BB

Figure 3.6: Example of a failed detection due to bad lighting (No fill light present)

An alternative approach to the added light could have been a volumetric simulation of
the atmospheric scattering, but, due to the excessive computational load and rendering
time it was chosen to go for the simpler and more direct route.

3.2.3 Texturing

The implementation of realistic textures on the spacecraft model was an important part
of the overall pipeline.
Unfortunately, the 3D model provided by OHB-Sweden [Swe] did not present any texture
or data on the materials, thus their property was not available. It was decided to proceed
by iteratively adjusting the textures on the spacecraft and comparing them to the SPEED
database over several images.

Figure 3.7: Comparison between the SPEED database [left] texturing and the replica
[right] texturing

Although a perfect match in the texture was not achieved, it was deemed accurate enough
for the purpose of the dissertation.
Unfortunately, the presented mismatch led to a minor loss of performance of the pipeline,
though it was partly counteracted by the decision to avoid Earth as a background.
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This approach was also adopted to avoid problems regarding both the scale of the scene
and potential artifacts in the lighting. In addition, it also implied a big reduction of the
rendering times.
As can be seen from the results in Section 4.1.1 this approach was successful as no major
discrepancies were found between the SPEED database and the replica generated by our
pipeline.

3.2.4 SPEED comparison

As mentioned in the previous subsection, the comparison with the SPEED database was
performed to further validate the image generation approach above-mentioned.
To enable this, the recreation of all the images present in the SPEED database was
pursued. Some examples are proposed in Figure 3.8, note that the the lighting condition
is not matching as SPEED did not provide any information about it.

Figure 3.8: Comparison between the SPEED database [left] and the replica database
[right]
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Once the mockup database was available, to ensure its correctness some steps were taken:
firstly a preliminary visual comparison between the two databases was performed with
the aim of detecting evident errors through the use of superposition techniques.
Afterwards the whole dataset was ran through the RPEP and its results were then com-
pared to the ones obtained from the SPEED database. The results of such analysis are
found in Section 4.1.1.

3.3 Sequence generation

To finalize the presented image generation pipeline the creation of coherent image se-
quences had to be implemented.
Said algorithm enables the autonomous rendering of a large number of frames. Those
can be both a collection of single uncorrelated images (e.g. SPEED) or full sequences of
coherent frames based on the relative dynamics propagation.
In the following sections a more in depth analysis will be performed.

3.3.1 Propagation procedure

The propagation step is based on the dynamics equations provided in Section 2.1.
To properly enable the procedure, a set of initial conditions must be identified and im-
posed. Those are: initial relative separation and attitude, orbital parameters of the chaser
and initial angular velocities of both target and chaser.

Starting from the latter, the angular velocity of the chaser has been imposed in a way
that allows the spacecraft body frame to track the LVLH frame.
Instead the target angular velocity is generated from a distribution obtained from a prelim-
inary study of the light curves of tumbling LEO objects [Uni21]. Although this approach
is quite accurate and realistic, it presents a couple of drawbacks: firstly the distribution
presents a very big population of objects with very high tumbling rates, below 5s, which
can pose problems to the filtering stage and therefore needs to be accounted.
Secondly there is an evident bias towards faster tumbling rates. This is due to the pres-
ence of objects with multiple reflecting surfaces, which generate more peaks on their
light-curves per revolution and hence will be interpreted as a faster tumbling rate. This
bias cannot be counteracted or accurately estimated, as the geometry of the majority of
the tracked objects is unknown, and thus must be accepted.

Moving on to the imposed orbital parameters, a circular, equatorial, with semimajor-axis
equal to 10.000 km has been chosen as it proved to be a simple and manageable case
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study.

Finally, regarding the relative quantities, the initial conditions have been extracted from
SPEED ground truths. As such, the initial frame of each sequence can be traced back to a
frame from the database. Note that, by following this approach, the recreation of the full
SPEED collection can be easily performed by saving only the first frame of the procedure.

In addition to the initial condition, a set of tuning parameters have to be imposed by the
user.
Initially the propagation time of the relative dynamics has to be properly enforced.
Afterwards the Frames Per Second (fps) must be defined: it represents the number of
images rendered for each second of the propagation. This dissertation will mostly use
an acquisition rate of 2 fps (one render taken every 0.5 s) as it seemed a reasonable and
conservative value for spaceborne applications.

3.3.2 Blender pipeline layout

Figure 3.9: Scheme focusing on the image generation procedure
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The outline of the Image generation step of the pipeline is presented in detail in Figure
3.9.
First of all, a set of initial conditions is fed to the pipeline. Those are processed through
a numerical ODE propagator that estimates the evolution of the state in the considered
timeframe. The desired fps are then taken into account by downsampling the propagation
accordingly in order to obtain the state of each desired frame.

The aforementioned array is then progressively fed through the actual rendering cycle.
At first the scene is defined as static and presents only the 3D model of TANGO in its
center. Once the state is fed through the cycle the next step can begin. The corresponding
camera and its matching set of lights is placed in the scene and a rendering operation is
performed.
Note that Blender presents two different rendering engines named EEVEE and Cycles.
While the latter is more powerful the first is sensibly faster. As such, this dissertation
will make use of EEVEE as a huge number of frames was needed in a relatively short
timespan.
Once the rendering operation has been performed the camera and the set of lights are
permanently removed from the scene, effectively leaving it in its static condition and ready
for a new iteration.

Focusing instead on the obtained image, initially the clean frame is properly named and
saved, afterwards a random gaussian noise filter with covariance 0.0022 [Kis+20] is applied
and the noisy frame is then saved.
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3.4 Filtering pipeline

To improve the performance of the pipeline a filtering step was deemed necessary. to this
aim a set of Kalman filters was employed as the tackled problem has sequential properties.

Figure 3.10: Scheme focusing on the filtering step of the pipeline

Image 3.10 describes the layout of the filtering procedure implemented in this dissertation.
As can be seen both an EKF and a UKF have been used for the two different dynamic
conditions. To allow the decoupling of the relative attitude problem from the relative
distance problem one key assumption had to be put in place: since the correlation between
the two problems lies in the chaser inertial attitude and position, it has been considered
fully known and available, thus allowing the uncoupling of the dynamics.
This was deemed a reasonable assumption given that a chaser spacecraft is commonly
equipped with high accuracy attitude sensors and has full ground support. Thus its
inertial attitude and position can be assumed fully known with a high degree of accuracy.

The EKF was preferred when dealing with the relative position dynamics as the problem
presents quite linear characteristics and a slower evolution. Moreover, as the linearization
is quite effective, the filter showed excellent performances and a reduced computational
load.

Whereas, regarding the relative attitude problem, due to its faster evolution and highly
non-linear behaviour an approach involving the UKF was pursued. Although the com-
putational time dedicated to this step is higher, the filter proved to be quite stable and
performing.
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3.4.1 EKF specifics

As previously mentioned the EKF was chosen to tackle the relative dynamics problem
presented in Section 2.1.2.
Those equations have been directly implemented in the filter and propagated during the
prediction step using an ODE solver. Moreover, the Jacobian matrix of both the state
propagation equation and measurement equation have to be computed to fully implement
the filter. This is done as:

F =
∂f

∂x
=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
∂ẍ
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∂ẋ
0 0

∂z̈

∂x

∂z̈

∂y

∂z̈

∂z
0 0 0


H =

∂h

∂x
=

 0 0 0

AB/L 0 0 0

0 0 0

 (3.4)

The fully developed derivatives of the Jacobian Matrix F are available in Appendix A
To finalize the setup of the filter also the matrices Q and R had to be imposed, where Q

represents the process noise and R is the measurement noise.
As the process is considered perfectly known and deterministic, the corresponding matrix
Q is considered null. Instead, the measurement noise was carefully studied and charac-
terized analyzing the results from the RPEP on the simulated image database. The full
process can be found in Section 4.1.1

3.4.2 UKF specifics

Moving on to the relative attitude problem, as mentioned previously, an UKF has been
deemed more suitable.
To characterize the filter no Jacobian matrices were needed, instead, the spread and the
weight of the various sigma points need to be characterized. To this avail three parameters
have been introduced:

• α, identifies their spread around the mean value.

• κ, represents a second scaling factor.

• β, affects the weighted average of the sigma points.

The three parameters (α, κ, β) have been respectively imposed as: [10−3, 0, 2] following
suggestions from the literature [WV00] and a brief trial and error testing phase.
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Analogously to the EKF the matrices Q and R had to be imposed.
Regarding the process noise, a similar approach has been pursued, as such it was imposed
null.
Conversely, an accurate study of the measurement covariance has been performed taking
into account various factors. A full analysis is present in Section 4.3.2

Moreover, during the analysis of the most common failure modes, a scarce robustness to
outliers has been detected. As this problem led to various localized failures of the filter,
countermeasures were put in place.
It was chosen to follow an approach based on the Mahalanobis distance between expected
and real measurements. If the aforementioned parameter is greater than the 2 sigma
threshold (obtained from the inverse χ2 distribution), then its corresponding measurement
is discarded and the update phase is completely skipped, meaning that the probability of
measurement happening under the current state estimate is less than 4.6%.

3.4.3 UKF using MRPs

In this dissertation MRPs are consistently used throughout the filtering sequence.
The main driver for this choice was that the dynamics has been expressed in MRPs, so
the state had to follow that logic. Therefore, on one hand Euler angles were avoided in
the UKF due to the non-linear relation between them and the state expressed in MRPs
and the added complexity that it implied [SJ95].
On the other hand, quaternions needed a complex correction step in order to eliminate
the use of additive errors [LMS82] due to the norm constraint, as such it was chosen to
avoid them.

Unfortunately the use of MRPs brought forth a number of problems.
Firstly a way to account for the switching between the shadow and the regular set had to be
devised: whenever the norm of the MRP describing either the state or the measurements
was greater than one the switching procedure was performed.
To this avail the equation mapping the regular MRP set to its shadow counterpart was
considered as [KS09]:

ζS = − ζ

ζT ζ
(3.5)

Furthermore, a similar transformation had to be applied to the corresponding covariance
matrix as:

P S
k = ΛPkΛ

T where Λ = 2ζ−4(ζζT )− ζ−2I (3.6)

Where P S
k is the covariance matrix expressed in the shadow set.
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Although this approach seemed to improve the performance of the filter, it generated the
possibility of mismatches in the switching procedure. For example, at a certain iteration
the measurement could be switched to shadow, but not the state, since it could be slightly
below the threshold. In that case a mismatch would happen and spike in the error graph
would be detected. This error spike would be a "false negative", considering that both
the shadow MRP and its regular form indicate roughly the same attitude. As such a
procedure to correct this false errors must be devised.
Finally, a more in depth analysis of the measurement noise covariance matrix (R) was
needed, as correlations between it and the MRP norm were deemed possible. The overall
analysis will be found in Section 4.3.2.
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4| Results

4.1 RPEP testing

The RPEP played a crucial role during the testing phase of this dissertation, as its capa-
bilities were used for both the measurement extraction and the validation of the simulated
frames.
Overall the pipeline showed very good performance, managing a centimeter and degree
level accuracy on both the SPEED database and its replica.
The obtained results will be now presented.

4.1.1 Replica and real SPEED comparison

As the database generated from the image generation pipeline presented some evident
mismatches with the real SPEED database, a way to compare the two had to be devised.
It was chosen to exploit the RPEP pipeline to quantify its performance loss, which was
assumed proportional to the difference between the databases.
The RPEP performance on both image collections are presented in Tables 4.1 and 4.2:

Absolute error

Mean Median
Et 10.36 cm 3.58 cm
Et [0.52, 0.56, 10.25] cm [0.24, 0.27, 3.50] cm
Eθ 2.24° 0.81°
Eθ [1.57°, 0.84°, 1.72°] [0.52°, 0.33°, 0.34°]

Standard Deviation

σEt
[1.62, 1.71, 30.44] cm

σEθ
[8.92°, 5.11°, 10.82°]

Table 4.1: RPEP performance on the SPEED database
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Absolute error

Mean Median
Et 10.10 cm 3.52 cm
Et [0.58, 0.65, 9.96] cm [0.33, 0.32, 3.41] cm
Eθ 2.32° 0.94°
Eθ [1.65°, 0.83°, 1.65°] [0.56°, 0.37°, 0.46°]

Standard Deviation

σEt
[1.79, 2.45, 39.82] cm

σEθ
[9.41°, 4.72°, 9.91°]

Table 4.2: RPEP performance on the replica database

As can be seen the results between the two databases are very similar presenting only
minor differences. As such, the use of our simulated frames has been deemed acceptable
for the purpose of this dissertation.

Going more in depth in the result analysis, it is evident that the measurements of the
relative distance on the Z axis are subjected to higher errors. This can be traced back to
the BB-based correction of the outliers performed by the RPEP which presents the higher
uncertainty on the boresight direction, thus providing a poorer result on the Z camera
axis.

Moving on to the relative attitude, an uneven spread of the errors have been detected. It
was proposed that this unevenness has to do with the position of the selected keypoints, as
small errors on the detection of the features farther away from the center have a stronger
effect than those closer.
This, in turn, creates biases on the axis characterized by the presence of such keypoints.

Further analysis was performed to identify possible biases on the simulated database, as
the placement of the 3D model in the Blender environment was performed manually.
Thus, it could introduce small biases in the overall database due to poor placement.
To this aim an initial study of the error distribution graphs was performed.
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Figure 4.1: Relative error distribution on the simulated database

As can be seen from the graphs in Figure 4.1 no major bias is present as all the gaussian
curves seem to be centered on a zero mean. However, a more in depth analysis highlights
a slight bias as can be seen in Table 4.3:

Simulated database mean error

Mean error
Relative distance [0.01803, 0.02821, 1.764] cm
Relative attitude [0.03520, 0.003274, 0.1062] deg

Table 4.3: Mean error of the replica database

Overall the bias regarding the relative distance is quite contained being well below the
centimeter level except for the boresight direction.
Similarly, the relative attitude error presents a very contained bias, below the degree level.
In the end, both biases will be considered acceptable for the aim of this dissertation, as
they are quite limited and generally fall one order of magnitude below the mean of the
absolute error.

Overall the analysis of the results of the RPEP showed how, although not perfect, the
proposed image generation procedure can provide an available and valuable alternative
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to the SPEED database.

4.1.2 Results from image sequence

After the validation of the image generation procedure proposed in this dissertation, the
analysis of complete and coherent image sequences could be attempted.

To this aim a few image sequences were first generated and evaluated by the RPEP, then
filtered and finally the corresponding results were thoroughly investigated. A selection of
two of those will be proposed in this section.

The first test case presents the TANGO spacecraft placed at a relative distance of around
12m with a relatively fast rotational period of around 10s. Its initial relative parameters
were taken from "Img000040" of the SPEED database.
The first 12 frames of the sequence are visualized in Figure 4.2:

Figure 4.2: First 12 frames of the simulated sequence based on "Img000040" of the
SPEED database

The generated frames were then passed through the RPEP on the Colab platform that
used a high-end GPU to perform the inference. The results of the analysis can be seen in
Table 4.4:
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Absolute error

Mean Median
Et 8.36 cm 5.73 cm
Et [0.50, 0.48, 8.26] cm [0.37, 0.30, 5.67] cm
Eθ 2.74° 1.13°
Eθ [1.47°, 0.69°, 2.47°] [0.75°, 0.46°, 0.52°]

Standard Deviation

σEt
[0.70, 1.22, 15.69] cm

σEθ
[5.22°, 1.30°, 14.44°]

Table 4.4: Results obtained from the RPEP on the first sequence

Figure 4.3: Error graphs of the relative separation components obtained from the
"Img000040" sequence

Figure 4.4: Error graphs of the MRPs obtained from the "Img000040" sequence

Overall the pipeline performance was better than expected presenting relatively low mean
errors compared to the results found in Section 4.1.1. It was assumed that this was cor-
related to the relatively low distance taken into consideration, as the RPEP performance
heavily depends on it.
Unfortunately, a few outliers were also detected both within the relative separation and
the relative MRPs, but they will provide a good basis for the validation of the filtering
sections.
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The second test sequence considered retained roughly the same relative distance but had
a much slower rotation period of around 2 min. Its initial relative parameters were taken
from "Img000051" of the SPEED database. The first 12 frames of the sequence are
visualized in Figure 4.5:

Figure 4.5: First 12 frames of the simulated sequence based on "Img000051" of the
SPEED database

The results obtained from the sequence can be seen in Table 4.5:

Absolute error

Mean Median
Et 14.41 cm 6.51 cm
Et [0.64, 0.67, 14.30] cm [0.42, 0.40, 6.50] cm
Eθ 4.94° 1.23
Eθ [3.84°, 0.95°, 4.65°] [0.80°, 0.62°, 0.47°]

Standard Deviation

σEt
[1.10, 1.46, 43.10] cm

σEθ
[14.52°, 1.78°, 19.88°]

Table 4.5: Results obtained from the RPEP on the second sequence
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Figure 4.6: Error graphs of the relative separation components obtained from the
"Img000051" sequence

Figure 4.7: Error graphs of the MRPs obtained from the "Img000051" sequence

Overall the pipeline showed poorer performance with respect to the sequence analyzed
before. Infact the mean error was higher but the median was quite similar: this phe-
nomenon is a strong indicator of a higher presence of outliers within the results.
Considering the graphs of Figures 4.7 and 4.6 it is quite evident that outliers are indeed
present but they tend to concentrate on certain regions of the sequence.
It has been speculated that this has to do with the slower rotational period which im-
plies a small difference between successive frames. As such, if an outlier is detected in
a particular pose condition, the following frame is very likely to be an outlier too as the
spacecraft pose did not change by much.

Overall the pipeline performed with decent accuracy and a reduced number of outliers on
the analyzed sequences, although a further increase of the quality of the results and an
elimination of the outliers is to be expected in the following filtering procedure.
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4.2 Extended Kalman Filter

Due to the paramount importance of the EKF to the performance of the whole filtering
pipeline, its robustness had to be ensured.
Overall the EKF was tested both on real inputs obtained from the RPEP and on fully
simulated inputs obtained by applying proper noise to the GT vector.

Altogether, the EKF was tested thousands of times and showed a very good robustness
and perfect reliability.

4.2.1 Actual image sequence results

To make sure the EKF was robust to real inputs a testing campaign was performed on
real image sequences. To the aim of this dissertation the sequences proposed in Section
4.1.1 will be analyzed.

Starting from the first proposed sequence, its results were fed to the EKF and an initial
analysis was performed.
To facilitate the analysis of both the filtered and raw measurements a superimposition
of the two was performed in the graphs. The scale has also been set to logarithmic to
further improve legibility. The visualized graphs are presented in Figure 4.8:

Figure 4.8: Filtered relative separation component graphs of the "Img000040" sequence

As can be clearly seen from Figure 4.8, the EKF manages to successfully filter out any
outliers and reduce the error of up to one order of magnitude.
It can also be observed that the filter manages to settle around a millimeter level accuracy
on the X and Y axis within the first few seconds, a clear improvement on the measure-
ments obtained from the RPEP.
Unfortunately, the results associated to the Z axis are not quite as accurate managing
only to reach a centimeter level accuracy. This was expected and can be justified by the
poorer quality of the inputs, as they are generally associated to a higher error, as can be
seen from Table 4.4.
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Moving on to the second sequence, it presented a lower accuracy input and more concen-
trated outliers, as can be seen by looking at the results of Table 4.5. The results obtained
from the EKF are reported in Figure 4.9:

Figure 4.9: Filtered relative separation component graphs of the "Img000051" sequence

Looking at the results the robustness of the EKF is quite evident as, despite the inaccurate
input, it managed to quickly converge to low error levels, comparable to the previous test
case.
Unfortunately a strong decrease in the performance and an increase in the error can
be observed in proximity of the outliers. This is caused by the absence of an outlier
detection and scrapping procedure, meaning that every input is used in the update step
of the EKF. Nonetheless, the filter proved to be very performing and its implementation
was not deemed necessary for the purpose of this thesis.

In the end, the pipeline behaved properly when subjected to real inputs, proving its
high robustness and absolute reliability even in the face of concentrated outliers. To
further prove it an extensive analysis on a vast amount of simulated test cases have been
performed.
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4.2.2 Simulated sequences results

To further ensure the robustness of the EKF thousands of different runs had to be per-
formed.
Unfortunately, due to the excessive number of frames needed, an approach with real in-
puts coming from the RPEP was not feasible in the available time. To overcome this issue
an alternative approach had to be pursued.
It consisted in the generation of pseudo-measurements given a GT and the error covari-
ance matrix (R) associated to the RPEP.
To this aim, exploiting the results obtained in Section 4.1.1, the R matrix could be ob-
tained as:

R = [rjk]

where

rjk =
1

N − 1

N∑
i

[(xij − x̄j)(xik − x̄k)]

(4.1)

where xij represents the measurement of the quantity j at the iteration i and x̄j is the
GT of said measurement.

The overall distribution of the error covariance was then studied and a correlation with
the distance can be seen in Figure 4.10:

Figure 4.10: Mean and covariance of the error with respect to the relative distance

To account for this correlation, the relative distance was divided in three different sections,
each with its own R matrix. The numerical values can be found in Appendix B

Once R was properly defined the testing procedure could start.
An initial random seed associated to a frame of SPEED was selected, thus, from the latter
the initial conditions could be found. Then a high accuracy propagation provided the GT
for the run, to which a random gaussian noise with covariance matrix R was added to
simulate the measurements.
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Once both the GT and the noise covariance matrix were obtained, the filter could start
its iteration and the results could be extracted.

Figure 4.11: Generic results of an EKF run

Figure 4.11 reports the results of a generic run of the EKF. As can be clearly seen the
filter quickly converges to a proper solution on both the relative separation components
and their respective velocities.
It is also important to note that the z component and its associated velocity are always
the last to reach convergence. This effect is caused by the higher uncertainty associated
to that measurement.

Overall the filter proved to be extremely reliable and robust, never failing on over 1000
simulated runs. This performance is possibly due to the slower dynamics of the problem
combined with the high accuracy of the measurements of the RPEP.

4.3 Unscented Kalman Filter

To ensure the reliability of the UKF as well, a procedure analogous to the one set for the
EKF had to be performed.
Both tests on real and simulated inputs were performed showing good performance from
the UKF, although a lower reliability was found.
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4.3.1 Actual image sequence results

A set of tests to ensure the robustness of the UKF when subjected to real inputs had to
be performed. To this aim the sequences analyzed in Section 4.1.2 were used.

Starting from the first sequence, the raw measurements obtained from the RPEP were
fed to the filter and the output was thoroughly analyzed.
To facilitate the comparison between the raw measurement and the filtered state they have
been both superimposed in the graphs. Moreover the 3σ line has also been visualized to
easily discern any present patterns. The visualized results are visualized in Figure 4.12:

Figure 4.12: filtered MRP graphs of the "Img000040" sequence

Although no drastic improvement in the performance was present, the filter managed to
successfully filter out any outlier, providing a clean and reliable output.
Overall the initial absolute angular error is of the 1 order, but then falls to the 10−2 deg
order once the filtering action starts.
Focusing on the 3σ line, an oscillating pattern is easily visible throughout the graph. This
behaviour was always present in the UKF output. This effect was more noticeable when
the rotation rate was faster, presenting more frequent peaks, as such a dependence on the
norm of the MRP was conjectured.
It can be considered that a faster rotation means that the MRP has to switch to its shadow
set more frequently. As such, as this transformation is indeed non-linear, its application
to the covariance implies a visible spike.
Furthermore, as the norm of the MRP grows, smaller initial uncertainties on the attitude
translate to big increases of the MRP norm. Thus its uncertainty has to grow as it
approaches unitary value and has to decrease after the switching to the shadow set as the
norm tends to decrease.
This effect is clearly visible in the graph as the 3σ line presents a gradual increase, then
a sudden spike when the switch to shadow is applied, and finally a gradual decrease.

Moving on to the second sequence, it presented a much slower rotation rate and thus a
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slower evolution of the attitude. This was initially seen as a simplified case to perform an
initial test of the filter, but, due to the numerous consecutive outliers measured by the
RPEP, it proved to be a more challenging test case. The obtained results are visualized
in Figure 4.13:

Figure 4.13: filtered MRP graphs of the "Img000051" sequence

As can be seen from the graphs in Figure 4.13, the filter presents two regions where
a drastic increase of the error can be seen. This effect is indeed caused by the higher
concentration of outliers in such regions.
More specifically, the UKF can identify and scrap such instances through the use of a
Mahalanobis distance based process. This works very well when dealing with isolated
cases, but, when dealing with dense regions with a high concentration of outliers, the
filter can have problems.
This happens as, when a measurement is scrapped, the update phase of the UKF is skipped
and the filter relies exclusively on the obtained propagation. When more measures are
scrapped the filter virtually works "blind", as such an increase of the error is to be
expected.
Nonetheless, the filter managed to dampen the intensity of the error in the worst regions,
while quickly converging to smaller errors and better performances elsewhere.

In the end the UKF proved to be fit in dealing reliably with the real inputs provided.
However, further extensive analysis was needed to ensure its performance and reliability
and to identify the most common failure points.

4.3.2 Simulated sequences results

As was done for the EKF, a testing campaign on simulated inputs had to be performed
on the UKF as well.
Following a similar process the R matrix had to be computed from the results of Section
4.1.1 using the Equation 4.1.
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However, a different study of the error covariance had to be performed, as correlations
with the norm of the MRP or the relative distance had to be investigated.

Starting from the latter, as can be seen from the scatter plots on Image 4.14, no significant
relation between the error covariance and the relative distance is highlighted.

Figure 4.14: Scatter plots highlighting the MRP error with respect to relative distance

It has been speculated that this results was heavily influenced by the RPEP, as, before
the LRN step the BB detected by the SLN is cropped and resized to a common resolution.
Thus, virtually equalizing the field and removing all information on the distance (as closer
frames lose resolution due to reshaping).
As the LRN receives such inputs, this "equalization" is then reflected on the attitude
effectively removing its dependance on the distance.

Further analysis had to be performed to find eventual correlations with the MRP, as
smaller errors on higher norms may lead to big discrepancies with the attitude as high-
lighted in Section 2.1.1.

Figure 4.15: Scatter plots highlighting the MRP error with respect to its norm

As can be seen from the plots in Figure 4.15 a weak increase in the spread of the error
is evident above a 0.4 norm. This can also be highlighted by considering the quaternion
error spread in Figure 4.16
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Figure 4.16: Scatter plot highlighting the quaternion error with respect to the MRP norm

To adopt a conservative approach to the problem, it was chosen to adopt a single noise co-
variance matrix (R) evaluated only for MRP measurements above the 0.4 norm threshold.
Its numerical value can be found in Appendix B

The computation of the R matrix enabled the start of the testing campaign on the UKF.
Analogously to the EKF a random seed was generated, from which the initial relative
attitude was extracted. Additionally an initial relative angular velocity had to be gener-
ated.
To this aim the analysis of a database containing various rotational periods (trot) obtained
from the lightcurves of LEO tumbling objects was performed [Uni21].
A preliminary attempt at fitting a χ2 distribution function from the obtained data was
performed as shown in Figure 4.17. From this a range for the considered rotational periods
was extracted and used throughout the testing phase.

Figure 4.17: trot distribution with fitted χ2 curve
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Note that, as a rough first approximation, a χ2 distribution has been chosen over the more
common gaussian to avoid the possibility of a 0s trot which would have been physically
impossible.

Afterward, a relative angular velocity vector had to be defined, and, to do so a random
unit vector was generated and then multiplied by 2π/trot where trot represents the chosen
rotational period.
During the testing phase it was chosen to keep the rotational period above 5 s as it was
deemed a good compromise between performance and representation of the distribution.

Once the setup was completed the UKF could be executed. The obtained results are
reported in Table 4.6:

UKF testing results

trot performed runs failed runs fail rate
15 s 1000 24 2.4 %
10 s 1000 39 3.9 %
5 s 1000 83 8.3 %

Table 4.6: Results from the UKF testing campaign

Note that the results have been partitioned with respect to their trot. This has been done
to highlight the strong trend which correlates faster rotation with poorer performance.
Moreover, all the presented runs have been propagated considering a timeframe of 500s
and an acquisition rate of 2 fps.

Even though the UKF performance can be deemed acceptable, an analysis of the most
common failure modes has been pursued to identify possible improvement fields.

4.3.3 Failure mode analysis

A detailed analysis of the most common failure modes and their triggers have been carried
out.
An extensive number of runs have been performed in order to isolate those cases and
analyze their internal states, in order to circle out the underlying triggers. To make the
failures more common, a faster trot of 2s has been employed. This created a 53% failure
rate confirming once again the correlation between faster rotation and failures.
Overall 200 runs have been performed and four main types of failure modes have been
detected and classified.
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To help the comparison between what is to be expected of a successful run and what was
deemed a failed run, a reference case has been provided below:

Figure 4.18: Generic results of an UKF run

The first and most common failure mode was defined as Localized Spike. As can be seen
from the graphs of Image 4.19, it consists in an isolated sudden increase of the error
followed by its instantaneous falloff.
The event happens in proximity to a shadow switch and is often caused by a detection of
an outlier in those conditions.
Unfortunately no further information was found and no clear and correct explanation can
be provided.
It is also to be noted that all the provided graphs are comparing the error related to both
the real and the shadow set of the MRPs and are plotting the minimum of the two.

The Localized Spike is by far the most common failure mode and single-handedly adds up
to around 65% of the detected fails. Moreover it is often found in combination with other
failure modes, making the previous estimation lower than its actual appearance rate.

Although this failure mode can be considered an isolated case, and as such may not be
a complete failure of the UKF, it was chosen to still identify and study it, as a solution
may further enhance the reliability of the pipeline.
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Figure 4.19: Identified Localized Spike (MRP [right], ω [left] )

Moving on to the second identified failure mode, it has been named Extended fail as it
lasts for a significant time frame. On the provided graphs on Image 4.20 it appears as a
region where the error is oscillating at a higher amplitude.
From the study of the Mahalanobis distance evolution it was noted that a sequence of
concentrated outliers triggered the initial error spike, thus the UKF discarded all those
measurements but started to converge to a different solution.
Consequently, all successive measurements were treated as outliers as they had a very
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high Mahalanobis distance. This happened as the filter expected measurements drifted
far from the real ones.
After a while some measurements fell below the Mahalanobis distance threshold, thus
allowing a slow convergence to the original solution.

Overall this failure mode accounts for around 30% of the detected fails.

Figure 4.20: Identified Extended fail (MRP [right], ω [left] )
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A particular type of Extended fail has been identified and has been named Initial Fail. As
can be seen from the graphs of Figure 4.21, this failure happens at the start of a sequence
and carries on for a while.
By looking at the data it was evident that a bad initial guess caused by an outlier made
the UKF converge on a wrong solution right away.
Similarly to the Extended fail, the following measurements were treated as outliers and
discarded up until some measure managed to enter the filter and return it to convergence.

Figure 4.21: Identified Initial fail (MRP [right], ω [left] )
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The final failure mode and also the less common is defined as Total fail. As can be seen
from the graphs on Image 4.22 it implies the complete failure of the run.
The underlying causes of this failure are the same as those of the Initial fail, with the
main difference being that the filter does not manage to converge in a reasonable time.

Fortunately this failure mode is the rarest accounting only for around 5% of the total
detected failures.

Figure 4.22: Identified Total fail (MRP [right], ω [left] )
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Some preliminary means of failure avoidance have been implemented in the UKF in the
form of a Mahalanobis distance based correction.
To avoid the detected failures more sophisticated countermeasures have to be employed.
Those could range from more elaborated Mahalanobis distance based correction procedure,
to planned total filter resets.

4.4 Raspberry Pi implementation

A preliminary implementation of the pipeline on a platform which is more representative
of processors available onboard a spacecraft, has been carried out and the results have
been noted.
The platform chosen for this task was the Raspberry Pi 4 2GB single board computer
running the Raspberry Pi OS 64bit operating system, a modified version of Linux.
Strong drivers for the use of this platform were mainly: relatively good performance,
built-in Python support and a vast amount of literature.
In addition, similar platforms have already been deployed on real spacecrafts such as
NASA’s Seeker-1 cubesat, which mounted a SBC Intel Joule single board computer
[BA19].

Both the RPEP and the filtering pipeline have been implemented and executed with
promising results.

4.4.1 Hardware performance

Starting from the RPEP, its implementation was quite tricky as the "wheel" files for the
core Python packages required were not easily accessible on the Raspberry platform.
Furthermore, once all packages were successfully installed, the pipeline was limited to
only a couple dozen images for each run. This limitation was put in place to avoid RAM
saturation issues, overheating of the hardware and excessive computational time.
Overall the test was performed on 100 different frames taken from the simulated database,
the resulting mean computational load is therefore reported in Table 4.7 for each step:

RPEP performance

SLN LRN EPnP RPEP total
5.21 s 87.22 s 0.28 s 92.71 s

Table 4.7: RPEP performance on the Raspberry Pi 4 2GB
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Moving on to the filtering procedure, its implementation was more straightforward without
significant issues. Multiple fully simulated runs were performed with propagation times
of 1000s at 2 fps.
The timing reported was considered between the start of the prediction step and the end
of the update step.
The observed computational loads are presented in Table 4.8:

Filters performance

EKF UKF Filters total
0.02 s 0.37 s 0.39 s

Table 4.8: filtering pipeline performance on the Raspberry Pi 4 2GB

As can be clearly seen the RPEP predictably presents the higher computational load be-
ing around two orders of magnitude greater than the filter load.
This shortcoming was mainly due to the un-optimized nature of the algorithm which ran
on Python with little focus on reducing its computational footprint.
It is reasonable to expect an improvement of up to two orders of magnitude once proper
optimization procedures are put in place. These can range from compiling the algorithm
on the C platform (which can improve the performance by a factor of 10) or performing
proper FPGA hardware optimization.
Furthermore the exploitation of dedicated analog matrix processors [Elb+21] or the adop-
tion of pruning and quantization techniques [Lia+21] could further enhance the perfor-
mance of the NN section.
Finally, even though the "Raspberry Pi" platform may be indicative of the performances
to be expected from a single board computer, space hardware that needs to run CNN
driven operations is bound to present improved performances to cope with the applied
load, and thus, in a real scenario the computational time will be further decreased.

Overall, even though the obtained results can seem very poor, a lot of room for im-
provement is left and therefore, the possibility of spaceborne applications of the proposed
pipeline is not to be discarded yet.
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5| Conclusion and future work

5.1 Conclusion

This thesis tackled the problem of the relative attitude determination of an uncooperative
spacecraft starting from a pre-existing CNN based Relative Pose Estimation Pipeline
(RPEP).
To fully complete the process a way to produce a vast amount of different spaceborne
images and a way to filter the RPEP output was needed. Thus the contribution of this
dissertation is to provide and test both procedures.

Starting from the spaceborne imagery generation procedure, a Blender based pipeline was
designed and implemented.
It is capable of generating collections of single uncorrelated frames from a given baseline
or rendering coherent sequences of images given proper initial conditions and fps rate.
The pipeline can also simulate various lighting conditions based on the orbital motion of
the studied spacecrafts and the considered season.

To ensure its reliability and to validate the photorealism of the produced frames, a testing
campaign was performed.
To this aim the SPEED database was extensively used as a reference. At first simple
visual inspection was performed to allow the tuning of both texturing and environmental
conditions. Then, once the resulting frames were deemed satisfactory, the CNN based
RPEP devised by Massimo Piazza was exploited to further validate the proposed image
generation procedure.
Overall a good degree of similarity was reached, proven also through a comparison with
the whole SPEED database.
Once the image generation procedure was successfully validated, some sequences were
generated, then evaluated by the RPEP and finally a filtering procedure was employed to
further enhance the results.

Focusing now on the filtering procedure, Kalman Filter (KF) were extensively used
throughout the dissertation due to their perfect fit for the problem at hand.
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To address the relative separation problem it was chosen to employ an Extended Kalman
Filter (EKF) thanks to its simplicity coupled with the linearity of the considered dynam-
ics.
Instead, for the more complex relative attitude problem an Unscented Kalman Filter
(UKF) was used due to the non-linearity of the dynamics and their faster evolution.
As previously mentioned the whole filtering pipeline was tested using real frames from
the image generation procedure. However, as a thorough study of the robustness of the
employed filter was pursued, a way to artificially and quickly simulate the desired inputs
was needed.
To this aim the characterization of the error covariance of the RPEP was performed in
order to enable the artificial generation of proper inputs.

Overall the filtering pipeline was extremely successful with the EKF performing flawlessly
on all the tests performed, and the UKF only failing 8.3% of the times on the worst case
analyzed.

Finally, the implementation of the pipeline on a Raspberry Pi 4 2GB single board com-
puter was carried out with the aim of testing it on more significant hardware. Overall
the obtained results were very poor but, due to the unoptimized nature of the pipeline,
a lot of room for improvement is available and leaves hope for eventual future embedded
implementation.

5.2 Future work

Some suggestions on the steps to be performed to further improve the work outlined in
this thesis are here proposed:

• The optimization of the scripts is of paramount importance to run the pipeline on
space-grade components, as such low level C/C++ implementation is needed.

• Looking at the detected UKF failure modes, proper countermeasures have to be
devised to ensure stronger robustness and reliability.

• Once the pipeline has been properly optimized, a "hardware-in-the-loop" testing
campaign employing space-grade hardware and real cameras should be pursued.

• A way to generalize the pipeline and allow the study of spacecrafts other than
TANGO should be pursued.
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A| Linearization of the relative

separation problem

Note, to simplify the notation the parameter rc has been adopted as:

rc = [(r̄ + x)2 + y2 + z2]3/2

The components of the Jacobian matrix F are here reported:
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∂ÿ

∂x
= 3µ

(
r̄ + x

r5c

)
y + 2ν̇

˙̄r

r̄

∂ÿ
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B| Error covariance matrices

The numerical values of the R matrix applied to the EKF are here reported with the
corresponding distance range:

• 0 - 15 m =

5.04 · 10
−5 8, 87 · 10−6 2.17 · 10−5

8, 87 · 10−6 1.05 · 10−4 1.68 · 10−4

2.17 · 10−5 1.68 · 10−4 9, 60 · 10−3



• 15 - 25 m =

 9.32 · 10−4 1.68 · 10−4 −1.48 · 10−3

1.68 · 10−4 7.92 · 10−4 2.77 · 10−3

−1.48 · 10−3 2.77 · 10−3 1, 60 · 10−1



• 25 - ... m =

 3.04 · 10−3 −1.35 · 10−3 9.08 · 10−3

−1.35 · 10−3 6.55 · 10−3 5.90 · 10−2

9.08 · 10−3 5.90 · 10−2 1.63



The numerical values of the R matrix applied to the UKF are here reported:

R =

 0.00833 −0.00023 −0.001

−0.00023 0.0138 0.00067

−0.001 0.00067 0.00637
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