
Dissertation

Computational Guidance for Low-Thrust

Spacecraft in Deep Space Based on Convex

Optimization

Department of Aerospace Science and Technology

Politecnico di Milano

Christian Hofmann

2023

Advisor Prof. Dr. Francesco Topputo

Chair of Doctoral Program Prof. Dr. Pierangelo Masarati

To my grandmother and grandfather.

Copyright © 2023, Christian Hofmann

All rights reserved.

Abstract

A reliable, robust, and computationally efficient method to optimize interplanetary low-thrust trajecto-

ries is developed in this dissertation. Particular focus is on onboard applications where the reference

trajectories are to be computed in real time. The nonlinear optimal control problem is convexified and

transformed into a second-order cone program. A trust-region-based sequential convex programming

method is presented to obtain solutions that satisfy the nonlinear and nonconvex constraints. As the

choice of the discretization and trust-region method often has a significant impact on the performance,

thorough assessments of various collocation and control interpolation methods are provided. Moreover, it

is investigated how the update mechanism of the trust-region parameters influences the results. Standard

and non-standard state vector representations that result in linear and nonlinear unperturbed dynamics

are developed and compared. Their influence on the performance of the sequential convex programming

method is studied, and two metrics are proposed to assess how the choice of the coordinate set affects

the linearization accuracy within the successive convexification approach. A homotopic approach is

developed to successively increase the fidelity of the dynamical model. Additional perturbations, a real-

thruster model, and operational constraints are considered. Furthermore, a bang-bang mesh refinement

procedure is presented to determine accurate control profiles for the fuel-optimal problem. The real-time

implementation and performance on a single-board computer similar to real spacecraft hardware are ad-

dressed in a closed-loop guidance scenario. A processor-in-the-loop experiment is performed to simulate

the deep-space cruise of a spacecraft where the trajectory is repeatedly optimized. It is demonstrated

that low-thrust trajectory optimization based on convex programming can achieve sufficiently accurate

solutions in an acceptable amount of time. Different global approximations of the nonlinear space-flight

dynamics are developed using the Koopman operator theory. Methods to bilinearize and linearize non-

linear dynamical systems are provided. The proposed approach is an alternative way to the standard local

Taylor linearization.

Zusammenfassung

In dieser Dissertation wird ein zuverlässiges, robustes und rechnerisch effizientes Verfahren zur Opti-

mierung interplanetarer Niedrigschub-Trajektorien entwickelt. Besonderes Augenmerk liegt auf Onboard-

Anwendungen, bei denen die Transferbahnen in Echtzeit berechnet werden müssen. Das nichtlineare

Optimierungsproblem wird dabei in ein konvexes Programm umgewandelt. Es wird ein Trust-Region-

Verfahren vorgestellt, um iterativ Lösungen zu bestimmen, die alle nichtlinearen und nichtkonvexen

Nebenbedingungen erfüllen. Da die Wahl der Diskretisierungs- und Trust-Region-Methode oft einen

signifikanten Einfluss auf die Konvergenz und Effizienz hat, werden verschiedene Kollokationsver-

fahren vorgestellt und verglichen. Außerdem wird untersucht, wie die Schrittweitenbestimmung des

Optimierungsverfahrens die Ergebnisse beeinflusst. Weiterhin werden unterschiedliche Zustandsvektor-

darstellungen entwickelt und verglichen, die zu linearen und nichtlinearen Bewegungsgleichungen für

das ungestörte Keplerproblem führen. Ihr Einfluss auf die Konvergenz des sequenziellen, konvexen Opti-

mierungsverfahrens wird untersucht, und es werden zwei Metriken vorgeschlagen, um zu beurteilen, wie

sich die Wahl der Koordinaten auf die Genauigkeit der Linearisierung auswirkt. Um ein realitätsnahes

Modell zu erhalten, wird eine Homotopie-Methode entwickelt, welche sukzessive weitere Störungsterme,

ein reales Antriebssystem, sowie Zeiträume berücksichtigt, in denen kein Schub verfügbar ist. Darüber

hinaus wird ein Bang-Bang-Netzverfeinerungsverfahren vorgestellt, um akkurate Schubprofile bestim-

men zu können. Die Echtzeit-Implementierung und die Leistung auf einem Einplatinencomputer, der der

realen Raumfahrzeug-Hardware ähnelt, werden in einer Simulation mit geschlossenem Regelkreis unter-

sucht. Ein Processor-in-the-Loop-Experiment wird durchgeführt, um den Satellitenflug zu simulieren,

bei der die Flugbahn regelmäßig neu berechnet und optimiert wird. Es wird gezeigt, dass eine auf kon-

vexer Optimierung basierende Bahnberechnung ausreichend genaue Lösungen in kurzer Zeit liefern kann.

Mit Hilfe der Koopman-Operatorenmethode werden verschiedene globale Näherungen der nichtlinearen

Bewegungsgleichungen entwickelt. Der vorgeschlagene Ansatz ist dabei eine Alternative zur lokalen

Taylor-Linearisierung.

Sommario

In questa tesi viene sviluppato un metodo affidabile, robusto e computazionalmente efficiente per ot-

timizzare le traiettorie interplanetarie a bassa spinta. Particolare attenzione è rivolta alle applicazioni

a bordo in cui le traiettorie di trasferimento devono essere calcolate in tempo reale. Il problema di

ottimizzazione non lineare viene così trasformato in un problema convesso. Viene presentato un metodo

di trust-region per determinare iterativamente soluzioni che soddisfino tutti i vincoli non lineari e non

convessi. Poiché la scelta del metodo di trust-region ha spesso un impatto significativo sulla convergenza

e sull’efficienza dell’algoritmo, vengono presentati e confrontati diversi metodi di aggiornamento della

stessa. Inoltre, diversi metodi di trascrizione (detta anche collocazione) vengono analizzati. Vengono

anche sviluppate e confrontate diverse rappresentazioni del vettore di stato, che portano a equazioni del

moto lineari e non lineari per il problema di Keplero non perturbato. Viene analizzata la loro influenza

sulla convergenza della procedura di ottimizzazione (detta Sequential Convex Programming) e vengono

proposte due metriche per valutare come la scelta delle coordinate influisca sull’accuratezza della lin-

earizzazione. Per ottenere un modello realistico, è stato sviluppato un metodo di omotopia che tiene

conto progressivamente di termini di perturbazione aggiuntivi, di un sistema di propulsione reale e di

periodi in cui non è disponibile la spinta. Inoltre, viene presentato un metodo di refinement dei profili

di spinta per ottenere soluzioni che siano effettivamente bang-bang. L’implementazione in tempo reale e

le prestazioni su un single-board computer simile all’hardware di un veicolo spaziale reale sono studiate

in una simulazione closed loop. Viene eseguito un esperimento in cui un processore viene utilizzato

per simulare il volo di un satellite, dove la traiettoria viene periodicamente ricalcolata e ottimizzata. Si

dimostra che l’ottimizzazione della traiettoria basata sulla ottimizzazione convessa può fornire soluzioni

sufficientemente accurate in tempi brevi. Utilizzando il metodo dell’operatore di Koopman vengono

sviluppate diverse approssimazioni globali delle equazioni del moto non lineari. L’approccio proposto è

un’alternativa alla linearizzazione locale standard di Taylor.

Acknowledgments

I am deeply grateful to everyone who has supported me throughout my doctoral journey. Without their

unwavering encouragement, insightful feedback, and valuable contributions, this work would not have

been possible.

First and foremost, I would like to express my sincere gratitude to my advisor, Prof. Francesco

Topputo, for his exceptional guidance, mentorship, and support throughout my PhD studies. His expertise,

patience, and encouragement have been invaluable, and I am truly grateful for his commitment to my

academic success.

I would like to extend my sincerest thanks to Prof. Richard Linares at the Department of Aeronautics

and Astronautics at the Massachusetts Institute of Technology, for his support and hospitality during my

time as a visiting researcher in his group. I am deeply grateful for his expertise on the Koopman operator

theory and generous assistance throughout my stay.

I owe a debt of gratitude to my colleagues and friends at the Department of Aerospace Science

and Technology at Politecnico di Milano, and at the Department of Aeronautics and Astronautics at the

Massachusetts Institute of Technology, who have provided me with invaluable support, encouragement,

and friendship throughout my PhD studies.

I would like to extend a special thanks to Andrea C. Morelli and Simone Servadio for their invaluable

contributions to the research presented in this thesis. Their expertise, perceptive remarks, and hard work

were essential to the success of our collaborative efforts and the publication of our papers.

I would also like to thank Prof. Roberto Armellin and Prof. Behçet Açıkmeşe for their time and

effort in reviewing my thesis. Their insightful comments and constructive feedback have significantly

improved the quality of this work.

Finally, I would like to express my heartfelt gratitude to my family for their unwavering support and

encouragement throughout my academic journey. In particular, I want to thank my wife Larissa for her

endless patience, understanding, and love. Her belief in me has been a constant source of inspiration, and

I am truly grateful for her presence in my life, which has made this journey all the more fulfilling.

Table of Contents

List of Figures v

List of Tables viii

Nomenclature x

1 Introduction 1

1.1 Motivations . 2

1.2 Research Question . 3

1.3 Contributions . 3

1.4 Outline of Dissertation . 4

2 Theoretical Background 6

2.1 Optimal Control Theory . 6

2.2 Numerical Optimization . 8

2.3 Optimal Control Problem for Space Flight . 10

3 Overview and Assessment of Guidance Methods 12

3.1 Overview of Methods . 12

3.2 Assessment and Selection . 16

4 State of the Art 21

4.1 Sequential Convex Programming . 21

4.1.1 Discretization and Trust-Region Methods . 22

4.1.2 High-Fidelity Optimization . 23

4.1.3 State Vector Representations . 25

4.2 Approximation of Nonlinear Dynamical Systems . 26

5 Convexification and Sequential Convex Programming 28

5.1 Convexification . 28

5.2 Sequential Convex Programming Method . 33

i

Table of Contents ii

6 Performance of Discretization and Trust-Region Methods 39

6.1 Discretization Methods . 40

6.1.1 Adaptive Radau Pseudospectral Method . 40

6.1.2 Adaptive Flipped Radau Pseudospectral Method 47

6.1.3 First-Order-Hold Method . 51

6.1.4 Hermite–Legendre–Gauss–Lobatto Method . 54

6.2 Numerical Simulations . 56

6.2.1 Overview of Simulations . 57

6.2.2 Results . 59

6.2.3 Performance Assessment . 69

7 Assessment of State Vector Representations 74

7.1 State Vector Representations . 74

7.1.1 Cartesian Coordinates . 75

7.1.2 Spherical Coordinates . 75

7.1.3 Cylindrical Coordinates . 76

7.1.4 Modified Equinoctial Elements . 77

7.1.5 Modified Orbital Elements . 78

7.1.6 Kustaanheimo–Stiefel Coordinates . 85

7.1.7 Summary . 95

7.2 Linearization Accuracy Index . 95

7.3 Numerical Simulations . 98

7.3.1 Linearization Accuracy Index . 101

7.3.2 Reliability Analysis . 103

7.3.3 Discussion . 104

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 107

8.1 Embedded Homotopic Approach for High-Fidelity Models 107

8.2 No-Thrust Constraints . 117

8.3 Bang-Bang Mesh Refinement . 122

8.4 Numerical Simulations . 129

8.4.1 Embedded Homotopic Approach for High-Fidelity Models 131

8.4.2 No-Thrust Constraints . 139

8.4.3 Bang-Bang Mesh Refinement . 139

Table of Contents iii

9 Closed-Loop Guidance in Deep Space 143

9.1 Processor-in-the-Loop Simulation . 143

9.2 Moving Target . 147

9.3 Real-Time Implementation . 150

9.3.1 Sequential Convex Programming: Offline . 151

9.3.2 Sequential Convex Programming: Online . 155

9.4 Numerical Simulations . 157

9.4.1 Monte-Carlo Analysis: Nominal Case . 159

9.4.2 Monte-Carlo Analysis: Failure Case . 165

9.4.3 Discussion . 167

9.4.4 Performance on a Single-Board Computer . 168

10 Koopman Operator Theory 170

10.1 Theoretical Background . 170

10.2 Bilinearization and Full Linearization of Control-Affine Systems 172

10.2.1 Bilinearization . 173

10.2.2 Full Linearization . 175

10.3 Linearization Accuracy Index . 177

10.4 Applications . 177

10.4.1 Duffing Oscillator . 177

10.4.2 Perturbed Keplerian Motion . 181

10.5 Numerical Simulations . 184

10.5.1 Bilinear and Linear System . 184

10.5.2 Linearization Accuracy Index . 190

11 Summary and Future Work 192

11.1 Summary . 192

11.2 Future Work . 194

Bibliography 196

A Appendix: Shape-Based Method for Initial Guess Generation 212

B Appendix: Coordinate Transformations 213

B.1 Hamiltonian in Cartesian and Spherical Coordinates . 213

B.2 Classical Orbital Elements . 213

B.3 Spherical Coordinates . 214

Table of Contents iv

B.4 Cylindrical Coordinates . 214

B.5 Modified Equinoctial Elements . 215

C Appendix: Derivation of Equations of Motion 216

C.1 Spherical Coordinates . 216

C.2 Cylindrical Coordinates . 218

C.3 Partial Derivatives for Modified Orbital Elements . 220

D Appendix: Parsing into Standard Form 223

D.1 Parsing of General Operators and Constraints . 223

D.2 Parsing of Low-Thrust Trajectory Optimization Problem 226

D.3 Structure of Matrices and Vectors . 228

List of Figures

5.1 Flowchart of the SCP algorithm. 37

6.1 Discretization and collocation points for RPM. 42

6.2 Discretization and collocation points for FRPM. 49

6.3 Optimized and integrated states for computing the nonconvex constraint violations in FOH. 54

6.4 Optimal trajectory and initial guesses for a Dionysus transfer. 58

6.5 Typical SEL2 to 2000 SG344 transfer trajectory and corresponding thrust profile. 59

6.6 Typical Earth-Venus transfer trajectory and corresponding thrust profile. 59

6.7 Typical Earth-Dionysus transfer trajectory and corresponding thrust profile. 59

6.8 Overview of performed simulations. 60

6.9 Influence of discretization and trust-region method on the results for 2000 SG344 transfer. 63

6.10 Influence of discretization and trust-region method on the results for Venus transfer. . . . 64

6.11 Influence of discretization and trust-region method on the results for Dionysus transfer. . 65

6.12 Comparison of success rate for polynomial orders 7 and 11 for all targets. 66

6.13 Comparison of success rate for different initial guesses for all targets. 66

6.14 Comparison the propagation error (position) for a Dionysus transfer. 66

6.15 Interpolated control profiles obtained with FOH and HLGL/RPM for a Dionysus transfer. 67

6.16 Comparison of the number of nonzero elements for a Dionysus transfer. 67

6.17 Comparison of CPU times per SCP iteration for different orders and targets. 68

6.18 Results obtained with GPOPS-II and SCP for all transfers. 70

6.19 Thrust profiles obtained with GPOPS-II and SCP for all transfers. 71

7.1 Spherical coordinates and rotating coordinate system. 76

7.2 Cylindrical coordinates and rotating coordinate system. 76

7.3 Orbital frame and geometry of classical orbital elements. 81

7.4 Spherical triangle for orbital motion. 82

7.5 Typical reference and perturbed state and control trajectories for 2000 SG344. 99

7.6 Typical reference and perturbed state and control trajectories for Dionysus. 100

7.7 Indices Ξf and Ξx for the transfer to asteroid 2000 SG344. 101

v

List of Figures vi

7.8 Indices Ξf and Ξx for the transfer to Dionysus. 102

7.9 Indices Ξf and Ξx for the transfer to Dionysus (logarithmic scale). 102

7.10 Comparison of results for 2000 SG344 (fixed final value of the independent variable). . . 103

7.11 Comparison of results for Dionysus (fixed final value of the independent variable). 104

7.12 Comparison of results for Dionysus (free final value of the independent variable). 104

7.13 Comparison of total CPU time and CPU time per iteration. 105

8.1 Three examples of smooth homotopy paths. 108

8.2 Typical input power and maximum thrust curves. 111

8.3 Overview of homotopy techniques for variable maximum thrust. 114

8.4 Change of the trust-region radius and typical SCP path without a homotopic approach. . 115

8.5 Inappropriate update of trust-region radius within a homotopic approach. 115

8.6 Appropriate update of trust-region radius within a homotopic approach. 116

8.7 Relationship between the constraint violation and ratio of new and old trust-region radii. 116

8.8 Flowchart of the homotopic approach. 118

8.9 Standard linear interpolation for no-thrust periods and corresponding thrust magnitude. . 119

8.10 Modified linear interpolation when no-thrust periods are considered. 121

8.11 Flowchart of bang-bang mesh refinement process for RPM/FRPM. 126

8.12 Two-dimensional illustration of switching times and segments. 127

8.13 Flowchart of bang-bang mesh refinement process for FOH. 129

8.14 Comparison of results obtained with SCP, SCPH, and GPOPS-II for 2000 SG344. 135

8.15 Comparison of results obtained with SCP, SCPH, and GPOPS-II for Dionysus. 136

8.16 Typical transfer and control trajectories for 2000 SG344 obtained with SCP and GPOPS-II.136

8.17 Typical transfer and control trajectories for Dionysus obtained with SCP and GPOPS-II. . 137

8.18 Constraint violation of each cubic initial guess for SCP and SCPH. 138

8.19 Constraint violation of each propagation initial guess for SCP and SCPH. 138

8.20 Typical thrust profiles when no-thrust periods are considered. 140

8.21 Typical transfer trajectories when no-thrust periods are considered. 140

8.22 Comparison of iterations and CPU time when no-thrust periods are considered. 140

8.23 Throttle factor and switching function for 2000 SG344 transfer and initial mesh (FOH). . 141

8.24 Throttle factor and switching function for Dionysus transfer and initial mesh (FRPM). . . 141

8.25 Throttle factor profile before and after bang-bang mesh refinement for 2000 SG344 (FOH).141

8.26 Throttle factor profile before and after bang-bang mesh refinement for Dionysus (FRPM). 142

9.1 Overview of the processor-in-the-loop simulation. 144

9.2 Raspberry Pi 3 Model B+. 144

List of Figures vii

9.3 Flowchart of the closed-loop guidance simulation. 145

9.4 Definition of minimum rmin(t) and maximum rmax(t) error functions. 147

9.5 Overview of the SCP steps performed offline and online. 151

9.6 Typical position and velocity perturbations over time for the 2000 SG344 transfer. 162

9.7 Smaller position and velocity perturbations over time for the 2000 SG344 transfer. 162

9.8 Iterations, CPU time, and number of nodes for the closed-loop simulation to 2000 SG344. 163

9.9 Final errors for 1000 simulations for the 2000 SG344 transfer. 163

9.10 Thrust magnitude and trajectory obtained from the closed-loop simulation to 2000 SG344.164

9.11 Thrust magnitude and trajectory obtained from the closed-loop simulation to 2010 UE51. 166

9.12 Position and velocity perturbations with failure conditions for the 2000 SG344 transfer. . 166

9.13 Additional flight time when solving the moving target problem in the failure scenario. . . 167

9.14 Comparison of CPU time per SCP iteration for different models. 169

9.15 Comparison of CPU time per SCP iteration for standard and underclocked Raspberry Pi. 169

10.1 Procedure to transform a dynamical system into bilinear form. 175

10.2 Eigenvalues of the unperturbed Duffing and Kepler problem. 186

10.3 Control profiles for the Duffing oscillator and Kepler problem. 187

10.4 State trajectories for the Duffing oscillator. 187

10.5 State trajectories for the Kepler problem. 188

10.6 Position and velocity errors obtained with the bilinear system for the Duffing oscillator. . 188

10.7 Position and velocity errors obtained with the bilinear system for the Kepler problem. . . 189

10.8 Position and velocity errors obtained with the linear system for the Duffing oscillator. . . 189

10.9 Position and velocity errors obtained with the linear system for the Kepler problem. . . . 190

10.10Linearization accuracy index for the Duffing oscillator. 191

10.11Linearization accuracy index for the Kepler problem. 191

List of Tables

3.1 Advantages and disadvantages of each optimization method. 19

3.2 Assessment of optimization methods. 20

6.1 Parameters of the SCP algorithm. 57

6.2 Physical constants in all simulations. 57

6.3 Simulation values for SEL2 to 2000 SG344, Earth-Venus and Earth-Dionysus transfers. . 57

6.4 Types and number of initial guesses for each transfer. 58

6.5 Number of nodes and orders of the interpolating polynomials for each transfer. 61

6.6 Total number of simulations for each target and each discretization method. 61

6.7 Assessment of trust-region methods. 71

6.8 Assessment of discretization methods. 72

6.9 Assessment of the methods in terms of high-level onboard guidance requirements. 73

7.1 Overview of the considered state vector representations. 95

7.2 Simulation values for SEL2 to 2000 SG344, and Earth-Dionysus transfers. 100

7.3 Parameters of the SCP algorithm. 100

7.4 Physical constants in all simulations. 100

7.5 Main advantages and disadvantages of each state vector representation. 106

8.1 Simulation values for the transfers from SEL2 to the asteroids 2000 SG344 and Dionysus. 130

8.2 Parameters of the algorithm. 130

8.3 Physical constants in all simulations. 130

8.4 Homotopy parameters for the transfers to the asteroids 2000 SG344 and Dionysus. 131

8.5 Overview of simulations for each target and initial guess. 132

8.6 Number of nodes and segments for GPOPS-II. 132

8.7 Number of iterations (median) for SCP and SCPH. 133

9.1 Technical specifications of Raspberry Pi 3 Model B+. 144

9.2 Number of elements of each component of the solution vector. 154

9.3 Overview of number of rows, nonzero elements, and changing entries for each matrix. . . 156

viii

List of Tables ix

9.4 Overview of elements and changing entries for each vector. 156

9.5 Nonzero elements for N = 100 and N = 300. 157

9.6 Simulation values for the transfers from SEL2 to the asteroids 2000 SG344 and 2010 UE51.160

9.7 Parameters of the algorithm. 160

9.8 Physical constants in all simulations. 160

9.9 Results for 1000 closed-loop guidance simulations to 2000 SG344 with fixed final time. . 161

9.10 Results for 1000 closed-loop guidance simulations to 2010 UE51 with fixed final time. . 165

9.11 Results for 1000 closed-loop guidance simulations to 2000 SG344 with failure conditions. 167

10.1 Values for the linear transformation for MOE to avoid the singularity within KOT. 183

10.2 Physical constants for the Kepler problem. 185

10.3 Simulation values for the Duffing oscillator. 185

10.4 Simulation values for the orbital motion problem. 185

10.5 Number of states in the transformed system for different orders of the basis functions. . . 185

Nomenclature

Acronyms

GNC guidance, navigation, and control

CGC computational guidance and control

OCP optimal control problem

SCP sequential convex programming

PMP Pontryagin’s minimum principle

TPBVP two-point boundary value problem

NLP nonlinear program(ming)

SOCP second-order cone program(ming)

DDP differential dynamic programming

DNN deep neural networks

RL reinforcement learning

LG Legendre–Gauss

LGL Legendre–Gauss–Lobatto

LGR Legendre–Gauss–Radau

ZOH zero-order hold

FOH first-order hold

LTO low-thrust trajectory optimization

PDG powered descent guidance

RPM Radau pseudospectral method

FRPM flipped Radau pseudospectral method

MEE modified equinoctial elements

MOE modified orbital elements

x

Nomenclature xi

KS Kustaanheimo–Stiefel

PIL processor-in-the-loop

KOT Koopman operator theory

Symbols

t time

f dynamics of the problem

x, u state and control vectors, respectively

nx, nu number of states and controls, respectively

J performance index

H Hamiltonian function

r, v position and velocity vectors, respectively

m mass

g0 gravitational acceleration at sea level

µ gravitational parameter

Isp specific impulse

T , T thrust magnitude, thrust components

Tmax maximum thrust magnitude

λr, λv, λm costates of position, velocity, and mass

S switching function

(·)∗ optimal value of quantity (·)

τ acceleration vector due to thrust

Γ magnitude of τ

w modified mass

(̄·) reference value of quantity (·)

λg, λh, λl penalty parameters

ν, η, ζ virtual controls

λν , λη, λζ penalty parameters associated with ν, η, ζ

Nomenclature xii

R, α, β, δ, ρ0, ρ1, ρ2 trust-region parameters

εc, εJ , εx tolerances for SCP algorithm

Pin input power

sν , sη, sζ , sTR slack variables

1 Introduction

Numerous new space missions attempt to satisfy the increasing need for exploration and exploitation of

space. The space economy is rapidly increasing, and the interest in new technologies and applications

has been growing tremendously in the past few years. Especially minor and major bodies in the deep

space are important targets for space agencies and other institutions [1, 2]. The outer space is no longer

restricted to space agencies and large companies because CubeSats are now a viable low-cost alternative

to conventional spacecraft. They belong to the class of nanosatellites that are comprised of cubic modular

units (10 cm edge length, mass of 1.3 kg) and granted universities and small companies access to space

at relatively low cost. Their benefit for Earth observation is apparent: faster and cheaper design due to

the modular concept, the possibility to launch CubeSats as a second payload, and the role as a low-cost

technology demonstrator in space. Yet, their severe limitations regarding power, orbit control, propulsion,

and communication prevented them from being utilized in interplanetary missions. The recent success

of NASA’s MarCO mission, however, has shown that interplanetary CubeSats are becoming reality

[3]. Judging from the current pace, the number of small deep-space probes is expected to increase

considerably in the next few years [4]. Interplanetary missions are on the verge of becoming profitable:

lower development costs allow a shift away from the cautious operation of expensive conventional

spacecraft to missions with higher risk. This will eventually result in new, precious knowledge of our

solar system. Lowering the costs of interplanetary missions through the use of small satellites will

therefore be of key importance for solar system science and exploration.

Given the advances in technology and the increasing number of new missions and launches, the

current trend towards more autonomy aims at executing flight-related tasks such as guidance, navigation,

and control (GNC) on board. NASA’s technology roadmap foresees that autonomous GNC will be

required for several future missions, including autonomous rendezvous, tours to multiple asteroids, and

formation flying [5]. It is expected that an increased level of autonomy is of paramount importance

for long-duration transfers in an unknown environment. Time-critical decisions, for example trajectory

correction maneuvers, must be made on board using the data acquired on the fly instead of having to rely

on the communication with ground stations. The reason is that decision making is required frequently,

and time delays, the limited bandwidth and communication windows are potential risks for the success

1

1 Introduction 2

of a mission [6]. Especially quick responses to unexpected behavior such as fault conditions require

immediate action.

Although the computational capability of onboard computers has increased continuously in the

past years, only minor advances in the guidance and control systems have taken place. It is therefore not

surprising that a paradigm shift is currently happening. Rather than calculating and updating the guidance

and control1 actions on ground, these tasks shall be performed on board without human intervention [7].

As already demonstrated in flight tests of the Masten Space Systems Xombie suborbital rocket, real-time

guidance seems to become reality [8]. Instead of aiming at a closed-form solution, numerical algorithms

are sought to iteratively compute feasible trajectories on spacecraft hardware. In this context, the phrase

computational guidance and control (CGC) has recently emerged to highlight the computational aspect

of the current trend [7]. As opposed to traditional guidance and control (GC) methods, CGC involves

some iterative process where commands are computed on board. In particular, traditional closed-form

GC laws (that define a mapping from states to controls) are replaced by numerical algorithms that make

use of the problem data acquired during the orbital transfer to find the control actions at each time instant.

Often, such approaches are more flexible as more constraints can be taken into account.

Yet, such a paradigm shift towards autonomous guidance and control requires tremendous effort.

Even though the field of CGC has lead to some promising results, it is just the beginning of a new era

where self-driving spacecraft become reality.

1.1 Motivations

The state of the art is to operate all spacecraft from ground. This includes the determination of the

reference trajectory (guidance), the current position (navigation), and correction maneuvers (control).

These flight-related tasks are of particular importance as they are essential during the whole lifetime of

the satellite. Judging from the current pace of new space missions, ground facilities will soon saturate;

the costs and manpower to control the spacecraft would be exorbitantly high as interplanetary transfers

can last months or even years. Moreover, operating spacecraft from ground limits the mission design and

poses great risks as a communication link between spacecraft and Earth is always required. A paradigm

shift is needed towards more autonomous spacecraft.

In this dissertation, we focus on the guidance design. Due to the additional uncertainties and

deviations resulting from autonomous navigation, following a predefined nominal trajectory does not

seem appropriate anymore. Instead, recomputing the trajectory in real time is desirable in complex and

uncertain environments. This, however, requires solving an optimal control problem (OCP), which is

1Even though guidance and control are often used interchangeably, we refer to guidance as the determination of the control
actions that are required to steer the vehicle towards a desired state while satisfying certain constraints. Control, in contrast,
aims at finding the required forces and torques for the actuators while preserving stability.

1 Introduction 3

already a demanding task. Even though shifting it on board is an enormous step, it is of paramount

importance to enable a sustainable exploration and exploitation of the deep space. Computing the

reference trajectory on the fly poses risks as the algorithm must repeatedly solve an optimization problem

in real time. Reliability (a feasible solution must be obtained at any instant), optimality (a cost function is to

be minimized), accuracy (the solution must meet accuracy requirements on states and controls), robustness

(the algorithm must be robust against disturbances), and computational efficiency (the algorithm must be

compatible with available onboard hardware) are essential criteria for autonomous guidance algorithms.

As the guidance design has always been performed on ground, none of the current techniques fulfills all

requirements.

In contrast to conventional chemical propulsion systems that produce high thrust, spacecraft can also

be equipped with low-thrust engines that provide only little thrust. As the state of the spacecraft changes

slowly due to the small control actions, transfer times increase because the thruster has to operate over

a significantly larger portion of the flight time. This causes new challenges and requires new trajectory

design techniques.

A computationally efficient method is therefore desirable that allows for a reliable, rapid computation

of the reference trajectory, potentially on board.

1.2 Research Question

Using convex optimization techniques, how can the optimization of interplanetary low-thrust

trajectories be enhanced in terms of reliability, accuracy, robustness, and computational

efficiency, with particular focus on onboard applications?

In this context, we propose to combine trajectory optimization and guidance. By making trajectory

optimization more reliable, accurate, robust, and computationally efficient, we intend to use it as a

guidance approach on board where the trajectory is recomputed when needed. The following objectives

are defined:

1) Development of an algorithm with improved reliability, accuracy, robustness, and computational

efficiency compared to the state-of-the-art low-thrust trajectory optimization methods.

2) Demonstration that the high-level requirements for onboard guidance are fulfilled.

1.3 Contributions

We summarize the main contributions of this dissertation:

1 Introduction 4

1) A reliable, rapid, and computationally efficient low-thrust trajectory optimization method based

on convex programming is developed for interplanetary transfers [9–11]. The output is a software

that we call Convex Low-Thrust Trajectory Optimizer (COLTO) where high-fidelity models, a

real-thruster model, no-thrust constraints, and mesh refinement are considered.

2) Thorough assessments of discretization and trust-region methods [12, 13], and also of different state

vector representations are provided [14]. As the choice of the methods and coordinates often has a

significant impact on the performance, we expect the results to be helpful for other researchers.

3) The implementation and performance on a single-board computer are addressed in a closed-loop

guidance scenario [15]. A processor-in-the-loop experiment is performed to simulate the deep-

space cruise of a spacecraft where the trajectory is repeatedly reoptimized. It is demonstrated that

low-thrust trajectory optimization based on convex programming can achieve sufficiently accurate

solutions in an acceptable amount of time. This serves as a proof of concept and first step towards

autonomous guidance in real space missions.

4) Different global approximations of the nonlinear space-flight dynamics are developed using the

Koopman operator theory [16]. As reducing the complexity of nonlinear systems is a desirable goal

regardless of the application, the proposed approach is an alternative way to linearize a nonlinear

dynamical system by lifting it into a higher-dimensional space.

1.4 Outline of Dissertation

This dissertation is structured as follows. First, some theoretical background of optimal control theory and

numerical optimization is presented in Chapter 2. The necessary conditions of optimality are introduced,

and relevant equations for solving OCPs are presented.

Chapter 3 gives an overview of the most important guidance methods along with their advantages and

disadvantages. Furthermore, the high-level requirements for onboard guidance design are introduced,

and each method is assessed based on these requirements.

The state of the art is reviewed in Chapter 4. In particular, the most important developments of

convex optimization methods for aerospace applications are summarized, with a focus on low-thrust

trajectory optimization. In addition, an overview of different discretization and trust-region methods is

presented, and past works that consider high-fidelity models are reviewed. The most common state vector

representations for describing the equations of motion are given, and recent work on the linearization of

nonlinear dynamical systems is discussed.

1 Introduction 5

Chapter 5 discusses the sequential convex programming (SCP) method, and how the constraints

are convexified. A flowchart of the algorithm is provided, and three different trust-region methods are

presented.

Several discretization methods are developed in Chapter 6. Specifically, two pseudospectral methods,

a method based on Hermite interpolation, and a control interpolation method are discussed. Their

performance within SCP is assessed in several orbital transfers, and the influence of different trust-region

methods, number of nodes, and initial guesses on the success rate, iterations, and final mass is investigated.

In Chapter 7, various standard and non-standard state vector representations are introduced. Their

influence on the performance of SCP is studied, and two metrics are proposed to assess how the choice

of the coordinate set affects the linearization approach within SCP.

A homotopic approach for high-fidelity convex optimization is developed in Chapter 8. Specifically,

n-body dynamics, solar radiation pressure, no-thrust constraints, and variable specific impulse and

maximum thrust are considered. A mesh refinement procedure is presented, and several case studies are

provided to demonstrate the effectiveness of the approach.

The closed-loop guidance simulation is presented in Chapter 9. A processor-in-the-loop experiment is

described where the reference trajectory is repeatedly reoptimized on a single-board computer comparable

to real spacecraft hardware. Monte Carlo analyses of transfers to near-Earth asteroids are performed to

assess the reliability, accuracy, and computational time. Moreover, the real-time implementation is

discussed. The parsing of various constraints into standard form is provided, and the constant and

changing elements of the optimization problem are highlighted.

In Chapter 10, the Koopman operator theory is introduced. Methods are presented to bilinearize and

linearize a nonlinear dynamical system, and two examples are given to demonstrate the accuracy of the

method.

Finally, Chapter 11 concludes this dissertation, and directions for future work are given.

2 Theoretical Background

The core part of this dissertation deals with the computation of reference trajectories for orbital transfers.

That is, the control actions (and thus, the transfer trajectory) are to be determined to steer a spacecraft

from an initial to a desired final state. Usually, additional constraints are to be satisfied, and the time of

flight or fuel consumption are to be minimized. Such optimal control problems require some background

in optimal control theory, which is reviewed in the following section. As numerical methods are used

in this dissertation to solve OCPs, the basics of numerical optimization are presented. Additionally, the

equations of motion are introduced, and the optimal control problem in space flight is stated.

2.1 Optimal Control Theory

We consider autonomous physical systems where the equations of motion are described by the function

f : Rnx × Rnu → Rnx ,

ẋ(t) ..=
dx(t)

dt
= f(x(t),u(t)) (2.1)

where t ∈ R is the time, x(t) : R → Rnx the state, and u(t) : R → Rnu the control. The goal of optimal

control problems is to minimize a performance index J : Rnu × R → R of the form

J(u(t), tf) ..= ϕ(tf ,x(tf)) +

∫ tf

t0

L(x(t),u(t)) dt (2.2)

ϕ : R × Rnx → R denotes the terminal cost at the final time tf , and L : Rnx × Rnu → R refers to the

integral cost for t ∈ [t0, tf], t0 being the initial time. The general form of an optimal control problem is

therefore given by

minimize
u(t), tf

J(u(t), tf) (2.3a)

subject to: ẋ(t) = f(x(t),u(t)) (2.3b)

g(x(t),u(t)) ≤ 0 (2.3c)

h(tf ,x(tf)) = 0 (2.3d)

x(t0) = x0 (2.3e)

6

2 Theoretical Background 7

The functions g : Rnx × Rnu → Rng and h : R × Rnx → Rnh refer to the path and final boundary

constraints, respectively. The problem is to find u(t) such that the performance index in Eq. (2.3a) is

minimized (including minimum-time problems with free final time tf) while satisfying the dynamics in

Eq. (2.3b), path constraints in Eq. (2.3c), and terminal and initial boundary constraints in Eqs. (2.3d)

and (2.3e), respectively. In optimal control theory, this is addressed using the calculus of variations. We

introduce an augmented performance index J̃ [17]

J̃(u(t), tf) ..= ϕ(tf ,x(tf)) + ν
⊤ h(tf ,x(tf))

+

∫ tf

t0

[
H̃(x(t),u(t),λ(t),µ(t))− λ(t)⊤ ẋ(t)

]
dt

(2.4)

with constant multipliers ν, and costate functions λ(t) andµ(t). The augmented Hamiltonian H̃ : Rnx ×

Rnu × Rnx × Rnh → R is defined as

H̃(x(t),u(t),λ(t),µ(t)) ..= L(x(t),u(t)) + λ(t)⊤ f(x(t),u(t)) + µ(t)⊤ g(x(t),u(t))

= H(x(t),u(t),λ(t)) + µ(t)⊤ g(x(t),u(t))
(2.5)

with the regular Hamiltonian H:

H(x(t),u(t),λ(t)) ..= L(x(t),u(t)) + λ(t)⊤ f(x(t),u(t)) (2.6)

Each entry µi(t) of µ(t) must satisfy

µi(t)

> 0, hi = 0, i ∈ [1, nh]

= 0, hi < 0, i ∈ [1, nh]

(2.7)

where hi is the ith element of h. Omitting the dependent variables for better readability, the first-order

necessary conditions for local optimality then read [18]

ẋ = H⊤
λ (2.8)

λ̇ = −H⊤
x (2.9)[

H̃+ ϕt + ν
⊤ ht

]
tf

= 0 if tf is free (2.10)[
λ⊤ − ϕx − ν⊤ hx

]
tf

= 0⊤ (2.11)

[h]tf = 0 (2.12)

where the notation (·)j ..= ∂(·)/∂j refers to the partial derivative. Equations (2.8) and (2.9) are called

Euler-Lagrange equations, whereas Eqs. (2.10)–(2.12) are called transversality conditions. According

2 Theoretical Background 8

to Pontryagin’s minimum principle (PMP) [17], an optimal trajectory minimizes the Hamiltonian, and

therefore, the optimal control u∗ is given by

u∗ = argminH
u∈U

(2.13)

with the set of admissible controls U . The system of nonlinear equations (2.8)–(2.13) results in a

two-point boundary value problem (TPBVP) that can be solved numerically.

2.2 Numerical Optimization

Instead of solving the TPBVP in Eqs. (2.8)–(2.13), the OCP can be transcribed into a parameter

optimization problem. Rather than working in the continuous time domain, the time interval [t0, tf] is

divided into N − 1 segments

t0 = t1 < t2 < t3 < ... < tN = tf (2.14)

The state and control variables are also discretized and combined into one vector y ∈ Rny

y = [x⊤
1 ,x

⊤
2 , . . . ,x

⊤
N ,u⊤

1 ,u
⊤
2 , . . . ,u

⊤
N]⊤ (2.15)

where each entry (·)k refers to the quantity at the kth discretization point. An important consequence

is that the solution is only known at those discrete points k = 1, 2, . . . , N . The constraints in Eqs.

(2.3b)–(2.3e) are transformed into a set of algebraic constraints, and the resulting parameter optimization

problem then reads [19]

minimize
u

F (y) (2.16a)

subject to: g(y) ≤ 0 (2.16b)

h(y) = 0 (2.16c)

F : Rny → R is the objective function that is obtained when rewriting the performance index in terms

of y, and g : Rny → Rng and h : Rny → Rnh define the constraints. In general, F (y), g(y), and

h(y) are nonlinear functions, and the problem is a nonlinear programming (NLP) problem. It can

be solved using state-of-the-art methods such as sequential quadratic programming or interior-point

methods [19]. Analogous to defining the Hamiltonian function for OCPs, we introduce the Lagrangian

L : Rny × Rnh × Rng → R [20]:

L(y,Λ,ν) ..= F (y) +Λ⊤ h(y) + ν⊤ g(y) (2.17)

2 Theoretical Background 9

with Lagrange multipliers Λ ∈ Rnh and ν ∈ Rng . At the optimal solution y∗, there exist Lagrange

multipliers Λ∗, ν∗, and the following first-order necessary conditions for local optimality hold [20]:

∇y L(y∗,Λ∗,ν∗) = 0 (2.18)

∇Λ L(y∗,Λ∗,ν∗) = 0 (2.19)

∇ν L(y∗,Λ∗,ν∗) ≤ 0 (2.20)

ν∗ ≥ 0 (2.21)

ν∗⊤ g(y∗) = 0 (2.22)

These conditions are also referred to as Karush–Kuhn–Tucker conditions. The basic idea is to use some

numerical method to find the Karush–Kuhn–Tucker points that satisfy Eqs. (2.18) and (2.19).

In contrast to NLP, convex optimization deals with the minimization of a convex function over convex

sets. A function f : X → R is convex if X is a convex set, and f satisfies [21, Chapter 3]

f(αx+ (1− α) y) ≤ α f(x) + (1− α) f(y) (2.23)

for all x, y ∈ X , and α ∈ [0, 1]. An important consequence is that optimal solutions are globally

optimal compared to the local optimality for NLPs. The resulting parameter optimization problems are

called convex programs. One important class is the second-order cone program (SOCP) that reads [21,

Chapter 4]

minimize
u

c⊤ y (2.24a)

subject to: Ay = b (2.24b)

Gy + s = h, s ∈ K (2.24c)

where y is the decision vector similar to Eq. (2.15), and c, A, b, G, s, and h are vectors and matrices

that define the constraints. K is a set of convex cones. In case of nonconvex problems, the constraints are

to be convexified, and a series of convex subproblems can be solved to obtain an approximate solution to

the original problem. This approach is called sequential convex programming (SCP) [22].

2 Theoretical Background 10

2.3 Optimal Control Problem for Space Flight

The motion of a spacecraft around a primary body is governed by the dynamics

ṙ(t) = v(t) (2.25)

v̇(t) = − µ

∥r(t)∥32
r(t) + σ(t)

Tmax
m(t)

α(t) (2.26)

ṁ(t) = −σ(t)
Tmax
g0 Isp

(2.27)

where r(t) ∈ R3, v(t) ∈ R3, and m(t) ∈ R denote the position, velocity, and mass of the spacecraft,

respectively. σ(t) ∈ [0, 1] is the throttle factor, and α(t) ∈ R3 the thrust direction unit vector. µ denotes

the gravitational parameter of the primary body, g0 the gravitational acceleration at sea level, Tmax the

maximum available thrust provided by the propulsion system, and Isp the specific impulse. Note that

Tmax and Isp may also depend on the instantaneous input power of the propulsion system.

For fuel-optimal problems, we seek to minimize fuel usage, which is equivalent to maximizing the

mass at the final time tf :

minimize
σ(t),α(t)

−m(tf) (2.28)

Time-optimal problems instead aim at minimizing the final time:

minimize
σ(t),α(t)

tf (2.29)

In this dissertation, we address the rendezvous problem, i.e., we intend to target a specific point
[
r⊤f ,v

⊤
f

]⊤
in space. Therefore, the boundary conditions at the initial and final times are

r(t0) = r0, v(t0) = v0, m(t0) = m0 (2.30)

r(tf) = rf , v(tf) = vf (2.31)

where the value of the final mass is free. As the engine can provide only limited thrust, the following

lower and upper bounds on the throttle factor need to be imposed:

0 ≤ σmin ≤ σ ≤ σmax (2.32)

with the minimum σmin = 0 and maximum σmax = 1 values of the throttle factor. Defining the state

vector as x ..= [r⊤,v⊤,m]⊤, the optimal control problem can be stated as follows:

minimize
σ(t),α(t)

−m(tf) or tf (2.33a)

subject to: ẋ(t) = f(x(t), σ(t),α(t)) (2.33b)

0 ≤ σ(t) ≤ 1 (2.33c)

2 Theoretical Background 11

∥α(t)∥2 = 1 (2.33d)

r(t0) = r0, v(t0) = v0, m(t0) = m0 (2.33e)

r(tf) = rf , v(tf) = vf (2.33f)

The Hamiltonian of the fuel-optimal problem is given by [23]

H =
σ Tmax
g0 Isp

+ λ⊤
r v + λ⊤

v

[
g(r) +

σ Tmax
m

α

]
− λm

σ Tmax
g0 Isp

(2.34)

where minimizing Tmax
g0 Isp

∫ tf
t0

σ(t) dt is equivalent to Eq. (2.28). Moreover, g(r) = −µ r/r3 with

r = ∥r∥2. Applying PMP, substituting the optimal thrust direction α∗ = −λv/∥λv∥ = −λv/λv into

Eq. (2.34), and rearranging terms yields

H = λ⊤
r v + λ⊤

v g(r) +
uTmax
g0 Isp

(
1−

g0 Isp

m
λv − λm

)
︸ ︷︷ ︸

=..S

(2.35)

As an optimal trajectory minimizes the Hamiltonian, the characteristic bang-bang control profile in fuel-

optimal problems solely depends on the sign of the switching function S. It is easy to verify that the

optimal throttle factor σ∗ is given by

σ∗ =

0, S > 0

1, S < 0

(2.36)

If S = 0 for some finite duration, σ∗ is not determined and can take any value in [0, 1]. This is called a

singular arc [24, Chapter 2]. The Hamiltonian of the time-optimal problem is [23]

H = 1 + λ⊤
r v + λ⊤

v

[
g(r) +

σ Tmax
m

α

]
− λm

σ Tmax
g0 Isp

(2.37)

which yields the following switching function:

S = −λv
g0 Isp

m
− λm (2.38)

In this case, σ∗ = 1 ∀t ∈ [t0, tf].

3 Overview and Assessment of Guidance

Methods

There is a large variety of methods for the guidance design of spacecraft. An overview is given first,

and the advantages and disadvantages of each method are assessed with particular emphasis on onboard

applications and their requirements.

3.1 Overview of Methods

We briefly describe (semi-)analytical approaches, direct and indirect methods, dynamic programming,

metaheuristics, machine learning, and a selection of other methods.

Analytical and Semianalytical Methods

Analytical solutions exist only for special cases, for example the Hohmann transfer. Most approaches

approximate the continuous thrust using simplified models, such as the Kepler (pure Kepler arcs followed

by impulsive thrust maneuvers) or Stark model (constant thrust acceleration instead of impulses, [25]).

Usually, certain assumptions on the perturbing acceleration or shape of the orbits are made. The results

for computing the total velocity increment ∆v are often of the form [26]

∆v =
√
v20 + v2f − 2 v0 vf cos (π/2)∆i (3.1)

This is an example for the required ∆v for a desired inclination change ∆i given two circular orbits

with initial v0 and final vf velocity. In [27], low-thrust transfers between coplanar elliptic orbits are

determined analytically using Hamiltonian mechanics. A closed-form solution for transfers between

circular, coplanar orbits using elliptic functions is proposed in [28]. Moreover, transfers with constant

tangential [29] or radial acceleration can be derived for circular and elliptic orbits using perturbation

theory. The work in [30] assumes small eccentricities to calculate low-thrust transfers between coplanar

orbits. Additional perturbations such as Earth shadow eclipses and J2 perturbations are also considered

in some works [31, 32]. Furthermore, semi-analytical approaches as in [33] where transfer charts are

used to determine approximate solutions also avoid solving an optimal control problem numerically.

12

3 Overview and Assessment of Guidance Methods 13

Analytical methods are fast and provide an explicit analytical solution. However, solutions exist only

for special cases, and often, suboptimal solutions are obtained [24, Chapter 6].

Indirect Methods

In indirect methods, the first-order necessary conditions are derived as per Section 2.1, and the resulting

TPBVP is solved. There are three main numerical methods [34, 35]:

Indirect single shooting method: The values of the costates at the initial time are guessed, and the

differential equations of the states and costates in Eqs. (2.8) and (2.9) are integrated over [t0, tf] (forward

or backward in time). The unknown parameters are then adjusted in an iterative process until the boundary

and transversality conditions are satisfied. As the integration is performed over the whole time interval,

the single shooting method is quite sensitive to the initial guess. Minor changes in the initial conditions

can considerably impact convergence.

Indirect multiple shooting method: These numerical sensitivities can be overcome by using the

multiple shooting method. The time horizon is divided into subintervals, and the standard single shooting

method is applied in each interval. This way, changes in the initial conditions are not as critical due to

the shorter integration interval. However, additional continuity conditions on the states and costates are

to be imposed between each subinterval.

Indirect collocation: States and costates are parameterized and approximated by piecewise polyno-

mials. The goal is then to find the coefficients of the polynomials by solving the resulting system of

nonlinear equations.

The main advantage of indirect methods is the analytical derivation of the optimality conditions,

and therefore the high accuracy and local optimality of a converged solution. As the costates are to

be included in the dynamical system, the dimension increases. Yet, they suffer from flexibility (e.g.,

constraints and perturbations may not be incorporated easily), the high sensitivity to the initial guess, and

poor robustness [34, 35]. Although improvements have been proposed during the past years, for example

through smoothing [36–39] and initialization techniques [40, 41], the convergence issues still remain.

Direct Methods

Direct methods transcribe the infinite-dimensional nonlinear OCP into a finite-dimensional parameter

optimization problem as described in Section 2.2. In this context, we refer to gradient-based methods that

directly solve the nonlinear program. In general, there are three main gradient-based methods to solve

the resulting NLP [34, 35]:

Direct single shooting method: Only the control is parameterized, i.e., a certain function is assumed

to approximate the control variables. Given the initial state, time-marching methods are used to integrate

3 Overview and Assessment of Guidance Methods 14

the dynamics forward from t0 to tf (or backward from tf to t0). This is an iterative process where

the solver tries to find the controls such that the objective function is minimized and the constraints are

satisfied.

Direct multiple shooting method: Again, only the control variables are parameterized. Similar to

indirect multiple shooting methods, the time horizon is divided into segments, and the single shooting

method is applied in each segment. As the state variables are continuous over the intervals, continuity

conditions are required.

Direct collocation: Piecewise polynomials are used to approximate the states and controls. The

solver tries to find the coefficients of the polynomials such that the objective function is minimized while

satisfying all constraints at the collocation points. The major differences between collocation methods

are the choice of the quadrature rule to approximate the differential equations, and the location of the

discretization points.

Convex optimization: Convex programs are a special type of mathematical programs where the

constraints and objective function are convex. In this case, there exists a globally optimal solution.

Nonlinear programs can be convexified and successively solved to obtain an approximate solution [22].

Direct methods have a larger convergence domain than indirect methods, and complex constraints can

easily be included [34]. Yet, the solution is only known at the discretization points, and a large number of

points may be required to achieve high accuracy. Onboard computers lack in general the computational

capability to solve the resulting large-scale nonlinear optimization problem in little time. Still, some

studies refined the existing methods to further lower the computational effort and increase accuracy and

reliability [42–44].

Dynamic Programming

Rather than finding open-loop solutions like in direct and indirect methods, dynamic programming aims

at determining a feedback control law. The main advantage of feedback solutions is that they provide the

optimal control trajectory given the current state. Based on Bellman’s principle of optimality [45], the

control law can be obtained by solving the Hamilton–Jacobi–Bellman equation. This system of partial

differential equations, however, is often difficult to solve due to the curse of dimensionality [17]. As

this would yield globally optimal solutions, some works use approximations to reduce the number of

variables [46]. With regard to trajectory optimization, the probably most important method is differential

dynamic programming (DDP) [47–49]. The optimization problem is divided into subproblems where the

dynamics and objective function are approximated using a second-order Taylor series about a reference

trajectory. As a consequence, the problem becomes computationally tractable, but only locally optimal

solutions are obtained.

3 Overview and Assessment of Guidance Methods 15

Similar to NLP-based methods, DDP is relatively robust against poor initial guesses, and it is

straightforward to include complex constraints. Yet, it suffers from the same drawbacks, such as high

computational effort [49].

Metaheuristics

Metaheuristics are global optimization algorithms that employ heuristic rules to find an optimal solution

[50]. Therefore, gradients and an initial guess are not required. These methods are nature-inspired or use

stochastic processes to iteratively find an optimal solution. Examples include evolutionary algorithms

such as genetic algorithms [51, 52] and differential evolution [53, 54], and swarm algorithms such as ant

colony optimization [55, 56] and particle swarm optimization [57, 58].

Although they are easy to implement and do not require an initial guess, the computational effort is

high and the robustness is poor as there is mathematically no guarantee that an optimal solution will be

obtained [50].

Machine Learning

Techniques based on machine learning follow a different approach, but become increasingly popular. A

database of thousands of optimal trajectories is created first, and the optimal control structure is then

learned using deep neural networks (DNN) [59–61]. Even though the generation of such a database

is time consuming, this can be done offline. Once the control law is determined, the computational

effort to compute the controls is negligible, making DNN a viable method for real-time applications

[62]. Support Vector Machines use a different approach for the training, but also belong to the class of

supervised learning [63]. Reinforcement learning (RL) was developed to account for disturbances or an

uncertain environment. Based on some reward function, the control actions are selected such that the

reward is maximized [64]. For example, this approach was applied to the hovering near asteroids [65].

Deep reinforced learning combines DNN and RL and is used in [66] and [67] for guidance and landing

problems, respectively. More recently, physics-informed neural networks have been developed where the

underlying physical laws of the dynamical system are incorporated [68].

Methods based on machine learning can easily be implemented and run on spacecraft hardware due

to the low computational effort. Disadvantages are their lack of flexibility and optimality in case of

deviations from the learned trajectories [62, 64].

Other Methods

Naturally, there are many more techniques that cannot be covered in detail in this dissertation. We briefly

comment on a selection that has been used frequently for low-thrust trajectory optimization.

3 Overview and Assessment of Guidance Methods 16

Feedback-driven methods are computationally simple and hence a popular choice for onboard guid-

ance design. They are often based on Lyapunov stability theory, and the optimal control law is obtained

by minimizing some Lyapunov function [69–72]. As such methods are not based on optimal control

theory, they can only provide suboptimal solutions [73].

Shape-based methods assume a certain shape for the state trajectory, and the controls are obtained by

imposing the dynamical constraints [74]. A higher accuracy can be achieved and additional constraints

can be considered by optimizing the coefficients of the polynomial, for example within methods based

on finite Fourier series [75, 76].

Hybrid methods combine two or more methods to exploit the advantages of each of them, for example

by using the solution of evolutionary algorithms as an initial guess for an indirect or direct method [77].

Some researchers have combined machine learning techniques to improve the optimality of feedback-

driven approaches [78].

3.2 Assessment and Selection

Shifting the guidance task on board poses a great challenge as the algorithm must repeatedly recompute

the reference trajectory and guarantee a (near-optimal) solution in real time. This dissertation focuses on

interplanetary transfers, in particular the deep-space cruise. The main characteristics to be considered

are:

• Long time of flight: The time of flight in interplanetary transfers may span several years due to the

low-thrust propulsion. This is relevant for the numerical integration and also discretization.

• Small number of revolutions: In contrast to Earth-bound transfers that may require hundreds of

revolutions (e.g., geostationary transfer orbit to geostationary orbit), the interplanetary transfers

considered in this work generally require fewer than ten revolutions. Especially the required number

of discretization points to capture the trajectory accurately is affected.

• Recomputation of reference trajectory: In an onboard guidance scenario, the control actions (and

thus, the reference trajectory) are to be recomputed in real time.

We define the following high-level requirements for onboard guidance:

1) Reliability: A solution shall be provided at all times, i.e., a high success rate and a large convergence

domain are necessary.

2) Onboard capability: The algorithm shall be compatible with the limited hardware on board.

Moreover, a solution shall be obtained within few minutes.

3 Overview and Assessment of Guidance Methods 17

3) Optimality: The algorithm shall be able to find (at least locally) optimal solutions.

4) Robustness: The algorithm shall be able to deal with disturbances and exploit previous solutions

when recomputing the trajectory. Moreover, it shall be robust against (small) changes in the input

parameters.

5) Accuracy: The obtained solution shall be sufficiently accurate. We define the accuracy requirement

to be 1000 km (position) and 1m s−1 (velocity) for rendezvous problems. This corresponds to the

accuracy that optical navigation can currently achieve [79, 80].

6) Flexibility: The method shall be capable of handling various scenarios with different constraints

easily (e.g., high-fidelity models or operational constraints).

The advantages and disadvantages of each guidance method are summarized in Table 3.1. Our assessment

of each method based on the high-level requirements for onboard guidance is given in Table 3.2. We use

the ratings poor, satisfactory, good, and very good.

An algorithm that does not require an initial guess seems preferable in general. However, the

first reference trajectory can be computed offline and stored on the flight processor. Even in case of

disturbances and deviations from the reference, it is likely (and desirable) that the subsequent trajectories

lie in the vicinity of the original reference trajectory. The reason is that fuel-optimal solutions are sought,

and large deviations may result in a (significantly) higher propellant consumption. This is not acceptable,

especially due to the limited amount of propellant.

Analytical solutions are desirable in general, but do not exist for complex interplanetary transfers

without any limiting assumptions. Even though metaheuristics may be able to find a globally optimal

solution, they are not suitable for onboard applications because no guarantees on convergence can be

made due to the non-deterministic behavior.

Indirect methods determine highly accurate and locally optimal solutions. Due to the smaller number

of variables compared to direct methods, they are an excellent choice for many-revolution transfers

that would require a large number of discretization points. Yet, they suffer from poor flexibility (e.g.,

operational constraints and perturbations cannot be incorporated easily) and reliability. Especially the

small convergence domain when more complex problems and constraints are considered is undesirable.

Methods based on machine learning are often considered the most promising methods regarding onboard

applications. The reason is that the computationally expensive generation of the training database can be

carried out on ground, and the actual computation of the control actions can be done quickly in real time.

The main disadvantage is the poor accuracy if unexpected deviations from the reference trajectory occur

that were not modeled during the training process. As a consequence, the approximations of the control

actions often result in large errors of the final boundary conditions [62]. It is expected that this becomes

3 Overview and Assessment of Guidance Methods 18

more significant for more complex dynamical models and constraints. Poor flexibility and suboptimality

of the solutions are the major drawbacks of Lyapunov-based control laws and shape-based methods.

Although NLP and DDP are similar as both solve the full nonlinear program directly, the work in [49]

suggests that DDP becomes beneficial for many-revolution transfers. If cases with few revolutions only

are addressed, it seems that DDP requires a higher computational effort than state-of-the-art NLP solvers.

Due to the relatively large convergence domain and high flexibility to include complex constraints, direct

methods seem to be a good compromise. Especially SCP methods offer a good tradeoff. They have

shown to work well in real-time applications due to their rapid calculation speed, large convergence

domain, and high robustness [81–83]. Even though solving a large-scale convex optimization problem

is computationally expensive, using only first-order derivatives and exploiting sparsity can reduce the

required solving time considerably, thus alleviating the fact that a large number of variables is needed

[9, 11]. Therefore, SCP is considered the most appropriate method for onboard guidance given the

requirements and characteristics of the deep-space cruise.

3 Overview and Assessment of Guidance Methods 19

Table 3.1: Advantages and disadvantages of each optimization method.

Method Advantages Disadvantages

(Semi-)Analytical [24]
Analytical solution
Computationally efficient
No initial guess required

Exist only for special cases
Suboptimal solutions
Low-fidelity models

Indirect [34, 35] Locally optimal solutions
Small number of variables

High sensitivity to initial guess
Poor flexibility

Direct (NLP) [34] Medium sensitivity to initial guess
High flexibility

Large number of variables
Computationally expensive
Solution only at discrete points

Direct (SCP) [9, 11]
Low sensitivity to initial guess
High flexibility
Medium computational efficiency

Large number of variables
Solution only at discrete points

DDP [49]
Medium sensitivity to initial guess
High flexibility
Provides feedback control law

Large number of variables
Computationally expensive
Solution only at discrete points

Metaheuristics [50] No initial guess required
Global technique

Poor reliability
High computational effort
Potentially suboptimal solution

Machine Learning [62, 64] No initial guess required
Computationally efficient

Poor accuracy
Suboptimal solutions
Poor flexibility

Feedback-driven [73] No initial guess required
Computationally efficient

Suboptimal solutions
Poor flexibility

Shape-based [74, 76] Medium sensitivity to initial guess
Medium computational effort

Low flexibility
Low Accuracy

3 Overview and Assessment of Guidance Methods 20

Ta
bl

e
3.

2:
A

ss
es

sm
en

to
fo

pt
im

iz
at

io
n

m
et

ho
ds

.

M
et

ho
d

Cr
ite

rio
n

Re
lia

bi
lit

y
Ro

bu
stn

es
s

Fl
ex

ib
ili

ty
O

pt
im

al
ity

O
nb

oa
rd

ca
pa

bi
lit

y
A

cc
ur

ac
y

(S
em

i-)
A

na
ly

tic
al

Ve
ry

go
od

Po
or

Po
or

Po
or

Ve
ry

go
od

Po
or

In
di

re
ct

Po
or

G
oo

d
Sa

tis
fa

ct
or

y
Ve

ry
go

od
Sa

tis
fa

ct
or

y
Ve

ry
go

od
D

ire
ct

(N
LP

)
Sa

tis
fa

ct
or

y
G

oo
d

G
oo

d
G

oo
d

Po
or

G
oo

d
D

ire
ct

(S
CP

)
G

oo
d

G
oo

d
G

oo
d

G
oo

d
G

oo
d

G
oo

d
D

D
P

Sa
tis

fa
ct

or
y

G
oo

d
G

oo
d

G
oo

d
Po

or
G

oo
d

M
et

ah
eu

ris
tic

s
Po

or
Po

or
Po

or
Sa

tis
fa

ct
or

y
Po

or
Sa

tis
fa

ct
or

y
M

ac
hi

ne
Le

ar
ni

ng
Ve

ry
go

od
Po

or
Po

or
Sa

tis
fa

ct
or

y
Ve

ry
go

od
Po

or
Fe

ed
ba

ck
-d

riv
en

Ve
ry

go
od

Sa
tis

fa
ct

or
y

Po
or

Po
or

G
oo

d
G

oo
d

Sh
ap

e-
ba

se
d

G
oo

d
Sa

tis
fa

ct
or

y
Po

or
Sa

tis
fa

ct
or

y
Sa

tis
fa

ct
or

y
Sa

tis
fa

ct
or

y

4 State of the Art

Several different topics related to low-thrust trajectory optimization are addressed in this dissertation. A

brief summary of the state of the art is therefore presented to familiarize the reader with past work in this

field of research.

4.1 Sequential Convex Programming

As solving nonlinear programs directly often requires high computational power and a decent initial

guess, sequential convex programming techniques have become a popular alternative in the past years

[22]. Advances on lossless convexification techniques for certain nonconvex constraints have lead to a

variety of new works [84, 85]. As the original nonlinear optimal control problem is approximated as a

convex problem, it can be solved iteratively using sophisticated interior point methods [86]. Due to the

rapid calculation speed and the fact that convex programs are shown to converge to the global minimum

under certain conditions [87], such techniques are a popular choice for real-time applications, especially

within the path planning of robots and quadrotors [82, 83], and collision avoidance for unmanned aerial

vehicles [88, 89]. Because of the high demand for more and more autonomy in aerospace vehicles,

tremendous effort was made to exploit the advantages of convex optimization in aerospace applications.

Therefore, highly nonlinear spacecraft proximity and rendezvous [90, 91], power descent landing guidance

[92–95], and entry trajectory optimization problems [96, 97] have recently been solved using SCP. In this

context, an improved Radau pseudospectral discretization scheme has been applied in [98] to increase

the sparsity of the powered descent and landing problem, and thus lower the computational effort.

In contrast to the majority of researchers that use a modeling language for convex programming to

facilitate the SCP implementation [99], the work in [100] aims to improve the computational performance

by tailoring the algorithm to the actual flight code requirements. A customized interior-point solver for

real-time powered descent guidance was developed in [101], and general methods are presented in [102]

to formulate a convexified optimal control problem. Furthermore, a first-order method to solve conic

optimization problems is developed in [103] to improve the convergence rate.

With regard to low-thrust trajectory design, [104, 105] applied sequential convex programming to

solve time- and fuel-optimal transfers for the first time. Their simple numerical examples show that the

21

4 State of the Art 22

computational time can be reduced considerably compared to standard NLP solvers while still obtaining

near-optimal solutions with rather poor initial guesses. Later, SCP was used to generate the initial guess

for an indirect method [106].

In contrast to autonomous navigation where some promising results have been obtained recently

[79], literature on real-time guidance is scarce. Model predictive control is a popular choice for tracking

a reference trajectory [107, 108], for the autonomous landing within planetary missions [109], or for

autonomous racing [110]. In the past few years, the real-time performance of convex optimization-

based algorithms was assessed for the powered descend guidance problem on spaceflight hardware

[8, 111]. Furthermore, quadrotor maneuvering problems were solved on board using convex optimization

[112, 113]. An implicit trajectory generation method with convergence guarantees is developed in [114]

for the powered descent guidance problem where feasible trajectories are computed using numerical

integration. Yet, it is still to be investigated whether sufficiently accurate solutions can be obtained in real

time for interplanetary, long-duration orbital transfers.

4.1.1 Discretization and Trust-Region Methods

Solving a series of simpler, convex subproblems makes SCP numerically tractable compared to solving a

nonlinear program directly. Two key characteristics of SCP are the discretization and trust-region method

because they strongly affect the results, especially the convergence properties. Yet, previous research

activities lack a thorough assessment and comparison of relevant techniques for low-thrust trajectory

optimization.

The most popular discretization techniques are collocation and control interpolation methods. The

former parameterize both the states and controls using some basis functions, whereas the latter parame-

terize only the control history [34]. Due to its simplicity, the trapezoidal rule is one of the most important

collocation methods [104, 105, 115]. Yet, its poor accuracy often prevents the solver to find solutions

that satisfy the nonlinear dynamics for long-duration interplanetary transfers. Higher-order methods

such as Hermite–Simpson collocation offer instead a good compromise between computational effort and

accuracy [116]. The arbitrary-order Hermite–Legendre–Gauss–Lobatto discretization is a generalization

of this method and a popular choice in nonlinear optimization because the states are approximated by

higher-order Hermite interpolating polynomials [117]. In global pseudospectral methods, in contrast,

single Lagrange interpolating polynomials are used to approximate the states and controls, respectively.

As this results in dense matrices, adaptive methods were developed where piecewise polynomials are used

to approximate the trajectories [43]. There are several categories of pseudospectral methods. The most

important ones are based on Legendre–Gauss (LG) [118], Legendre–Gauss–Lobatto (LGL) [117], or

Legendre–Gauss–Radau (LGR) points [119]. In an adaptive framework with several segments, methods

4 State of the Art 23

using LG points do not include the initial and end point, and therefore, no control is obtained at the

segment breaks. If LGL points are used, there is a redundancy of points at the end of each segment.

Moreover, the optimality conditions of the optimal control problem are not equivalent to the ones of the

discretized form, which may result in inaccurate costates [120].

Several works adapted collocation methods to convex programming and solved powered descent

[94, 98, 121] and low-thrust guidance problems [105, 106]. With regard to control interpolation methods,

the control is approximated using a zero-order-hold (ZOH) or first-order-hold (FOH) discretization. For

ZOH, the control history is assumed piecewise constant, whereas for FOH, it is approximated by a

piecewise affine function [122]. Both methods performed well for powered descent guidance problems

[92, 122]. The ZOH discretization was also applied to low-thrust trajectory optimization problems in the

circular restricted three-body problem [123]. However, it is yet to be investigated how FOH performs

within low-thrust trajectory optimization (LTO).

The work in [124] compares different discretization methods for the powered descent guidance (PDG)

problem. However, the results cannot be extended directly to the low-thrust trajectory optimization

problem due to the different dynamics, constraints, and number of switching times for fuel-optimal

problems. One major difference is that the time horizon is considerably shorter in PDG compared to the

long-duration interplanetary transfers in LTO which can last several years. Therefore, many more nodes

are required to capture the state and control profiles accurately, especially if the number of revolutions

increases. Moreover, a global pseudospectral method using only one high-order polynomial as in [124]

would result in dense matrices and a considerable higher solving time (if a solution is found at all).

Trust regions are imposed to keep the linearization close to a reference solution. Most of the SCP

methods found in literature use some type of trust-region approach. For powered descent guidance

problems, soft trust regions are often used [87, 122]. In low-thrust trajectory optimization, simple hard

trust regions are more common [9, 105]. The choice of the trust-region approach is often crucial as this

can decide whether a feasible solution is found or not. Furthermore, a poor choice of the parameters can

deteriorate the convergence. Such a behavior is undesirable and unacceptable for onboard applications.

Soft trust regions often work well in PDG problems [124], but they have not been used to determine

low-thrust trajectories so far.

4.1.2 High-Fidelity Optimization

Low-thrust trajectory optimization problems that consider higher-fidelity models (for example, third-body

perturbations, solar radiation pressure, realistic thruster model) have been solved with indirect [125, 126]

and direct, NLP-based methods [127–129]. With regard to convex programming techniques, the accuracy

and convergence can be poor for highly nonlinear applications due to the successive linearization.

4 State of the Art 24

Therefore, most researchers considered only simple two-body dynamics. The literature on solving more

complex models, for example the circular-restricted three-body problem using convex programming, is

scarce. In [123], the SCP approach had to be combined with a nonlinear programming method to deal

with the highly nonlinear dynamics and to achieve convergence. When additional perturbations are

considered, convergence and accuracy deteriorate considerably, along with an increase in the number

of iterations and computational time. No current SCP method can compute high-fidelity low-thrust

trajectories reliably.

Indirect methods often make use of a homotopic approach to improve convergence: A series of easier

problems is solved first where each solution is used as an initial guess for the next problem [130, 131].

The process continues until the original problem is solved. This can also be applied to direct methods

where an easier problem (e.g., simple two-body dynamics) is considered first, and its solution is used to

determine a solution in a higher-fidelity model (e.g., n-body dynamics). For example, it was shown that

using a homotopy from the energy- to the fuel-optimal problem in a convex programming environment

can improve convergence [132]. In previous works, each subproblem is solved to full optimality, and

the step size is fixed and defined by the user [23, 39, 133]. This means that the algorithm requires at

least a certain number of homotopic steps to achieve convergence. Depending on the problem structure,

however, it may be beneficial to perform larger steps and therefore, achieve faster convergence. Still,

current methods do not adjust the step size dynamically, but rely on a "solve to full optimality and then

proceed to the next step" approach. Often, a conservative (i.e., small) value of the step size is chosen

to avoid non-convergence. This procedure is not ideal, and it would be desirable to adjust the step size

dynamically based on information that can be retrieved from the optimization problem. For example, a

continuation method is embedded into SCP in [134] to model discrete logic constraints.

Only few works consider constraints where the thruster has to remain off during some periods. For

example, the work in [135] requires a mesh refinement process to determine trajectories with shutdown

constraints in the two-body environment. In [136], no-thrust periods are included in a model predictive

control approach for small-body proximity operations using a zero-order-hold discretization method. The

work in [137] uses a homotopic approach to successively obtain a solution with no-thrust constraints.

Even though such duty cycles are of utmost importance for real space missions, most of the methods found

in literature allow continuous thrust during the whole transfer. The resulting trajectories are therefore not

mission-compliant.

Besides the discretization method, the number of discretization points also affects the performance of

the optimization process [124]. A small number reduces the number of variables and thus, the dimension

of the problem. However, this might yield poor accuracy or even result in non-convergence. For this

reason, several works developed mesh refinement methods to adjust the number of nodes for nonlinear

programs. In [44], a mesh refinement for the Legendre–Gauss–Radau pseudospectral method is developed

4 State of the Art 25

where the number of collocation points and segments can be increased by comparing the optimized states

with a solution that contains a larger number of nodes. The mesh in [138] is adjusted using the decay rates

of Legendre polynomial coefficients, and interpolation errors are evaluated in [139] to adjust the mesh for

the Mars atmospheric entry trajectory optimization problem. With regard to SCP, a method is presented

in [140] where the mesh is updated after each iteration based on the linearization error. However, a major

challenge are fuel-optimal problems because they require some mesh refinement to accurately capture the

bang-bang control profile. A refined LGR pseudospectral method for nonsmooth problems is developed

in [141]. Additional constraints and variables are included to account for the discontinuities. Other works

determine the switching times in pseudospectral methods and then increase the number of nodes at these

locations to have a more accurate representation of the controls [142, 143].

4.1.3 State Vector Representations

The equations of motion form a fundamental part in astrodynamics. Before solving an optimal control

problem, the equations that govern the motion of the spacecraft (or any other object) are to be derived.

Cartesian coordinates are probably the most common and popular representation of the dynamics. Yet,

several different sets of coordinates have been developed in the past decades. The reason is that the

choice of the coordinates can have a considerable impact on the performance of numerical methods that

are used to solve problems related to astrodynamics [144]. Spherical coordinates (or polar coordinates in

the planar case) seem to be a natural choice to describe the translational motion of a spacecraft around a

primary body. Several works use these coordinates to solve the low-thrust trajectory optimization problem

[104, 105, 116]. Cylindrical coordinates are often used in shape-based methods where the trajectory is

approximated with certain functions [76]. Canonical elements such as Delaunay [145] and Poincaré

[146] elements are advantageous for perturbation problems due to the simplifications that can be made

when the perturbing acceleration is considered small. Equinoctial elements were developed to overcome

the singularities of classical orbital elements [147]. They are a popular choice for many-revolution

transfers in indirect methods because five out of six elements are constant for the unperturbed motion

[39, 130, 148]. Alternative representations such as quaternion-like elements for the initial value problem

[149], or coordinates that use the angular momentum and eccentricity vector for high-inclination orbital

transfers were developed only recently [150]. Moreover, new coordinates based on Hill variables are

introduced in [151], and compared with different element sets in the context of propagating perturbed

Keplerian orbits.

The choice of the coordinates becomes even more crucial for SCP due to the successive linearization

of the nonlinear dynamics. Even though many constraints can be relaxed and convexified, dynamics are

usually approximated using a first-order Taylor series. Understanding the impact of the coordinate set on

4 State of the Art 26

the performance of SCP is therefore of utmost practical interest. Yet, previous research activities lack

a thorough assessment and comparison of relevant state vector choices for convex low-thrust trajectory

optimization. As the work in [144] uses an indirect method to investigate the performance of several

minimal coordinate sets for the low-thrust fuel-optimal trajectory optimization problem, their results

cannot be applied directly to the SCP approach due to the fundamentally different characteristics of both

methods. An indirect approach is compared with SCP in [152] where spherical and modified equinoctial

elements are considered.

Besides an explicit comparison of the performance of different representations of the dynamics, a

nonlinearity index was introduced in [153] to compare the nonlinearity of dynamical systems. This metric

is intended to measure how nonlinear a dynamical system is for unperturbed initial value problems. This

approach was later extended to include control terms [154]. More recently, an augmented nonlinearity

index was introduced to account for state-costate dynamics in indirect methods [155]. This was applied to

the spacecraft attitude control problem. Several other nonlinearity indices were proposed in the context

of orbit uncertainty propagation, for example as a measure for automatic domain splitting [156].

4.2 Approximation of Nonlinear Dynamical Systems

Due to the highly nonlinear dynamics and often complex constraints, finding an optimal solution is still a

challenging task as direct and indirect methods require a decent initial guess. For this reason, approximate

solutions using simplified models (e.g., Kepler or Stark model [25]), predefined state or control profiles

(e.g., shape-based methods [76] or constant radial and tangential thrust [29]) are often sought to generate

the initial guess. However, these problems are still highly nonlinear and difficult to solve.

Although convex programming has become a promising technique in the past decade, it requires

all constraints to be convex. Many constraints can be relaxed and convexified, but handling nonlinear

dynamics properly is still a challenge [157]. As a consequence, dynamics are usually approximated

using a first-order Taylor series [22]. This, however, is only a local approximation and can result in non-

convergence if a poor initial guess is provided. How to deal with nonlinear and non-convex dynamics in

engineering problems is therefore a challenging task.

Thus, linearization techniques have attracted a lot of attention in the last few years [158, 159].

Especially lifting nonlinear systems into a higher-dimensional space has become increasingly important

as this allows us to represent a nonlinear system as a linear one, and sophisticated linear system theory can

be applied. Yet, one drawback is the higher (often infinite) dimensional space of the transformed system.

An important lifting technique is the linear, infinite-dimensional Koopman operator that describes the

evolution of observable functions [160]. It has been applied to various problems in engineering, e.g.,

estimation [161], robotics [162], and fluid dynamics [163]. Despite the rising popularity, its application

4 State of the Art 27

in astrodynamics is very limited because a high accuracy is required that data-driven approaches cannot

achieve [164]. Recently, the zonal harmonics problem has been solved using the Koopman operator theory

(KOT) [165]. In addition, it has been applied to attitude dynamics [166], the motion of satellites around

libration points [167], and it was used to design control laws for the circular-restricted three-body problem

[168]. However, it is to be investigated how problems with an external control can be approximated, and

whether the accuracy is sufficient for problems in orbital mechanics.

5 Convexification and Sequential Convex

Programming

Approaches based on convex optimization require all constraints to be convex. We refer to convexification

as the process to transform the nonlinear constraints into convex expressions. There are two main classes

of convexification techniques: lossless convexification and successive convexification [84, 87]. The

former often uses relaxation techniques such that the nonconvex constraint is transformed into a convex

one that yields the same optimal solution. Successive convexification, on the other hand, approximates

the original constraint in each iteration, for example using a first-order Taylor series. In this chapter,

the convexification of the nonlinear optimal control problem in space flight is addressed. Moreover, the

sequential convex programming method is presented in detail. Parts of this chapter are taken from our

work in [9, 12, 13, 169].

5.1 Convexification

Recalling the equations of motion in Eq. (2.25)–(2.27) and the minimum-fuel OCP in Eq. (2.33), it is

evident that the differential equation of the velocity v and the constraint on the thrust directions α are

nonconvex. The nonlinear part

σ(t)
Tmax
m(t)

α(t) (5.1)

of v̇(t) is eliminated by a change of variables [92]:

Γ(t) ..=
σ(t)Tmax

m(t)
(5.2)

τ (t) ..=
σ(t)Tmax

m(t)
α(t) (5.3)

w(t) ..= lnm(t) (5.4)

Taking the derivative of Eq. (5.4) with respect to time yields the equation of motion for w:

ẇ(t) =
1

m
ṁ = − 1

m

σ(t)Tmax

g0 Isp
= − Γ(t)

g0 Isp
(5.5)

28

5 Convexification and Sequential Convex Programming 29

Moreover, the constraint ∥α(t)∥2 = 1 changes to ∥τ (t)∥2 = Γ(t). As this constraint is still nonconvex,

it is relaxed to a second-order cone:

∥τ (t)∥2 ≤ Γ(t) (5.6)

This convexification is lossless, and it can be shown that the solution of the relaxed problem is also an

optimal solution of the original problem [92].

Approximation of Nonconvex Constraints

As only convex constraints are allowed within SCP, the remaining ng nonconvex constraints

gi(x,u) ≤ 0, i = 1, . . . , ng (5.7)

need to be approximated as affine or second-order cone constraints. In general, any approximation

method can be used, for example first- and second-order Taylor series, or inner convex approximations

[170]. Higher-fidelity approximations such as a second-order Taylor series may be preferable as they

yield more accurate results. However, this requires the Hessian matrix ∇2gi to be positive semidefinite.

Moreover, the resulting second-order cone constraints increase the complexity and computational effort

when solving the convex program. Therefore, we approximate the remaining nonconvex constraints using

a first-order Taylor series due to the low computational effort, and the fact that the obtained expressions

are guaranteed to be affine, i.e., convex. The first-order Taylor expansion of gi(x,u) about the reference

point (x̄, ū) is given by

gi(x̄, ū) +∇gi(x̄, ū)

x− x̄

u− ū

 ≤ 0, i = 1, . . . , ng (5.8)

Due to the change of variables, the constraint on the thrust magnitude in Eq. (2.33c) becomes

Γ(t) ≤ Tmax e
−w(t) (5.9)

As the right-hand side of Eq. (5.9) is nonconvex, it is linearized about the reference w̄:

0 ≤ Γ(t) ≤ Tmax e
−w̄ [1− w(t) + w̄(t)] (5.10)

5 Convexification and Sequential Convex Programming 30

The only remaining nonconvex constraint is the dynamics ẋ(t) = f (x(t),u(t)) that read after the change

of variables

f (x(t),u(t)) =

v(t)

−µ r(t)/[r(t)]3

0

︸ ︷︷ ︸

=..p(x(t))

+

03×4

13×3 03×1

01×3 −1/(g0 Isp)

︸ ︷︷ ︸

=..B

τ (t)
Γ(t)

= p(x(t)) +Bu(t)

(5.11)

where the states and controls are defined as x ..=
[
r⊤,v⊤, w

]⊤ and u ..=
[
τ⊤,Γ

]⊤, respectively.

Linearizing the dynamics according to Eq. (5.8) gives

f(x(t),u(t)) ≈ f(x̄(t), ū(t)) +∇f(x̄(t), ū(t))

x(t)− x̄(t)

u(t)− ū(t)

 (5.12)

As states and controls are decoupled if Isp = const. (i.e., the matrix B is constant and does not depend

on x), Eq. (5.12) simplifies to

f(x(t),u(t)) ≈ ∇p(x̄(t))x(t) +Bu(t) + q(x̄(t)) (5.13)

with

q(x̄(t)) = p(x̄(t))−∇p(x̄(t)) x̄(t) (5.14)

As we will see in Section 8.3, it is often beneficial to directly work with the thrust magnitude instead

of the acceleration as the control variable when applying a mesh refinement. In this case, it is possible

to define different states x̂ ..=
[
r⊤,v⊤,m

]⊤ and controls û ..=
[
T⊤, T

]⊤, where T = σ Tmaxα and

T = ∥T∥2. The corresponding dynamics read

f̂(x̂(t), û(t)) =

v(t)

−µ r(t)/[r(t)]3

0

︸ ︷︷ ︸

=.. p̂(x(t))

+

03×4

1
m 13×3 03×1

01×3 −1/(g0 Isp)

︸ ︷︷ ︸

=.. B̂(x̂(t))

T(t)

T (t)

= p̂(x̂(t)) + B̂(x̂(t)) û(t)

(5.15)

As B(x̂) depends now on the state x̂, linearizing Eq. (5.15) fully about the reference (ˆ̄x, ˆ̄u) would result

in an expression that depends on the reference control û. Previous work suggests that this deteriorates

convergence due to the jittery behavior of the controls in subsequent iterations [171]. Therefore, we set

f̂(x̂(t), û(t)) ≈ p̂(x̂(t)) + B̂(ˆ̄x(t)) û(t) (5.16)

5 Convexification and Sequential Convex Programming 31

and linearize Eq. (5.15) only partially to obtain

f̂(x̂(t), û(t)) ≈ ∇p̂(ˆ̄x(t)) x̂(t) + B̂(ˆ̄x(t)) û(t) + q̂(ˆ̄x(t)) (5.17)

with

q̂(ˆ̄x(t)) = p̂(ˆ̄x(t))−∇p̂(ˆ̄x(t)) ˆ̄x(t) (5.18)

This way, the current solution is independent of the previous control history ˆ̄u, and convergence is

expected to enhance.

Artificial Infeasibility and Unboundedness

As the nonconvex constraints are approximated using a first-order Taylor series about some reference

point, the solver may not be able to find a feasible solution anymore if the reference is poor. Therefore,

it is important to restrict the search space to a region where the linearization is valid, i.e., sufficiently

accurate. For this reason, a trust region of the form [87]

∥x− x̄∥1 ≤ R (5.19)

is imposed where the deviation of the solution vector x from the reference x̄ is limited by the (potentially

varying) trust-region radius R. In addition, a linear approximation of nonconvex constraints may result in

artificial unboundedness of a subproblem, i.e., an infinite decrease in the cost function when the solution

trajectory is not enforced to lie in the neighborhood of the reference. This issue is resolved by adding a

trust region [87].

When nonlinear constraints are linearized about a reference solution, we may encounter an infeasible

convex subproblem even though the original problem is feasible. This phenomenon is called artificial

infeasibility. An unconstrained virtual control ν ∈ Rnx is added to the linearized dynamical constraints

in Eq. (5.12) to prevent this [87]:

ẋ(x(t),u(t)) = f(x̄(t), ū(t)) +∇f(x̄(t), ū(t))

x(t)− x̄(t)

u(t)− ū(t)

+ ν(t) (5.20)

As ν(t) is not constrained, the system can always reach a feasible point. The same problem can arise

for the linearized control constraint in Eq. (5.10). Therefore, we relax this constraint by adding a slack

variable η(t) ≥ 0:

0 ≤ Γ(t) ≤ Tmax e
−w̄ [1− w(t) + w̄(t)] + η(t) (5.21)

5 Convexification and Sequential Convex Programming 32

Although these terms maintain feasibility, they also result in constraint violations when active. To ensure

that ν(t) and η(t) are only used when infeasibility is detected, we incorporate them in our objective

function with sufficiently large penalty parameters λcvx
h and λcvx

g :

Minimize − w(tf) + λcvx
h

∑
i∈Ieq

∥νi∥1 + λcvx
g

∑
i∈Iineq

max(0, ηi) (5.22)

where Ieq and Iineq denote the set of equality and inequality constraints, respectively.

Remark 5.1. If the state vector representation x̂ is used, the term −w(tf) changes to −m(tf) in Eq.

(5.22). Moreover, the slack variable η is not needed if the controls û are chosen because the thrust

magnitude constraint 0 ≤ T (t) ≤ Tmax is inherently convex provided that Tmax is constant. Therefore,

the last term in Eq. (5.22) can be omitted.

Convex Optimization Problem

We define the convexified optimization problem as Problem 1.

Problem 1. Find the functions Γ(t) and τ (t) that solve the following second-order cone program:

minimize
Γ(t), τ (t)

− w(tf) + λcvx
h

∑
i∈Ieq

∥νi∥1 + λcvx
g

∑
i∈Iineq

max(0, ηi) (5.23a)

subject to: ẋ(t) = f (x(t),Γ(t), τ (t)) + ν(t) (5.23b)

Γ(t) ≤ Tmax e
−w̄ [1− w(t) + w̄(t)] + η(t) (5.23c)

∥τ (t)∥2 ≤ Γ(t) (5.23d)

∥x(t)− x̄(t)∥1 ≤ R (5.23e)

r(t0) = r0, v(t0) = v0, w(t0) = w0 (5.23f)

r(tf) = rf , v(tf) = vf (5.23g)

xlb ≤ x(t) ≤ xub, ulb ≤ u(t) ≤ uub (5.23h)

where Eq. (5.23h) refers to the lower (subscript lb) and upper (subscript ub) bounds, respectively. Our

simulations suggest that restricting the search space by imposing such bounds is often beneficial for the

solver. The optimization problem for the modified states x̂ and controls û can be defined accordingly.

Remark 5.2. If some final position ∆r or velocity ∆v error is acceptable, the final boundary constraints

in Eq. (5.23g) can be relaxed to

|r(tf)− rf | ≤ ∆r (5.24a)

|v(tf)− vf | ≤ ∆v (5.24b)

5 Convexification and Sequential Convex Programming 33

5.2 Sequential Convex Programming Method

Trust-region methods use some kind of merit function to measure the progress in each SCP iteration k.

We define ρ(k) as the ratio

ρ(k) ..=
actual cost decrease

predicted cost decrease
=

∆φ

∆φ̂
(5.25)

where the actual cost decrease ∆φ is calculated using the nonconvex constraints, and the predicted cost

decrease ∆φ̂ is based on the convex constraint violations [87]. Depending on the value of ρ(k), the

solution is accepted or rejected. Defining three parameters 0 < ρ0 < ρ1 < ρ2 < 1, a step at iteration k is

rejected if ρ(k) < ρ0 because this indicates that there is no (sufficiently large) progress. When a solution

is accepted, the trust-region radius R is updated as follows:

R(k+1) =

R(k)/α if ρ0 ≤ ρ(k) < ρ1

R(k) if ρ1 ≤ ρ(k) < ρ2

β R(k) if ρ(k) ≥ ρ2

(5.26)

where the trust-region shrinking rate α > 1 and growing rate β > 1 are two constants.

The trust-region radius R is therefore actively changed based on the evaluation of a merit function φ.

The idea is to compare the exact cost reduction ∆φ (using original nonlinear and nonconvex constraints)

with the predicted one ∆φ̂ (using linearized and convex constraints). At each iteration, the exact φ and

predicted cost φ̂, respectively, are calculated:

φ ..= λnoncvx
h

∑
i∈Ieq

∥hnoncvx
i ∥1 + λnoncvx

g

∑
i∈Iineq

max (0, gnoncvxi) + λcvx
l

∑
j∈Jineq

max
(
0, lcvxj

)
(5.27)

φ̂ ..= λcvx
h

∑
i∈Ieq

∥hcvx
i ∥1 + λcvx

g

∑
i∈Iineq

max (0, gcvxi) + λcvx
l

∑
j∈Jineq

max
(
0, lcvxj

)
(5.28)

It is convenient to use the 1-norm as the corresponding ℓ1 merit function is known to be exact [20].

hnoncvx
i and gnoncvxi denote the concatenated equality and inequality constraints of the original nonlinear,

nonconvex problem, and Ieq and Iineq the corresponding sets of constraints. lcvxj refers to the convex

inequality constraints of the problem, and λnoncvx
h , λnoncvx

g , and λcvx
l are positive penalty weights. The

corresponding quantities for the convex constraints are denoted with the superscript cvx and defined

accordingly. The weights depend on the problem, and can vary to increase the importance of individual

terms.

The convex constraint violations ccvxk at each node for the constraints corresponding to dynamics,

thrust, boundary conditions, and bounds can be calculated as follows:

Dynamics: ccvxdyn,k = ∥νk∥1, k = 1, . . . , N − 1 (5.29a)

Thrust magnitude: ccvxthrust,k = max (0, ηk) , k = 1, . . . , N (5.29b)

5 Convexification and Sequential Convex Programming 34

Thrust components: ccvxcomp,k = max (0, ∥τk∥2 − Γk) , k = 1, . . . , N (5.29c)

Initial boundary cond.: ccvxIBC =

∥∥∥∥[r⊤(t0),v⊤(t0), w(t0)
]⊤

−
[
r⊤0 ,v

⊤
0 , w0

]⊤∥∥∥∥
1

(5.29d)

Final boundary cond. position: ccvxFBC,pos = ∥max (0, |r(tf)− rf | −∆r)∥1 (5.29e)

Final boundary cond. velocity: ccvxFBC,vel = ∥max (0, |v(tf)− vf | −∆v)∥1 (5.29f)

Lower bounds states: ccvxlb,x,k = ∥max (0,xlb,k − xk)∥1, k = 1, . . . , N (5.29g)

Upper bounds states: ccvxub,x,k = ∥max (0,xk − xub,k)∥1, k = 1, . . . , N (5.29h)

Lower bounds controls: ccvxlb,u,k = ∥max (0,ulb,k − uk)∥1, k = 1, . . . , N (5.29i)

Upper bounds controls: ccvxub,u,k = ∥max (0,uk − uub,k)∥1, k = 1, . . . , N (5.29j)

where themax(·) function in Eqs. (5.29e)–(5.29j) denotes the element-wisemax operator. The predicted

cost φ̂ is therefore

φ̂ =λcvx
h

N−1∑
k=1

ccvxdyn,k + λcvx
g

(
N∑
k=1

ccvxthrust,k +
N∑
k=1

ccvxcomp,k

)
+ λcvx

l

(
ccvxIBC + ccvxFBC,pos + ccvxFBC,vel

+

N∑
k=1

ccvxlb,x,k +

N∑
k=1

ccvxub,x,k +

N∑
k=1

ccvxlb,u,k +

N∑
k=1

ccvxub,u,k

)
(5.30)

With regard to the nonconvex constraint violations, we obtain:

Dynamics: cnoncvxdyn,k = ∥ẋk − f(xk,uk)∥1, k = 1, . . . , N − 1 (5.31a)

Thrust magnitude: cnoncvxthrust,k = max
(
0,Γk − Tmax e

−wk
)
, k = 1, . . . , N (5.31b)

Thrust components: cnoncvxcomp,k = | ∥τk∥2 − Γk |, k = 1, . . . , N (5.31c)

Initial boundary cond.: cnoncvxIBC = ccvxIBC (5.31d)

Final boundary cond. position: cnoncvxFBC,pos = ccvxFBC,pos (5.31e)

Final boundary cond. velocity: cnoncvxFBC,vel = ccvxFBC,vel (5.31f)

Lower bounds states: cnoncvxlb,x,k = ccvxlb,x,k (5.31g)

Upper bounds states: cnoncvxub,x,k = ccvxub,x,k (5.31h)

Lower bounds controls: cnoncvxlb,u,k = ccvxlb,u,k (5.31i)

Upper bounds controls: cnoncvxub,u,k = ccvxub,u,k (5.31j)

5 Convexification and Sequential Convex Programming 35

The expression on the right-hand side in Eq. (5.31a) refers to the general defects of the dynamical

constraints that depends on the discretization method. The violations of the (convex) boundary constraints

and bounds are identical to the linear case. The actual cost is then given by

φ =λnoncvx
h

(
N−1∑
k=1

cnoncvxdyn,k +

N∑
k=1

cnoncvxcomp,k

)
+ λnoncvx

g

N∑
k=1

cnoncvxthrust,k + λcvx
l

(
cnoncvxIBC + cnoncvxFBC,pos + cnoncvxFBC,vel

+
N∑
k=1

cnoncvxlb,x,k +
N∑
k=1

cnoncvxub,x,k +
N∑
k=1

cnoncvxlb,u,k +
N∑
k=1

cnoncvxub,u,k

)
(5.32)

The actual and predicted cost reductions are then

∆φ = φ(k−1) − φ̂(k) (5.33)

∆φ̂ = φ(k−1) − φ(k) (5.34)

where k − 1 refers to the values from the previous iteration. It can be shown that ∆φ̂ ≥ 0 for all k [87].

The algorithm converges if the maximum constraint violation cmax and the relative change of the

objective function are lower than thresholds εc and εJ , respectively:

cmax < εc (5.35)∣∣∣J (k−1)
0 − J

(k)
0

∣∣∣∣∣∣J (k−1)
0

∣∣∣ < εJ (5.36)

where J0 ..= −w(tf) for fuel-optimal problems. The maximum constraint violation cmax is calculated

similar to Eqs. (5.29) and (5.31) using the ℓ∞ norm. The algorithm also terminates without successful

convergence to an optimal solution if there is no sufficient progress, that is, if the relative difference of

the solution vector in two consecutive iterations k − 1 and k is smaller than εx:∥∥x(k−1) − x(k)
∥∥∥∥x(k−1)

∥∥ < εx (5.37)

The SCP algorithm is based on [87] and shown in Fig. 5.1. After solving the convex optimization

problem, the actual and predicted cost reductions are computed according to Eqs. (5.27) and (5.28). The

maximum constraint violation is calculated using the original nonconvex representations. The ratio ρ of

the cost reductions is then used to determine whether the solution at iteration k is accepted or rejected,

and the trust-region size R is updated accordingly. The algorithm proceeds with the next iterations until

the stopping criteria are met.

Such an algorithm that uses variable trust regions, an exact penalty method, and virtual controls

would eventually converge to a global minimum [87]. Yet, this solution might not be feasible with regard

to the nonlinear dynamics. If the final virtual controls ν and slack variables η are zero, however, the

5 Convexification and Sequential Convex Programming 36

converged trajectory is a local optimum of the original, nonconvex problem. This means that the final

solution also satisfies the nonlinear constraints at the nodes.

Hard And Soft Trust-Region Methods

There are two main classes of trust-region methods:

1) Hard trust regions: The trust-region constraint is explicitly imposed as a constraint [87].

2) Soft trust regions: The trust-region constraint is penalized in the objective function [172].

Both are presented in the following subsections.

Hard Trust Regions

The trust-region mechanism presented in the previous section implements a standard hard trust-region

method where the shrinking rate α > 1 and growing rate β > 1 are two constants. A more flexible

approach is to not only update the trust-region size R, but also α and β. For example, we propose in

[169] to adjust α and β based on the values of ρ of the current k and previous iteration k − 1:

α(k) =

α0 if ρ(k) ≥ ρ1+ρ2

2 ∧ ρ(k−1) ≥ ρ0

α1 if ρ(k) ≥ ρ1 ∧ ρ(k−1) ≥ ρ0

α2 otherwise

, β(k) =

β0 if ρ(k) ≥ ρ1+ρ2

2 ∧ ρ(k−1) ≥ ρ0

β1 if ρ(k) ≥ ρ1 ∧ ρ(k−1) ≥ ρ0

β2 otherwise

(5.38)

with parameters 1 < α0 < α1 < α2 and 1 < β0 < β1 < β2. Our rationale is that if the previous step

was accepted, the trust-region radius can be increased by a larger value (or decreased by a smaller one)

for the next iteration. If instead ρ(k) and ρ(k−1) are small, it is likely that we need to stay closer to the

reference solution.

We propose a generalization of this approach in [132] where a constant δ > 1 is introduced and the

growing and shrinking rates are updated as follows:

1) If ρ(k) ≥ ρ0 and ρ(k−1) ≥ ρ0, then β(k) = δ β(k−1) and α(k) = α(k−1)/δ. The growing rate is

increased and the shrinking rate decreased if the previous and current iterations are accepted.

2) If ρ(k) ≥ ρ0 and ρ(k−1) < ρ0, then β(k) = β(k−1)/δ and α(k) = δ α(k−1). The growing rate is

decreased and the shrinking rate increased if only the current step is accepted.

3) If ρ(k) < ρ0 and ρ(k−1) ≥ ρ0, then α(k) = α(k−1) and β(k) = β(k−1). The rates remain constant if

the previous step was accepted and the current one is rejected.

4) If ρ(k) < ρ0 and ρ(k−1) < ρ0, then α(k) = δ α(k−1). The shrinking rate is increased if both steps

are rejected.

5 Convexification and Sequential Convex Programming 37

Input:
• Initial guess

(
x(0), u(0)

)
, set k = 1

• Weighting factors λnoncvx
h , λnoncvx

g , λcvx
h , λcvx

g , λcvx
l > 0

• Initial trust-region radius R0 > 0

• Parameters 0 < ρ0 < ρ1 < ρ2 < 1, 1 < α, and 1 < β

• Tolerances εc, εJ , εx

Solve convexified problem to obtain solution
(
x(k), u(k)

)

Determine actual and predicted cost reductions ∆φ and ∆φ̂,
and maximum constraint violation cmax

cmax < εc and∣∣∣J(k−1)
0 − J

(k)
0

∣∣∣∣∣∣J(k−1)
0

∣∣∣ < εJ? Successful convergence

Return optimal solution(
x(k), u(k)

)

∥∥∥x(k−1) − x(k)
∥∥∥

∥x(k−1)∥
< εx? Terminate

Calculate ratio ρ(k) = ∆φ/∆φ̂

ρ(k) < ρ0?
Reject solution and update

trust-region radius:
R(k+1) = R(k)/α

Accept solution and set
x(k+1) = x(k), u(k+1) = u(k)

Update trust-region radius:

R(k+1) =

R(k)/α if ρ0 ≤ ρ(k) < ρ1

R(k) if ρ1 ≤ ρ(k) < ρ2

β R(k) if ρ(k) ≥ ρ2

Set k = k + 1

Yes

No

Yes

No

Yes

No

Figure 5.1: Flowchart of the SCP algorithm.

5 Convexification and Sequential Convex Programming 38

In this case, bounds are imposed on α and β such that αmin ≤ α ≤ αmax and βmin ≤ β ≤ βmax.

Soft Trust Regions

Instead of enforcing the trust-region constraint in Eq. (5.19) directly, the performance index in Eq.

(5.23a) is augmented with a penalty function p(x) in soft trust-region methods:

minimize
Γ(t), τ (t)

− w(tf) + λcvx
h

∑
i∈Ieq

∥νi∥1 + λcvx
g

∑
i∈Iineq

max(0, ηi) + p(x) (5.39)

where p(x) penalizes any violation of the trust-region constraint gTR ..= ∥x(t) − x̄(t)∥1 − R ≤ 0. In

particular, we choose the differentiable and nondecreasing function

p(x) ..= λTR [max (0, ∥x(t)− x̄(t)∥1 −R)]2 (5.40)

with the penalty parameter λTR > 0. The update mechanism is defined as follows and based on [173]:

1) If gTR > 0: Reject the step and set λ(k+1)
TR = ζ λ

(k)
TR for ζ > 0.

2) If gTR ≤ 0 and ρ(k) < ρ0: Reject the step and set R(k+1) = R(k)/α.

3) If gTR ≤ 0 and ρ1 ≤ ρ(k) < ρ2: Accept the step and set R(k+1) = R(k)/α and λ
(k+1)
TR = λTR,0.

4) If gTR ≤ 0 and ρ(k) > ρ2: Accept the step and set R(k+1) = β R(k) and λ
(k+1)
TR = λTR,0.

with some parameter λTR,0 > 0.

The performance of different trust-region methods is assessed in the next chapter.

6 Performance of Discretization and

Trust-Region Methods

None of the existing works has investigated how different discretization and trust-region methods and

their parameters affect the performance of the SCP algorithm for complex interplanetary low-thrust fuel-

optimal transfers. Moreover, no conclusion can be drawn on how the choice might affect the real-time

capability of the algorithm. For this reason, we compare the performance of the following discretization

methods:

1) An adaptive Legendre–Gauss–Radau pseudospectral method.

2) An arbitrary-order Legendre–Gauss–Lobatto method based on Hermite interpolation.

3) A first-order-hold discretization.

The Radau pseudospectral method (RPM) has demonstrated to perform well for nonlinear programs [43].

Moreover, as either the initial or final point is not collocated, it is an appropriate choice for an adaptive

framework as there is no redundancy or even lack of nodes between consecutive segments compared

to other pseudospectral methods that are based on Legendre–Gauss or Legendre–Gauss–Lobatto points

[120]. Therefore, convex formulations of the differential and integral forms of the adaptive Radau

pseudospectral method are developed. In addition, an arbitrary-order Legendre–Gauss–Lobatto method

based on Hermite interpolation is considered as it is a generalization of the well-known Hermite-Simpson

collocation. It therefore covers a wide range of methods that have proven effective to solve nonlinear

programs [117]. FOH is chosen as it belongs to the class of control interpolation techniques. Note that

the zero-order-hold discretization is not considered due to the poor approximation of the thrust profile if

accelerations are used as controls.

With regard to the trust regions, we compare the performance of two different hard trust-region

methods, and a modified soft trust-region method presented in Section 5.2.

To the best of the author’s knowledge, this is the first time that such an extensive assessment is carried

out where the influence of discretization and trust-region methods, different orders of the interpolating

polynomial, number of nodes, and initial guesses on the performance is analyzed at the same time.

39

6 Performance of Discretization and Trust-Region Methods 40

Additionally, general requirements for onboard guidance applications are discussed. This chapter is

based on our work in [12, 13].

6.1 Discretization Methods

The adaptive Radau pseudospectral method is presented in detail, and the first-order-hold discretization

is described in this section. Moreover, a brief summary of the arbitrary-order Legendre–Gauss–Lobatto

method is given.

6.1.1 Adaptive Radau Pseudospectral Method

Pseudospectral methods are a popular choice for solving NLPs because they show spectral convergence,

do not suffer from Runge’s phenomenon, and allow to retrieve the costates from the Lagrange multipliers

[174]. As interplanetary trajectories often last several years, many discretization nodes might be needed to

accurately approximate the states and controls. As a consequence, using a single interpolating polynomial

of high degree would result in a dense problem that requires high computational effort. In this section, we

apply an adaptive method where the trajectory is divided into several segments and the states and controls

are approximated with polynomials of different degrees (and therefore, arbitrary number of nodes). In

contrast to other optimization tools that use pseudospectral methods to solve NLPs (for example, the

General Purpose Optimal Control Software (GPOPS-II) [175], Shefex-3 Pseudospectral Algorithm for

Reentry Trajectory Analysis (SPARTAN) [176] and Direct and Indirect Dynamic Optimization (DIDO)

[177]), we adapt the Radau pseudospectral method to convex programs.

In an adaptive pseudospectral method, the trajectory is divided into K segments, and the states and

controls are approximated using Lagrange interpolating polynomials of arbitrary degrees. The collocation

points are defined as the roots of the polynomial PN−1(ξ)+PN (ξ) where PN is the N th degree Legendre

polynomial. These points are defined in the pseudospectral time domain ξ ∈ [−1, 1]. Given Nk LGR

points (ξ1, ξ2, . . . , ξNk
) where ξ1 = −1 and ξNk

< 1, we define an additional (non-collocated) point that

satisfies ξNk+1 = 1. The affine transformation between the physical t and pseudospectral time ξ is then

given by [43]

t
(k)
i =

t
(k)
Nk+1 − t

(k)
1

2
ξ
(k)
i +

t
(k)
Nk+1 + t

(k)
1

2
i = 1, 2, ..., Nk + 1 (6.1)

where t0 = t
(1)
1 and tf = t

(K)
NK+1. Throughout this section, the number of collocation points per segment

(and hence, the degree of the interpolating polynomial) is denoted as Nk, and x
(k)
i , u(k)

i refer to the ith

6 Performance of Discretization and Trust-Region Methods 41

point of the kth segment of states and controls at time t(k)i , with i = 1, 2, . . . , Nk + 1 and k = 1, . . . ,K.

The state is approximated in the interval [−1, 1] using Nk + 1 points as follows:

x(k)(ξ) =

Nk+1∑
i=1

x
(k)
i l

(k)
i (ξ), l

(k)
i (ξ) =

Nk+1∏
j=1
j ̸=i

ξ − ξj
ξi − ξj

, k = 1, . . . ,K (6.2)

where l
(k)
i (ξ) denotes the Lagrange basis polynomial. Note that there are only Nk collocation points in

a segment, but the state is approximated using Nk + 1 points in each segment. The last point of the last

segment, x(K)
Nk+1, is thus added to the optimization problem so that final boundary constraints on the state

can easily be included. In segments k = 1, . . . ,K − 1, the control is approximated in a similar way by

u(k)(ξ) =

Nk+1∑
i=1

u
(k)
i l

(k)
i (ξ), l

(k)
i (ξ) =

Nk+1∏
j=1
j ̸=i

ξ − ξj
ξi − ξj

, k = 1, . . . ,K − 1 (6.3)

In the last segment K, however, the last point at ξ = 1 is not included in the interpolation. Therefore, the

continuous control in the last segment is

u(K)(ξ) =

NK∑
i=1

u
(K)
i l

(K)
i (ξ), l

(K)
i (ξ) =

NK∏
j=1
j ̸=i

ξ − ξj
ξi − ξj

(6.4)

This means that u(K)
Nk+1 is not obtained in the solution process, and must be determined by extrapolation.

The following linking conditions must therefore hold for segments k < K:

t
(k)
Nk+1 = t

(k+1)
1 , k = 1, . . . ,K − 1 (6.5)

x
(k)
Nk+1 = x

(k+1)
1 , k = 1, . . . ,K − 1 (6.6)

u
(k)
Nk+1 = u

(k+1)
1 , k = 1, . . . ,K − 1 (6.7)

The location of discretization and collocation points is illustrated in Fig. 6.1. Using

d

dξ
=

tNk+1 − t1
2

d

dt
(6.8)

an integral constraint is then discretized as∫ tf

t0

L(x(t),u(t)) dt −→
K∑
k=1

t
(k)
Nk+1 − t

(k)
1

2

Nk∑
i=1

w
(k)
i L(x

(k)
i ,u

(k)
i) (6.9)

where w(k)
i are the Radau quadrature weights given by [178]

w
(k)
1 =

2

N2
k

(6.10a)

w
(k)
i =

1

N2
k

1− ξi

[PNk−1(ξi)]
2 , i = 2, . . . , Nk (6.10b)

6 Performance of Discretization and Trust-Region Methods 42

Segment 1 Segment k Segment K

.

t
(1)
1 t

(1)
N1+1

= t0 = t
(2)
1

t
(k)
1 t

(k)
Nk+1

= t
(k−1)
Nk−1+1 = t

(k+1)
1

t
(K)
1 t

(K)
NK+1

= t
(K−1)
NK−1+1 = tf

Collocation points of segments 1, k, and K, ,

. . .

t
(k)
2 t

(k)
3 t

(k)
Nk

t
(k−1)
Nk−1+1 = t

(k)
1 t

(k)
Nk+1 = t

(k+1)
1

x
(k)
2 x

(k)
3 x

(k)
Nk

x
(k−1)
Nk−1+1 = x

(k)
1 x

(k)
Nk+1 = x

(k+1)
1

u
(k)
2 u

(k)
3 u

(k)
Nk

u
(k−1)
Nk−1+1 = u

(k)
1 u

(k)
Nk+1 = u

(k+1)
1

. . .

. . .

Figure 6.1: Discretization and collocation points for RPM.

Differential Formulation

Taking the derivative of Eq. (6.2) with respect to ξ gives

dx(k)(ξ)

dξ
=

Nk+1∑
i=1

x
(k)
i

dl
(k)
i (ξ)

dξ
(6.11)

The basic idea of the differential formulation of pseudospectral methods is to approximate the differential

operator as

ẋ(k) ≈ D(k)x(k) (6.12)

where D(k) ∈ RNk×(Nk+1) is a non-square differentiation matrix whose elements are defined as [179]

Dji
..= l′i(ξj), j = 1, . . . , Nk, i = 1, . . . , Nk + 1 (6.13)

with

(·)′ ..=
d

dξ
(6.14)

The dynamical constraints

Nk+1∑
i=1

x
(k)
i

dl
(k)
i (ξj)

dξ
=

t
(k)
Nk+1 − t

(k)
1

2
f
(
x
(k)
j ,u

(k)
j

)
, j = 1, . . . , Nk (6.15)

6 Performance of Discretization and Trust-Region Methods 43

can then be written as

Nk+1∑
i=1

D
(k)
ji x

(k)
i =

t
(k)
Nk+1 − t

(k)
1

2
f
(
x
(k)
j ,u

(k)
j

)

=
t
(k)
Nk+1 − t

(k)
1

2

[
A
(
x̄
(k)
j , ū

(k)
j

)
x
(k)
j +B

(
x̄
(k)
j , ū

(k)
j

)
u
(k)
j + q

(
x̄
(k)
j , ū

(k)
j

)
+ ν

(k)
j

]
(6.16)

for j = 1, . . . , Nk and k = 1, . . . ,K. The dynamical function f(x,u) has been linearized according to

Section 5.1, and the Jacobian matrices are defined as follows:

A
(
x̄
(k)
j , ū

(k)
j

)
= ∇xf

(
x̄
(k)
j , ū

(k)
j

)
(6.17)

B
(
x̄
(k)
j , ū

(k)
j

)
= ∇uf

(
x̄
(k)
j , ū

(k)
j

)
(6.18)

q
(
x̄
(k)
j , ū

(k)
j

)
= f

(
x̄
(k)
j , ū

(k)
j

)
−∇xf

(
x̄
(k)
j , ū

(k)
j

)
x̄
(k)
j −∇uf

(
x̄
(k)
j , ū

(k)
j

)
x̄
(k)
j (6.19)

Defining the concatenated states, controls, and virtual controls as

X =

[(
x(1)

)⊤
, . . . ,

(
x(K)

)⊤]⊤
=

[(
x
(1)
1

)⊤
,
(
x
(1)
2

)⊤
, . . . ,

(
x
(1)
N1

)⊤
,
(
x
(2)
1

)⊤
. . . ,

(
x
(K)
NK+1

)⊤]⊤
U =

[(
u(1)

)⊤
, . . . ,

(
u(K)

)⊤]⊤
=

[(
u
(1)
1

)⊤
,
(
u
(1)
2

)⊤
, . . . ,

(
u
(1)
N1

)⊤
,
(
u
(2)
1

)⊤
. . . ,

(
u
(K)
NK

)⊤]⊤
ν =

[(
ν(1)

)⊤
, . . . ,

(
ν(K)

)⊤]⊤
=

[(
ν
(1)
1

)⊤
,
(
ν
(1)
2

)⊤
, . . . ,

(
ν
(1)
N1

)⊤
,
(
ν
(2)
1

)⊤
. . . ,

(
ν
(K)
NK

)⊤]⊤
(6.20)

where (·)(k) denotes the column vector of concatenated states, controls, or virtual controls of segment k.

The dynamics can then be written in standard form as a linear equality constraint:
Â

(1)

0
B̂

(1)

0
1̂
(1)

0

0

. . .
0

. . .
0

. . .

Â
(K)

B̂
(K)

1̂
(K)

X

U

ν

 =

q̂(1)

...

q̂(K)

 (6.21)

6 Performance of Discretization and Trust-Region Methods 44

where

Â
(k)

=

D
(k)
11 1nx −∆(k)A

(k)
1 D

(k)
12 1nx . . .

D
(k)
21 1nx D

(k)
22 1nx −∆(k)A

(k)
2 . . .

...
... . . .

D
(k)
Nk,1

1nx D
(k)
Nk,2

1nx . . .

. . . D
(k)
1,Nk

1nx D
(k)
1,Nk+1 1nx

. . . D
(k)
2,Nk

1nx D
(k)
2,Nk+1 1nx

.
...

. . . D
(k)
Nk,Nk

1nx −∆(k)A
(k)
Nk

D
(k)
Nk,Nk+1 1nx

(6.22)

B̂
(k)

=

−∆(k)B
(k)
1

0
−∆(k)B

(k)
2

0

. . .

−∆(k)B
(k)
Nk

(6.23)

q̂(k) =

∆(k) q
(k)
1

∆(k) q
(k)
2

...

∆(k) q
(k)
Nk

(6.24)

Moreover, 1nx ∈ Rnx×nx is the nx × nx identity matrix, nx being the number of states. Similarly,

1̂
(k)

= −∆(k) 1nx Nk
, 1nx Nk

∈ Rnx Nk×nx Nk . The dashed vertical line in Eq. (6.22) indicates the

segment break, and the entries to the right refer to the last, non-collocated point that is also the first point

of the next segment. The notation

∆(k) ..=
t
(k)
Nk+1 − t

(k)
1

2
(6.25)

A
(k)
i

..= A
(
x̄
(k)
i , ū

(k)
i

)
(6.26)

B
(k)
i

..= B
(
x̄
(k)
i , ū

(k)
i

)
(6.27)

q
(k)
i

..= q
(
x̄
(k)
i , ū

(k)
i

)
(6.28)

was introduced for the sake of brevity, and k = 1, . . . ,K, i = 1, . . . , Nk.

6 Performance of Discretization and Trust-Region Methods 45

Remark 6.1. If the specific impulse and maximum thrust are constant, and if states and controls can be

decoupled and written as f(x,u) = p(x) + Bu, the previous control ū in Eqs. (6.17)–(6.19) cancels

out. Thus, the expressions reduce to

A
(
x̄
(k)
j , ū

(k)
j

)
−→ A

(
x̄
(k)
j

)
= ∇xp

(
x̄
(k)
j

)
(6.29)

B
(
x̄
(k)
j , ū

(k)
j

)
−→ B = ∇uf

(
x̄
(k)
j , ū

(k)
j

)
(6.30)

q
(
x̄
(k)
j , ū

(k)
j

)
−→ q

(
x̄
(k)
j

)
= p

(
x̄
(k)
j

)
−∇xp

(
x̄
(k)
j

)
x̄
(k)
j (6.31)

according to Eqs. (5.13) and (5.14).

In each iteration, the nonconvex constraint violations in Eq. (5.31a) are calculated using Eq. (6.16)

and the nonlinear dynamics fnonlin:

c
noncvx,(k)
dyn,j =

Nk+1∑
i=1

D
(k)
ji x

(k)
i −

t
(k)
Nk+1 − t

(k)
1

2
fnonlin

(
x
(k)
j ,u

(k)
j

)
, j = 1, . . . , Nk, k = 1, . . . ,K

(6.32)

where x and u are the states and controls obtained from the optimization.

Integral Formulation

It was observed that an equivalent integral formulation of Eq. (6.16) may yield more consistent results

for solving nonlinear programs [180]. We extend this approach to our convex optimization framework.

Defining the Radau integration matrix I(k) ∈ RNk×Nk as

I(k) ..=
[
D

(k)
2:Nk+1

]−1
(6.33)

where D(k)
2:Nk+1 is obtained by removing the first column of D(k) [181], the dynamics are

x
(k)
i+1 = x

(k)
1 +

t
(k)
Nk+1 − t

(k)
1

2

Nk∑
j=1

I
(k)
ij f

(
x
(k)
j ,u

(k)
j

)

= x
(k)
1 +

t
(k)
Nk+1 − t

(k)
1

2

Nk∑
j=1

I
(k)
ij

[
A
(
x̄
(k)
j , ū

(k)
j

)
x
(k)
j +B

(
x̄
(k)
j , ū

(k)
j

)
u
(k)
j +q

(
x̄
(k)
j , ū

(k)
j

)
+ν

(k)
j

]
(6.34)

6 Performance of Discretization and Trust-Region Methods 46

for k = 1, . . . ,K, i = 1, . . . , Nk. The matrices Â(k)
int , B̂(k)

int , Î(k)int , and the vector q̂(k)
int for the integral form

are now given by

Â
(k)
int =

−1nx −∆(k) I
(k)
11 A

(k)
1 1nx −∆(k) I

(k)
12 A

(k)
2 −∆(k) I

(k)
13 A

(k)
3 . . .

−1nx −∆(k) I
(k)
21 A

(k)
1 −∆(k) I

(k)
22 A

(k)
2 1nx −∆(k) I

(k)
23 A

(k)
3 . . .

...
...

... . . .

−1nx −∆(k) I
(k)
Nk−1,1A

(k)
1 −∆(k) I

(k)
Nk−1,2A

(k)
2 −∆(k) I

(k)
Nk−1,3A

(k)
3 . . .

−1nx −∆(k) I
(k)
Nk,1

A
(k)
1 −∆(k) I

(k)
Nk,2

A
(k)
2 −∆(k) I

(k)
Nk,3

A
(k)
3 . . .

. . . −∆(k) I
(k)
1,Nk

A
(k)
Nk

0nx

. . . −∆(k) I
(k)
2,Nk

A
(k)
Nk

0nx

.
...

. . . 1nx −∆(k) I
(k)
Nk−1,Nk

A
(k)
Nk

0nx

. . . −∆(k) I
(k)
Nk,Nk

A
(k)
Nk

1nx

(6.35)

B̂
(k)
int =

−∆(k) I
(k)
11 B

(k)
1 −∆ I

(k)
12 B

(k)
2 . . . −∆(k) I

(k)
1,Nk

B
(k)
Nk

−∆(k) I
(k)
21 B

(k)
1 −∆(k) I

(k)
22 B

(k)
2 . . . −∆(k) I

(k)
2,Nk

B
(k)
Nk

...
...

−∆(k) I
(k)
Nk−1,1B

(k)
1 −∆(k) I

(k)
Nk−1,2B

(k)
2 . . . −∆(k) I

(k)
Nk−1,Nk

B
(k)
Nk

−∆(k) I
(k)
Nk,1

B
(k)
1 −∆ I

(k)
Nk,2

B
(k)
2 . . . −∆(k) I

(k)
Nk,Nk

B
(k)
Nk

(6.36)

Î
(k)
int =

−∆(k) I
(k)
11 1nx −∆ I

(k)
12 1nx . . . −∆(k) I

(k)
1,Nk

1nx

−∆(k) I
(k)
21 1nx −∆(k) I

(k)
22 1nx . . . −∆(k) I

(k)
2,Nk

1nx

...
...

−∆(k) I
(k)
Nk−1,1 1nx −∆(k) I

(k)
Nk−1,2 1nx . . . −∆(k) I

(k)
Nk−1,Nk

1nx

−∆(k) I
(k)
Nk,1

1nx −∆ I
(k)
Nk,2

1nx . . . −∆(k) I
(k)
Nk,Nk

1nx

(6.37)

q̂
(k)
int =

∆(k)
∑Nk

j=1 I
(k)
1j q

(k)
j

∆(k)
∑Nk

j=1 I
(k)
2j q

(k)
j

...

∆(k)
∑Nk

j=1 I
(k)
Nk,j

q
(k)
j

(6.38)

The linear equality constraint of the dynamics has the same form as in Eq. (6.21).

6 Performance of Discretization and Trust-Region Methods 47

As the initial and final states are included in the optimization process, the boundary conditions for

the rendezvous problem are simply

r(t0) = r0, v(t0) = v0, w(t0) = w0 (6.39)

r(tf) = rf , v(tf) = vf (6.40)

The nonconvex constraint violations are determined in a similar way using Eq. (6.34):

c
noncvx,(k)
dyn,i = x

(k)
i+1 − x

(k)
1 −

t
(k)
Nk+1 − t

(k)
1

2

Nk∑
j=1

I
(k)
ij fnonlin

(
x
(k)
j ,u

(k)
j

)
, i = 1, . . . , Nk, k = 1, . . . ,K

(6.41)

6.1.2 Adaptive Flipped Radau Pseudospectral Method

In [94, 98], a flipped Radau pseudospectral method (FRPM) was developed to solve convexified powered

descent and landing problems without adding measures for artificial infeasibility. However, instead of

keeping a constant number of nodes per segment, we extend this approach and allow this number to vary,

hence resulting in the adaptive FRPM.

In the FRPM, the collocation points are defined on the interval (−1, 1], i.e., the initial node of each

segment is not collocated. Given the standard LGR points ξ ∈ [−1, 1), the flipped values ξ̃ ∈ (−1, 1]

can be computed using

ξ̃ = sort(−ξ) (6.42)

where sort sorts the values in ascending order.

Considering nowNk flipped LGR points (ξ̃1, ξ̃2, . . . , ξ̃Nk
)where ξ̃1 > −1 and ξ̃Nk

= 1, an additional

(non-collocated) point is defined that satisfies ξ̃0 = −1. The affine transformation between the physical

and pseudospectral time is given by

t
(k)
i =

t
(k)
Nk

− t
(k)
0

2
ξ̃
(k)
i +

t
(k)
Nk

+ t
(k)
0

2
, i = 0, 1, ..., Nk (6.43)

where t0 = t
(1)
0 and tf = t

(K)
NK

. The same notation as in the previous section is used with i = 0, 1, . . . , Nk

and k = 1, . . . ,K. The state is approximated in the interval [−1, 1] using Nk + 1 points as follows:

x(k)(ξ̃) =

Nk∑
i=0

x
(k)
i l

(k)
i (ξ̃), l

(k)
i (ξ̃) =

Nk∏
j=0
j ̸=i

ξ̃ − ξ̃j

ξ̃i − ξ̃j
, k = 1, . . . ,K (6.44)

In contrast to RPM where the last point of the last segment is added as a decision variable, we do not

include the initial, non-collocated node this time. Rather, we make use of the fact that x(1)
0 is equal to

6 Performance of Discretization and Trust-Region Methods 48

the initial boundary condition x0. Moreover, the initial control u(1)
0 of the first segment is not part of the

optimization process in FRPM. Therefore, the continuous control in the first segment is given by

u(1)(ξ̃) =

N1∑
i=1

u
(1)
i l

(1)
i (ξ̃), l

(1)
i (ξ̃) =

N1∏
j=1
j ̸=i

ξ̃ − ξ̃j

ξ̃i − ξ̃j
(6.45)

For all other segments, the control interpolation is

u(k)(ξ̃) =

Nk∑
i=0

u
(k)
i l

(k)
i (ξ̃), l

(k)
i (ξ̃) =

Nk∏
j=0
j ̸=i

ξ̃ − ξ̃j

ξ̃i − ξ̃j
, k = 2, . . . ,K (6.46)

The linking conditions for segments k > 1 are:

t
(k)
Nk

= t
(k+1)
0 , k = 2, . . . ,K (6.47)

x
(k)
Nk

= x
(k+1)
0 , k = 2, . . . ,K (6.48)

u
(k)
Nk

= u
(k+1)
0 , k = 2, . . . ,K (6.49)

The location of discretization and collocation points is illustrated in Fig. 6.2. Using

d

dξ
=

tNk
− t0
2

d

dt
(6.50)

the discretized form of an integral constraint is∫ tf

t0

L(x(t),u(t)) dt −→
K∑
k=1

t
(k)
Nk

− t
(k)
0

2

Nk∑
i=1

w̃
(k)
i L(x

(k)
i ,u

(k)
i) (6.51)

with weights

w̃
(k)
i =

1

N2
k

1 + ξ̃i[
PNk−1(ξ̃i)

]2 , i = 1, . . . , Nk (6.52)

Differential Formulation

Following the same procedure as for RPM, the dynamical constraints read

Nk∑
j=0

D
(k)
ij x

(k)
j =

t
(k)
Nk

− t
(k)
0

2
f
(
x
(k)
i ,u

(k)
i

)
, i = 1, ..., Nk (6.53)

Substituting the linearized dynamics into Eq. (6.53) and rearranging terms yields

D
(k)
i0 x

(k)
0 +

Nk∑
j=1

D
(k)
ij x

(k)
j =

t
(k)
Nk

− t
(k)
0

2

[
A
(
x̄
(k)
i , ū

(k)
i

)
x
(k)
i +B

(
x̄
(k)
i , ū

(k)
i

)
u
(k)
i

+q
(
x̄
(k)
i , ū

(k)
i

)
+ ν

(k)
i

] (6.54)

6 Performance of Discretization and Trust-Region Methods 49

Segment 1 Segment k Segment K

.

t
(1)
0 t

(1)
N1

= t0 = t
(2)
0

t
(k)
0 t

(k)
Nk

= t
(k−1)
Nk−1

= t
(k+1)
0

t
(K)
0 t

(K)
NK

= t
(K−1)
NK−1

= tf

Collocation points of segments 1, k, and K, ,

. . .

t
(k)
1 t

(k)
2 t

(k)
Nk−1

t
(k−1)
Nk−1

= t
(k)
0 t

(k)
Nk

= t
(k+1)
0

x
(k)
1 x

(k)
2 x

(k)
Nk−1x

(k−1)
Nk−1

= x
(k)
0 x

(k)
Nk

= x
(k+1)
0

u
(k)
1 u

(k)
2 u

(k)
Nk−1u

(k−1)
Nk−1

= u
(k)
0 u

(k)
Nk

= u
(k+1)
0

. . .

. . .

Figure 6.2: Discretization and collocation points for FRPM.

for i = 1, . . . , Nk. x
(k)
0 is the initial state of the kth segment. For k = 1, this is the initial boundary

condition x0. Similar to Eq. (6.21), the dynamical constraints can be written as a single linear equality

constraint. The matrix Â
(1) for the first segment is given by

Â
(1)

=

D
(k)
11 1nx −∆(k)A

(k)
1 D

(k)
12 1nx · · · D

(k)
1Nk

1nx

D
(k)
21 1nx D

(k)
22 1nx −∆(k)A

(k)
2 · · · D

(k)
2Nk

1nx

...
...

D
(k)
Nk1

1nx D
(k)
Nk2

1nx . . . D
(k)
NkNk

1nx −∆(k)A
(k)
Nk

(6.55)

6 Performance of Discretization and Trust-Region Methods 50

For subsequent segments 1 < k ≤ K, we obtain

Â
(k)

=

D
(k)
10 1nx D

(k)
11 1nx −∆(k)A

(k)
1 D

(k)
12 1nx . . .

D
(k)
20 1nx D

(k)
21 1nx D

(k)
22 1nx −∆(k)A

(k)
2 . . .

...
...

... . . .

D
(k)
Nk,0

1nx D
(k)
Nk,1

1nx D
(k)
Nk,2

1nx . . .

. . . D
(k)
1,Nk

1nx

. . . D
(k)
2,Nk

1nx

.

. . . D
(k)
Nk,Nk

1nx −∆(k)A
(k)
Nk

, k = 2, . . . ,K

(6.56)

B̂
(k) takes the same form as in Eq. (6.23), and q̂(k) is

q̂(1) =

∆(1) q
(1)
1 −D

(1)
10 x0

∆(1) q
(1)
2 −D

(1)
20 x0

...

∆(1) q
(1)
N1

−D
(1)
N10

x0

, q̂(k) =

∆(k) q
(k)
1

∆(k) q
(k)
2

...

∆(k) q
(k)
Nk

, k = 2, . . . ,K (6.57)

Note that the initial condition x0 is included in q̂(1) in Eq. (6.57).

The nonconvex constraint violations are computed using Eqs. (5.31a) and (6.53).

Integral Formulation

The integral form is

x
(k)
i+1 = x

(k)
0 +

t
(k)
Nk

− t
(k)
0

2

Nk∑
j=1

I
(k)
ij f

(
x
(k)
j ,u

(k)
j

)

= x
(k)
0 +

t
(k)
Nk

− t
(k)
0

2

Nk∑
j=1

I
(k)
ij

[
A
(
x̄
(k)
j , ū

(k)
j

)
x
(k)
j +B

(
x̄
(k)
j , ū

(k)
j

)
u
(k)
j + q

(
x̄
(k)
j , ū

(k)
j

)
+ ν

(k)
j

]
(6.58)

where i = 1, . . . , Nk. TheNk×Nk integration matrix I(k) is again obtained by removing the first column

of D(k) and then taking the inverse:

I(k) ..=
[
D

(k)
1:Nk

]−1
(6.59)

6 Performance of Discretization and Trust-Region Methods 51

The concatenated quantities are defined in a similar manner to Eq. (6.20). The only difference is that the

initial state x0 = x
(1)
0 and control u(1)

0 are not part of the solution vector. The matrix Â
(1)
int corresponding

to the first segment reads

Â
(1)
int =

1nx −∆(1) I
(1)
11 A

(1)
1 −∆(1) I

(1)
12 A

(1)
1 . . . −∆(1) I

(1)
1,N1

A
(1)
N1

−∆(1) I
(1)
21 A

(1)
1 1nx −∆(1) I

(1)
22 A

(1)
2 . . . −∆(1) I

(1)
2,N1

A
(1)
N1

...
...

−∆(1) I
(1)
N1,1

A
(1)
1 −∆(1) I

(1)
N1,2

A
(1)
2 . . . 1nx −∆(1) I

(1)
N1,N1

A
(1)
N1

(6.60)

For 1 < k ≤ K, the matrix is

Â
(k)
int =

−1nx 1nx −∆(k) I
(k)
11 A

(k)
1 −∆(k) I

(k)
12 A

(k)
1 . . . −∆(k) I

(k)
1,Nk

A
(k)
Nk

−1nx −∆(k) I
(k)
21 A

(k)
1 1nx −∆(k) I

(k)
22 A

(k)
2 . . . −∆(k) I

(k)
2,Nk

A
(k)
Nk

...
...

...

−1nx −∆(k) I
(k)
Nk,1

A
(k)
1 −∆(k) I

(k)
Nk,2

A
(k)
2 . . . 1nx −∆(k) I

(k)
Nk,Nk

A
(k)
Nk

(6.61)

The columns left of the dashed line refer to the initial non-collocated point that is equal to the last point

of the previous segment. The expression for B̂(k)
int is the same as in Eq. (6.36) when the standard LGR

points are used. q̂(k)
int is given by

q̂
(1)
int =

∆(1)
∑N1

j=1 I
(1)
1j q

(1)
j + x0

∆(1)
∑N1

j=1 I
(1)
2j q

(1)
j + x0

...

∆(1)
∑N1

j=1 I
(1)
N1,j

q
(1)
j + x0

, q̂

(k)
int =

∆(k)
∑Nk

j=1 I
(k)
1j q

(k)
j

∆(k)
∑Nk

j=1 I
(k)
2j q

(k)
j

...

∆(k)
∑Nk

j=1 I
(k)
Nk,j

q
(k)
j

, k = 2, . . . ,K

(6.62)

As the initial boundary condition is implicitly considered by adding x0 to q̂(1) and q̂
(1)
int , only the final

boundary conditions in Eq. (6.40) are to be imposed as linear constraints.

Similar to the previous cases, the nonconvex constraint violations are obtained using Eqs. (5.31a)

and (6.58).

6.1.3 First-Order-Hold Method

Although we focus on fuel-optimal transfers in this chapter, we also present the formulation when the

final time is free for later use.

6 Performance of Discretization and Trust-Region Methods 52

Fixed Final Time

In the first-order-hold discretization method considered in this dissertation, the time domain is divided

into N − 1 equally spaced segments

t0 = t1 < t2 < · · · < tN = tf (6.63)

where N denotes the number of discretization points. Note that nodes and collocation points are the

same in FOH. Given the controls uk and uk+1 at nodes k and k+ 1, respectively, k = 1, . . . , N − 1, the

continuous control profile u(t) is approximated by a piecewise affine function as follows:

u(t) =
tk+1 − t

tk+1 − tk︸ ︷︷ ︸
=..λ−(t)

uk +
t− tk

tk+1 − tk︸ ︷︷ ︸
=..λ+(t)

uk+1 = λ−(t)uk + λ+(t)uk+1, t ∈ [tk, tk+1] (6.64)

The linearized dynamics are given by [122]

ẋ(t) = A(t)x(t) +Bλ−(t)uk +Bλ+(t)uk+1 + q(t) (6.65)

which can be rewritten in discretized form as [182]

xk+1 = Ak xk +B−
k uk +B+

k uk+1 + qk + νk (6.66)

where (·)k ..= (·)(tk). Φ is the state transition matrix that satisfies

d

dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = 1 (6.67)

and

Ak = Φ(tk+1, tk) (6.68a)

B−
k = Ak

∫ tk+1

tk

Φ−1(t, tk)B(t)λ−(t) dt (6.68b)

B+
k = Ak

∫ tk+1

tk

Φ−1(t, tk)B(t)λ+(t) dt (6.68c)

qk = Ak

∫ tk+1

tk

Φ−1(t, tk)q(t) dt (6.68d)

At each node, the matrices Ak ∈ Rnx×nx , B−
k ∈ Rnx×nu , B+

k ∈ Rnx×nu , and qk ∈ Rnx are calculated

by integrating the state transition matrix in Eq. (6.67), the nonlinear dynamics in Eq. (5.11), and the

integrands of Eqs. (6.68b)–(6.68d) simultaneously with an explicit fixed-step 8th-order Runge-Kutta

method. nx and nu denote the number of states and controls, respectively. The reference state at

t ∈ [tk, tk+1] can be obtained using

x̄(t) = x̄k +

∫ t

tk

f(x(ξ),u(ξ)) dξ (6.69)

6 Performance of Discretization and Trust-Region Methods 53

A single equality constraint for the discretized dynamics is then created using
Â1

0
B̂1

0
1

0

0

. . .
0

. . .
0

. . .

ÂN−1 B̂N−1 1

X

U

ν

 =

−q1

...

−qN−1

 (6.70)

with

Âk =

A1 −1 0 . . . 0 0

0 A2 −1 . . . 0 0

...
...

...
...

0 . . . 0 AN−1 −1

, B̂k =

B−
1 B+

1 0 . . . 0 0

0 B−
2 B+

2 . . . 0 0

...
...

...
...

0 . . . 0 B−
N−1 B+

N−1

(6.71)

where 1 and 0 denote the nx×nx identity and null matrix, respectively. X, U, and ν are the concatenated

states, controls, and virtual controls, respectively.

The nonconvex constraint violations in Eq. (5.31a) are computed by comparing the states at the end

of segment k:

cnoncvxdyn,k = xk+1 − xnonlin
k+1 , k = 1, . . . , N − 1 (6.72)

xk+1 denotes the state at tk+1 obtained from the optimization, and xnonlin
k+1 is computed using the nonlinear

dynamics:

xnonlin
k+1 = xk +

∫ tk+1

tk

fnonlin(x(ζ),u(ζ)) dζ, k = 1, . . . , N − 1 (6.73)

where xk = x(tk) is also the optimized state. Note that the integration is performed only segment-wise,

i.e., the optimized state at xk at tk is used as the initial condition for the integration from tk to tk+1, and

not the integrated state of the previous segment. This means that the nonlinear state trajectory xnonlin is

not continuous, but is "reset" at the beginning of a segment. This improves convergence as the integration

error does not accumulate. The procedure is illustrated in Fig. 6.3.

Free Final Time

If the final time is free (for example in time-optimal problems where the final time is to be minimized),

tf becomes part of the optimization process. In order to keep the time horizon equally spaced, a time

normalization is carried out such that an equivalent fixed-final-time problem is obtained [183]. Defining

the normalized time ξ ∈ [0, 1] such that

0 = ξ1 < ξ2 < · · · < ξN = 1 (6.74)

6 Performance of Discretization and Trust-Region Methods 54

xk

xnonlin
k+1

xk+1

xnonlin
k+2

xk+2

t

x

tk tk+1 tk+2

Figure 6.3: Optimized and integrated states for computing the nonconvex constraint violations in FOH.

and the dilation factor σ ..= dt/dξ, the nonlinear dynamics become

x′(t) ..=
d

dξ
x(t) =

dt

dξ

d

dt
x(t) = σ ẋ(t) (6.75)

As a consequence, tf becomes an additional optimization variable, and the discretized optimal control

problem is now formulated in the ξ domain with σ = tf . Therefore, the linearized dynamics in Eq. (6.65)

change to

x′(ξ) = σ f(x(ξ),u(ξ)) (6.76)

and we obtain [183]

x′(ξ) = A(ξ)x(ξ) +Bλ−(ξ)uk +Bλ+(ξ)uk+1 + S(ξ)σ + q(ξ) (6.77)

where the Jacobian matrices are now determined with respect to the modified dynamics x′(ξ). The

discretized dynamics then read

xk+1 = Ak xk +B−
k uk +B+

k uk+1 + Sk σ + qk + νk (6.78)

The matrices and vectors Ak, B−
k , B+

k , and qk are similar to Eq. (6.68), but in the ξ domain. Sk ∈ Rnx

is given by

Sk = Ak

∫ ξk+1

ξk

Φ−1(ξ, ξk)S(ξ) dξ (6.79)

The reference state at ξ ∈ [ξk, ξk+1] and the nonlinear constraint violations are computed in the same

way as in the formulation with a fixed final time.

6.1.4 Hermite–Legendre–Gauss–Lobatto Method

The arbitrary-order Legendre–Gauss–Lobatto discretization method relies on Hermite interpolation [116].

The idea is to use the information of the states and the dynamics at the nodal points and express the

constraints at the collocation points by approximating the state variables with arbitrary-order polynomials

6 Performance of Discretization and Trust-Region Methods 55

in each segment [116, 117]. The method is briefly explained, and the interested reader is referred to [132]

for details.

The total time of flight is divided into K segments. Each segment [tk, tk+1] is mapped into the

interval [−1, 1] through the transformation

t → h

2
ξ +

tk+1 + tk
2

, k = 1, . . . ,K − 1 (6.80)

where ξ ∈ [−1, 1] and h = tk+1 − tk is the time step. In this work, nodes and collocation points are

defined inside the interval [−1, 1] as the roots of the derivative of the (n−1)th order Legendre polynomial

[117], where n is the order of the method. Given n, the state x(k)(ξ) ∈ Rnx is approximated inside the

kth segment as

x(k)(ξ) ≈ a
(k)
0 + a

(k)
1 ξ + · · ·+ a(k)n ξn, k = 1, . . . ,K (6.81)

where the column vectors of coefficients a
(k)
m ∈ Rnx , m = 0, . . . , n are unknowns that are found by

solving the following linear system:

1nx θ1 1nx θ21 1nx . . . θn1 1nx

...
...

...
...

...

1nx θnp 1nx θ2np
1nx . . . θnnp

1nx

0nx 1nx 2 θ1 1nx . . . n θn−1
1 1nx

...
...

...
...

...

0nx 1nx 2 θnp 1nx . . . n θn−1
np

1nx

︸ ︷︷ ︸

θ

a
(k)
0

...

a
(k)
np

...

a
(k)
n−1

a
(k)
n

︸ ︷︷ ︸

a(k)

=

x(k)(θ1)

...

x(k)(θnp)

h
2 f

(k)
l (θ1)

...

h
2 f

(k)
l (θnp)

︸ ︷︷ ︸

b(k)

(6.82)

In Eq. (6.82), θj are the positions of the nodal points, np = (n + 1)/2 is the number of nodes in each

segment, 1nx is the nx × nx identity matrix, 0nx the nx × nx null matrix, and fl(θj) the linearized

dynamics as in Eq (2.33b). Once the coefficients a
(k)
m have been determined as a(k) = θ−1 b(k), Eq.

(6.81) can be used to define the state at the collocation points:

x(k)(ζ) =

1nx ζ1 1nx . . . ζn1 1nx

1nx ζ2 1nx . . . ζn2 1nx

...
...

...
...

1nx ζnc 1nx . . . ζnnc
1nx

︸ ︷︷ ︸

ζ

a
(k)
0

a
(k)
1

...

a
(k)
n

︸ ︷︷ ︸

a(k)

= ζ θ−1 b(k) = ϕb(k)

(6.83)

where ζj are the positions of the collocation points, and nc = (n − 1)/2 is the number of collocation

points within each segment. The derivative of the state at the collocation points can be found in a similar

6 Performance of Discretization and Trust-Region Methods 56

fashion by deriving the matrix ζ. Similarly, the control u(k)(ξ) ∈ Rnu is approximated in each segment

as

u(k)(ξ) ≈ a
(k)
u,0 + a

(k)
u,1ξ + · · ·+ a

(k)
u,np−1ξ

np−1, k = 1, . . . ,K (6.84)

where the column vectors of coefficients a
(k)
u,m ∈ Rnu , m = 0, . . . , np − 1 are unknowns, obtained in

a similar fashion as for the coefficients a
(k)
m inside Eq. (6.82). Note, however, that for the control no

information about its dynamics is available and thus only the first np rows of the system can be considered.

For this reason, the control is approximated by means of a polynomial of order np − 1. The quantities

θu, b(k)
u , and ϕu are defined accordingly. Once the matrices and vectors of all trajectory segments are

computed, the dynamical constraints can be written as

∆ = Φ′ b̂− h

2
[̂ff + Â (Φb̂−Φb̂∗) + B̂Φu b̂u] = 0 (6.85)

where the capital letters and (̂·) indicate the concatenated quantities, and f̂f denotes the assembled

unperturbed dynamics of the spacecraft.

6.2 Numerical Simulations

The performance of the discretization and trust-region methods is assessed in several thousand simu-

lations. The number of converged simulations, iterations, final mass, computational time, propagation

error, and the sparsity of the matrices of the discretized problem are compared. All simulations are carried

out in MATLAB. The computational times are measured on an Intel Core i5-6300 2.30 GHz Laptop with

four cores and 8 GB of RAM. The Embedded Conic Solver (ECOS) [86] is used to solve the second-order

cone program in Eq. (5.23). The SCP algorithm converges if the maximum constraint violation and the

relative change of the modified final massw(tf) are lower than thresholds εc and εJ , respectively (see also

Eqs. (5.35) and (5.36) in Section 5.2). The algorithm also terminates without successful convergence to

an optimal solution if there is no sufficient progress as per Eq. (5.37). Relevant SCP parameters are given

in Table 6.1. Different combinations of ρi (i = 0, 1, 2), α, β, and δ for the hard, and λTR, λTR,0, and ζ for

the soft trust-region method were assessed in preliminary simulations. We found that the values in Table

6.1 perform well and are often a good compromise in terms of convergence, optimality, and number of

iterations. The physical constants and scaling parameters are given in Table 6.2. Throughout this section,

we refer to (F)RPM-D and (F)RPM-I for the differential and integral formulations of the (flipped) Radau

pseudospectral method, HLGL for the Legendre–Gauss–Lobatto method based on Hermite interpolation,

and FOH for the first-order-hold method.

6 Performance of Discretization and Trust-Region Methods 57

Table 6.1: Parameters of the SCP algorithm.

Parameter Value

Penalty weights λν , λη 10.0, 10.0
Initial trust region R0 100.0

ρ0, ρ1, ρ2 0.01, 0.2, 0.85
α, β 1.5, 1.5
αmin, βmin 1.01, 1.01
αmax, βmax 4.0, 4.0
δ 1.0, 1.2
λTR, λTR,0, ζ 1010, 107, 5.0
εc, εJ , εx 10−6, 10−4, 10−7

Max. iterations 250

Table 6.2: Physical constants in all simulations.

Parameter Value

Gravitational const. µ 1.327 124 4× 1011 km3 s−2

Gravitational accel. g0 9.806 65× 10−3 km s−2

Length unit LU = AU 1.495 978 707× 108 km

Velocity unit VU
√
µAU−1

Time unit TU AU VU−1

Acceleration unit ACU VU TU−1

Mass unit MU m0

Table 6.3: Simulation values for SEL2 to 2000 SG344, Earth-Venus and Earth-Dionysus transfers [39, 129,
131].

Param. SEL2 - 2000 SG344 Earth - Venus Earth - Dionysus

r0, AU [−0.7018607, 0.7062324,
−3.51115× 10−5]

[0.9708322, 0.2375844,
−1.67106× 10−6]

[−0.0243177, 0.9833014,
−1.51168× 10−5]

v0, VU [−0.7329695, −0.7159049,
4.40245× 10−5]

[−0.2545390, 0.9686550,
1.50402× 10−5]

[−1.0161293, −0.0284940,
1.69550× 10−6]

m0, kg 22.6 1500 4000

rf , AU [0.4180680, 0.8289711,
−0.0014338]

[−0.3277178, 0.6389172,
0.0276593]

[−2.0406178, 2.0517913,
0.5542890]

vf , VU [−0.9699033, 0.4363022,
−0.0012338]

[−1.0508770, −0.5435675,
0.0532095]

[−0.1423193, −0.4510880,
0.0189469]

mf , kg free free free
Tmax, N 2.2519× 10−3 0.33 0.32

Isp, s 3067 3800 3000

tf , days 700 1000 3534

6.2.1 Overview of Simulations

Three different targets (near-Earth asteroid 2000 SG344, Venus, and asteroid Dionysus) where the

complexity of the transfers increases, and two methods to generate (infeasible) initial guesses of different

quality (perturbed shape-based cubic interpolation approach and propagation of dynamics) are taken

into account. Details about the shape-based cubic interpolation can be found in the Appendix A. The

simulation values of each target are given in Table 6.3, and Table 6.4 summarizes the number of initial

guesses. The comparison of an optimal trajectory and the ones generated with cubic interpolation and

propagation are illustrated in Fig. 6.4. Clearly, the trajectories of the initial guesses deviate significantly

from the optimal one, and the final positions of the initial guesses are far from the target position. Note

6 Performance of Discretization and Trust-Region Methods 58

−4
−2

0
2

4

−4
−2

0
2

4

0

0.5

x, AU
y, AU

z,
AU

Optimal
Cubic guess
Prop. guess
x0
x 5

Figure 6.4: Optimal trajectory and initial guesses generated using cubic interpolation with 5.4 revolutions and
propagation with T = 0.5Tmax for a Dionysus transfer.

that the initial controls are set to zero in all simulations. Figures 6.5, 6.6, and 6.7 show typical optimized

trajectories and the corresponding thrust profiles (linearly interpolated between the nodes) for the SEL2-

2000 SG344, Earth-Venus, and Earth-Dionysus transfers, respectively. SEL2 refers to the Sun-Earth

Lagrange point L2.

Moreover, the trust-region and discretization methods described in Sections 5.2 and 6.1, different

numbers of discretization points (ranging from 100 to 300) and orders of the interpolating polynomial

(ranging from 3 to 23) are compared (see also Table 6.5). For each target, all combinations of different

initial guesses, numbers of nodes, degrees of the interpolating polynomials, and trust-region methods are

considered. An overview of the performed simulations is shown in Fig. 6.8.

The total number of simulations nsim for each discretization method is given in Table 6.6. It is

determined using

nsim = nguess · nnodes · nTR · norders (6.86)

where nguess is the total number of initial guesses obtained with the cubic-based and the propagation

approaches, nnodes = 3 the number of different nominal nodes, nTR = 3 the number of trust-region

methods, and norders = 6 the number of polynomial orders. Note that this term is only considered for

HLGL and RPM/FRPM.

Table 6.4: Types and number of initial guesses for each transfer.

Parameter SEL2 - 2000 SG344 Earth - Venus Earth - Dionysus

Cubic Interpolation 101 251 301
Propagation 101 101 101

Total 202 352 402

6 Performance of Discretization and Trust-Region Methods 59

−1 0 1

−1

0

1

x, AU

y,
AU

Coast
Thrust
x0
x 5

(a) Trajectory

0 200 400 600
0.0

1.0

2.0

·10−3

Time, days

Th
ru

st,
N

(b) Thrust profile

Figure 6.5: Typical SEL2 to 2000 SG344 transfer trajectory and corresponding thrust profile.

−1 0 1
−1

0

1

x, AU

y,
AU

Coast
Thrust
x0
x 5

(a) Trajectory

0 200 400 600 800
0

0.1

0.2

0.3

Time, days

Th
ru

st,
N

(b) Thrust profile

Figure 6.6: Typical Earth-Venus transfer trajectory and corresponding thrust profile.

6.2.2 Results

The performance of the algorithms is assessed by means of four comparisons for each of the transfers.

For each of the aforementioned parameters (discretization and trust-region method, polynomial order,

and number of nodes), we take the median of the obtained results by varying all the other parameters.

For example, the comparison of the discretization methods is performed by taking the median of all

−2 0 2

0

2

x, AU

y,
AU

Coast
Thrust
x0
x 5

(a) Trajectory

0 1000 2000 3000
0

0.1

0.2

0.3

Time, days

Th
ru

st,
N

(b) Thrust profile

Figure 6.7: Typical Earth-Dionysus transfer trajectory and corresponding thrust profile.

6 Performance of Discretization and Trust-Region Methods 60

Loop 6

Loop 5

Loop 4

Loop 3

Loop 2

Loop 1

Select target

Select perturbed
initial guess

Select number
of nodes

Select trust-region
method

Select discretization
method

FOH?

Select polynomial
order

Solve problem

No

Yes

1. Simple: SEL2 to near-Earth asteroid 2000 SG344.
2. Medium: Earth to Venus.
3. Complex: Earth to asteroid Dionysus.

Relevant values are given in Table 6.3.

1. Shape-based approach: Cubic interpolation where the number of
revolutions is varied between 1.6 and 2.6 (2000 SG344), 2.0 and
4.5 (Venus), and 3.0 and 6.0 (Dionysus).

2. Propagation: Propagation of nonlinear dynamics for tf with tangen-
tial thrust and different trust magnitudes ranging from 0 to Tmax.

The number of perturbed initial guesses is summarized in Table 6.4.
Figure 6.4 shows an optimal trajectory and two initial guesses.

As the time of flight and number of revolutions vary consider-
ably, three different nominal discretization points N are cho-
sen for each transfer (see Table 6.5). Due to the different na-

ture of the discretization methods, the segments are chosen such
that the actual number of nodes is closest to the nominal one.

Two hard trust regions with δ = 1.0 and δ = 1.2, respec-
tively, and a soft trust region with δ = 1.0 are compared.

FOH, HLGL, and four versions of RPM
described in Section 6.1 are compared.

For RPM, FRPM, and HLGL, different orders of the interpolating
polynomials for the state and control trajectories are considered,

ranging from 3 to 23 (see Table 6.5). Higher orders are not suitable
for onboard implementation due to the high computational effort.

Figure 6.8: Overview of performed simulations.

6 Performance of Discretization and Trust-Region Methods 61

Table 6.5: Number of nodes and orders of the interpolating polynomials for each transfer.

Parameter SEL2 - 2000 SG344 Earth - Venus Earth - Dionysus

Nominal nodes 100, 150, 200 150, 200, 250 200, 250, 300
Polynomial orders 3, 7, 11, 15, 19, 23

Table 6.6: Total number of simulations for each target and each discretization method.

Target FOH LGL, RPM-I, RPM-D, FRPM-I, FRPM-D

2000 SG344 1818 10908
Venus 3168 19008

Dionysus 3618 21708

results obtained with a given method for all polynomial orders, all considered nodes, and all trust-

region strategies. Throughout our analysis, we comment on three key aspects: general performance

(i.e., convergence, iterations, and final spacecraft mass), accuracy, and computational time and memory

required by the discretization and trust-region methods. We also compare our results with the ones for

the PDG problem in [124]. Finally, we assess the performance of our algorithms when compared with

the state-of-the-art optimal control software GPOPS-II [175] in combination with the Sparse Nonlinear

Optimizer (SNOPT) [184].

Convergence, Iterations, and Final Mass

One key objective is to understand the influence of the discretization method, the order of the interpolating

polynomial, the number of nodes, and the trust-region method on the success rate, the iterations required

to reach convergence, and the optimality of the solutions. The outcome of the analyses is reported in

Figs. 6.9 – 6.11, where the results related to asteroid 2000 SG344, Venus, and asteroid Dionysus are

presented, respectively. The error bars represent the 70th percentile of the considered quantity.

With regard to asteroid 2000 SG344, the largest number of converged cases is obtained with FOH

(success rate of approximately 80%). HLGL yields only slightly fewer, and pseudospectral methods

approximately 10% fewer converged cases. The number of iterations is similar, even though FOH

requires the fewest. The obtained final masses are almost the same for all methods. This is in accordance

with the results of the PDG problem [124] where all methods achieve a similar fuel consumption. Notably,

lower polynomial orders require fewer iterations than higher orders. Moreover, the success rate increases

for higher polynomial degrees up to 15, and then remains almost constant. The convergence is slightly

higher when N is increased, whereas iterations decrease for a larger number of nodes. Similar findings

are reported in the PDG study. The hard trust-region with δ = 1.0 and the soft trust-region method yield

6 Performance of Discretization and Trust-Region Methods 62

equivalent results. Remarkably, the hard trust-region approach with δ = 1.2 requires only half as many

iterations as with δ = 1.0, at the cost of fewer converged simulations.

Regarding Venus, the tendency of the methods is opposite: the pseudospectral methods are able to

find solutions in almost 60% of the cases, therefore having a 10% higher success rate compared to FOH

and HLGL (see Fig. 6.10). Furthermore, the overall convergence is worse compared to 2000 SG344.

The number of iterations and final masses are similar. Even though the convergence also improves for

higher orders, the difference is less significant. The number of nodes and the trust-region method seem

to have a small impact on the results (except for the fewer number of iterations when choosing δ = 1.2).

In the Dionysus case, FOH and HLGL yield 15%more converged simulations than the pseudospectral

methods (see Fig. 6.11). Remarkably, the behavior of the polynomial orders is opposite in this case:

apart from the third order that yields the lowest success rate, the convergence is best for the 7th order

and decreases as the order increases. The success rate slightly changes again depending on the number

of nodes, whereas iterations and final mass are not particularly affected by N . The trust-region methods

show the same behavior for the iterations and final mass as in the previous cases. Note, however, that

the hard trust region with δ = 1.2 achieves slightly higher success rates than the other methods in this

example.

As the previous plots considered all orders, Fig. 6.12 shows the convergence for all targets for the

most relevant polynomial degrees 7 and 11. This way the potentially poor performance of the third order

does not bias the results. Apparently, the bars follow the same trend: FOH and HLGL seem to outperform

the pseudospectral methods for the transfers to the asteroids 2000 SG344 and Dionysus. With regard to

Venus, in contrast, RPM and FRPM achieve higher success rates.

Figure 6.13 shows the convergence for the cubic interpolation and propagation guesses. Due to

the similarity of the initial and final orbits, the success rate of approximately 70% for the transfer to

asteroid 2000 SG344 is high regardless of how the initial guess is generated. With regard to Venus and

Dionysus, however, propagating with tangential thrust results in poor guesses that deviate considerably

from the optimal trajectories. A success rate of almost 50% is therefore remarkable. Still, using a cubic

interpolation guess yields in general a larger number of converged cases.

Accuracy

It is also crucial that a discretization method is able to achieve a certain accuracy. We define the

propagation error for the position as ∥r(tf)prop − r(tf)∥2 where r(tf)prop is the final position that is

obtained by integrating the dynamics with the optimized controls (the error for the velocity is defined

accordingly). As the thrust profile is only known at the discretization points, the controls need to be

interpolated for the integration using Eqs. (6.3), (6.46), (6.64) and (6.84), respectively. Figure 6.14 shows

6 Performance of Discretization and Trust-Region Methods 63

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

10

20

Fi
na

lM
as

s,
kg

FOH HLGL RPM-D RPM-I FRPM-D FRPM-I

(a) Comparison of discretization methods.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

10

20

Fi
na

lM
as

s,
kg

3rd order 7th order 11th order 15th order 19th order 23rd order

(b) Comparison of the orders of the interpolating polynomial.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

10

20

Fi
na

lM
as

s,
kg

= 100 # = 150 # = 200

(c) Comparison of the number of nodes.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

10

20

Fi
na

lM
as

s,
kg

Hard TR, X = 1.0 Hard TR, X = 1.2 Soft TR, X = 1.0

(d) Comparison of trust-region methods.

Figure 6.9: Influence of the discretization method, the order of the interpolating polynomial, the number of
nodes, and the trust-region method on success rate, iterations, and final mass for the transfer to
asteroid 2000 SG344.

6 Performance of Discretization and Trust-Region Methods 64

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

500

1000

1500

Fi
na

lM
as

s,
kg

FOH HLGL RPM-D RPM-I FRPM-D FRPM-I

(a) Comparison of discretization methods.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

500

1000

1500

Fi
na

lM
as

s,
kg

3rd order 7th order 11th order 15th order 19th order 23rd order

(b) Comparison of the orders of the interpolating polynomial.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

500

1000

1500

Fi
na

lM
as

s,
kg

= 150 # = 200 # = 250

(c) Comparison of the number of nodes.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

500

1000

1500

Fi
na

lM
as

s,
kg

Hard TR, X = 1.0 Hard TR, X = 1.2 Soft TR, X = 1.0

(d) Comparison of trust-region methods.

Figure 6.10: Influence of the discretization method, the order of the interpolating polynomial, the number of
nodes, and the trust-region method on success rate, iterations, and final mass for the transfer to
Venus.

6 Performance of Discretization and Trust-Region Methods 65

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

Fi
na

lM
as

s,
kg

FOH HLGL RPM-D RPM-I FRPM-D FRPM-I

(a) Comparison of discretization methods.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

Fi
na

lM
as

s,
kg

3rd order 7th order 11th order 15th order 19th order 23rd order

(b) Comparison of the orders of the interpolating polynomial.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

Fi
na

lM
as

s,
kg

= 200 # = 250 # = 300

(c) Comparison of the number of nodes.

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

0

20

40

60

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

Fi
na

lM
as

s,
kg

Hard TR, X = 1.0 Hard TR, X = 1.2 Soft TR, X = 1.0

(d) Comparison of trust-region methods.

Figure 6.11: Influence of the discretization method, the order of the interpolating polynomial, the number of
nodes, and the trust-region method on success rate, iterations, and final mass for the transfer to
Dionysus.

6 Performance of Discretization and Trust-Region Methods 66

2000 SG344 Venus Dionysus
0

20

40

60

80

100
Su

cc
es

sR
at

e,
%

FOH RPM-I
LGL FRPM-D
RPM-D FRPM-I

Figure 6.12: Comparison of success rate for poly-
nomial orders 7 and 11 for all targets.

2000 SG344 Venus Dionysus
0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

Cubic guess
Propagation guess

Figure 6.13: Comparison of success rate for differ-
ent initial guesses for all targets.

FOH HLGL RPM-D RPM-I FRPM-D FRPM-I
10−8

10−6

10−4

10−2

100

O
rd

er
of

M
ag

.o
fP

ro
p.

Er
ro

r(
Po

s.)
,A

U

3rd order
7th order
11th order
15th order
19th order
23rd order

Figure 6.14: Comparison of the order of magnitude of the propagation error (position) for a Dionysus transfer.

the orders of magnitude of the propagation error for a Dionysus transfer. It is evident that all methods and

polynomial orders achieved the desired accuracy of 10−6AU except for the third order. More precisely,

almost all methods found solutions with a median error of 10−7AU or less; only some HLGL orders

failed to do so in a few cases. The propagation error for the velocity shows a similar tendency, often

being one order of magnitude smaller than the position error. The same statements are true for the other

targets. Even though the time horizon is significantly smaller for the PDG problem, the errors on the

final boundary conditions are very similar to our results (provided that a higher-order polynomial is used)

[124]. This confirms the high accuracy of the proposed discretization methods. Although the propagation

error is small for all methods, the interpolated controls violate the constraints on the thrust magnitude

for HLGL and RPM/FRPM as shown in Fig. 6.15. The reason is that polynomial interpolation results

in oscillations close to the edges of the segments for higher polynomial orders (Runge phenomenon).

Only FOH is able to generate a bang-bang control profile that does not violate the bounds due to the

linear interpolation. As expected, the same is true for the control profiles obtained when solving the PDG

problem [124].

6 Performance of Discretization and Trust-Region Methods 67

0 1000 2000 3000
−0.1

0

0.1

0.2

0.3

0.4

Time, days

In
te

rp
ol

at
ed

Th
ru

st,
N

FOH HLGL RPM-I

Figure 6.15: Interpolated control profiles obtained
with FOH and 11th order polynomials
(HLGL/RPM) for a Dionysus transfer.

FOH LGL (F)RPM-D (F)RPM-I
0

0.2

0.4

0.6

0.8

1

N
um

.o
fN

on
ze

ro
El

em
en

ts,
%

3rd order
7th order
11th order
15th order
19th order
23rd order

Figure 6.16: Comparison of the number of nonzero
elements of the linear equality con-
straints matrix for a Dionysus transfer
(N = 250).

Computational Time and Memory

Computational time and memory are two other important aspects to consider. As we are dealing with a

large amount of optimization parameters, sparse linear algebra becomes crucial. Dense matrix operations

would not only take longer to compute, but might also result in memory problems for large-scale

optimization problems. The typical percentage of the nonzero elements in the linear equality constraints

matrix is given in Fig. 6.16. Even though more than 99% of the elements are zero for all methods,

the integral formulations of RPM/FRPM and HLGL are several times denser than (F)RPM-D and FOH.

This increases the time required to solve the second-order cone program, therefore resulting in a higher

total CPU time when the number of iterations does not change. Figure 6.17a shows the computational

times per SCP iteration for a typical Dionysus transfer with N = 250 discretization points. Median

values with minimum and maximum values are shown. The heights of the bars show the total CPU

times, the horizontal lines within each bar indicate the times required to solve one SOCP. As expected,

the computational effort increases for higher orders as the matrices become denser. Remarkably, for the

four pseudospectral methods the solver time accounts for the largest portion of the total time, whereas

for FOH and HLGL the time outside the solver is larger. This is because of the integration (FOH) and

the transformations due to the definition of the nodes and collocation points (HLGL). Moreover, HLGL

requires the greatest computational effort among all methods regardless of the transfer (see Fig. 6.17b

where the most relevant orders 7 and 11 are shown). The difference becomes more significant when the

number of nodes is increased. In general, pseudospectral methods with orders 7 and 11 seem to be the

fastest, directly followed by FOH which eventually outperforms all other methods when higher orders are

considered. Given the typical number of iterations of 40, the maximum total CPU time is approximately

24 seconds for FOH and (F)RPM, and 52 seconds for HLGL. Although the integral formulations of

6 Performance of Discretization and Trust-Region Methods 68

FOH HLGL RPM-D RPM-I FRPM-D FRPM-I

0.5

1

1.5

2

CP
U

Ti
m

e
pe

rS
CP

Ite
ra

tio
n,

s 3rd order 15th order
7th order 19th order
11th order 23rd order

(a) CPU times for different polynomial orders for the Dionysus transfer.

FOH HLGL RPM-D RPM-I FRPM-D FRPM-I
0

0.2

0.4

0.6

0.8

1

1.2

1.4

CP
U

Ti
m

e
pe

rS
CP

Ite
ra

tio
n,

s 2000 SG344 (# = 150)
Venus (# = 200)
Dionysus (# = 250)

(b) CPU times for polynomial orders 7 and 11 for all targets.

Figure 6.17: Comparison of CPU times per SCP iteration for different orders and targets.

(F)RPM are denser, their CPU times are sometimes lower than the ones obtained with (F)RPM-D due to

the smaller number of solver iterations. Considering Figs. 6.9a, 6.10a, 6.11a, and 6.17b, it is interesting

to note that the results regarding CPU time are partially in accordance with the findings for the PDG

problem [124]: Even though the overall CPU time is not affected by the choice of either of the two

methods, F(RPM) shows a higher sensitivity to the number of discretization points than FOH. Finally,

albeit this chapter only considers fixed final boundary conditions, we will see in Chapter 9 that the

computational effort required by the SCP algorithm does not significantly increase when a moving target

is considered (see also [185]).

Comparison With GPOPS-II

The comparison of GPOPS-II and SCP for the transfers to 2000 SG344, Venus, and Dionysus is given

in Fig. 6.18. In the bar charts, SCP refers to the median of the results obtained with the SCP algorithm

when all discretization methods, orders, trust-region parameters and methods, and nodes are considered.

Best SCP refers instead to the results when the best combination of all parameters (discretization and

trust-region methods and polynomial order) is selected for each target. With regard to the 2000 SG344

transfer, the success rate of GPOPS-II is on average higher (approximately +20%) compared to SCP.

This discrepancy, however, reduces to only 5% if the best SCP method (HLGL or FOH) is considered.

6 Performance of Discretization and Trust-Region Methods 69

Yet, GPOPS-II often takes twice as long as SCP to find a solution. For this simple transfer, the final

masses are nearly the same. The trend is similar with respect to the Venus transfer, albeit the success

rate of SCP improves only slightly when choosing the best method (FRPM or RPM). In addition, the

difference in the final mass becomes more evident now. Even though the success rate of GPOPS-II is

slightly higher for the Dionysus transfer when considering the averaged SCP, Best SCP (11th order HLGL)

outperforms GPOPS-II in terms of convergence, CPU time, and final mass. Especially the difference

in computational effort is remarkable because even the slowest SCP method is several times faster than

GPOPS-II. Furthermore, the final masses obtained with SCP are considerably larger. The propagation

error is similar for all methods.

In general, GPOPS-II may on average have slightly higher success rates for the considered simulations.

However, this is only true for extremely poor initial guesses where the initial constraint violations are

large. In that case, SCP is often not able to find feasible solutions due to the linearized dynamics.

If a more decent initial guess is provided, the difference becomes negligible. Even though modern

nonlinear programming solvers like SNOPT can exploit sparsity, our simulations show that the required

computational effort (and thus, CPU time) is still considerably higher compared to SCP. Note that if

an upper bound on the CPU time is imposed, SCP would actually outperform GPOPS-II in terms of

convergence in many cases, and this might be critical for real-time applications on hardware with limited

resources.

Typical thrust magnitude profiles are illustrated in Fig. 6.19. Note the jittery behavior of the control

profiles obtained with GPOPS-II. Apparently, it has difficulties to find decent bang-bang trajectories if the

controls are discontinuous [106, 186, 187]. Significant additional refinement would therefore be required

to use such profiles on board. In contrast, SCP yields the desired bang-bang structure.

6.2.3 Performance Assessment

After the presentation of the results in the previous section, the performance of the methods is assessed

from a general perspective, and with respect to their use for onboard guidance applications.

General Performance Assessment

We summarize the general performance of the trust-region and discretization methods in Tables 6.7 and

6.8. The comparison criteria are: convergence (how often the method converges), optimality (performance

index of the solution), iterations and CPU time to reach convergence, and thrust profile, i.e., to what

extent a method is capable of accurately capturing the bang-bang structure of the optimal thrust profile.

In addition, the discretization methods are also compared in terms of sparsity of their equality constraints

6 Performance of Discretization and Trust-Region Methods 70

0

20

40

60

80

100

Co
nv

er
ge

nc
e,

%

0

20

40

CP
U

Ti
m

e,
s

0

10

20

Fi
na

lM
as

s,
kg

SCP GPOPS Best SCP

(a) Comparison for the transfer to asteroid 2000 SG344.

0

20

40

60

80

100

Co
nv

er
ge

nc
e,

%

0

20

40

60

CP
U

Ti
m

e,
s

0

500

1000

1500

Fi
na

lM
as

s,
kg

SCP GPOPS Best SCP

(b) Comparison for the transfer to Venus.

0

20

40

60

80

100

Co
nv

er
ge

nc
e,

%

0

50

100

150

200

CP
U

Ti
m

e,
s

0

500

1000

1500

2000

2500

Fi
na

lM
as

s,
kg

SCP GPOPS Best SCP

(c) Comparison for the transfer to Dionysus.

Figure 6.18: Comparison of GPOPS-II and SCP in terms of success rate, iterations, and final mass for the
transfers to 2000 SG344, Venus, and Dionysus.

6 Performance of Discretization and Trust-Region Methods 71

0 200 400 600
0.0

1.0

2.0

·10−3

Time, days

Th
ru

st,
N

GPOPS
SCP

(a) Thrust profiles for the transfer to asteroid 2000 SG344.

0 200 400 600 800
0

0.1

0.2

0.3

Time, days

Th
ru

st,
N

GPOPS
SCP

(b) Thrust profiles for the transfer to Venus.

0 1000 2000 3000
0

0.1

0.2

0.3

Time, days

Th
ru

st,
N

GPOPS
SCP

(c) Thrust profiles for the transfer to Dionysus.

Figure 6.19: Comparison of the thrust profiles obtained with GPOPS-II and SCP for the transfers to 2000
SG344, Venus, and Dionysus.

matrices, and accuracy, i.e., the error on the final boundary conditions when propagating the dynamics

with the obtained controls.

In general, hard trust-region methods seem to be preferable due to the lower computational effort

as no additional second-order cone constraints are needed when a quadratic (and hence differentiable)

penalty function is used. Selecting δ > 1 is often beneficial, and the value can be adjusted depending on

the requirements on convergence and speed of the algorithm. Lower values tend to have higher success

rates, whereas larger values result in fewer iterations, but also often less accurate control histories. Even

though the results indicate that the performance of a discretization method can depend on the transfer,

FOH seems to yield the best overall performance given the criteria in Table 6.8.

Table 6.7: Assessment of trust-region methods.

Criterion Hard TR
δ = 1.0

Hard TR
δ = 1.2

Soft TR Comments

Convergence Good Acceptable Good -
Optimality Good Good Good No influence of the trust region method
Iterations Acceptable Good Acceptable -
CPU time Acceptable Good Bad -

Thrust regularity Good Acceptable Good -

6 Performance of Discretization and Trust-Region Methods 72

Table 6.8: Assessment of discretization methods.

Criterion FOH HLGL RPM/FRPM Comments

Convergence Good Good Acceptable Worst performance for third-order polyn.
Optimality Good Good Good No influence of discretization method
Iterations Good Acceptable Acceptable -
CPU time Good Bad Acceptable CPU time increases with order of the polyn.

Thrust profile Good Acceptable Acceptable Worst performance for high-order polyn.
Sparsity Good Acceptable Acceptable Few hundreds of kilobytes of memory needed
Accuracy Good Good Good Worst performance for third-order polyn.

Assessment of Onboard Guidance Requirements

There are several requirements for onboard guidance methods. We briefly comment on the results in

terms of the onboard guidance requirements reliability and robustness, onboard capability, accuracy,

and optimality in Table 6.9.

All of the fundamental requirements seem to be satisfied by almost all methods. With regard to

the collocation methods, polynomial orders between 7 and 11 are preferable due to the acceptable

computational effort and high success rates. As the repeatedly recomputed optimal trajectories in an

onboard guidance scenario will not differ considerably, the previous solution can serve as a good initial

guess for the next optimization. Therefore, the convergence is expected to increase and computational

effort to decrease significantly (see also Chapter 9). Using a compiled language like C or C++ will also

decrease the computational time. In addition, the flexibility and also reliability of the algorithm can be

increased by incorporating planetary ephemeris for dynamic endpoint targets (see [185] and also Chapter

9). Yet, it is still to be investigated under what conditions convergence can be guaranteed, and how the

methods perform on a real spacecraft onboard computer in a real mission scenario.

6 Performance of Discretization and Trust-Region Methods 73

Table 6.9: Assessment of the methods in terms of high-level onboard guidance requirements.

Requirement Comments

Reliability and robustness:
The algorithm shall have

a high success rate.

All discretization and trust-region methods
achieve a high success rate.

Previous optimal trajectories can be reused
in an autonomous guidance scenario,

so the convergence is expected to be close to 100%.

Optimality:
The algorithm shall minimize the
fuel consumption while respecting

the other mission objectives/constraints.

All discretization and trust-region methods
fulfil this requirement as they yield similar final masses

that are close to the optimal ones found in literature.

Onboard capability:
The algorithm shall be compatible

with the limited hardware on board.

The obtained CPU times would result in a total
computational time of few minutes for typical

space-flight processors such as
the LEON family (see, e.g., [169] and [188]),

therefore being acceptable for deep-space cruise.
High sparsity: only few hundreds of kilobytes

of memory are required.

Accuracy:
The propagation error shall be small;

the optimized thrust profile shall
have as few oscillations as possible.

All methods achieve a high accuracy.
Interpolating the controls results in oscillations

for HLGL and RPM/FRPM.
The linear control interpolation in FOH

seems therefore more suitable.

7 Assessment of State Vector Representations

In this chapter, various state vector representations are assessed. The goal is to investigate how the choice

of the coordinates affects the performance of SCP. Therefore, a thorough assessment of the convergence

and performance properties of four classical and two non-standard coordinate sets is carried out when

poor initial guesses are provided. Moreover, two nonlinearity-like indices tailored to convex optimization

are proposed to measure how various state vector representations affect the accuracy of the successive

linearization approach within SCP. Parts of this chapter are taken from our work in [14].

7.1 State Vector Representations

There is a wide variety of different coordinate sets that are commonly used in astrodynamics, and

in particular for low-thrust trajectory optimization. We consider Cartesian, spherical, and cylindrical

coordinates as they are probably the most popular ones. Even though many modifications of the classical

orbital elements have been developed over the past decades, previous work suggests that any set of

(hybrid) orbital elements often performs similar or worse compared to modified equinoctial elements

(MEE) [144]. We therefore restrict ourselves to the non-singular MEE as the only standard Keplerian

element set in this dissertation. In addition, a recently developed set of modified orbital elements (MOE)

[165] is considered. The main difference compared with other sets in the literature is that the dynamics

are linear in the unperturbed case due to a time regularization. Moreover, we also take into account two

variants of the non-minimal Kustaanheimo–Stiefel (KS) coordinates [189] that also result in linear or

weakly nonlinear unperturbed dynamics. This property is expected to be beneficial for the successive

linearization approach in SCP.

In the following subsections, the dynamics of each set are provided in the form

f(x,u) = g(x) +B(x)u (7.1)

where g(x) and B(x) are functions of the state variables x, and u are the controls. If not stated

otherwise, the control components are defined using the unit vectors of the corresponding coordinate

frame. As Cartesian, spherical, and cylindrical coordinates along with modified equinoctial elements

are well-known in astrodynamics, only a short overview is given (see also the Appendix B for relevant

74

7 Assessment of State Vector Representations 75

coordinate transformations). As the reader may not be familiar with MOE and KS coordinates, more

elaborate derivations are presented.

7.1.1 Cartesian Coordinates

The equations of motion in Eq. (5.11) are considered:

ṙ = v (7.2)

v̇ = − µ

∥r∥32
r+ τ (7.3)

ẇ = − Γ

g0 Isp
(7.4)

The state x ∈ R7 and control u ∈ R4 vectors are

xcart =
[
r⊤,v⊤, w

]⊤
= [x, y, z, vx, vy, vz, w]

⊤ (7.5)

ucart =
[
τ⊤,Γ

]⊤
(7.6)

The quantities gcart(x) and Bcart(x) are

gcart(x) =

vx

vy

vz

− µx

(x2+y2+z2)3/2

− µ y

(x2+y2+z2)3/2

− µ z

(x2+y2+z2)3/2

0

, Bcart(x) =

03×4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
g0 Isp

(7.7)

7.1.2 Spherical Coordinates

The state x ∈ R7 and control u ∈ R4 vectors are

xsph = [r, θ, ϕ, vr, vθ, vϕ, w]
⊤ (7.8)

usph =
[
τ⊤,Γ

]⊤
(7.9)

7 Assessment of State Vector Representations 76

iG
iH

iI

\

%
r

q

iA
i\

iq

Figure 7.1: Spherical coordinates and rotating coordinate system.

where r, θ, and ϕ denote the radial distance, azimuthal, and polar angle, respectively (see Fig. 7.1).

Following the derivations provided in the Appendix C.1, the quantities gsph(x) and Bsph(x) are

gsph(x) =

vr

vθ
r

vϕ
r sin(θ)

v2θ
r +

v2ϕ
r − µ

r2

−vr vθ
r +

v2ϕ cos(θ)

r sin(θ)

−vr vϕ
r − vθ vϕ cos(θ)

r sin(θ)

0

, Bsph(x) =

03×4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
g0 Isp

(7.10)

7.1.3 Cylindrical Coordinates

iG
iH

iI

\

%

d

I

r id

i\

iI

Figure 7.2: Cylindrical coordinates and rotating coordinate system.

7 Assessment of State Vector Representations 77

The state x ∈ R7 and control u ∈ R4 vectors are

xcyl = [ρ, θ, z, vρ, vθ, vz, w]
⊤ (7.11)

ucyl =
[
τ⊤,Γ

]⊤
(7.12)

where ρ, θ, and z denote the radial distance, azimuthal angle, and the distance from the reference plane,

respectively (see Fig. 7.2). The equations of motion are derived in the Appendix C.2, and the quantities

gcyl(x) and Bcyl(x) read

gcyl(x) =

vρ

vθ
ρ

vz

v2θ
ρ − µρ

(ρ2+z2)3/2

−vρ vθ
ρ

− µ z

(ρ2+z2)3/2

0

, Bcyl(x) =

03×4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
g0 Isp

(7.13)

7.1.4 Modified Equinoctial Elements

The state x ∈ R7 and control u ∈ R4 vectors are

xMEE = [p, ex, ey, hx, hy, l, w]
⊤ (7.14)

uMEE =
[
τ⊤,Γ

]⊤
(7.15)

The relationship between modified equinoctial and classical orbital elements is given by [190]

p = a
(
1− e2

)
(7.16)

ex = e cos (ω +Ω) (7.17)

ey = e sin (ω +Ω) (7.18)

hx = tan (i/2) cosΩ (7.19)

hy = tan (i/2) sinΩ (7.20)

l = ω +Ω+ ϑ (7.21)

7 Assessment of State Vector Representations 78

where p denotes the semilatus rectum, a the semi-major axis, e the eccentricity, ω the argument of

periapsis, Ω the longitude of the ascending node, i the inclination, l the true longitude, and ϑ the true

anomaly. The quantities gMEE(x) and BMEE(x) are [148]

gMEE(x) =

[
0, 0, 0, 0, 0,

√
µ p

(
σ

p

)2
]⊤

(7.22)

BMEE(x) =

0 2 p
σ

√
p
µ 0 0√

p
µ sin l

√
p
µ

1
σ [(σ + 1) cos l + ex] −

√
p
µ

ey
σ (hx sin l − hy cos l) 0

−
√

p
µ cos l

√
p
µ

1
σ [(σ + 1) sin l + ey]

√
p
µ

ex
σ (hx sin l − hy cos l) 0

0 0
√

p
µ

b2

2σ cos l 0

0 0
√

p
µ

b2

2σ sin l 0

0 0
√

p
µ

1
σ (hx sin l − hy cos l) 0

0 0 0 − 1
g0 Isp

(7.23)

where

σ = 1 + ex cos l + ey sin l, b2 = 1 + h2y + h2y (7.24)

7.1.5 Modified Orbital Elements

We start from the Hamiltonian H in spherical coordinates (the reader is referred to the Appendix B.1 for

details)

H =
1

2

(
p2r +

p2ϕ
r2

+
p2θ

r2 cos2 ϕ

)
− µ

r
(7.25)

where r, ϕ, and θ denote the radial distance, polar and azimuthal angle, respectively, and pr, pϕ, and pθ

are the corresponding conjugate momenta:

pr = ṙ (7.26)

pθ = r2 θ̇ cos2 ϕ (7.27)

pϕ = r2 ϕ̇ (7.28)

Applying a time regularization
dζ

dt
=

ph
r2

⇐⇒ d

dt
=

ph
r2

d

dζ
(7.29)

with the angular momentum ph

ph =

√
p2ϕ +

p2θ
cos2 ϕ

(7.30)

7 Assessment of State Vector Representations 79

and performing a change of variables yields the new set of coordinates [Λ, η, s, γ, κ, β]. Their relationship

to spherical coordinates is given by [165]

Λ =

(
ph
r

− µ

ph

) √
C

µ
(7.31)

η = pr

√
C

µ
(7.32)

s = sinϕ (7.33)

γ =
pϕ
ph

cosϕ (7.34)

κ =
1

ph

√
C µ (7.35)

β = θ − arcsin

(
tanϕ

√
p2θ

p2h − p2θ

)
(7.36)

The standard gravitational parameter µ and some length unit C are included to make the quantities

dimensionless. β is identical to the classical longitude of the ascending node Ω. The unperturbed

equations of motion are then found to be [165]

dΛ

dζ
= −η (7.37a)

dη

dζ
= Λ (7.37b)

ds

dζ
= γ (7.37c)

dγ

dζ
= −s (7.37d)

dκ

dζ
= 0 (7.37e)

dβ

dζ
= 0 (7.37f)

As the new independent variable is the true anomaly, the time can be obtained by integrating the additional

equation dt/dζ. Using the relations

cosϕ = cos (arcsin s) =
√
1− s2 (7.38)

ϕ̇ =
γ ph

r2 cosϕ
(7.39)

θ̇ =
pθ

r2 cos2 ϕ
(7.40)

and

r = ph

(
Λ

√
µ

C
+

µ

ph

)−1

(7.41)

ph =
1

κ

√
C µ (7.42)

7 Assessment of State Vector Representations 80

the differential equation of the physical time t reads

dt

dζ
=

r2

ph
=

1

κ (κ+ Λ)2

√
C3

µ
(7.43)

The equations of motion with a perturbing acceleration ap can be determined by computing the partial

derivatives of each orbital element O with respect to the velocity v [190]:

dO
dt

=
dO
dt

∣∣∣
unpert.

+
∂O
∂v

ap, O ∈ {Λ, η, s, γ, κ, β} (7.44)

where the first term on the right-hand side refers to the unperturbed dynamics in Eqs. (7.37a)–(7.37f),

and the second term to the perturbation. Applying Eq. (7.29) and changing the independent variable to

ζ results in
dO
dζ

=
dO
dζ

∣∣∣
unpert.

+
r2

ph

dO
dv

ap, O ∈ {Λ, η, s, γ, κ, β} (7.45)

Therefore, the partial derivatives of each element with respect to the Cartesian velocity v are needed

to compute the equations of motion with a perturbing acceleration. Given the unit vectors ir, iθ, iϕ in

spherical coordinates, the perturbing acceleration can be written as

ap = ar ir + aθ iθ + aϕ iϕ (7.46)

Using the partial derivatives in Eqs. (C.51)–(C.56) in the Appendix C.3, and expressing all quantities in

terms of [Λ, η, s, γ, κ, β], the equations of motion with respect to ζ are found to be

dΛ

dζ
= −η +

√
1− s2 − γ2 (2κ+ Λ)√
1− s2 κ (κ+ Λ)3

C2

µ
aθ +

γ (2κ+ Λ)√
1− s2 κ (κ+ Λ)3

C2

µ
aϕ (7.47a)

dη

dζ
= Λ+

1

κ (κ+ Λ)2
C2

µ
aρ (7.47b)

dγ

dζ
= −s− γ

√
1− s2 − γ2√

1− s2 κ (κ+ Λ)3
C2

µ
aθ +

1− s2 − γ2√
1− s2 κ (κ+ Λ)3

C2

µ
aϕ (7.47c)

ds

dζ
= γ (7.47d)

dκ

dζ
= −

√
1− s2 − γ2√

1− s2 (κ+ Λ)3
C2

µ
aθ −

γ√
1− s2 (κ+ Λ)3

C2

µ
aϕ (7.47e)

dβ

dζ
= − s γ

(s2 + γ2)
√
1− s2 κ (κ+ Λ)3

C2

µ
aθ +

s
√
1− s2 − γ2

(s2 + γ2)
√
1− s2 κ (κ+ Λ)3

C2

µ
aϕ (7.47f)

We observe that the EoMs are linear when no perturbation is present, but the perturbing terms seem

rather complex. Therefore, we want to express the acceleration vector in the standard local-vertical

local-horizontal rotating frame RTN :

ap = ar ir + at it + an in (7.48)

7 Assessment of State Vector Representations 81

where the first axis is the radial unit vector ir = r/r that points along the position vector. The normal

unit vector in points in the orbit normal direction with r × v = ph in. The transversal unit vector it is

found with the right-hand rule. The geometry of the inertial and orbital frame is illustrated in Fig. 7.3.

The direction cosine matrix RXYZ→RTN that transforms the Cartesian inertial frame XY Z into the orbital

frame RTN is given by the (3,1,3) Euler angle sequence corresponding to (Ω, i, δ), δ = ω+ ϑ being the

argument of latitude and ϑ the true anomaly.

iG

iH

iI

Line of nodes

Ω

h

8

Periapsis

Ω

r

%

l

o

8

iAiCi=

Figure 7.3: Orbital frame and geometry of classical orbital elements.

ir

it

in

 =

− sinΩ cos i sin δ + cosΩ cos δ cosΩ cos i sin δ + sinΩ cos δ sin i sin δ

− sinΩ cos i cos δ − cosΩ sin δ cosΩ cos i cos δ − sinΩ sin δ sin i cos δ

sinΩ sin i − cosΩ sin i cos i

︸ ︷︷ ︸

=..RXYZ→RTN

ix

iy

iz

(7.49)

The transformation matrix RXYZ→SPH to convert Cartesian to spherical coordinates is given by a rotation

about the third axis by θ, followed by a rotation about the second axis by −ϕ:
ir

iθ

iϕ

 =

cos θ cosϕ sin θ cosϕ sinϕ

− sin θ cos θ 0

− cos θ sinϕ − sin θ sinϕ cosϕ

︸ ︷︷ ︸

=..RXYZ→SPH

ix

iy

iz

 (7.50)

7 Assessment of State Vector Representations 82

iG

iH

iI

Line of nodes

Ω

\

\ −Ω

r
%

q

X

8

Figure 7.4: Spherical triangle for orbital motion.

The relationship between the spherical and RTN frame is then obtained using
ir

it

in

 =

1 0 0

0 cos i/ cosϕ cos(θ − Ω) sin i

0 − cos(θ − Ω) sin i cos i/ cosϕ

︸ ︷︷ ︸

=..RSPH→RTN

ir

iθ

iϕ

 (7.51)

with RSPH→RTN = RXYZ→RTN R⊤
XYZ→SPH, and where the following spherical trigonometric identities

were used according to Fig. 7.4:

cos δ = cosϕ cos(θ − Ω) (7.52a)

sinϕ = sin i sin δ (7.52b)

tanϕ = tan i sin(θ − Ω) (7.52c)

Writing the perturbing acceleration as

ap = ar ir + aθ iθ + aϕ iϕ = ar ir + at it + an in (7.53)

7 Assessment of State Vector Representations 83

and using the rotation matrix R⊤
SPH→RTN in Eq. (7.51), we obtain a relationship between the perturbing

acceleration in the spherical and RTN frame:
ar

aθ

aϕ

 =

1 0 0

0 cos i/ cosϕ − cos(θ − Ω) sin i

0 cos(θ − Ω) sin i cos i/ cosϕ

ar

at

an

 (7.54)

Making use of the expressions

sin i =
√

s2 + γ2 ⇐⇒ i = arcsin
√
s2 + γ2 (7.55)

cos i = cos
(
arcsin

√
s2 + γ2

)
=
√
1− s2 − γ2 (7.56)

sin δ =
sinϕ

sin i
⇐⇒ δ = arcsin

s√
s2 + γ2

(7.57)

cos(θ − Ω) =
cos δ

cosϕ
=

γ√
s2 + γ2

√
1− s2

(7.58)

the perturbing accelerations can be written as

ar = ar (7.59)

aθ =

√
1− s2 − γ2√

1− s2
at −

γ√
1− s2

an (7.60)

aϕ =
γ√

1− s2
at +

√
1− s2 − γ2√

1− s2
an (7.61)

Substituting Eqs. (7.59)–(7.61) into Eqs. (7.47a)–(7.47f), the EoMs in the RTN orbital frame read:

dΛ

dζ
= −η +

2κ+ Λ

κ (κ+ Λ)3
C2

µ
as (7.62a)

dη

dζ
= Λ+

1

κ (κ+ Λ)2
C2

µ
ar (7.62b)

dγ

dζ
= −s+

√
1− s2 − γ2

κ (κ+ Λ)3
C2

µ
an (7.62c)

ds

dζ
= γ (7.62d)

dκ

dζ
= − 1

(κ+ Λ)3
C2

µ
as (7.62e)

dβ

dζ
=

s

(s2 + γ2)κ (κ+ Λ)3
an (7.62f)

Optimization Problem

With regard to the implementation, all quantities (including the perturbing accelerations, gravitational

acceleration, and the specific impulse) are normalized before solving the optimization problem numeri-

7 Assessment of State Vector Representations 84

cally. Therefore, the scaling factors C2/µ and
√

C3/µ in Eqs. (7.62a)–(7.62f) and (7.43), respectively,

are dropped in the remainder of this dissertation as they are already implicitly included.

Using Eq. (7.43), the differential equation of the modified mass w

dw

dt
= − Γ(t)

g0 Isp
(7.63)

is to be rewritten to account for the new independent variable ζ:

dw

dζ
= − Γ(t)

g0 Isp

1

κ(κ+ Λ)2
(7.64)

This makes the formerly linear formulation nonlinear. As we want to compute fuel-optimal trajectories

with fixed final time, the time t is included as an additional state. The state x ∈ R8 and control u ∈ R4

vectors then read

xMOE = [Λ, η, γ, s, κ, β, w, t]⊤ (7.65)

uMOE =
[
τ⊤,Γ

]⊤
(7.66)

The quantities gMOE(x) and BMOE(x) are

gMOE(x) =

−η

Λ

−s

γ

0

0

0

1
κ (κ+Λ)2

, BMOE(x) =

0 2κ+Λ
κ (κ+Λ)3

0 0

1
κ (κ+Λ)2

0 0 0

0 0

√
1−s2−γ2

κ (κ+Λ)3
0

0 0 0 0

0 − 1
(κ+Λ)3

0 0

0 0 s
(s2+γ2)κ (κ+Λ)3

0

0 0 0 0

(7.67)

As the independent variable is not time, the additional differential equation (7.43) is to be integrated to

obtain the evolution of the elements with respect to time. For example, this is required for fuel-optimal

problems with a fixed time of flight. In this case, the time can be added as an additional state in the

optimization process, and the dynamics become nonlinear due to Eq. (7.43).

Remark 7.1. Similar to classical orbital elements, the right ascension of the ascending node β ≡ Ω is

not defined when the inclination is zero. Therefore, the modified orbital elements presented here cannot

be used when i ≈ 0. This can be overcome by defining a different time regularization:

dζ̃

dt
=

ph
r2 cos2 ϕ

⇐⇒ d

dt
=

ph
r2

d

dζ̃
(7.68)

7 Assessment of State Vector Representations 85

Even though the resulting unperturbed dynamics are nonlinear, the nonlinear term is small compared to

the linear term, and the performance of SCP is expected to behave similarly. Yet, in the context of this

chapter, only problems where i ̸= 0 are considered.

7.1.6 Kustaanheimo–Stiefel Coordinates

Originally, the Kustaanheimo–Stiefel coordinates were developed to study the singularities of the system.

Regularization is used to obtain a set of linear differential equations for the unperturbed motion [189]. In

this section, the equations of motion for the KS elements are derived for the planar and spatial case.

We recall the general expression for the equations of motion

r̈+
µ

r3
r = −∂V (r)

∂r
+ ap (7.69)

where r = ∥r∥2. V (r) is a perturbing potential, and ap a non-conservative perturbing acceleration.

Throughout this section, we assume V (r) = 0 and only consider the acceleration ap, for example due to

thrust.

The specific orbital energy E is defined as

E =
1

2
∥ṙ∥2 − µ

r
(7.70)

Using the relation
d

dt
∥y∥2 = d

dt

(
y⊤y

)
= 2y⊤ d

dt
y (7.71)

for any arbitrary vector y, the time derivative of Eq. (7.70) is

dE
dt

= ṙ⊤r̈+
µ

r2
ṙ = v⊤v̇ +

µ

r2
ṙ (7.72)

Substituting the equations of motion ṙ = v and v̇ = −µ/r3 + ap into Eq. (7.72) yields

dE
dt

= v⊤
(
− µ

r3
r + ap

)
+

µ

r2
ṙ (7.73)

It follows from

d

dt
(r⊤r) =

dr2

dt
= 2 r ṙ (7.74)

d

dt
(r⊤r) = r⊤ṙ+ ṙ⊤r = 2 ṙ⊤r (7.75)

that

r⊤ṙ = r ṙ (7.76)

7 Assessment of State Vector Representations 86

This relation is used to simplify Eq. (7.73) to

dE
dt

= − µ

r3
v⊤r+ v⊤ap +

µ

r2
ṙ = − µ

r3
r ṙ + v⊤ap +

µ

r2
ṙ

= v⊤ap = ṙ⊤ap

(7.77)

For later use, we define h as the negative specific energy of the orbit:

h ..= −E =
µ

r
− 1

2
∥ṙ∥2 (7.78)

Planar Case

We introduce a time regularization with the new independent variable ξ [189]:

dt =
r

c
dξ (7.79)

This fictitious time ξ can be thought of an angle-like variable that represents an orbit anomaly if c is

chosen appropriately. In this dissertation, c = 1 and c =
√
2h are used that transform the equations of

motion into a harmonic oscillator. Setting c = 1, Eq. (7.79) can be rewritten as

d

dt
=

1

r

d

dξ
(7.80)

Using the chain rule gives

d2

dt2
=

d

dt

d

dt
= r−1 d

dξ

(
r−1 d

dξ

)
= r−1

(
−r−2dr

dξ

d

dξ
+ r−1 d2

dξ2

)
= −r−3r′

d

dξ
+ r−2 d2

dξ2

(7.81)

where

(·)′ ..=
d

dξ
(7.82)

denotes the differentiation with respect to ξ. Substituting Eqs. (7.80) and (7.81) into Eq. (7.69) and

rearranging terms yields the equations of motion in the ξ domain:

r r′′ − r′ r′ + µ r = r3 ap (7.83)

For planar motion, we introduce the complex coordinates

r = x+ i y (7.84)

that satisfy

x = a (cosE − e) (7.85)

y = a
√
1− e2 sinE (7.86)

7 Assessment of State Vector Representations 87

where a is the semi-major axis, e the eccentricity, and E the eccentric anomaly. Taking the derivative

with respect to time gives

ẋ = −a Ė sinE (7.87)

ẏ = a
√

1− e2 Ė cosE (7.88)

with

Ė =

√
µ

a

1

r
(7.89)

r =
b

1 + e cosϑ
(7.90)

b = a
(
1− e2

)
(7.91)

and the true anomaly ϑ. Introducing the complex coordinates

p = p1 + i p2 (7.92)

in the parametric plane p1, p2, the following relationship describes the mapping onto the physical plane

x, y [189]:

x+ i y = (p1 + i p2)
2 (7.93)

r ..= ∥r∥2 = p⊤p = ∥p∥22 (7.94)

This regularization is called Levi-Civita transformation and given by

x = p21 + p22 (7.95)

y = 2 p1 p2 (7.96)

or equivalently

r = L(p)p (7.97)

with

L(p) =

p1 −p2

p2 p1

 (7.98)

Using Eq. (7.97) and

r′ = 2L(p)p′ (7.99)

r′′ = 2L(p′)p′ + 2L(p)p′′ (7.100)

r′ = 2p⊤p′ (7.101)

7 Assessment of State Vector Representations 88

the equation of motion in Eq. (7.83) can be rewritten in terms of p:

2 ∥p∥2 L(p)p′′ + 2 ∥p∥2 L(p′)p′ − 4p⊤p′ L(p)p′ + µL(p)p = ∥p∥6 ap (7.102)

Making use of

2 ∥p∥2 L(p′)p′ − 4p⊤p′ L(p)p′ = −2p′⊤ p′ L(p)p (7.103)

and left-multiplying by [L(p)]−1 = 1/r [L(p)]⊤ = 1/∥p∥2 [L(p)]⊤ gives

2 ∥p∥2 p′′ +
(
µ− 2 ∥p′∥2

)
p = ∥p∥4 [L(p)]⊤ ap (7.104)

The second term can be expressed in terms of h. The negative specific energy is

h =
µ

r
− 1

2
∥1
r

d

dξ
r∥2 = µ

r
− 1

2

1

r2
∥x′∥2

=
µ− 2 ∥p′∥2

∥p∥2

(7.105)

where we used

∥r′∥2 = [r′]⊤r′ = 4 ∥p∥2 ∥p′∥2 (7.106)

Substituting Eq. (7.105) into Eq. (7.104) and simplifying yields the equation of motion with respect to

p and ξ:

2p′′ + hp = ∥p∥2 [L(p)]⊤ ap (7.107)

This results in the following system of differential equations:

dp

dξ
= p′ (7.108a)

dp′

dξ
= −h

2
p+

1

2
∥p∥22 [L(p)]⊤ ap (7.108b)

dh

dξ
= −2p′⊤[L(p)]⊤ ap (7.108c)

dt

dξ
= ∥p∥22 (7.108d)

where Eqs. (7.77), (7.80) and (7.99) were used to obtain the rate of change of h.

The unperturbed dynamics in Eqs. (7.108a)–(7.108c) are considered to be perturbed linear or weakly

linear, and thus are expected to perform better under linearization. Even though the term −h/2p in

Eq. (7.108b) is nonlinear, dp′/(dξ) is expected to behave nearly linearly due to the only slowly varying

variableh. As we are interested in spacecraft equipped with low-thrust propulsion systems, it is reasonable

to assume that the thrust is a small perturbation compared to the relatively large acceleration caused by

the gravitation of the central body. Similar to MOE, the differential equation (7.108d) is to be integrated

to obtain the evolution of the time.

7 Assessment of State Vector Representations 89

It is possible to obtain linear unperturbed dynamics by setting c =
√
2h, i.e.,

d

dt
=

√
2h

r

d

dE
(7.109)

Expressing this in terms of ξ gives
d

dξ
=

√
2h

d

dE
(7.110)

Defining
◦
(·) ..=

d

dE
(7.111)

the second derivative is then

d2

dξ2
=

d

dξ

d

dξ
=

√
2h

d

dE

(√
2h

d

dE

)
=

√
2h

(
d

dE

√
2h

d

dE
+
√
2h

d2

dE2

)
=

◦
h

d

dE
+ 2h

d2

dE2

(7.112)

because
d

dE

√
2h =

√
2

2
√
h

◦
h (7.113)

Substituting Eq. (7.112) into Eq. (7.107) allows us to rewrite the equation of motion in terms of the

eccentric anomaly:

4h
◦◦
p+ hp+ 2

◦
h

◦
p = ∥p∥2 [L(p)]⊤ ap (7.114)

Substituting
◦
h = − ◦

x⊤ap = −2
◦
p⊤[L(p)]⊤ap (7.115)

into Eq. (7.114) and rearranging terms gives:

4
◦◦
p+ p =

1

h

[
∥p∥2 [L(p)]⊤ ap + 4

◦
p⊤[L(p)]⊤ap

◦
p
]

(7.116)

The equations of motion with respect to E are then

dp

dE
=

◦
p (7.117a)

d
◦
p

dE
= −1

4
p+

1

4h

[
∥p∥2 [L(p)]⊤ ap + 4

◦
p⊤[L(p)]⊤ap

◦
p
]

(7.117b)

dh

dE
= −2

◦
p⊤[L(p)]⊤ap (7.117c)

dt

dE
=

∥p∥22√
2h

(7.117d)

7 Assessment of State Vector Representations 90

Three-Dimensional Case

It was found that a similar regularization in three dimensions is not possible. Therefore, a mapping from

the physical r = [x, y, z]⊤ ∈ R3 to a four-dimensional parametric space p = [p1, p2, p3, p4]
⊤ ∈ R4 was

proposed to overcome the difficulties. The tranformation is given by [189]

x = p21 − p22 − p23 + p24 (7.118)

y = 2 (p1 p2 − p3 p4) (7.119)

z = 2 (p1 p3 + p2 p4) (7.120)

The transformation matrix L(p) is

L(p) =

p1 −p2 −p3 p4

p2 p1 −p4 −p3

p3 p4 p1 p2

p4 −p3 p2 −p1

(7.121)

If ξ is the independent variable, the velocities ẋ, ẏ, ż are obtained using

ṙ =
2

∥p∥2
L(p)p′ (7.122)

which yields

ẋ =
2

∥p∥2
(
p1 p

′
1 − p2 p

′
2 − p3 p

′
3 + p4 p

′
4

)
(7.123)

ẏ =
2

∥p∥2
(
p2 p

′
1 + p1 p

′
2 − p4 p

′
3 − p3 p

′
4

)
(7.124)

ż =
2

∥p∥2
(
p3 p

′
1 + p4 p

′
2 + p1 p

′
3 + p2 p

′
4

)
(7.125)

With regard to E, we obtain

ṙ =
2
√
2h

∥p∥2
L(p)

◦
p (7.126)

and therefore

ẋ =
2
√
2h

∥p∥2
(p1

◦
p1 − p2

◦
p2 − p3

◦
p3 + p4

◦
p4) (7.127)

ẏ =
2
√
2h

∥p∥2
(p2

◦
p1 + p1

◦
p2 − p4

◦
p3 − p3

◦
p4) (7.128)

ż =
2
√
2h

∥p∥2
(p3

◦
p1 + p4

◦
p2 + p1

◦
p3 + p2

◦
p4) (7.129)

7 Assessment of State Vector Representations 91

The inverse transformation leaves one degree of freedom undetermined. Therefore, if x ≥ 0, p1 and p4

can be chosen such that [189]

p21 + p24 =
1

2
(x+ r) (7.130)

holds. It is then possible to solve for p2 and p3:

p2 =
y p1 + z p4

x+ r
(7.131)

p3 =
z p1 − y p4

x+ r
(7.132)

If x < 0, it is convenient to use the following inverse transformation [189]:

p22 + p23 =
1

2
(r − x) (7.133)

p1 =
y p2 + z p3

r − x
(7.134)

p2 =
z p2 − y p3

r − x
(7.135)

The equations of motion are the same as in Eq. (7.117) with the only difference that the perturbing

acceleration is to be augmented to be consistent with the four-dimensional space:

ap −→

ap
0

 (7.136)

Optimization Problem

The differential equation of w
dw

dt
= − Γ(t)

g0 Isp
(7.137)

is to be modified to account for the different independent variables:

dw

dξ
= − Γ(t)

g0 Isp
∥p∥22 (7.138)

dw

dE
= − Γ(t)

g0 Isp

∥p∥22√
2h

(7.139)

This makes the formerly linear formulation nonlinear. As we want to compute fuel-optimal trajectories

with fixed final time, the time t is included as an additional state. The state x ∈ R11 and control u ∈ R4

vectors then read

xξ
KS =

[
p⊤,p′⊤, h, w, t

]⊤
, xE

KS =
[
p⊤,

◦
p⊤, h, w, t

]⊤
(7.140)

uKS = uξ
KS = uE

KS =
[
τ⊤,Γ

]⊤
(7.141)

where the superscripts ξ and E refer to the independent variables.

7 Assessment of State Vector Representations 92

For the planar case, the inverse KS transformation is unique, and the final boundary condition is

simply a linear equality constraint. In the spatial case, however, there is an additional degree of freedom.

Therefore, one element of p can be chosen arbitrarily. This means that the previously fixed final state

p(tf) depends on the initial condition p(t0) and the controls, and its value is to be obtained by integrating

the dynamics. As a consequence, the final boundary condition is not a linear equality constraint anymore,

but a nonlinear function of the initial condition. In discretized form, the final state
[
[p(tf)]

⊤, [p′(tf)]
⊤]⊤

and
[
[p(tf)]

⊤, [
◦
p(tf)]

⊤]⊤, respectively, can be mapped from KS to Cartesian coordinates, and the target

state can be imposed in Cartesian coordinates:rf
vf

 = Mξ[p(tf),p
′(tf)] (7.142a)

rf
vf

 = ME [p(tf),
◦
p(tf)] (7.142b)

where Mj , j ∈ {ξ, E}, denotes the nonlinear mapping from KS to Cartesian coordinates according to

Eqs. (7.97), (7.122) and (7.126), respectively. The new final boundary conditions then read

rf = L[p(tf)]p(tf), vf =
2

∥p(tf)∥2
L[p(tf)]p

′(tf) (7.143a)

rf = L[p(tf)]p(tf), vf =
2
√
2h

∥p(tf)∥2
L[p(tf)]

◦
p(tf) (7.143b)

These constraints are nonconvex and thus linearized about the reference (p̄, p̄′) or (p̄,
◦
p̄) according to

Section 5.1. Defining

ψξ[p(tf),p
′(tf)] ..=

 L[p(tf)]p(tf)

2

∥p(tf)∥2
L[p(tf)]p

′(tf)

 (7.144a)

ψE [p(tf),
◦
p(tf)] ..=

 L[p(tf)]p(tf)

2
√
2h

∥p(tf)∥2
L[p(tf)]

◦
p(tf)

 (7.144b)

7 Assessment of State Vector Representations 93

the linearized constraints are thenrf
vf

 = ψξ[p̄(tf), p̄
′(tf)] +∇ψξ[p̄(tf), p̄

′(tf)]

 p(tf)− p̄(tf)

p′(tf)− p̄′(tf)

+ νKS (7.145a)

rf
vf

 = ψE [p̄(tf),
◦
p̄(tf)] +∇ψE [p̄(tf),

◦
p̄(tf)]

p(tf)− p̄(tf)

◦
p(tf)−

◦
p̄(tf)

+ νKS (7.145b)

A virtual control νKS ∈ R6 is added and penalized in the objective function as λKS ∥νKS∥1.

Remark 7.2. In case of relaxed final boundary conditions∣∣∣∣∣∣∣ψξ[p(tf),p
′(tf)]−

rf
vf

∣∣∣∣∣∣∣ ≤

∆r

∆v

 (7.146)

with arbitrary ∆r and ∆v, the linearized constraints read∣∣∣∣∣∣∣ψξ[p̄(tf), p̄
′(tf)] +∇ψξ[p̄(tf), p̄

′(tf)]

 p(tf)− p̄(tf)

p′(tf)− p̄′(tf)

−

rf
vf

∣∣∣∣∣∣∣ ≤

∆r

∆v

+ νKS (7.147)

The expressions for E are obtained accordingly.

If ξ is the independent variable, the quantities gξ
KS(x) and Bξ

KS(x) are

gξ
KS(x) =

p′

−h
2 p

0

0

∥p∥2

, Bξ

KS(x) =

04×4

p1
2 ∥p∥2 p2

2 ∥p∥2 p3
2 ∥p∥2 0

−p2
2 ∥p∥2 p1

2 ∥p∥2 p4
2 ∥p∥2 0

−p3
2 ∥p∥2 −p4

2 ∥p∥2 p1
2 ∥p∥2 0

p4
2 ∥p∥2 −p3

2 ∥p∥2 p2
2 ∥p∥2 0

Bξ
KS,91 Bξ

KS,92 Bξ
KS,93 0

0 0 0 − ∥p∥2
g0 Isp

0 0 0 0

(7.148)

where

Bξ
KS,91 = 2 (−p1 p

′
1 + p2 p

′
2 + p3 p

′
3 − p4 p

′
4) (7.149a)

Bξ
KS,92 = 2 (−p1 p

′
2 − p2 p

′
1 + p3 p

′
4 + p4 p

′
3) (7.149b)

Bξ
KS,93 = 2 (−p1 p

′
3 − p2 p

′
4 − p3 p

′
1 − p4 p

′
2) (7.149c)

7 Assessment of State Vector Representations 94

If E is the independent variable, the quantities gE
KS(x) and BE

KS(x) are given by

gE
KS(x) =

◦
p

−1
4 p

0

0

∥p∥2√
2h

, BE

KS(x) =

04×4

BE
KS,51 BE

KS,52 BE
KS,53 0

BE
KS,61 BE

KS,62 BE
KS,63 0

BE
KS,71 BE

KS,72 BE
KS,73 0

BE
KS,81 BE

KS,82 BE
KS,83 0

BE
KS,91 BE

KS,92 BE
KS,93 0

0 0 0 − ∥p∥2√
2h g0 Isp

0 0 0 0

(7.150)

with

BE
KS,51 =

1

4h

(
−4 p2

◦
p1

◦
p2 − 4 p3

◦
p1

◦
p3 + 4 p4

◦
p1

◦
p4 + 4 p1

◦
p21 + p1 ∥p∥2

)
(7.151a)

BE
KS,52 =

1

4h

(
4 p2

◦
p21 + 4 p1

◦
p1

◦
p2 − 4 p4

◦
p1

◦
p3 − 4 p3

◦
p1

◦
p4 + p2 ∥p∥2

)
(7.151b)

BE
KS,53 =

1

4h

(
4 p3

◦
p21 + 4 p1

◦
p1

◦
p3 + 4 p4

◦
p1

◦
p2 + 4 p2

◦
p1

◦
p4 + p3 ∥p∥2

)
(7.151c)

BE
KS,61 =

1

4h

(
4 p1

◦
p1

◦
p2 − 4 p3

◦
p2

◦
p3 + 4 p4

◦
p2

◦
p4 − 4 p2

◦
p22 − p2 ∥p∥2

)
(7.151d)

BE
KS,62 =

1

4h

(
4 p2

◦
p1

◦
p2 − 4 p4

◦
p2

◦
p3 − 4 p3

◦
p2

◦
p4 + 4 p1

◦
p22 + p1 ∥p∥2

)
(7.151e)

BE
KS,63 =

1

4h

(
4 p3

◦
p1

◦
p2 + 4 p1

◦
p2

◦
p3 + 4 p4

◦
p22 + 4 p2

◦
p2

◦
p4 + p4 ∥p∥2

)
(7.151f)

BE
KS,71 =

1

4h

(
4 p1

◦
p1

◦
p3 − 4 p2

◦
p2

◦
p3 − 4 p3

◦
p23 + 4 p4

◦
p3

◦
p4 − p3 ∥p∥2

)
(7.151g)

BE
KS,72 =

1

4h

(
4 p2

◦
p1

◦
p3 + 4 p1

◦
p2

◦
p3 − 4 p4 ◦p23 − 4 p3

◦
p3

◦
p4 − p4 ∥p∥2

)
(7.151h)

BE
KS,73 =

1

4h

(
4 p3

◦
p1

◦
p3 + 4 p1 ◦p23 + 4 p4

◦
p2

◦
p3 + 4 p2

◦
p3

◦
p4 + p1 ∥p∥2

)
(7.151i)

BE
KS,81 =

1

4h

(
4 p1

◦
p1

◦
p4 − 4 p2

◦
p2

◦
p4 − 4 p3

◦
p3

◦
p4 + 4 p4

◦
p24 + p4 ∥p∥2

)
(7.151j)

BE
KS,82 =

1

4h

(
4 p2

◦
p1

◦
p4 + 4 p1

◦
p2

◦
p4 − 4 p4

◦
p3

◦
p4 − 4 p3

◦
p24 − p3 ∥p∥2

)
(7.151k)

BE
KS,83 =

1

4h

(
4 p3

◦
p1

◦
p4 + 4 p1

◦
p3

◦
p4 + 4 p4

◦
p2

◦
p4 + 4 p2

◦
p24 + p2 ∥p∥2

)
(7.151l)

BE
KS,91 = −2 (p1

◦
p1 − p2

◦
p2 − p3

◦
p3 + p4

◦
p4) (7.151m)

BE
KS,92 = −2 (p2

◦
p1 + p1

◦
p2 − p4

◦
p3 − p3

◦
p4) (7.151n)

BE
KS,93 = −2 (p3

◦
p1 + p1

◦
p3 + p4

◦
p2 + p2

◦
p4) (7.151o)

7 Assessment of State Vector Representations 95

Table 7.1: Overview of the considered state vector representations.

Coordinates Unpert. dynamics g(x) Pert. dynamics B(x) # states Slow / fast variables

Cartesian Nonlinear Constant 6 0 / 6
Cylindrical Nonlinear Constant 6 0 / 6
Spherical Nonlinear Constant 6 0 / 6
MEE Weakly nonlinear Nonlinear 6 5 / 1
MOE Linear* Nonlinear 6† 2 / 4†

KSξ Weakly nonlinear* Nonlinear 9† 1 / 8†

KSE Linear* Nonlinear 9† 1 / 8†

* The dynamics become nonlinear if time is added as a state variable.
† The number increases by one if time is added as a state variable.

7.1.7 Summary

We define the unperturbed g(x) and perturbed B(x) terms in Eq. (7.1) to be either linear, weakly

nonlinear, or nonlinear. Table 7.1 characterizes the proposed coordinate sets in terms of the level of

nonlinearity, the number of state variables (without considering the mass), and the number of slow and

fast variables, slow meaning that the element is constant when no perturbations are present. The selected

coordinates cover a wide variety of combinations. MEE is considered weakly nonlinear as all elements

except one are constant in the unperturbed case. With regard to KSξ, multiplication with the slowly

varying specific energy causes the unperturbed dynamics to become weakly nonlinear. The linear terms

of each coordinate system are advantageous because no approximations are introduced when building the

convex subproblems in Eq. (5.23). However, as highlighted in Table 7.1, no state vector representation

has only linear terms. It is therefore not straightforward to indicate a certain set of coordinates as the

most suitable. Moreover, if time is included in the state vector, the unperturbed dynamics of MOE and

KSE become nonlinear.

7.2 Linearization Accuracy Index

Originally, a nonlinearity index based on the state transition matrix was introduced in [153] to measure

the nonlinearity of a dynamical system. As this method requires the costates of the system, we pursue a

different approach that is tailored to SCP. Due to the successive linearization of the nonlinear dynamics

about a reference, we expect SCP to benefit from coordinates where the first-order Taylor approximation

7 Assessment of State Vector Representations 96

is as accurate as possible. We therefore propose the linearization accuracy index Ξf that evaluates the

original nonlinear dynamics function fnonlin
k and its first-order Taylor series f lin

k at each node k = 1, . . . , N :

Ξf
k

..=

∥∥fnonlin

k − f lin
k

∥∥ for Cart., sph., cyl. elements, and MEE

∥∥∥̂fnonlin
k − f̂ lin

k

∥∥∥+
∥∥∥f t,nonlin

k − f t,lin
k

∥∥∥
f t
max

for MOE, KSξ, and KSE elements

(7.152)

where

f lin = f (x̄, ū) +∇xf (x̄, ū) (x− x̄) +∇uf (x̄, ū) (u− ū) (7.153)

The physical time t is included as a separate term for MOE and KS, and f t,nonlin
k and f t,lin

k refer to the

nonlinear and linearized differential equations of t, respectively. f t
max is the maximum value over all k,

and the hat notation f̂ denotes the dynamics without t. Equation (7.152) essentially compares the function

values of the nonlinear dynamics with the values of the first-order Taylor series evaluated at a reference

point (x̄, ū). Our rationale is that the linearization error E(x) becomes zero when ∆x → 0:

lim
∆x→0

E(x) = lim
∆x→0

f(x̄+∆x)−
[
f(x̄) + f ′(x̄)∆x

]
= 0 (7.154)

Therefore, the index indicates how well the linearization is able to represent the original nonlinear

function. Smaller values suggest better approximations, and a value of zero means that the linearization

is exact. Note that we deliberately do not normalize the difference. The reason is that f may take very

small values or even zero, and therefore, dividing by some norm such as ∥f∥ would artificially increase

the metric. Using the expression in Eq. (7.152) instead favors coordinate sets where the unperturbed

dynamics are close to zero, and where the number of states is small. However, the time variable is

normalized and added separately to lower its impact on the index. Our findings suggest that such a metric

agrees best with the success rates of the performed simulations, and that a small variation in time is often

not critical. As the index depends on the deviation from a reference point, we select a sufficiently large

number n of perturbed trajectories that lie in the neighborhood of the reference. The nonlinearity-like

index Ξf
k at each node is then given by the average over n samples:

Ξf
k

..=
1

n

n∑
i=1

Ξf
k,i, k = 1, . . . , N, i = 1, . . . , n (7.155)

Remark 7.3. It is also possible to use the maximum instead of the mean value for computing the index.

Our simulations suggest that there is no significant difference if worst-case initial conditions are used to

generate the perturbed trajectories (see also the following subsection).

As the performance of SCP depends on the discretization method, we are interested in a practical

metric to assess the performance of a coordinate set within FOH. In FOH, the state transition matrix

is used to discretize the problem. The dynamics are integrated, and the state at tk+1 is obtained by

7 Assessment of State Vector Representations 97

evaluating Eq. (6.66). The violations of the nonlinear dynamical constraints cnonlink are computed by

comparing the states at the end of a segment k:

cnonlink =
∥∥∥xk+1 − xnonlin

k+1

∥∥∥, k = 1, . . . , N − 1 (7.156)

where xk+1 denotes the state at tk+1 obtained from the optimization, and xnonlin
k+1 is computed using the

nonlinear dynamics:

xnonlin
k+1 = xk +

∫ tk+1

tk

fnonlin(x(ζ),u(ζ)) dζ, k = 1, . . . , N − 1 (7.157)

where xk ≡ x(tk) is also the optimized state. As xk+1 is obtained using Eqs. (6.66) and (6.68b)–(6.68d),

the state transition matrix is required, and hence, the integration of the Jacobian matrices. Therefore,

even if two coordinate sets yield a similar index Ξf , the constraint violation can be large as the error

accumulates during the integration. We thus propose a second nonlinearity-like metric Ξx that is defined

as follows:

Ξx
k

..=

∥∥Mcart

(
xnonlin
k+1

)
−Mcart

(
xlin
k+1

)∥∥∥∥xmax
cart − xmin

cart

∥∥ for Cart., sph., cyl. elements, MEE

∥∥Mcart

(
xnonlin
k+1

)
−Mcart

(
xlin
k+1

)∥∥∥∥xmax
cart − xmin

cart

∥∥ +

∥∥tnonlin
k − tlink

∥∥
tmax

for MOE, KSξ, KSE

(7.158)

where the mapping Mcart(x) transforms the set x into Cartesian coordinates. xmax
cart and xmin

cart denote the

maximum and minimum values of the state in Cartesian coordinates over all k, respectively. Again, t is

added separately for MOE and KS, and it is normalized by its maximum value tmax. The index evaluates

the difference of the integrated states obtained using the nonlinear dynamics and the state transition

matrix, respectively. We use Cartesian coordinates as the reference set to ensure a fair comparison given

the different systems with different characteristics. Ξx
k therefore gives an indication on the constraint

violation for a certain initial guess. As the magnitude of the violation affects convergence, such a metric

is important to understand how well each state vector representation performs when the same initial guess

is provided. This does not only depend on the differential equations, but also on the distribution of the

nodes. Similar to the Ξf metric, several perturbed trajectories are considered, and the average over n

samples is taken:

Ξx
k

..=
1

n

n∑
i=1

Ξx
k,i, k = 1, . . . , N − 1, i = 1, . . . , n (7.159)

Remark 7.4. As time is a large, monotonically increasing variable, caution is advised when including it

in the index for MOE and KS. One may simply take the norm of the variations from the reference without

normalizing it, which would put more emphasis on the contribution of the time error. However, as this

error is often not crucial and a linear evolution of the time is often a decent approximation, we add a

normalization to not bias the index.

7 Assessment of State Vector Representations 98

Generation of Perturbed Trajectories

Given a reference trajectory x̄(t) and its corresponding initial condition x̄(t0), we define a set of n

worst-case initial condition variations δxi(t0), i = 1, . . . , n with ∥δxi(t0)∥ = δxmax, similar to what has

been defined in previous work [153]. In particular, we use Cartesian coordinates to define

δxmax =

∥∥∥∥∥∥∥
δrmax

δvmax

∥∥∥∥∥∥∥ (7.160)

where δrmax ∈ R3 and δvmax ∈ R3 are arbitrary vectors that define the position and velocity variations,

respectively. The worst-case initial conditions therefore lie on a n-dimensional sphere of radius δxmax.

The perturbed initial condition xi(t0) is then

xi(t0) = x̄(t0) + δxi(t0), i = 1, . . . , n (7.161)

Similarly, worst-case control variations δui(tk) with ∥δui(tk)∥ = ∥δumax∥ = δumax are defined at each

time instant tk, k = 1, . . . , N , i = 1, . . . , n, The perturbed control profiles ui(tk) read

ui(tk) = ū(tk) + δui(tk), i = 1, . . . , n, k = 1, . . . , N (7.162)

In our case, δui(tk) ≡ δτi(tk), i.e., we only perturb the components τ ∈ R3 and then compute the

magnitude using Γi(tk) = ∥τi(tk)∥.

The nonlinear dynamics are then integrated using the perturbed control profiles ui(t) obtained from

Eq. (7.162), and the perturbed initial conditions xi(t0). The resulting n state trajectories xi(t) deviate

from the reference by δxi(t):

xi(t) = x̄(t) + δxi(t), i = 1, . . . , n (7.163)

These trajectories are then transformed into the other coordinate sets to determine the linearization

indices.

7.3 Numerical Simulations

The different coordinate sets are assessed in two analyses:

1) Linearization accuracy index: The two indices Ξf and Ξx are determined and compared for all

coordinate sets.

2) Reliability: Using initial guesses of different quality, we compute 500 optimal trajectories for each

set to compare the success rate, number of iterations, final mass, and CPU time.

7 Assessment of State Vector Representations 99

−1 0 1

−1

0

1

x, AU

y,
AU

Reference
Perturbed
x0
2000 SG344

(a) Transfer trajectory.

0 200 400 600
0

0.5

1

·10−6

Time, days

A
cc

el
er

at
io

n
Γ

,k
m

s−
2

Reference
Perturbed

(b) Control acceleration.

Figure 7.5: Typical reference and perturbed state and control trajectories for 2000 SG344.

We consider fuel-optimal transfers from the Sun-Earth Lagrange Point L2 (SEL2) to asteroid 2000 SG344,

and from Earth to asteroid Dionysus. The number of revolutions is assumed to be known, and the J2000

reference frame is used where the xy-plane lies in the equatorial plane. The maximum thrust Tmax and

specific impulse Isp are assumed constant. Relevant parameters of the transfers are given in Table 7.2,

and Tables 7.3 and 7.4 define the SCP parameters and physical constants, respectively. All simulations

are performed in MATLAB version 2018b on an Intel Core i5-6300 2.30 GHz Laptop with four cores

and 8 GB of RAM.

Using the procedure explained in Section 7.2, n = 500 perturbed state and control trajectories are

generated. The following variations are considered:

2000 SG344: δrmax =
[
105, 105, 105

]⊤
km, δvmax =

[
10−2, 10−2, 10−2

]⊤
km s−1,

δτmax = [1.2, 1.2, 1.2]⊤ × 10−6 km s−2
(7.164)

Dionysus: δrmax =
[
106, 106, 106

]⊤
km, δvmax =

[
10−1, 10−1, 10−1

]⊤
km s−1,

δτmax = [8.9, 8.9, 8.9]⊤ × 10−8 km s−2
(7.165)

Typical reference and perturbed trajectories are shown in Figs. 7.5 and 7.6. The obtained trajectories are

used to determine the indices and serve as the initial guesses for the reliability analysis. Throughout this

section, we use Cart, Sph, Cyl, MEE, MOE, KSξ, and KSE to refer to the coordinate sets described in

Section 7.1.

Remark 7.5. For the 2000 SG344 transfer, the control variations are several times larger than the

maximum control magnitude of the reference trajectory. The reason is that smaller values would result

in success rates of 100% for all sets, which is not desirable for assessing the reliability.

7 Assessment of State Vector Representations 100

Table 7.2: Simulation values for SEL2 to 2000 SG344, and Earth-Dionysus transfers [39, 129].

Parameter SEL2 - 2000 SG344 Earth - Dionysus

Initial epoch 04-Feb-2024 12:00:00 UTC 23-Dec-2012 00:00:00 UTC

r0, AU
[−0.70186065, 0.64796956,

0.28089092]⊤
[−0.02372965, 0.90219612,

0.39111596]⊤

v0, VU
[−0.73296949, −0.65684737,

−0.28473020]⊤
[−1.01593125, −0.02584808,

−0.01116860]⊤

m0, kg 22.6 4000

rf , AU [0.41806795, 0.76113649,
0.32843028]⊤

[−2.04062009, 1.66199201,
1.32470365]⊤

vf , VU [−0.96990332, 0.40079022,
0.17241904]⊤

[−0.14231814, −0.42140269,
−0.16204985]⊤

mf , kg free free
Tmax, N 2.2519× 10−3 0.32

Isp, s 3067 3000

tf , days 700 3534

Table 7.3: Parameters of the SCP algorithm.

Parameter Value

Feasibility tol. εc 10−6

Optimality tol. εJ 10−4

Max. iterations 150
λν , λη 10.0, 10.0
ρ0, ρ1, ρ2 0.01, 0.25, 0.85
α, β, δ 1.5, 1.5, 1.0

Table 7.4: Physical constants in all simulations.

Parameter Value

Gravitational const. µ 1.327 124 4× 1011 km3 s−2

Gravitational accel. g0 9.806 65× 10−3 km s−2

Length unit AU 1.495 978 707× 108 km

Velocity unit VU
√

µAU−1

Time unit TU AU VU−1

Acceleration unit ACU VU TU−1

Mass unit MU m0

−2 −1 0 1 2
−1

0

1

2

x, AU

y,
AU

Reference
Perturbed
x0
Dionysus

(a) Transfer trajectory.

0 1000 2000 3000
0

0.5

1

1.5

2
·10−7

Time, days

A
cc

el
er

at
io

n
Γ

,k
m

s−
2

Reference
Perturbed

(b) Control acceleration.

Figure 7.6: Typical reference and perturbed state and control trajectories for Dionysus.

7 Assessment of State Vector Representations 101

0 100 200 300 400 500 600 700
0

2

4

6

Time, days

Li
ne

ar
iz

at
io

n
A

cc
ur

ac
y

In
de

x
Ξ
5 Cart MOE

Sph KSb
Cyl KS�
MEE

(a) Index Ξf .

0 100 200 300 400 500 600 700
0

0.02

0.04

0.06

Time, days

Li
ne

ar
iz

at
io

n
A

cc
ur

ac
y

In
de

x
Ξ
G Cart MOE

Sph Kb
Cyl KS�
MEE

(b) Index Ξx.

Figure 7.7: Indices Ξf and Ξx for the transfer to asteroid 2000 SG344.

7.3.1 Linearization Accuracy Index

The metrics Ξf and Ξx are computed according to Eqs. (7.152) and (7.158). Their evolution for

the transfers to asteroids 2000 SG344 and Dionysus is shown in Figs. 7.7 and 7.8, respectively. The

values of Ξf and Ξx take different orders of magnitude over time, and Cartesian coordinates result in

considerably larger values than the other coordinate sets. These, instead, yield relatively similar values.

This is especially true for the 2000 SG344 transfer due to its simplicity and small number of thrust arcs.

Despite the generally increasing nonlinearity around periapsis because of the rapidly changing state of

the spacecraft, the evolution of the index is almost linear (except for Cartesian coordinates). One reason

is the small eccentricity of the initial and final orbits which leads to a similar behavior for the whole

transfer. Moreover, the duration and magnitude of the control actions are small. Therefore, the nonlinear

control terms for MEE, MOE, and KS during thrust periods do not alter the index significantly.

The discrepancy becomes more significant for the Dionysus transfer. Again, Cartesian coordinates

yield considerably larger values. Furthermore, the peaks become more evident for Cart, Cyl, Sph, and

MEE due to the larger eccentricity of the orbits and the greater number of thrust arcs. Interestingly,

MOE and KS do not follow the same trend, and result in smaller values because of the (close to) linear

unperturbed dynamics (see also Figures 7.9a and 7.9b that use a logarithmic scale). Instead, their indices

increase towards the end after approximately 3000 days. One reason is that the last burn occurs at apoapsis

to insert the spacecraft into the final orbit. For MOE and KS, the highly nonlinear control terms dominate

in that case, which results in a rise of the indices. Another reason is the error of the time variable that

accumulates over time, thus contributing more towards the end of the transfer.

In general, it appears that MOE and KS result in the smallest indices, followed by cylindrical and

spherical coordinates, and MEE. As the acceleration due to thrust is small with respect to the unperturbed

two-body dynamics, it is reasonable that coordinate sets with highly nonlinear unperturbed dynamics

(such as Cartesian) yield larger values.

7 Assessment of State Vector Representations 102

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

Time, days

Li
ne

ar
iz

at
io

n
A

cc
ur

ac
y

In
de

x
Ξ

5 Cart Sph Cyl MEE
MOE KSb KSE

(a) Index Ξf .

0 500 1000 1500 2000 2500 3000 3500
0

0.01

0.02

0.03

Time, days
Li

ne
ar

iz
at

io
n

A
cc

ur
ac

y
In

de
x
Ξ
G Cart Sph Cyl MEE

MOE KSb KS�

(b) Index Ξx.

Figure 7.8: Indices Ξf and Ξx for the transfer to Dionysus.

0 500 1000 1500 2000 2500 3000 3500
10−4

10−3

10−2

10−1

100

Time, days

Li
ne

ar
iz

at
io

n
A

cc
ur

ac
y

In
de

x
Ξ

5

Cart Sph Cyl MEE
MOE KSb KSE

(a) Index Ξf .

0 500 1000 1500 2000 2500 3000 350010−6

10−5

10−4

10−3

10−2

10−1

Time, days

Li
ne

ar
iz

at
io

n
A

cc
ur

ac
y

In
de

x
Ξ
G

Cart Sph Cyl MEE
MOE KSb KS�

(b) Index Ξx.

Figure 7.9: Indices Ξf and Ξx for the transfer to Dionysus (logarithmic scale).

7 Assessment of State Vector Representations 103

0

20

40

60

80

100
Su

cc
es

sR
at

e,
%

0

20

40

60

Ite
ra

tio
ns

0

10

20

30

Fi
na

lM
as

s,
kg

Cart Sph Cyl MEE MOE KSb KS�

Figure 7.10: Comparison of success rate, iterations, and final mass for 2000 SG344 (fixed final value of the
independent variable for MOE and KS).

7.3.2 Reliability Analysis

The convexified optimization problem is solved using the open-source Embedded Conic Solver (ECOS)

[86]. Parameters of the SCP algorithm are given in Table 7.3, physical constants for the normalization in

Table 7.4. The hard trust-region method with δ = 1.0 is used (see also Section 5.2).

With regard to the transfer to asteroid 2000 SG344, the comparison of the success rate, number of

iterations, and final mass for the 500 simulations is shown in Fig. 7.10. Median values are presented, and

the error bars refer to the 90% percentile of the respective quantity. Note that we assume the final value

of the independent variable for MOE and KS to be fixed and known, e.g., from a previous optimization.

All methods despite Cartesian coordinates (success rate of only 80%) converge in almost all cases, KS

yielding slightly fewer optimal solutions compared to Sph, Cyl, MEE, and MOE. Cartesian elements

require significantly more iterations than all other sets. The final mass is instead similar.

For Dionysus in Fig. 7.11, Sph, Cyl, MEE, and MOE outperform the other state representations in

terms of success rate. Remarkably, all simulations converged successfully for MOE. Interestingly, Cart,

Sph, Cyl, MEE, and KSξ require a similar amount of iterations (around 30), whereas MOE and KSE need

only approximately five iterations. All methods yield a similar final mass.

The success rates seem in general to be in accordance with the nonlinearity index, because the

highest success rates are obtained with MOE which also yield the smallest indices. Even though both KS

sets result in smaller indices compared to Sph, Cyl, and MEE, the additional nonlinear final boundary

constraint is probably the reason for the fewer converged cases. Moreover, MOE and KSE represent the

only coordinate sets with linear unperturbed dynamics (except for the differential equation of the time)

according to Table 7.1. Since the SCP process is based on linearization, it is reasonable that they are able

to solve the considered problems in fewer iterations. This is particularly true for MOE, which has fewer

state variables than KSE and linear final boundary conditions, thus resulting in the highest success rate.

As the independent variables of MOE and KS are anomaly-like quantities, their final values may not

be known in advance. Instead of keeping the final value of the independent variable fixed, the problem

can be transformed into a free final independent variable problem according to Section 6.1.3 (keeping in

7 Assessment of State Vector Representations 104

0

20

40

60

80

100
Su

cc
es

sR
at

e,
%

10

20

30

40

50

Ite
ra

tio
ns

500

1500

2500

Fi
na

lM
as

s,
kg

Cart Sph Cyl MEE MOE KSb KS�

Figure 7.11: Comparison of success rate, iterations, and final mass for Dionysus (fixed final value of the
independent variable for MOE and KS).

0

20

40

60

80

100

Su
cc

es
sR

at
e,

%

10

20

30

40

50

Ite
ra

tio
ns

500

1500

2500

Fi
na

lM
as

s,
kg

Cart Sph Cyl MEE MOE KSb KS�

Figure 7.12: Comparison of success rate, iterations, and final mass for Dionysus (free final value of the
independent variable for MOE and KS).

mind that the independent variable is not time, and that the actual time of flight does not change). This

way, the final value of the independent variable is free, and therefore, an additional degree of freedom

is added that might be beneficial for the solver. Figure 7.12 shows the results for the Dionysus transfer.

It is evident that the success rates increase from 80% to 98% (KSξ) and from 79% to 91% (KSE). As

a consequence, the variations in the number of iterations and final mass rise considerably as different

solutions are found that are not close to the reference. Still, keeping the final value of the independent

variable free can be an effective means to increase convergence for KS. The results for the 2000 SG344

transfer do not change significantly compared to the fixed independent variable case.

As expected, the median CPU time per simulation in Fig. 7.13a follows the same trend as the number

of iterations. Yet, the CPU time per SCP iteration in Fig. 7.13b differs: KSξ and KSE require more

time per iteration due to the larger number of states, and hence, bigger matrices. KSE is the worst state

representation in terms of CPU time per iteration due to the more complex control matrix B(x) compared

to KSξ. Remarkably, MOE requires a similar amount of time compared to the standard sets despite the

additional state.

7.3.3 Discussion

Table 7.5 gives an overview of the main advantages and disadvantages of each coordinate set.

7 Assessment of State Vector Representations 105

2000 SG344 Dionysus
0

5

10

15

20

25

CP
U

Ti
m

e,
s

Cart MOE
Sph KSb
Cyl KS�
MEE

(a) Total CPU time.

2000 SG344 Dionysus
0

0.25

0.5

0.75

1

1.25

CP
U

Ti
m

e,
s

Cart MOE
Sph KSb
Cyl KS�
MEE

(b) CPU time per SCP iteration.

Figure 7.13: Comparison of total CPU time and CPU time per iteration.

As mentioned before, including time in the state vector causes the formerly linear dynamics to become

nonlinear for MOE and KSE . However, t is monotonically increasing, and its evolution is often close to

linear (especially in case of quasi-circular orbits). Therefore, even if linearizing the differential equation of

the time causes an error, the high success rate of MOE suggests that this does not significantly deteriorate

the performance of the successive linearization approach. Similar statements can be made for KSE when

the final value of the independent variable is free.

As low thrust can often be considered a small perturbation, the unperturbed dynamics dominate, and

a highly nonlinear B(x) matrix as in MEE or KSE is not a major drawback. This is confirmed as both

methods achieve high success rates despite the rather complex forms of the control terms.

An important aspect for state vector representations that use an anomaly-like independent variable is

the distribution of the nodes. For example, MOE and KS place more nodes at periapsis. In many transfers,

the controls are active mainly at periapsis due to the Oberth effect. Consequently, these coordinate sets can

capture the rapidly changing state of the spacecraft (i.e., the highly nonlinear behavior) more accurately

due to the larger number of nodes in this region compared to standard methods with equally-spaced

temporal nodes. This also results in a smaller index for the Dionysus transfer in Figs. 7.8 and 7.9 because

the thrust arcs occur near periapsis. The last burn after 3000 days, however, occurs at apoapsis to insert

the spacecraft into the final orbit, and the indices for MOE and KS increase considerably towards the end

of the transfer. Due to the smaller number of nodes at apoapsis compared to the conventional sets, this

maneuver cannot be captured accurately, thus resulting in a larger error for MOE and KS.

Moreover, we found in our simulations that MOE and MEE are the only elements that converge if the

initial and final states are linearly interpolated to generate the initial guess. This is appreciated as such a

simple guess is often preferable due to its simplicity. Furthermore, MOE outperform the other coordinate

sets in case the initial guess is generated by propagating the dynamics with tangential thrust. Regardless

7 Assessment of State Vector Representations 106

Table 7.5: Main advantages and disadvantages of each state vector representation.

Set Advantages Disadvantages

Cart. • Easy to include time-dependent constr.
• Good for shape-based initial guesses

• Medium success rate
• Low robustness against poor guesses

Cyl.
• High success rate
• Easy to include time-dependent constr.
• Good for shape-based guesses

• Medium robustness against poor guesses

Sph.
• High success rate
• Easy to include time-dependent constr.
• Good for shape-based guesses

• Medium robustness against poor guesses

MEE

• High success rate
• Easy to include time-dependent constr.
• Good for linear interpolation guesses
• High robustness against poor guesses

• Highly nonlinear B(x) matrix

MOE
• High success rate
• Good for linear interpolation guesses
• High robustness against poor guesses

• Difficult to include time-dependent constr.
• Additional time variable
• Singularity

KSξ
• High success rate (free independent var.)
• Medium robustness against poor guesses

• Low success rate (fixed independent var.)
• Nonlinear final boundary cond.
• Non-minimal set, additional time variable
• Difficult to include time-dependent constr.
• Highly nonlinear B(x) matrix

KSE
• High success rate (free independent var.)
• Medium robustness against poor guesses

• Low success rate (fixed independent var.)
• Nonlinear final boundary cond.
• Non-minimal set, additional time variable
• Difficult to include time-dependent constr.
• Highly nonlinear B(x) matrix

of the value of the thrust magnitude, MOE converge successfully in most cases, directly followed by

MEE. Additionally, trajectories with more than ten revolutions for the Dionysus transfer could only be

found with MOE.

Despite their disadvantages, MOE are an excellent choice for the preliminary design when feasible

trajectories are to be generated reliably and efficiently using convex optimization. Yet, caution is advised

because of the singularity for small inclinations.

8 Homotopic Approach for Trajectory

Optimization in High-Fidelity Models

As adding high-fidelity models often increases the nonlinearity, a standard SCP algorithm may have

difficulties to converge for complex problems. In indirect methods, homotopy-like procedures are often

applied where the complexity of the problem is increased step by step. This chapter addresses the

homotopic approach and how n-body dynamics, solar radiation pressure, and variable specific impulse

and maximum thrust are incorporated in the SCP algorithm. Furthermore, no-thrust constraints are

included in the first-order-hold method, and the effectiveness of the homotopic approach is compared

with the state-of-the-art optimal control software GPOPS-II. Cartesian coordinates are used throughout

this chapter. This chapter is based on our work in [9–11].

8.1 Embedded Homotopic Approach for High-Fidelity Models

In a homotopic approach, a parameter ε ∈ [1, 0] is defined that is gradually reduced from ε = 1

(corresponds to a simpler problem) to ε = 0 (corresponds to the original, more complex problem that is

eventually to be solved). Usually, each subproblem is solved to full optimality, and the step size n is fixed

and defined by the user. This means that the algorithm requires at least n homotopic steps to achieve

convergence. Often, a conservative (i.e., small) value of the step size is chosen to avoid non-convergence.

This procedure is not ideal as it may result in a large number of homotopic steps and thus, iterations and

CPU time increase. Even if a larger step size is chosen and then reduced by some heuristic when the

solver fails, this would require additional (and unwanted) iterations. It would therefore be desirable to

adjust the step size dynamically based on information that can be retrieved from the optimization problem.

Thus, instead of keeping the step size fixed, it is adjusted dynamically in this dissertation. We propose

a homotopy path based on the maximum constraint violation cmax. ε is updated at each SCP iteration

depending on the constraint violation, which is a measure of the progress of the algorithm. Figure 8.1

shows three examples h1, h2, and h3 that define different homotopy paths. A large cmax indicates that

we are far from a feasible solution. Therefore, ε is also large, and we want to solve a simpler problem.

Once the algorithm makes progress towards an optimal solution, it will select smaller ε values until the

107

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 108

log10 cmax

ε

h2

h1

0.0

1.0

log10 cmax,tol δ + log10 cmax,tol log10 cmax,guess

h3

Figure 8.1: Three examples of smooth homotopy paths h1, h2, and h3 that define the relationship between the
homotopic parameter ε and the maximum constraint violation cmax.

desired optimal control problem is solved. For instance, given a relatively simple optimization problem

where the initial guess is good and hence, the initial constraint violation is small, our method can exploit

this knowledge and select larger step sizes. This results in faster convergence. On the other hand, if we

intend to solve a difficult problem where only a poor initial guess is provided, the algorithm will select

smaller step sizes as cmax will decrease only slowly during the iterations.

Selecting a homotopy path may depend on the problem. For example, h1 and h2 in Fig. 8.1 are more

conservative towards the end, whereas h3 decreases ε more slowly at the beginning of the optimization

process. We found in our simulations that the choice is not critical, and a linear path like h1 or h2 is often

a good compromise. The functions are defined at the beginning of the algorithm based on the maximum

constraint violation of the initial guess cmax,guess. Defining

m ..=
εmax − εmin

log10
(
cmax,guess

)
− log10 (cmax,tol)− δ

(8.1)

the homotopy path h1 that is used throughout this chapter can be written as follows:

h1(log10 cmax) = m log10 (cmax)−m [log10 (cmax,tol) + δ] (8.2)

where cmax,guess and cmax,tol denote the maximum constraint violation of the initial guess and the desired

feasibility tolerance, respectively. δ > 0 is a constant to further adjust the path.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 109

n-Body Dynamics

The fidelity of the model is increased by considering the perturbing accelerations anbody of other bodies

in the solar system and the solar radiation pressure aSRP. Omitting the time dependency, the augmented

dynamics then read

f(x,u) =

ṙ

v̇

ẇ

 =

v

−µ r/r3

0

+

0

anbody

0

+

0

aSRP

0

+Bu (8.3)

With regard to the solar radiation pressure (SRP), a simple cannonball model is used where the projected

area ASC of the spacecraft is assumed constant [191], and we have

aSRP =
SSun CR ASC

m

r

r3
(8.4)

with

SSun =
LSun
4π c

(8.5)

LSun = 4π CSun AU2 (8.6)

CR is the reflectivity coefficient of the spacecraft, SSun the solar pressure constant, LSun the luminosity of

the Sun, andCSun the solar constant. c and AU denote the speed of light and astronomical unit, respectively.

Note that the mass m in the denominator of Eq. (8.4) is replaced by ew in the implementation due to the

change of variables (see Section 5.1).

Regarding the n-body dynamics, the n = 10 perturbations of the barycenters of Mercury, Venus,

Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto are considered. The acceleration is

calculated as follows:

anbody =

n∑
i

µi

(
rsat,i

r3sat,i
− ri

r3i

)
(8.7)

µi is the gravitational constant of the ith body, ri is the position of the ith body with respect to the Sun,

and rsat,i = ri−r denotes the position of the ith body with respect to the spacecraft. The time-dependent

positions ri of the perturbing bodies can be obtained using the software SPICE [192].

Due to the additional perturbing accelerations, the new dynamical system is highly nonlinear, and

the dynamics are linearized as per Section 5.1. When including n-body dynamics, however, special

treatment is required when the spacecraft flies in close proximity of another perturbing body (e.g., in case

of flybys). This may become a problem as rsat,i is close to zero and hence, the corresponding denominator

in Eq. (8.7) is close to zero. When integrating the nonlinear dynamics and state transition matrix during

the discretization, the position and velocity of the spacecraft can change rapidly between two integration

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 110

steps. The reason is the large gravitational force in proximity of a planet. If a fixed-step integrator is

used, the resulting perturbing accelerations can vary considerably at each step. As a consequence, the

integration becomes inaccurate, and the SCP method eventually fails to converge. To overcome this issue,

a constraint rsat,i ≥ rmin can be added to require a minimum distance rmin between spacecraft and planet;

flybys are thus avoided. In this dissertation, however, we use a variable-step integrator for a segment

when the condition rsat,i ≤ rmin is satisfied, i.e., when the spacecraft is close to a planet. This ensures

high accuracy without rapid changes and does not unnecessarily constrain the solution space. As it is

only used for very few segments, the computational load does not increase considerably.

Instead of solving the problem with n-body dynamics and SRP directly, we introduce the homotopic

parameters εnbody and εSRP and augment Eq. (8.3) as follows:

f(x,u) =

v

−µ r/r3

0

+ (1− εnbody)

0

anbody

0

+ (1− εSRP)

0

aSRP

0

+Bu (8.8)

During the first iterations, the constraint violations are usually large, and εnbody and εSRP are usually close

to one. This means that the perturbing accelerations are small. When the maximum constraint violation

decreases, ε is gradually decreased until ε = 0, i.e., the original problem is solved. Our rationale is

that the solver is more likely to find a feasible solution when increasing the nonlinearity (and hence,

the linearized term) only step by step compared to solving the full problem directly. Note that such an

approach allows us to define different homotopy paths and ε for each perturbing force so that each term

can be controlled separately. This may be useful if one perturbation is considered more critical and

therefore requires a more conservative step size at the beginning (see also Eq. (8.2) and Fig. 8.1).

Remark 8.1. If a good (e.g., close to feasible) initial guess is provided, it is straightforward to select an

initial homotopic parameter ε0 that is closer to zero, i.e., 0 < ε0 < 1, to shorten the homotopy path, and

reduce the number of iterations.

Variable Specific Impulse and Maximum Thrust

In a real thruster model, the maximum thrust Tmax(Pin(r)) and specific impulse Isp(Pin(r)) depend on

the input power Pin(r), which in turn is a function of the distance r to the Sun. Without loss of generality,

the saturation logic of a real thruster is given by [129]

Tmax =

Tmax(Pin,max) if Pin(r) > Pin,max

Tmax(Pin(r)) if Pin,min ≤ Pin(r) ≤ Pin,max

0 if Pin(r) < Pin,min

(8.9)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 111

20 60 100 140 180
0

1

2

Power, W

T m
ax

,m
N

(a) Pin(r) vs. Tmax(Pin(r)) curve.

0.8 1 1.2 1.4

20

40

60

80

100

120

r, AU

P i
n,

W

0.5

1

1.5

2

2.5

T m
ax

,m
N

Pin
Tmax

(b) Pin(r) and Tmax(r) curves.

Figure 8.2: Typical input power and maximum thrust curves.

where Pin,min and Pin,max denote the minimum and maximum input power, respectively. Whenever the

input power is lower than some threshold Pin,min, no thrust is available. Moreover, Tmax cannot exceed the

threshold Tmax(Pin,max). These functions are often described by nth order polynomials. Typical Pin(r)

and Tmax(Pin(r)) curves are shown in Fig. 8.2. Such a non-smooth representation increases complexity

and results in additional nonlinear constraints. Recalling the dynamics in Eq. (5.11), it becomes evident

that the previously constant Jacobian matrix B now depends on r, i.e., we have B(x) for the variable

Isp case. As a consequence, linearizing the dynamics would yield an additional term corresponding to

the previous control history ū. This dependence on ū is undesirable as it may deteriorate convergence

[171]. Therefore, we propose the approximation f(x,u) ≈ p(x) + B(x̄)u which results in a partial

linearization of the dynamics at x̄:

f(x,u) ≈ A(x̄)x+B(x̄)u+ q(x̄) (8.10)

A similar approach is used for the upper bound of the thrust magnitude in Eq. (5.9) where Tmax(r)

becomes a function of r. Instead of linearizing the constraint, Tmax(r) is approximated by

Tmax(r) ≈ Tmax(r̄) (8.11)

where r̄ denotes the radius of the previous iteration. As the algorithm progresses, ∥r − r∗∥ → 0 and

∥r− r̄∥ → 0 due to the shrinking trust-region size, r∗ being the radius at the optimal solution. Therefore,

r∗ ≈ r̄ when the algorithm determines an optimal solution. Our simulations suggest that this approach

is often advantageous in terms of convergence.

Solving the optimal control problem with a real thruster model directly can be challenging, especially

for large Pin,min or when the spacecraft is far away from the Sun. An example is the transfer to asteroid

Dionysus whose distance to the Sun can be larger than 3 AU, hence resulting in a low Tmax. A standard

way to improve convergence is to solve the problem with fixed Isp and Tmax, and then use the solution

as the new initial guess to solve another optimization problem with the real thruster model. This is not

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 112

ideal due to two reasons: First, the solver might not be able to find a solution even when the solution of

the constant Isp and Tmax case is provided as the initial guess for the real model. This is especially true if

the constant and real thruster models differ a lot (e.g., in the Dionysus transfer), or when the input power

range is small. Secondly, such an approach would require solving another optimization problem with a

potentially significantly different thruster curve, and therefore more computational effort and time. In

this dissertation, two improvements are proposed:

1) A smooth representation of the input power Pin over Tmax curve.

2) A homotopy from higher thrust levels to the real thruster model to enhance convergence.

Using the general hyperbolic tangent function [193], we propose the following smooth Tmax function of

the original relationship in Eq. (8.9):

Tmax =

Tmax(Pin,max) if Pin(r) > Pin,max + ρ ∧ ρ > 0

g(Pin(r)) if Pin,max − ρ ≤ Pin(r) ≤ Pin,max + ρ ∧ ρ > 0

1
2Tmax(Pin(r))

[
tanh

(
Pin(r)−Pin,min

ρ

)
+ 1
]

if Pin(r) < Pin,max − ρ ∧ ρ > 0

(8.12)

with some function g(Pin(r)) that depends on the order of the polynomial of the Pin-Tmax curve, and a

smoothing parameter ρ. If ρ = 0, this reduces to

Tmax = Tmax(Pin,max) (8.13)

For example, given the following thruster model

Tmax(Pin) = a0 + a1Pin (8.14a)

Isp(Pin) = b0 + b1Pin (8.14b)

Pin(r) =
1

r2
(8.14c)

the piecewise defined functions in Eq. (8.9) are smoothly connected using a second-order polynomial:

g(Pin(r)) = c0 + c1 Pin + c2 P
2
in (8.15)

where

c0 =
a1 P

2
in,max + 2 a1 Pin,max ρ− a1 ρ

2 + 4 a0ρ

4 ρ
(8.16a)

c1 =
a1 (Pin,max + ρ)

2 ρ
(8.16b)

c2 = − a1
4 ρ

(8.16c)

Higher orders can be included in a similar way by increasing the degree of the polynomial g(Pin(r)).

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 113

The homotopy from higher to lower thrust levels is achieved by increasing Pin,max (see Fig. 8.3a) and

by shifting the Pin-Tmax curve along the x-axis (see Fig. 8.3b), hence increasing or decreasing Tmax for a

given input power which is a function of the distance to the Sun. The effect of ρ is also illustrated in Fig.

8.3b. Combining both yields the homotopic approach for the variable Tmax case: For larger values of ε

(i.e., larger constraint violations), the nominal curve (solid line corresponding to ε = 0 in Fig. 8.3b) is

shifted to the left. Moreover, the maximum input power is increased, therefore increasing the available

maximum thrust. At the same time, the curve is made smoother to have no abrupt changes in the thrust

values, which is beneficial for convergence. As the algorithm progresses, the constraint violation reduces

and consequently, the Power-Tmax curve is shifted back towards the original one and the smoothness is

reduced. This way, the complexity is gradually increased until the original problem is solved. We define

mappings M∆P , Mρ, and MPin,max that map the shifting of the power curve ∆P , the smoothing ρ, and

the change of Pin,max to the homotopic parameter ε ∈ [0, 1] and vice versa:

M∆P : ε 7−→ ∆P (8.17a)

Mρ : ε 7−→ ρ (8.17b)

MPin,max : ε 7−→ Pin,max (8.17c)

We use the following linear relationship:

M∆P : ε 7−→ ∆Pmin +
∆Pmax −∆Pmin

εmax − εmin
(ε− εmin) (8.18a)

Mρ : ε 7−→ ρmin +
ρmax − ρmin
εmax − εmin

(ε− εmin) (8.18b)

MPin,max : ε 7−→ Pin,max +
Pmax − Pin,max
εmax − εmin

(ε− εmin) (8.18c)

with problem dependent constants ∆Pmin, ∆Pmax, ρmin, ρmax, and Pmax. εmin and εmax are the lower

and upper bound of the homotopic parameter, in general 0 and 1. Often, ∆Pmin = 0, and ∆Pmax can

be chosen such that Tmax = Tmax(Pin,max) over a sufficiently large input power range. ρmin and ρmax

define the minimum and maximum smoothing parameter, respectively. Generally, values of the order

100 for ρmax and values close to zero for ρmin ensure a sufficient smoothing. Pmax denotes the maximum

allowable input power that is to be chosen such that Pmax ≥ Pin,max. The inverse mappings M−1
∆P , M−1

ρ ,

and M−1
Pin,max

are defined accordingly.

In case the same homotopy path h is used for n-body dynamics, SRP, and variable maximum

thrust, it suffices to define only a single parameter ε that controls every homotopy in the optimization

simultaneously. If different paths are used, one can define

ε ..= max
(
εnbody, εSRP, εTmax

)
(8.19)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 114

60 100 140 180 220
0

2

4

Power, W

T m
ax

,m
N

n = 1.0
n = 0.7
n = 0.4
n = 0.0

(a) Increasing Pin,max.

40 60 80 100 120 140 160
0

1

2

Power, W

T m
ax

,m
N

n = 1.0, d = 5.0
n = 0.7, d = 3.5
n = 0.4, d = 2.0
n = 0.0, d = 0.0

(b) Shifting Pin-Tmax curve.

Figure 8.3: Overview of homotopy techniques for variable Tmax.

to keep the number of parameters and complexity of the algorithm at a minimum.

Remark 8.2. As in any direct method, the control constraints are only satisfied at the nodes. Due to the

linear interpolation of the controls in FOH between the nodes, there will be a minor mismatch between

the interpolated controls and the available maximum thrust if the Tmax(t) curve is nonlinear. This error,

however, can be made arbitrarily small if more nodes are added in the corresponding segments.

Adaptive Trust-Region Method

We recall the trust-region method of Section 5.2 that uses the ratio ρ(k) of the actual and predicted cost

reductions at iteration k to measure the progress and decide whether to shrink or increase the trust-region

size R (see, e.g., Eq. (5.38)). This procedure often works well in practice. However, when a homotopic

approach is included, such methods can deteriorate convergence if not modified appropriately. If no

homotopy is considered, the algorithm updates the trust region such that the trajectory is driven towards

the optimal solution x∗ as illustrated in Fig. 8.4. If a homotopy is included, the algorithm progresses in

a similar way as long as ε does not change. We recall that the previous solution is used as the new initial

guess. When εj changes to εj+1, the constraint violation increases because the constraints also (slightly)

change. Therefore, the previously optimal trajectory will not satisfy all constraints anymore. In addition,

the new optimal solution x∗(εj+1) will also be different. As a consequence, it might happen that the

new optimal path associated with εj+1 lies outside of the trust region defined by R. Even though the

algorithm will still often be able to reduce the constraint violation in the following iterations by reducing

the trust-region size, the followed path is different from the optimal one. This can eventually result

in a non-feasible (and non-optimal) solution as shown in Fig. 8.5. This is especially true for difficult

problems.

We propose an adaptive trust-region update to overcome this issue. Instead of using the same trust-

region size when εj changes to εj+1, R is increased to expand the feasible region. Thus, the algorithm

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 115

is able to reach the new optimal solution x∗(εj+1) as illustrated in Fig. 8.6. Even though expanding R

to some large, fixed value might often be sufficient to reach the new optimal path, this approach would

require a considerable amount of additional iterations to reduce the trust-region radius again. Moreover,

finding an appropriate value for R(εj+1) is not intuitive.

R

x∗

x0

SCP path

Decreasing
cost

Figure 8.4: Change of the trust-region radius and typical SCP path without a homotopic approach.

x∗(εj+1)R

Solving problem εj

εj

εj

x∗(εj)

x0

Updating εj −→ εj+1

SCP path
opt. path for εj
opt. path for εj+1

x∗(εj+1)R

Solving problem εj+1

εj

εj

x∗(εj)

εj+1

x0

New path for εj+1

Decreasing
cost

Figure 8.5: Change of the trust-region radius and typical SCP path when the trust-region radius is not updated
appropriately within a homotopic approach.

As the constraint violations cviol change when the homotopic parameter is updated, it is reasonable to

define an update mechanism based on the difference ∆cviol of the constraint violations. Figure 8.7 shows

the ratio σ = R(εj+1)/R(εj) = Rnew/Rold over ∆cviol = log10(∥cviol(εj+1)∥1) − log10(∥cviol(εj)∥1)

for several hundreds of simulations with different targets and initial guesses, cviol being a vector that

contains the violations of all constraints. Note that we seek the maximum trust-region radius that is

accepted after the homotopic parameter is updated to ensure the largest feasible region possible; this

value is denoted by R(εj+1). We propose to fit the data points using the following equation:

σ =
R(εj+1)

R(εj)
= C0 + C1 (∆cviol − C2)

n (8.20)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 116

x∗(εj+1)R

Solving problem εj

εj

εj

x∗(εj)

x0

Updating εj −→ εj+1

and increasing radius

SCP path
opt. path for εj
opt. path for εj+1

x∗(εj+1)

R

Solving problem εj+1

εj

εj

x∗(εj)

x0

εj+1

New path for εj+1

Decreasing
cost

Figure 8.6: Change of the trust-region radius and typical SCP path when the trust-region radius is updated
appropriately within a homotopic approach.

0 1 2 3 4 5
0

100

200

300

400

500

Δ2viol

f

Data points
Fitted curve

Figure 8.7: Relationship between the constraint violation and ratio of new and old trust-region radii.

where Ci (i = 0, 1, 2) and n are the coefficients and exponent, respectively. In this dissertation, we use

C0 = 1.8186, C1 = 5.3518, C1 = 0.3974, and n = 3. The new trust-region radius R(εj+1) is then

calculated by the relationship

R(εj+1) = γ σ R(εj) (8.21)

with some factor γ > 0 to increase the flexibility of the update mechanism. Although one could simply

set R(εj+1) equal to the initial trust-region size or some other large value, the proposed approach requires

significantly fewer iterations as the factor σ is not fixed, but rather adjusted dynamically based on the

current information at each iteration.

Flowchart of the Algorithm

The flowchart of the homotopic approach is illustrated in Fig. 8.8. After solving the convexified problem,

the trust-region radius is updated as in the standard SCP method. The homotopic parameter is then

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 117

adjusted based on the predefined homotopy path. Additional parameters ∆εmin and ∆εmax are introduced

that denote the minimum and maximum allowable changes of ε, respectively. This ensures that the

step size is neither too small (which would require more iterations) nor too large (which might result in

non-convergence). Furthermore, the ε domain is divided into two regions with different values of ∆εmin

and ∆εmax. In particular, we have

1) ∆εmin,1, ∆εmax,1 if ε ∈ [y1, 1]

2) ∆εmin,2, ∆εmax,2 if ε ∈ [0, y1)

where y1 ∈ (0, 1) defines the switching between the different minimum and maximum step sizes. In

this work, we use y1 = 0.7 and ∆εmin,1 = 0.0, ∆εmax,1 = 0.025, and ∆εmin,2 = 0.05, ∆εmax,2 = 0.10.

Based on our simulations, the most critical part of the algorithm is during the first iterations when ε = 1

and the linear constraint violations are large. This is often the case if the initial guess is poor. Therefore,

it is convenient to use small values for ∆εmin and εmax at the beginning. This means that the optimal

solution of the problem with the updated ε changes only slightly, and hence, the solver is more likely to

find a solution. Once the algorithm makes progress, ∆εmin and ∆εmax are increased to avoid an excessive

number of iterations. If the homotopic parameter changes, the constraint violations are updated and the

trust-region size is expanded based on Eq. (8.21). The process continues until an optimal solution is

found.

8.2 No-Thrust Constraints

Although operational constraints are important for real space missions, they are rarely included in the

optimization process. The obtained thrust profiles in the literature often require continuous thrust for

several weeks or even months. In reality, this is not feasible, for example due to hardware or mission

constraints. Duty cycles are often imposed where thrusting and coasting periods alternate. In an

autonomous guidance scenario where the spacecraft itself has to determine its reference trajectory, it is

of paramount importance that mission-compliant trajectories are computed. In this dissertation, we focus

on operational constraints where the thruster has to remain off for certain periods. We consider these the

most challenging ones because other constraints, such as thruster pointing constraints, only restrict the

direction of the thrust. We extend the approach in [136] where the ZOH discretization, linear dynamics,

and a single and fixed thrusting period per segment are considered for small-body proximity operations.

Given a trajectory segment [tk, tk+1], we define n required no-thrust periods in this segment as

[ti, ti +∆toff,i], ∀i = 1, . . . , n (8.22)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 118

Input:
SCP parameters, parameters for

homotopic approach

Calculate initial guess

Determine homotopy path
based on cmax,tol and cmax,guess

Set ε = 1

Solve convexified problem

Calculate cmax

Converged?

Optimal solution
(x∗, u∗)

Update trust-region radius

Update ε based on homotopy path h:

ε = h(cmax)

Determine εmin and εmax:

if ε ∈ [y1, 1] −→ εmin,1, εmax,1

if ε ∈ [0, y1) −→ εmin,2, εmax,2

Did ε change?

Update constraint
violations

Expand trust-region radius

Yes

No

Yes No

Figure 8.8: Flowchart of the homotopic approach.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 119

tk t1 t2 tk+1

t

u

t

T

Tmax

tk t1 t2 tk+1

Figure 8.9: Standard linear interpolation for no-thrust periods and corresponding thrust magnitude curve.

where ti > tk and ti + ∆toff,i < tk+1 without loss of generality, i.e., the no-thrust periods ∆toff,i lie

strictly within a trajectory segment. This assumption is reasonable because the location of the nodes (and

thus, endpoints of a segment) can be chosen arbitrarily. Moreover, ∆toff is in general much smaller than

one segment. If i > 1, it is assumed that the no-thrust periods are not overlapping, i.e., ti+1 > ti+∆toff,i.

Therefore,

u(t) = 0, ∀t ∈ [ti, ti +∆toff,i] (8.23)

and

u(t) = λ̃−(t)uk + λ̃+(t)uk+1, ∀t ̸∈ [ti, ti +∆toff,i] (8.24)

where λ̃−(t) and λ̃+(t) are the factors that define the control interpolation. Note that these must be

chosen differently compared to the standard formulation in Eq. (6.64). A fuel-optimal solution yields a

bang-bang control structure where the magnitude u = Tmax or u = 0. As we defined the accelerations as

our control variables, this piecewise constant relationship does not hold anymore; instead, the magnitude

of the acceleration Γ increases over time due to the decreasing mass when thrusting. A standard linear

interpolation would yield a jump in the thrust magnitude curve as the acceleration is erroneously assumed

increasing even during no-thrust periods. This scenario is illustrated in Fig. 8.9 with one no-thrust period

[t1, t2] in a segment [tk, tk+1]. Depending on whether the constant or variable maximum thrust and

specific impulse case is considered, two different interpolation methods are presented in the following

subsections to resolve this problem.

Regardless of the interpolation method and assuming one no-thrust period [t1, t2] in a segment

[tk, tk+1], the state at t1 can be computed as:

x(t1) = Φ(t1, tk)x(tk) +Φ(t1, tk)

∫ t1

tk

Φ−1(ξ, tk) λ̃−(ξ)B(ξ) dξ u(tk)

+Φ(t1, tk)

∫ t1

tk

Φ−1(ξ, tk) λ̃+(ξ)B(ξ) dξ u(t1) +Φ(t1, tk)

∫ t1

tk

Φ−1(ξ, tk)q(ξ) dξ

(8.25)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 120

Next, the final state x(t2) of the coasting period is calculated:

x(t2) = Φ(t2, t1)x(t1) +Φ(t2, t1)

∫ t2

t1

Φ−1(ξ, t1)q(ξ) dξ (8.26)

Note that there is no control term. The final step is to calculate the state at the end of the segment:

x(tk+1) = Φ(tk+1, t2)x(t2) +Φ(tk+1, t2)

∫ tk+1

t2

Φ−1(ξ, t2) λ̃−(ξ)B(ξ) dξ u(t2)

+Φ(tk+1, t2)

∫ tk+1

t2

Φ−1(ξ, t2) λ̃+(ξ)B(ξ) dξ u(tk+1)

+Φ(tk+1, t2)

∫ tk+1

t2

Φ−1(ξ, tk)q(ξ) dξ

(8.27)

Substituting Eq. (8.25) into Eq. (8.26), and Eq. (8.26) into Eq. (8.27) yields

x(tk+1) = A(t2)A(t1)A(tk)x(tk) +A(t2)A(t1)B
−(tk)u(tk) +A(t2)A(t1)B

+(tk)u(t1)

+A(t2)A(t1)q(tk) +A(t2)q(t1) +B−(t2)u(t1) +B+(t2)u(t2) + q(t2)

(8.28)

where

A(tk+1, t2) = Φ(tk+1, t2), A(t2, t1) = Φ(t2, t1), A(t2, tk) = Φ(t2, tk) (8.29a)

B−(tk+1, t2) = Φ(tk+1, t2)

∫ tk+1

t2

Φ−1(ξ, tk)B(ξ) λ̃−(ξ) dξ (8.29b)

B+(tk+1, t2) = Φ(tk+1, t2)

∫ tk+1

t2

Φ−1(ξ, tk)B(ξ) λ̃+(ξ) dξ (8.29c)

B−(t1, tk) = Φ(t1, tk)

∫ t1

tk

Φ−1(ξ, tk)B(ξ) λ̃−(ξ) dξ (8.29d)

B+(t1, t1) = Φ(t1, tk)

∫ t1

tk

Φ−1(ξ, tk)B(ξ) λ̃+(ξ) dξ (8.29e)

q(tk+1, t2) = Φ(tk+1, t2)

∫ tk+1

t2

Φ−1(ξ, tk)q(ξ) dξ (8.29f)

q(t2, t1) = Φ(t2, t1)

∫ t2

t1

Φ−1(ξ, t1)q(ξ) dξ (8.29g)

q(t1, tk) = Φ(t1, tk)

∫ t1

tk

Φ−1(ξ, tk)q(ξ) dξ (8.29h)

B(ξ) and q(ξ) are the Jacobian matrix and constant part of the linearization, respectively, as defined in

Eqs. (5.11) and (5.14) in Section 5.1. It is straightforward to extend this approach to more no-thrust

periods.

The only unknowns are the interpolated controls u(t1) and u(t2). Two methods are proposed to show

how they can be determined.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 121

tk t1 t2 tk+1

uk

t

u

u1

u2 = u1

uk+1,linear

uk+1

θ

θ

∆uk+1

(a) One no-thrust period in one segment.

tk t1 t2 t3 t4 tk+1

uk

t

u

u1

u2 = u1 u3

u4 = u3

uk+1,linear

uk+1

∆uk+1

θ
θ

θ

(b) Two no-thrust periods in one segment.

Figure 8.10: Modified linear interpolation when no-thrust periods are considered with constant Tmax and Isp.

Constant Maximum Thrust and Specific Impulse

When Tmax is constant, we have T (t) = Tmax for thrusting periods, T (t) ..= ∥T(t)∥2. Therefore,

ṁ(t) = Tmax/(g0 Isp) is also constant ∀t ̸∈ [ti, ti +∆toff,i] because Isp = const., and the mass decreases

linearly. As Γ(t) = T (t)/m(t), we thus propose a piecewise linear interpolation where the slope of

Γ(t) (and hence the angle θ) is constant. This way the resulting thrust magnitude is piecewise constant

in that segment as expected. Figure 8.10a illustrates the interpolated thrust acceleration in one segment

with one no-thrust period. Given the optimization variables uk and uk+1 and times ∆t1 = t1 − tk and

∆t2 = tk+1 − t2, and using

tan θ =
∆u1

∆t1
=

u1 − uk

∆t1
(8.30)

tan θ =
∆u2

∆t2
=

uk+1 − u1

∆t2
(8.31)

the interpolated controls u1 = u(t1) = u2 = u(t2) can be computed as follows:

u1 = u2 =
∆t2

∆t1 +∆t2︸ ︷︷ ︸
λ−(t)

uk +
∆t1

∆t1 +∆t2︸ ︷︷ ︸
λ+(t)

uk+1 (8.32)

It is straightforward to determine the interpolated controls for n > 1 off periods. For example, for n = 2

(see Fig. 8.10b) we obtain

u1 = u2 =
∆t2 +∆t3

∆t1 +∆t2 +∆t3
uk +

∆t1
∆t1 +∆t2 +∆t3

uk+1 (8.33)

u3 = u4 =
∆t3

∆t1 +∆t2 +∆t3
uk +

∆t1 +∆t2
∆t1 +∆t2 +∆t3

uk+1 (8.34)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 122

Variable Maximum Thrust and Specific Impulse

The variable maximum thrust and specific impulse case requires a different approach as ṁ cannot

be considered constant anymore. Instead of linearly interpolating the accelerations, we propose to

approximate the thrust vector T̃ ..= [T⊤, T (t)]⊤ with affine functions:

T̃(t) =
tk+1 − t

tk+1 − tk︸ ︷︷ ︸
=..λ−(t)

T̃k +
t− tk

tk+1 − tk︸ ︷︷ ︸
=..λ+(t)

T̃k+1 = λ−(t) T̃k + λ+(t) T̃k+1, t ∈ [tk, tk+1] (8.35)

Substituting T̃(t) = u(t)m(t) into Eq. (8.35) and solving for u(t) yields

u(t) =
λ−(t)m(tk)

m(t)
uk +

λ+(t)m(tk+1)

m(t)
uk+1

≈ λ−(t) m̄(tk)

m̄(t)
uk +

λ+(t) m̄(tk+1)

m̄(t)
uk+1

(8.36)

where the mass is approximated using the value of the reference trajectory. Evaluating Eq. (8.36) at ti

(i = 1, 2 for one no-thrust period) allows us to determine the interpolated controls with respect to the

accelerations. The only unknown is m̄(t1) = m̄(t2) which can be calculated by integrating Eq. (2.27):

m̄(t1) = m̄(tk) +

∫ t1

tk

˙̄m dt = m̄(tk)−
1

g0

∫ t1

tk

T̄ (t)

Īsp(t)
dt (8.37)

As in Eq. (8.35), T̄ (t) and Īsp(t) are assumed to be piecewise affine functions. Recalling that m = ew,

m̄(t1) can be computed analytically. It follows that

u(t1) =
λ−(t1) m̄(tk)

m̄(t1)︸ ︷︷ ︸
=.. λ̃−(t1)

uk +
λ+(t1) m̄(tk+1)

m̄(t1)︸ ︷︷ ︸
=.. λ̃+(t1)

uk+1 = λ̃−(t1)uk + λ̃+(t1)uk+1 (8.38)

u(t2) =
λ−(t2) m̄(tk)

m̄(t2)︸ ︷︷ ︸
=.. λ̃−(t2)

uk +
λ+(t2) m̄(tk+1)

m̄(t2)︸ ︷︷ ︸
=.. λ̃+(t2)

uk+1 = λ̃−(t2)uk + λ̃+(t2)uk+1 (8.39)

Our simulations suggest that this successive approximation approach yields a good compromise in terms

of convergence, accuracy, and computational effort.

8.3 Bang-Bang Mesh Refinement

A common problem in direct methods is that the constraints are only satisfied at discrete points. Therefore,

the solution is to be interpolated to obtain continuous state and control profiles. With regard to fuel-optimal

problems with bang-bang control structures, approximating the control with higher-order polynomials

results in oscillations at the edges of each segment due to the Runge phenomenon. Although low-order

approximations may capture the discontinuous control profile more accurately, it is very unlikely that the

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 123

initially chosen mesh can accurately represent the bang-bang behavior. Instead, controls are obtained

that are neither umax nor umin. Therefore, this section presents a mesh refinement method that yields

accurate bang-bang control profiles.

The goal is to obtain a control profile where the control magnitude umag either takes its minimum

umin or maximum value umax, i.e., umag = umin or umag = umax. Determining the switching times, that

is, the times when the control changes from on to off or vice versa, requires the costates of the OCP. Once

the switching times are known, the control structure is given, and the mesh refinement can be applied.

Computation of Costates and Switching Times for RPM/FRPM

After solving the discretized OCP, the resulting Lagrange multipliersΛ(k) ∈ Rnx×Nk are used to compute

the values of the costates λ(k)
i ∈ Rnx at the ith collocation point. The same notation as in Sections 6.1.1

and 6.1.2 is used.

As the first point of the first segment in FRPM is not collocated, the costates of the first segment are

determined as follows using the covector mapping theorem in [119]:

λ
(1)
0 = −Λ(1)D

(1)
∗0 (8.40)

λ
(1)
i =

Λ
(1)
∗i

w
(1)
i

, i = 1, . . . , Nk (8.41)

where the notation (·)∗i indicates the ith column. Recalling the linking condition in Eqs. (6.47)–(6.49),

the costates of the remaining segments are:

λ
(k)
i =

Λ
(k)
∗i

w
(k)
i

, i = 1, . . . , Nk, k = 2, . . . ,K (8.42)

In RPM, the last node of a segment is not collocated. Therefore, the costates of the last segment are

calculated using [119]

λ
(K)
NK

= −Λ(K)D
(K)
∗NK

(8.43)

λ
(K)
i =

Λ
(K)
∗i

w
(K)
i

, i = 1, . . . , NK − 1 (8.44)

For the remaining segments, we use the linking conditions in Eqs. (6.5)–(6.7) to obtain

λ
(k)
i =

Λ
(k)
∗i

w
(k)
i

, i = 1, . . . , Nk, k = 1, . . . ,K − 1 (8.45)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 124

We rewrite the equations of motion as

f =

ṙ

v̇

ẇ

 =

v

g(r) + Γα

−Γ/(g0 Isp)

 (8.46)

with g(r) = −µ r/r3, r = ∥r∥2, and the thrust direction unit vector α. Considering the objective

function J = −w(tf), the Hamiltonian of the problem can be stated as

H = L+ λ⊤f = λ⊤
r v + λ⊤

v [g(r) + Γα]− λw
Γ

g0 Isp
(8.47)

because L = 0. λr, λv, and λw refer to the costates associated with the position, velocity, and

modified mass, respectively. Substituting the optimal thrust direction α∗ = −λv/∥λv∥2 = −λv/λv

with λv = ∥λv∥2 into Eq. (8.47) and rearranging terms yields

H = λ⊤
r v + λ⊤

v g(r) + Γ

(
−λv −

λw

g0 Isp

)
︸ ︷︷ ︸

=..S

(8.48)

According to Pontryagin’s minimum principle [17], an optimal trajectory minimizes the Hamiltonian and

hence, the characteristic bang-bang control profile in fuel-optimal problems solely depends on the sign

of the switching function S. The optimal Γ∗ is therefore given by

Γ∗ =

0 if S > 0

Γmax if S < 0

(8.49)

As a consequence, the switching times (i.e., when S changes its sign) and control structure can be

computed once the costates are known. However, because Γmax depends on the mass and is therefore not

constant, it is often beneficial to use the thrust components T and magnitude T as the control variables

instead of accelerations, and the mass m instead of w. Using the corresponding objective function

J = −m(tf), the Hamiltonian function H̃ reads

H̃ = λ⊤
r v + λ⊤

v g(r) + T

(
−λv

m
− λm

g0 Isp

)
︸ ︷︷ ︸

=.. S̃

(8.50)

The optimal T ∗ is then

T ∗ =

0 if S̃ > 0

Tmax if S̃ < 0

(8.51)

Therefore, assuming constant specific impulse and maximum thrust, Tmax is also piecewise constant.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 125

Remark 8.3. Using the linearized dynamics in the formulation of the Hamiltonian

H = L+ λ⊤ [A(x̄, ū)x+B(x̄, ū)u+ q(x̄, ū)] (8.52)

to calculate the costates and switching times will yield similar results because a converged SCP solution

satisfies the nonlinear dynamics. We compared both versions in our numerical simulations and did not

notice significant differences.

Computation of Costates and Switching Times for FOH

As there is no equivalent covector mapping theorem for FOH, we use a different approach to determine

the switching times. We make use of the necessary conditions in Eqs. (2.8), (2.9), (2.11) and (2.12)

ẋ = H⊤
λ (8.53)

λ̇ = −H⊤
x (8.54)[

λ⊤ − ϕx − κ⊤hx

]
tf

= 0⊤ (8.55)

[h]tf = 0 (8.56)

where

ϕ(x(tf)) = −w(tf) (8.57)

h(x(tf)) =

r(tf)− rf

v(tf)− vf

 (8.58)

Assuming x = [r⊤,v⊤, w]⊤ with r ∈ Rnr , v ∈ Rnv , and w ∈ Rnw , the first q ..= nr + nv states are

prescribed at the final time tf . Because the final mass is free, Eq. (8.55) reduces to

λj(tf) =

κj , j = 1, . . . , q

∂ϕ

∂w
= −1, j = q + 1, . . . , nx

(8.59)

In case of Cartesian coordinates, we have nx = 7, nr = nv = 3, and nw = 1. This means that the final

costate of the modified final mass w(tf) is −1, and the final costates of the prescribed states r and v at

tf are simply the constant multipliers κ ∈ Rq. As these are obtained in the optimization process and

returned by the solver as solution variables, it is possible to back-propagate the dynamics of the states and

costates simultaneously using the optimized states and controls to determine the continuous profiles of

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 126

the costates. According to Eqs. (8.53) and (8.54), taking the partial derivative of the Hamiltonian with

respect to the costate λ and state x yields the full set of equations of motion:

ṙ

v̇

ẇ

λ̇r

λ̇v

λ̇w

=

v

− µ

r3
r− Γ

λv

λv

− Γ

g0 Isp
µ

r3
λv −

3µ

r5
r⊤ λv r

−λr

0

(8.60)

Remark 8.4. Using the optimized control components τ ∗ = Γ∗α∗ directly in Eq. (8.60) for v̇ instead

of the optimal thrust direction α∗ = −λv/λv is equivalent due to the optimality of the solution.

Mesh Refinement for RPM and FRPM

The solution to the optimal control problem is only an approximation as states and controls are known only

at the discretization points. Therefore, any direct method can intrinsically not determine a discontinuous

control structure accurately. The costates and switching times (that is, the zeros of S or S̃) are also only

estimations. The values of the switching times can be refined by incorporating them into the optimization

process to eventually obtain an accurate bang-bang control. In [143], a similar approach was applied to

simple NLP problems. We adapt the bang-bang mesh refinement to solve complex low-thrust optimization

problems in a convex programming environment for the first time. The complete procedure is depicted

in Fig. 8.11. We limit ourselves to FRPM; it is straightforward to extend the approach to RPM.

Start Solve OCP on
initial mesh

Determine costates
and switching times

Define new mesh: switching
times as segment breaks

Include switching times as
optimization parameters

Set control values to
umin or umax

Solve new OCPEnd

Figure 8.11: Flowchart of bang-bang mesh refinement process for RPM/FRPM.

We define the vector of all switching times as ts = [ts,1, ts,2, ..., ts,j]
⊤ and divide the trajectory into

K = j + 1 segments where j is the number of switching times. Thus, each ts,j lies on the corner of a

segment as shown in Fig. 8.12.

The factors ∆(k) for the time transformation then become

∆(1) =
ts,1 − t0

2
, ∆(2) =

ts,2 − ts,1
2

, . . . , ∆(K) =
tf − ts,j

2
(8.61)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 127

t

x

t

u

t0 ts,1 ts,2 ts,j tf. . .

. . .

. . .

s(1) s(2) s(j+1). . .

Figure 8.12: Two-dimensional illustration of switching times ts and segments s(k) for some state x and control
u curves.

and cause the formerly convex dynamical constraints in Eq. (6.54) to become nonconvex. Introducing

and linearizing

F(x
(k)
i ,u

(k)
i , t

(k)
0 , t

(k)
Nk

) ..=
t
(k)
Nk

− t
(k)
0

2
f(x

(k)
i ,u

(k)
i), i = 1, . . . , Nk, k = 1, . . . ,K (8.62)

at
(
x̄
(k)
i , ū

(k)
i , t̄

(k)
0 , t̄

(k)
Nk

)
yields the dynamical constraints:

D
(k)
i0 x

(k)
0 +

Nk∑
j=1

D
(k)
ij x

(k)
j = A

(k)
i x

(k)
i +B

(k)
i u

(k)
i +C

(k)
i t

(k)
0 +E

(k)
i t

(k)
Nk

+ q
(k)
i + ν

(k)
j ,

i = 1, . . . , Nk, k = 1, . . . ,K

(8.63)

with the same notation as in Section 6.1.2, and

C
(k)
i

..= ∇t0F
(
x̄
(k)
i , ū

(k)
i , t̄

(k)
0 , t̄

(k)
Nk

)
(8.64)

E
(k)
i

..= ∇tNk
F
(
x̄
(k)
i , ū

(k)
i , t̄

(k)
0 , t̄

(k)
Nk

)
(8.65)

q
(k)
i

..= F
(k)
i −A

(k)
i x̄

(k)
i −B

(k)
i ū

(k)
i −C

(k)
i t̄

(k)
0 −E

(k)
i t̄

(k)
Nk

(8.66)

F
(k)
i

..= F(x̄
(k)
i , ū

(k)
i , t̄

(k)
0 , t̄

(k)
Nk

) (8.67)

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 128

It follows that C(k)
i ∈ Rnx and E

(k)
i ∈ Rnx . The combined linear equality constraint in Eq. (6.21) changes

to

Â

(1)

0
B̂

(1)

0
1̂
(1)

0
T

(1)
s

0

. . .
0

. . .
0

.

Â
(K)

B̂
(K)

1̂
(K)

T
(K)
s

X

U

ν

ts

=

q̂(1)

...

q̂(K)

 (8.68)

where

T(1)
s =

−E

(1)
1

0...

−E
(1)
N1

 , T(2)
s =

−C

(2)
1 −E

(2)
1

0...
...

−C
(2)
N2

−E
(2)
N2

 ,T(3)
s =

 0N3 nx×1

−C
(3)
1 −E

(3)
1

0...
...

−C
(3)
N3

−E
(3)
N3

 ,

T(4)
s =

 0N4 nx×2

−C
(4)
1 −E

(4)
1

0...
...

−C
(4)
N4

−E
(4)
N4

 , . . . , T(K) =

 0

−C
(K)
1

...

−C
(K)
NK

(8.69)

As the (estimated) switching times are known, the thrust magnitude T (t(k)i) at the ith node of segment k

can be predefined based on the sign of the switching function S(t
(k)
i):

T (t
(k)
i) = 0

T (t
(k)
i) = Tmax

if S(t(k)i) > 0

if S(t(k)i) < 0
(8.70)

This is done by setting the upper and lower bounds of T (k)(ti) accordingly. The linear constraints

t0 ≤ ts,1 ≤ . . . ≤ ts,j ≤ tf (8.71)

are added to ensure the correct order of the switching times. The solution of the resulting optimization

problem yields an accurate bang-bang control profile along with the optimized switching times.

Remark 8.5. It is straightforward to include additional segment breaks to have more than j+1 segments,

j being the number of switching times. Furthermore, the number of nodes per segment can be adjusted

to achieve the desired accuracy.

Mesh Refinement for FOH

Due to the explicit numerical integration of the dynamics and state transition matrix between two

segments tk and tk+1, the accuracy of the solution is often higher compared to RPM/FRPM if a higher-

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 129

Start Solve OCP
Determine switching

function and
switching times

Adjust nodes around
switching times

Accuracy
achieved?

Predefine umax

based on sign of
switching function

Solve OCPEnd

No

Yes

Figure 8.13: Flowchart of bang-bang mesh refinement process for FOH.

order integrator is chosen. Moreover, as the controls are interpolated linearly, the resulting control profile

is often very accurate with respect to a bang-bang structure. It is therefore not necessary to include the

switching times in the optimization. Instead, it is often sufficient to increase the number of nodes in the

neighborhood of the switching times in order to achieve a sufficiently accurate control trajectory. The

procedure is depicted in Fig. 8.13. First, the OCP is solved on the initial mesh. The switching times and

switching function are determined using the costates. Once the locations of the switchings are known, the

number of nodes can be increased in these regions to more accurately capture the on-off profile. These

steps can be repeated until some desired accuracy is achieved, for example if the absolute or relative

change of the computed switching times is smaller than some tolerance. Even though the control profile

is often sufficiently accurate now, we can proceed similarly to RPM/FRPM and predefine the values of

the control magnitude based on the sign of the switching function according to Eq. (8.70). This way, the

control magnitude takes either its minimum or maximum value, thus representing the bang-bang structure

accurately.

8.4 Numerical Simulations

The performance of the developed homotopic approach in terms of success rate, CPU time, and obtained

final mass is compared with a standard SCP method without any homotopy, and the state-of-the-art

optimal control software GPOPS-II [175] in combination with the Sparse Nonlinear Optimizer (SNOPT)

[184]. In addition, it is assessed how SCP performs when no-thrust periods are included, and when mesh

refinement is applied. All simulations are performed in MATLAB on an Intel Core i7-8565 1.80 GHz

Laptop with four cores and 16 GB of RAM. The numerical integration of the state transition matrix in

Eq. (6.67), the nonlinear dynamics in Eq. (5.11), and the integrands of Eqs. (6.68b)–(6.68d) within

SCP is performed using a mex function. The second-order cone program in Eq. (5.23) is solved using

the open-source Embedded Conic Solver (ECOS) [86]. In contrast, GPOPS-II solves the full nonlinear

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 130

Table 8.1: Simulation values for the transfers from SEL2 to the asteroids 2000 SG344 and Dionysus [39, 129].

Parameter SEL2 - 2000 SG344 SEL2 - Dionysus

Initial epoch 04-Feb-2024 12:00:00 UTC 23-Dec-2012 00:00:00 UTC

Initial position r0, AU
[−0.70186065, 0.70623244,

−3.51115× 10−5]⊤
[−0.023941014, 0.99325372,

−3.02763× 10−5]⊤

Initial velocity v0, VU
[−0.73296949, −0.71590485,

4.40245× 10−5]⊤
[−1.02637347, −0.02809721,

1.98538× 10−6]⊤

Initial mass m0, kg 22.6 4000

Final position rf , AU [0.41806795, 0.82897114,
−0.00143382]⊤

[−2.04061782, 2.05179130,
0.55428895]⊤

Final velocity vf , VU [−0.96990332, 0.43630220,
−0.00123381]⊤

[−0.14231932, −0.45108800,
0.01894690]⊤

Final mass m(tf), kg free free
Min. input power Pin,min, W 90 62.5

Max. input power Pin,max, W 120 1000

Max. thrust Tmax, N 2.2519× 10−3 0.5

Max. specific impulse Isp,max, s 3067 3000

Spacecraft area ASC, m2 0.05 100

Reflectivity coefficient CR 1.3 1.3

Time of flight tf , days 700 3534

Table 8.2: Parameters of the algorithm.

Parameter Value

Feasibility tol. εc 10−6

Optimality tol. εJ 10−4, 10−5

Max. iterations 1500, 3000
λν , λη 10.0, 10.0
ρ0, ρ1, ρ2 0.01, 0.25, 0.85
α, β 1.5, 1.5
rmin, AU 0.03

Table 8.3: Physical constants in all simulations.

Parameter Value

Gravitational const. µ 1.327 124 4× 1011 km3 s−2

Gravitational accel. g0 9.806 65× 10−3 km s−2

Length unit LU = AU 1.495 978 707× 108 km

Velocity unit VU
√

µAU−1

Time unit TU AU VU−1

Acceleration unit ACU VU TU−1

Mass unit MU m0

program directly. We compute fuel-optimal trajectories from the Sun-Earth Lagrange point L2 (SEL2)

to the asteroids 2000 SG344 and Dionysus. The algorithms stop if the maximum constraint violation

and change in the objective function are smaller than the feasibility εc and optimality εJ tolerances,

respectively. If not stated otherwise, the first-order-hold method is used to discretize the problem.

Relevant parameters for the transfers and algorithms are given in Tables 8.1 and 8.2. Physical constants

are given in Table 8.3, and parameters related to the homotopic approach in Table 8.4. n-body dynamics,

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 131

Table 8.4: Homotopy parameters for the transfers from SEL2 to the asteroids 2000 SG344 and Dionysus.

Parameter SEL2 - 2000 SG344 SEL2 - Dionysus

δ 2.0

n,C0, C1, C2 3, 1.8186, 5.3518, 0.3974
γ 1.0

y1 0.75

∆εmin,1, ∆εmax,1 0.0, 0.025
∆εmin,2, ∆εmax,2 0.05, 0.10
∆Pmin, W 0 0

∆Pmax, W 180 1500

ρmin 10−4 10−4

ρmax 5.0 5.0

Pmax, W 250 2000

solar radiation pressure, and a real thruster model with variable specific impulse and maximum thrust are

considered. In particular, the following thruster model is used for the transfer to 2000 SG344 [129]:

Tmax(Pin) = a0 + a1Pin + a2P
2
in + a3P

3
in + a4P

4
in (8.72a)

Isp(Pin) = b0 + b1Pin + b2P
2
in + b3P

3
in + b4P

4
in (8.72b)

Pin(r) = c0 + c1r + c2r
2 + c3r

3 + c4r
4 (8.72c)

with a0 = −0.7253mN, a1 = 0.024 81mNW−1, a2 = a3 = a4 = 0, b0 = 2652 s, b1 =

−18.123 s W−1, b2 = 0.3887 s W−2, b3 = −0.001 74 s W−3, b4 = 0, and c0 = 840.11W, c1 =

−1754.3 W AU−1, c2 = 1625.01 W AU−2, c3 = −739.87 W AU−3, c4 = 134.45 W AU−4, and r in AU.

For Dionysus, we use a modified version of the model presented in [126]:

Tmax(Pin) = ã0 + ã1Pin (8.73a)

Isp(Pin) = Isp,max (8.73b)

Pin(r) =
1

r2
(8.73c)

where ã1 = 0.1069N, ã1 = 0.1069N, ã2 = 3.9307× 10−4NW−1, and r in AU.

8.4.1 Embedded Homotopic Approach for High-Fidelity Models

Different numbers of nodes and optimality tolerances are considered for GPOPS-II to account for potential

discrepancies in the performance if an inappropriate value is selected. The problem is discretized using

5 and 10 nodes per segment for each transfer (see also Table 8.6). 30 and 15 segments are used for 2000

SG344, respectively, and 50 and 25 segments for Dionysus, respectively. Hence, the total number of

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 132

Table 8.5: Overview of simulations for each target
and initial guess.

Initial guess 2000 SG344 Dionysus

Cubic interpolation 101 301

Propagation 101 51

Table 8.6: Number of nodes and segments for
GPOPS-II.

Target Nodes per segment Segments

2000 SG344 5, 10 30, 15
Dionysus 5, 10 50, 25

nodes is 150 (2000 SG344) and 250 (Dionysus), respectively. The same number of points is chosen for

the first-order-hold discretization method. Two different methods are used to generate the initial guesses:

1) A simple perturbed cubic interpolation that results in infeasible trajectories that neither satisfy the

dynamical nor the endpoint constraints (see also Appendix A). The number of revolutions of the

initial guesses ranges from 1.6 to 2.6 for 2000 SG344, and 4 to 7 for Dionysus. The total number

of simulations is therefore 101 (2000 SG344) and 301 (Dionysus), respectively. The controls are

set to zero.

2) Propagation of the two-body dynamics without SRP and with constant tangential thrust. The

thrust magnitude for each initial guess is varied from 0 to Tmax (2000 SG344) and 0 to 0.5Tmax

(Dionysus), respectively. This results in dynamically feasible trajectories, but the endpoints are far

from the target positions.

An overview of the number of simulations and initial guesses is given in Table 8.5. Note that no-thrust

periods are not included to ensure a fair comparison with GPOPS-II. The results are shown in Figs. 8.14

and 8.15. SCP is the standard SCP method without homotopy, SCPH the homotopic approach. The

notation GPOPSk
i refers to the number of nodes i ∈ {5, 10} per segment, and k ∈ {−4,−5} to the

optimality tolerance for GPOPS-II, i.e., k = −4
∧
= 10−4 and k = −5

∧
= 10−5. Even though we use 10−4

for SCP, selecting a smaller value would not change the results as feasiblity is the main factor for SCP.

With regard to the 2000 SG344 transfer, the benefit of a homotopic approach becomes clear in Fig.

8.14a. When using a cubic interpolation to generate the initial guess, the success rate is only 39% if the full

problem is solved directly with a SCP method. GPOPS-II achieves a slightly lower rate of approximately

31 – 36% regardless of the number of nodes and optimality tolerance. In contrast, SCPH converges in

more than 81% of the cases, thus doubling the success rate. As the perturbing accelerations due to the n

bodies and SRP are small, the thrust continuation is often the most critical part for convergence. However,

there are cases where a continuation of the dynamics is also required to achieve convergence. This is

especially true for poor initial guesses where the initial constraint violation is large. Judging from Fig.

8.14a, GPOPS-II benefits from an initial guess that satisfies the dynamics. Remarkably, considerably

more simulations converge successfully for SCP (67%) and GPOPS-II (50 – 56%) if the propagation

guess is used. In this case, the convergence of SCPH increases only slightly to 70%. The reason is that

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 133

Table 8.7: Number of iterations (median) for SCP and SCPH.

Method
Target SEL2 - 2000 SG344 SEL2 - Dionysus

cubic propagation cubic propagation

SCP 19 24 47 47
SCPH 33 28 105 102

the initial guesses become very poor for larger thrust magnitudes, and even a homotopic approach is not

able to find feasible solutions anymore.

According to Fig. 8.14b, the CPU times are lowest for the propagation guess for all methods. The

standard SCP algorithm requires the least CPU time (median of approximately 9 s), followed by SCPH

that requires a few more iterations (see Table 8.7) with 15 – 26 s, and GPOPS-II (18 – 54 s). As expected,

increasing the number of nodes and decreasing the optimality tolerance result in higher CPU times for

GPOPS-II. Remarkably, regardless of the parameters, the error bars and thus variation of the results are

substantially larger for GPOPS-II. For example, there are cases where the NLP solver requires more than

120 s to find an optimal solution. Although the final masses are similar for all methods, the solutions

obtained with both SCP algorithms are more consistent and closer to the optimal value compared to

GPOPS-II. Furthermore, all methods yield an excellent accuracy as the propagation error (i.e., the

difference between the optimized final state and the state obtained when integrating the dynamics with

the obtained controls) is of the order 100 km (position) and 10−7 km s−1 (velocity) only.

With regard to the Dionysus transfer, SCP converges in only 33% (propagation guess) and 46% (cubic

interpolation guess) of the simulations, therefore performing worst among all methods. Depending on the

optimality threshold, GPOPS-II achieves a success rate of 53 – 65% (εJ = 10−4) and 35 – 55% (εJ =

10−5). As opposed to the 2000 SG344 transfer, the cubic guess yields more converged simulations than the

propagation guess for GPOPS-II for the Dionysus transfer. Again, the success rate can approximately be

doubled if the embedded homotopic approach is used, resulting in more than 95% converged simulations.

Remarkably, it is evident from Fig. 8.15b that both SCP methods require up to one order of magnitude

fewer seconds to converge than GPOPS-II. Even though the CPU time per iteration is similar for SCP

and SCPH, the latter requires twice as many iterations as shown in Table 8.7, and therefore, also twice as

much CPU time. The CPU time of GPOPS-II can in general be reduced significantly (sometimes up tp

50%) if the propagation guess is used. The discrepancy in the final mass becomes more significant now

as shown in Fig. 8.15c. Especially if a larger optimality threshold is chosen, the final masses obtained

with GPOPS-II are considerably lower compared to both SCP methods. Interestingly, SCPH does not

only improve convergence, but also finds more optimal solutions than the standard SCP. The propagation

error is of the order 101 to 102 km (position) and 10−6 to 10−5 km s−1 (velocity), therefore again being

very small.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 134

Typical transfer trajectories and control profiles are shown in Figs. 8.16 and 8.17. These plots confirm

that SCP and GPOPS-II find different solutions. Moreover, the controls obtained with GPOPS-II are

often jittery (see also, e.g., [187]). A much smaller optimality threshold would be required to yield more

accurate bang-bang structures. With regard to the Dionysus transfer, it is evident from Fig. 8.17b that

the available maximum thrust decreases considerably over time as the spacecraft gets farther away from

the Sun.

Even though a homotopic approach requires in general more iterations, the simulations confirm that

convergence can be improved significantly by gradually increasing the complexity of the dynamical

model. Often, only a continuation from higher thrust levels to the real thruster model is sufficient to

achieve convergence. The reason is that the additional accelerations due to the perturbing bodies and SRP

are small, and therefore, a continuation of the dynamics may not be needed. Yet, for large initial constraint

violations (e.g., if the final target state of the initial guess deviates considerably from the desired target

state), we observed that a continuation of the dynamics is also required so that the algorithm converges

successfully. Due to the rapid speed of SCP, the additional iterations may not be as relevant when

compared to methods that usually require more computational effort, such as nonlinear programming

solvers. Instead of using SCP only to generate a decent initial guess for an indirect method that makes use

of a continuation technique [106], our approach embeds the homotopy directly into SCP. Remarkably, the

number of iterations can be reduced considerably with an embedded approach compared to the method

in [10] where each optimization problem is solved to full optimality. Our simulations show that methods

based on convex optimization can yield a high accuracy even if high-fidelity models are considered.

Convergence Analysis

Clearly, a homotopic approach is beneficial when solving more complex problems with convex optimiza-

tion. Ideally, it would be desirable to have some criterion that defines whether a homotopy is needed, or if

a standard SCP method suffices. This way, the additional iterations required by SCPH could be avoided.

The complexity of the problem depends on the problem itself (e.g., number of revolutions, dynamical

system), but also on the quality of the initial guess. For example, a highly nonlinear problem can still be

solved if a decent initial guess is provided. Our simulations suggest that non-perturbed initial guesses

where the final boundary conditions are satisfied and the constraint violations of the dynamics are not too

large, SCP is in general able to converge successfully even if high-fidelity models are considered. There-

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 135

Cubic guess Propagation guess
0

20

40

60

80

100

Su
cc

es
sR

at
e

SCP GPOPS−4
10

SCPH GPOPS−5
10

GPOPS−4
5 GPOPS−5

5

(a) Comparison of success rate.

Cubic guess Propagation guess
0

20

40

60

80

100

120

CP
U

Ti
m

e,
s

SCP
SCPH

GPOPS−4
5

GPOPS−5
5

GPOPS−4
10

GPOPS−5
10

(b) Comparison of CPU time.

Cubic guess Propagation guess
0

5

10

15

20

25

Fi
na

lM
as

s,
kg

SCP GPOPS−4
10

SCPH GPOPS−5
10

GPOPS−4
5 GPOPS−5

5

(c) Comparison of final mass.

Figure 8.14: Comparison of SCP, SCPH and GPOPS-II in terms of success rate, CPU time, and final mass for
the 2000 SG344 transfer. Median values are shown, and the error bars refer to the 80th and 20th
percentile of the corresponding quantity.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 136

Cubic guess Propagation guess
0

20

40

60

80

100

Su
cc

es
sR

at
e

SCP GPOPS−4
10

SCPH GPOPS−5
10

GPOPS−4
5 GPOPS−5

5

(a) Comparison of success rate.

Cubic guess Propagation guess
0

200

400

600

CP
U

Ti
m

e,
s

SCP
SCPH

GPOPS−4
5

GPOPS−5
5

GPOPS−4
10

GPOPS−5
10

(b) Comparison of CPU time.

Cubic guess Propagation guess
0

500

1000

1500

2000

2500

Fi
na

lM
as

s,
kg

SCP GPOPS−4
10

SCPH GPOPS−5
10

GPOPS−4
5 GPOPS−5

5

(c) Comparison of final mass.

Figure 8.15: Comparison of SCP, SCPH and GPOPS-II in terms of success rate, CPU time, and final mass for
the Dionysus transfer. Median values are shown, and the error bars refer to the 80th and 20th
percentile of the corresponding quantity.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x, AU

y,
AU

SCP
GPOPS
SEL2
2000 SG344

(a) Transfer trajectory.

0 200 400 600
0

1

2

·10−3

Time, days

Th
ru

st,
N

SCP
GPOPS

(b) Thrust magnitude.

Figure 8.16: Typical transfer and control trajectories for 2000 SG344 obtained with SCP and GPOPS-II.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 137

−2 0 2
−2

0

2

x, AU

y,
AU

SCP
GPOPS
SEL2
Dionysus

(a) Transfer trajectory.

0 1000 2000 3000
0

0.2

0.4

Time, days

Th
ru

st,
N

SCP
GPOPS

(b) Thrust magnitude.

Figure 8.17: Typical transfer and control trajectories for Dionysus obtained with SCP and GPOPS-II.

fore, we define the normalized maximum constraint violation c̄max and normalized constraint violation

c̄viol as follows:

c̄max =
∥cviol∥∞
∥x∥∞

(8.74)

c̄viol =
∥cviol∥1
∥x∥1

(8.75)

where cviol is a vector that contains all constraint violations, andx is the solution vector. The normalization

accounts for the strong dependence on the initial and final boundary conditions (e.g., larger values of

the coordinates if the target is farther away from the primary body). Figure 8.18 illustrates c̄max and

c̄viol for each cubic interpolation guess for SCP and SCPH. It is apparent that the closer both values are

to zero, the more likely it is that SCP converges successfully (see Fig. 8.18a). Yet, there is no unique

pair of values that clearly defines success or failure of the standard algorithm. For example, SCP fails

if (c̄max, c̄viol) = (0.9, 0.02), but converges again if c̄viol becomes larger (e.g., 0.045 and 0.055). Still,

c̄max ≥ 1.1 seems to be the threshold where the standard SCP cannot find optimal solutions anymore

regardless of the normalized constraint violation. As shown in Fig. 8.18b, this value increases to

approximately 1.4 if a homotopic approach is used. Moreover, a much higher constraint violation is

required so that SCPH fails. Interestingly, the failure and success cases follow a more regular pattern than

in the non-homotopic case. In general, a homotopic approach seems to be useful for a perturbed cubic

guess whenever c̄max ≥ 0.7∧ c̄viol ≥ 0.02. SCPH seems to fail if c̄max ≥ 1.4 or c̄max ≥ 0.8∧ c̄viol ≥ 0.06.

With regard to the propagation guess in Fig. 8.19, only the transfer to 2000 SG344 shows a pattern.

If c̄max ≥ 1.5∧ c̄viol ≥ 0.015, both algorithms seem to fail (even though there very few other cases where

SCP does not converge, see Fig. 8.19a). For Dionysus, however, there does not seem to be a visible

correlation. It therefore may be beneficial to make use of a homotopic approach whenever c̄max ≥ 0.5,

even though SCPH will fail at some point due to the large initial error on the final boundary condition.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 138

0 0.5 1 1.5 2
0

2

4

6

·10−2

2̄max

2̄
vi

ol

Dionysus success
Dionysus fail
2000 SG344 success
2000 SG344 fail

(a) Standard SCP.

0 0.5 1 1.5 2
0

2

4

6

·10−2

2̄max
2̄

vi
ol

Dionysus success
Dionysus fail
2000 SG344 success
2000 SG344 fail

(b) SCP with homotopic approach.

Figure 8.18: Overview of the constraint violation of each initial guess generated by cubic interpolation for
SCP and SCPH.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2
·10−2

2̄max

2̄
vi

ol

Dionysus success
Dionysus fail
2000 SG344 success
2000 SG344 fail

(a) Standard SCP.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2
·10−2

2̄max

2̄
vi

ol

Dionysus success
Dionysus fail
2000 SG344 success
2000 SG344 fail

(b) SCP with homotopic approach.

Figure 8.19: Overview of the constraint violation of each initial guess generated by propagation for SCP and
SCPH.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 139

8.4.2 No-Thrust Constraints

We briefly assess the performance and solutions when no-thrust periods are included. In this context,

periods of one (2000 SG344) and two (Dionysus) days per segment are considered where no thrust is

available. Typical profiles of the thrust magnitude are shown in Figs. 8.20a and 8.20b. The dashed

black line refers to the maximum available thrust, and the vertical lines correspond to the on and off

switches. Clearly, the thrust magnitude follows the available maximum thrust, being either zero or taking

the maximum value that depends on the distance to the Sun. Note that the available thrust is zero between

175 and 250 days in Fig. 8.20a because the input power drops below the required minimum value of

90W. Due to the long transfer time to Dionysus, there are many no-thrust periods, making this problem

difficult to solve. The corresponding trajectories are depicted in Figs. 8.21a and 8.21b. The thrust arcs

in red are discontinuous due to the no-thrust periods.

The comparison of the number of iterations and CPU time with the standard SCP method (i.e.,

continuous thrust) is shown in Fig. 8.22. Median values are given, and the error bars refer to the 80th

and 20th percentile of the corresponding quantity. SCPNT denotes the case with no-thrust periods. With

regard to the transfer to 2000 SG344, the number of iterations increases from 19 to 31 when no-thrust

periods are enforced. The reason is that the trust-region size grows rapidly first, but then has to shrink

again which requires additional iterations. Interestingly, SCPNT requires slightly fewer iterations to find a

solution for the Dionysus transfer. The CPU time behaves accordingly (see Fig. 8.22b), even though the

discrepancy is larger for 2000 SG344 due the greater difference in the number of iterations. Most of the

CPU time is required outside of the convex solver. The CPU time of the convex solver is approximately

the same regardless of whether no-thrust periods are considered or not. The reason is that the convex

program itself does not significantly change. However, the integration of the integrands in Eq. (8.29)

requires more time compared to Eq. (6.68) due to the additional terms. As each segment is divided

into subsegments in the no-thrust case, the integration intervals become smaller. Therefore, if the same

integrator is chosen, the accuracy increases. Thus, a lower-order integrator may be used to reduce the

computational effort without sacrificing accuracy.

8.4.3 Bang-Bang Mesh Refinement

We demonstrate the effectiveness of the bang-bang mesh refinement procedure described in Section

8.3 for the transfers to 2000 SG344 (using FOH) and to Dionysus (using FRPM). For both cases, the

corresponding OCPs on the initial mesh are solved using FOH and FRPM, respectively. Figures 8.23

and 8.24 show the evolution of the throttle factor (interpolated linearly between the discretization points

for better readability) and switching function. It is clear that the determined switching functions cross

zero precisely at the times when the throttle factor switches from 0 to 1 or vice versa. However, the

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 140

0 100 200 300 400 500 600

0.5

1

1.5

2

·10−3

Time, days

Th
ru

st,
N

T
Tmax

0 100 200 300 400 500 600

0.5

1

1.5

2

·10−3

Time, days

Th
ru

st,
N

T
Tmax

(a) Thrust profile for transfer to 2000 SG344.

0 500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5

Time, days

Th
ru

st,
N

T
Tmax

0 500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5

Time, days

Th
ru

st,
N
T
Tmax

(b) Thrust profile for transfer to Dionysus.

Figure 8.20: Typical thrust profiles for the transfers to 2000 SG344 and Dionysus when no-thrust periods are
considered.

−1.2 −0.8 −0.4 0 0.4 0.8 1.2

−0.8

−0.4

0

0.4

0.8

x, AU

y,
AU

Thrust
Coast
SEL2
2000 SG344

(a) Trajectory for transfer to 2000 SG344.

−3 −2 −1 0 1 2 3

−1

0

1

2

3

x, AU

y,
AU

Thrust
Coast
SEL2
Dionysus

(b) Trajectory for transfer to Dionysus.

Figure 8.21: Typical trajectories for the transfers to 2000 SG344 and Dionysus when no-thrust periods are
considered.

2000 SG344 Dionysus
0

10

20

30

40

50

60

Ite
ra

tio
ns

SCP SCPNT

(a) Number of iterations.

2000 SG344 Dionysus
0

10

20

30

40

50

CP
U

Ti
m

e,
s

SCP
SCPNT

(b) CPU time.

Figure 8.22: Comparison of the number of iterations and CPU time for standard SCP and SCPNT where no-
thrust periods are considered.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 141

0 100 200 300 400 500 600 700
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time, days

Th
ro

ttl
e

Fa
ct

or
,S

w
itc

hi
ng

Fu
nc

tio
n

Throttle factor
Switching function

Figure 8.23: Throttle factor and switching function
for 2000 SG344 transfer and initial
mesh (FOH).

0 500 1000 1500 2000 2500 3000 3500

−0.5

0

0.5

1

Time, days

Th
ro

ttl
e

Fa
ct

or
,S

w
itc

hi
ng

Fu
nc

tio
n

Throttle factor
Switching function

Figure 8.24: Throttle factor and switching function
for Dionysus transfer and initial mesh
(FRPM).

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Time, days

Th
ro
ttl
e
Fa
ct
or

Continuous profile
Discrete points

(a) Throttle factor before refinement.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Time, days

Th
ro
ttl
e
Fa
ct
or

Continuous profile
Discrete points

(b) Throttle factor after refinement.

Figure 8.25: Continuous throttle factor profile and discrete points for 2000 SG344 transfer before and after
bang-bang mesh refinement (FOH).

thrust profile is not completely regular. The reason is that some values of the throttle factor are neither 0

nor 1. This becomes clear in Figs. 8.25a and 8.26a where the discrete values are shown along with the

continuous profiles.

Following the procedure in Fig. 8.13 for FOH, the number of nodes is increased in the neighborhood

of the switching locations by solving a series of optimization problems. Note that often only one iteration

is required if the previous solution is used as the initial guess. We stop when the absolute change of the

switching times is smaller than 10−5, and then predefine the values of the thrust magnitude based on the

sign of the switching function. The refined thrust profile shown in Fig. 8.25b is now regular because it

does not contain any values between zero and one anymore.

The more complex thrust profile for the transfer to Dionysus using FRPM is refined in a similar

way according to Fig. 8.11. The solver is able to optimize the switching times, and the resulting thrust

magnitudes have a bang-bang structure as illustrated in Fig. 8.26.

8 Homotopic Approach for Trajectory Optimization in High-Fidelity Models 142

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Time, days

Th
ro
ttl
e
Fa
ct
or

Continuous profile
Discrete points

(a) Throttle factor before refinement.

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Time, days

Th
ro
ttl
e
Fa
ct
or

Continuous profile
Discrete points

(b) Throttle factor after refinement.

Figure 8.26: Continuous throttle factor profile and discrete points for Dionysus transfer before and after bang-
bang mesh refinement (FRPM).

9 Closed-Loop Guidance in Deep Space

In the autonomous guidance scenario, the spacecraft shall repeatedly determine its reference trajectory

autonomously on board and in real time. This is desirable for long-duration transfers in an unknown

environment due to several reasons, for example to allow for immediate correction maneuvers without

the dependence on the communication with ground stations. Moreover, the additional uncertainties

introduced by autonomous navigation require a different method than the traditional tracking of a reference

trajectory because of the larger deviations. In this dissertation, we propose a deep-space closed-loop

guidance approach where trajectory optimization and guidance are combined. Instead of tracking a given

reference trajectory, the control actions are repeatedly reoptimized on board using data acquired from

the environment. This is expected to be more robust against uncertainties, unmodeled perturbations, and

possible failures or deviations from nominal conditions.

The first part of this chapter addresses the processor-in-the-loop (PIL) experiment to assess the

performance of the SCP algorithm as a guidance approach on hardware similar to spaceflight processors.

The closed-loop guidance is explained, and numerical simulations are performed. Moreover, the moving

target scenario is introduced where the target state is not fixed anymore, but rather varies with time.

Finally, details about the real-time implementation of the SCP algorithm are addressed. Parts of this

chapter are based on our work in [15].

9.1 Processor-in-the-Loop Simulation

The setup of the processor-in-the-loop experiment is illustrated in Fig. 9.1. It consists of two main parts:

the guidance system and the orbit propagator. The former is represented by a single-board computer

that is comparable to real spacecraft hardware. In this dissertation, a Raspberry Pi 3 Model B+ [194] is

used because its computational power is similar to CubeSat onboard computers such as the LEON family

that is often used in European space missions [188]. The Raspberry Pi is shown in Fig. 9.2, and the

most relevant technical specifications are given in Table 9.1. The initialization step initializes the SCP

algorithm and loads all data on the processor. As the first reference trajectory can be computed on ground,

the initial guesses of the state and control trajectories are also transferred to the guidance computer as

input data. The orbit propagator represents the environment and the navigation system of the spacecraft.

143

9 Closed-Loop Guidance in Deep Space 144

Control profile

Initialization

Guidance system

Orbit propagator

Current state

Disturbances

Figure 9.1: Overview of the processor-in-the-loop simulation.

Figure 9.2: Raspberry Pi 3 Model B+
[194].

Table 9.1: Technical specifications of Raspberry Pi 3
Model B+ [194].

Processor RAM Operating system

Cortex-A53 (ARMv8),
64 bit, 1.4GHz

1GB Raspberry Pi OS

It propagates the dynamics using a high-fidelity dynamical model and the obtained controls from the

guidance system. Disturbances are added to account for uncertainties and errors in the models. The

propagated final state is fed back to the guidance system and serves as the new current state. Note that, in

reality, the state of the spacecraft is determined through an orbit determination process that utilizes sensor

data measurements, instead of relying on the propagation of dynamics to retrieve the state. The guidance

system then reoptimizes the trajectory, and the obtained controls are again used for the integration. This

process is followed recursively until the spacecraft reaches the target. A more detailed flowchart of the

closed-loop guidance simulation is shown in Fig. 9.3. We predefine the vector topt = [t1, . . . , tL]
⊤ with

tL < tf during the initialization that contains the times when a (new) trajectory is to be determined. The

frequency of recomputing the states and controls strongly depends on navigational and other operational

constraints, and can range from few days to several weeks. After computing a new trajectory, the equations

9 Closed-Loop Guidance in Deep Space 145

Start

Initialization

Generate initial guess

Propagate nonlinear EoMs
with obtained controls for ∆t

Compute new
reference trajectory
(i.e., guidance law)

Update x0

and initial guess

Update mesh and
discretization data

Perturb final
propagated stateTarget reached?

Return optimal solution

End

Add process noise

No

Yes

Figure 9.3: Flowchart of the closed-loop guidance simulation.

9 Closed-Loop Guidance in Deep Space 146

of motion are propagated for ∆t to simulate the space flight. The high-fidelity model of Chapter 8 is

used where n-body dynamics, solar radiation pressure, variable specific impulse and maximum thrust,

and no-thrust constraints are considered. Yet, several sources of errors (for example due to the dynamical

system, an unknown environment, and the propulsion or navigation system) result in a deviation of the

actual spacecraft state from the computed one. One major error is caused by the misalignment of the

thrusters, leading to perturbed thrust values compared to the nominal ones determined by the guidance

system. We consider such correlated process noises by modeling the thrust components and magnitude

as Gauss–Markov processes. The perturbed thrust magnitude T̂ (t) for integrating the dynamics from tk

to tk+1 is then given by [195, 196]

T̂ (t) = κ γ(t) + T (9.1)

where

γ(t) = γj e
−φ (t−tk) + ωj

√
1− e−2φ (t−tk), t ∈ [tk, tk+1] (9.2)

κ denotes the variance of the process, T the nominal (i.e., unperturbed) thrust magnitude, and φ the

inverse of the correlation time. γj and ωj are the jth elements of vectors γ and ω that contain random

numbers from a Gaussian distribution with mean 0 and standard deviation κ. The expression for the

thrust components T(t) is obtained accordingly. Other sources of noise that can be represented by

Gauss–Markov processes, such as the accelerations caused by solar radiation pressure or other bodies,

are very small and therefore neglected as they have no significant impact on the solution.

If the target is not yet reached, the spacecraft must acquire its new state. Optical navigation is

a promising technique for CubeSats to determine the position and velocity autonomously on board

[79]. Still, the relatively large uncertainty results in larger errors compared to ground-based navigation

methods. To account for navigational errors, other uncertainties and unmodeled errors, each component

of the propagated final state is perturbed by random values between rmin(t) and rmax(t) (position), and

vmin(t) and vmax(t) (velocity). In this context, we use time-varying functions of the minimum and

maximum values. In real missions, optical navigation is often the main error source. According to [80],

the orbit determination error for targets close to Earth usually decreases over time. The reason is that

a higher accuracy is required when the spacecraft approaches the target, for example by using a higher

frequency of observations for estimating the state. Therefore, we model the minimum and maximum

values as linear functions that define a truncated cone as illustrated in Fig. 9.4. The simulations in

[80] suggest errors of 100 – 2000 km and 0.1 – 1m s−1 for each component of the position and velocity,

respectively, for missions to Venus and Mars. As we consider transfers to near-Earth asteroids, we expect

similar errors and choose over-conservative values of rmax = 20 000 km and vmax = 10m s−1. The

minimum values towards the end of the transfer should be close to zero to ensure that the target can actually

be reached, for example rmin = 100 km and vmin = 0.1m s−1. The reason for these extremely large

9 Closed-Loop Guidance in Deep Space 147

0 C 5

−rmax

−rmin

0

rmin

rmax

Time

Po
sit

io
n

Er
ro

rs
X
G
,
X
H
,
X
I rmax(t)

rmin(t)

Figure 9.4: Definition of minimum rmin(t) and maximum rmax(t) error functions.

values during the cruise phase is to account for additional, not modeled errors, and thus to demonstrate

that feasible solutions can be obtained even in such cases. Additional simulations with rmax = 2000 km

and vmax = 3ms−1 are performed to investigate how different errors affect the results.

After perturbing the propagated final state, the current mesh and discretization data are to be updated.

As the reference trajectories change only slightly between the iterations of the closed-loop simulation, it

is reasonable to use the previous solution as the new initial guess. However, as the time of flight decreases

by the propagation time ∆t, the mesh data is to be adjusted accordingly. We intend to maintain the

accuracy of the initial mesh, that is, the number of nodes per time unit shall be similar. Therefore, the

total number of nodes is reduced, and the states and controls are interpolated on this new mesh. The new

initial state x0 is updated along with the constraints and time of flight, and the next reference trajectory

is reoptimized. This process continues until the spacecraft reaches the target. If the calculated trajectory

is close to the propagated (i.e., real) trajectory, the algorithm converges within few iterations only. Our

rationale is that the new solution is expected to lie in the neighborhood of the previous solution. Although

a proof of the convergence is beyond the scope of this dissertation, the numerical simulations strongly

support this statement.

9.2 Moving Target

In the nominal case, the errors are assumed to remain within the expected range, and no unforeseen

events occur. However, some components may fail for certain periods during a real mission. Even though

SCP can handle large deviations from the nominal condition, this becomes critical when the spacecraft

gets closer to the target. The reason is that if the remaining time of flight is short and the spacecraft

significantly deviates from the nominal trajectory, a feasible solution may not exist anymore. An example

is a failure of the propulsion system so that thrust cannot be provided anymore for some days. This is

equivalent to perturbations of up to 50 000 km and 30m s−1. In this section, we simulate such an event

where the spacecraft is near the target and the perturbations considerably exceed the expected values.

9 Closed-Loop Guidance in Deep Space 148

Even though the target is often considered to be a fixed point in space, the asteroid (or planet) is in

fact orbiting some primary body. This means that the spacecraft may still be able to reach the target

at a future point in time. The only constraint that results in infeasibility is the predefined time of flight

because it cannot be satisfied anymore given the original target position. Therefore, the basic idea is to

relax the problem such that the target is considered moving, and hence, the new arrival time is free. The

goal is to regain feasibility at the cost of a longer time of flight. Even though increasing tf may at first

glance not seem practical from an operational point of view, we believe that this kind of flexibility is

necessary for self-driving spacecraft to avoid mission failure. To keep the arrival time (and hence, fuel

consumption) as close as possible to the nominal one, we keep the final time fixed during the cruise phase

and switch to the moving target problem only if needed (i.e., in case of some failure condition that leads

to infeasibility). As we will see in the simulations section, the new arrival date differs only a few days

from the nominal one, which we consider acceptable for real missions.

The position rt(t) and velocity vt(t) of the target are functions of time, and the relaxed final boundary

conditions are simply

|r(tf)− rt(tf)| ≤ ∆r (9.3a)

|v(tf)− vt(tf)| ≤ ∆v (9.3b)

where ∆r and ∆v are given, and define the desired accuracy. Even though the ephemerides of the target

body are assumed to be known at all times, determining rt(t) and vt(t) (e.g., retrieving the data from

a lookup table or integrating the dynamics of the target body) is in general a nonlinear and nonconvex

operation. As a consequence, the boundary conditions in Eqs. (9.3) become nonconvex. Therefore, rt(t)

and vt(t) are approximated using a first-order Taylor series about a reference final time t̄f [185]:

rt(tf) ≈ rt(t̄f) +
drt(t)

dt

∣∣∣
t̄f

(tf − t̄f) (9.4a)

vt(tf) ≈ vt(t̄f) +
dvt(t)

dt

∣∣∣
t̄f

(tf − t̄f) (9.4b)

As drt(t)/dt = vt(t) and dvt(t)/dt = at(t), Eqs. (9.4a) and (9.4b) can be rewritten as

rt(tf) ≈ rt(t̄f) + vt(t̄f) (tf − t̄f) (9.5a)

vt(tf) ≈ vt(t̄f) + at(t̄f) (tf − t̄f) (9.5b)

Considering a n-body model, the acceleration at(t̄f) of the target body can be calculated using Eq. (8.7)

at(t̄f) = −
µ rt(t̄f)

rt(t̄f)3
+

n∑
i=1

µi

(
rt,i(t̄f)

r3t,i(t̄f)
−

ri(t̄f)

r3i (t̄f)

)
(9.6)

9 Closed-Loop Guidance in Deep Space 149

where rt,i(t̄f) = ri(t̄f)− rt(t̄f). The relaxed final boundary conditions are thus

∣∣r(tf)− rt(t̄f)− vt(t̄f) (tf − t̄f)
∣∣ ≤ ∆r+ ζr (9.7a)∣∣v(tf)− vt(t̄f)− at(t̄f) (tf − t̄f)
∣∣ ≤ ∆v + ζv (9.7b)

Note that slack variables ζr ≥ 0 and ζv ≥ 0 are included to avoid artificial infeasibility due to the

linearized constraints. These are again penalized by adding

λζ

m∑
i=1

max(0, ζi) (9.8)

to the cost function, where ζi denotes the ith component of ζ ..= [ζ⊤r , ζ
⊤
v]

⊤ ∈ Rm.

In case of a moving target, the final time tf and final boundary conditions in Eqs. (5.23g) or (5.24)

cannot be considered fixed anymore. Therefore, the problem becomes a free-final-time problem with tf

being an optimization parameter. The dilation factor σ ≡ tf is introduced, and a time normalization is

carried out according to Section 6.1.3. Given N discretization points, the resulting convex optimization

problem is then given by Problem 2.

Problem 2. Find the vectors x, u, ν, η, ζ, and tf that solve the following second-order cone program:

min
tf ,x,u,ν,η,ζ

− wN + λν

N−1∑
i=1

∥νi∥1 + λη

N∑
i=1

max(0, ηi) + λζ

m∑
i=1

max(0, ζi) (9.9a)

subject to: xk+1 = Ak xk +B−
k uk +B+

k uk+1 + Sk tf + qk + νk, k = 1, . . . , N − 1 (9.9b)

Γk ≤ Tmax(r̄k) e−w̄k (1− wk + w̄k) + ηk, k = 1, . . . , N (9.9c)

∥τk∥2 ≤ Γk, k = 1, . . . , N (9.9d)

∥y − ȳ∥1 ≤ R (9.9e)

tf,lb ≤ tf ≤ tf,ub (9.9f)

r1 = r0, v1 = v0, w1 = w0 (9.9g)∣∣∣∣∣∣∣
rN
vN

−

rt(t̄f) + vt(t̄f) (tf − t̄f)

vt(t̄f) + at(t̄f) (tf − t̄f)

∣∣∣∣∣∣∣ ≤

∆r

∆v

+ ζ (9.9h)

where y ..= [x⊤, tf]
⊤ in Eq. (9.9e), i.e., we include states and the final time in the trust-region constraint.

Our simulations suggest that neglecting the controls does not affect the results, but reduces the problem

size. The constraint in Eq. (9.9f) refers to the lower and upper bound of tf , respectively.

As the final time is free, minor modifications are required if no-thrust constraints are to be taken

into account as per Section 8.2. All no-thrust periods are normalized with respect to the reference time

of flight t̄f during the discretization step, and evaluated with respect to the reference solution. As tf

may change between consecutive iterations, the no-thrust periods may not lie strictly within a trajectory

9 Closed-Loop Guidance in Deep Space 150

segment anymore if the number of nodes is kept constant. Therefore, N is adjusted such that the number

of nodes per time unit is approximately the same in all iterations. This ensures a consistent mesh, and

also that the required off periods are strictly within [tk+1, tk], k = 1, . . . , N − 1.

Remark 9.1. Although we consider a moving target only for the failure case, it is possible to target a

moving body for the whole cruise phase. For example, if the exact final state of an asteroid is not known

with enough confidence at launch and must be determined on the fly, it may be necessary to switch to the

moving target problem formulation during the transfer.

9.3 Real-Time Implementation

In this section, details about the implementation of the SCP algorithm are addressed. We refer to real-time

implementation because we seek source code in a compiled language like C/C++ that shall comply with

certain standards (see for example [197] and [198]). Once the optimal control problem is discretized, the

objective function and constraints are to be transformed into the following standard SOCP form that can

be handled by computers:

minimize c⊤ y (9.10a)

subject to: Ay = b (9.10b)

Gy ≤ h (9.10c)

where y is the decision vector, and c, A, b, G, and h are given vectors and matrices that define the

constraints. Equation (9.10c) represents linear inequality and second-order cone constraints. We refer

to this transformation as parsing. Modeling languages like CV X [99] allow the user to formulate the

objective function and constraints using a simple syntax that requires little effort. All constraints are

transformed automatically into the standard form of Eq. (9.10). As such tools must be kept as general

as possible to deal with a variety of input parameters, the parsing process requires a significant amount

of time that is often several times larger than solving the actual cone program. Even though this is

convenient, the computational effort is unacceptable for real-time applications where we require as little

computational resources as possible. Therefore, we follow a different approach in this dissertation, and

parse the problem manually into standard form. Instead of aiming at a general tool, the parsing is tailored

to the low-thrust trajectory optimization problem, and the complete process is divided into 1) tasks that

are performed offline only once, and 2) tasks that are repeatedly executed online at runtime. An overview

of the SCP steps is illustrated in Fig. 9.5. Given an optimal control problem, the analytical constraints are

convexified, and the SCP parameters are selected as in Chapter 5 (for example, tolerances and trust-region

parameters). The problem is discretized (for instance, using the first-order-hold method in Section 6.1.3),

9 Closed-Loop Guidance in Deep Space 151

Optimal control
problem

Convexification
of constraints Discretization Parsing into

standard form
Selection of
parameters Initialization

Reference
trajectory

Evaluation of
constraints

Update of
parameters

Solution
of SOCP

Stopping
criteria

Solution

Next iteration

Offline

Online

Figure 9.5: Overview of the SCP steps performed offline and online.

parsed into standard form, and remaining parameters are initialized. All of these steps can be performed

offline because a significant amount of data (including parts of the constraint matrices and vectors) does

not change once the number of discretization points is selected.

Naturally, the actual solve step is to be carried out at runtime because the reference trajectory and the

corresponding elements of the matrices and vectors in Eq. (9.10) change as the algorithm proceeds. In

particular, the approximations of the constraints of Problem 1 in Eq. (5.23) are to be re-evaluated, and

the corresponding entries of c, A, b, G, and h are to be updated. The SOCP is then solved, and if the

stopping criteria are not met, the next iteration begins.

In the following subsections, the parsing as a key element of the SCP algorithm is explained in more

detail. Moreover, additional aspects of the implementation are addressed, with a particular focus on the

steps performed offline and online. If not stated otherwise, we refer to the fuel-optimal problem with fixed

final time throughout this section. Moreover, we consider the first-order-hold method for discretizing

the OCP, and the high-fidelity model with n-body dynamics, SRP, and variable specific impulse and

maximum thrust.

9.3.1 Sequential Convex Programming: Offline

We first address the steps that can be done offline: parsing of the low-thrust trajectory optimization

problem, initialization, and parsing into standard form.

9 Closed-Loop Guidance in Deep Space 152

Parsing of Low-Thrust Trajectory Optimization Problem

In the context of this dissertation, we require three main variations of the low-thrust trajectory optimization

problem:

1) Fixed final time and linear, fixed final boundary conditions

2) Fixed final time and nonconvex final boundary conditions

3) Free final time and nonconvex final boundary conditions (moving target)

The first category considers fixed final time problems with fixed final states, similar to the simulations in

Chapters 6, 7, and 8. The only exception concerns KS coordinates in Chapter 7 that belong to category

2) due to the nonconvex final boundary conditions. In the closed-loop guidance scenario, we consider a

moving target, i.e., the final time is free and the final boundary conditions are nonconvex.

For a real-time implementation, we require all constraints to be formulated in a way computers can

deal with. For example, the discontinuous behavior of the absolute or maximum value operators must be

transformed into a series of linear constraints. Moreover, quadratic constraints can be rewritten as second-

order cone constraints. For the sake of conciseness, the parsing of relevant operators and constraints is

given in the Appendix D.1 and used throughout this section to parse the fuel-optimal problem into an

equivalent problem. The discretized fuel-optimal problem with fixed, linear final boundary conditions is

given by Problem 3.

Problem 3. Find the vectors x, u, ν, and η that solve the following second-order cone program:

minimize
x,u,ν,η

− wN + λν

N−1∑
i=1

∥νi∥1 + λη

N∑
i=1

max(0, ηi) (9.11a)

subject to: xk+1 = f(xk,uk,uk+1,νk), k = 1, . . . , N − 1 (9.11b)

Γk ≤ Tmax e−w̄k (1− wk + w̄k) + ηk, k = 1, . . . , N (9.11c)

∥τk∥2 ≤ Γk, k = 1, . . . , N (9.11d)

∥x− x̄∥1 ≤ R (9.11e)

r1 = r0, v1 = v0, w1 = w0 (9.11f)

|rN − rf | ≤ ∆rf , |vN − vf | ≤ ∆vf (9.11g)

with k = 1, . . . , N , and the concatenated states x = [x⊤
1 , . . . ,x

⊤
N]⊤, nominal states x̄ = [x̄⊤

1 , . . . , x̄
⊤
N]⊤,

controls u = [u⊤
1 , . . . ,u

⊤
N]⊤, virtual controls ν = [ν⊤1 , . . . ,ν⊤N−1]

⊤, and η = [η1, . . . , ηN]. The virtual

control νk ∈ Rnx for the dynamics is unconstrained, whereas ηk ∈ R≥0. Note that we impose the trust

region only on the states to reduce the number of variables. Our simulations suggest that there is no

significant difference if the controls are included in the trust-region constraint.

9 Closed-Loop Guidance in Deep Space 153

Using the parsing of the absolute value, max operator and 1-norm in the Appendix D.1, the reformu-

lated problem is given by Problem 4.

Problem 4. Find the vectors x, u, ν, η, sν , sη, and sTR that solve the following second-order cone

program:

minimize
x,u,ν,η,sν ,sη ,sTR

− wN + λν 1
⊤ sν + λη 1

⊤ sη (9.12a)

subject to: xk+1 = f(xk,uk,uk+1,νk), k = 1, . . . , N − 1 (9.12b)

νk ≤ sν,k, −νk ≤ sν,k, k = 1, . . . , N − 1 (9.12c)

− sη,k ≤ 0, ηk ≤ sη,k, −ηk ≤ 0, k = 1, . . . , N (9.12d)

Γk ≤ Tmax e
−w̄k (1− wk + w̄k) + ηk, k = 1, . . . , N (9.12e)

∥τk∥2 ≤ Γk, k = 1, . . . , N (9.12f)

x ≤ sTR + x̄, −x ≤ sTR − x̄, 1⊤ sTR = R (9.12g)

r1 = r0, v1 = v0, w1 = w0 (9.12h)

rN ≤ ∆rf + rf , −rN ≤ ∆rf − rf (9.12i)

vN ≤ ∆vf + vf , −vN ≤ ∆vf − vf (9.12j)

with slack variables sν,k ∈ Rnx , sη,k ∈ R, and sTR, sTR ∈ RN nx . sν = [s⊤ν,1, . . . , s
⊤
ν,N−1]

⊤, sη =

[sη,1, . . . , sη,N]⊤ refer to the concatenated quantities. Equations (9.12c) and (9.12d) refer to the penalized

virtual controls of the dynamics and upper bound on the thrust magnitude, respectively. The parsed trust-

region constraint is given by Eq. (9.12g), and Eqs. (9.12i) and (9.12j) are the relaxed final boundary

conditions due to the absolute value. The initial r0, v0, w0 and final boundary conditions rf , vf are fixed.

Note that no additional bounds on the states and controls are imposed to keep the number of constraints

at a minimum.

In case of a moving target, the final time is free because the final boundary conditions rt(tf) and

vt(tf) are nonconvex functions of time. The convexified optimization problem is given by Problem 2 in

Section 9.2. Rewriting the norms and absolute values yields Problem 5.

Problem 5. Find the vectors x, u, ν, η, ζ, sν , sη, sζ , sTR, and tf that solve the following second-order

cone program:

min
tf ,x,u,ν,η,ζ,
sν ,sη ,sζ ,sTR

− wN + λν 1
⊤ sν + λη 1

⊤ sη + λζ 1
⊤ sζ (9.13a)

subject to: Eqs. (9.12b)–(9.12h) (9.13b)

− tf ≤ −tf,lb, tf ≤ tf,ub (9.13c)

− sζ ≤ 0, ζ ≤ sζ , −ζ ≤ 0 (9.13d)

9 Closed-Loop Guidance in Deep Space 154

Table 9.2: Number of elements of each component of the solution vector.

x u ν sν η sη sTR

nxN nuN nx (N − 1) nx (N − 1) N N nxN

rN
vN

−

rt(t̄f) + vt(t̄f) (tf − t̄f)

vt(t̄f) + at(t̄f) (tf − t̄f)

 ≤

∆rf

∆vf

+ ζ (9.13e)

−

rN
vN

+

rt(t̄f) + vt(t̄f) (tf − t̄f)

vt(t̄f) + at(t̄f) (tf − t̄f)

 ≤

∆rf

∆vf

+ ζ (9.13f)

Note that tf is included in the trust-region constraint in Eq. (9.12g). The case with fixed final time and

nonconvex final boundary conditions is given in the Appendix D.2, along with the reformulation of the

quadratic objective function for the energy-optimal problem.

Initialization

Even though we are only interested in the optimal state and control profiles, we have seen that additional

(slack) variables are needed to formulate the problem in standard form. We therefore define the solution

vector y ∈ Rny to be

y ..=
[
x⊤,u⊤,ν⊤, s⊤ν ,η

⊤, s⊤η , s
⊤
TR

]⊤
(9.14)

The number of elements of each component is given in Table 9.2. The total number of elements ny of y

is

ny = nxN+nuN+nx (N−1)+nx (N−1)+N+N+nxN = 2N−2nx+4nxN+nuN (9.15)

In case of a moving target, the variables tf ∈ R, ζ ∈ Rnx−1, and sζ ∈ Rnx−1 are simply appended to y,

and the length of sTR increases by one. The following main steps are performed within the initialization

step:

1) Setup of the dynamical model: Based on the desired model (for example, two-body or n-body

dynamics), relevant data is defined and loaded. This includes the gravitational constants of the

perturbing bodies for the n-body model and the ephemeris. The latter is retrieved offline, stored

on board, and then interpolated to obtain the required states. In addition, parameters for the solar

radiation pressure are calculated and stored.

2) Normalization: All quantities are normalized using some time unit, length unit, velocity unit, accel-

eration unit, force unit, and power unit.

9 Closed-Loop Guidance in Deep Space 155

3) Jacobian matrices: The Jacobian matrices are computed analytically based on the dynamical model,

and stored as functions that can be called during the solution process.

4) Discretization: Depending on the discretization method, the number of collocation points, segments,

mesh data, etc., are initialized. For FOH, this includes the matrices and vectors Ak, B−
k , B+

k , and

qk, k = 1, . . . , N − 1, in Eq. (6.66). Each matrix (·)k is stored as a 1D array, and the matrices are

concatenated column-wise to obtain a single 2D array.

5) Initial guess: The initial guess is generated, for example using the shape-based approach in the

Appendix A.

6) Sizes and indices: The sizes of the matrices and vectors are defined, and the corresponding indices of

the entries of the solution vector are stored.

7) Initialization of parameters: All parameters are initialized, for example tolerances, trust-region pa-

rameters, etc.

Parsing into Standard Form

Besides the parsing of the discretized low-thrust trajectory optimization problem, the matrices and vectors

in Eq. (9.10) are to be populated. This step is very important for a real-time implementation because

several entries remain constant and can thus be defined offline. Note that the matrices are not created

explicitly due to their sparse nature, but rather a so-called sparse triplet is stored for each matrix. It consists

of three 1D arrays that contain the actual data, the row index, and the column index in column compressed

storage format. This way, a large, sparse matrix can be stored efficiently. Details on the structure of the

matrices and vectors for the constraints and objective function can be found in the Appendix D.3.

The number of rows, nonzero elements, and changing entries of the matrices and vectors are illustrated

in Tables 9.3 and 9.4, respectively. We assume nx = 7 states and nu = 4 controls. Note that the elements

are updated only if a solution is accepted. If it is rejected, only the trust-region radius in bTR changes for

the next iteration.

The sparsity and specific values for N = 100 and N = 300 discretization points are given in Table

9.5. These values refer to the fixed final time problem because the moving target case has only slightly

more elements. Apparently, the matrices A and G are extremely sparse as more than 99.5% of the

elements are zero. Most of the data that requires an update is due to the dynamics, whereas a large portion

of the remaining constraints is constant and can be initialized offline.

9.3.2 Sequential Convex Programming: Online

Algorithm 1 summarizes the steps that are carried out at runtime after the parsing and initialization. Instead

of using the software SPICE [192] to retrieve the positions of the perturbing bodies, the ephemerides are

9 Closed-Loop Guidance in Deep Space 156

Table 9.3: Overview of number of rows, nonzero elements, and changing entries for each matrix. MT refers
to the moving target case.

Matrix Number of rows Number of nonzero elements Number of changing elements

Adyn 7 (N − 1) 107 (N − 1) [MT: 114 (N − 1)] 93 (N − 1) [MT: 100 (N − 1)]

Ax0 7 7 0

ATR 1 7N [MT: 7N + 1] 0

Gthrust N 3N N

GTR 14N 28N [MT: 28N + 4] 0

Gxf
12 12 [MT: 36] 0 [MT: 6]

Gν 14 (N − 1) 28 (N − 1) 0

Gη 3N 4N 0

Gζ
* 18 24 0

Gbounds
* 2 2 0

Gsocc 4N† 4N 0

Total 43N − 1 153N − 60 94N − 93

Total MT 43N + 19 153N − 34 101N − 94

* For the moving target problem only.
† Corresponds to N second-order cone constraints.

Table 9.4: Overview of elements and changing entries for each vector. MT refers to the moving target case.

Vector Number of elements Number of changing elements

bdyn 7 (N − 1) 7 (N − 1)

bx0 7 0

bTR 1 1

hthrust N N

hTR 14N [MT: 14N + 2] 14N [MT: 14N + 2]

hxf
12 0 [MT: 12]

hν 14 (N − 1) 0

hη 3N 0

hζ
* 18 0

hbounds
* 2 0

hsocc 4N† 0

c 8N − 6 [MT: 8N] 0

Total 51N − 7 22N − 6

Total MT 51N + 13 22N + 8

* For the moving target problem only.
† Corresponds to N second-order cone constraints.

9 Closed-Loop Guidance in Deep Space 157

Table 9.5: Nonzero elements for N = 100 and N = 300.

N Quantity Sparsity, % Nonzero elements Changing elements Pct. of changing elm., %

100

c – 794 0 0

A 99.52 11 300 9207 81.45

b – 701 694 99.00

G 99.95 6684 100 1.50

h – 3598 1500 41.69

300

c – 2394 0 0

A 99.84 34 100 27 807 81.55

b – 2101 2094 99.67

G 99.98 20 084 300 1.49

h – 10 798 4500 41.67

stored on board and interpolated. This way, no additional software is required, and the computationally

expensive calls of external functions is avoided. In the closed-loop guidance or the moving target scenario

with no-thrust constraints, the number of discretization points is adjusted if the time of flight changes.

Thus, the size of the matrices and vectors may change, too. In that case, slightly more effort is required

to update the respective quantities. Yet, we will see in the following section that most of the CPU time is

required to solve the second-order cone program.

9.4 Numerical Simulations

We consider transfers to the asteroids 2000 SG344 and 2010 UE51 as they are potential targets of ESA’s

Miniaturised Asteroid Remote Geophysical Observer (M-ARGO) mission [129]. For each transfer, a

Monte-Carlo analysis with 1000 closed-loop guidance simulations is performed to assess the reliability

of the proposed approach. In that context, the perturbations of the spacecraft state are generated randomly

according to Fig. 9.4. The standard SCP algorithm of Section 5.2 is used with Cartesian coordinates and

the high-fidelity model that is described in Chapter 8. No-thrust cycles are included where the thruster

has to remain off for one day, followed by 6.3 and 7.4 days of thrust, respectively. These values are

similar to the duty cycles of the M-ARGO mission [129]. The same thruster model as in Section 8.4 is

used, and the reoptimization cycle is 14.5 and 16.8 days, respectively. We found in our simulations that

varying the values between 7 and 21 days does not significantly change the results. The reason is that the

errors (e.g., thruster misalignment or modeling errors) do not accumulate considerably in such a short

amount of time if a high-fidelity model is used to compute the reference trajectory. Orbit determination

is performed every ten days within optical navigation simulations in [80]. As the position and velocity

9 Closed-Loop Guidance in Deep Space 158

Algorithm 1 SCP steps performed online
Input: Reference trajectory (x̄, ū, t̄f), SCP parameters, discretization data, flag movingTarget
Output: Solution (x∗,u∗, t∗f)

1: Set converged = false
2: while converged = false do
3: for each segment k = 1, . . . , N − 1 do
4: Interpolate ephemeris to obtain positions of perturbing bodies
5: Compute Ak, B−

k , B+
k , qk

6: if movingTarget = true then
7: Compute Sk

8: end if
9: end for

10: Update changing elements of Adyn, bdyn, Gthrust, hthrust, hTR

11: if movingTarget = true then
12: Update changing elements of Gxf

, hxf

13: if N changed then
14: Update c, A, b, G, h accordingly
15: end if
16: end if
17: Set accept = false
18: while accept = false do
19: Solve SOCP to obtain current solution (x∗,u∗, t∗f)
20: if movingTarget = true then
21: Update mesh to ensure similar number of nodes per time unit
22: Interpolate obtained states and controls onto new mesh
23: end if
24: Calculate actual φ and predicted cost φ̂
25: if stopping criteria satisfied then
26: Set converged = true
27: return solution (x∗,u∗, t∗f)
28: else
29: Determine ratio ρ of the actual and predicted cost decrease
30: Compute new trust-region radius
31: if solution is accepted then
32: Set accept = true
33: Set (x̄, ū, t̄f) = (x∗,u∗, t∗f)
34: end if
35: end if
36: Update entry of trust-region radius in b
37: end while
38: end while

9 Closed-Loop Guidance in Deep Space 159

errors increase if the state is determined less frequently, we select slightly larger values of 14.5 and 16.8

days to assess the performance when larger errors are present.

The ephemeris of the perturbing bodies (and asteroid in case of a moving target) are stored on the

single-board computer. We observed that the time resolution of the data points is not critical, and a

sampling time in the order of one day is often sufficiently accurate. Cubic splines are created offline and

also stored on board for the interpolation. These can then be evaluated efficiently at runtime to retrieve

the desired states. The SCP algorithm is implemented in C++ where we use the library Eigen [199] for

linear algebra operations. The second-order cone program is solved using ECOS [86] because it was

shown that its performance is comparable to an onboard, flight-tested interior-point method [101]. The

optimization of the reference trajectories is performed on the Raspberry Pi 3 Model B+ whose technical

specifications are given in Table 9.1. Moreover, we also investigate how the CPU time changes when an

underclocked version of the Raspberry Pi with only 600MHz is used.

Additional relevant parameters for the transfers and SCP algorithm are given in Tables 9.6 and 9.7,

respectively. Note that we select values of εc = 10−6 and εJ = 10−4 at the beginning to keep the number

of iterations at a minimum, and then switch to smaller feasibility and optimality tolerances 150 days

before arrival to ensure a high final accuracy. Physical constants are given in Table 9.8.

We first address the nominal case where the perturbations stay within the expected values, and then

consider a failure condition with considerably larger disturbances towards the end of the transfer. Finally,

we assess the performance of the SCP algorithm on the Raspberry Pi.

9.4.1 Monte-Carlo Analysis: Nominal Case

In order to assess the reliability of the proposed approach, we perform 1000 closed-loop guidance

simulations for each transfer. One simulation consists of the complete process depicted in Fig. 9.3, i.e.,

the algorithm is initialized, data is loaded onto the Raspberry Pi, and then propagating and reoptimizing

the trajectory alternate until the spacecraft reaches the target. The initial number of nodes is N0 = 180,

and the minimum number is Nmin = 10.

Transfer to Asteroid 2000 SG344

Before a new trajectory is determined, the state of the spacecraft is randomly perturbed. Typical

magnitudes with rmax = 20 000 km and vmax = 10m s−1 are illustrated in Fig. 9.6. It is evident that the

imposed deviations reduce over time, and exceed values of 30 000 km (position) and 15m s−1 (velocity) at

the beginning of the transfer. We also consider smaller values of rmax = 2000 km and vmax = 3ms−1 to

investigate whether the error magnitude affects the results. Examples of the corresponding perturbations

are shown in Fig. 9.7.

9 Closed-Loop Guidance in Deep Space 160

Table 9.6: Simulation values for the transfers from SEL2 to the asteroids 2000 SG344 and 2010 UE51 [129].

Parameter SEL2 - 2000 SG344 SEL2 - 2010 UE51

Initial epoch 04-Feb-2024 12:00:00 UTC 25-Jan-2024 12:00:00 UTC

Initial position r0, AU
[−0.70186065, 0.70623244,

−3.51115× 10−5]⊤
[−0.565594862, 0.817852054,

−4.21043× 10−5]⊤

Initial velocity v0, VU
[−0.73296949, −0.71590485,

4.40245× 10−5]⊤
[−0.847308876, −0.578399661,

3.70665× 10−5]⊤

Initial mass m0, kg 22.6 4000

Final position rf , AU [0.967546555, 0.166086135,
6.86064× 10−5]⊤

[0.460719330, 0.884256883,
6.59008× 10−3]⊤

Final velocity vf , VU [−0.236236309, 0.978953388,
−1.98707× 10−3]⊤

[−0.928506079, 0.458224786,
7.99479× 10−3]⊤

Final mass m(tf), kg free free
Min. input power Pin,min, W 20

Max. input power Pin,max, W 120

Max. thrust Tmax, N 2.2519× 10−3

Max. specific impulse Isp,max, s 3067

Spacecraft area ASC, m2 0.05

Reflectivity coefficient CR 1.3

Time of flight tf , days 650 750

Accepted pos. error ∆r, km 1000

Accepted vel. error ∆v, ms−1 1

Reoptimization cycle, days 14.5 16.8

No-thrust cycle, days 6.3 on, 1 off 7.4 on, 1 off
Gauss–Markov param. κ 0.05

Gauss–Markov param. φ, days 0.0417

Table 9.7: Parameters of the algorithm.

Parameter Value

Feasibility tol. εc 10−6, 10−7

Optimality tol. εJ 10−4, 10−5

Max. iterations 50

λν , λη, λζ 10.0, 10.0, 10.0
ρ0, ρ1, ρ2 0.01, 0.25, 0.85
α, β 1.5, 1.5
N0 180

Nmin 10

Table 9.8: Physical constants in all simulations.

Parameter Value

Gravitational const. µ 1.327 124 4× 1011 km3 s−2

Gravitational accel. g0 9.806 65× 10−3 km s−2

Length unit LU = AU 1.495 978 707× 108 km

Velocity unit VU
√

µAU−1

Time unit TU AU VU−1

Acceleration unit ACU VU TU−1

Mass unit MU m0

9 Closed-Loop Guidance in Deep Space 161

Table 9.9: Results for 1000 closed-loop guidance simulations to asteroid 2000 SG344 with fixed final time
(median values, and maximum values in brackets).

Perturb. Success rate, % Iterations CPU time, s Propellant, kg ∆rprop, km ∆vprop, m
s

Small 100 2 (22) 2.9 (58.8) 1.21 (1.22) 6 (403) 0.009 (0.04)
Large 100 2 (23) 3.2 (63.3) 1.21 (1.25) 6 (455) 0.009 (0.05)

The results of 1000 simulations to asteroid 2000 SG344 are summarized in Table 9.9. The two rows

refer to the smaller and larger perturbations, respectively. All simulations converged successfully, i.e.,

the final position and velocity errors are smaller than 1000 km and 1m s−1 as defined in Section 3.2. As

expected, the median number of iterations of 2 is very small.

According to Fig. 9.8a, all reoptimizations of the trajectory required only very few iterations (median

values are shown, and the error bars refer to the minimum and maximum values). Only some cases at the

beginning and end of the transfer required more iterations due to the reduction of the trust-region size.

This confirms that the obtained solutions lie in the neighborhood of the nominal trajectory. The median

CPU time per optimization is around 3 s on the Raspberry Pi, with maximum values of approximately

60 s when more than 20 iterations are needed. The CPU time is consistent with the evolution of the

iterations, and decreases over time because the number of nodes also diminishes (see Figs. 9.8b and

9.8c). If the simulations are performed on an underclocked Raspberry Pi with 600MHz, the solving

times approximately double.

The median fuel consumption is 1.21 kg, thus being the same as the nominal one. Depending on

the perturbations, the algorithm finds also solutions where the required propellant is slightly larger.

Apparently, more fuel is needed if the perturbations increase. The final position ∆rprop and velocity

∆vprop errors are shown in Fig. 9.9. The median is 6 km (position) and 0.009m s−1 (velocity), and all

values are smaller than 500 km and 0.05m s−1, respectively. Moreover, more than 99% of the errors

are below 80 km, therefore resulting in sufficiently accurate solutions. The errors increase only if the

disturbances near the target become large. Furthermore, the maximum errors are slightly bigger if larger

disturbances are considered. Besides that, the magnitude of the perturbation does not have a significant

impact on the results.

Figure 9.10a shows the nominal thrust magnitude and a typical profile obtained in the closed-loop

guidance simulation. Even though they are very similar, they do not overlap exactly due to the imposed

perturbations. The corresponding profile with no-thrust constraints is illustrated in Fig. 9.10b, and the

transfer trajectory is shown in Fig. 9.10c.

9 Closed-Loop Guidance in Deep Space 162

0 200 400 600
0

1

2

3

·104

Time, days

Po
sit

io
n

Pe
rtu

rb
at

io
n,

km

(a) Position perturbations.

0 200 400 600
0

5

10

15

Time, days

Ve
lo

ci
ty

Pe
rtu

rb
at

io
n,

m
s−

1
(b) Velocity perturbations.

Figure 9.6: Typical perturbations for position and velocity over time for the transfer to asteroid 2000 SG344.

0 200 400 600
0

1000

2000

3000

Time, days

Po
sit

io
n

Pe
rtu

rb
at

io
n,

km

(a) Position perturbations.

0 200 400 600
0

2

4

Time, days

Ve
lo

ci
ty

Pe
rtu

rb
at

io
n,

m
s−

1

(b) Velocity perturbations.

Figure 9.7: Smaller perturbations for position and velocity over time for the transfer to asteroid 2000 SG344.

9 Closed-Loop Guidance in Deep Space 163

0 10 20 30 40
0

10

20

Reoptimization

N
um

be
ro

fI
te

ra
tio

ns

(a) Number of iterations.

0 10 20 30 40
0

20

40

60

Reoptimization

CP
U

Ti
m

e,
s

(b) CPU time.

0 10 20 30 40
0

50

100

150

200

Reoptimization

N
um

be
ro

fN
od

es

(c) Number of nodes.

Figure 9.8: Evolution of number of iterations, CPU time, and number of nodes for the closed-loop guidance
simulation to asteroid 2000 SG344.

0 200 400 600 800 1000
0

200

400

Simulation

Fi
na

lP
os

iti
on

Er
ro

r,
km

(a) Final position errors.

0 200 400 600 800 1000
0

0.02

0.04

Simulation

Fi
na

lV
el

oc
ity

Er
ro

r,
m

s−
1

(b) Final velocity errors.

Figure 9.9: Propagation errors for position and velocity for 1000 simulations for the transfer to asteroid 2000
SG344.

9 Closed-Loop Guidance in Deep Space 164

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Time, days

Th
ru

st
M

ag
ni

tu
de

,m
N

Loop
Nominal

(a) Nominal and closed-loop thrust magnitude.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Time, days

Th
ru

st
M

ag
ni

tu
de

,m
N

T
Tmax

(b) Thrust magnitude with no-thrust periods.

−1 0 1
−1

−0.5

0

0.5

1

x, AU

y,
AU

Loop
Nominal
G0
2000 SG344

(c) Transfer trajectory.

Figure 9.10: Thrust magnitude and trajectory obtained from the closed-loop simulation to asteroid 2000
SG344.

9 Closed-Loop Guidance in Deep Space 165

Table 9.10: Results for 1000 closed-loop guidance simulations to asteroid 2010 UE51 with fixed final time
(median values, and maximum values in brackets).

Success rate, % Iterations CPU time, s Propellant, kg ∆rprop, km ∆vprop, m
s

100 2 (20) 3.1 (54.0) 1.19 (1.24) 2 (91) 3.7× 10−4 (0.011)

Transfer to Asteroid 2010 UE51

The transfer time to asteroid 2010 UE51 is 750 days, therefore being 100 days longer. Only the results

corresponding to rmax = 20 000 km and vmax = 10m s−1 are reported in Table 9.10. Again, all 1000

simulations converged successfully, and the number of iterations and CPU time are similar to the previous

transfer. The median fuel consumption of 1.19 kg is slightly larger than the nominal one of 1.17 kg. The

final position and velocity errors are smaller than the ones for the transfer to 2000 SG344. One reason

is the shape of the state and control profiles that are shown in Fig. 9.11. We observe that the nominal

trajectory ends with a long coast arc. However, due to the perturbations in the closed-loop simulation,

the spacecraft needs to perform some small correction maneuvers at the end of the transfer in order to

reach the target. This is in contrast to the transfer to asteroid 2000 SG344 where the thruster operates

over a significantly larger time span towards the end. Therefore, no additional control actions are visible

because the spacecraft simply needs to alter the thrust directions instead of adding new thrust arcs. The

small control spikes in the 2010 UE51 transfer result in a smaller final error due to the higher flexibility,

but also require slightly more fuel.

9.4.2 Monte-Carlo Analysis: Failure Case

We perform an additional Monte-Carlo analysis with 1000 simulations for the 2000 SG344 transfer to

assess the performance when the failure conditions described in Section 9.2 occur. In this context, each

component of the position and velocity is randomly perturbed by values of up to 50 000 km and 30m s−1,

respectively (see Fig. 9.12). This is similar to a failure of the propulsion system when there is no thrust

for several days. The time when this failure occurs is selected randomly between 550 and 610 days.

Depending on the time and magnitude of the disturbance, a feasible trajectory may not exist anymore.

In that case, the algorithm switches to the moving target formulation and tries to regain feasibility by

increasing the time of flight. When a feasible solution is found, the algorithm switches back to the fixed

final time problem. The results are given in Table 9.11. Despite these large deviations, the algorithm is

always able to determine a feasible trajectory and successfully reach the target. The column ∆tf indicates

the additional time of flight because of the moving target. Apparently, only one day is often sufficient to

reach the target at a future point. However, there are cases where the time of flight increases by more than

16 days as shown in Fig. 9.13. The number of iterations and CPU time per optimization solely refer to

9 Closed-Loop Guidance in Deep Space 166

0 200 400 600
0

0.5

1

1.5

2

Time, days

Th
ru

st
M

ag
ni

tu
de

,m
N

Loop
Nominal

(a) Nominal and closed-loop thrust magnitude.

0 200 400 600
0

0.5

1

1.5

2

Time, days

Th
ru

st
M

ag
ni

tu
de

,m
N

T
Tmax

(b) Thrust magnitude with no-thrust periods.

−1 0 1

−1

0

1

x, AU

y,
AU

Loop
Nominal
G0
2010 UE51

(c) Transfer trajectory.

Figure 9.11: Thrust magnitude and trajectory obtained from the closed-loop simulation to asteroid 2010 UE51.

0 200 400 600 800 1000
0

2

4

6

8

·104

Simulation

Po
sit

io
n

Pe
rtu

rb
at

io
n,

km

(a) Position perturbations.

0 200 400 600 800 1000
0

20

40

Simulation

Ve
lo

ci
ty

Pe
rtu

rb
at

io
n,

m
s−

1

(b) Velocity perturbations.

Figure 9.12: Perturbations for position and velocity over time for the transfer to asteroid 2000 SG344 with
failure conditions.

9 Closed-Loop Guidance in Deep Space 167

Table 9.11: Results for the 1000 closed-loop guidance simulations to asteroid 2000 SG344 with failure condi-
tions (median values, and maximum values in brackets).

Success rate, % ∆tf , days Iterations CPU time, s Propellant, kg ∆rprop, km ∆vprop, m
s

100 0.9 (16.4) 26 (38) 11.0 (17.6) 1.22 (1.27) 7 (83) 0.009 (0.047)

0 200 400 600 800 1000
0

5

10

15

Simulation

Δ
C 5

,d
ay

s

Figure 9.13: Additional flight time when solving the moving target problem in the failure scenario.

the simulations when the moving target problem is solved. It becomes evident that the median number of

iterations is considerably larger compared to the nominal case. The reason is the more complex problem

in combination with the substantial perturbations. As expected, the required propellant is higher because

of the additional control actions. Interestingly, the final accuracy is also higher. One explanation is the

higher flexibility by allowing the asteroid state to vary. Keeping the arrival time free can therefore also

contribute to reducing the error on the final boundary conditions.

9.4.3 Discussion

Our simulations suggest that it is in general possible to reoptimize low-thrust trajectories in real time

within the deep-space cruise. The proposed closed-loop guidance approach is robust against extremely

large disturbances and very reliable as it was able to determine feasible solutions at any time. We found

that perturbations during the cruise phase are often not critical, and can be handled by SCP as long as

a feasible solution exists. This, however, may not be the case anymore if greater errors occur when the

spacecraft is close to the target, for example in the context of some failure condition. The moving target

approach has shown to be an effective means to regain feasibility by allowing the target state to vary.

Due to the similar computational capability of the Raspberry Pi and real spacecraft hardware, the

reported CPU times are a useful indicator of the real-time performance. The CPU times range from few

seconds to one minute per optimization, which we regard excellent for the deep-space cruise that can

last years. Although the solving times approximately double when a less powerful onboard computer is

considered, they seem still acceptable. Yet, the Raspberry Pi used in this dissertation is not flight-proven,

9 Closed-Loop Guidance in Deep Space 168

and additional steps are required before the approach becomes ready for real applications. Especially

more detailed analyses regarding the uncertainty and system noise are recommended.

Interestingly, SCP finds solutions that are close to the nominal ones despite the large perturbations.

Therefore, reoptimizing the trajectory frequently may replace the traditional tracking of a given reference

without sacrificing optimality and accuracy.

Even though there is still a tremendous effort required to verify and validate the proposed approach

for real space missions, it is a promising first step towards the real-time guidance of low-thrust spacecraft.

9.4.4 Performance on a Single-Board Computer

We briefly comment on the performance of the SCP algorithm on the Raspberry Pi 3 Model B+. In

particular, we consider the problem of optimizing a trajectory using a different number of discretization

points and different models. Therefore, Figs. 9.14 and 9.15 compare typical CPU times per SCP iteration

for the following cases:

1) Fixed final time, high-fidelity model, no-thrust constraints (referred to as SCP)

2) Fixed final time, high-fidelity model, without no-thrust constraints (SCPNT)

3) Moving target, high-fidelity model, no-thrust constraints (SCPMT)

4) Fixed final time, high-fidelity model, no-thrust constraints, single-board computer underclocked to

600MHz (SCP600)

The last item refers to the case where we reduced the clock frequency of the Raspberry Pi from 1.4GHz to

600MHz. Even though it is expected that flight processors of CubeSats become increasingly powerful, we

want to investigate how the SCP algorithm performs on a single-board computer with lower performance.

Without loss of generality, we select the transfer to asteroid 2000 SG344 (see Table 9.6) with N = 100

and N = 300 discretization points to measure the CPU time.

According to Fig. 9.14, all variants require similar CPU times per iteration. This is also true for the

time needed to solve the second-order cone program with ECOS (indicated by the horizontal line within

each bar). Yet, neglecting no-thrust constraints results in a slightly faster solving time, and considering

the moving target problem takes often marginally longer. Interestingly, the time within ECOS accounts

for approximately 50% of the total time for N = 100, and becomes more dominant when the number

of nodes increases. The CPU time ranges from 2 to 7 s per SCP iteration. Considering a maximum

number of iterations of approximately 25 that we observed in the closed-loop guidance simulations, this

would result in a total time of 50 to 175 s per optimization. Therefore, even if a larger number of nodes

is needed, we consider a computational time of three minutes still acceptable for interplanetary transfers.

Figure 9.15 compares the CPU times of SCP for the standard and underclocked Raspberry Pi. A SCP

iteration takes approximately twice as long in case of the 600MHz version, hence resulting in a maximum

9 Closed-Loop Guidance in Deep Space 169

= 100 # = 200 # = 300
0

1

2

3

4

5

6

7

CP
U

Ti
m

e
pe

rS
CP

Ite
ra

tio
n,

s SCP
SCPNT
SCPMT

Figure 9.14: Comparison of CPU time per SCP
iteration for different models.

= 100 # = 200 # = 300
0

2

4

6

8

10

12

CP
U

Ti
m

e
pe

rS
CP

Ite
ra

tio
n,

s SCP
SCP600

Figure 9.15: Comparison of CPU time per SCP
iteration for standard and under-
clocked Raspberry Pi.

time of 12 s for N = 300. This yields CPU times of approximately 100 to 300 s per optimization for the

previous example. Even this seems to be an acceptable amount of time for our application.

Although it may seem surprising that using a high-fidelity model with n-body dynamics does not

result in extremely high CPU times, we have shown that the computational burden can still be handled by

a single-board computer. The SOCP solving time does not increase considerably because the matrices

and vectors are similar compared to the ones for lower-fidelity models. The additional floating point

operations during the propagation step require only little time if a compiled language like C or C++

is used. Furthermore, ephemeris can be stored on board, and interpolating the data can be performed

efficiently at runtime if the splines are created offline.

Yet, it is still to be investigated how other processes influence the performance, and whether the

required memory or memory access become critical in real missions.

10 Koopman Operator Theory

In this chapter, we introduce the Koopman operator theory, and provide the theoretical background to

make the reader familiar with the formalism. Moreover, we include non-conservative perturbations

(e.g., external controls due to thrust) in the formulation to transform highly nonlinear dynamics into a

bilinear system of higher dimension. Moreover, a data-driven approach to obtain a completely linear

system is presented. The accuracy of the Koopman-transformed systems is assessed when propagating

the dynamics. In addition, the linearization accuracy index is compared for the original and Koopman

system. The Duffing oscillator is used to demonstrate the procedure, and it is described how the KOT

can be applied to the unperturbed and perturbed Keplerian motion. Parts of this chapter are taken from

our work in [16].

10.1 Theoretical Background

The Koopman operator is an infinite-dimensional, linear operator that describes the evolution of observ-

able functions. Given a general nonlinear dynamical system

dx(t)

dt
= f(x), x(t0) = x0 (10.1)

where x ∈ Rnx and f ∈ Rnx are defined in the nx-dimensional state space. Let g(x) be an observable

function. KOT describes how these functions evolve in an extended, infinite-dimensional Hilbert space

[159]:
dg(x)

dt
= K (g(x)) = (∇xg(x))

dx(t)

dt
= (∇xg(x)) f(x) (10.2)

where K is the Koopman operator. The following relationship holds as the operator is linear:

K (c1 g1(x) + c2 g2(x)) = c1K (g1(x)) + c2K (g2(x)) (10.3)

with constants c1 and c2. The major goal is to find a new set of coordinates that results in a linear

representation of the dynamics. Due to the linear property of the Koopman operator, we can perform an

eigendecomposition:

K (ϕ(x)) =
dϕ(x)

dt
= (∇xϕ(x))

dx(t)

dt
= λϕ(x) (10.4)

170

10 Koopman Operator Theory 171

where ϕ is a right eigenfunction, and λ the corresponding eigenvalue. The evolution of the system is

therefore given by a linear combination of the eigenfunctions. If each component of the vector valued

function g(x) ∈ Rng lies in the span of the eigenfunctions, we have

g(x) =

∞∑
i=1

ϕi(x)vi (10.5)

Once the eigenfunctions are known, the evolution of the observables is given by Eq. (10.4) where the

observables are projected onto the span of the eigenfunctions. This operation is also referred to as the

Koopman mode decomposition, and vi are the Koopman modes [159]:

vi =

⟨ϕi, g1⟩

⟨ϕi, g2⟩
...

⟨ϕi, gng⟩

(10.6)

The partial differential equation (10.4) is approximated using the Galerkin method to determine the

eigenfunctions, and eventually a linear representation of the system [165]. The idea is to project the

Koopman operator onto a subspace that is defined by orthonormal basis functions. These projections

⟨·, ·⟩ are computed using the inner product of two functions f1(x) and f2(x):

⟨f1(x), f2(x)⟩ =
∫
Ω
f1(x) f2(x)w(x) dx (10.7)

where w(x) is a weighting function, and Ω the domain of the integration. Defining Li as the ith basis

function and recalling Eq. (10.2), we can write

dLi(x)

dt
=

dLi(x)

dt
= (∇xLi(x)) f(x) (10.8)

Using the inner product, the Koopman operator can be projected onto the basis functions to obtain a

finite-dimensional matrix representation of K [165]:

Kij = ⟨(∇xLi(x)) f(x), Lj(x)⟩ =
∫
Ω
(∇xLi(x)) f(x)Lj(x)w(x) dx (10.9)

where Kij are the elements of the Koopman matrix K. Considering all basis functions, Eq. (10.2) can

be rewritten as
d

dt
L(x) = KL(x) (10.10)

where L(x) = [L1(x), L2(x), . . . , Lm(x)] is a vector of m basis functions. Provided that K is diago-

nalizable, its eigendecomposition reads

KVr = Vr D (10.11)

10 Koopman Operator Theory 172

where Vr is the matrix that contains the right eigenvectors in its columns, and D is a diagonal matrix of

eigenvalues. Defining Φ(x) ..= V−1
r L(x) as the vector of eigenfunctions, substituting L(x) = Vr Φ(x)

into Eq. (10.10) yields

Vr
d

dt
Φ(x) = KVr Φ(x) (10.12)

Making use of Eq. (10.11) and simplifying gives

d

dt
Φ(x) = DΦ(x) (10.13)

which is the vector representation of Eq. (10.4). Its solution is given by

Φ(x) = eD tΦ(x0) (10.14)

This allows us to compute the evolution of the basis functions:

L(x) = Vr Φ(x) = Vr e
D tΦ(x0) (10.15)

As the observables can also be projected onto the basis functions, we have the relationship

g(x) = PL(x) (10.16)

with the projection matrix P and its elements Pij = ⟨gi, Lj⟩. Therefore, the evolution of the observable

functions is obtained by substituting Eq. (10.15) into Eq. (10.16):

g(x) = PVr e
D tΦ(x0) = PVr e

D tV−1
r L(x0) (10.17)

Often, we are interested in the identity observable, i.e., g(x) ≡ x. Thus, the state x(t) at time t solely

depends on the initial condition x0 = x(t0), and can be computed analytically using Eq. (10.17) once

the eigenvalues and eigenvectors are known. This, however, is only true for certain dynamical systems

[165]. Moreover, if non-conservative forces (e.g., external control actions) are considered, a different

approach is required as we will see in the following section.

Remark 10.1. If K is not diagonalizable, we cannot perform an eigendecomposition and use the

eigenvalues to solve the linear system in Eq. (10.13). In this case, other approaches must be used,

for example the Schur decomposition [200].

10.2 Bilinearization and Full Linearization of Control-Affine Systems

This section presents the procedure to bilinearize a control-affine system. Furthermore, a method is

proposed to fully linearize the dynamics.

10 Koopman Operator Theory 173

10.2.1 Bilinearization

We now add an external control u ∈ Rnu and consider control-affine systems of the following form:

ẋ = p(x) +

nu∑
i=1

bi(x)ui (10.18)

In this case, it is possible to apply the KOT and transform Eq. (10.18) into bilinear form. Let T(x) =

[T1(x), . . . , Tn(x)]
⊤ be a vector of n eigenfunctions related to the dynamics p(x), i.e., the unperturbed

system. This corresponds to the procedure in the previous section where the eigendecomposition of the

Koopman matrix can be performed to obtain a finite number of eigenfunctions ϕi, i = 1, . . . , n. The ith

entry of T(x) is defined as follows [201]:

Ti(x) = ϕi(x) if ϕi(x) ∈ R (10.19a)

[Ti(x), Ti+1(x)]
⊤ = [2Re(ϕi(x)),−2 Im(ϕi(x))]

⊤ if ϕi(x) ∈ C (10.19b)

where we assume that [ϕi, ϕi+1] is a complex conjugate pair if ϕi(x) ∈ C. Using again the Galerkin

method with basis functions L(x), the Koopman matrices Kbi with respect to the control vector fields bi

can be obtained by calculating Kbi(T(x)):

Kbi
jk =

〈
dT bi

j

dt
, Lk

〉
(10.20)

The total derivatives are given by

dT bi
j

dt
=

∂T bi
j

∂x1
bi,1 +

∂T bi
j

∂x2
bi,2 + · · · =

nx∑
k=1

∂T bi
j

∂xk
bi,k (10.21)

where bi,k denotes the kth entry of bi,k. However, we require that the Koopman operators with respect

to the control vector fields lie in the span of the eigenfunctions corresponding to the unactuated system

[161], i.e.,

∇xT(x)bi(x) =
n∑

j=1

Tj(x)v
bi
j (10.22)

where vbi
j refer to the Koopman modes for bi. If Eq. (10.22) holds true for all i = 1, . . . , n, Eq. (10.18)

can be transformed into a bilinear system [201]:

ż = Dz+

nu∑
i=1

Bi zui (10.23)

x = Cz (10.24)

10 Koopman Operator Theory 174

with the transformed states z, and constant matrices D, Bi, and C. D is a block diagonal matrix with

the entry Di,i = λi if ϕi is real-valued, λi being the eigenvalue associated with the eigenfunction ϕi.

Otherwise, Di,i Di,i+1

Di+1,i Di+1,i+1

 = |λi|

 cos (Arg (λi)) sin (Arg (λi))

− sin (Arg (λi)) cos (Arg (λi))

 (10.25)

where Arg (·) denotes the argument of a complex number. Bi are comprised of the Koopman modes of

Kbi(T(x)), and C contains the Koopman modes of the observable:

Bi = Kbi Vr, i = 1, . . . , nu (10.26)

C = PVr (10.27)

Let vi be the ith column of C, i.e., C = [v1,v2, . . . ,vn]. Then [201],

vi = vi if ϕi(x) ∈ R (10.28a)

[vi,vi+1] = [Re(vi), Im(vi)] if ϕi(x) ∈ C (10.28b)

The matrices Bi are adjusted in a similar way using Eqs. (10.28a) and (10.28b). The matrix P denotes

the projection of the observables onto the basis functions and is defined in Eq. (10.16). This system

describes the evolution of the eigenfunctions z ≡ T(x) instead of the original states x. These can be

retrieved using the linear relationship in Eq. (10.24). Note, however, that Eq. (10.18) is often only an

approximation because of the truncated decomposition. The new number of states nz (and hence, all

combinations of the polynomials that define the basis) of the transformed system depends on the number

of states, nx, and order of the basis functions, q:

nz =
(q + nx)!

q!nx!
(10.29)

For example, if there are nx = 3 states and 4th order basis functions are considered, the number of

dimensions increases to nz = 35.

Figure 10.1 presents the procedure to transform a given system into bilinear form using the KOT. Even

though the first step seems trivial, we will see in the following subsections that selecting an appropriate

state vector representation for the Koopman formalism is in fact crucial. Although the projection of

the Koopman operator onto a finite subspace allows us to calculate the eigenfunctions (and thus, the

evolution of the states), it is important to understand that this is only an approximation. We can only use a

limited number of basis functions and eigenfunctions, and therefore, the approximation is more accurate

the more linear the original system is. As we found that the choice of the basis functions is not critical,

we use orthonormal Legendre polynomials throughout this chapter. The reason is that the weighting

function in Eq. (10.9) is w(x) = 1, i.e., constant. This eases the computation of the integrals. Once the

10 Koopman Operator Theory 175

finite-dimensional Koopman matrix is obtained, its eigenfunctions, eigenvalues, and eigenvectors can be

determined. The Koopman modes are found using Eq. (10.6), and the Koopman canonical transform in

Eq. (10.19) is used to transform the original coordinates x into a higher-dimensional space spanned by

the eigenfunctions. The final step is a Koopman mode decomposition with respect to the control term to

obtain a bilinear system.

Transform system into perturbation problem

Select orthonormal basis functions L(x)

Compute Koopman matrix K using the Galerkin method

Perform eigendecomposition of K

Calculate Koopman modes v of observables and determine C

Apply Koopman canonical transform to lift dynamical system into a higher dimension

Compute the Koopman matrices Kbi with respect to the control vector fields bi

Determine the Koopman modes of Kbi to obtain Bi

Figure 10.1: Procedure to transform a dynamical system into bilinear form.

10.2.2 Full Linearization

Although we expect that a bilinear form can be handled more easily than a highly nonlinear system, a

completely linear representation of the dynamics is, naturally, preferable. If the left-hand side of Eq.

(10.22) is constant, i.e.,

∇xT(x)bi(x) = const. =.. B ∀i = 1, . . . , n (10.30)

10 Koopman Operator Theory 176

the dynamics in Eq. (10.23) reduce to linear form [161]:

ż = Dz+Bu (10.31)

Yet, this condition is in general not satisfied if a limited number of eigenfunctions is used. In this

dissertation, we apply a procedure called extended dynamic mode decomposition (EDMD) to obtain an

approximate linear model. In literature, this approach is often used to determine a finite-dimensional

representation of the Koopman operator [159, 202]. Let F denote the map that solves the discrete-time

equivalent of the system ẋ in Eq. (10.18) such that

x+ = F(x,u) (10.32)

where x+ denotes the resulting state at the next time step. We are then interested in the corresponding

linear form expressed in the transformed coordinates z:

z+ = Dz+Bu (10.33)

Given a set of M data points
[
x+
j ,xj ,uj

]
, j = 1, . . . ,M , that satisfy Eq. (10.32), the basic idea of

EDMD is to solve the following optimization problem [202]:

min
D,B

M∑
j=1

∥∥∥T(x+
j)−DT(xj)−Bu

∥∥∥2
2

(10.34)

Collecting all data in matrices, Eq. (10.34) can be rewritten to obtain [202]

min
D,B

∥∥X+
lift −DXlift −BU

∥∥
F

(10.35)

where ∥·∥F refers to the Frobenius norm of a matrix, and

X+ =
[
x+
1 , . . . ,x

+
M

]
, X = [x1, . . . ,xM] , U = [u1, . . . ,uM] (10.36)

X+
lift =

[
T(x+

1), . . . ,T(x+
M)
]
, Xlift = [T(x1), . . . ,T(xM)] (10.37)

Therefore, the obtained solution can be considered the best linear fit over one step. Equation (10.35) can

be solved analytically using the Moore–Penrose pseudoinverse (·)† to obtain D and B [202]:

[D,B] = X+
lift [Xlift,U]† (10.38)

As we already computed the matrix D with the Galerkin method, we pursue a slightly different approach.

In particular, we only solve for B, and use the matrix D that we obtained with the eigendecomposition.

Thus, Eq. (10.38) changes to

B =
(
X+

lift −DXlift

)
U† (10.39)

10 Koopman Operator Theory 177

As EDMD minimizes the prediction error over one time step only, the error will accumulate over time.

Even though more accurate solutions may be obtained if a larger training set is used, caution is advised

if the linear form is intended for long time prediction.

10.3 Linearization Accuracy Index

Even though we mentioned that it is expected that a bilinear form may be easier to handle, the dynamics are

still nonconvex. As a first-order Taylor series is the standard method to approximate nonlinear dynamics,

we now want to assess whether linearizing the bilinear form is beneficial compared to linearizing the

original system directly. For this reason, we determine the linearization accuracy index defined in Eq.

(7.158) for a given set of perturbed reference trajectories. Our findings from Section 7.3 suggest that this

metric can be a good indicator of how accurate a linearized system is. We refer the reader to Chapter 7

for details, and present the results for the Duffing oscillator and the space-flight mechanics problem in

Section 10.5.

10.4 Applications

The transformations into bilinear and linear systems is applied to two examples: the Duffing oscillator and

the perturbed Kepler problem. We provide a step-by-step example for the Duffing oscillator, and describe

the characteristics and modifications that are needed to apply the Koopman formalism to problems in

orbital mechanics.

10.4.1 Duffing Oscillator

We consider the following system of differential equations for the Duffing oscillator:

ẋ1 = x2 (10.40a)

ẋ2 = −x1 − ε x31 + u (10.40b)

where x1, x2 are the states, ε is a small parameter, and u an external control. This system is fully

polynomial, and consists of a leading linear term −x1 and a small perturbation −ε x31 in Eq. (10.40b).

No further modifications are necessary to compute the Koopman matrix because the system is already

completely polynomial.

In the following, we provide a step-by-step example of how all relevant quantities for the bilinearization

are computed to make the reader familiar with the Koopman formalism.

10 Koopman Operator Theory 178

Step 1: Selection of Basis Functions

According to Fig. 10.1, orthonormal basis functions L(x) are to be selected where x ..= [x1, x2]
⊤.

For demonstration purposes, we limit ourselves to 2nd order basis functions. The first three Legendre

polynomials are given by

P1(x) = 1 (10.41a)

P2(x) = x (10.41b)

P3(x) =
1

2

(
3x2 − 1

)
(10.41c)

As these are orthogonal but not orthonormal, they are normalized such that

⟨Pi(x), Pj(x)⟩ =
∫ 1

−1
Pi(x)Pj(x)w(x) dx = δij , i = 1, 2, 3, j = 1, 2, 3 (10.42)

where δij denotes the Kronecker delta, and w(x) = 1. The normalization factor αi for the ith Legendre

plynomial is therefore given by

αi =

√
2 (i− 1) + 1

2
, i = 1, 2, 3 (10.43)

and the normalized Legendre polynomials P̃i(x) = αi Pi(x) read

P̃1(x) =
1√
2

(10.44a)

P̃2(x) =

√
3

2
x (10.44b)

P̃3(x) =

√
5

2

1

2

(
3x2 − 1

)
(10.44c)

Making use of Eq. (10.29), there are nz = 6 combinations of the orthonormal Legendre polynomials

that yield the basis functions Li(x), i = 1, . . . , 6, of maximum degree two:

L1(x) = P̃1(x1) P̃1(x2) =
1

2
(10.45a)

L2(x) = P̃2(x1) P̃1(x2) =

√
3

2
x1 (10.45b)

L3(x) = P̃1(x1) P̃2(x2) =

√
3

2
x2 (10.45c)

L4(x) = P̃3(x1) P̃1(x2) =

√
5

4

(
3x21 − 1

)
(10.45d)

L5(x) = P̃2(x1) P̃2(x2) =
3

2
x1 x2 (10.45e)

L6(x) = P̃1(x1) P̃3(x2) =

√
5

4

(
3x22 − 1

)
(10.45f)

10 Koopman Operator Theory 179

Step 2: Computation of Koopman Matrix and Eigendecomposition

Recalling that the entries Kij of the Koopman matrix associated with the uncontrolled problem (i.e.,

u = 0) is given by Eq. (10.9), we need to compute the derivatives of Li(x) with respect to time:

dLi(x)

dt
= ∇xLi(x) f(x), i = 1, . . . , 6 (10.46)

Using f(x) = [ẋ1, ẋ2]
⊤ and Eq. (10.40), this results in

dL1(x)

dt
= 0 (10.47a)

dL2(x)

dt
=

√
3

2
x2 (10.47b)

dL3(x)

dt
= −

√
3

2

(
x1 + ε x31

)
(10.47c)

dL4(x)

dt
=

3
√
5

2
x1 x2 (10.47d)

dL5(x)

dt
= −3

2

(
x21 − x22 + ε x41

)
(10.47e)

dL6(x)

dt
= −3

√
5

2
x2
(
x1 + ε x31

)
(10.47f)

As there are two states, each element Kij is then found by calculating the following double integral:

Kij =

∫ 1

−1

∫ 1

−1

dLi(x)

dt
Lj(x)w(x) dx1 dx2, i = 1, . . . , 6, j = 1, . . . , 6 (10.48)

where w(x) = 1, and the integration domain is [−1, 1] for Legendre polynomials. The only nonzero

elements of K are K23 = 1, K32 = −1−3 ε/5, K45 =
√
5, K51 = −3 ε/5, K54 = −2 (7+6 ε)/(7

√
5),

K56 = 2
√
5/5, and K65 = −(5 + 3 ε)/

√
5.

Performing an eigendecomposition of K yields the vector of eigenvalues λ:

λ =

[
0, 0, −

√
−1− 3

5
ε,

√
−1− 3

5
ε, −

√
−4− 102

35
ε,

√
−4− 102

35
ε

]⊤
(10.49)

The matrix of right eigenvectors Vr reads

Vr =

−2
√
5 (7+6 ε)
21 ε

2
√
5

3 ε 0 0 0 0

0 0 −
√
5√

−3 ε−5

√
5√

−3 ε−5
0 0

0 0 1 1 0 0

1 0 0 0 − 5
3 ε+5 − 5

3 ε+5

0 0 0 0
√

2
7

√
−51 ε−70
3 ε+5 −

√
2
7

√
−51 ε−70
3 ε+5

0 1 0 0 1 1

(10.50)

10 Koopman Operator Theory 180

and the vector of eigenfunctions Φ(x) is then

Φ(x) = V−1
r L(x) =

√
5 (63 ε x2

1−42 ε+105x2
1+105x2

2−70)
204 ε+280

21
√
5 ε (3 ε+5)

1020 ε+1400 +
5
√
5(6 ε+7) (3x2

2−1)
204 ε+280 +

√
5 (3 ε+5) (6 ε+7) (3x2

1−1)
204 ε+280

√
3x2
4 −

√
15x1

√
−3 ε−5

20
√
3x2
4 +

√
15x1

√
−3 ε−5

20

7
√
5 (3 ε+5) (3x2

2−1)
408 ε+560 − 21

√
5 ε (3 ε+5)

2040 ε+2800 −
√
5 (3 ε+5) (6 ε+7) (3x2

1−1)
408 ε+560 + 3

√
14x1 x2 (3 ε+5)

8
√
−51 ε−70

7
√
5 (3 ε+5) (3x2

2−1)
408 ε+560 − 21

√
5 ε (3 ε+5)

2040 ε+2800 −
√
5 (3 ε+5) (6 ε+7) (3x2

1−1)
408 ε+560 − 3

√
14x1 x2 (3 ε+5)

8
√
−51 ε−70

(10.51)

Step 3: Computation of Koopman Modes and Koopman Canonical Transform

We require the elementsPij of the projection matrixP. It is determined using Eq. (10.16) with g(x) ≡ x:

Pij =

∫ 1

−1

∫ 1

−1
xi Lj(x)w(x) dx1 dx2, i = 1, 2, j = 1, . . . , 6 (10.52)

The only nonzero elements are P12 = P23 = 2
√
3/3. The matrix C that contains the Koopman modes

is then computed using Eq. (10.27):

C = PVr =

0 0 − 2
√
15

3
√
−3 ε−5

2
√
15

3
√
−3 ε−5

0 0

0 0 2
√
3

3
2
√
3

3 0 0

 (10.53)

Recall from Eq. (10.28) that the columns of C change if the corresponding eigenvalues are complex.

Assuming that ε > 0, we observe that all eigenvalues except the first two are complex (see also Eq.

(10.49)). Therefore, C is to be adjusted accordingly, and we obtain

C =

0 0 0 Im
(
− 2

√
15

3
√
−3ε−5

)
0 0

0 0 2
√
3

3 0 0 0

 (10.54)

The Koopman canonical transform is given by the transformation T(x) in Eq. (10.19):

T(x) = [ϕ1(x), ϕ2(x), 2Re(ϕ3(x)), −2 Im(ϕ3(x)), 2Re(ϕ5(x)), −2 Im(ϕ5(x))]
⊤ (10.55)

Step 4: Computation of Koopman Matrix With Respect to Control

As the control u is scalar, there is only one control vector field b = [0, 1]⊤ in Eq. (10.18). The Koopman

matrix Kb with respect to the control is then obtained using Eq. (10.20):

Kb
jk =

∫ 1

−1

∫ 1

−1
∇x Tj(x)bLk(x)w(x) dx1 dx2, j = 1, . . . , 6, k = 1, . . . , 6 (10.56)

10 Koopman Operator Theory 181

Assuming ε = 10−3 so that we can properly calculate the double integrals, the nonzero elements of Kb

are Kb
13 = 1.9351, Kb

23 = 1.9367, Kb
31 = 1.7321, Kb

53 = 1.9362, and Kb
62 = 1.9369. Note that the

entries are rounded to four significant digits due to the lengthy expressions.

The next step is to determine B that contains the Koopman modes of Kb. According to Eq. (10.26),

we need to multiply Kb with Vr of the unactuated system and update the columns of the obtained matrix

using Eqs. (10.28a) and (10.28b). The nonzero elements are given by Bb
13 = 1.9351, Bb

23 = 1.9367,

Bb
31 = −2.5842× 103, Bb

32 = 2.5820× 103, Bb
53 = 1.9362, and Bb

64 = 1.9364.

Finally, the only remaining quantity is D that is computed using Eq. (10.25). For ε = 10−3, the

nonzero elements read D34 = −1.0003, D43 = 1.0003, D56 = −2.0007, and D65 = 2.0007.

The bilinear system is then given by Eqs. (10.23) and (10.24), and the transformation z ≡ T(x) lifts

the original states x = [x1, x2]
⊤ into a six-dimensional space with states z = [z1, . . . , z6]

⊤.

10.4.2 Perturbed Keplerian Motion

With regard to orbital motion, we make use of MOE and KS coordinates of Chapter 7 because they

result in linear unperturbed dynamics. As the control actions are small due to the low-thrust propulsion,

the problem can often be considered a perturbation problem with a leading linear term. We present the

required modifications so that both coordinate sets can be applied within the KOT. For demonstration

purposes, we consider the planar case only. It is straightforward to extend the approach to three-

dimensional problems.

Kustaanheimo–Stiefel Coordinates

Recalling the equations of motion in Eq. (7.117), it is apparent that they are polynomial except for the

term 1/h. In order to be able to compute the derivatives easily in an automated way, we define a new

element h̃ as the inverse of the negative specific energy h:

h̃ ..=
1

h
(10.57)

The derivative of h̃ with respect to the independent variable E is then given by

dh̃

dE
= −h̃2

dh

dE
(10.58)

Therefore, the new differential equations are obtained by replacing 1/h with h̃ in Eq. (7.117). As a

consequence, the differential equations become completely polynomial, which significantly eases the

computation of derivatives and integrals.

10 Koopman Operator Theory 182

Modified Orbital Elements

To the best of our knowledge, the Galerkin method has only been applied to problems with fully polynomial

dynamics within the KOT in astrodynamics [164, 165]. In this section, we demonstrate that also non-

polynomial representations can be used, although some modifications and more computational effort are

required. According to Eq. (10.9), we need to project the Koopman operator onto the basis functions to

obtain a finite-dimensional matrix. This is done by computing the inner product. Regardless of the chosen

basis functions, it may happen that the integrals are not defined if the dynamics are not polynomial. For

example, if we consider the equation of motion (7.62a) for the element Λ,

dΛ

dζ
= −η +

2κ+ Λ

κ (κ+ Λ)3
as (10.59)

we notice the singularities at κ = 0 and κ+Λ = 0. Even though they are physically not relevant (e.g., κ

as the inverse of the angular momentum is never zero), this causes the integrals over the interval [−1, 1]

to be undefined. Therefore, we propose a linear transformation and shift the values of each element such

that the singularities are avoided. The standard linear mapping from the interval [a, b] to [c, d] is given by

f(x) = c+
d− c

b− a
(x− a) (10.60)

As the Legendre polynomials are defined on [−1, 1], this transformation is obtained by setting a = xmin,

a = xmax, c = −1, and d = 1:

x̃ =
2x− xmax − xmin

xmax − xmin
(10.61)

x and x̃ are the original and transformed variables, respectively. xmin and xmax define the minimum

and maximum values that element x can take. We found in our simulations that the selection of these

values is not critical as long as the singularities can be avoided. For example, the values in Table 10.1

cover all transfers considered in this chapter, and allow us to compute the integrals. Although we restrict

the domain of the integration this way, our simulations confirm that the accuracy does not deteriorate

compared to integrating over the complete interval [−1, 1]. The reason is that the orbital elements vary

within the range defined by xmin and xmax. The inverse transformation is

x =
1

2
[x̃ (xmax − xmin) + xmax + xmin] (10.62)

Taking the derivative with respect to ζ yields

dx̃

dζ
=

2

xmax − xmin

dx

dζ
(10.63)

As an example, the differential equation
dΛ

dζ
= −η (10.64)

10 Koopman Operator Theory 183

Table 10.1: Values for the linear transformation for MOE to avoid the singularity within KOT.

Element Minimum value Maximum value

Λ −0.1 0.1

η −0.1 0.1

γ −0.7 0.7

s −0.7 0.7

κ 0.7 0.99

β −0.9 0.9

is transformed into

dΛ̃

dζ
=

2

Λmax − Λmin

dΛ

dζ
=

2

Λmax − Λmin
(−η)

= − ηmax − ηmin

Λmax − Λmin
η̃ − ηmax − ηmin

Λmax − Λmin

(10.65)

The other equations and the control terms are mapped in a similar way, but omitted here due to the lengthy

expressions.

For demonstration purposes, we considered the formulation of MOE that results in linear unperturbed

dynamics so far. Yet, the same procedure applies to other problems where the Koopman operator can

be applied, i.e., perturbation problems with a leading linear term and a small perturbation. Although we

have already presented the Duffing oscillator that belongs to this class of problems, we briefly provide

an example relevant for orbital motion. As shown in [165], the singularity of MOE can be eliminated by

introducing a different time regularization defined as follows:

d

dt
=

ph
r2 cos2 ϕ

d

dζ̃
(10.66)

where ζ̃ is the new independent variable. Note the additional factor cos2 ϕ in the denominator compared

to the original regularization in Eq. (7.29). The relationship between ζ and ζ̃ is then given by

d

dζ
=

1

cos2 ϕ

d

dζ̃
(10.67)

This slightly changes the dynamics of the system. For example, the new differential equation for element

Λ is
dΛ

dζ̃
= −η + η s2 +

(2κ+ Λ)
(
1− s2

)
κ (κ+ Λ)3

as (10.68)

where we used cos2 ϕ = 1−s2 and omitted the normalization factor. The dynamics of the other elements

are obtained similarly by multiplying the right-hand side with 1 − s2. Obviously, the unperturbed

dynamics are not linear anymore, but become nonlinear due to the term η s2. However, this product is

small compared to the linear part −η, and therefore, the system can still be transformed accurately into

10 Koopman Operator Theory 184

bilinear form. The only difference is that higher-order basis functions are needed to achieve the same

accuracy as in the completely linear case. The reason is that the total order of the system increases by two

because of the factor s2. Consequently, the degree of the basis functions should at least increase by two

to capture the additional nonlinearity accurately. Naturally, other small perturbations can be included in

the same way, for example, the J2 term due to the oblateness of the Earth [165].

Remark 10.2. In case of out-of-plane motion, we recall the differential equation (7.62c) for the element γ.

Even though the integral of
√

1− s2 − γ2 could be computed analytically using spherical coordinates,

the coupling with the other terms makes it difficult to calculate it numerically in an automated way.

Therefore, it is possible to define a new element:

c ..= cos i =
√
1− s2 − γ2 (10.69)

where i is the inclination of the orbit. The derivative with respect to the independent variable ζ is then

dc

dζ
= − γ

κ (κ+ Λ)3
an (10.70)

This way, all multi-dimensional integrals can be computed numerically.

The complete procedure to determine the bilinear representation is automated. To ensure a high

flexibility, all calculations are performed symbolically due to the complex structure of the equations

for MOE. The inner products (and hence, multi-dimensional integrals) in Eqs. (10.9) and (10.20) are

computed using numerical quadrature on sparse grids [203].

10.5 Numerical Simulations

We perform numerical simulations to assess the accuracy of the bilinear and completely linear system

when propagating the dynamics. In addition, the metric Ξx is determined to obtain an indication of the

linearization performance. Scaling parameters for the Kepler problem are given in Table 10.2, and other

relevant data in Tables 10.3 and 10.4. With regard to the orbital motion problem, we consider the data

of the transfer from the Sun-Earth Lagrange point L2 to asteroid 2000 SG344 [129]. Table 10.1 provides

the parameters for the linear transformation for MOE. If not stated otherwise, all variables are scaled

such that they stay within (or close) to [−1, 1]. Therefore, quantities without units refer to the normalized

values throughout this section.

10.5.1 Bilinear and Linear System

We propagate the dynamics of the original, bilinear, and linear system and compare the results. With

regard to the transformed systems, the orders q = 3 to q = 7 are considered for the basis functions.

10 Koopman Operator Theory 185

Table 10.2: Physical constants for the Kepler problem.

Parameter Value

Gravitational const. µ 1.327 124 4× 1011 km3 s−2

Length unit LU = AU 1.495 978 707× 108 km

Velocity unit VU
√

µAU−1

Table 10.3: Simulation values for the Duff-
ing oscillator.

Parameter Value

Initial state x1, x2 1.0, 0.0
Small parameter ε 10−3

Propagation period 15

Table 10.4: Simulation values for the orbital motion problem [129].

Parameter Value

Initial position r0, AU
[−0.70186065, 0.70623244,

−3.51115× 10−5]⊤

Initial velocity v0, VU
[−0.73296949, −0.71590485,

4.40245× 10−5]⊤

Final position rf , AU [0.41806795, 0.82897114,
−0.00143382]⊤

Final velocity vf , VU
[−0.96990332, 0.43630220,

−0.00123381]⊤

Propagation period, days 700

The resulting number of states nz (or equivalently, number of eigenfunctions) for each order is given

in Table 10.5. For higher polynomial degrees, the number of dimensions becomes relatively large, and

consequently, the computational effort increases. To demonstrate that the KOT is able to determine

the eigenvalues accurately, plots of the real and imaginary parts of the eigenvalues for q = 3 (Duffing)

and q = 7 (Kepler) are shown in Fig. 10.2. Note that the eigenvalues refer to the linear part of the

unperturbed dynamics, and the red circles are the analytically determined values. Apparently, the real

parts are essentially zero, and the KOT finds the same eigenvalues. As expected, the total number of

eigenvalues increases if more basis functions are taken into account.

Propagation Accuracy of the Bilinear System

The original and the bilinear system are propagated using the control profiles shown in Fig. 10.3. The

evolution of the states is shown in Figs. 10.4 and 10.5, and we observe that all curves seem to match.

Table 10.5: Number of states in the transformed system for different orders of the basis functions.

Problem 3rd order 4th order 5th order 6th order 7th order

Duffing (nx = 2) 10 15 21 28 36
Kepler (nx = 3) 20 35 56 84 120

10 Koopman Operator Theory 186

−6 −4 −2 0 2 4

·10−17

−2

0

2

4

Real Part

Im
ag

in
ar

y
Pa

rt
Koopman
Original

(a) Duffing oscillator and 3rd order basis functions.

−2 −1 0 1 2

·10−13

−4

−2

0

2

4

Real Part

Im
ag

in
ar

y
Pa

rt

Koopman
Original

(b) Kepler problem and 5th order basis functions.

Figure 10.2: Eigenvalues of the unperturbed Duffing and Kepler problem.

With regard to the results of the Duffing oscillator in Fig. 10.6, the obtained maximum errors of

approximately 10−6 are small regardless of the order of the basis functions. Yet, the higher degrees 5 – 7

can achieve a two to three orders of magnitude better accuracy compared to q = 3 and q = 4. The

negative peaks occur when x2, and hence, the nonlinear term, becomes small.

For the Kepler problem, the accuracy improves by approximately one order of magnitude between

q and q + 1. Moreover, q = 3 performs worse compared to the Duffing oscillator. The reason is that

4th order terms occur in the denominator of the equations of motion. Consequently, the same degree of

the polynomial is required to ensure an accurate representation. Regardless of the polynomial degree,

the error is small at the beginning and increases over time. Still, the error can be reduced significantly if

higher orders are used. For example, q = 7 results in an error of only 101 – 102 km. As we consider an

interplanetary transfer where the length scales are of the order of an astronomical unit, errors of 103 km

are often sufficient for the cruise phase. Moreover, if the bilinear system is to be used within a direct

method to solve the corresponding optimal control problem, the trajectory is divided into segments, and

the dynamics need to be accurate only for a short time period. Therefore, even lower orders can yield

sufficiently accurate results for the example considered in this chapter. The behavior of the velocity error

in Fig. 10.7b is similar with maximum errors of approximately 0.1 – 1m s−1. Similar trends are observed

for the KS coordinates.

Note that Fig. 10.7 refers to the case without the additional perturbation term 1−s2 on the right-hand

side of Eq. (10.68). If it is included, the trend of the graphs is similar, but higher-order basis functions

are needed to achieve the same accuracy.

Propagation Accuracy of the Linear System

A training set of 104 data points is generated by randomly adding noise to the nominal controls. In partic-

ular, each component of the control is varied by 10% around the nominal one, and the set
[
x+
j ,xj ,uj

]
,

10 Koopman Operator Theory 187

0 5 10 15

−1

0

1

·10−2

Time

Co
nt

ro
l

(a) Duffing oscillator.

0 200 400 600
0

1

2

Time, days

Th
ru

st
M

ag
ni

tu
de

,m
N

(b) Kepler problem.

Figure 10.3: Control profiles for the Duffing oscillator and Kepler problem.

0 5 10 15
−1

0

1

Time

G
1

Bilinear
Original

(a) Evolution of x1.

0 5 10 15
−1

0

1

Time

G
2

Bilinear
Original

(b) Evolution of x2.

Figure 10.4: State trajectories for the Duffing oscillator.

10 Koopman Operator Theory 188

0 200 400 600

−5

0

5
·10−2

Time, days

Λ

Bilinear
Original

(a) Evolution of Λ.

0 200 400 600

−5

0

5

·10−2

Time, days

[

Bilinear
Original

(b) Evolution of η.

0 200 400 600
0.92

0.94

0.96

Time, days

^

Bilinear
Original

(c) Evolution of κ.

Figure 10.5: State trajectories for the Kepler problem.

0 5 10 15

10−12

10−10

10−8

10−6

Time

Er
ro

ro
fG

1

3rd order 5th order 7th order
4th order 6th order

(a) Position error.

0 5 10 15

10−12

10−10

10−8

10−6

Time

Er
ro

ro
fG

2

3rd order 5th order 7th order
4th order 6th order

(b) Velocity error.

Figure 10.6: Position and velocity errors obtained with the bilinear system for basis function orders 3 to 7 for
the Duffing oscillator.

10 Koopman Operator Theory 189

0 200 400 600
10−2

100

102

104

Time, days

Po
sit

io
n

Er
ro

r,
km

3rd order 5th order 7th order
4th order 6th order

(a) Position error.

0 200 400 600

10−5

10−3

10−1

101

Time, days

Ve
lo

ci
ty

Er
ro

r,
m

s−
1

3rd order 5th order 7th order
4th order 6th order

(b) Velocity error.

Figure 10.7: Position and velocity errors obtained with the bilinear system for basis function orders 3 to 7 for
the Kepler problem.

0 5 10 15
0

1

2

3

·10−4

Time

Er
ro

ro
fG

1

(a) Position error.

0 5 10 15
0

0.5

1

1.5

2
·10−4

Time

Er
ro

ro
fG

2

(b) Velocity error.

Figure 10.8: Position and velocity errors obtained with the linear system for the Duffing oscillator.

j = 1, . . . , 104, is stored. Therefore, the evolution of the control profile is assumed to be approximately

known. The constant control matrix B is computed, and the resulting linear dynamics are propagated.

The position and velocity errors with respect to the integration of the original system is shown in Figs.

10.8 and 10.9. For both problems, the errors accumulate over time. However, this is expected because the

EDMD optimizes over a single time step only. Despite the continuous control for the Duffing oscillator,

the evolution of the states can be captured relatively accurately, especially during the beginning of the

propagation. Regarding the orbital motion, a similar trend is observed. Even though a maximum error of

approximately 2× 104 km and 3m s−1 seems to be large, the propagation period is long, and such orders

of magnitude may in fact be acceptable for deep-space applications. A disadvantage, however, is that the

control structure needs to be known to some degree to achieve such an accuracy. If the variation of the

controls is increased to 50% or if the control profile is completely unknown, the order of magnitude of

the errors increases by one (Kepler problem) or two (Duffing oscillator). In general, the accuracy can be

enhanced if the system is re-lifted repeatedly to reset the error. Yet, this is a nonlinear operation, which

may not be desirable.

10 Koopman Operator Theory 190

0 200 400 600
0

0.5

1

1.5

2
·104

Time, days

Po
sit

io
n

Er
ro

r,
km

(a) Position error.

0 200 400 600
0

1

2

3

Time, days

Ve
lo

ci
ty

Er
ro

r,
m

s−
1

(b) Velocity error.

Figure 10.9: Position and velocity errors obtained with the linear system for the Kepler problem.

10.5.2 Linearization Accuracy Index

The perturbed trajectories for the Duffing oscillator are generated by multiplying the controls with random

numbers between−10 and 10, and the original system is then propagated to obtain the states. The resulting

indices Ξx for this case are shown in Fig. 10.10a. In an additional simulation, the states and controls are

both multiplied by random numbers in the same range. For each case, 1000 samples are generated, and

100 discretization points are used to compute Ξx. The results are illustrated in Fig. 10.10b. Remarkably,

the bilinear system achieves an index that is several orders of magnitude smaller than the one of the

original system. Despite the larger number of dimensions, the accuracy of the linearization seems to be

higher if a bilinear system is used.

With regard to the Kepler problem, we only consider the case where the unperturbed dynamics are

linear. Even though it may seem unnecessary to apply the KOT to a system that is already linear in the

unperturbed case, we want to investigate whether a highly nonlinear control term could benefit from a

transformation into the form ż = Dz + Bzu. Although this is still nonlinear, we expect it to behave

better under linearization because B is constant, and z appears only linearly. The perturbed trajectories

are obtained by multiplying the states and controls with random numbers between 0.9 and 1.1 (states), and

0.5 and 5 (controls). The resulting controls are then added to the nominal one. This ensures a sufficiently

large perturbation even if the nominal control is zero. The number of discretization points is 150. The

evolution of the index is shown in Fig. 10.11a. Although the difference becomes less significant, Ξx is

still several times smaller in the bilinear case. A separate simulation is performed where the nominal

controls are only multiplied by random numbers. This means that the perturbation of the control term is

zero during coast arcs, and the linearization of the linear unperturbed dynamics is exact. Figure 10.11b

shows the index over time. As expected, Ξx = 0 when there is no thrust. Interestingly, Ξx is again several

times smaller for the bilinear representation. Therefore, even transforming a system that is already linear

in the unperturbed case into bilinear form may be beneficial if the control terms are highly nonlinear.

10 Koopman Operator Theory 191

Still, it is yet to be investigated whether the larger number of dimensions and the increased computational

effort can be handled properly when solving more complex problems.

0 5 10 1510−10

10−9

10−8

10−7

10−6

10−5

Time, TU

Li
ne

ar
iz

at
io

n
A

cc
ur

ay
In

de
x
Ξ

x

Bilinear
Original

(a) Propagation with perturbed controls.

0 5 10 15

10−9

10−7

10−5

10−3

Time

Li
ne

ar
iz

at
io

n
A

cc
ur

ay
In

de
x
Ξ

x

Bilinear
Original

(b) Random perturbation of states and controls.

Figure 10.10: Linearization accuracy index for the Duffing oscillator.

0 200 400 600
0

1

2

3

4
·10−5

Time, days

Li
ne

ar
iz

at
io

n
A

cc
ur

ay
In

de
x
Ξ

x

Bilinear
Original

(a) Adding randomly sampled perturbation to the control.

0 200 400 600
0

2

4

6

8
·10−5

Time, days

Li
ne

ar
iz

at
io

n
A

cc
ur

ay
In

de
x
Ξ

x

Bilinear
Original

(b) Random perturbation of states and controls.

Figure 10.11: Linearization accuracy index for the Kepler problem.

11 Summary and Future Work

In this dissertation, a computationally efficient method based on convex programming was developed to

solve the low-thrust trajectory optimization problem. A particular focus was on real-time guidance for in-

terplanetary transfers. We conclude this work with a summary of the findings, and give recommendations

for future work.

11.1 Summary

Based on the characteristics of the deep-space cruise, we define six high-level requirements for onboard

guidance. A thorough assessment of state-of-the-art guidance methods is performed, and SCP is deemed

most appropriate to generate optimal trajectories within the framework of an offline design tool, but also

as a guidance approach where the trajectory is recomputed in real time when needed. We present a

comprehensive overview of the sequential convex programming algorithm with different types of state

vector representations, linearization techniques, and trust-region methods that we consider useful for a

large variety of applications.

As none of the existing works has investigated how different discretization and trust-region methods

and their parameters affect the performance of the SCP algorithm for complex interplanetary low-thrust

fuel-optimal transfers, a thorough performance assessment is provided in Chapter 6. In that context,

convex formulations of the differential and integral forms of the Legendre–Gauss–Radau pseudospectral

method are developed, and their performance is compared with the first-order-hold and Legendre–Gauss–

Lobatto method. The results show that FOH and a hard trust-region strategy often yield the best

compromise in terms of convergence, onboard capability, accuracy, and optimality for the considered

class of problems. The high percentage of converged cases has shown that SCP is very reliable despite

the poor initial guesses. This is crucial for real-time guidance as a solution must be obtained at any time.

The results show that a convex programming approach seems to be a viable method to compute low-thrust

trajectories onboard. All of the fundamental requirements seem to be satisfied by almost all methods.

The choice of the coordinate system is crucial for nonlinear optimization methods, especially if

linearization is involved. Therefore, different state vector representations are assessed for the low-thrust

trajectory optimization problem in Chapter 7. In particular, three non-standard coordinates (two sets

192

11 Summary and Future Work 193

based on Kustaanheimo–Stiefel coordinates, and modified orbital elements) are introduced that result in

linear dynamics in the unperturbed case. In addition, two nonlinearity-like metrics tailored to convex

optimization are proposed to investigate how different state vector representations affect the performance

of SCP when the same initial guess is provided. Our simulations suggest that MOE, MEE, spherical,

and cylindrical coordinates outperform Cartesian coordinates in terms of success rate. Sets with an

independent variable different from time that have linear unperturbed dynamics, such as MOE and KSE ,

require significantly fewer iterations. Moreover, the different distribution of the discretization points of

MOE and KS is often beneficial as more points are placed near periapsis where most thrust arcs occur.

Despite the singularity for orbits with zero inclination, MOE are an excellent choice for preliminary

studies due to the rapid speed and high robustness against poor initial guesses.

The homotopic approach in Chapter 8 is developed to improve convergence, accuracy, and the com-

putational effort of SCP. The homotopy is embedded into the optimization process where the homotopic

parameter is dynamically adjusted based on the constraint violation. This method is combined with a

high-fidelity model where the complexity of the dynamics and constraints is successively increased. A

novel trust-region update mechanism is presented to expand the feasible region when the homotopic

parameter changes. The simulations show that increasing the complexity of the dynamical model only

step by step increases convergence significantly. Despite the larger number of iterations that is required to

reach convergence, the rapid speed of the proposed method makes it an excellent alternative to nonlinear

programming solvers even for highly nonlinear problems. As no-thrust constraints can directly be in-

cluded in the optimization process without a significant increase in computational effort and decrease in

convergence, this approach can be considered another step towards computing more mission-compliant

trajectories using convex programming techniques.

The closed-loop guidance simulation is presented in Chapter 9. A processor-in-the-loop experiment

is carried out where a Raspberry Pi is used to assess the performance of the SCP algorithm on hardware

comparable to flight qualified onboard processors. The deep-space cruise is simulated by repeatedly

computing the reference trajectory and propagating the dynamics in a high-fidelity model. Various

disturbances are considered, and a method is developed where the target is considered moving to allow

for more flexibility in case of failure conditions. A Monte Carlo analysis is performed with a random

sampling of the disturbances to demonstrate the high reliability of the proposed approach. The simulations

show that the algorithm is able to provide feasible trajectories in all cases, and the maximum required

CPU time of approximately one minute per optimization is acceptable for interplanetary transfers. In

general, the CPU times to optimize a trajectory on a standard and underclocked Raspberry Pi range

from few seconds to few minutes depending on the number of discretization points. This is considered

acceptable for interplanetary transfers because they can last years. The excellent reliability and accuracy

11 Summary and Future Work 194

even in case of large, unexpected disturbances close to the target make the method a promising candidate

for real space missions.

We provide a detailed procedure to transform a control-affine into a bilinear system, and we demon-

strate how non-polynomial dynamical systems can be used within the Koopman operator framework.

In particular, a step-by-step example of the Duffing oscillator is presented to make the reader familiar

with the formalism. Besides this rather simple example, the bilinearization is also applied to the more

complex perturbed Kepler problem. Although it requires some effort to transform the dynamical system

into a higher-dimensional space, this needs to be done only once. The results show that such a global

approximation can yield a sufficient level of accuracy even for lower-order basis functions. Yet, the

computational effort is often considerably higher due to the larger number of dimensions. Moreover, the

smaller linearization accuracy index suggests that using the bilinear form instead of the original system

may be beneficial in terms of accuracy when computing a first-order Taylor series. Even though linear

approximations of nonlinear systems are often preferable, we show that the accuracy becomes poor for

larger prediction horizons. Still, the Koopman operator theory is an interesting approach to address

nonlinear systems with a leading linear term and small perturbations.

Using the techniques described in each chapter, the reliability, accuracy, robustness, and computational

efficiency of low-thrust trajectory optimization methods could be enhanced. The numerical simulations

demonstrated that all defined high-level requirements for onboard guidance are fulfilled. The findings of

this dissertation can therefore serve as a valuable contribution in the field of computational guidance for

spacecraft equipped with low-thrust propulsion systems.

11.2 Future Work

Even though several advances could be made in this dissertation, there are various aspects that require

further research:

SCP algorithm: Although the proposed SCP algorithm works well in practice, a more sophisticated

mechanism for updating the trust region is desirable to avoid an excessive number of rejected steps.

This may be advantageous in terms of iterations, CPU time, and also convergence. In addition, a

general procedure on how to choose the initial trust-region radius is advisable. Moreover, it is yet to be

investigated how the successive linearization approach compares with other methods, such as successive

approximation or inner-convex approximations.

Discretization methods: As only a small selection of methods could be assessed in this dissertation,

it is recommended to consider additional discretization techniques, for example based on Bernstein

11 Summary and Future Work 195

polynomials. Furthermore, a thorough analysis is desirable to investigate when a discretization method

fails and when convergence can be guaranteed.

State vector representations: As we have seen that coordinate sets with linear unperturbed dynamics

are often advantageous in terms of convergence and number of iterations within SCP, it is advisable to

look into other coordinates that result in linear or weakly nonlinear constraints. Moreover, alternative

ways to handle the time variable properly are recommended if the independent variable is not time. With

regard to the modified orbital elements and Kustaanheimo–Stiefel coordinates, finding solutions to avoid

the singularity and nonconvex boundary conditions, respectively, are also directions for future work.

High-fidelity models: Although the considered dynamical model yields accurate nominal results, it

is an open question how the results change if uncertainty is included. For example, using initial and

final probability distributions instead of fixed points is of utmost importance for real missions. How to

convexify and solve the resulting stochastic optimal control problem requires further study.

Closed-loop guidance: Similarly, it is recommended to consider uncertainty also in the closed-loop

guidance simulation. In particular, incorporating a high-fidelity model of the orbit determination process

is important to make statements about the performance under more realistic conditions. Additional

simulations to different targets and with different parameters would support the high reliability and

robustness. This requires new methods, tools, and processes to eventually verify and validate autonomous

guidance, navigation, and control algorithms.

Koopman operator theory: An important aspect not considered in this dissertation is the convergence

of the Koopman operator. For example, it is to be investigated under what conditions convergence can be

guaranteed. Moreover, other approaches to obtain a finite-dimensional representation of the Koopman

matrix may yield more accurate solutions. If the matrix is not diagonalizable, robust methods are sought

to obtain the eigenvalues reliably. Finally, the methods provided in this dissertation can be applied to

optimization problems. This, however, merits further study as the original and transformed states are not

independent.

Bibliography

[1] Slavinskis, A., Janhunen, P., Toivanen, P., Muinonen, K., Penttilä, A., Granvik, M., Kohout, T., Gritsevich,

M., Slavinskis, A., Pajusalu, M., Sünter, I., Ehrpais, H., Dalbins, J., Iakubivskyi, I., Eenmäe, T., Pajusalu, M.,

Ilbis, E., Ehrpais, H., Muinonen, K., Gritsevich, M., Mauro, D., Stupl, J., Rivkin, A. S., and Bottke, W. F.,

“Nanospacecraft Fleet for Multi-Asteroid Touring With Electric Solar Wind Sails”, 2018 IEEE Aerospace

Conference, 2018. DOI: 10.1109/AERO.2018.8396670.

[2] Hein, A., Saidani, M., and Tollu, H., “Exploring Potential Environmental Benefits of Asteroid Mining”, 69th

International Astronautical Congress, 2018. Paper IAC-18,D4,5,11,x47396.

[3] Klesh, A., and Krajewski, J., “MarCO: Mars Cube One – Lessons Learned from Readying the First Inter-

planetary Cubesats for Flight”, Lunar and Planetary Science Conference, 2018. Paper 2923.

[4] Poghosyan, A., and Golkar, A., “CubeSat Evolution: Analyzing CubeSat Capabilities for Conducting Science

Missions”, Progress in Aerospace Sciences, Vol. 88, 2017, pp. 59–83. DOI: 10.1016/j.paerosci.2016.11.002.

[5] Quadrelli, M. B., Wood, L. J., Riedel, J. E., McHenry, M. C., Aung, M., Cangahuala, L. A., Volpe, R. A.,

Beauchamp, P. M., and Cutts, J. A., “Guidance, Navigation, and Control Technology Assessment for Future

Planetary Science Missions”, Journal of Guidance, Control, and Dynamics, Vol. 38, No. 7, 2015, pp.

1165–1186. DOI: 10.2514/1.G000525.

[6] Dennehy, C. N., “Autonomous GN&C”, 11th International ESA Conference on Guidance, Navigation &

Control Systems, 2021. Keynote talk.

[7] Lu, P., “Introducing Computational Guidance and Control”, Journal of Guidance, Control, and Dynamics,

Vol. 40, No. 2, 2017, pp. 193–193. DOI: 10.2514/1.G002745.

[8] Açıkmeşe, B., Aung, M., Casoliva, J., Mohan, S., Johnson, A., Scharf, D., Masten, Scotkin, D., Wolf, A.,

and Regehr, M., “Flight Testing of Trajectories Computed by G-FOLD: Fuel Optimal Large Divert Guidance

Algorithm for Planetary Landing”, AAS/AIAA Space Flight Mechanics Meeting, 2013. Paper AAS 13-386.

[9] Hofmann, C., and Topputo, F., “Rapid Low-Thrust Trajectory Optimization in Deep Space Based on Convex

Programming”, Journal of Guidance, Control, and Dynamics, Vol. 44, No. 7, 2021, pp. 1379–1388.

DOI: 10.2514/1.G005839.

[10] Hofmann, C., and Topputo, F., “Pseudospectral Convex Low-Thrust Trajectory Optimization in a High-

Fidelity Model”, AAS/AIAA Astrodynamics Specialist Conference, 2021. Paper AAS 21-678.

196

https://doi.org/10.1109/AERO.2018.8396670
https://doi.org/10.1016/j.paerosci.2016.11.002
https://doi.org/10.2514/1.G000525
https://doi.org/10.2514/1.G002745
https://doi.org/10.2514/1.G005839

Bibliography 197

[11] Hofmann, C., and Topputo, F., “Embedded Homotopy for Convex Low-Thrust Trajectory Optimization with

Operational Constraints”, AAS/AIAA Astrodynamics Specialist Conference, 2022. Paper AAS 22-750.

[12] Hofmann, C., Morelli, A. C., and Topputo, F., “On the Performance of Discretization and Trust-

Region Methods for On-Board Convex Low-Thrust Trajectory Optimization”, AIAA SciTech Forum, 2022.

DOI: 10.2514/6.2022-1892.

[13] Hofmann, C., Morelli, A. C., and Topputo, F., “Performance Assessment of Convex Low-Thrust Tra-

jectory Optimization Methods”, Journal of Spacecraft and Rockets, Vol. 60, No. 1, 2023, pp. 299–314.

DOI: 10.2514/1.A35461.

[14] Hofmann, C., Morelli, A. C., and Topputo, F., “Impact of Different Coordinate Sets on the Performance

of Convex Low-Thrust Trajectory Optimization”, AAS/AIAA Space Flight Mechanics Meeting, 2023. Paper

AAS 23-291.

[15] Hofmann, C., and Topputo, F., “Closed-Loop Guidance for Low-Thrust Interplanetary Trajectories Using

Convex Programming”, 11th International ESA Conference on Guidance, Navigation & Control Systems,

2021. Paper 46.

[16] Hofmann, C., Servadio, S., Linares, R., and Topputo, F., “Advances in Koopman Operator Theory for

Optimal Control Problems in Space Flight”, AAS/AIAA Astrodynamics Specialist Conference, 2022. Paper

AAS 22-759.

[17] Bryson, A. E., and Ho, Y.-C., Applied Optimal Control: Optimization, Estimation, and Control, Blaisdell

Publishing Company, 1969. pp. 42–127.

[18] Hull, D. G., Optimal Control Theory for Applications, Springer-Verlag New York, Inc., 2003. pp. 42–127.

[19] Betts, J. T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Society

for Industrial and Applied Mathematics, 2010. pp. 1–49.

[20] Nocedal, J., and Wright, S. J., Numerical Optimization, Springer-Verlag New York, Inc., 1999. pp. 314–330.

[21] Boyd, S., and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004. pp. 127–184.

[22] Liu, X., Lu, P., and Pan, B., “Survey of Convex Optimization for Aerospace Applications”, Astrodynamics,

Vol. 1, No. 1, 2017, pp. 23–40. DOI: 10.1007/s42064-017-0003-8.

[23] Zhang, C., Topputo, F., Bernelli-Zazzera, F., and Zhao, Y. S., “Low-Thrust Minimum-Fuel Optimization in

the Circular Restricted Three-Body Model”, Advances in the Astronautical Sciences, Vol. 38, No. 8, 2015,

pp. 1597–1615. DOI: 10.2514/1.G001080.

[24] Conway, B. A. (ed.), Spacecraft Trajectory Optimization, Cambridge Aerospace Series, Cambridge Univer-

sity Press, 2010. DOI: 10.1017/CBO9780511778025.

[25] Lantoine, G., and Russell, R. P., “Complete Closed-Form Solutions of the Stark Problem”, Celestial Me-

chanics and Dynamical Astronomy, Vol. 109, No. 4, 2011, pp. 333–366. DOI: 10.1007/s10569-010-9331-1.

https://doi.org/10.2514/6.2022-1892
https://doi.org/10.2514/1.A35461
https://doi.org/10.1007/s42064-017-0003-8
https://doi.org/10.2514/1.G001080
https://doi.org/10.1017/CBO9780511778025
https://doi.org/10.1007/s10569-010-9331-1

Bibliography 198

[26] Edelbaum, T. N., “Propulsion Requirements for Controllable Satellites”, ARS Journal, Vol. 31, No. 8, 1961,

pp. 1079–1089. DOI: 10.2514/8.5723.

[27] Edelbaum, T. N., “An Asymptotic Solution for Optimum Power Limited Orbit Transfer”, AIAA Journal,

Vol. 4, No. 8, 1966, pp. 1491–1494. DOI: 10.2514/3.3725.

[28] Izzo, D., and Biscani, F., “Explicit Solution to the Constant Radial Acceleration Problem”, Journal of

Guidance, Control, and Dynamics, Vol. 38, No. 4, 2015, pp. 733–739. DOI: 10.2514/1.G000116.

[29] Bombardelli, C., Baù, G., and Pelàez, J., “Asymptotic Solution for the Two-Body Problem With Constant

Tangential Thrust Acceleration”, Celestial Mechanics and Dynamical Astronomy, Vol. 110, No. 3, 2011, pp.

239–256. DOI: 10.1007/s10569-011-9353-3.

[30] da Silva Fernandes, S., das Chagas Carvalho, F., and de Moraes, R., “Optimal Low-Thrust Transfers Between

Coplanar Orbits With Small Eccentricities”, Computational and Applied Mathematics, Vol. 35, No. 3, 2016,

pp. 803–816. DOI: 10.1007/s40314-015-0249-9.

[31] Kechichian, J. A., “Orbit Raising With Low-Thrust Tangential Acceleration in Presence of Earth Shadow”,

Journal of Spacecraft and Rockets, Vol. 35, No. 4, 1998, pp. 516–525. DOI: 10.2514/2.3361.

[32] Kluever, C. A., “Using Edelbaum’s Method to Compute Low-Thrust Transfers With Earth-Shadow Eclipses”,

Journal of Guidance, Control, and Dynamics, Vol. 34, No. 1, 2011, pp. 300–303. DOI: 10.2514/1.51024.

[33] Quarta, A. A., and Mengali, G., “Semi-Analytical Method for the Analysis of Solar Sail Heliocen-

tric Orbit Raising”, Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 330–335.

DOI: 10.2514/1.55101.

[34] Betts, J. T., “Survey of Numerical Methods for Trajectory Optimization”, Journal of Guidance, Control, and

Dynamics, Vol. 21, No. 2, 1998, pp. 193 – 207. DOI: 10.2514/2.4231.

[35] Rao, A. V., “A Survey of Numerical Methods for Trajectory Optmization”, AAS/AIAA Astrodynamics

Specialist Conference, 2009. Paper AAS 09-334.

[36] Bertrand, R., and Epenoy, R., “New Smoothing Techniques for Solving Bang–Bang Optimal Control Prob-

lems – Numerical Results and Statistical Interpretation”, Optimal Control Applications and Methods, Vol. 23,

No. 4, 2002, pp. 171–197. DOI: 10.1002/oca.709.

[37] Haberkorn, T., Martinon, P., and Gergaud, J., “Low Thrust Minimum-Fuel Orbital Transfer: A Homo-

topic Approach”, Journal of Guidance, Control, and Dynamics, Vol. 27, No. 6, 2008, pp. 1046–1060.

DOI: 10.2514/1.4022.

[38] Guo, C., Zhang, J., Luo, Y., and Yang, L., “Phase-Matching Homotopic Method for Indirect Optimization of

Long-Duration Low-Thrust Trajectories”, Advances in Space Research, Vol. 62, No. 3, 2018, pp. 568–579.

DOI: 10.1016/j.asr.2018.05.007.

https://doi.org/10.2514/8.5723
https://doi.org/10.2514/3.3725
https://doi.org/10.2514/1.G000116
https://doi.org/10.1007/s10569-011-9353-3
https://doi.org/10.1007/s40314-015-0249-9
https://doi.org/10.2514/2.3361
https://doi.org/10.2514/1.51024
https://doi.org/10.2514/1.55101
https://doi.org/10.2514/2.4231
https://doi.org/10.1002/oca.709
https://doi.org/10.2514/1.4022
https://doi.org/10.1016/j.asr.2018.05.007

Bibliography 199

[39] Taheri, E., Kolmanovsky, I., and Atkins, E., “Enhanced Smoothing Technique for Indirect Optimization of

Minimum-Fuel Low-Thrust Trajectories”, Journal of Guidance, Control, and Dynamics, Vol. 39, No. 11,

2016, pp. 2500–2511. DOI: 10.2514/1.g000379.

[40] Guo, T., Jiang, F., and Li, J., “Homotopic Approach and Pseudospectral Method Applied

Jointly to Low Thrust Trajectory Optimization”, Acta Astronautica, Vol. 71, 2012, pp. 38–50.

DOI: 10.1016/j.actaastro.2011.08.008.

[41] Taheri, E., Li, N. I., and Kolmanovsky, I., “Co-State Initialization for the Minimum-Time Low-

Thrust Trajectory Optimization”, Advances in Space Research, Vol. 59, No. 9, 2017, pp. 2360–2373.

DOI: 10.1016/j.asr.2017.02.010.

[42] Patterson, M. A., and Rao, A. V., “Exploiting Sparsity in Direct Collocation Pseudospectral Methods for

Solving Optimal Control Problems”, Journal of Spacecraft and Rockets, Vol. 49, No. 2, 2012, pp. 3627–3646.

DOI: 10.2514/1.A32071.

[43] Darby, L., Hager, W. W., and Rao, A. V., “An hp-Adaptive Pseudospectral Method for Solving Opti-

mal Control Problems”, Optimal Control Applications and Methods, Vol. 32, No. 4, 2011, pp. 476–502.

DOI: 10.1002/oca.957.

[44] Patterson, M. A., Hager, W. W., and Rao, A. V., “A ph Mesh Refinement Method for Optimal Control”,

Optimal Control Applications and Methods, Vol. 36, 2015, pp. 398–421. DOI: 10.1002/oca.2114.

[45] Bellman, R., Dynamic Programming, Princeton University Press, 1957. p. 83.

[46] Sassano, M., and Astolfi, A., “Dynamic Approximate Solutions of the HJ Inequality and of the HJB Equation

for Input-Affine Nonlinear Systems”, IEEE Transactions on Automatic Control, Vol. 57, No. 10, 2012, pp.

2490–2503. DOI: 10.1109/TAC.2012.2186716.

[47] Colombo, C., Vasile, M., and Radice, G., “Optimal Low-Thrust Trajectories to Asteroids Through an

Algorithm Based on Differential Dynamic Programming”, Celestial Mechanics and Dynamical Astronomy,

Vol. 105, No. 1, 2009, pp. 75–112. DOI: 10.1007/s10569-009-9224-3.

[48] Lantoine, G., and Russell, R. P., “A Hybrid Differential Dynamic Programming Algorithm for Constrained

Optimal Control Problems. Part 1: Theory”, Journal of Optimization Theory and Applications, Vol. 154,

No. 2, 2012, pp. 382–417. DOI: 10.1007/s10957-012-0039-0.

[49] Lantoine, G., and Russell, R. P., “A Hybrid Differential Dynamic Programming Algorithm for Constrained

Optimal Control Problems. Part 2: Application”, Journal of Optimization Theory and Applications, Vol.

154, No. 2, 2012, pp. 418–442. DOI: 10.1007/s10957-012-0038-1.

[50] Conway, B. A., “A Survey of Methods Available for the Numerical Optimization of Continuous Dy-

namic Systems”, Journal of Optimization Theory and Applications, Vol. 152, No. 2, 2012, pp. 271 –

306. DOI: 10.1007/s10957-011-9918-z.

https://doi.org/10.2514/1.g000379
https://doi.org/10.1016/j.actaastro.2011.08.008
https://doi.org/10.1016/j.asr.2017.02.010
https://doi.org/10.2514/1.A32071
https://doi.org/10.1002/oca.957
https://doi.org/10.1002/oca.2114
https://doi.org/10.1109/TAC.2012.2186716
https://doi.org/10.1007/s10569-009-9224-3
https://doi.org/10.1007/s10957-012-0039-0
https://doi.org/10.1007/s10957-012-0038-1
https://doi.org/10.1007/s10957-011-9918-z

Bibliography 200

[51] Yokoyama, N., and Suzuki, S., “Modified Genetic Algorithm for Constrained Trajectory Optimization”,

Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1, 2005, pp. 139–144. DOI: 10.2514/1.3042.

[52] Wall, B., and Conway, B. A., “Near-Optimal Low-Thrust Earth-Mars Trajectories via a Genetic Algorithm”,

Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 1027–1031. DOI: 10.2514/1.11891.

[53] Olds, A. D., Kluever, C. A., and Cupples, M. L., “Interplanetary Mission Design Using Differential Evolu-

tion”, Advances in the Astronautical Sciences, Vol. 124 I, No. 5, 2006, pp. 837–856. DOI: 10.2514/1.27242.

[54] Vasile, M., Minisci, E., and Locatelli, M., “An Inflationary Differential Evolution Algorithm for Space

Trajectory Optimization”, IEEE Transactions on Evolutionary Computation, Vol. 15, No. 2, 2011, pp.

267–281. DOI: 10.1109/TEVC.2010.2087026.

[55] Radice, G., and Olmo, G., “Ant Colony Algorithms for Two Impluse Interplanetary Trajectory Optimization”,

Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, 2006, pp. 1440–1444. DOI: 10.2514/1.20828.

[56] Ceriotti, M., and Vasile, M., “MGA Trajectory Planning With an ACO-Inspired Algorithm”, Acta Astronau-

tica, Vol. 67, No. 9, 2010, pp. 1202–1217. DOI: 10.1016/j.actaastro.2010.07.001.

[57] Pontani, M., and Conway, B. A., “Particle Swarm Optimization Applied to Space Trajectories”, Journal of

Guidance, Control, and Dynamics, Vol. 33, No. 5, 2010, pp. 1429–1441. DOI: 10.2514/1.48475.

[58] Shan, J., and Ren, Y., “Low-Thrust Trajectory Design With Constrained Particle Swarm Optimization”,

Aerospace Science and Technology, Vol. 36, 2014, pp. 114–124. DOI: 10.1016/j.ast.2014.04.004.

[59] Furfaro, R., Bloise, I., Orlandelli, M., Di, P., Topputo, F., and Linares, R., “A Recurrent Deep Architecture

for Quasi-Optimal Feedback Guidance in Planetary Landing”, IAA/AAS SciTech Forum on Space Flight

Mechanics and Space Structures and Materials, 2018. Paper AAS 18-813.

[60] Cheng, L., Wang, Z., Jiang, F., and Zhou, C., “Real-Time Optimal Control for Spacecraft Orbit Transfer

via Multiscale Deep Neural Networks”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 55,

No. 5, 2019, pp. 2436–2450. DOI: 10.1109/TAES.2018.2889571.

[61] Cheng, L., Wang, Z., Song, Y., and Jiang, F., “Real-Time Optimal Control for Irregular As-

teroid Landings Using Deep Neural Networks”, Acta Astronautica, Vol. 170, 2020, pp. 66–79.

DOI: 10.1016/j.actaastro.2019.11.039.

[62] Izzo, D., and Öztürk, E., “Real-Time Guidance for Low-Thrust Transfers Using Deep Neural Networks”,

Journal of Guidance, Control, and Dynamics, Vol. 44, No. 2, 2021, pp. 315–327. DOI: 10.2514/1.G005254.

[63] Li, W., Huang, H., and Peng, F., “Trajectory Classification in Circular Restricted Three-Body Prob-

lem Using Support Vector Machine”, Advances in Space Research, Vol. 56, No. 2, 2015, pp. 273–280.

DOI: 10.1016/j.asr.2015.04.017.

[64] Izzo, D., Sprague, C. I., and Tailor, D. V., “Machine Learning and Evolutionary Techniques in Interplanetary

Trajectory Design”, Modeling and Optimization in Space Engineering: State of the Art and New Challenges,

Springer International Publishing, 2019, pp. 191–210. DOI: 10.1007/978-3-030-10501-3_8.

https://doi.org/10.2514/1.3042
https://doi.org/10.2514/1.11891
https://doi.org/10.2514/1.27242
https://doi.org/10.1109/TEVC.2010.2087026
https://doi.org/10.2514/1.20828
https://doi.org/10.1016/j.actaastro.2010.07.001
https://doi.org/10.2514/1.48475
https://doi.org/10.1016/j.ast.2014.04.004
https://doi.org/10.1109/TAES.2018.2889571
https://doi.org/10.1016/j.actaastro.2019.11.039
https://doi.org/10.2514/1.G005254
https://doi.org/10.1016/j.asr.2015.04.017
https://doi.org/10.1007/978-3-030-10501-3_8

Bibliography 201

[65] Gaudet, B., and Furfaro, R., “Robust Spacecraft Hovering Near Small Bodies in Environments with Un-

known Dynamics Using Reinforcement Learning”, AIAA/AAS Astrodynamics Specialist Conference, 2012.

DOI: 10.2514/6.2012-5072.

[66] Hovell, K., and Ulrich, S., “On Deep Reinforcement Learning for Spacecraft Guidance”, AIAA SciTech

Forum, 2020. DOI: 10.2514/6.2020-1600.

[67] Scorsoglio, A., Furfaro, R., Linares, R., and Gaudet, B., “Image-based Deep Reinforcement Learning for

Autonomous Lunar Landing”, AIAA SciTech Forum, 2020. DOI: 10.2514/6.2020-1910.

[68] Raissi, M., Perdikaris, P., and Karniadakis, G., “Physics-Informed Neural Networks: A

Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Par-

tial Differential Equations”, Journal of Computational Physics, Vol. 378, 2019, pp. 686–707.

DOI: https://doi.org/10.1016/j.jcp.2018.10.045.

[69] Petropoulos, A. E., “Simple Control Laws for Low-Thrust Orbit Transfers”, AAS/AIAA Astrodynamics

Specialist Conference, 2003. Paper AAS 03-630.

[70] Petropoulos, A. E., “Refinements to the Q-law for the Low-Thrust Orbit Transfers”, AAS/AIAA Space Flight

Mechanics Conference, 2005. Paper AAS 05-162.

[71] Ruggiero, A., Pergola, P., Marcuccio, S., and Andrenucci, M., “Low-Thrust Maneuvers for the Efficient

Correction of Orbital Elements”, International Electric Propulsion Conference, 2011. Paper IEPC-2011-

102.

[72] Varga, G. I., and Sánchez Pérez, J. M., “Many-Revolution Low-Thrust Orbit Transfer Computation Using

Equinoctial Q-Law Including J2 and Eclipse Effects”, AAS/AIAA Astrodynamics Specialist Conference,

2015. Paper AAS 15-590.

[73] Hatten, N. A., “A Critical Evaluation of Modern Low-Thrust, Feedback-Driven Spacecraft Control Laws”,

Master’s thesis, University of Texas at Austin, 2012.

[74] Gondelach, D. J., and Noomen, R., “Hodographic-Shaping Method for Low-Thrust Interplanetary Trajectory

Design”, Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015, pp. 728–738. DOI: 10.2514/1.A32991.

[75] Taheri, E., and Abdelkhalik, O., “Shape Based Approximation of Constrained Low-Thrust Space Tra-

jectories using Fourier Series”, Journal of Spacecraft and Rockets, Vol. 49, No. 3, 2012, pp. 535–546.

DOI: 10.2514/1.58789.

[76] Taheri, E., and Abdelkhalik, O., “Initial Three-Dimensional Low-Thrust Trajectory Design”, Advances in

Space Research, Vol. 57, No. 3, 2016, pp. 889 – 903. DOI: 10.1016/j.asr.2015.11.034.

[77] Vavrina, M., and Howell, K., “Global Low-Thrust Trajectory Optimization Through Hybridization of a

Genetic Algorithm and a Direct Method”, AIAA/AAS Astrodynamics Specialist Conference and Exhibit,

2008, pp. 1–27. DOI: 10.2514/6.2008-6614.

https://doi.org/10.2514/6.2012-5072
https://doi.org/10.2514/6.2020-1600
https://doi.org/10.2514/6.2020-1910
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.2514/1.A32991
https://doi.org/10.2514/1.58789
https://doi.org/10.1016/j.asr.2015.11.034
https://doi.org/10.2514/6.2008-6614

Bibliography 202

[78] Yang, D.-L., Xu, B., and Zhang, L., “Optimal Low-Thrust Spiral Trajectories Using Lyapunov-Based

Guidance”, Acta Astronautica, Vol. 126, 2016, pp. 275–285. DOI: 10.1016/j.actaastro.2016.04.028.

[79] Franzese, V., and Topputo, F., “Optimal Beacons Selection for Deep-Space Optical Navigation”, The Journal

of the Astronautical Sciences, Vol. 67, No. 4, 2020, p. 1775–1792. DOI: 10.1007/s40295-020-00242-z.

[80] Andreis, E., Franzese, V., and Topputo, F., “Onboard Orbit Determination for Deep-Space CubeSats”, Jour-

nal of Guidance, Control, and Dynamics, Vol. 45, No. 8, 2022, pp. 1466–1480. DOI: 10.2514/1.G006294.

[81] Açıkmeşe, B., Aung, M., Casoliva, J., Mohan, S., Johnson, A., Scharf, D., Masten, Scotkin, D., Wolf, A.,

and Regehr, M., “Flight Testing of Trajectories Computed by G-FOLD: Fuel Optimal Large Divert Guidance

Algorithm for Planetary Landing”, AAS/AIAA Space Flight Mechanics Meeting, 2013. Paper AAS 13-386.

[82] Liu, C., Lin, C.-Y., and Tomizuka, M., “The Convex Feasible Set Algorithm for Real-Time Opti-

mization in Motion Planning”, SIAM Journal on Control and Optimization, Vol. 56, No. 4, 2018.

DOI: 10.1137/16M1091460.

[83] Szmuk, M., Pascucci, C. A., and Açıkmeşe, B., “Real-Time Quad-Rotor Path Planning for Mobile Obstacle

Avoidance Using Convex Optimization”, 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2018, pp. 1–9. DOI: 10.1109/IROS.2018.8594351.

[84] Açıkmeşe, B., and Blackmore, L., “Lossless Convexification of a Class of Optimal Control Prob-

lems With Non-Convex Control Constraints”, Automatica, Vol. 47, No. 2, 2011, pp. 341–347.

DOI: 10.1016/j.automatica.2010.10.037.

[85] Harris, M. W., and Açıkmeşe, B., “Lossless Convexification of Non-Convex Optimal Control Prob-

lems for State Constrained Linear Systems”, Automatica, Vol. 50, No. 9, 2014, p. 2304–2311.

DOI: 10.1016/j.automatica.2014.06.008.

[86] Domahidi, A., Chu, E., and Boyd, S., “ECOS: An SOCP Solver for Embedded Systems”, European Control

Conference, 2013, pp. 3071–3076. DOI: 10.23919/ECC.2013.6669541.

[87] Mao, Y., Szmuk, M., Xu, X., and Açıkmeşe, B., “Successive Convexification: A Superlinearly Convergent

Algorithm for Non-convex Optimal Control Problems”, 2019. Preprint, https://arxiv.org/abs/1804.

06539.

[88] Alonso-Mora, J., Baker, S., and Rus, D., “Multi-robot navigation in formation via sequential convex pro-

gramming”, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp.

4634–4641. DOI: 10.1109/IROS.2015.7354037.

[89] Chen, Y., Cutler, M., and How, J. P., “Decoupled multiagent path planning via incremental sequential

convex programming”, 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp.

5954–5961. DOI: 10.1109/ICRA.2015.7140034.

https://doi.org/10.1016/j.actaastro.2016.04.028
https://doi.org/10.1007/s40295-020-00242-z
https://doi.org/10.2514/1.G006294
https://doi.org/10.1137/16M1091460
https://doi.org/10.1109/IROS.2018.8594351
https://doi.org/10.1016/j.automatica.2010.10.037
https://doi.org/10.1016/j.automatica.2014.06.008
https://doi.org/10.23919/ECC.2013.6669541
https://arxiv.org/abs/1804.06539
https://arxiv.org/abs/1804.06539
https://doi.org/10.1109/IROS.2015.7354037
https://doi.org/10.1109/ICRA.2015.7140034

Bibliography 203

[90] Lu, P., and Liu, X., “Autonomous Trajectory Planning for Rendezvous and Proximity Operations by

Conic Optimization”, Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 375–389.

DOI: 10.2514/1.58436.

[91] Liu, X., and Lu, P., “Solving Nonconvex Optimal Control Problems by Convex Optimization”, Journal of

Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014. DOI: 10.2514/1.62110.

[92] Açıkmeşe, B., and Ploen, S. R., “Convex Programming Approach to Powered Descent Guidance for

Mars Landing”, Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366.

DOI: 10.2514/1.27553.

[93] Blackmore, L., Açıkmeşe, B., and Scharf, D. P., “Minimum-Landing-Error Powered-Descent Guidance for

Mars Landing Using Convex Optimization”, Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4,

2010, pp. 1161–1171. DOI: 10.2514/1.47202.

[94] Sagliano, M., “Pseudospectral Convex Optimization for Powered Descent and Landing”, Journal of Guid-

ance, Control, and Dynamics, Vol. 41, No. 2, 2018. DOI: 10.2514/1.G002818.

[95] Yang, H., Bai, X., and Baoyin, H., “Rapid Generation of Time-Optimal Trajectories for Asteroid Land-

ing via Convex Optimization”, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 3, 2018.

DOI: 10.2514/1.G002170.

[96] Liu, X., and Shen, Z., “Entry Trajectory Optimization by Second-Order Cone Programming”, Journal of

Guidance, Control, and Dynamics, Vol. 39, No. 2, 2016. DOI: 10.2514/1.G001210.

[97] Wang, Z., and Grant, M. J., “Constrained Trajectory Optimization for Planetary Entry via Sequen-

tial Convex Programming”, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017.

DOI: 10.2514/1.G002150.

[98] Sagliano, M., “Generalized hp Pseudospectral-Convex Programming for Powered Descent and Land-

ing”, Journal of Guidance, Control, and Dynamics, Vol. 42, No. 7, 2019, pp. 1562–1570.

DOI: 10.2514/1.G003731.

[99] Grant, M., and Boyd, S., “CVX: Matlab Software for Disciplined Convex Programming”, http://cvxr.

com/cvx, Mar. 2014.

[100] Reynolds, T., Malyuta, D., Mesbahi, M., Açıkmeşe, B., and Carson, J. M., “A Real-Time Algorithm for

Non-Convex Powered Descent Guidance”, AIAA SciTech Forum, 2020. DOI: 10.2514/6.2020-0844.

[101] Dueri, D., Açıkmeşe, B., Scharf, D. P., and Harris, M. W., “Customized Real-Time Interior-Point Methods

for Onboard Powered-Descent Guidance”, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2,

2017, pp. 197–212. DOI: 10.2514/1.G001480.

[102] Mao, Y., Szmuk, M., and Açıkmeşe, B., “A Tutorial on Real-time Convex Optimization Based Guidance

and Control for Aerospace Applications”, 2018 Annual American Control Conference (ACC), 2018, pp.

2410–2416. DOI: 10.23919/ACC.2018.8430984.

https://doi.org/10.2514/1.58436
https://doi.org/10.2514/1.62110
https://doi.org/10.2514/1.27553
https://doi.org/10.2514/1.47202
https://doi.org/10.2514/1.G002818
https://doi.org/10.2514/1.G002170
https://doi.org/10.2514/1.G001210
https://doi.org/10.2514/1.G002150
https://doi.org/10.2514/1.G003731
http://cvxr.com/cvx
http://cvxr.com/cvx
https://doi.org/10.2514/6.2020-0844
https://doi.org/10.2514/1.G001480
https://doi.org/10.23919/ACC.2018.8430984

Bibliography 204

[103] Yu, Y., Elango, P., Topcu, U., and Açıkmeşe, B., “Proportional–Integral Projected Gradient Method for

Conic Optimization”, Automatica, Vol. 142, 2022, p. 110359. DOI: 10.1016/j.automatica.2022.110359.

[104] Wang, Z., and Grant, M. J., “Optimization of Minimum-Time Low-Thrust Transfers Using Convex Program-

ming”, Journal of Spacecraft and Rockets, Vol. 55, No. 3, 2018, pp. 586–598. DOI: 10.2514/1.A33995.

[105] Wang, Z., and Grant, M. J., “Minimum-Fuel Low-Thrust Transfers for Spacecraft: A Convex Ap-

proach”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 5, 2018, pp. 2274–2290.

DOI: 10.1109/TAES.2018.2812558.

[106] Tang, G., Jiang, F., and Li, J., “Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method

and Successive Convex Programming”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 54,

No. 4, 2018, pp. 2053–2066. DOI: 10.1109/TAES.2018.2803558.

[107] Huang, R. C., Hwang, I., and Corless, M. J., “Nonlinear Algorithm for Tracking Interplanetary Low-

Thrust Trajectories”, Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, 2012, pp. 696–700.

DOI: 10.2514/1.53001.

[108] Oestreich, C. E., Linares, R., and Gondhalekar, R., “Tube-Based Model Predictive Control with Uncertainty

Identification for Autonomous Spacecraft Maneuvers”, Journal of Guidance, Control, and Dynamics, Vol. 46,

No. 1, 2023, pp. 6–20. DOI: 10.2514/1.G006438.

[109] Lee, U., and Mesbahi, M., “Constrained Autonomous Precision Landing via Dual Quaternions and Model

Predictive Control”, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 292–308.

DOI: 10.2514/1.G001879.

[110] Kabzan, J., Hewing, L., Liniger, A., and Zeilinger, M. N., “Learning-Based Model Predictive Control

for Autonomous Racing”, IEEE Robotics and Automation Letters, Vol. 4, No. 4, 2019, pp. 3363–3370.

DOI: 10.1109/LRA.2019.2926677.

[111] Scharf, D. P., Regehr, M. W., Vaughan, G. M., Benito, J., Ansari, H., Aung, M., Johnson, A., Ca-

soliva, J., Mohan, S., Dueri, D., Açıkmeşe, B., Masten, D., and Nietfeld, S., “ADAPT Demonstra-

tions of Onboard Large-Divert Guidance with a VTVL Rocket”, IEEE Aerospace Conference, 2014.

DOI: 10.1109/AERO.2014.6836462.

[112] Szmuk, M., Pascucci, C. A., Dueri, D., and Açıkmeşe, B., “Convexification and Real-Time On-Board Opti-

mization for Agile Quad-Rotor Maneuvering and Obstacle Avoidance”, 2017 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 2017, pp. 4862–4868. DOI: 10.1109/IROS.2017.8206363.

[113] Szmuk, M., Malyuta, D., Reynolds, T. P., Mceowen, M. S., and Açıkmeşe, B., “Real-Time Quad-

Rotor Path Planning Using Convex Optimization and Compound State-Triggered Constraints”, 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 7666–7673.

DOI: 10.1109/IROS40897.2019.8967706.

https://doi.org/10.1016/j.automatica.2022.110359
https://doi.org/10.2514/1.A33995
https://doi.org/10.1109/TAES.2018.2812558
https://doi.org/10.1109/TAES.2018.2803558
https://doi.org/10.2514/1.53001
https://doi.org/10.2514/1.G006438
https://doi.org/10.2514/1.G001879
https://doi.org/10.1109/LRA.2019.2926677
https://doi.org/10.1109/AERO.2014.6836462
https://doi.org/10.1109/IROS.2017.8206363
https://doi.org/10.1109/IROS40897.2019.8967706

Bibliography 205

[114] Reynolds, T., Malyuta, D., Mesbahi, M., Açıkmeşe, B., and Carson, J. M., “Funnel Synthesis for the 6-DOF

Powered Descent Guidance Problem”, AIAA SciTech Forum, 2021. DOI: 10.2514/6.2021-0504.

[115] Wang, Z., and Lu, Y., “Improved Sequential Convex Programming Algorithms for Entry Trajectory Opti-

mization”, Journal of Spacecraft and Rockets, Vol. 57, No. 6, 2020, pp. 1373–1386. DOI: 10.2514/1.A34640.

[116] Topputo, F., and Zhang, C., “Survey of Direct Transcription for Low-Thrust Space Trajectory Optimization

with Applications”, Abstract and Applied Analysis, Vol. 2014, 2014, pp. 1–15. DOI: 10.1155/2014/851720.

[117] Williams, P., “Hermite–Legendre–Gauss–Lobatto Direct Transcription in Trajectory Optimization”, Journal

of Guidance, Navigation, and Control, Vol. 32, No. 4, 2009, pp. 1392–1395. DOI: 10.2514/1.42731.

[118] Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V., “Direct Trajectory Optimization and

Costate Estimation via an Orthogonal Collocation Method”, Journal of Guidance, Control, and Dynamics,

Vol. 29, No. 6, 2006, pp. 1435–1440. DOI: 10.2514/1.20478.

[119] Garg, D., Patterson, M. . A., Francolin, C., L. Darby, C. L., Huntington, G. T., Hager, W. W., and Rao, A. V.,

“Direct Trajectory Optimization and Costate Estimation of Finite-Horizon and Infinite-Horizon Optimal

Control Problems Using a Radau Pseudospectral Method”, Computational Optimization and Applications,

Vol. 49, No. 2, 2011, pp. 335–358. DOI: 10.2514/1.20478.

[120] Garg, D., Patterson, M., Hager, W., Rao, A., Benson, D., and Huntington, G., “An Overview of Three Pseu-

dospectral Methods for the Numerical Solution of Optimal Control Problems”, Advances in the Astronautical

Sciences, Vol. 135, 2009, pp. 475–487.

[121] Yu, C., and Zhao, Y., D. Yang, “Efficient Convex Optimization of Reentry Trajectory via the Cheby-

shev Pseudospectral Method”, International Journal of Aerospace Engineering, Vol. 2019, 2019.

DOI: 10.1155/2019/1414279, article 1414279.

[122] Reynolds, T. P., Szmuk, M., Malyuta, D., Mesbahi, M., Açıkmeşe, B., and Carson, J. M., “Dual Quaternion-

Based Powered Descent Guidance with State-Triggered Constraints”, Journal of Guidance, Control, and

Dynamics, Vol. 43, No. 9, 2020, pp. 1584–1599. DOI: 10.2514/1.G004536.

[123] Kayama, Y., Howell, K. C., Bando, M., and Hokamoto, S., “Low-Thrust Trajectory Design with Successive

Convex Optimization for Libration Point Orbits”, Journal of Guidance, Control, and Dynamics, Vol. 45,

No. 4, 2022, pp. 623–637. DOI: 10.2514/1.G005916.

[124] Malyuta, D., Reynolds, T., Szmuk, M., Mesbahi, M., Açıkmeşe, B., and Carson, J. M., “Discretization

Performance and Accuracy Analysis for the Rocket Powered Descent Guidance Problem”, AIAA SciTech

Forum, 2019. DOI: 10.2514/6.2019-0925.

[125] Saghamanesh, M., Taheri, E., and Baoyin, H., “Systematic Low-Thrust Trajectory Design to Mars Based

on a Full Ephemeris Modeling”, Advances in Space Research, Vol. 64, No. 11, 2019, pp. 2356–2378.

DOI: 10.1016/j.asr.2019.08.013.

https://doi.org/10.2514/6.2021-0504
https://doi.org/10.2514/1.A34640
https://doi.org/10.1155/2014/851720
https://doi.org/10.2514/1.42731
https://doi.org/10.2514/1.20478
https://doi.org/10.2514/1.20478
https://doi.org/10.1155/2019/1414279
https://doi.org/10.2514/1.G004536
https://doi.org/10.2514/1.G005916
https://doi.org/10.2514/6.2019-0925
https://doi.org/10.1016/j.asr.2019.08.013

Bibliography 206

[126] Taheri, E., Junkins, J. L., Kolmanovsky, I., and Girard, A., “A Novel Approach for Optimal Trajectory

Design With Multiple Operation Modes of Propulsion System, Part 1”, Acta Astronautica, Vol. 172, 2020,

pp. 151–165. DOI: 10.1016/j.actaastro.2020.02.042.

[127] Whiffen, G. J., “Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-

Fidelity, Low-Thrust Trajectory Design”, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006.

DOI: 10.2514/6.2006-6741.

[128] Englander, J., Knittel, J. M., Williams, K., Stanbridge, D., and Ellison, D. H., “Validation of a Low-Thrust

Mission Design Tool Using Operational Navigation Software”, AAS/AIAA Space Flight Mechanics Meeting,

2017. Paper AAS 17-204.

[129] Topputo, F., Wang, Y., Giordano, G., Franzese, V., Goldberg, H., Perez-Lissi, F., and Walker, R., “Envelop

of Reachable Asteroids by M-ARGO CubeSat”, Advances in Space Research, Vol. 67, No. 12, 2021, pp.

4193–4221. DOI: 10.1016/j.asr.2021.02.031.

[130] Pan, B., Lu, P., Pan, X., and Ma, Y., “Double-Homotopy Method for Solving Optimal Control

Problems”, Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1706–1720.

DOI: 10.2514/1.G001553.

[131] Jiang, F., Baoyin, H., and Li, J., “Practical Techniques for Low-Thrust Trajectory Optimization with Ho-

motopic Approach”, Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 245–258.

DOI: 10.2514/1.52476.

[132] Morelli, A. C., Hofmann, C., and Topputo, F., “Robust Low-Thrust Trajectory Optimization Using Convex

Programming and a Homotopic Approach”, IEEE Transactions on Aerospace and Electronic Systems,

Vol. 58, No. 3, 2021, pp. 2103–2116. DOI: 10.1109/TAES.2021.3128869.

[133] Taheri, E., Atkins, E. M., and Kolmanovsky, I., “Performance Comparison of Smoothing Functions for

Indirect Optimization of Minimum-Fuel Low-thrust Trajectories”, 2018 Space Flight Mechanics Meeting,

2018. DOI: 10.2514/6.2018-0214.

[134] Malyuta, D., and Açıkmeşe, B., “Fast Homotopy for Spacecraft Rendezvous Trajectory Optimization with

Discrete Logic”, 2021. Preprint, https://arxiv.org/abs/2107.07001.

[135] Jia, F., Qiao, D., Han, H., and Li, X., “Efficient Optimization Method for Variable-Specific-Impulse Low-

Thrust Trajectories With Shutdown Constraint”, Science China Technological Sciences, Vol. 65, No. 3, 2022,

p. 581–594. DOI: 10.1007/s11431-021-1949-0.

[136] Carson, J. M., and Açıkmeşe, B., “A Model Predictive Control Technique with Guaranteed Resolvability

and Required Thruster Silent Times for Small-Body Proximity Operations”, AIAA Guidance, Navigation

and Control Conference and Exhibit, 2006. DOI: 10.2514/6.2006-6780.

[137] Mannocchi, A., Giordano, C., and Topputo, F., “A Homotopic Direct Collocation Approach for Operational-

Compliant Trajectory Design”, The Journal of the Astronautical Sciences, 2022. DOI: 10.1007/s40295-022-

00351-x.

https://doi.org/10.1016/j.actaastro.2020.02.042
https://doi.org/10.2514/6.2006-6741
https://doi.org/10.1016/j.asr.2021.02.031
https://doi.org/10.2514/1.G001553
https://doi.org/10.2514/1.52476
https://doi.org/10.1109/TAES.2021.3128869
https://doi.org/10.2514/6.2018-0214
https://arxiv.org/abs/2107.07001
https://doi.org/10.1007/s11431-021-1949-0
https://doi.org/10.2514/6.2006-6780
https://doi.org/10.1007/s40295-022-00351-x
https://doi.org/10.1007/s40295-022-00351-x

Bibliography 207

[138] Liu, F., Hager, W. W., and Rao, A. V., “Adaptive Mesh Refinement Method for Optimal Control Using Decay

Rates of Legendre Polynomial Coefficients”, IEEE Transactions on Control Systems Technology, Vol. 26,

No. 4, 2018, pp. 1475–1483. DOI: 10.1109/TCST.2017.2702122.

[139] Zhao, J., and Li, S., “Mars Atmospheric Entry Trajectory Optimization With Maximum Parachute De-

ployment Altitude Using Adaptive Mesh Refinement”, Acta Astronautica, Vol. 160, 2019, pp. 401–413.

DOI: 10.1016/j.actaastro.2019.03.027.

[140] Zhou, X., He, R.-Z., Zhang, H.-B., Tang, G.-J., and Bao, W.-W., “Sequential Convex Programming Method

Using Adaptive Mesh Refinement for Entry Trajectory Planning Problem”, Aerospace Science and Technol-

ogy, Vol. 109, 2021, p. 106374. DOI: 10.1016/j.ast.2020.106374.

[141] Eide, J. D., Hager, W. W., and Rao, A. V., “Modified Legendre–Gauss–Radau Collocation Method for

Optimal Control Problems with Nonsmooth Solutions”, Journal of Optimization Theory and Applications,

Vol. 191, No. 2, 2021, pp. 600–633. DOI: 10.1007/s10957-021-01810-5.

[142] Agamawi, Y. M., Hager, W. W., and Rao, A. V., “Mesh Refinement Method for Optimal Control Prob-

lems with Discontinuous Control Profiles”, AIAA Guidance, Navigation, and Control Conference, 2017.

DOI: 10.2514/6.2017-1506.

[143] Agamawi, Y. M., Hager, W. W., and Rao, A. V., “Mesh Refinement Method for Solving Bang-Bang Optimal

Control Problems using Direct Collocation”, AIAA SciTech Forum, 2018. DOI: 10.2514/6.2020-0378.

[144] Junkins, J. L., and Taheri, E., “Exploration of Alternative State Vector Choices for Low-Thrust Trajec-

tory Optimization”, Journal of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 47–64.

DOI: 10.2514/1.G003686.

[145] Lara, M., San-Juan, J. F., and López-Ochoa, L. M., “Delaunay Variables Approach to the Elimination of

the Perigee in Artificial Satellite Theory”, Celestial Mechanics and Dynamical Astronomy, Vol. 120, No. 1,

2014, pp. 39–56. DOI: 10.1007/s10569-014-9559-2.

[146] Vallado, D. A., Fundamentals of Astrodynamics and Applications, 4th ed., Microcosm Press, 2013. pp.

95–111.

[147] Broucke, R. A., and Cefola, P. J., “On the Equinoctial Orbit Elements”, Celestial Mechanics, Vol. 5, No. 3,

1972, pp. 303–310. DOI: 10.1007/BF01228432.

[148] Betts, J. T., “Optimal Low–Thrust Orbit Transfers With Eclipsing”, Optimal Control Applications and

Methods, Vol. 36, No. 2, 2015, pp. 218–240. DOI: 10.1002/oca.2111.

[149] Roa, J., and Kasdin, N. J., “Alternative Set of Nonsingular Quaternionic Orbital Elements”, Journal of

Guidance, Control, and Dynamics, Vol. 40, No. 11, 2017, pp. 2737–2751. DOI: 10.2514/1.G002753.

[150] Sreesawet, S., and Dutta, A., “Fast and Robust Computation of Low-Thrust Orbit-Raising Trajectories”, Jour-

nal of Guidance, Control, and Dynamics, Vol. 41, No. 9, 2018, pp. 1888–1905. DOI: 10.2514/1.G003319.

https://doi.org/10.1109/TCST.2017.2702122
https://doi.org/10.1016/j.actaastro.2019.03.027
https://doi.org/10.1016/j.ast.2020.106374
https://doi.org/10.1007/s10957-021-01810-5
https://doi.org/10.2514/6.2017-1506
https://doi.org/10.2514/6.2020-0378
https://doi.org/10.2514/1.G003686
https://doi.org/10.1007/s10569-014-9559-2
https://doi.org/10.1007/BF01228432
https://doi.org/10.1002/oca.2111
https://doi.org/10.2514/1.G002753
https://doi.org/10.2514/1.G003319

Bibliography 208

[151] Gondelach, D. J., and Armellin, R., “Element Sets for High-Order Poincaré Mapping of Perturbed

Keplerian Motion”, Celestial Mechanics and Dynamical Astronomy, Vol. 130, No. 10, 2018, p. 65.

DOI: 10.1007/s10569-018-9859-z.

[152] Nurre, N. P., and Taheri, E., “Comparison of Indirect and Convex-Based Methods for Low-Thrust Minimum-

Fuel Trajectory Optimization”, AAS/AIAA Astrodynamics Specialist Conference, 2022. Paper AAS 22-782.

[153] Junkins, J. L., and Singla, P., “How Nonlinear is it? A Tutorial on Nonlinearity of Orbit and Attitude Dynam-

ics”, The Journal of the Astronautical Sciences, Vol. 52, No. 1, 2004, pp. 7–60. DOI: 10.1007/BF03546420.

[154] Omran, A., and Newman, B., “Nonlinearity Index Theory for Aircraft Dynamic Assessment”, Journal of

Guidance, Control, and Dynamics, Vol. 36, No. 1, 2013, pp. 293–303. DOI: 10.2514/1.53906.

[155] Kelly, P., Arya, V., Junkins, J. L., and Majii, M., “Nonlinearity Index for State-Costate Dynamics of Optimal

Control Problems”, AAS/AIAA Astrodynamics Specialist Conference, 2022. Paper AAS 22-830.

[156] Fossà, A., Armellin, R., Delande, E., Losacco, M., and Sanfedino, F., “Multifidelity Orbit Uncertainty

Propagation using Taylor Polynomials”, AIAA SciTech Forum, 2022. DOI: 10.2514/6.2022-0859.

[157] Malyuta, D., Yu, Y., Elango, P., and Açıkmeşe, B., “Advances in Trajectory Optimization for Space Vehicle

Control”, Annual Reviews in Control, Vol. 52, 2021, pp. 282–315. DOI: 10.1016/j.arcontrol.2021.04.013.

[158] Asada, H. H., and Sotiropoulos, F. E., “Dual Faceted Linearization of Nonlinear Dynamical Systems Based

on Physical Modeling Theory”, Journal of Dynamic Systems, Measurement, and Control, Vol. 141, No. 2,

2018. DOI: 10.1115/1.4041448.

[159] Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N., “Modern Koopman Theory for Dynamical Systems”,

2021. Preprint, https://arxiv.org/abs/1804.06539.

[160] Budišić, M., Mohr, R., and Mezić, I., “Applied Koopmanism”, Chaos: An Interdisciplinary Journal of

Nonlinear Science, Vol. 22, No. 4, 2012, p. 047510. DOI: 10.1063/1.4772195.

[161] Otto, S. E., and Rowley, C. W., “Koopman Operators for Estimation and Control of Dynamical Sys-

tems”, Annual Review of Control, Robotics, and Autonomous Systems, Vol. 4, No. 1, 2021, pp. 59–87.

DOI: 10.1146/annurev-control-071020-010108.

[162] Castaño, M. L., Hess, A., Mamakoukas, G., Gao, T., Murphey, T., and Tan, X., “Control-Oriented Model-

ing of Soft Robotic Swimmer with Koopman Operators”, 2020 IEEE/ASME International Conference on

Advanced Intelligent Mechatronics (AIM), 2020, pp. 1679–1685. DOI: 10.1109/AIM43001.2020.9159033.

[163] Mezić, I., “Analysis of Fluid Flows via Spectral Properties of the Koopman Operator”, Annual Review of

Fluid Mechanics, Vol. 45, No. 1, 2013, pp. 357–378. DOI: 10.1146/annurev-fluid-011212-140652.

[164] Servadio, S., Arnas, D., and Linares, R., “Dynamics Near the Three-Body Libration Points via Koopman

Operator Theory”, Journal of Guidance, Control, and Dynamics, Vol. 45, No. 10, 2022, pp. 1800–1814.

DOI: 10.2514/1.G006519.

https://doi.org/10.1007/s10569-018-9859-z
https://doi.org/10.1007/BF03546420
https://doi.org/10.2514/1.53906
https://doi.org/10.2514/6.2022-0859
https://doi.org/10.1016/j.arcontrol.2021.04.013
https://doi.org/10.1115/1.4041448
https://arxiv.org/abs/1804.06539
https://doi.org/10.1063/1.4772195
https://doi.org/10.1146/annurev-control-071020-010108
https://doi.org/10.1109/AIM43001.2020.9159033
https://doi.org/10.1146/annurev-fluid-011212-140652
https://doi.org/10.2514/1.G006519

Bibliography 209

[165] Arnas, D., and Linares, R., “Approximate Analytical Solution to the Zonal Harmonics Problem Using

Koopman Operator Theory”, Journal of Guidance, Control, and Dynamics, Vol. 44, No. 11, 2021, pp.

1909–1923. DOI: 10.2514/1.G005864.

[166] Chen, T., and Shan, J., “Koopman-Operator-Based Attitude Dynamics and Control on SO(3)”, Journal of

Guidance, Control, and Dynamics, Vol. 43, No. 11, 2020, pp. 2112–2126. DOI: 10.2514/1.G005006.

[167] Linares, R., “Koopman Operator Theory Applied to the Motion of Satellites”, AAS/AIAA Astrodynamics

Specialist Conference, 2019. Paper AAS 19-821.

[168] Jenson, E. L., Bando, M., Sato, K., and Scheeres, D. J., “Robust Nonlinear Optimal Control Using Koopman

Operator Theory”, 2022 AAS/AIAA Astrodynamics Specialist Conference, 2022. Paper AAS 22-647.

[169] Hofmann, C., and Topputo, F., “Toward On-Board Guidance of Low-Thrust Spacecraft in Deep Space Using

Sequential Convex Programming”, Proceedings of AAS/AIAA Space Flight Mechanics Meeting, 2021, pp.

1–19. Paper AAS 21-350.

[170] Malyuta, D., Reynolds, T. P., Szmuk, M., Lew, T., Bonalli, R., Pavone, M., and Açıkmeşe, B., “Con-

vex Optimization for Trajectory Generation: A Tutorial on Generating Dynamically Feasible Trajec-

tories Reliably and Efficiently”, IEEE Control Systems Magazine, Vol. 42, No. 5, 2022, pp. 40–113.

DOI: 10.1109/MCS.2022.3187542.

[171] Liu, X., Shen, Z., and Lu, P., “Exact Convex Relaxation for Optimal Flight of Aerodynamically Con-

trolled Missiles”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 4, 2016.

DOI: 10.1109/TAES.2016.150741.

[172] Szmuk, M., Açıkmeşe, B., and Berning, A. W., “Successive Convexification for Fuel-Optimal Powered

Landing with Aerodynamic Drag and Non-Convex Constraints”, AIAA Guidance, Navigation, and Control

Conference, 2017. DOI: 10.2514/6.2016-0378.

[173] Bonalli, R., Cauligi, A., Bylard, A., and Pavone, M., “GuSTO: Guaranteed Sequential Trajectory optimization

via Sequential Convex Programming”, 2019 International Conference on Robotics and Automation (ICRA),

2019, pp. 6741–6747. DOI: 10.1109/ICRA.2019.8794205.

[174] Sagliano, M., Theil, S., Bergsma, M., D’Onofrio, V., Whittle, L., and Viavattene, G., “On the Radau

pseudospectral Method: Theoretical and Implementation Advances”, CEAS Space Journal, Vol. 9, 2017.

DOI: 10.1007/s12567-017-0165-5.

[175] Patterson, M. A., and Rao, A. V., “GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal

Control Problems using Hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear

Programming”, ACM Trans. Math. Softw., Vol. 41, No. 1, 2014. DOI: 10.1145/2558904.

[176] Sagliano, M., Theil, S., D’Onofrio, V., and Bergsma, M., “SPARTAN: A Novel Pseudospectral Algorithm

for Entry, Descent, and Landing Analysis”, Advances in Aerospace Guidance, Navigation and Control,

Springer International Publishing, 2018, pp. 669–688. DOI: 10.1007/978-3-319-65283-2_36.

https://doi.org/10.2514/1.G005864
https://doi.org/10.2514/1.G005006
https://doi.org/10.1109/MCS.2022.3187542
https://doi.org/10.1109/TAES.2016.150741
https://doi.org/10.2514/6.2016-0378
https://doi.org/10.1109/ICRA.2019.8794205
https://doi.org/10.1007/s12567-017-0165-5
https://doi.org/10.1145/2558904
https://doi.org/10.1007/978-3-319-65283-2_36

Bibliography 210

[177] Fahroo, F., and Ross, I. M., “Advances in Pseudospectral Methods for Optimal Control”, AIAA Guidance,

Navigation and Control Conference and Exhibit, 2008. DOI: 10.2514/6.2008-7309.

[178] Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions, United States Department of

Commerce, 1972. pp. 877 – 897.

[179] Berrut, J.-P., and Trefethen, L. N., “Barycentric Lagrange Interpolation”, SIAM Review, Vol. 46, No. 3,

2004. DOI: 10.1137/S0036144502417715.

[180] Françolin, C. C., Benson, D. A., Hager, W. W., and Rao, A. V., “Costate Approximation in Optimal Control

Using Integral Gaussian Quadrature Orthogonal Collocation Methods”, Optimal Control Applications and

Methods, Vol. 36, No. 4, 2015, pp. 381–397. DOI: 10.1002/oca.2112.

[181] Garg, D., Hager, W. W., and Rao, A. V., “Pseudospectral Methods for Solving Infinite-Horizon Optimal

Control Problems”, Automatica, Vol. 47, No. 4, 2011, pp. 829–837. DOI: 10.1016/j.automatica.2011.01.085.

[182] Rugh, W. J., Linear System Theory, 2nd ed., Prentice-Hall, 1996. pp. 58–73.

[183] Szmuk, M., Reynolds, T. P., and Açıkmeşe, B., “Successive Convexification for Real-Time Six-Degree-of-

Freedom Powered Descent Guidance with State-Triggered Constraints”, Journal of Guidance, Control, and

Dynamics, Vol. 43, No. 8, 2020, pp. 1399–1413. DOI: 10.2514/1.G004549.

[184] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale

Constrained Optimization”, SIAM Journal on Optimization, Vol. 12, No. 4, 2002, pp. 979–1006.

DOI: 10.1137/S1052623499350013.

[185] Morelli, A. C., Merisio, G., Hofmann, C., and Topputo, F., “A Convex Guidance Approach to Target Ballistic

Capture Corridors at Mars”, AAS Guidance, Navigation and Control Conference, 2022. Paper AAS 22-083.

[186] Yakimenko, O., Yakimenko, O., and Romano, M., “Real-Time 6DoF Guidance For of Spacecraft Proximity

Maneuvering and Close Approach with a Tumbling Object”, AIAA/AAS Astrodynamics Specialist Conference,

2010. DOI: 10.2514/6.2010-7666.

[187] Zhou, H., Wang, X., Bai, Y., and Cui, N., “Ascent Phase Trajectory Optimization for Vehicle With Multi-

Combined Cycle Engine Based on Improved Particle Swarm Optimization”, Acta Astronautica, Vol. 140,

2017, pp. 156–165. DOI: 10.1016/j.actaastro.2017.08.024.

[188] Massari, M., Lizia, P. D., Cavenago, F., and Wittig, A., “Differential Algebra Software Library With

Automatic Code Generation for Space Embedded Applications”, 2018 AIAA Information Systems-AIAA

Infotech Aerospace, 2018. DOI: 10.2514/6.2018-0398.

[189] Stiefel, E. L., and Scheifele, G., Linear And Regular Celestial Mechanics, Springer Berlin, 1971. pp. 19–35.

[190] Battin, R., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series,

American Institute of Aeronautics & Astronautics, 1999. pp. 471–515.

https://doi.org/10.2514/6.2008-7309
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1002/oca.2112
https://doi.org/10.1016/j.automatica.2011.01.085
https://doi.org/10.2514/1.G004549
https://doi.org/10.1137/S1052623499350013
https://doi.org/10.2514/6.2010-7666
https://doi.org/10.1016/j.actaastro.2017.08.024
https://doi.org/10.2514/6.2018-0398

Bibliography 211

[191] Lubey, D. P., and Scheeres, D. J., “Identifying and Estimating Mismodeled Dynamics via Optimal Control

Policies and Distance Metrics”, Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014, pp.

1512–1523. DOI: 10.2514/1.G000369.

[192] Acton, C., Bachman, N., Semenov, B., and Wright, E., “A Look Towards the Future in the Han-

dling of Space Science Mission Geometry”, Planetary and Space Science, Vol. 150, 2018, pp. 9–12.

DOI: 10.1016/j.pss.2017.02.013.

[193] Taheri, E., and Junkins, J. L., “Generic Smoothing for Optimal Bang-Off-Bang Spacecraft Maneuvers”, Jour-

nal of Guidance, Control, and Dynamics, Vol. 41, No. 11, 2018, pp. 2470–2475. DOI: 10.2514/1.G003604.

[194] Ltd, R. P., “Raspberry Pi 3 Model B+”, URL https://www.raspberrypi.com/products/raspberry-pi-3-

model-b-plus/, [Online; accessed January 26, 2023].

[195] Dei Tos, D. A., Rasotto, M., Renk, F., and Topputo, F., “LISA Pathfinder Mission Extension:

A feasibility Analysis”, Advances in Space Research, Vol. 63, No. 12, 2019, pp. 3863–3883.

DOI: 10.1016/j.asr.2019.02.035.

[196] Tapley, B. D., Schutz, B. E., and Born, G. H., Statistical Orbit Determination, Elsevier Academic Press,

2004. pp. 230–233.

[197] Holzmann, G., “The power of 10: rules for developing safety-critical code”, Computer, Vol. 39, No. 6, 2006,

pp. 95–99. DOI: 10.1109/MC.2006.212.

[198] Hughes, S., Jun, L., and Shoan, W., “C++ Coding Standards and Style Guide”, Tech. Rep. 20080039927,

NASA, 2005.

[199] Guennebaud, G., Jacob, B., et al., “Eigen v3”, 2010. URL http://eigen.tuxfamily.org.

[200] Arnas, D., “Solving Perturbed Dynamic Systems Using Schur Decomposition”, Journal of Guidance,

Control, and Dynamics, Vol. 45, No. 12, 2022, pp. 2211–2228. DOI: 10.2514/1.G006726.

[201] Goswami, D., and Paley, D. A., “Global Bilinearization and Controllability of Control-Affine Nonlinear

Systems: A Koopman Spectral Approach”, 2017 IEEE 56th Annual Conference on Decision and Control

(CDC), 2017, pp. 6107–6112. DOI: 10.1109/CDC.2017.8264582.

[202] Korda, M., and Mezić, I., “Linear Predictors for Nonlinear Dynamical Systems: Koop-

man Operator Meets Model Predictive Control”, Automatica, Vol. 93, 2018, pp. 149–160.

DOI: 10.1016/j.automatica.2018.03.046.

[203] Heiss, F., and Winschel, V., “Likelihood Approximation by Numerical Integration on Sparse Grids”, Journal

of Econometrics, Vol. 144, No. 1, 2008, pp. 62–80. DOI: 10.1016/j.jeconom.2007.12.004.

https://doi.org/10.2514/1.G000369
https://doi.org/10.1016/j.pss.2017.02.013
https://doi.org/10.2514/1.G003604
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://doi.org/10.1016/j.asr.2019.02.035
https://doi.org/10.1109/MC.2006.212
http://eigen.tuxfamily.org
https://doi.org/10.2514/1.G006726
https://doi.org/10.1109/CDC.2017.8264582
https://doi.org/10.1016/j.automatica.2018.03.046
https://doi.org/10.1016/j.jeconom.2007.12.004

A Appendix: Shape-Based Method for Initial

Guess Generation

Based on [76], the initial guess is generated with a shape-based method. Assuming cylindrical coordinates

r (radial distance), θ (azimuth) and z (axial coordinate), each component of the state is approximated by

a cubic polynomial:

r(t) = a t3 + b t2 + c t+ d (A.1)

v(t) = 3a t2 + 2bt+ c t (A.2)

The vectors of coefficients a, b, c, and d are calculated using the known boundary conditions to obtain:

d = r0 (A.3)

c = v0 (A.4)

a = 2
(vf − v0)

tf
2 + v0 tf + r0 − rf

t3f
(A.5)

b =
vf − v0 − 3a t2f

2 tf
(A.6)

with r = [r, θ, z]⊤ and v = ṙ. The subscripts 0 and f refer to the corresponding initial and target values,

respectively. Different numbers of revolutions are incorporated by simply adding multiples of 2π to the

azimuthal component.

212

B Appendix: Coordinate Transformations

B.1 Hamiltonian in Cartesian and Spherical Coordinates

Given the kinetic energy T = 1
2 mv⊤v and the potential energy V = −µm/r of a satellite about the

primary body, the normalized Hamiltonian function H reads in Cartesian coordinates

H = T + V =
v⊤v

2
− µ

r
(B.1)

As the velocity can be expressed as (see also Eq. (C.10))

v = ṙ ir + r θ̇ cosϕ iθ + r ϕ̇ iϕ (B.2)

the Hamiltonian in spherical coordinates is given by

H =
1

2

(
ṙ2 + r2 θ̇2 cos2 ϕ+ r2 ϕ̇2

)
− µ

r
(B.3)

B.2 Classical Orbital Elements

The relationship between classical orbital elements and Cartesian coordinates is given by [190]:

a =

(
2

r
− v⊤v

µ

)−1

(B.4a)

h = r× v (B.4b)

p =
∥h∥2

µ
(B.4c)

e =

∥∥∥∥v × h

µ
− r

r

∥∥∥∥ (B.4d)

213

B Appendix: Coordinate Transformations 214

B.3 Spherical Coordinates

The transformation from Cartesian (x, y, z) to spherical (r, θ, ϕ) coordinates is:

r =
√

x2 + y2 + z2 (B.5a)

θ = arctan
y

x
(B.5b)

ϕ = arcsin
z√

x2 + y2 + z2
(B.5c)

The inverse transformation is:

x = r cos θ cosϕ (B.6a)

y = r sin θ cosϕ (B.6b)

z = r sinϕ (B.6c)

The velocities are transformed using the rotation matrix in Eq. (7.50).

B.4 Cylindrical Coordinates

The transformation from Cartesian (x, y, z) to cylindrical (ρ, θ, z) coordinates is:

ρ =
√
x2 + y2 (B.7a)

θ = arctan
y

x
(B.7b)

z = z (B.7c)

Transforming cylindrical to Cartesian coordinates is done using the following equations:

x = ρ cos θ (B.8a)

y = ρ sin θ (B.8b)

z = z (B.8c)

Velocities are transformed using the rotation matrix about the third axis by θ:
vρ

vθ

vz

 =

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

vx

vy

vz

 (B.9)

B Appendix: Coordinate Transformations 215

B.5 Modified Equinoctial Elements

The relationship between MEE and Cartesian coordinates is given by [148]:

r =

p

s2 σ

(
cos l + Ξ2 cos l + 2hx hy sin l

)
p

s2 σ

(
sin l − Ξ2 sin l + 2hx hy cos l

)
2 p
s2 σ

(hx sin l − hy cos l)

 (B.10a)

v =

− 1

s2

√
µ
p

(
sin l + Ξ2 sin l − 2hx hy cos l + ey − 2 ex hx hy + Ξ2 ey

)
− 1

s2

√
µ
p

(
− cos l + Ξ2 cos l + 2hx hy sin l − ex + 2 ey hx hy + Ξ2 ex

)
2
s2

√
µ
p (hx cos l + hy sin l + ex hx + ey hy)

 (B.10b)

with Ξ2 = h2x − h2y. MEE can be transformed to classical orbital elements as follows:

a =
p

1− e2x − e2y
(B.11a)

e =
√
e2x + e2y (B.11b)

i = 2 arctan
√

h2x + h2y (B.11c)

Ω = arctan
hy
hx

(B.11d)

ω = arctan
ey
ex

− arctan
hy
hx

(B.11e)

ϑ = l − arctan
ey
ex

(B.11f)

C Appendix: Derivation of Equations of Motion

C.1 Spherical Coordinates

The equation of motion can be written as

r̈+
µ

r2
ir = ap (C.1)

where

ap = ar ir + aθ iθ + aϕ iϕ (C.2)

The goal is to express r̈ in terms of the spherical unit vectors ir, iθ, and iϕ, where

ir =

cos θ cosϕ

sin θ cosϕ

sinϕ

 , iθ =

− sin θ

cos θ

0

 , iϕ =

− cos θ sinϕ

− sin θ sinϕ

cosϕ

 (C.3)

Given the position in spherical coordinates

r = r ir (C.4)

the velocity and acceleration can be expressed as

v = ṙ = ṙ ir + r i̇r (C.5)

v̇ = r̈ = r̈ ir + 2 ṙ i̇r + r ïr (C.6)

Hence, the expressions for i̇r and ïr are needed. The time derivative of the rotation matrix RXYZ→SPH in

Eq. (7.50) is
i̇r

i̇θ

i̇ϕ

 =

−θ̇ sin θ cosϕ− ϕ̇ cos θ sinϕ θ̇ cos θ cosϕ− ϕ̇ sin θ sinϕ ϕ̇ cosϕ

−θ̇ cos θ −θ̇ sin θ 0

θ̇ sin θ sinϕ− ϕ̇ cos θ cosϕ −θ̇ cos θ sinϕ− ϕ̇ sin θ cosϕ −ϕ̇ sinϕ

︸ ︷︷ ︸

=.. ṘXYZ→SPH

ix

iy

iz

 (C.7)

216

C Appendix: Derivation of Equations of Motion 217

Therefore,
i̇r

i̇θ

i̇ϕ

 = ṘXYZ→SPH R⊤
XYZ→SPH

ir

iθ

iϕ

 =

0 θ̇ cosϕ ϕ̇

−θ̇ cosϕ 0 θ̇ sinϕ

−ϕ̇ −θ̇ sinϕ 0

︸ ︷︷ ︸

=.. ṘSPH

ir

iθ

iϕ

 (C.8)

Taking the derivative of Eq. (C.8) with respect to time gives
ïr

ïθ

ïϕ

 = R̈SPH

ir

iθ

iϕ

+ ṘSPH

i̇r

i̇θ

i̇ϕ

=

−ϕ̇2 − θ̇2 cos2 ϕ θ̈ cosϕ− 2 θ̇ ϕ̇ sinϕ 1

2 θ̇
2 sin 2ϕ+ ϕ̈

−θ̈ cosϕ −θ̇2 θ̈ sinϕ

1
2 θ̇

2 sin 2ϕ− ϕ̈ −θ̈ sinϕ− 2 θ̇ ϕ̇ cosϕ −ϕ̇2 − θ̇2 sin2 ϕ

ir

iθ

iϕ

(C.9)

Using Eq. (C.5), the velocity can be expressed as

v = ṙ ir + r θ̇ cosϕ iθ + r ϕ̇ iϕ (C.10)

Therefore,

vr = ṙ (C.11)

vθ = r θ̇ cosϕ (C.12)

vϕ = r ϕ̇ (C.13)

It follows that

v̇r = r̈ (C.14)

v̇θ = ṙ θ̇ cosϕ+ r θ̈ cosϕ− r θ̇ ϕ̇ sinϕ (C.15)

v̇ϕ = ṙ ϕ̇+ r ϕ̈ (C.16)

Using Eqs. (C.6), (C.8) and (C.9), the acceleration can be written as follows:

r̈ =
(
r̈ − r ϕ̇2 − r θ̇2 cos2 ϕ

)
ir +

(
2 ṙ θ̇ cosϕ+ r θ̈ cosϕ− 2 r θ̇ ϕ̇ sinϕ

)
iθ

+

(
2 ṙ ϕ̇+

1

2
r θ̇2 sin 2ϕ+ r ϕ̈

)
iϕ

(C.17)

C Appendix: Derivation of Equations of Motion 218

Substituting the expressions for ṙ, θ̇, ϕ̇, r̈, θ̈, ϕ̈ of Eqs. (C.11)–(C.16) into Eq. (C.17) and using Eq.

(C.1), the equations of motion can be formulated in spherical coordinates:

ṙ = vr (C.18a)

θ̇ =
vθ

r cosϕ
(C.18b)

ϕ̇ =
vϕ
r

(C.18c)

v̇r =
v2θ + v2ϕ

r
− µ

r2
+ ar (C.18d)

v̇θ =
vθ vϕ
r

tanϕ− vr vθ
r

+ aθ (C.18e)

v̇ϕ = −
vr vϕ
r

−
v2θ
r

tanϕ+ aϕ (C.18f)

C.2 Cylindrical Coordinates

The equation of motion in cylindrical coordinates reads

r̈+
µ

r3
(ρ iρ + z iz) = ap (C.19)

where the position in cylindrical coordinates is given by

r = ρ iρ + z iz (C.20)

The perturbing acceleration ap is

ap = aρ iρ + aθ iθ + az iz (C.21)

The first and second derivative of the position vector are:

ṙ = v = ρ̇ iρ + ρ i̇ρ + ż iz + z i̇z (C.22)

r̈ = v̇ = ρ̈ iρ + 2 ρ̇ i̇ρ + ρ ïρ + z̈ iz + 2 ż i̇z + z ïz (C.23)

The rotation matrix RXYZ→SPH to transform Cartesian to cylindrical coordinates is given by a rotation

about the third axis by θ:
iρ

iθ

iz

 =

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

︸ ︷︷ ︸

=..RXYZ→CYL

ix

iy

iz

 (C.24)

C Appendix: Derivation of Equations of Motion 219

Using its derivative
i̇ρ

i̇θ

i̇z

 =

−θ̇ sin θ θ̇ cos θ 0

−θ̇ cos θ −θ̇ sin θ 0

0 0 0

︸ ︷︷ ︸

=.. ṘXYZ→CYL

ix

iy

iz

 (C.25)

the first derivative of the unit vectors can be expressed in terms of the unit vectors themselves:
i̇ρ

i̇θ

i̇z

 = ṘXYZ→CYL R
⊤
XYZ→CYL

iρ

iθ

iz

 =

0 θ̇ 0

−θ̇ 0 0

0 0 0

︸ ︷︷ ︸

=.. ṘCYL

iρ

iθ

iz

 (C.26)

The second derivative is computed as
ïρ

ïθ

ïz

 = R̈CYL

iρ

iθ

iz

+ ṘCYL

i̇ρ

i̇θ

i̇z

=

−θ̇2 θ̈ 0

−θ̈ −θ̇2 0

0 0 0

iρ

iθ

iϕ

(C.27)

Using Eqs. (C.22) and (C.26), the velocity reads

ṙ = ρ̇ iρ + ρ θ̇ iθ + ż iz (C.28)

Therefore,

vρ = ρ̇ (C.29)

vθ = ρ θ̇ (C.30)

vz = ż (C.31)

and

v̇ρ = ρ̈ (C.32)

v̇θ = ρ̇ θ̇ + ρ θ̈ (C.33)

v̇z = z̈ (C.34)

C Appendix: Derivation of Equations of Motion 220

The acceleration is then determined using Eqs. (C.23) and (C.27):

r̈ =
(
ρ̈− ρ θ̇2

)
iρ +

(
2 ρ̇ θ̇ + ρ θ̈

)
iθ + z̈ iz (C.35)

The equations of motion are found by substituting ρ̇, θ̇, ż, ρ̈, θ̈, z̈ of Eqs. (C.29)–(C.34) into Eq. (C.35)

and comparing coefficients with Eq. (C.19):

ρ̇ = vρ (C.36a)

θ̇ =
vθ
ρ

(C.36b)

ż = vz (C.36c)

v̇ρ =
v2θ
ρ

− µ

r3
ρ+ aρ (C.36d)

v̇θ = −vρ vθ
ρ

+ aθ (C.36e)

v̇z = − µ

r3
z + az (C.36f)

C.3 Partial Derivatives for Modified Orbital Elements

We report the partial derivatives of the modified orbital elements with respect to the Cartesian velocity that

are required to determine the equations of motion when a perturbing acceleration is present. Recalling

the definition of the elements in Eqs. (7.31)–(7.36), the following auxiliary partial derivatives are needed:

∂r

∂v
,
∂ϕ

∂v
,
∂ṙ

∂v
,
∂θ̇

∂v
,
∂ϕ̇

∂v
,
∂pθ
∂v

,
∂pϕ
∂v

,
∂ph
∂v

(C.37)

The partial derivatives of the position with respect to the velocity are zero due to the independence of

state vector components:

∂r

∂v
= 0⊤ (C.38)

∂θ

∂v
= 0⊤ (C.39)

∂ϕ

∂v
= 0⊤ (C.40)

We need to compute the partial derivatives of the spherical elements with respect to the velocity. Given

the spherical unit vectors ir, iθ, iϕ, the position and velocity can be expressed in spherical coordinates as

follows:

r = r ir (C.41)

v = ṙ ir + r θ̇ cosϕ iθ + r ϕ̇ iϕ (C.42)

C Appendix: Derivation of Equations of Motion 221

Taking the partial derivative of Eq. (C.42) with respect to v yields

∂v

∂v
=

∂

∂v

ṙ

r θ̇ cosϕ

r ϕ̇

⇐⇒

1 0 0

0 1 0

0 0 1

 =

∂ṙ
∂v

r cosϕ ∂θ̇
∂v + θ̇ cosϕ ∂r

∂v − θ̇ r sinϕ ∂ϕ
∂v

ϕ̇ ∂r
∂v + r ∂ϕ̇

∂v

 =

∂ṙ
∂v

r cosϕ ∂θ̇
∂v

r ∂ϕ̇
∂v

(C.43)

because ∂r/∂v = ∂ϕ/∂v = 0⊤ (independence of state vector components). Solving for the partial

derivatives results in

∂ṙ

∂v
= i⊤r (C.44)

∂θ̇

∂v
=

1

r cosϕ
i⊤θ (C.45)

∂ϕ̇

∂v
=

1

r
i⊤ϕ (C.46)

Computing the partial derivative of ph with respect to v gives

∂

∂v
p2h =

∂

∂v
p2ϕ +

p2θ
cos2 ϕ

⇐⇒ 2 ph
∂ph
∂v

= 2

(
pϕ

∂pϕ
∂v

+
pθ

cos2 ϕ

∂pθ
∂v

+ pθ tanϕ
∂ϕ

∂v

)
⇐⇒ ∂ph

∂v
=

pϕ
ph

∂pϕ
∂v

+
pθ

ph cos2 ϕ

∂pθ
∂v

(C.47)

It follows from

∂pθ
∂v

=
∂

∂v
r2 θ̇ cos2 ϕ = r cosϕ

(
2 θ̇ cosϕ

∂r

∂v
+ r cosϕ

∂θ̇

∂v
− 2 r θ̇ sinϕ

∂ϕ

∂v

)
= r cosϕ i⊤θ

(C.48)

and
∂pϕ
∂v

=
∂

∂v
r2 ϕ̇ = 2 r ϕ̇

∂r

∂v
+ r2

∂ϕ̇

∂v

= r i⊤ϕ

(C.49)

that
∂ph
∂v

=
pϕ
ph

r i⊤ϕ +
pθ

ph cosϕ
r i⊤θ (C.50)

C Appendix: Derivation of Equations of Motion 222

The partial derivatives in Eqs. (C.38)–(C.40), (C.44)–(C.46) and (C.48)–(C.50) are now used to determine

the partial derivatives of the modified orbital elements with respect to the velocity:

∂Λ

∂v
=

√
C

µ

∂

∂v

(
ph
r

− µ

ph

)
=

√
C

µ

(
−ph
r2

∂r

∂v
+

1

r

∂ph
∂v

+
µ

p2h

∂ph
∂v

)

=

√
C

µ

[
pθ
(
p2h + r µ

)
p3h cosϕ

i⊤θ +
γ

cosϕ

(
1 +

r µ

p2h

)
i⊤ϕ

] (C.51)

∂η

∂v
=

√
C

µ

∂pr
∂v

=

√
C

µ

∂ṙ

∂v

=

√
C

µ
i⊤r

(C.52)

∂s

∂v
=

√
C

µ

∂ sinϕ

∂v
=

√
C

µ
cosϕ

∂ϕ

∂v

= 0⊤

(C.53)

∂γ

∂v
=

∂

∂v

(
pϕ
ph

cosϕ

)
=

cosϕ

ph

∂ph
∂v

+ pϕ

(
−cosϕ

p2h

∂ph
∂v

− sinϕ

ph

∂ϕ

∂v

)
= − r γ pθ

p2h cosϕ
i⊤θ +

r cosϕ− r γ2 cos−1 ϕ

ph
i⊤ϕ

(C.54)

∂κ

∂v
=
√

C µ
∂

∂v

1

ph
= −

√
C µ

1

p2h

∂ph
∂v

= −
√

C µ
r

p3h

(
pθ

cosϕ
i⊤θ + pϕ i

⊤
ϕ

) (C.55)

∂β

∂v
=

∂

∂v

[
θ − arcsin

(
tanϕ

√
p2θ

p2h − p2θ

)]

=
r pθ

(
−p2h sinϕ+ p2θ tanϕ cos−1 ϕ

)√
p2θ

p2h−p2θ

(
p2θ − p2h

)2√p2θ−p2h+p2θ tan2 ϕ

p2θ−p2h

i⊤θ +
r pθ pϕ tanϕ(

p2h − p2θ
)√

p2h − p2θ

√
p2θ−p2h+p2θ tan2 ϕ

p2θ−p2h

i⊤ϕ

(C.56)

D Appendix: Parsing into Standard Form

D.1 Parsing of General Operators and Constraints

The parsing of the relevant operators and constraints into equivalent problems is based on [21, Chapters 4,

6]. If not stated otherwise, x and s (or s) denote the decision and slack variables, respectively.

Absolute Value Operator

A constraint of the form |x− c| ≤ t can be rewritten as

x ≤ t+ c (D.1a)

−x ≤ t− c (D.1b)

1-Norm Operator

Recalling the definition of the 1-norm

∥x∥1 ..=

n∑
i=1

|xi|, (D.2)

the constraint ∥x− c∥1 ≤ t is rewritten using the epigraph form to obtain

|x− c| ≤ s (D.3a)

1⊤ s = t (D.3b)

Using Eq. (D.1) yields

x ≤ s+ c (D.4a)

−x ≤ s− c (D.4b)

1⊤ s = t (D.4c)

223

D Appendix: Parsing into Standard Form 224

Minimizing the 1-norm, i.e., minµ ∥x∥1, is equivalent to

minimize µ1⊤ s (D.5a)

subject to: x ≤ s (D.5b)

− x ≤ s (D.5c)

Maximum Value Operator

Minimizing the maximum value operator, i.e., min µ max(x1, x2), is equivalent to

minimize µ s (D.6a)

subject to: s ≥ x1 (D.6b)

s ≥ x2 (D.6c)

Second-Order Cone Constraints

The general second-order cone constraint

∥Ak xk + bk∥2 ≤ c⊤k xk + dk (D.7)

can be transformed into

sk = Ak xk + bk (D.8a)

t = c⊤k xk + dk (D.8b)

∥sk∥2 ≤ t (D.8c)

Quadratic Constraints

Quadratic constraints of the form

x⊤x ≤ y z (D.9)

with x ∈ Rn, y, z ∈ R and y ≥ 0, z ≥ 0, and x and y being decision variables. This can be rewritten as

the following second-order cone constraint:∥∥∥∥∥∥∥
 2x

y − z

∥∥∥∥∥∥∥
2

≤ y + z (D.10)

D Appendix: Parsing into Standard Form 225

In addition, minimizing x⊤Qx is equivalent to the epigraph form

minimize s (D.11a)

subject to: x⊤Qx ≤ s (D.11b)

Assuming that the symmetric matrix Q is positive definite, its Cholesky decomposition Q = L⊤L is

used to obtain

minimize s (D.12a)

subject to: u⊤u ≤ s (D.12b)

where u = Lx. This problem can be transformed into a second-order cone constraints using Eq. (D.10):

minimize s (D.13a)

subject to:

∥∥∥∥∥∥∥
2Lx

s− 1

∥∥∥∥∥∥∥
2

≤ s+ 1 (D.13b)

Composite Functions

Recalling the soft trust-region constraint from Eq. (5.40) where the expression

p(x) = λTR [max(0, ∥x− x̄∥1 −R)]2 (D.14)

is to be minimized, the epigraph form is

minimize s (D.15a)

subject to: λTR [max(0, ∥x− x̄∥1 −R)]2 ≤ s (D.15b)

Rewriting p(x) as p̃(x) =
[√

λTR max(0, ∥x− x̄∥1 −R)
]2, we consider p̃(x) as a composition of two

functions f and g, i.e., p̃(x) = f(g(x)), where

f(y) = y2 (D.16)

g(x) =
√

λTR max(0, ∥x− x̄∥1 −R) (D.17)

D Appendix: Parsing into Standard Form 226

As λTR > 0 and the max function is nondecreasing, g is nondecreasing in [0,∞). Therefore, we

introduce another slack variable z, and the expressions f(g(x)) ≤ s and f(z) ≤ s, g(x) ≤ z are

equivalent. The problem in Eq. (D.15) can then be reformulated as

minimize s (D.18a)

subject to: z2 ≤ s (D.18b)√
λTR [max(0, ∥x− x̄∥1 −R)] ≤ z (D.18c)

Using the results from previous subsections, this is transformed into standard form and we obtain

minimize s (D.19a)

subject to:

∥∥∥∥∥∥∥
 2 z

s− 1

∥∥∥∥∥∥∥
2

≤ s+ 1 (D.19b)

− z ≤ 0 (D.19c)√
λTR 1⊤ sTR = z +

√
λTRR (D.19d)√

λTR (−sTR − x+ x̄) ≤ 0 (D.19e)√
λTR (−sTR + x− x̄) ≤ 0 (D.19f)

where sTR are the concatenated slack variables when rewriting the 1-norm of the trust-region constraint.

D.2 Parsing of Low-Thrust Trajectory Optimization Problem

For the sake of completeness, we present the parsing of the fixed final time problem with general

nonconvex boundary conditions, and of the energy-optimal problem.

Fixed Final Time, Nonconvex Final Boundary Conditions

Without loss of generality, we assume that the final boundary condition is a nonconvex function ψ of the

final states rN ,vN , i.e., the states at tf :∣∣∣∣∣∣∣ψ(rN ,vN)−

rf
vf

∣∣∣∣∣∣∣ ≤

∆r

∆v

 (D.20)

The linearized formulation is∣∣∣∣∣∣∣ψ(r̄N , v̄N) +∇ψ(r̄N , v̄N)

rN − r̄N

vN − v̄N

−

rf
vf

∣∣∣∣∣∣∣ ≤

∆r

∆v

+ ζ (D.21)

D Appendix: Parsing into Standard Form 227

where ζ ∈ Rm
≥0 (m being the number of final boundary conditions) is another virtual control that is to be

penalized in the objective function. The resulting optimization problem reads

minimize
x,u,ν,η,ζ

− wN + λν

N−1∑
i=1

∥νi∥1 + λη

N∑
i=1

max(0, ηi) + λζ

m∑
i=1

max(0, ζi) (D.22a)

subject to: Eqs. (9.11b)–(9.11f) (D.22b)∣∣∣∣∣∣∣ψ(r̄N , v̄N) +∇ψ(r̄N , v̄N)

rN − r̄N

vN − v̄N

−

rf
vf

∣∣∣∣∣∣∣ ≤

∆r

∆v

+ ζ (D.22c)

Reformulating yields

minimize
x,u,ν,η,ζ,sν ,sη ,sζ

− wN + λν 1
⊤ sν + λη 1

⊤ sη + λζ 1
⊤ sζ (D.23a)

subject to: Eqs. (9.12b)–(9.12h) and (9.13d) (D.23b)

− sζ ≤ 0, ζ ≤ sζ , −ζ ≤ 0 (D.23c)

ψ(r̄N , v̄N) +∇ψ(r̄N , v̄N)

rN − r̄N

vN − v̄N

−

rf
vf

 ≤

∆r

∆v

+ ζ (D.23d)

−ψ(r̄N , v̄N)−∇ψ(r̄N , v̄N)

rN − r̄N

vN − v̄N

+

rf
vf

 ≤

∆r

∆v

+ ζ (D.23e)

sζ is the slack variable associated with the virtual control ζ.

Energy-Optimal Problem

We consider a homotopy from the energy-optimal to the fuel-optimal problem with control magnitude u

and the performance index

J =

∫ tf

t0

[u− εu(1− u)] dt =
∫ tf

t0

u(1− ε) dt+
∫ tf

t0

ε u2 dt (D.24)

The quadratic part can be rewritten in standard form using the relations of the previous section. The

discretized objective function takes the general form

J = (1− ε)
N∑
i

Ci ui di + ε
N∑
i

Ci u
2
i di (D.25)

with factors Ci and quadrature weights di that depend on the discretization and quadrature method. The

expression
∑N

i Ci u
2
i di can be rewritten in matrix form as u⊤Qu with the concatenated controls u.

The diagonal matrix Q is positive definite with entries

Qii = εCi di (D.26)

D Appendix: Parsing into Standard Form 228

We transform the quadratic part of J into a second-order cone constraint to obtain:

minimize (1− ε)
N∑
i

Ci ui di + sε (D.27a)

subject to:

∥∥∥∥∥∥∥
 2Lu

sε − 1

∥∥∥∥∥∥∥
2

≤ sε + 1 (D.27b)

where sε is a slack variable, and Q = L⊤L.

D.3 Structure of Matrices and Vectors

Throughout this section, 0n×m denotes a zero matrix of size n×m. A n×n identity matrix is represented

by 1n×n, and 1n indicates a row vector of n ones.

Equality constraints

The matrix A and vector b are defined as follows

A ..=

Adyn

Ax0

ATR

 , b ..=

bdyn

bx0

bTR

 (D.28)

and contain all equality constraints:

1) Adyn refers to the dynamics in Eq. (9.12b).

2) Ax0 is comprised of the initial boundary condition in Eq. (9.12h).

3) ATR contains the trust-region constraint 1⊤ sTR = R in Eq. (9.12g).

In the following, the elements of each component are addressed in more detail. The braces over the

matrices and vectors refer to the corresponding elements of the solution vector y.

Dynamics

The nx (N − 1) equality constraints are similar to the ones in Eq. (6.70), but with an additional block of

zeros 0∗ ∈ Rnx (N−1)×N+nx N to account for the remaining slack variables:

Adyn =

Â1 0 B̂1 0

1nν×nν 0∗
.

0 ÂN−1 0 B̂N−1

x︷ ︸︸ ︷ u︷ ︸︸ ︷ ν︷ ︸︸ ︷ sη , sTR︷ ︸︸ ︷ (D.29)

D Appendix: Parsing into Standard Form 229

where nν = nx (N − 1) and k = 1, . . . , N − 1. The matrices Âk and B̂k have (nx − 1)nx + 1 + nx

and 2 [(nx − 1)nu + 1] nonzero elements, respectively. They are to be updated in each iteration except

for the entries that correspond to the identity matrices −1 in Âk. The (N − 1)nx entries for ν do not

change.

The vector bdyn reads

bdyn =

−q1

...

−qN−1

 (D.30)

With regard to the moving target problem, the matrix changes to

Adyn =

Â1 0 B̂1 0

1nν×nν 0∗

S1

0nx (N−1)×2 (nx−1)
.

0 ÂN−1 0 B̂N−1 SN−1

x︷ ︸︸ ︷ u︷ ︸︸ ︷ ν︷ ︸︸ ︷ sη , sTR︷ ︸︸ ︷ tf︷ ︸︸ ︷ ζ, sζ︷ ︸︸ ︷
(D.31)

Initial Boundary Conditions

The initial boundary conditions are nx linear constraints:

Ax0 =

[
1nx×nx 0nx×(N−1)nx

0∗

x1︷ ︸︸ ︷ x2,...,xN︷ ︸︸ ︷ u,ν, sν ,η, sη , sTR︷ ︸︸ ︷]
(D.32)

where bx0 = x0, and 0∗ ∈ Rnx×nu N+2nx (N−1)+2N+nx N . Ax0 consists of nx nonzero elements that

remain constant.

Trust Region

The trust-region constraint is comprised of a single row of the following form:

ATR =

[
0∗ 1nx N

x,u,ν, sν ,η, sη︷ ︸︸ ︷ sTR︷ ︸︸ ︷]
(D.33)

There are nxN nonzero, constant elements, and bTR = R is to be updated when the trust-region radius

changes. The block of zeros is 0∗ ∈ R1×nu N+2nx (N−1)+2N+nx N .

For the moving target case, there is an additional 1 due to the imposed trust-region constraint on tf .

D Appendix: Parsing into Standard Form 230

Inequality constraints

With regard to the inequality constraints, the matrix G and vector h are defined as follows

G ..=

Gthrust

GTR

Gxf

Gν

Gη

Gsocc

, h ..=

hthrust

hTR

hxf

hν

hη

hsocc

(D.34)

where:

1) Gthrust refers to the linearized upper bounds of the thrust magnitude in Eq. (9.12e).

2) GTR contains the the trust-region constraints in Eq. (9.12g).

3) Gxf
defines the final boundary conditions in Eqs. (9.12i) and (9.12j).

4) Gν and Gη refer to the constraints on the slack variables ν and η, respectively, in Eqs. (9.12c)

and (9.12d).

5) Gsocc is comprised of the second-order cone constraints in Eq. (9.12f).

We proceed in a similar way and present details about the implementation of the matrices.

Thrust Magnitude

There are N constraints for the upper bounds of the thrust magnitude. The corresponding matrix reads

Gthrust=

01×nx−1 Γmax,1 01×nx (N−1) 01×nu−1 1 01×nu (N−1)

0N×nν+nsν
1N×N 0∗

01×2nx−1 Γmax,2 01×nx (N−2) 01×2nu−1 1 01×nu (N−2)

...
...

01×nx N−1 Γmax,N 01×nu N−1 1

x︷ ︸︸ ︷ u︷ ︸︸ ︷ ν, sν︷ ︸︸ ︷ η︷ ︸︸ ︷ sη ,
sTR︷ ︸︸ ︷
(D.35)

where nν and nsν denote the lengths of the vectors ν and sν , respectively. Furthermore,

Γmax,k = Tmax(r̄k) e
−w̄k , k = 1, . . . , N (D.36)

D Appendix: Parsing into Standard Form 231

0∗ ∈ RN×N+nx N is a block of zeros. The number of nonzero elements is 3N , and the only changing

elements are Γmax,k, k = 1, . . . , N . The vector hthrust is given by

hthrust =

Γmax,1 (1 + w̄1)

...

Γmax,N (1 + w̄N)

 (D.37)

and is to be updated when the reference trajectory changes.

Trust Region

The 2nxN trust-region constraints are given by:

GTR =

 1nx N×nx N
0∗

−1nx N×nx N

−1nx N×nx N −1nx N×nx N

x︷ ︸︸ ︷ u,ν, sν ,η, sη , sTR︷ ︸︸ ︷ sTR︷ ︸︸ ︷ (D.38)

All 4nxN nonzero entries are constant, and 0∗ ∈ R2nx N×nu N+2nx (N−1)+2N . The vector hTR is

hTR =

 x̄

−x̄

 (D.39)

and must be updated when the reference changes.

In case of a moving target where the trust-region constraint is also imposed on the additional time

variable tf , GTR has 4 additional nonzero elements, and hTR = [x̄⊤, −x̄⊤, t̄f , −t̄f]
⊤.

Final Boundary Conditions

In case of a rendezvous problem with free final mass, the final boundary conditions are linear inequality

constraints:

Gxf
=

 0nx−1×nx (N−1) 1nx−1×nx−1 0nx−1×1
0∗

0nx−1×nx (N−1) −1nx−1×nx−1 0nx−1×1

x1,...,xN−1︷ ︸︸ ︷ xN︷ ︸︸ ︷ u,ν, sν ,η, sη , sTR︷ ︸︸ ︷ (D.40)

with 0∗ ∈ Rnx−1×nu N+2nx (N−1)+2N+nx N . There are nx − 1 nonzero elements that remain constant.

Moreover,

hxf
=

∆xf + xf

∆xf − xf

 (D.41)

where xf
..= [r⊤f ,v

⊤
f]

⊤ and ∆x ..= [∆r⊤f ,∆v⊤
f]

⊤.

D Appendix: Parsing into Standard Form 232

With regard to the moving target problem, the number of nonzero elements of Gxf
is 6 (nx − 1),

where nx − 1 entries change in each iteration according to Eqs. (9.13e) and (9.13f). In addition, all

elements of hxf
are to be updated.

Slack Variables ν and sν

The matrix Gν consists of two blocks with a total of 4nx (N − 1) non-changing elements:

Gν =

0nx (N−1)×(nx+nu)N 1nx (N−1)×nx (N−1) −1nx (N−1)×nx (N−1)
0∗

0nx (N−1)×(nx+nu)N −1nx (N−1)×nx (N−1) −1nx (N−1)×nx (N−1)

x,u︷ ︸︸ ︷ ν︷ ︸︸ ︷ sν︷ ︸︸ ︷ η, sη , sTR︷ ︸︸ ︷ (D.42)

The dimensions of 0∗ are 2nx (N − 1)× 2N +nxN . The corresponding vector is hν = 02nx (N−1)×1.

Slack Variables η and sη

Gη is comprised of three blocks and 4N constant nonzero elements:

Gη =

 0∗

0N×N −1N×N

03N×nx N1N×N −1N×N

−1N×N 0N×N

x,u,ν, sν︷ ︸︸ ︷ η︷ ︸︸ ︷ sη︷ ︸︸ ︷ sTR︷ ︸︸ ︷ (D.43)

where 0∗ ∈ R3N×nx N+nu N+2nx (N−1). Furthermore, hη = 03N×1.

Moving Target: Slack Variables ζ and sζ

The moving target problem requires an additional matrix Gζ due to Eq. (9.13d):

Gζ =

 0∗

0nx−1×nx−1 −1nx−1×nx−1

1nx−1×nx−1 −1nx−1×nx−1

−1nx−1×nx−1 0nx−1×nx−1

y, tf︷ ︸︸ ︷ ζ︷ ︸︸ ︷ sζ︷ ︸︸ ︷ (D.44)

There are 4 (nx−1) nonzero, constant elements, and 0∗ ∈ R3 (nx−1)×ny+1. The vector on the right-hand

side is hζ = 03 (nx−1)×1.

D Appendix: Parsing into Standard Form 233

Moving Target: Bounds on tf

If lower and upper bounds are imposed on tf , two constraints are required with two constant, nonzero

entries:

Gbounds =

 0∗
−1

02×2 (nx−1)

1

y︷ ︸︸ ︷ tf︷︸︸︷ ζ, sζ︷ ︸︸ ︷ (D.45)

where 0∗ ∈ R2×ny . The corresponding vector on the right-hand side is hbounds = [−tf,lb, tf,ub]
⊤.

Second-Order Cone Constraints

The structure of the matrix that contains the second-order cone constraints may depend on the chosen

solver. In case of ECOS [86] that is used throughout this dissertation, Gsocc has nuN constant nonzero

elements and takes the following form:

Gsocc =

 0nu N×nx N

M 0

0∗
. . .

0 M

x︷ ︸︸ ︷ u︷ ︸︸ ︷ ν, sν ,η, sη , sTR︷ ︸︸ ︷ (D.46)

where

M =

0 0 0 −1

−1 0 0 0

0 −1 0 0

0 0 −1 0

(D.47)

and 0∗ ∈ Rnu N×2nx (N−1)+2N+nx N . The corresponding vector on the right-hand side is hsocc =

0nu N×1.

Objective Function

All nc = nν +nη +1 = nx (N − 1)+N +1 nonzero elements of the objective function vector c remain

constant:

c =

[
01×nx (N−1) 01×nx−1 −1 01×nu N+nν λν 1nν 01×nη λη 1nη 01×nx N

x1,...,xN−1︷ ︸︸ ︷ xN︷ ︸︸ ︷ u,ν︷ ︸︸ ︷ sν︷ ︸︸ ︷ η︷ ︸︸ ︷ sη︷ ︸︸ ︷ sTR︷ ︸︸ ︷]⊤
(D.48)

In case of a moving target, the elements λζ 1
⊤
nζ

, nζ = nx − 1, are to be included in c.

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivations
	Research Question
	Contributions
	Outline of Dissertation

	Theoretical Background
	Optimal Control Theory
	Numerical Optimization
	Optimal Control Problem for Space Flight

	Overview and Assessment of Guidance Methods
	Overview of Methods
	Assessment and Selection

	State of the Art
	Sequential Convex Programming
	Discretization and Trust-Region Methods
	High-Fidelity Optimization
	State Vector Representations

	Approximation of Nonlinear Dynamical Systems

	Convexification and Sequential Convex Programming
	Convexification
	Sequential Convex Programming Method

	Performance of Discretization and Trust-Region Methods
	Discretization Methods
	Adaptive Radau Pseudospectral Method
	Adaptive Flipped Radau Pseudospectral Method
	First-Order-Hold Method
	Hermite–Legendre–Gauss–Lobatto Method

	Numerical Simulations
	Overview of Simulations
	Results
	Performance Assessment

	Assessment of State Vector Representations
	State Vector Representations
	Cartesian Coordinates
	Spherical Coordinates
	Cylindrical Coordinates
	Modified Equinoctial Elements
	Modified Orbital Elements
	Kustaanheimo–Stiefel Coordinates
	Summary

	Linearization Accuracy Index
	Numerical Simulations
	Linearization Accuracy Index
	Reliability Analysis
	Discussion

	Homotopic Approach for Trajectory Optimization in High-Fidelity Models
	Embedded Homotopic Approach for High-Fidelity Models
	No-Thrust Constraints
	Bang-Bang Mesh Refinement
	Numerical Simulations
	Embedded Homotopic Approach for High-Fidelity Models
	No-Thrust Constraints
	Bang-Bang Mesh Refinement

	Closed-Loop Guidance in Deep Space
	Processor-in-the-Loop Simulation
	Moving Target
	Real-Time Implementation
	Sequential Convex Programming: Offline
	Sequential Convex Programming: Online

	Numerical Simulations
	Monte-Carlo Analysis: Nominal Case
	Monte-Carlo Analysis: Failure Case
	Discussion
	Performance on a Single-Board Computer

	Koopman Operator Theory
	Theoretical Background
	Bilinearization and Full Linearization of Control-Affine Systems
	Bilinearization
	Full Linearization

	Linearization Accuracy Index
	Applications
	Duffing Oscillator
	Perturbed Keplerian Motion

	Numerical Simulations
	Bilinear and Linear System
	Linearization Accuracy Index

	Summary and Future Work
	Summary
	Future Work

	Bibliography
	Appendix: Shape-Based Method for Initial Guess Generation
	Appendix: Coordinate Transformations
	Hamiltonian in Cartesian and Spherical Coordinates
	Classical Orbital Elements
	Spherical Coordinates
	Cylindrical Coordinates
	Modified Equinoctial Elements

	Appendix: Derivation of Equations of Motion
	Spherical Coordinates
	Cylindrical Coordinates
	Partial Derivatives for Modified Orbital Elements

	Appendix: Parsing into Standard Form
	Parsing of General Operators and Constraints
	Parsing of Low-Thrust Trajectory Optimization Problem
	Structure of Matrices and Vectors

