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Abstract

Modern processors adopt some advanced technology, such as out-of-order execution, or
the speculative execution, to improve their performance. Nowadays we put, day by day,
an increasing amount of our personal data on the Internet, and this must be adequately
protected. To succeed in such an objective the first line of defense is to encrypt the data,
while they are transferred from one system to another one, and also while they reside on a
system. In recent years a big challenge to such a defensive system comes from side-channel
attacks, which can extract a secret key from a system by exploiting some weird behavior
of the processor. In this thesis, we propose a hardware-based security module capable
of detecting a side-channel attack, and signaling it to the Operative System, before the
attack can extract anything. We focused our attention on cache-based side-channel at-
tacks, that exploit the access pattern of the cryptographical algorithm to the cache to
extract the key. The most famous attacks belonging to this category are Spectre and
Meltdown. To assure a high level of precision in the detection, without the requirement
to have a database of all the possible existing attacks, we based our system on machine
learning, but opting for the algorithms belonging to the One-class classifier category. To
test the presence of an attack, we monitor some relevant Hardware Performance Counters,
that we narrowly chose among the events made available by the processor. After having
conducted an extensive search of the Hardware Performance Counters, and having tested
multiple ML algorithms, we find out that the best results are obtained using Isolation
Forest which can reach an accuracy of 99% with all the cryptographical algorithms and
the attacks we have tested it. In addition, such an algorithm has always less than 1% of
false positives and zero false negatives. We have made also a hardware implementation
of Isolation Forest, and we tried to compare its dimension with the one of an x86 proces-
sor. This last comparison was not easy, due to the lack of information about it, but we
obtained an overhead that goes from 6.75% to 25.7%, without any sort of optimization
that will be possible when you try to implement our module alongside a CPU.

Keywords: Embedded Systems, Hardware Performance Counter, Hardware Security,
Machine Learning, Microarchitectural side-channel attack, Microprocessors





Abstract in lingua italiana

I moderni processori adottano alcune tecnologie, come l’esecuzione out-of-order o l’esecuzione
speculativa, per migliorare le loro prestazioni. Oggigiorno mettiamo su Internet sempre
più dati personali, che devono essere adeguatamente protetti. Per raggiungere questo
obiettivo, la prima opzione è crittografarli, sia quando vengono trasferiti da un sistema
all’altro, sia quando risiedono su un sistema. Negli ultimi anni un’importante minaccia
alla crittografia è rappresentata dagli attacchi side-channel, che sono in grado di estrarre
una chiave segreta sfruttando un comportamento ambiguo del processore. In questa tesi
proponiamo un modulo di sicurezza hardware in grado di rilevare un attacco side-channel
e di segnalarlo al sistema operativo, prima che questo sia possa estrarre qualcosa. Noi
ci siamo focalizzti sugli attacchi side-channel cache-based, che sfruttano il pattern di ac-
cesso alla cache, dell’algoritmo crittografico, per estrarne la chiave. Gli attacchi più noti
di questa categoria sono Spectre e Meltdown. Per garantire un elevato livello di preci-
sione nel rilevamento, senza la necessità di avere un database con tutti i possibili attacchi
esistenti, abbiamo basato il nostro sistema sul Machine Learning, optando però per gli
algoritmi di classificazione di tipo One-class. Per valutare se c’è un attacco, monitoriamo
alcuni Hardware Performance Counter, che abbiamo scelto attentamente tra gli eventi
resi disponibili dal processore. Dopo aver condotto una ricerca approfondita sugli Hard-
ware Performance Counter, e aver testato diversi algoritmi di ML, abbiamo scoperto che
Isolation Forest dà i risultati migliori, raggiungendo un’accuratezza del 99% con tutti
gli algoritmi crittografici e gli attacchi che abbiamo testato. Inoltre, questo algoritmo
ha sempre meno dell’1% di falsi positivi e zero falsi negativi. Abbiamo realizzato anche
un’implementazione hardware di Isolation Forest e abbiamo cercato di confrontare le sue
dimensioni con quelle di un processore x86. Tale confronto non è stato facile, a causa
della mancanza di informazioni al riguardo, ma abbiamo ottenuto un overhead che va
dal 6.75% al 25.7%, questo senza alcun tipo di ottimizzazione che invece sarà possibile
quando si vorrà implementare il nostro modulo insieme ad una CPU.

Parole chiave: Attacchi side-channel alla Microarchitettura, Hardware Performance
Counter, Machine Learning, Microprocessori, Sicurezza Hardware, Sistemi Embedded
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Introduction

With Information Technology (IT) systems and technology in general, being more perva-
sive day by day and processing more and more personal data, is our responsibility, as the
scientific community, to guarantee the highest possible level of security to these systems.
Cryptographic algorithms are an essential component, to be able to ensure confidentiality,
integrity, and non-repudiation of communication channels and the data transmitted over
them. The algorithms that are actually in use are chosen because the mathematical the-
orems on which they are based are considered robust to an attack, but the mathematical
properties aren’t the only possible attack surface. Another vulnerable side of these algo-
rithms is their actual implementation, that can expose the key used for the encryption
and decryption operations directly, due to some bugs in the code, or indirectly, through
some unexpected behavior of the hardware on which those algorithms run.

Modern processors, to be able to increase their performance, cannot still count only on
higher clock frequencies and the reduction of the dimensions of the components, so CPUs
manufacturers studied and introduced some technologies such as: speculative execution
and out-of-order execution. Speculative execution aims to reduce the time needed for
the execution of a program, and to do so it starts to fetch some instructions before
having all the needed information. The technique is focused on improving the CPU’s
efficiency in branching situations, where, to determine which is the correct next block
of instructions to be executed, a certain boolean condition must be solved. Before the
introduction of this technology, the fetching activity was blocked until the condition is
solved and the correct following instruction is determined. Instead, with speculative
execution, the CPU makes a prediction on which will be the next instruction and start
to process it. When the condition is solved, if the prediction was correct, the processor
saved time, otherwise, it reverts all the changes it has made and fetches the correct
instruction. Out-of-order execution was implemented to improve the CPU’s execution
efficiency. Every single core of a processor has multiple units that can perform different
arithmetical and logical operations, but only a portion of these are used simultaneously
because of bottlenecks in other parts of the system. One of the bottlenecks is the time
needed to access the memory, even if the data are in the cache, another example is the
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execution of a complex operation such as multiplication. In these cases, the CPU must
stop the execution of the following instructions until the current one finishes. With out-
of-order, the processor has the capability to fetch and execute instructions in an order
that is different from the original one, if there is an available execution unit and all the
data needed by the instruction are ready. Even if the instructions are not executed in
order, the program behavior is not modified because when an instruction is completed,
it goes into a buffer, called Re-Order Buffer (ROB), and it is signed as completed only
when all the preceding instructions are signed so.

One of the most recent attacks family goes under the name of side-channel attacks, such
attacks do not directly involve the code of the victim program they target, but exploit the
normal behavior of a part of the hardware (the CPU typically), such as power consumption
or cache access timing [21, 50] to correlate those behaviors to the secret data the attacker
wants to obtain.

A first division can be made between the side-channels that require physical access to the
system, to be able to take the measurements required to conduct the attack, and those
ones that can be performed from remote. In the former group, reenters attacks that use
information about the power consumption [13] or the electromagnetic emissions [34, 42]
of the processor. To acquire such data is required that the attacker is physically near
the system, or, in the case of power analysis, he/she must have direct access to the CPU
to insert some probes in it. To put in place these attacks is also necessary to use some
laboratory equipment, like oscilloscopes, and perform preliminary sampling to correctly
tune the attacking program, this requires having access to a CPU that is identical to
the one you want to exploit. In addition is necessary to make a survey on where the
acquisition equipment must be placed, as suggested in [34], to have the best possible
results. For attacks based on power analysis, as explained by Brier in [9], there is the
necessity to do a brute-force style attack, in fact, given a known plaintext and a power
consumption, you have to test all the possible keys to find the one that correlates better
with the measured power consumption.

The second group, instead, comprehends the attacks known as microarchitectural side-
channel attacks (MSCAs) that exploit how the CPUs work to obtain otherwise secret
data. One of the most attacked processor’s component is the cache, whose access pattern
is analyzed and used as a side-channel from which infear the value of a secret data [21,
27, 31, 50]. This gives the possibility to conduct the attack from remote, and in addition
it doesn’t require elevated privileges to run, in fact such malevolent programs need only
user level privileges. The exploited behavior in this case is that the time needed to read
a cache line is correlated to having a cache miss or a cache hit. If you put the cache in a
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known state, every unexpected access timing gives you a hint on what the program you
are attacking have done. For example, if you write into the cache some known data, and
than let the victim program execute some instructions, and finally read again what you
initially wrote, every cache miss indicates that the victim program accessed that line.

The cache-based side-channel attacks, to reach their goal, exploit the fact that the cryp-
tographic algorithms access the cache in a manner that depend by the value of the bits
of the key, and so, observing the cache access pattern, and knowing its correlation to the
key value, is possible to retrieves such key. These attacks cause a huge security fault,
especially because they are very difficult to identify due to the fact that they do not
modify the functioning of the system. All the proposed cache-based MSCAs have the
same general structure. The first phase put the observed cache lines in a known state, in
order to have a baseline for the following measurements, at this point it waits that the
targeted program execute for a short amount of time (this aspect isn’t under the direct
control of the attacker). At this point, the second phase starts and the access times to
the monitored cache lines are taken and compared to the expected ones.

One of the most known attack of this class is Spectre [27] that, exploiting the speculative
execution of the CPU, can force the victim program to make an out-of-bound access to
an array, then extrapolate the information associated to this access with some covert
channel such as Flush+Reload [50]. This is possible because the index, used to make the
out-of-bound access, points to the secret data targeted by the attacker. This data is then
used as an index to access a second array, which will load some data into the cache, and
so there is a correlation between the secret data targeted by the attacker and the cache
line accessed by the victim program. The extracted information can be some secret data
of the application or some private key used for encryption/decryption functions. Another
variant aims to mistrain the Branch Target Buffer (BTB), a unit responsible for making
predictions on the target address of a branch instruction. In this variation, the attacker
identify a gadget, that is a small bunch of instructions that can be useful for the attacker,
in the victim address space, and he misleadingly trains the BTB that a certain branch
goes there. When the attack is put in place, the BTB redirects the program execution
towards the gadget, and, even if the CPU will revert the changes, when the misprediction
will be detected, the cache will still contain the data the gadget has accessed.

Another famous cache-based side-channel attack is Meltdown, which can have access to
all the memory space. It can reaches its objective forcing the access control mechanism
typically adopted by processors, exploiting the out-of-order execution and the fact that
the exceptions are managed at the end of the of the pipeline. The CPU will load the page
requested by the attacker into the cache before checking if the process is authorized to
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read it or not. When the processor will realize that a non authorized access was made it
rise an exception and goes back to a previous safe state. But at this point it is too late,
because the attacker can simply read the cache lines where the memory elements were
loaded and have access to restricted data. This is possible because such cache lines wasn’t
cleaned during the revert phase. Here the bad behaviors used are two, the first one is the
fact that the exception isn’t managed when it is raised, and the second misused behavior
is that the cache isn’t cleaned after an exception.

There is a lot of effort in the research field trying to reducing this problem. There exist
two possible ways to approach it, you can act proactively and solves it at the origin,
modifying the algorithms or the way of working of the processors, otherwise you can
try to detect the side-channel attack as soon as possible and block the executable that
is conducting it. The proposed solutions which go under the first category consist of
implementing some algorithms that make the cryptographic operations time/emissions
independent[30] from the value of the key that is used in the cryptographic operations.
Otherwise, if you want to act directly on the hardware, another idea is to change the
way of functioning of the cache [26, 39, 52], for example, increasing its isolation from a
process to another one [45] so that the attacker cannot access the cache lines of another
process. A further possibility is to make less accurate the internal timer of the CPU
so that the attacker will obtain unusable time measurements and cannot distinguish if
the monitored cryptographic function involved a 1-bit or a 0-bit. For what concerns the
latter research area, which tries to develop some detection systems, the vast majority of
proposed solutions are software-based [1, 4, 11, 28], and they focus their attention on
searching some source of information that can be a good and trustworthy indicator for
the presence of an ongoing attack.

A source of information, often used by the detection systems, are the Hardware Perfor-
mance Counters (HPCs). These counters was originally designed for debugging purposes.
They can be set, through a specific instruction, to monitor a specific event in the pletora of
available ones. For what concern Intel, the events that can be monitored are divisible into
two category: architectural and non-architectural. The former category refers to those
events available to all the CPUs independently from the processor’s family the specific
CPU belongs to, while the latter category groups together events that are family-specific.
For this reason Intel provides a list with all the supported non-architectural events, di-
vided per processor family, which is available here [25]. The events are related to the
functioning and the performance of the processor itself, they include information such as
the number of cache hits or the number of completed instructions. Once a counter is set, it
starts tracking the number of occurrences of the selected event, storing it in a specialized
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register. The CPU provides instructions to read the value stored in the HPCs, and also
to reset the counter. According to the Intel manual (Volume 3B, Chapter 19) [24] there
exist two possible methods to retrieve the value stored inside such counters, the first one
is to use the dedicated instruction rdpcm, the other possibility is to set the counter to
rise an exception when it overflows a certain threshold. It is important to make the right
choice on which events monitor because the amount of these registers is quite limited, in
fact, Intel gives only four registers per thread on its CPUs [24], while on AMD processors
we can have access to six registers per thread [2].

With this thesis we have focused on cache-based access-driven microarchitectural side-
channel attacks, those that, for extracting secret information, use techniques such as
Flush+Flush [21] or Prime+Probe [39]. These types of attacks, measuring the time taken
by the attacking program to access some specific cache lines, can deduce which of those
lines have been accessed by the cryptographic algorithm. Thanks to the fact that the
accessed cache lines have a correlation with the value of the key, even if the algorithm
is patched to remove this correlation, accessing all the cache lines [38, 51], is possible to
retrieve part or the whole encryption key. We decided to develop a hardware-based on-
line detection module that, thanks to the monitoring of some carefully selected Hardware
Performance Counters, can rapidly detect an ongoing attack and signals it to the operative
system that will decide which counteraction is the most suitable for the actual scenario.
Several other similar works used the HPCs [4, 47], but they decided a priori which counters
to use, we, instead, performed a wide search to find the best ones. To explore the widest
possible number of HPCs we used gem5, a clock-cycle accurate architectural simulator,
that gives us the possibility to collect at the same time all the values of the events made
available by the simulator. After having eliminated all the events not directly related to
the CPU or its cache, we have left with nearly 800 counters, and later we chose the most
suitables for the detection of a side-channel attack. This was possible because gem5 not
only offers the possibility to simulate a CPU in a cycle accurate manner, but you can also
mount and use a working Linux system on it.

To actually make the classification of a given sample and understand if it is derived from
a normal execution of a cryptographical algorithm or it comes from an execution that is
under attack, we based our system on some machine learning techniques. This choice was
made because this technology offers the possibility to identify the schemas that are com-
mon to the samples that come from the same origin, allowing us to distinguish between
benign samples and those generated from an attacked environment. For what concerns
the choice of which machine learning algorithms use, we have focused on those ones that
can be trained using only samples coming from an execution that is not compromised by
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a side-channel attack, this machine learning technique is called One-class classifier. This
choice is due to the fact that these samples are simpler to obtain and, otherwise, to have
a reliable system, we not only have to collect samples from an environment that is under
attack, but also we need samples associated to all the possible existing attacks and to
those not yet developed ones. That requirement of course is impossible to be satisfied,
and less types of attacks you have and worse will be the classifier, instead, if you train
the ML algorithm only with samples coming from a plain execution of the cryptography
algorithm is possible to forget about the attacked samples.
Thanks to the use of the scikit-learn library, a well-known and used python library for
machine learning, we had the possibility to test three different algorithms of this type:
One-class Support Vector machine (SVM) [5, 43], Local Outlier Factor (LOF) [8] and
Isolation Forest [33]. After having tuned their parameters to obtain the best possible re-
sults, we went to a comparison phase to understand if one of them has better performance
respect to the others.

The scenario in which we want to operate is the one of embedded devices, powered by
an x86 processor, that are specifically dedicated to encryption/decryption activities and
work with just one algorithm at a time, in fact we developed a different configuration
for each of the tested algorithms. During our research, we find out that the best HPCs
to use are not always the same, but they differ not only between different cryptographic
algorithms, but they even change depending on which machine learning algorithm you
use. This choice on the scenario is done in order to make simpler the testing environment,
but steel maintaining it realistic. Such protection system is really helpful in a product
which the only objective is encrypt and decrypt messages making worthy the cost of
developing and integrating such module into its CPU. Instead, in heterogeneous systems,
like a PC, this cost can be less justifiable. Anyway exist some works that propose a
program, based on the usage of HPCs, that can detect attacks also in a environment
where the cryptographic algorithm isn’t the only program that run [10, 29]. So, given the
existence of these researches and the fact that we perform a wide analysis to select which
performance counters to use, is reasonable to think that our solution can be extended
even to general purpose systems.

After having identified the top four HPCs, for each of the combinations cryptographic
algorithm, ML model, and discovered which machine learning algorithm performs the
best, our final goal is to implement this machine learning algorithm in hardware and
create a module that can be put on the side of a CPU, without the need of modifying
it. The only scope of such module is monitoring the system and signal to the Operative
System (OS) potentially malevolent behaviours. This choice has the disadvantage that it
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can be applied only to new CPUs, and so it is not immediately deployable, but, being
a dedicated piece of hardware, it does not affect the performance of the system that
otherwise has to dedicate some resources to the monitoring program. In addition, a
software solution it is more prone to be a victim of an attack directed to stop its service
or to alter its functioning with the objective of hiding a side-channel attack.
Our module has also the possibility to change its configuration, namely the HPCs used
and the parameters of the machine learning algorithm, but not the ML algorithm used.
The reconfigurability is fundamental to ensure a protection to the different cryptographic
algorithms that can be used by the system we want to protect, and making the module
extensible and capable of defending future algorithms.

We made various test using some known cryptographic algorithms such as: AES, RSA
or blowfish, all of them attacked using an ad-hoc modified version of Spectre’s Proof
of Concept (POC), and also a modified version of a Meltdown’s POC. After a tuning
of the parameters used by the machine learning algorithms, we were able to achieve a
detection accuracy of 99% with all the datasets, with zero false negatives and just a few
false positives.

Thesis contribution

To summarize, with this work we achieved the following steps-forward, with respect to the
other works done, for what concern the detection of the microarchitectural side-channel
attacks that exploits the cache access pattern to extract a secret key from a cryptographic
algorithm:

• A wide search to identify the most suitable HPCs to identify an ongoing attack. Such
a search was conducted on a per cryptographic algorithm and per ML algorithm
basis.

• The exploration of several machine learning algorithms aimed at identifying the
most suitable one from the point of view of both the classification accuracy and the
hardware implementation cost.

• The usage of One-class classifier to make the detection system independent from
the specific attack used, giving it the ability to detect both known and unknown
attacks.

• A small and efficient hardware-based module to be interconnected with the CPU
that implements an ML algorithm with a reconfigurable set of parameters to be able
to protect different cryptographical implementations.
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The thesis is organized as follow: in Chapter 1 is presented the background; in Chap-
ter 2 we focus on the previous works done on side channel attacks detection; Chapter 3
introduces, at an high level, the architecture of the proposed detection system; Chapter
4 presents the steps we have followed to acquire the samples needed for the tests, the
work done exploring the various ML algorithms, in order to find their best parameter’s
configurations, and the relative results obtained through a simulative evaluation; Chapter
5 contains the description of the actual hardware implementation we have done, of the
best performing ML algorithm, with also a rough comparison of its area occupation with
respect with a couple of x86 processors; Chapter 6 is dedicated to the security analy-
sis of our proposal, to highlight its possible faulty points; Chapter 7 contains the final
conclusions and some reasoning about which could be possible future works.
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1| Background

In this chapter will be presented all the basic notions that you have to know to be able
to have a clear idea about the addressed problematic, the tools, and the techniques used
to find a solution to it.

1.1. Caches

Modern processors can make logical and arithmetical operations very fast, but they are
mainly limited by the memory access time. To move out this bottleneck the CPUs de-
signers introduced a new level of memory between the RAM and the processor’s registers
called cache. This memory, in turn, is subdivided into multiple levels, typically two or
three. The cache memory is located in the CPU package to keep it as close as possible
to where the data contained there will be used. What differentiates the various levels
isn’t only the dimension of the cache and the access time to it, but also the visibility that
the various cores of the CPU have on it. In a common configuration Level 1 and Level
2 caches are core private and then there is the Level 3, or also called Last Level Cache
(LLC), that is common to all the cores.

Caches are made up of lines, which represent the minimum accessible unit that can contain
multiple words from the memory. To determine the cache line where to put a certain word
from the main memory, the last bits of its address are used; different cache lines can be
grouped together to form a way. Unless some protection techniques are applied, by default
a cache line is overwritten only when needed but is never cleared when, for example, there
is a context switch, leaving there all the data.

Write operations on the cache can be managed in different ways, but first we need to
distinguish between how the actual write is done from the way a write miss is managed.
For what concerns the write policies, we have two of them: write-through and write-back.

Write-through : This policy, when it needs to write a new value to an address that is
cached, makes the write to both the cache line and also in the main memory. This strategy
introduces a quite high latency because the write operation is considered done only when
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the new value is stored on both the cache and the main memory, and so the time to
complete it is the time required for a write in the main memory. The advantage of this
solution is that it doesn’t introduce any data inconsistency because the write happens
synchronously to all the places that contains the data.

Write-back : the new value is written only in the cache level nearest to the CPU. The
modified value is then updated also in the main memory only when the cache line is
evicted. This approach has the advantage that if multiple writes are made on the same
address, only the last one will be written back on the main memory, saving time, because
a write in the cache is faster. Such policy however introduce some complications to the
structure of the cache, in fact its lines need an extra bit, to keep track if a write operation
was done or not. This dirty bit is then used when the content of a line must be substituted,
if the dirty bit is set to 1 the line’s value must be written back to the main memory. This
situation causes a double access to the memory, one for the write back and another to read
the data which caused the cache line eviction. The consequence of this double memory
access is that the read is retarded by the write, increasing the latency of the read miss.
A possible mitigation is to use a write buffer that enqueues the write-back operations so
that the read can start immediately.

The second group of write policies defines how the cache must operate in the case of a
write-miss, even here we have two possibilities: write allocate and no-write allocate (also
called write around). To have a working cache you need to define a write policy and a
write-miss policy. You can pick any of the possible combinations, but typically is one of
the following two possibilities:

• write-back with write allocate

• write-through with write around

Write allocate : On a write miss, the data to be modified will be loaded into the cache
and then are modified in accordance with the adopted write policy. This strategy gives
advantages when multiple subsequent writes are done to the same address, in fact, after
the first write, that load the data into the cache, the other ones can be done directly
in cache. It is then evident why this write-miss policy is associated with write-back,
because otherwise on successive writes we should need to write again in the main memory,
nullifying the advantage of caching the data.

Write around : When a write miss is encountered, this policy writes the new value
directly into the main memory, hoping it will not be read in the near future. This policy
makes the opposite assumption with respect to write allocate, it supposes that there will
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be no further writes or reads in the near future. If such assumption turns out to be true
we avoided to uselessly occupy a cache line, and this is quite important given that their
number is limited, so we must choose carefully which data load into the cache.

The cache is smaller than the main memory, so we need a way to map a memory address
to a cache line, in the years three strategies emerged to manage such mapping: direct
mapped cache, set associative cache and fully associative cache. All of these mapping
strategies subdivide a memory address in the same way. The lowest bits are used as an
offset index; in fact a cache line can contain multiple words; assumed that a cache line
can have x words, then the lowest ⌈log2 x⌉ bits are used as a line offset. Then we have
the index bits, and, as for the offset ones, their number depends on how many lines/sets
the cache has, assumed that we have x lines/sets, then we need ⌈log2 x⌉ bits. All the
remaining bits compose the tag.

Direct mapped cache : this is the simplest strategy that can be adopted. Each memory
address is associated with exactly one cache line, and the line number corresponds to
the value of the index bits of the memory address. This type of memory needs to have
a big size to prevent continuous cache conflicts, otherwise it’s highly probable that two
addresses have the same index and evict each other.

Set associative cache : This mapping technique tries to reduce conflict probability by
grouping together multiple lines to form a so-called set, each line of the set is called a way.
The cache takes its name from the number of ways its set is composed, if it has k ways,
then the cache is a k-way set associative cache. With this strategy, the index is used to
determine only the set where the data must be loaded, and the cache line is chosen with
the use of a replacement policy. The number of sets available is computed as k/n where
k is the number of chosen ways per set, and n is the total number of lines in the cache,
of course, such numbers must be chosen so that the number of sets is an integer.

Fully associative cache : This is the exact opposite of direct mapping; with such a
strategy, every memory address can be loaded into any cache line, in fact the index length
is zero bits. If there are some free cache lines, a random one is selected; otherwise, a
replacement policy will be used. The advantage of this mapping startegy is that we
maximize the usage of the cache, and, in the meanwhile, we minimize the possibility of
having a cache miss. On the other hand, a so flexible strategy has the disadvantage that
it increases the access latency, because, both for searching an empty line and for searching
a cached data, there is the need to do a complete search in the cache space, and this takes
time. A possible mitigation, to reduce the latency, is to make a parallel access to all the
lines of the cache, but this takes in the disadvantage of increasing the size of the cache,
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mainly due to the hardware required for the comparisons.

When comes up the necessity of selecting a cache line to evict, there are multiple re-
placement policies, and we will present a selection of the most frequently used. Random
replacement, as the name suggests, will choose randomly which line to evict, between the
ways of the set, in case of a set-associative cache, or any line in the cache if we have a fully
associative cache. First in First out that replace the oldest entry, other queue policies
can be adopted. Least recently used which evicts the cache line whose last access was the
least recent one.

There are different proposals to increase the security and the privacy of the data of the
caches, a collection of them can be found in these papers [14, 36, 40]. Going into more
details, the most suggested solutions comprehend: cache flushing, cache partitioning, and
access randomization.

1.1.1. Cache Flushing

Under the category of cache flushing, we have two possible solutions, one consists of
removing the instruction that gives the possibility to clear the cache because it is a key
component of many attacks [21, 50].

The other solutions under this category propose to flush the cache, which level/s to flush
depend on the solution, and represent a trade-off between security and time needed to
complete this operation. Zhang et al. [53] suggest cleaning periodically only the Level
1 cache. In other works, such as the one by Godfrey et al. [20], is preferred to clean
all the cache levels, preferably using a dedicated instruction, if the ISA offers it. The
advantage of using a dedicated instruction is that it makes the flushing in an efficient
way. Otherwise, they propose an alternative solution consisting of loading into the cache
a block of memory big enough to fill the Last Level Cache; in this way every successive
access to any of the cache lines will result in a cache miss.

1.1.2. Cache Partitioning

The main idea under this family of solutions is to block the sharing of the cache between
different processes.

Under the hypothesis that the attack program and the victim one run on two different
threads, and that they share the same cache, an easy solution is to disable the Hyper-
threading, as proposed by Percival in [41]. This has a significant impact on the overall
performance of the CPU, and even more, some more recent attacks take advantage of the
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Last Level Cache making possible to mount a cross-core attack without the need of relying
on Hyper-Threading. Especially for cloud environments, where multiple VMs are located
on the same machine, is recommended to disable the page-sharing. This technology gives
the possibility to share a memory page between different processes, or even VMs instances
if the page is the same between the accessing processes. A possible solution is represented
by CacheBar [54], which is a memory manager that prevents the sharing of a memory
page between different instances of virtual machines. To increment cache security Intel
proposed CAT "Cache Allocation Technology" that makes it possible to set some cache
lines as non-replaceable by other programs. This technology is used in another cache
managing system, CATalyst by Liu et al. [32], that subdivides the LLC into two separate
parts, one used as a normal cache and the other is intended to be a protected cache. The
latter will contain sensitive data, such as AES S-boxes, whose cache lines can be accessed
only by the process to which those lines were allocated. An additional proposal is to
use the so-called cache coloring. This consists in changing how the physical address is
interpreted, the overlapping bits between the memory address, excluded those associated
with the page, and the bits of the associative set of the cache are called color bits. As you
can see in figure 1.1, there are five overlapping bits, giving us the possibility of having 32
colors.

Figure 1.1: Address mapping from main memory to cache, image re-adapted from [20]

The idea proposed in [20] is to use cache coloring as a cache partitioning technique. Their
proposal consists in assigning a different color to each VMs, in this way they cannot
share the same cache lines. This strategy can be extended to a local system giving a
color exclusively to a cryptographic algorithm, or whatever process you want to protect,
so that no other process can access their cache lines, making it impossible to conduct a
cache-based side-channel attack.
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1.1.3. Cache Access Randomization

A third modification to the cache functioning, to prevent side-channel attacks, proposes
to introduce randomness in the cache accesses so that the attacker cannot predetermine
which lines will be accessed by the victim program and monitor them. Such a solution is
presented by Wang and Lee in [48]. The RPcache (Random permutation cache) works in
the following way: instead of having a direct mapping between memory and cache exists
one, or more, permutation table (PT) that acts on the bits of the memory address used
to identify the correct set of the cache to be used. Such a table scrambles the previously
mentioned bits so that if originally the address k goes to set S and address i goes to set S’,
with the permutation we have k → S’ and i → S. The number of permutation tables used
depends on the system that you must protect. For example, to secure a common PC you
just need one PT, that will be used by the cryptographic algorithms, maybe regenerating
it periodically, and for all the other programs running on the system, you can simply use
the direct mapping.

1.2. Microarchitectural Side-channel Attacks

Exists a category of cyber attacks capable of extracting private information from a system
indirectly, searching for and later making use of some correlation between the data you
want to extrapolate and the behavior that the system has when manipulating or using
these information. These attacks, in fact, are connected to the functioning of the hardware
components, and this makes them harder to be identified and eliminate. Due to the
complexity of modern hardware and its life cycle, it is also complex to eliminate such
weird behaviors from the processors. Normally takes years before someone change the
components of his/her system, and this without even taking into consideration the time
needed to project a new CPU with all the protections needed to prevent such attacks.

In the past this class of attacks wasn’t considered so realistic because the proposed chan-
nels of attack requires the physical proximity of the intruder to the victim system. Never-
theless exist researches that positively explored the possibility to use the electromagnetic
emissions of a cryptographic device [22, 42] to extract a cryptographic key. This attack,
after having conducted an appropriate mapping, is able to infer the value of the crypto-
graphical key thanks to the fact that the values of the electromagnetical emissions depend
on the operations done by the device and ultimately by the value of the bits of the key. A
similar alternative suggests to find a correlation, in order to extract the key, by analyzing
the power consumption [13] of the attacked processor. As the other one this requires a
physical access to the system to be able to take the required measurements.
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A new category of side-channel attacks was identified in the microarchitecture of the CPU,
and so they are called microarchitectural side-channel attacks (MSCAs). To be more
precise, this other side-channel was identified in the cache of the processors. This was a
big step forward because makes possible to conduct such type of attack from remote, these
subtypes of side-channel attacks in fact do not require to physically measure something.
They can be based only on software, that analyzing the usage of the cache (e.g. measuring
the time needed to access it), is able to determine directly the value of the key, or indirectly
understand the function called by the algorithm and from this infer the right value of the
bits of the key. This channel mainly takes advantage of the fact that the cache can be
shared by multiple programs running on different threads or even different cores, relaxing
the requirements that an intruder must satisfy to be able to exfiltrate the desired secret
data.

1.2.1. Time driven attacks

The attacks belonging to this subclass of MSCAs are based on the assumption that the
time required to complete a cryptographic operation is tide to the value of the key used,
as reported in [6, 7].

AES is a symmetric cryptographical algorithm that applies key-dependent operations such
as permutations and shifting to the input bytes in order to obtain the encrypted/decrypted
data. These operations are repeated multiple times in what are called rounds. To make
AES fast enough to be usable in a real environment, as a server, which must perform
encryptions and decryptions at an elevated throughput, the actual implementations use
the so called S-boxes. These S-boxes are arrays which contain the results of the round
operations, for every possible combination of key and plaintext, and the time needed to
access such arrays is index-dependent, so it can give some hint about the value of the key.

Bernstein, in his work [6], conducts a research on the OpenSSL implementation of AES.
In this case, the S-boxes are structured so that the time to complete a cryptographic
operation depends on both the given key and the given plaintext. Called k the 16-byte
array of the key, and n the 16-byte array of the plaintext, the S-box access time is
influenced by the relation: k[0]⊕ n[0], for every element of the array. The attack is done
by focusing on each byte of the key at a time, and then repeating the same procedure
with the other bytes. In this explanatory example we will focus only on the byte k[0], but
the procedure is identical for all the other bytes. As a first thing you have to measure, on
the attacked machine, the time needed to encrypt a plaintext for every possible value of
the byte n[0], leaving all the other bytes and the key unchanged, and find the value y that
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requires the highest time to be computed 1.2. At this point, in a system controlled by
the attacker , identical to the targeted one, you have to conduct a search, using random
values for the key and the plaintext, whose purpose is to determine the value of x, with
x = k[0]⊕ n[0], which maximizes the execution time. Finally the value of the key can be
easily computed inverting the previous relation between the key and the plaintext into
k[0] = y ⊕ x. After having repeated this sampling phase for all the key bytes we have
a bunch of possible values for each key byte. The proposed attack can be carried out
remotely, sending to the victim the same plaintext used during the sampling phase (in
this case a text of only 0s). The author suggests to use different lengths of the packet’s
size to obtain other possible set of key’s values, and merging together all these information
is possible to narrow down the probable key values until is feasible to conduct a complete
search attack.

Figure 1.2: Time distribution for all the possible values of n[13] normalized over the mean
time, taken from [6]

1.2.2. Access driven attacks

These type of cache-based side-channel attacks exploit the fact that the cryptographic
algorithms, to perform encryptions and decryptions, need to have access to some elements
or structures stored in memory and loaded into the cache. These elements are tied to
the value of the key used by the security primitives, think of the S-Boxes for AES [39],
and they are used to reduce the computation time, but are generated from the key. So,
determining which cache line was accessed, is possible to retrieve the value of the key. The
main requirements that unite the different strategies, that resides under this category, are:
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• Both the attacker and the victim programs must share the same cache, at any level,
or share the same memory page.

• The attacker must have the ability to obtain accurate measurements of the elapsed
time from an arbitrary instant of time.

The way these side channels work is quite similar one from another, they have two phases.
In the first, the monitored cache lines were put into a known state and then the victim
program was able to execute some instructions. At this point, the second phase of the
attack understands which are the lines accessed by the victim executable. This phase is
done by comparing the access time to the lines, which will be different between a modified
line and a line that was not touched by the victim program.

An interesting side channel is Flush+Flush [21] because it has a more stealth approach
with respect to the others. The researchers that built it point out that the other cache-
based MSCAs make some access to the cache to be able to extract the secret data, and this
has an impact on the system, which can be detected by the usage of the Hardware Per-
formance Counters. To circumvent this defensive strategy a zero-writes policy is adopted.
The attack firstly flushes the cache lines we want to monitor, this is done using the cflush
instruction; with it the CPU will not trigger the prefecther and so it is possible to monitor
multiple addresses within a page. After having measured the execution time of the cflush
instruction, it is possible to determine if that line was cached or not; in fact, in the former
case the time needed to evict it from all the cache levels is higher. At this point the cache
is already in good state to let the victim execute again its code and then do another iter-
ation of the attack. This attack does not require that the victim program resides on the
same core of the attacker; in fact, it can be performed in a cross-core fashion. In addition,
if a read-only memory page is shared between the victim and the attacker program, it
is also possible to attack virtualized environments. Even if Flush+Flush is a more error
prone approach, due to the reduced difference in time between a cache hit and a cache
miss, in the end it has a throughput higher than Flush+Reload, which is another famous
cache-based side-channel attack that targets the Last Level Cache.

1.2.3. Spectre

Spectre is an attack that, with the use of a cache-based side-channel, is able to gain
access to the victim program memory, and extract data such as a cryptographical key.
The attack is based on the improper use of speculative execution, forcing the processor to
perform illegal instructions, that, even if they are reverted, they left a trace in the cache.
In the paper the authors showed two variants of this attack [27].
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The first variant focuses on forcing the branch predictor to make an out-of-bound access
to an array. This version requires that the attacked program has a piece of code of the
type listed in 1.1, where x is a variable controlled by an external untrusted source.

Algorithm 1.1 Spectre variant 1, code requirements
1: if x < array1_size then
2: y = array2[array1[x] * 4096]
3: end if

The bound check on x is put to avoid an out-of-bound access, because, otherwise, someone
could read data in the private memory of the victim process. To read an arbitrary byte k
is enough to supply x = address_of_k − base_address_array1 and force the CPU to
execute the array access, even if the bound check fails. To make it possible to bypass the
if condition, this attack exploits the functioning of the speculative execution, which makes
a prediction on the next instruction and executes it before the bound condition is actually
solved. The CPU initially is mistrained, sending it a great number of valid x’s, so that
the branch predictor will take the then branch when we send it the x with a value out of
the boundary. Another precondition to have a successful attack is that the secret byte k

is cached, and array1_size and array2 are not. Once all the assumptions are met, the
attacker can send the maliciously crafted x; due to a cache miss the if condition cannot
be resolved immediately. At this point the speculative execution activates and read the
value of array1[x] accessing it from the cache. Then, also the access to array2[k ∗ 4096]
is done, and it will result in a cache miss. Hopefully it is only now that the if condition is
solved, and all the executed instructions are reverted, but the access to array2 may have
already loaded the value into the cache. Now the attacker can use a side-channel such as
Flush+Reload to understand which cache line was accessed, and since the accessed line is
linked to the value of k, it is possible to retrieve such secret data.

In the paper is presented a second variant of Spectre. This one is focused on forcing
an incorrect prediction by the indirect branches predictor that will lead to an arbitrary
memory access. In this scenario we have to find a gadget, which is a small block of
instructions that can be misused by the attacker, that gives us the possibility to read
arbitrary memory addresses, and that leaves a trace of such reading into the cache. As
in the other variant, we need to mistrain the branch predictor, but, in this case, this step
must be done in a separate, attacker controlled, context. The attacker has to develop
a code which has a jump at the same address of the targeted branch instruction. Then
he must set this jump to go to the address where is located the gadget we want to use,
and, correctly managing such jump, the predictor will be forced to make this prediction.
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The next phase is to execute the victim program and let the speculative execution take
the wrong prediction, which executes the gadget code that leaks into the cache some
secret data. As in the other variant, the data are retrieved from the cache with a cache-
based side-channel attack such as Prime+Probe. It is important to note that the branch
predictor has a core scope, so the mistraining must be done on the same core where
the targeted process will be runned. Even if the predictor learns from jumps to illegal
destinations, a critical aspect, during the mistraining phase, is to correctly manage the
exception launched when the predictor jumps to the gadget’s address to let the attacker
program continue to run.

1.2.4. Meltdown

Meltdown is an attack that misuses the out-of-order execution to grant access to the kernel
memory, which gives the attacker the ability to read the entire mapped physical memory.
The authors defined the concept of transient instructions, these are instructions executed
out-of-order, before the previous instructions are completed, and that leave a measurable
effect on the CPU microarchitecture. The idea behind this attack is to make that a
sequence of transient instructions read a secret value in the private, user-inaccessible,
memory of the attacked program, and then recover it using a side-channel. When an
instruction tries to access a restricted memory page, the processor raises an exception
that must be managed somehow to complete the attack; the researchers proposed two
possible solutions to this.

As a first solution, you can decide to handle such an exception. Before executing the
transient instructions, you make a fork and let the child process execute the unauthorized
instructions; in this way only the child will be stopped and the parent process can retrieve
the secret data. Otherwise, you can insert a signal handler to handle the segmentation
fault.

The second method to cope with the exception is to suppress it. The suggestion is to
use a transactional memory instruction to access the desired value. Due to this type
of memory access, you can group together multiple read operations and perform them
as an atomic action. But the great advantage of this type of instruction is that if an
exception is raised, during the memory read, all the operations are reverted, the CPU
will be put in the previous correct state, and the execution continues without terminating
the program. Another method of causing a suppression of an exception is to make sure
that the "than" ramification of the branch, which contains the transient instructions, will
never be taken, and it is executed only speculatively. In this way, any exception raised
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during the speculative execution is discarded after having determined that the prediction
was wrong.

Algorithm 1.2 Example of Meltdown code (attack phase only, no value recovery), taken
from [31]

rcx = kernel address, rbx = probe array

1: xor rax, rax
2: retry:
3: mov al, byte [rcx] #read a byte from the secret’s address
4: shl rax, 0xc #multiply the secret byte by a page size (4KB)
5: jz retry #retry if read 0
6: mov rbx, qword [rbx + rax] #access a secret dependant cache line

In 1.2 an example of code is reported, made available by the authors of the paper on
Meltdown, that represents the first phase of the attack, when the secret value is read and
”stored” in the microarchitecture of the CPU. In the preliminary part of the attack we
put into the register rcx the address where is located the secret value we want, we create
a probe array with a dimension of 256 ∗ page_size, and put its base address into the
register rbx and then we evict the probe array from the cache. At this point, the attack
can start and is made up of three steps.

The initial step load into a register the chosen secret value, whose address is saved in
the register rcx. This step is done by line 3, in the example code 1.2, where a byte is
loaded into the least significant bits of the register rax. After having loaded the secret
value, there is a time window before the CPU signs the instruction at line 2 as retired
and consequently interrupts the execution due to the raised exception. If we can win the
race condition and execute the second step before the exception, we can recover the secret
data.

The second step is responsible for generating a change in the microarchitectural state,
which will not be modified when the processor will revert instructions due to unauthorized
access to a memory location. To generate such a change, Meltdown first multiplies the
read byte by the size of a page (typically 4KB), as done in line 4, then uses this value
as an index to access the probe array, line 6. After the last instruction, we have made a
change in the cache status that is tied to the value of the secret data we want to extract.
Sometimes can happen that the value in rax is 0, and not the desired secret, in such a
case, the first step is redone. The last step will recover the secret from the architectural
state; in our example is enough to cycle through the elements of the probe array, with a



1| Background 21

stepping of page size, and measure the time needed to access it, the index’s value that
requires less corresponds to the value of the secret data byte.

1.3. Machine Learning

Machine learning is a field of Computer Science that develops algorithms that, after a
training process, are able to make classification or predictions on new and never seen
before data without that anyone programmed them for this. Each sample given to these
algorithms is represented by an array, where each element is a value representing a certain
characteristic of the sample. The values of the features are used to be able to make
distinctions, find correlations between samples, and do predictions on the value of future
samples. We can identify three macrogroups of ML algorithms based on how their learning
processes work.

• Supervised learning

• Unsupervised learning

• Reinforcement learning

Supervised learning requires that the user gives to the algorithm a training set composed
of labeled elements so that it can find a correlation between the element’s characteristics
and their value with the suggested output. The algorithm has an objective function that
will be used to determine the labels of the new data. Such a function is optimized in an
iterative way by cycling through all the training samples and modifying the function’s
parameters so that it will output the expected label for the given sample.

The unsupervised learning instead takes as input, for the training, only the samples,
represented as a features vector, without any labeling. The algorithm in this case tries to
identify commonalities between different samples in order to group them together under
the same label. After having clustered the training samples, the algorithm can start to
classify unknown samples, basing its decision on which is the cluster that is more similar
to the given sample. In these algorithms exist some parameters that the user can change
in order to obtain better performance, an example of such a parameter is the number of
clusters to be created.

Reinforcement learning is typically used when there is the need to teach to a system how
to interact with a certain environment, for example how to drive an autonomous driving
car in a city. In this scenario there doesn’t really exist a training set, but the algorithm
has to interact with the environment, and to do so it has the possibility to make some
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moves. After each movement that the algorithm does, it receives a feedback and uses this
information to continuously improve its ability to move inside the environment.

A One-class ML algorithm is an algorithm that makes classification based only on a
binary choice, typically to individuate elements that are in or out of a group of interest.
An example can be to determine if an economical transaction is fraudulent or not. The
elements that the algorithm classifies as non-belonging to the group of elements considered
good are called outliers. The advantage of this class of algorithms is that to be trained
they only need samples coming from the group you want to identify, the so-called inliers.

1.3.1. Local Outlier Factor

Local Outlier Factor (LOF), as explained in [8], is a machine learning technique that,
instead of sharply classifying a sample as an inlier or an outlier, gives each sample a value
that represents how much it is an outlier compared to its k-nearest neighbors. To be
able to understand the meaning of such local outlier factor is necessary to define some
useful functions. First of all, we have to define the concept of K-distance(p), where k is
an integer and p is an object in our system. The k-distance(p) is defined as the distance
d(o, p) between p and another object o such that there are at most k-1 objects o’ with a
distance from p strictly lower than d(o, p) and at least k objects o’ with d(o′, p) ≤ d(o, p).
The authors of the paper called the group of objects whose distance is less or equal
to the k-distance(p) the neighbourhood of p, and to refers to it they use the notation
Nk(p). Now the notion of reachability distance, denoted as reach-distk(p,o), of the object
p respect with object o can be defined. This distance is k-distance(p) if the object o is
in the neighborhood of p otherwise is the distance d(o,p). The authors made this choice
to reduce the variations of the distances of the objects which are near the point we are
considering. The value of k is a crucial parameter, and the only one presented in the
paper. LOF is not only based on the concept of k-nearest neighbors distance, but also
takes into consideration the local density of objects. The local reachability density of p is
defined as:

lrdk(p) = 1/(

∑
o∈Nk(p)

reach-distk(p, o)
|Nk(p)|

)

It is the inverse of the average reachability distance between p and all the objects in its
neighborhood. At this point, we have all the necessary definitions to introduce how to
compute the Local Outlier Factor; its equation is the following:
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LOFk(p) =

∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)|

is the ratio between the sum of the local densities of the objects in the neighborhood
of p and the local density of p itself, all normalized by the number of objects in the
neighborhood of p. It’s easy to see that if the analyzed point is in a cluster of inliers
samples then its local density will be very similar to that one of its neighbors and so we
will have a LOF near 1. Instead, a point that is out of a cluster, and so it’s an outlier,
will have a lower local density, and this implies having a LOF greater than 1. To obtain a
binary classification algorithm is now sufficient to fix a reasonable threshold on the value
of LOF to divide the inlier from the outlier.

1.3.2. Support Vector Machine

A support vector machine (SVM) aims at finding a hyperplane that includes all the
given training samples, this in the One-class version [43]. Then it classifies the unknown
samples based on where they fall inside the feature space, basically, if they are outside
the hyperplane, they are classified as outliers. The definition of a hyperplane is seen as an
optimization problem. The algorithm has to find the curve that best includes the given
training samples, but without being too tied to them, otherwise, we will have a predictor
biased towards the training samples. Due to the fact that SVM tries to identify a linear
separation between the samples, the choice of the kernel function to use can make a non-
negligible difference in the obtained results. In fact, the kernel function is responsible for
mapping the input data to a higher-dimensional space where they can be linearly divided.
In fact, the starting problem space is defined by the features of the samples, but such
features may collocate the samples in a way that makes it impossible to find a linear
equation that divides them, and it is then necessary to increase the dimensionality of the
problem space. The hyperplane is found by solving the following optimization problem:

min
w∈F

1

2
||w||2

whose constraint is (w · xi) ≥ ρ, i ∈ [1, .., l]. In the previous formula w is the hyperplane
that, among the ones that are able to separate the samples from the origin, has the
maximum distance from the origin. Instead xi is the i-th sample from the training set
after having mapped it, through the kernel function, to the new, higher-dimensional space.
Instead, ρ is a nonnegative real parameter.
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1.3.3. Isolation Forest

This ML algorithm belongs to the family of ensemble methods which take a decision on the
output to assign to a certain sample using a system based on majority voting. The voting
system is represented by multiple instances of trees, each one with its own inner decisional
structure, that classify a given sample, at the end the class with the highest number of
votes is assigned to the sample. Other detection algorithms try to understand if a given
sample has characteristics in common with those ones that they know to be inliers, and
if the given object is too different from the reference samples it is classified as an outlier.
The researchers that have created Isolation Forest [33] instead think it is easier to test if
the given sample diverge from the learned normality. The authors made the observation
that outliers have very different values of the features with respect to the inliers, so a tree
can be structured to easily separate them from these last ones. Furthermore, because of
their natural isolation from the other samples, they can be separated from the rest in a
lower number of steps, creating a leave in the tree very close to its root. The average
length of a path done by a sample to be isolated is used to determine if it is an outlier or
not. This algorithm takes as input only two parameters: the number of trees that make
up the forest and the number of samples used to build each tree in the ensemble. Each
tree is generated starting from a subset of the training samples, and at each step a feature
is selected at random and a partition value is randomly chosen, generating two daughter
nodes. The partitioning is stopped once it reaches a predetermined height limits, or if the
algorithm has separated all the samples in the subset, or if all the remaining samples have
the same values. The path length is computed simply as the number of edges traversed
from the root node to the terminal leaf, and is referred to as h(x), then the final value
used for the classification is the average length among all the trees of the forest. To have
a working classifier, it only remains to define a score function and a relative threshold.
Called c(n) the average length of a tree built from n elements, the authors define the
anomaly score as:

s(x, n) = 2−
E(h(x))

c(n)

where E(h(x)) is the mean value of h(x) computed on all the trees of the ensemble.
Established this, if the mean value of h(x) is similar to c(n) we obtain an anomaly score
of 0.5 this is thought to be a good threshold. Every sample that obtains a score lower
than 0.5 will be classified as outlier, and more the score is near 1 more we are sure it is a
normal sample.
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1.4. Gem5

The tool gem5 is an architectural simulator [15]. With this tool is possible to simulate
different CPU’s architectures as: x86, ARM and RISC-V. You have the possibility to
define your own CPU model, personalizing every details from the frequency of processor
to the cache composition, and even how the cache works. The tool is written in C++
language, but you interface with it writing Python scripts, which contain the detailed
structure of the CPU you want to simulate. Such scripts can be parameterized in order
to have a single script that can simulate multiple CPUs. An example of this is the
provided script for x86 architecture which gives you the possibility to set a huge number
of parameters, just as example: the number of memory channels, there is a list of possible
memory belonging to different standards from DDR3 to the newer LPDDR5, or the type of
branch predictor. The default script offers also the possibility to choose between different
CPUs, which simulate processors of various complexity for an in-order CPU to a complete
out-of-order processor. Such scripts define also how all the components you put in them
interact each others.

The simplest CPU is AtomicSimpleCPU a basic in-order processor that performs atomic
memory accesses whose latency is an estimate based only on the response time of the
cache. Atomic memory in fact does not take into account resources contention or queue
delay for estimating the access time to a cache line. AtomicSimpleCPU is useful for
testing purposes, or to warm up the system because, given its simplicity, is a fast CPU
to be simulated.

For our experiments we opted for the most accurate processor made available, the De-
rivO3CPU. This processor has 5 stages, and use timing memory, which is the most time-
accurate memory access system offered by gem5. The most important aspect of it is
that it is an out-of-order CPU, this gives us the possibility to reproduce the attacks that
exploits such functionality, and it supports also the speculative execution.

The gem5 simulator has two working modes: syscall emulation and full system. With the
former you can run only user space programs and, as the name suggests, every syscall
made by the process is emulated by gem5, but it does not support all the possible syscalls,
and so to use this mode can be necessary to modify the source code of gem5. This mode
is very easy to use, in addition to the CPU configuration, you only need to give the
executable program you want to run. Unfortunately this simulation method isn’t enough
for our project, because it is too limited, by both the number of supported syscalls and by
the fact that the program can run only in user space, making us impossible to simulate
the side-channel attacks.
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We opted for Full System emulation which simulates the entire Operative System (OS)
that runs on a processor. This choice gives us also the possibility to put in place a more
realistic testing environment. The Full System mode is a bit more complicated to run;
in fact, it needs a kernel and a boot drive with an OS, in addition to the configuration
file. Once you have started the system you can interact with it through a remote terminal
interface. You must put all files you need to use inside the boot drive, to do this, the
developers of gem5 offer an easy-to-use tool. In this emulation mode you have also access
to a program called m5 which provides some useful commands, a sub-group of these are
used to control the sampling of the Hardware Performance Counters made available by
gem5.
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In this chapter, we explore works done by other researchers on the same topic of this
thesis, to have a better understanding of which is the state of the art in this moment. For
what concern the security detectors, which aim at disclose an attack as soon as possible,
we can make a macro distinction between those that use Machine Learning and the ones
that don’t.

2.1. Machine Learning-based detectors

Bazm et al. in [4] have proposed a software system oriented to the detection of attacks that
target Virtual Machines (VM) co-located on the same physical machine of the attacker.
In this work the authors used some HPCs, selected on the basis of other works. They
ended up using: LLC-misses, LLC-references, iTLB-cache-misses and iTLB-r-accesses.
Their choice is guided by the fact that they want to monitor the Last Level Cache,
which is a shared hardware resource among the VMs, and so it represents a vulnerable
attack surface. Differently from the others, they used also information from the Cache
Monitoring Technology (CMT), an Intel technology that monitors the cache occupancy of
the processes, VMs in our case, running on the system and with the possibility to apply
restrictions to those processes that are more resource-demanding. Then, the proposed
security program combines all these input data and uses a Gaussian anomaly detector to
find out the outliers. The proposed system requires three threads to work; one dedicated
to collecting samples, one to determine the number of active VMs and the last one that
runs the ML algorithm.

A group of researchers tested different Machine Learning algorithms to determine which
are the most suitable to detect MSCAs [47]. As others have already done, they started
by selecting the 4 best HPCs to use, from a starting set of 16 they have reduced it
thanks to the Pearson’s correlation coefficient. Wang and the others also tested different
sampling intervals to determine which one is the most reasonable choice, taking into
consideration also performance overhead and time needed to acquire the sample. The
sampling frequency is a crucial parameter of a detection system, and it is vital determine
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which is its best value, in fact, we have used these results in our work. In order to put in
place the widest possible research they tested six different ML algorithms from different
categories, such as neural networks, tree-based algorithms and support vector machines.
What they have in common is that, for the training phase, they need samples from
all the categories you want to be able to classify. For the conclusions they considered
also the time that the ML algorithm takes to make the predictions, and not only the
accuracy it provides, in this way is possible to make a better comparison between the
tested algorithms.

In the work by Depoix and Altmeyer in [11] the choice fell on the optimization of Neural
Networks to detect Spectre attacks. Also them relied on Hardware Performance Counters
as features for ML. Their choice was based on the behavior of Spectre that led them to
use the number of L3 cache misses, in combination with the L3 cache accesses, to prevent
that a benign process, with elevated cache miss, will be misclassified and ultimately the
total number of executed instructions. To collect the samples and later make a realistic
analysis of them, the authors set up eleven scenarios which represent various situations.
Such scenarios go from an attacked environment, using various proof of concept codes,
to a web server, and also a couple of scenarios that run a resource intensive program to
check if it will mislead the ML algorithm. The proposed security system is software-based
and has a composition similar to [4], there is a program that monitors the started and
stopped processes, then another service keeps track of the HPCs on a per process basis,
then send these data, sampled with a frequency of 100ms, to a third program responsible
for the predictions.

Chiappetta et al. have conducted a study [10] on three different techniques to detect
a cache-based MSCA attack, two of them are based on machine learning. All the pro-
posed methods use Hardware Performance Counters to reach their objective. For the two
ML-based methods, the authors found the best results with the following HPCs: total
instructions, total CPU cycles, L2 cache hits, L3 cache misses, L3 cache accesses. The
first ML algorithm tested is an anomaly detection one, even if they didn’t named it, but
its way of working is described. The training consists in finding the mean and the squared
variance of each feature. Then it computes the probability density function for each of the
training samples and finds a threshold such that the probability density function of all the
testing samples is lower than this threshold, if the sample comes from a spy process. The
second technique, based on machine learning, proposed by Chiappetta is to use a Neural
Network to classify the acquired samples. This approach requires to have samples from
all the classes you want to recognize, in this case they are only two: malicious process or
benign process.
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Alam et al. have proposed in [1] a Machine Learning-based detection system that is struc-
tured on three levels. The first one, as commonly done by other solutions, samples at a
given frequency some Hardware Performance Counters that were selected to be signifi-
cant for attack detection. Such samples are then given to a One-class SVM for anomaly
detection, and this ends the first step of the proposed security system. The second phase
is meant to reduce the number of false positives, in fact the samples previously labeled
as anomaly is now passed through another ML algorithm. Such algorithm is trained to
classify different type of cache-based side-channel attacks, and this finer classification is
needed to perform the following step. The final phase of the security architecture tries to
correlate the potential attack with the key of the cryptographical algorithm. To be able
to make such a step, the result of the previous phase is used to determine which counters
must be monitored to see if a correlation exists between the cryptographical key and the
signaled process. The amount of existing correlation is obtained computing the align-
ment cost of a temporal sequence of samples generated by the encryption algorithm with
a temporal sequence of samples generated by the suspicious process. If such a cost is low
enough, then the analyzed process will be permanently classified as an attack; otherwise,
it will be treated as a false positive, and this result is used to retrain the classification
algorithm.

PerSpectron [37] is the only other MSCAs detector that is hardware-based. They proposed
a hardware-based Machine Learning algorithm to detect as soon as possible an ongoing
attack, this using information from pre-selected HPCs. For the HPCs selection they have
firstly trained an ML model using all the features they had; at his point they found those
ones that better separate benign samples from the attacked samples, this for each unit of
the processor’s pipeline. Finally, they ulteriorly reduced the features, but still maintaining
some overlaps between them, to be able to detect different versions of an attack, ending up
having a binary vector of 106 features. Each element of the vector is a feature, and if its
scaled value is greater than 0.5 then we will have a 1 in the vector, otherwise we will have
a 0, which simplifies the operations that the predictor has to do to determine whether
the given sample is benign or not. Such a vector is then used to train the perceptron
algorithm that will be actually used for detection, the result of the training is an array
of weights. The authors suggest to use the detector only to signal potential attack to the
OS, instead of directly taking some actions, this to prevent that a false positive cause
a benign program to be killed or that it stops the entire system. The researchers also
proposed to make their hardware system capable of receiving updates when new attacks
will be found, in this way the weights used by the perceptron can be adjusted to detect
also the more recent attacks.
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The authors of [29] made a proposal to detect an attacking program, searching for an high
and abnormal resources contention in the CPU, this utilizing a semi-supervised anomaly
detection algorithm. Kulah and the others pointed out that an aspect common to all the
cache-based side-channel attacks is that they will cause an abnormal level of contention
on the CPU resources, and especially on the cache. The authors of the research have
suggested to measure the levels of contention with the Hardware Performance Counters.
The first phase to do this is individuate on which resources, the attacks you want to
detect, cause a relevant level of contention. Once you have found such resources, the next
step is to find the HPCs that give you the possibility to monitor the contention level
on the previously determined hardware resources. For the actual detection, they have
trained a k-means clustering algorithm only with samples from normal execution, so that
every sample that will not reside in any of the clusters defined by ML is classified as an
anomaly. During their research, they discovered that the workload level of the system
can affect the precision of the results, so they have trained another ML model that is
able to classify the system’s workload level, and then, based on this information, they will
select the MSCAs detector specifically trained to work on such workload. The authors
made their tests with a software-based implementation, but they suggested to develop a
dedicated hardware-based system.

2.2. Non ML-based detector

Yu et al. conducted an extensive analysis to determine how the cache structure influences
the success of a time-driven attack [52]. They used gem5 to create various platforms
with different cache configurations; then they measured how much such configurations
are vulnerable to a time-driven cache-based attack. They focused their attention on the
size and associativity of both private and shared cache, the size of a cache line, the
replacement policy adopted, and the cache clusivity (namely, if a data is present in all the
cache levels, or only in the one it is used). For what concern the attack, they made the
tests with the one proposed by Bernstein on AES [6]. To be able to make comparisons
between different configurations they defined the concept of Equivalent Key Length, a
measure of how much the attack is able of reducing the key space.

In [28] three different approaches were proposed to defend a system from cache-based
side-channel attacks. The first proposal is preloading and PLcaches, these aren’t new
protection mechanisms, but, when used alone, they have some vulnerabilities. The idea
of the authors is to combine them to obtain better security, in fact, the preloading of
all the secret data in the cache avoids different access timings due to cache misses. The
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addition of Partition-locked to the cache, instead, blocks the attacker from changing such
a situation where all the data are already loaded in the cache. To be effective, this solution
requires that all the critical data can fit inside the cache. In addition, to minimize the
number of locked cache lines, the authors proposed a modification to the Partition-Locked
cache, adding the possibility to evict a locked line, but only if the owner process is not
active. The second solution is Informing Loads and RPcaches, where informing load is
a particular instruction that raises an exception on a cache miss. Random-permutation
caches instead are caches that apply a permutation to the mapping table between main
memory addresses and cache addresses, so that attackers cannot predetermine where
secret data will be loaded. The problem with such caches is that they are still vulnerable
to collision attacks. The authors proposed to use informing loads to access secret data, so
that, if a cache miss happens, a handler can load, in a random order, all the secret data, in
this way the following accesses will result in a hit. The last proposal is Informing loads and
regular caches, this is like the previous one, but it doesn’t require dedicated hardware.
This solution makes the permutation of memory address at the software level, and to
reduce the overhead, still maintaining a good level of security, changes the permutation
used only on a cache miss when it also loads all the secret data.

An example of a method thought to defend a system proactively is the one proposed
by Fadiheh et al. in [12], which aims at detecting possible side-channels directly by
analyzing the CPU design. They defined a set of properties, that can be checked by
some commercially available software, and if those properties are satisfied then the chip
can be considered devoid of side-channel vulnerabilities. This is a proactive method
because the properties are checked during the design phase of the processor, and so, if
revealed, the vulnerabilities can be removed before the CPU goes on the market. The
authors say that a program has a Unique Program Execution (UPEC) if for different
values of its secret data the microarchitectural state of the processor does not change in
a clock-by-clock comparison, and also if the same architectural state is reached at the
same time instant. The researchers transformed such definitions into a Computation Tree
Logic (CTL) formula that can be checked by already available model checkers. They also
defined two types of alarm that can be raised: L-alert and P-alert. L-alert, or leakage
alert is raised when the simulation done by the model checker reaches a state where
two architectural state variables differ with different secret data. An architectural state
variable is a "state variable that defines the execution of a program at ISA (Instruction
Set Architecture) level". P-alert, or propagation alert, is raised when the model checker’s
simulation reaches a state where there is a difference in the value of a microarchitectural
state variable, which is not an architectural one. The microarchitectural state variables
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are "the set of state variables belonging to the logic part of the CPU microarchitecture
(e.g. registers and flip-flops)".

Another hardware-based approach to cache-based side-channel attacks, but without the
use of neither ML nor Hardware Performance Counters, is proposed by Arikan et al. in
[3]. They proposed to add a Security Checker (SC), connected between the instructions
memory and the fetching unit of the CPU, that analyzing the fetched instructions and
their frequency can statistically determine the presence of an attack. The checker uses a
count-min sketch (CMS) to keep track of the frequencies of sets of instructions of particular
interest. The checker works on a user-defined time window during which it analyzes the
fetched instructions, storing through the CMS the frequency of the instructions sequences
to be monitored. Such instruction sequences are stored inside a component of the proposed
hardware module. At the end of the time window, the checker compares the information
stored in the CMS with a database containing pairs of instruction sequences and frequency
thresholds that are known to be the consequence of an attack. If the checker finds a match
between an element in the attacks database and the observed fetching activity, an alert
signal is sent to the OS. Both the size of the time window and the attack’s database can
be changed by the user through a dedicated interface.

Chiappetta et al. have conducted a study [10] on various methodologies to identify side-
channel attacks. The first idea is to make use of the fact that both the victim program
and the spy program access the cache in a regular and correlated way. The researchers
proposed to constantly monitor every program running on the system in order to find
overlapping traces of total LLC accesses, if such traces have a high correlation then there
is a high probability that one program is attacking the other one. LLC accesses are
monitored thanks to the commonly used Hardware Performance Counter.

2.3. Novelty of the proposed thesis

The previous works on this subject have done a lot of research, and they obtained excellent
results for what concern the detection accuracy. By the way, such proposals suffer of
various criticalities that can bias them towards some specific attacks or impede their usage
in a scenario with limited computational resources available. A critical point common to
almost all of them is that they are software-based solutions, this means that a portion
of the computational power, or even an entire core, of the system must be reserved to
the protection program. This may not be a problem for a High Performance Computing
system, which has numerous cores available, and dedicating one of them to improve the
system’s security can provide more advantages than the cost required by the adopted
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solution. But, if we consider embedded devices, they have limited resources, in some
cases they have only one single core without any multithreading technology, and so it
is unthinkable to adopt a security program that requires up to three dedicated threads
to protect the system. Even if there exist some solutions that adopted algorithms for
Machine Learning that can be trained using only samples from a non attacked execution,
the majority of researches require to have access to a pletora of attack examples. This
requirement is because, or the ML algorithms used need samples for each class they have
to detect, or to retrieve from such examples a pattern that characterize each of the attacks
you want to be able to detect. Such a solution inevitably causes the security system to be
skewed towards the known attacks. In addition, just few of the researches explicitly told
about the possibility of updating their model, so that it can accounts for newer attacks.
Another critical aspect concerns the selection of HPCs to use for detection. The authors
of the different papers did not go into depth on how they have chosen the HPCs used by
their solutions, but seems they opted for a choice driven by some logical deductions based
on how the attacks they analyzed works. Such a strategy led them to focus mainly on the
cache, using events as the cache misses or the number of accesses to it, without exploring
the existence of others, equally valid, events to monitor.

The security architecture proposed in this thesis is based on the results obtained from
previous works on the detection of Microarchitectural Side-Channel attacks, and it makes
some steps further to improve the obtained results and increase the security of the pro-
posed architecture. Two are the most innovative choices we have made, the adoption
of a hardware-based security checker, and the usage of a detection flow, from the HPCs
selection to the ML model used, that is totally agnostic of the attacks that can target the
protected system. Such choices give us different advantages. First of all using a dedicated
hardware to make detection, we offload the system’s processor from the defensive role that
it has with other solutions; this is important because the devices targeted by our solution
are embedded systems, which have a limited computational power. The second benefit, of
a hardware-based detector, is that it is harder to be attacked because the exposed surface
to a remote attack coming from the OS is reduced to the minimum; it is just the inter-
face to update the detector’s configuration. Instead, for what concerns the reasons of the
adoption of a detection flow which is attacks agnostic, it is because it enables our system
to not be biased towards a specific attack, and so it is able to detect effectively multiple
attacks, even those ones that are not yet identified. We have also made a complete search
in the HPCs space to identify which are the best ones to use, and, to the best of our
knowledge, no one ever made such a wide search.
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Architecture

In this chapter we describe the general structure of our proposed security module. We have
developed a hardware module to detect an ongoing cache-based side-channel attack. This
module have to be connected to the CPU, without requiring to modify it, of an embedded
device, which main task is doing encryption and decryption operations. The purpose of
such module isn’t preventing an attack, but to detect it before it is able to extrapolate
enough information to retrieve easily the key used by a cryptographical algorithm. When a
security violation is identified our module communicates this information to the Operative
System, which will be responsible for the selection of the counteractions to be done. We
opted to focus on embedded devices because they are built with a precise scope in mind,
and they run few or just one program at a time, and this simplify the detection of an
attack. Their dedicated role makes them also more subject to an attack because it’s more
probable that high value information go through them.

Our detection system is based on a set of carefully selected Hardware Performance Coun-
ters whose values can be used to distinguish a normal execution of a cryptographical
algorithm from an execution that is compromised by a side-channel attack. Due to the
restricted number of HPCs monitorable at the same time in a real processor, we used
gem5, a precise architectural simulator, to be able to collect all the performance counters
offered by such a simulator. After having collected them we went through an extensive
search to identify the best possible HPCs to use for the detection phase. In fact, a core
aspect of the success of our solution is to carefully select which HPCs to monitor, modern
processors give the possibility to track the value of very few events at the same time. As
we based our research on the x86 architecture, we took as a reference the Intel manual
[24] about this, and they offer only four configurable registers per thread, to monitor such
events. Even if AMD offers 6 registers we preferred to choose at most four HPCs, mainly
because we are working with embedded systems which are relatively low-performance de-
vices and so it is reasonable to assume that they do not have many resources dedicated to
performance monitoring. Another reason to work with the lowest amount of counters is
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that, despite we are proposing an external module to process such information, we need
to use some CPU components, as the registers, and especially bus bandwidth to transfer
them. Because such resources are scarce, we want to minimize our impact on the system
that otherwise cannot be able to perform its task acceptably.

To actually differentiate between samples representing a normal execution and those ones
representing an attacked execution, we took advantage of some machine learning algo-
rithms studied to make a binary classification. To achieve the best possible results we
conducted tests on three different One-class ML algorithms, namely: Isolation Forest [33],
One-class SVM [43] and Local Outlier Factor [8], with the final objective of identifying the
best performing one in our application field. To test these algorithms we have used the
Python library scikit-learn [44], a very famous library for making use of machine learning.
It offers both ML algorithms and a variety of functions to manipulate and transform data,
and also a set of functions which gives back some metrics which are useful to understand
the effectiveness of tested algorithm. We opted for those algorithms that belongs to the
One-class classifier, because the peculiarity of this group of ML algorithms is that for the
training phase is required to provide only benign samples. This represents a great ad-
vantage for us, in such a way we don’t need to retrieve an enormous database of samples
representing cryptographical algorithms attacked by the vastest possible number of side-
channel attacks. For what concerns the tested cryptographical algorithms, instead, we
opted for: AES, Blowfish, Idea and RSA due to their extensive usage in modern programs
and communication protocols for security purposes.

We can distinguish two separate phases in our security system, a training phase, and a
detection phase. The former is done offline because it requires a non-negligible amount
of time; in fact, in this phase, we collect all the samples needed for the training of the
machine learning algorithms, conduct some tests to find out the best HPCs to make
predictions on the existence of an attack, and then we train and tune the machine learning
algorithms. The second phase, done by our proposed hardware module, is where we
actually protect the system through an online monitoring of the CPU, sampling the values
of the previously selected performance counters at a predetermined frequency. Then we
analyze such samples using the tuned and trained ML algorithm and if it identifies an
attack, our module sends an alert signal to the Operative System which will take some
countermeasures.

As previously said, the training phase is done in a separate environment which does not
have any time constraint for its execution. To complete this phase you must acquire a
sufficiently large samples set, which represents a normal execution of the cryptographical
algorithm you desire to protect using our system. To create such a dataset of samples
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we used gem5, in its Full System emulation mode. For each cryptographical algorithm
you want to protect you need two copy of its implementation, one that executes only
the algorithm, and another, that in parallel to the security primitives executes also an
attack. While the program was running, we acquired the samples, at the previously
determined frequency, using a tool directly provided by the developers of gem5. Once you
have obtained a dataset of a reasonable dimension, you setup a wide search to find the
set, of four features, the module will use to detect an on going side-channel attack. As a
first thing the search space can be reduced considering the variance of the features value,
of only the samples originated by the non attacked version of the program, and putting
some constraints on it. Such constraints can filter out those features that we are quite
confident will be useless in identifying an attack. For example, features with an elevated
variance will made difficult for the machine learning algorithm to identify the boundary
of the region which contains only benign samples, or it will identify a too big region.
After having reduced the search space, you start to train the ML algorithm, and find out
which are the best features sets, making some testing with the samples originated from
an attack. Taking in consideration only the best sets, you can figure out also which are
the best parameters for the ML algorithm, and ulteriorly improves the effectiveness of
the system. Once you have obtained acceptable results, you can save the trained model,
with its parameters and the set of features, that will be loaded into the security module
when needed. It is worth noting that this phase, from the sampling to the selection of
parameters and the features, is done on a per cryptographical algorithm basis, and for
each machine learning algorithm. At the end you will have a configuration (which is
composed by the parameters of the ML model, the ML model structure, if needed, and
the set of features to monitor) that must be loaded into the security module, through
a dedicated interface, and changed every time you change the cryptographical algorithm
used by the protected system.

The choice of the sampling frequency is based on another research, conducted by Wang
et al. [47], which explored different sampling intervals. The choice of this parameter is
important because we need to find a trade-off between the accuracy of the ML algorithm
and the time required to acquire a sample. This research has found out that increasing the
dimension of the time window the accuracy increases, but it rapidly reaches a plateau; at
the same time, the performance overhead is reduced due to the lower amount of samples
per unit of time to be acquired. Wang has also found that a good balance for the time
interval between a sample and the following one is 500µs. In the paper is not mentioned
the frequency at which runs the processor used for the tests, but they said to have used
an Intel I5-3470, and from the official product page [23] we found out it runs at 3.2GHz.
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So, for our detection system, we decided to use this frequency, opportunely recomputed
over the frequency of the CPU simulated by gem5, which has a frequency of 1GHz.
Of course, the sampling frequency is another parameter of the module’s configuration,
but this one is not tide to the specific cryptographic algorithm used, or to the machine
learning algorithm implemented by the security module; instead, it exclusively depends
on the working frequency of the system, and must be set to have a corresponding sampling
time of 1.6ms at 1GHz.

The main innovative aspect of our thesis is that we want to use an external hardware
module, a schema of which you can see in Figure 3.1, to make the detection, instead
almost all the others proposed a software solution which must be run on the OS of the
device to be protected. The latter solution has the disadvantage that it occupies system
resources, and maybe this is not a problem in a high performance system, but in an
embedded one it will. Other critical aspects of a software solution is that it’s more expose
to cyber attacks that aims to disable it or masking some attacks changing the values of the
hardware performance counters returned to the security application. This is a possibility
because such values are not retrieved directly, but through another application which
offer such a service, and that can be targeted by an attacker to manipulate the values it
returns. Our solution, instead, being directly connected to the CPU, is harder to attack
because it offers a very limited attack surface, in fact it expose to the Operative System
only the interface used to load the module’s configuration.

Figure 3.1: High Level schema of the proposed security module
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Our module is structured to provide some configurability. It implements a certain Ma-
chine Learning algorithm, and this cannot be changed, but its parameters can, this is
done to create the most configurable system we can, to address scenarios where different
cryptographical algorithms require different parameters to maximize the accuracy of the
ML model implemented by the security module. From our research it is evident that the
set of features to be used changes from one cryptographical algorithm to another, and so
this is the main parameter to be set to be able to achieve the best possible protection.
Such a parameterization is done through a dedicated hardware AXI interface. In our
thesis, we only made the hardware implementation of Isolation Forest because it gives the
best results. The hardware module is composed of a series of sub-elements, there are mul-
tiple instances of the tree component, to represent all the trees of the ensemble, a timer to
correctly manage the sampling frequency, a table with the features to be monitored, and a
component that makes the final prediction based on the outputs of the trees. The module
has an output bus, used to send an alert signal to the OS, when a sample is detected as
an outlier, and an input bus on which it receives, through an external AXI interface, the
configuration to be used. The only other external communication lines are those used
to receive HPCs data and/or fetching activity. One of these lines communicates in a
bidirectional way with the CPU and is used, initially, to set up the HPCs registers, and
later to read their values. The second communication line is the one directly connected
to the bus which transports the instructions from the instructions memory to the fetching
unit of the processor, and this line is unidirectional from the bus to the security module.
All the data coming from HPCs registers or the fetching activity are sent to each of the
trees inside the module (these lines are not present in the schema to leave a clearer view
of the main internal components of the security module). Once every tree has computed
the path length of the given sample, it sends such value to the predictor which computes
the average height of the sample and from this decides if it is or not an outlier. If the
sample is predicted to be an outlier, and therefore an attack is detected, the predictor
sends a signal to the OS over the dedicated Alert signal bus. If the sample is classified as
a normal one, then the timer is reset and a new sample will be acquired.

The first thing to do to make the security module operative is to correctly set up it, a
configuration file must be sent to it, through the dedicated communication bus. Such
configuration file contains the trained ML model, the set of at most four Hardware Per-
formance Counters to be monitored, and the eventual fetching activity to be considered.
At this point, the module loads the trained model and sends to the processor the instruc-
tions to set up and start the monitoring of the features indicated inside the configuration
file; this concludes the setup of the module. Now the online monitoring phase can start,
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and our security system, every time window, controlled by the internal timer, retrieves
the values of the monitored counters. These values form a sample on which the security
module has to predict its outlierness. Such a sample is given to the Machine Learning
predictor which will decide if it is representative of a normal execution or if, instead,
there is evidence of an attack. In the latter case, the module will send a warning signal
to the OS, through a dedicated signaling bus. How the Operative System has to manage
the warning signal is out of the scope of our thesis, consequently, we will not do further
reasoning about it. In the case the ML algorithm predicts that the given sample is be-
nign, nothing happens, and the module gets ready to process the next sample from the
following time window.
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Detection

Here we explain the methodology adopted to make our experiments, describing in a de-
tailed manner all the steps we have done, and the obtained results, with some comments
about them and reasoning on which are the machine learning algorithms that represent
the best choice to be implemented in our security module.

Before everything else, we have selected a set of cryptographical algorithms to be tested,
and we opted for the widely used: AES, Blowfish, Idea, and RSA. For each of these
algorithms, we took a basic implementation of it, which is available on GitHub [17] that
we have later modified to meet our needs in terms of usability for the testing we have
conducted. Then we selected a couple of cache-based side-channel attacks to attack our
system and to verify that the security module we are proposing is able to detect them.
We took two Proof Of Concept (POC) from GitHub, one is a basic implementation of
Spectre [19] and the other one is a demo of Meltdown [18]. We modified such POCs so
that they attack the cryptographical algorithms selected for the testing and extract their
secret key. The last preliminary choice regards the architecture on which to conduct the
tests, we decided to use the X86 architecture due to its wide usage.

The first step to have some experimental results is to acquire some samples representing
both a normal execution and an attacked one. We saved such samples in a separate
dataset for each cryptographical algorithm and for every attack we have selected. To do
this, we used the gem5 simulator in its Full System emulation mode; such a modality
requires three elements to work properly: a processor’s configuration file, a boot drive,
and a Linux kernel. For the configuration file, we used the one provided by gem5’s
developers because it already offers a lot of parameters to set up the processor as we
like. For the kernel, we took one, already compiled, which is provided by a tutorial page
written by gem5’s developers [16], we downloaded the one named vmlinux-4.4.186, that
is a Linux kernel in its 5.2.3 version (there is an error in the downloaded file naming).
At the bottom of this tutorial’s page is also present a table that shows the compatibility
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between some Linux kernels and different configurations of the simulated CPU. Finally,
for what concerns the boot drive, we were able to find one based on the Linux distribution
Gentoo [46].

To make a decision on how to configure the simulated CPU for our tests, we started
from a work done by Jason [35], who is one of the main developers of gem5. In fact,
he made a tutorial on how to reproduce Spectre on gem5 but using it in Syscall Emu-
lation mode. Nevertheless, we can take advantage of some of his suggestions about the
CPU configuration. Jason pointed out that to be able to reproduce Spectre you need to
use the DerivO3CPU processor, because it is an out-of-order processor with support for
speculative execution, which is a technology exploited by Spectre, and so without it will
be impossible to reproduce it. He also changed the default branch predictor to LTAGE,
which, due to its better performance, makes it easier to reproduce Spectre on gem5. On
top of this, we have completed the processor’s configuration by adding a two-level cache
so configured:

• 16KB L1 Instruction cache

• 64KB L1 Data cache

• 256KB L2 cache

While we left the frequency of the CPU at the default value of 1GHz, and the core count
to 1, without multi-threading.

For each cryptographical algorithm, we have three versions of it; a plain one that simply
does For each cryptographical algorithm, we have three different implementations of it;
a plain one that simply has a loop that first encrypts and then decrypts a randomly
generated string, always with the same key, and for a number of times given by the user
as an input parameter; a version attacked by Spectre, where a thread operates like in the
plain version while another parallel thread conducts the attack, the program terminates
as soon as the attack is concluded; and a version attacked by Meltdown which operates in
the same way as the Spectre version. The attacked versions, as already said, are left to run
until they conclude the attack; for the plain version, instead, we configured the programs
to do 5,000 iterations of encryptions and decryptions for Idea, 8,000 for AES, 10,000
iterations for Blowfish, and 50 for RSA. The number of iterations was chosen to obtain
nearly the same amount of samples for each algorithm, in order to have a balanced dataset
among the various algorithms. The difference in the number of iterations required is due
to the need for a different amount of time, to make the cryptographical computations, by
the algorithms. Multiple runs, of the attacked implementations, may be needed to obtain
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a number of samples sufficient to have significant results and to be compared with the
other cryptographical algorithms. During the sampling, the only user-launched program
is the one we want to track. To actually collect the HPCs data we used a tool, that
is integrated with gem5, called m5, which offers some commands to interact with the
simulation and to interact with the Hardware Performance Counters. The command line
we have used to acquire the samples is the following:

m5 resetstats && m5 dumpresetstats 1600000 1600000 && [target_program]

&& m5 exit

where the m5’s command resetstats will reset the value of the HPCs, this is done to put
the system always in the same starting condition, and to eliminate the traces of some
commands which can have been launched before this one. While dumpresetstats [delay]
[frequency] will wait for the amount of time specified by the delay optional parameter,
expressed in simulated nanoseconds, then will dump and resets the values of all the HPCs
that gem5 has, this is done every frequency simulated nanoseconds. target_program is
simply the path to the executable you want to profile. Finally, the command exit simply
shut down the simulation. Each simulation saves the values of the HPCs in a file called
stats.txt, appending each dump to the previous one. The sampling frequency was chosen
based on a previous research [47] which find in 500µs the more balanced sample interval,
so we used it, transforming it to take into consideration the frequency of our CPU, so we
obtained a sampling frequency of 1.6ms

The second step is to prepare the acquired data to be processed by the Machine Learn-
ing algorithms, in fact, they require as input a matrix having on the columns the fea-
tures to use and on the rows the various samples. To reach this goal, we have written
two help programs in Python, the stats_reader and the matrixer. The former takes
in input the stats file outputted by the simulation, which contains all the samples ac-
quired, and split each sample into a different file, this is easy to do because each dump
starts with "---------- Begin Simulation Statistics----------" and ends with
"---------- End Simulation Statistics ----------". The files generated by this
program have a standardized naming convention so that it will be easier to distinguish
plain samples from the attacked ones and merge samples originated by multiple runs of
the programs. The samples originating from the plain versions of the cryptographic al-
gorithms are named stats_part_xxx.txt, where xxx is a unique identifier number for the
sample, and the enumeration starts from 0. The samples obtained from an attacked ver-
sion, instead, are named troj_part_xxx.txt, where xxx is the unique identifier number of
the sample, and starts from 0. The enumeration of the samples is independent between
plain and attacked versions. Such a helping program additionally gives the possibility to
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start the samples enumeration from a value different than 0, this in the case you have
multiple runs to be merged together. The second helping program takes in input a di-
rectory containing all the sample files created with the stats_reader, both the plain ones
and those ones coming from an attacked simulation, and generates a .csv file that can
be given to the ML algorithms. Such a program in fact creates a matrix putting in its
rows the samples found in the given directory and on the columns the features that are
common to all the samples. This program makes also some checks, in the specific excludes
all the samples which have an execution time lower than the given sampling frequency,
this can happen for example to the last sample due to the fact that the execution time
of the tested program may not be a multiple of the sampling frequency. Another check
is on the features, in fact, we excluded all the ones concerning the power consumption of
the processor, because they may not be so precise given that we are using an emulator
and not a real CPU. Then this helping program takes into consideration only the features
inherent to the CPU and its cache, wiping out all the data about the RAM, for example.
At this point, from its internal structure, builds up the final matrix.

The third and last phase, of our experimentation, involves the training and tuning of
the One-class Machine Learning algorithms we have selected. This phase was done using
Python and the library scikit-learn [44], which implements various ML algorithms, be-
tween them we have tested: One-class SVM, Isolation Forest, and Local Outlier Factor
(LOF). The first step was to obtain some good sets of 4 features to use for training. For
this, we have computed a submatrix that contains only samples from the plain execution
of the cryptographical algorithm that we have called plain_matrix. On the plain_matrix
we have computed the variance of each feature, then we considered only those features
with a variance between 1 and the 80% of the maximum variance computed. This choice
was done to exclude the features that have a nearly constant value between the samples,
which can indicate features that are not affected by the execution of the program, and
so, maybe, they remain constant also when an attack is involved. We also excluded the
features that cause a too high dispersion between the samples, making it more difficult
for the ML algorithms to define a model of normality. This filter prevents also obtain-
ing a model of normality too wide, which then will be ineffective in the individuation
of outliers because the majority of them will fall into the normality model. After this
filtering, we have started to extract random sets of 4 features and test them against the
two attacked datasets we have. Then, taking into consideration only the sets that give us
the best results, we tried to improve their results by modifying the parameters of each ML
algorithm we selected. After the tuning, to ulteriorly check the quality of such tuning,
we have repeated the random extraction step. For each cryptographical algorithm and
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for each machine learning algorithm, we have performed 200 extractions of possible sets
of four features, from the group of filtered features, and tested them against the dataset
containing plain samples and samples attacked by Spectred. From these 200 feature sets,
we took only those that, after 10 runs of the ML algorithm, have a mean accuracy of 99%
at least, except for One-class SVM, where we have set a threshold of 98% to have some
useful results. At this point, we tested the sets that pass the previous selection with the
plain sample data set plus the samples referring to the execution attacked by Meltdown,
and we took only those that, on a mean of 10 runs, have at least an accuracy of 99%.
At this point, we have a small selection of sets that are very promising. To complete our
experiments, we tested the sets that have passed the selections, starting from the one that
has shown the highest value of accuracy, and computed the average value of some metrics
on 1,000 runs of the ML algorithm, for both the dataset with Spectre’s attacked samples
and the one with samples attacked by Meltdown.

After the tuning phase, we have found that the best parameters for the ML algorithms
are the following:

• Isolation Forest

– max samples: 256

– contamination: 0.01

– max features: 2

– random state: 57

• One-class SVM

– kernel: rbf

– gamma: 0.00015

– nu: 0.005

– tol: 0.00001

– shrinking: True

• Local Outlier Factor

– n_neighbours: 16

– algorithm: kd_tree

– novelty: True
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The main metrics we decided to use are accuracy, the F1 score, and the Area Under the
Curve (AUC), because they represent a common choice among various other works that
adopted some machine learning techniques. In addition to this, such metrics, considered
togheter, give a more accurate image of how your ML algorithm performs. Before entering
into the details on how such metrics are computed, we need to define some common ter-
minology; with True Positives we refer to samples which come from an attacked execution
and are correctly classified as outliers; with True Negatives we refer to samples coming
from a plain execution, and correctly identified as inliers. With the term False Positve
we refer to samples from a plain execution wrongly identified as outliers; and finally False
Negative are those samples from an attacked execution which are classified as inliers by
the ML algorithm. The accuracy is simply the percentage of samples correctly classified
by your algorithm, and is computed as follow:

accuracy =
TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative

While the F1 score is the harmonic mean of precision and recall

F1 = 2 ∗ precision ∗ recall
precision+ recall

where the precision represents which is the percentage of samples classified as anomaly
that really are anomaly, while the recall is the percentage of anomaly correctly classified
as anomaly.

precision =
TruePositive

TruePositive+ FalsePositive

recall =
TruePositive

TruePositive+ FalseNegative

Finally, the AUC is the area under the receiver operating characteristic (ROC) curve
compared to the maximal area that it can have. Where the ROC curve is a plot of
recall against false-positive rate FalsePositive

FalsePositive+TrueNegative
. All the results we have obtained

are reported in the graphics in the Figures [4.1, 4.2, 4.3]. As you can see from these
graphs we have obtained very good results. It is immediately evident that Isolation
Forest outperformed in respect with the others algorithms, in fact it reaches values of
over 99% in any tested scenario, with all the considered metrics. Immediatly after it we
have the One-clas version of SVM, which is able to reach an accuracy greater than 99%
in most of the situation, and in any case is always over the 98%. So, it is evident that
these two algorithms are the ones to prefer for a hardware implementation. For what
concerns the last tested ML algorithm, Local Outlier Factor, instead, it presents results
which are good, but too variable to make it a usable solution. In fact, with LOF, we have
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an accuracy that, in general, is between 97% and 99%, but presents a big drop with RSA,
where it barely reaches the 94%.

(a) Spectre

(b) Meltdown

Figure 4.1: Metrics for all the datasets tested with Isolation Forest
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(a) Spectre-attacked

(b) Meltdwon-attacked

Figure 4.2: Metrics for all the datasets tested with One-class Support Vector Machine
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(a) Spectre-attacked

(b) Meltdown-attacked

Figure 4.3: Metrics for all the datasets tested with Local Outlier Factor

In addition to the metrics mentioned above, we also generated a confusion matrix for
each cryptographic algorothm with all the Machine Learning algorithms, and for both the
attacks we considered, Spectre and Meltdown, the results are reported in the tables [4.1,
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4.2, 4.3]. A confusion matrix is nothing more than a 2x2 matrix which plots the predicted
labels against the true labels, grouped together by the classes detected by the ML model,
and so in our case benign, or oulier. From such a matrix is then possible to retrieves
the values of: True Positives, True Negatives, False Positives, and False Negatives. The
results obtained are in line with the other metrics we talked about above, in fact, such
matrices are showing that the best performing algorithm is Isolation Forest, while the
worst one still be Local Outlier Factor. As can be seen in the table, Isolation Forest
does not have any false negatives and it has less than 1% of false positives in any of the
tested case. These results are extremely good, because not only means that we are able
to precisely distinguish between a normal execution and an attacked one, but also means
that we never classify an attacked sample as a benign one. The fact we do not have false
negatives is crucial, because otherwise means that can happen that our detection module
misses the presence of an attack, which then can reach its objective of stealing the secret
key. Local Outlier Factor, instead, presents the worst results, reaching a 10% of false
negatives with RSA, that is the dataset that, in general, is the most challenging to detect
when it is attacked. Local Outlier Factor also presents a quite high percentage of false
positives, between 1% and 7.5%. This results clearly indicates, as we already said, that
such algorithm does not represent a good choice for our objective.

Isolation Forest

Dataset TP
TP
%

TN
TN
%

FP FP % FN
FN
%

Total

Spectre
AES 714 63,35% 405 35,94% 8 0,71% 0 0% 1127

Blowfish 990 70,97% 402 28,82% 3 0,21% 0 0% 1395

Idea 1004 70,8% 406 28,63% 8 0,57% 0 0% 1418

RSA 908 65,94% 464 33,7% 5 0,36% 0 0% 1377

Meltdown
AES 858 67,5% 406 31,94% 7 0,56% 0 0% 1271

Blowfish 931 69,69% 401 30,01% 4 0,30% 0 0% 1336

Idea 844 67,09% 410 32,6% 4 0,31% 0 0% 1258

RSA 822 63,67% 468 36,25% 1 0,21% 0 0% 1291

Table 4.1: Confusion Matrices for datasets tested with Isolation Forest. TP = True
Positives, TN = True Negatives, FP = False Positives, FN = False Negatives. Samples
originated by an attacked execution are considered to be positives.
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Local Outlier Factor

Dataset TP
TP
%

TN
TN
%

FP FP % FN
FN
%

Total

Spectre
AES 721 63,58% 328 28,92% 85 7,5% 0 0% 1134

Blowfish 1000 71,17% 387 27,54% 18 1,29% 0 0% 1405

Idea 1014 71% 400 28% 14 1% 0 0% 1428

RSA 775 55,91% 414 29,87% 55 3,97% 142 10,25% 1386

Meltdown
AES 866 67,7% 356 27,83% 57 4,47% 0 0% 1279

Blowfish 940 69,89% 388 28,85% 17 1,26% 0 0% 1345

Idea 852 67,3% 403 31,83% 11 0,87% 0 0% 1266

RSA 830 63,9% 410 31,56% 59 4,54% 0 0% 1299

Table 4.2: Confusion Matrixes for datasets tested with Local Outlier factor. TP = True
Positives, TN = True Negatives, FP = False Positives, FN = False Negatives. Samples
originated by an attacked execution are considered to be positives

One-class SVM

Dataset TP
TP
%

TN
TN
%

FP FP % FN
FN
%

Total

Spectre
AES 714 63,35% 364 32,3% 49 4,35% 0 0% 1127

Blowfish 990 70,97% 391 28,03% 14 1% 0 0% 1395

Idea 1004 70,8% 375 26,45% 39 2,75% 0 0% 1418

RSA 908 65,94% 384 27,89% 85 6,17% 0 0% 1377

Meltdown
AES 858 67,5% 337 26,51% 76 5,99% 0 0% 1271

Blowfish 931 69,69% 392 29,34% 13 0,97% 0 0% 1336

Idea 844 67,09% 383 30,45% 31 2,46% 0 0% 1258

RSA 822 63,67% 384 29,75% 85 6,58% 0 0% 1291

Table 4.3: Confusion Matrixes for datasets tested with One-class SVM. TP = True Pos-
itives, TN = True Negatives, FP = False Positives, FN = False Negatives. Samples
originated by an attacked execution are considered to be positives
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We have tested the effectivness of our security solution also measuring how many bytes
of the secret key an attack is able to extract from the cryptographical algorithm before
our security module signals the ongoing attack to the Operative System. All the results
presented and discussed above refer to the prediction of a single sample at a time. So,
to test how many bytes of the key an attacker is able to extract before we stop it, we let
run each combination of cryptographical algorithm and attack that we have for 1.6ms on
gem5. The execution time was set in this manner because that is the time required to
acquire a sample. After conducting these measurements, we have that none of the tested
combinations leads to a single byte being extracted by the considered attack. This means
that our proposed security architecture is able to detect and signal a microarchitectural
cache-based side-channel attack before it can extract any useful information from the
system.

For completeness, we report here also the sets of features we individuated as the most
suitable for the detection of MSCAs, and that we also have used for the tests whose
results we have presented and discussed above. To make them more readable we have
plotted these sets in three different tables [4.4, 4.5, 4.6], one for each machine learning
algorithm we have used. For every table there is a row for each of the cryptographic
algorithm considered. The features in each set are not ordered in any way, and so must
be intended equally important. As you can see, many of the individuated features are
related to the cache, but not all of them. There are many features which refer to the
branch predictor, and some, even if they are few, which refer to the number of committed
instructions. Such result put more emphasis on the necessity of doing a wide search in
the Hardware Performance Counters space, because the cache is not the only hardware
component affected by these attacks, and focusing only on it may cut out a lot of other
equally or more valid sources of information. An important example of this is the set used
by Isolation Forest to identify RSA, where none of the individuated features is related to
the cache.
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Local Outlier Factor
Dataset Feature 1 Feature 2 Feature 3 Feature 4

AES
Alt Match predic-
tion Hit

dcache ReadReq
hits

icache overall
MSHR hits

TAGE longest
Match Provider
on component 5

Blowfish dcache writebacks
dcache overallAc-
cesses

TAGE longest
Match Provider
on component 4

TAGE longest
Match Provider
on component 5

Idea
committed Int-
Mult instructions

TLB accesses on
write requests

ReadReq MSHR
misses

memory responses
ignored due
to instruction
squashed

RSA
dcache average
miss latency

TAGE provoder
for alt match on
component 1

number of cycle
squashed

insts commited
each cycle

Table 4.4: Sets of features individuated for each dataset with Local Outlier Factor

Isolation Forest
Dataset Feature 1 Feature 2 Feature 3 Feature 4

AES
icache ReadReq
misses total

dcache WriteReq
mshrUncacheable

instructions
issued by Float-
MemWrite

icache average
miss latency

Blowfish
insts committed
each cycle

squashed instruc-
tions skipped in
execute

dcache WriteReq
accesses

iocache tag ac-
cesses

Idea

stdev of latency
between load is-
sue and its com-
pletion

icache ReadReq
MSHr misses

dcache WriteReq
MSHR un-
cacheable

branches incor-
rectly predicted
NotTaken

RSA
insts issued each
cycle

instructions
fetched each cycle

commited
FloatCvt in-
structions

BTB lookups

Table 4.5: Sets of features individuated for each dataset with Isolation Forest
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One-class SVM
Dataset Feature 1 Feature 2 Feature 3 Feature 4

AES
TAGE provider
for alt match

decode detected a
branch mispredic-
tion

icache overall
MSHR misses

floating in-
struction queue
wakeup accesses

Blowfish dcache writebacks
icache read +
write hits

icache ReadReq
misses

insts issued each
cycle

Idea
TAGE longest
Match Provider
on component 9

insts issued each
cycle

loads that had
data forwarded
from stores

loads committed

RSA dcache overall hits
branch mispre-
dicts detected at
execute

TLB misses on
write requests

instructions
fetched each cycle

Table 4.6: Sets of features individuated for each dataset with One-class SVM
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This chapter is dedicated to the hardware implementation of our security system. Here
we give an overview of the architecture of the module, implemented using Vivado, and
we make some dimensional comparisons with some x86 processor’s architectures to have
a rough estimation of the area occupied by our security system.

We decided to make an hardware implementation of Isolation Forest, because it is the
most promising algorithm to be used for detection, according to our experiments. For
the actual implementation, we used Vivado, an industry-lead software for designing and
implementing hardware components on a Field Programmable Gate Array (FPGA). We
based our implementation on the Xilinx xc7z020clg484-1 board and made an implemen-
tation of one of the tree outputted by the Isolation Forest implementation offered by
scikit-learn, this using the behavioral description mode of the VHDL language. An ex-
ample of how a node of a tree is composed is depicted in 5.1, for the rest is a common
non-balanced binary tree. The idea is that the component we implemented, that represent
the tree structure, is replicated for the number of trees in the forest, and so 100 times
in our case. Of course the implementation is thought to be reconfigurable because its
structure changes tree by tree and from a cryptographical algorithm to another.

In Figure 5.2 is reported a schema of the inner components of the security module that
we are proposing. As you can see the almost totality of the area is occupied by the
instances of the tree component, one for each of the tree of the ensemble. Then we have
the predictor which is responsible of receiving, from all the tree components, the length of
the path required to isolate a given sample from the otherones, and based on these values
make a mean of them and take a decision on the outlierness of the analyzed sample. If
the sample is signed as an outlier, then te predictor send a signal on the alert bus. The
other two components of the module are, the timer and the features table. The timer is
simply used to keep tracks of the elapsed time and send the signal to start the acquisition
of a new sample, when the current time window is terminated. The configuration table,
instead, memorizes the set of features to be monitored , and/or the fetching activity to
be acquired through the dedicated bus.
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We had to implement a standalone device, instead of picking an existing CPU and adding
it our module, because x86 is a proprietary architecture and we weren’t able to find any
open-source implementation of an x86 processor. To make some comparisons, and under-
stand roughly how much area our module will occupy, we used the values on the number
of Look Up Tables (LUT) needed by an x86 CPU given by Wong in his doctorate thesis
[49]. Wong reports in his work the occupation, in terms of LUTs, of some x86 processor’s
microarchitecture he implemented in an FPGA. The presented microarchitectures are not
very recent, and they are based on different technologies, both in terms of bits used for
memory addressing and techniques used to improve the computational power of the CPU.

To make the hardware implementation of the binary tree, we have created a finite-state
machine where each state models a specific node of the tree. Such a state is defined so
that it checks the node’s condition to determine which will be the next node, if there
is one, or which is the predicted label of the sample, if the state represents a leaf node.
From the figure 5.1 is possible to see that we have to treat differently inner nodes, with
respect to the leaf nodes because they have a different internal structure. The former type
is characterized by 4 elements; The first one, and most important, is the feature of the
sample to test, and the associated threshold value used to determine which will be the
successive node. Then we have the number of samples, from the training phase, that have
reached this node, and the mean outlierness value, with its squared error, associated with
the samples that during the training reached this node. The leaf node, of course, does
not have a splitting value based on a feature, because, when a leaf node is reached, the
algorithm succeeded in separating the given sample from all the others, and can assigns
it an outlierness value, that is based on the length of the path from the root node to the
leaf one.

Figure 5.1: Caption
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Figure 5.2: The internal schema of a module implementing Isolation Forest

After having synthesized and implemented the tree we have described, we obtained that
it will utilize 452 LUTs and 61 Flip-Flops (FF). Such values are for a single tree of the
ensemble that will characterize a real implementation of the security module, so to have
an idea of the total amount of resources utilized by such a module we need to multiply
the value we have for a single tree by 100, that is the number of trees that compose the
forest used to conduct our experiments. So, we have that our security module will have a
complessive dimension of 45,200 LUTs and 6,100 FFs. To give a meaning to these numbers,
we compared them with the numbers of LUTs required by some microarchitecture of x86
processors that we found in the doctorate thesis of Wong [49]. Unfortunatly in such a
research was reported only the value for the Look Up Tables required by those processors,
while no mention was done about the numbers regarding the required FFs, and so we can
make a comparison based only on the required LUTs. From Wong’s thesis we take into
consideration for the comparison the CPU’s architectures reported in the table 5.1.

Before starting the comparisons, it is important to underline that the data provided by
Wong do not take into account the Level 2 cache of neither the Nehalem nor Atom
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Name Tech. Mem. bits Microarch. LUTs

Intel Nehalem 45-nm 64-bits 4-wide
out-of-order 670k

Intel Atom 45-nm 64-bits 2-wide in-order 176k
AMD Geode

GX2 150-nm 32-bit 1-wide in-order 130k

Table 5.1: Considered x86 architecture, from the thesis [49]

microarchitectures. For what concerns the Intel Atom, it has 176k LUTs, which means
that our module has an overhead of 25.7%. Instead, the Nehalem microarchitecture
requires 670k LUTs, and so, if our module will be implemented in a processor which utilizes
such a microarchitecture, it will have an area overhead of 6.75%. As you can see, there is a
wide difference in the number of LUTs needed by a processor, this can be imputable to the
different technology adopted by them, in fact, the Atom microarchitecture is based on an
in-order processor while the bigger Nehalem is an out-of-order processor. This statement
is supported by the fact that if we compare our module, with an even older processor’s
microarchitecture such as the one of AMD Geode GX2, which has 130k LUTs, we have an
overhead of 34.7%. In addition to the previous consideration, when you want to make some
reflections on such values of overhead, you must take into consideration that we have made
a standalone implementation. This choice inevitably causes higher resource requirements
in respect to an implementation that comprehends also the CPU to be protected, because
in this latter case the synthesis tool can make further optimizations, reducing ulteriorly
the number of LUTs required by our security module. Finally, our implementation lacks
proper optimization, also from the point of view of the code that describes its behavior.
The missing of such optimizations is due, on one hand, to the impossibility to find an
open-source implementation of an x86 processor, and on the other hand that defining a
correctly optimized hardware implementation isn’t the main objective of this thesis and
then is left to future works.
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This chapter is dedicated to the security analysis of the proposed security module. This
analysis is focused on understanding which can have been the pitfalls we have committed
during all the phases of the development of the security module, and which scenarios we
did not consider. Such critical points will represent a good starting point for future works
which want to improve ulteriorly our results, which are already very promising and at
the same level, and in some cases even better, than those ones presented in the actual
state-of-the-art.

As anything in security, does not exist a perfect solution capable of ensuring security
with a probability of 100%, and our module does not represent an exception to this. The
first limitation that comes to mind when you study our module is that our system is
strongly based on the assumption that an attack will affect, in a visible way, the values
of some Hardware Performance Counters. This lead us to two possible bad scenario for
our system.

The first, more probable to happen, is that someone will develop an MSCA with a very
restricted footprint over the Hardware Performance Counters, and so it might be able to
evade the proposed detection technique, not modifying the features selected during the
training phase. In such a case a possible solution, to be explored in future works, can be
to identify the specific HPCs able to detect this particular attack and understand if these
counters can detect also the others attacks. If a mixed set of features can be determined,
then the problem is easily solved, it is necessary to just update the set used by our security
module. If instead, the discovered HPCs are very specific for the attack an alternative can
be to introduce a time multiplexing and monitor alternatively the general-purpose events
and the attack-specific ones. This solution is not ideal because it doubles the time needed
to acquire a sample referred to the same HPCs set, but given that with the proposed
dimension for the time window the attacker cannot leak anything, even if we double it,
we still maintain a high level of security.

The second scenario, instead takes into consideration a new attack capable of not modi-
fying any of the Hardware Performance Counters made available by the CPU. It’s clear
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that with a so advanced attacker there is nothing that our module can do to detect it.
However it must be said that it’s highly improbable that such attack can exists because
of the elevated number of events that a processor can monitor. To be able to not leave
any trace the attack basically has to have a nearly zero interaction with the targeted
system. It for sure cannot interact with the cache, that is heavily monitored by HPCs,
and also it has to be conservative on the number of instructions executed because they
are controlled too. Of course these considerations are valid as long as we remain in the
field of microarchitectural side-channel attack on which our thesis is focused.

An important criticism that can be addressed towards our work is that we have considered
only two side-channel attacks. In particular, we have tested our solution only against
Spectre and Meltdown, and even if we have obtained results with an accuracy close to
100%, someone could point out that this is a too restrictive test set. This choice was
done mainly for two reasons; firstly it is difficult to find out some Proof Of Concept of a
cache-based side-channel attack, and here I am referring to the attacks themselves, and
not to the side-channel on which they are based, such as Flush+Flush or Prime+Probe.
The second motivation is related to the huge amount of work, that can be needed, to
modify and make working the discovered PoC on the gem5 simulator. In fact, if for
Spectre was quite easy to have a functioning executable, the same cannot be said about
Meltdown, which required months of work and troubleshooting to have an implementation
that correctly works. This additional workload is mainly imputable to the usage of gem5,
which, being a simulator, cannot have a behavior that perfectly matches the one of a real
system. This is especially true if we consider that the considered attacks exploit a weird
behavior of the CPU’s microarchitecture, that happens naturally on a real processor, but
it is harder to simulate.

Our module sends an alert signal, when it detects the signs of a cache-based side-channel
attack, and the Operative System will take some blocking action as a consequence of this.
Such behavior can be exploited by an attacker whose objective is to perform a Denial Of
Service (DOS) on the system. If the attacker is able to create a program which mimic the
execution of side-channel attack like Spectre, he is able to force the OS to take blocking
actions that will result in a reduction of the computing capability of the embedded device,
or, worse, in a complete stop of the normal activity of the protected system.
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developments

In this thesis, we presented an innovative methodology to detect cache-based side-channel
attacks, before they can harm the system. The proposed solution is machine learning-
based, and, because it is oriented towards embedded systems, it is encapsulated in a
dedicated hardware module, so that it will not interfere with the normal activity of the
system it is protecting. The detection is made by monitoring some carefully selected
Hardware Performance Counters at a fixed sampling frequency. For the sampling, we
made use of gem5, which gives us the possibility to retrieve all the HPCs available, and
then we took a decision on which of those to use. After having tested multiple One-class
ML algorithms, we find out that the best one is Isolation Forest, for which we also provided
an implementation on an FPGA. With this ML algorithm, we can detect an attack with
an accuracy of more than 99% in all the tested scenarios, and with a false positive rate
lower than 1% and zero false negatives. The proposed hardware implementation causes
an overhead of around 25%, but it is a non-optimized implementation, so there is a lot of
room for improvements under this aspect.

Future works, in the light of the above, must optimize the hardware implementation,
and maybe also try to implement another ML algorithm such as One-class SVM, that
offers also good results, with an accuracy that is every time in the neighborhood of 99%.
Further researches can be done on the utility of the fetching activity, whose data, even
if present in the feature space considered, it is never resulted in any of the features set
used. Anyway, due to how we structured our hardware module, it is possible to retrieve
the fetching activity independently from the HPCs, and without the associated limitation
on the number of monitorable ones.

Additional research can be done to better stress out our security system, with the testing of
newer cryptographical algorithms, to further expand the set of supported ones, or testing
others implementation of already tested algorithms. This will improve the usability of
the system in a real scenario, giving to the final users a database of configurations that
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covers the vast majority of the cryptographical algorithms utilized. Another direction in
which our research can be expanded is toward adding others attacks, to better test the
effectiveness of our security module, and especially the goodness of the choices on the sets
of features to monitor.

Future works can also focuses on expanding further the search space of the features sets,
because in our work we applied a filter to it, and we have also generated only 200 random
sets, for each combination of ML algorithm and cryptographical algorithm. Someone
could try to generate all the possible combinations of four features, after having applied
the filter, and see if maybe exists some other sets that performs better than the ones we
have discovered. Otherwise there is also the possibility to remove completely our filter, or
maybe testing various configurations of it, with the objective of understanding which are
the more reasonable bounds for the variance’s value. This research can be useful because
we have set the boundaries using some values that seemed logical to us, but we have never
done a precise and deep enough study to be sure that those boundaries values are the
more correct ones.
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This appendix is dedicated to the architectural simulator gem5, which is an important
component of our research; in fact, we used it to acquire the samples of all the HPCs
offered by the processor, and that we later used to train the machine learning algorithms
and also test them. We thought that a guide on how to use such a powerful simulator
may be helpful given the various obstacles we have encountered during its use.

The gem5 simulator is an open-source simulator, that is written in C++, which wants
to simulate precisely a processor architecture for research reasons. A the moment it
support different, commonly used, architectures at various level of details, accordingly to
the official website [15], the current support status is:

• ARM: which is fully supported, and able to boot unmodified versions of Linux and
Android.

• x86: fully support, and able to simulate a common PC in its entirety. It can boot
unmodified version of Linux.

• RISC-V: this is a work in progress, especially for what concern the privileged in-
structions of this architecture.

• SPARC: with this architecture is able to boot Solaris similarly on how also other
simulators of such architecture do.

• Alpha: they reproduced in a sufficiently accurate manner a DEC Tsunami system
so that you can boot an unmodified versions of Linux.

The first thing to do, of course, is to download the source code and build the simulator.
The authors of gem5 offer two possibilities to do this, you can simply download the source
code from their git repository and build it, or they offer a pre-built Docker image. In our
work we opted to set up a virtual machine, then download and build directly the source
code. Even if they claim that any Linux distribution, with the requested dependencies,
can be used, turns out that this is not correct. In fact, we have tried to build gem5 on
a newer version of Ubuntu with respect to the one suggested, but we did not obtain a
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working version of the simulator, so we revert to the suggested Ubuntu 20.04.

After having installed the dependencies required by gem5, it is time to compile it. Before
doing so, there are two choices you have to pick, the architecture to simulate and the build
variant. For what concern the architecture, you have to choose one among the available
ones, previously listed. While the build variant affects the speed of the simulation, but also
the debugging option available; gem5 offers three build variants. The debug : this has all
the optimizations turned off, it is the slowest one, in fact, it’s suggested only to those that
need to use some debug tool like gdb. The opt is the balanced one, it has the optimizations
turned on, but still maintains some debugging features, this makes it possible to increase
the simulation speed, and in the meanwhile maintains some internal information in case
something goes wrong, This is the variant suggested by the developers, and the one we
have used for our tests. The last variant is the fast, which has the optimizations turned on,
and no support for debugging, making it the fastest one, but also the more unstable one.
In any case is possible to have multiple builds, with support for different architectures
and build variants. Once these two choices are made you can proceed with the build
command that is the following:

scons build/{ISA}/gem5.{variant} -j {cpus}

where the cpus is the number of cores to use for the building, to speed it up; in any case,
this step can take up to an hour to be completed, depending on the computational power
of the PC you use. At this point, you have your simulator is ready to be used.

The next step is to create a configuration, this is done independently by the emulation
mode you want to use. Such a configuration file is written in python, and inside it, you
have to specify all the elements that compose the processor you want to simulate. In
such a file, you can also take an element, that was defined by the developers, and define
a new class that extends it. Another possibility is to create a file, that instead of having
a fixed configuration, offers multiple options for the various components in the form of
parameters, in this way is possible to set up the processor’s configuration when you start
the simulation. This last option is the one adopted also by the developers that made
available a couple of configuration files ready to be used, and with a lot of parameters
available.

Once you have the configuration file, the next step is to decide which type of simulation
you want to run, the Syscall Emulation one, or the Full System. The first option is
the fastest and also the easiest to run, it executes a given program simulating all the
system call it does, and so its usage is limited by the syscalls that the gem5’s developers
had implemented or the ones you have added. The command to run it is the following,
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assuming you are in the folder where you built gem5, and you opted for x86 architecture
and opt variant:

build/X86/gem5.opt configs/example/se.py -d [destination] [options]

-c [source]

where destiation is an optional parameter that is used to define a folder where all the files
generated by the simulation are put, otherwise the default folder is called m5out and is
positioned in the main gem5’s folder. The simulation’s files comprehend a description of
the configuration of the simulated CPU, both a textual one, that a graphical one. A basic
example of a configuration is depicted in Figure A.1.

Figure A.1: gem5 configuration example

The source parameter is the path to the executable you want to run with gem5, if your
program expects some inputs when you run it, you can pass these with the option -o
followed by all the inputs enclosed by "".

The options field, instead contains all the parameters for the processor’s configuration.
These comprehend basic options such as the number of cores or the CPU’s frequency.
The configuration file provided by the developers provides also some options on the RAM
setup, you can define its size, and the number of memory channels, and then there is a
list of different memory types which differ by the technology on which they are based
(e.g. DDR3, DDR4, LPDDR5, HBM) and also by their frequency. Of course, if none of
the provided memory options satisfy your needs, there is the possibility to define your
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own memory configuration and import it into the CPU’s configuration file. Other options
regard the cache; for this, they provide support for a three-level cache, to use it, you have
to enable it with the option –caches. Then the configuration file provides support for a
first cache level divided into an instruction cache and data cache, and then for two more
homogeneous cache levels, you can enable only the levels you want. The options relating
to the cache are about their size and their associativity, this is independently configurable
for each level, while the line size is unique for all the levels. There are options for choosing
which type of branch predictor to use, and also for which prefetcher to adopt, this last
one can be set independently for the l1-icache, l1-dcache, and the level 2 cache.

If you want to use gem5 in its Full System emulation mode, instead, things become more
complicated. This modality requires, in addition to the configuration file, also a Linux
kernel (which with the x86 architecture does not require any sort of modification) and
a boot drive with the Operative System. There are a lot of guides on the Internet on
how to set up and run a Full System emulation, but all of them seem to be somehow
incomplete, or with certain steps that do not work when you try to reproduce them. One
of the most complete is the one written by the gem5 developers and can be found here
[16].In this guide is explained how to create a boot drive with Ubuntu, how to create a
boot drive with Ubuntu, but the proposed method does not work if you are on a virtual
machine, and the provided disk image is configured to shut down immediately after it has
completed the boot, this makes it unusable. Anyway, we succeeded in creating a boot
drive with Ubuntu, but when we tried to boot it, after 24 hours the simulation was stuck.
After searching for a solution to this, we have found one on a StackOverflow thread [46]
where there is a link to a boot drive based on Gentoo.

The next step is to find a Linux kernel that works with gem5 and the boot drive you
have; for this, we went back to the guide on gem5art, where there are some kernels
already compiled, and also the instructions on how to compile one by yourself. Sadly, not
all the kernels already compiled work with our setup, and we opted for the kernel named
vmlinux-4.4.186, which by the way is a 5.2.3 kernel. In fact, many of the proposed kernels
do not start at all, or in other cases, they start o boot up the system, but at a certain
point, they will crash. An interesting thing reported in such a guide is a group of graphs
that report the compatibility between the kernels tested by the developers with different
configurations of CPU type used and memory type selected, from which is evident that
it is not easy to find a working setup, and multiple tests may be needed.

Once you have retrieved all the required elements you can proceed with the simulation,
which can be performed with the following command:
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build/X86/gem5.opt -d [out_dir] configs/example/fs.py --disk-image

[boot_drive] --kernel [kernel] [options]

Here again, it is supposed that you run such a command from the main folder of gem5 and
that you will use the configuration file given by the developers. In this case is strongly
suggested to use the already provided configuration file because otherwise you have to
manage all the procedures to correctly interconnect the various processor’s components
to be able to start a Full System emulation, and such procedures are not well documented.
The out_dir and options parameters are the same as the Syscall emulation, but with this
configuration file, we have two other parameters that you must provide, which are the
kernel and the boot drive files, respectively specified by kernel and boot_drive.

Once you have started the simulation you can connect to the simulated system from
remote with another terminal, that from now on we refer to as the remote terminal, with
the following command, intended to be launched by the main folder of gem5:

util/term/m5term localhost [port]

Where the port can be founded on the fisrt terminal, that one where you have executed
the command to launch the simulation and that from now on we refer to as the control
terminal. After a bit it shows a line which indicates the port to use, by default it is the
3456. This line is the one underlined in the Figure A.2.

Figure A.2: Line indicating which is the port to connect to the Full System emulation

When the boot phase is complete you can make a checkpoint to save the current status of
the system, so that the next time you can restart from here, instead of having to wait again
for the system to boot up. To create such a checkpoint you have to execute the command
m5 checkpoint on the remote terminal, this will create a folder inside the output folder
of the simulation, you can create multiple checkpoints for the same simulation. Then, to
resume from a checkpoint, that are time ordered, you need to add some parameters to
the command used to launch the simulation, it must be underlined that such a possibility
is given by the fact that we are using the developers’ provided configuration file. The
parameters to be added are:

-r [chekpoint] --checkpoint-dir [simul_dir]
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Where the simul_dir is the directory that contains the checkpoints folders, and checkpoint
is an integer that indicates to the simulator which checkpoint to resume, it starts from 1
and points to the i-th checkpoint’s folder.
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