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1. Introduction 

Plastic is widely used worldwide due to its low-

cost production. Many techniques exist, but some 

are more widely used. Injection molding (IM), 

accounts for over 30% of global plastic output [1]. 

As every other process, IM can make faulty parts, 

which increase costs. To tackle this and meet 

changing market needs, digitalization and 

automation are essential, which at the same time 

generate lots of data from plant sensors. To process 

them, many industries currently use machine 

learning (ML) methods to manage quality and 

improve performance, and IM machines are no 

different [2]. 

To efficiently manage ML models and adapt them 

to changing data trends is a difficult task and 

automated pipelines are used to solve the problem. 

They automate various steps, from data gathering 

to model deployment, saving time and making the 

process more efficient. 

Regarding controllers for IM machines, open and 

closed loop options have been available for more 

than 50 years [3], but do not usually use ML for 

part quality assessment. As ML gains popularity, 

companies are looking at solutions combining 

them with IM machines to control part quality. 

However, this is a complex task that needs more 

research. 

In summary, this work has three main goals: 

creating a ML model to predict IM part quality, 

setting up an automated pipeline to manage the 

model, and to design a real-time controller for 

better part quality. Achieving these three tasks in a 

real manufacturing system will be a big 

accomplishment in injection molding. 

2. Literature review 

2.1. Plastic IM machines 

Injection molding involves injecting molten 

material into a mold and once it has cooled and 

solidified, the final product is ejected. The process 

is very versatile and used to produce pieces like 

glasses, elastomers, thermoplastics, and 

thermosetting polymers. 

Machinery used in injection molding typically 

comprises two units: an injection unit for material 
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introduction and a clamping unit to hold the mold 

closed during injection. 

 

Figure  2-1. Injection molding machine diagram. 

To produce a piece with these machines, a specific 

mold needs to be created first. Then, plastic pellets 

are fed continuously to the barrel, which heats 

them up until they are melted. They are then 

injected into the mold cavity with pressure and 

ejected after it solidifies. Many factors affect a 

pieces’ result, from mold design to IM machine 

properties, and this work will be focused on 

predicting and improving the final quality. 

2.2. IM classical control 

approaches 

Injection molding undergoes complex changes in 

polymer properties due to rapid pressure and 

temperature variations, making quality prediction 

challenging without advanced software. 

Continuous monitoring is crucial to maintain 

quality standards, given the impact of slight 

machine parameter variations (e.g., hydraulic 

power, temperature, humidity) on part quality. 

Extensive research aims for adaptive and 

automatic quality control. Variables in injection 

molding fall into three groups: machine, process, 

and quality. Table 2-1 shoes some examples. 

 

Machine 

variables 

Process 

variables 

Quality 

variables 

Barrel 

temperature 

Melt 

temperature 

Part weight 

Maximum 

injection 

pressure 

Melt pressure 

Part thickness 

Injection 

speed 

Maximum 

shear stress 

Sink marks 

Clamp 

opening/ 

closing time 

Heat and 

cooling 

dissipation 

rate 

Other aesthetic 

defects 

Table 2-1. Example variables of the three levels of 

IM. 

Machine variables are well-controlled with built-in 

controllers like PID and PLC. Process variables 

depend on conditions, materials, and mold 

configurations, influencing quality variables. 

Finally, quality variable control is the primary 

focus, but understanding their intricate 

relationships remains a challenge [4]. 

Direct and online part quality control is 

challenging due to IM's rapid nature, and difficulty 

to measure part quality quantitatively based on 

qualitative features. Classic approaches rely on 

observers to mimic closed loop controllers. Some 

studies proposed thickness control using 

simulation programs or empirical models [5]. 

Conditional logic, like fuzzy logic, is also used as a 

controller [6]. 

More research is needed for closed-loop quality 

control, particularly addressing the rapid process 

changes that current sensor technologies struggle 

to capture [4].  

2.3. ML algorithms and 

controllers for IM machines 

Ensuring high-quality parts in injection molding is 

challenging due to the complex interconnected 

variables involved in the process. Machine 

learning and neural networks (NN) excel in 

uncovering intricate patterns in such scenarios. 

ML algorithms can be divided into three 

categories: reinforcement, supervised, and 

unsupervised learning. Supervised learning uses 

labeled data to establish input-output relations, 

while unsupervised learning extracts patterns 

from unlabeled datasets. 

Quality assessment in IM centers on three main 

indicators: surface properties (sink marks, 

roughness), dimensions and weight, and physical 

properties (mechanical, optical, electrical). Weight 

is particularly important as it inversely correlates 

with part quality [7]. 

A 2022 study used ML, specifically k-nearest 

neighbor (kNN), naïve classifier, decision trees, 

and linear discriminant analysis, to predict part 

quality based on weight. Results showed high 

average performance, even with minimal data [8]. 

Oversampling is a commonly used technique also 

to address data scarcity, as the number of defective 

parts is much lower than correct parts. 

Autoencoders, an unsupervised neural network 

architecture, learn lower-dimensional 
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representations of high-dimensional data, thus can 

be efficient also in predicting part quality. 

Comparing ML models, autoencoders 

outperformed regression and tree-based models in 

predicting part quality. F1-scores for autoencoders 

were notably higher (0.97), while regression and 

support vector machines (SVM) scored lower (0.15-

0.17), and tree-based models fell in the range of 

0.70. 

Another study divided pieces  into four groups (3 

OK and 1 NOT OK) and used ML to alert users 

when quality deviated from optimal. F1-scores 

ranged from 0.89 to 0.98 with different algorithms 

[23]. 

In summary, implementing automatic control 

techniques for IM machines is challenging but 

feasible with additional variables like weight, 

surface inspection, and part dimensions. 

2.4. Automated pipeline 

In the production phase of an ML model, 

maintenance remains essential. To enhance 

efficiency and scalability while reducing time and 

effort, automated ML pipelines come into play. 

Automated pipelines automate various sequential 

steps in machine learning, from data ingestion to 

model training and deployment. They are 

indispensable for automating repetitive tasks, 

ensuring reproducibility, and streamlining model 

development and maintenance. In data science 

projects of all scopes, having a comprehensive end-

to-end pipeline is vital for efficiency and 

organization. 

Contrasting manual pipelines, where everything is 

typically in a few files, automated pipelines break 

down the process into manageable components 

like data extraction, model training, validation, 

and re-training. This engineering approach 

facilitates tracking changes, repeating processes, 

and updates as complexity grows over time. 

Machine learning pipelines offer flexibility and 

transform the workflow into a reproducible, 

organized, and easily manageable process. 

The main steps of a ML pipeline are the following: 

1. Data ingestion. 

2. Data preprocessing. 

3. Data validation. 

4. Feature engineering. 

5. Hyperparameter tuning. 

6. Model training. 

7. Model evaluation. 

8. Model deployment. 

9. Model monitoring. 

Orchestrators are the tools or frameworks that help 

manage and organize the various steps involved in 

the creation and implementation of a ML pipeline. 

In this work Apache Airflow will be the orchestrator 

used, for its simple usage and scalability 

properties. 

3. Overview of the proposed 

approach 

The approach of this work involves creating a 

framework for an IM machine controller with three 

main components: the ML model, the pipeline, and 

the controller. 

 

Figure  3-1. Complete proposed approach. 

As seen in Figure  3-1, the proposed approach can 

be divided into two parts. First, the ML model is 

developed by feeding input data into the pipeline, 

which outputs the best-fit ML model. 

The second part is the controller, which receives 

manipulated input variables. It iteratively 

provides MV combinations to the ML model to 

predict part quality and outputs optimized MV 

values. Although the two parts are separate, the 

pipeline development follows ML model 

architecture definition. 

Regarding the data used, it comes from two 

datasets with similar structures but varying 

variables. The first dataset has 84 variables and 

about 12,000 samples from 2020 to 2021. The 

second dataset includes 37 variables and over 

330,000 samples from 2021 to 2023, with some 

overlapping variables. 

Both datasets have a binary controlled variable: 0 

for defect-free (OK) parts and 1 for defective 

(NOK) parts. Due to the rarity of NOK samples 

(about 2%), designing a ML model for this class 

imbalance is a challenge, known as One Class 

Classification (OCC). 

The technical implementation predominantly uses 

Python due to its popularity and library support, 

especially for neural networks. Tensorflow is 

chosen for ML aspects and Apache Airflow as the 
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orchestrator. SQL databases store metadata, and 

Docker containerization ensures consistency and 

portability. Visual Studio Code is the development 

environment, integrated with GIT for version 

tracking (GitHub), and the controller is entirely 

implemented in Python for code and algorithmic 

simplicity. 

4. Initial dataset analysis 

The dataset's objective is to perform a preliminary 

data analysis and create an initial process model. A 

larger dataset will be generated in the future for the 

final ML model integrated with the control 

algorithm. 

The controlled variable is unique and binary (OK 

or NOK piece). The process parameters include 

temperatures, pressures, times, and velocities. 

Some variables are categorized by machine parts 

and zones. Information Gain (IG) algorithm, which 

calculates how much information the output 

obtains from each input, was selected as a 

preprocessing step. The 12 variables containing 

most information were selected to train the model. 

Less than 4% of the samples were NOK, which 

poses challenges for model training. The problem 

is known as One Class Classification and is used in 

other situations like scam filtering. An extensive 

OCC bibliographic review was conducted, 

including neural network approaches like 

weighting differently each class or oversampling. 

Other algorithms like Support Vector Machines 

(SVM), isolation forest and Local Outlier Factor 

(LOF) were also investigated. 

The results of different algorithms are displayed in 

Table 4-1, where best threshold refers to the value 

separating the classes in the model prediction. 

Model 

Test 

F1 
PRC 

avg 

ROC 

AUC 

Best 

threshold 

SVM 0 0.04 0.523 - 

Iso. Forest 0.007 0.05 0.597 - 

LOF 0.109 0.04 0.592 - 

Normal 0.288 0.19 0.737 0.05 

Weighted 0.316 0.17 0.8 0.56 

Resampled 0.317 0.26 0.872 0.76 

Table 4-1. Different models' results for the test set. 

In summary, the analysis of results indicates that 

NN-based models outperform other algorithms in 

addressing imbalanced datasets. NNs consistently 

yield better results across all metrics, with the most 

significant improvement seen in the F1 score. 

While other algorithms can have a minimum F1 

score of zero, NNs achieve a minimum of 0.213 and 

a maximum of 0.317. This suggests that further 

algorithm development is unnecessary, and the 

focus will shift to enhancing models and exploring 

alternative machine learning techniques. 

5. Final dataset analysis 

A different approach was taken with this new 

dataset compared to the initial one. Meetings were 

held with the data provider to understand it better. 

The new dataset introduced a decMold column 

indicating the mold type used, which could lead to 

variations in other variables. Some previously 

selected variables were missing, requiring a fresh 

analysis. However, insights from the initial 

analysis remained valuable, and techniques/results 

still applied. 

In this dataset, the focus was on the impact of the 

different molds used to collect data, because it led 

to variations in operating points for several 

variables. 

Regarding control variables, after meetings and 

information gain analysis, it was determined that 

only four variables were sufficient for a 

meaningful process description: tmpBarrel1Zone1, 

tmpMoldZone1, prsInjectionHyd1, and spdInjection1. 

This reduced the previous set of 12 variables to just 

these four. 

A different model was trained for each mold type 

in two steps. First, it was trained with all molds 

except the desired one, and then it was retrained 

only with the desired data samples. This proved 

better results, shown in Table 4-1 for mold type 

2535. 

 Train Validation Test 

F1-Score 0.970 0.976 0.974 

Table 5-1. F1-scores for final model for mold 2535. 

The metric values reached are impressive and 

reaffirm that the chosen approach is the way to go. 

Similar values were achieved for the rest of models 

for the other molds. 
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6. Automated pipeline 

With the ML model's architecture defined, the 

automated pipeline to manage it can be built. The 

steps used are the following: 

1. Get and store data 

2. Generate statistics and schema 

3. Validate data 

4. Preprocess data 

5. Tune model parameters 

6. Train best model 

7. Evaluate models 

8. Push model 

Apache Airflow was the selected orchestrator, 

where each pipeline execution is a "run." 

 

Figure  6-1. Tree diagram of several pipeline runs. 

Figure  6-1 shows multiple runs of the pipeline, 

with rows as tasks and columns as runs. Colors 

highlight success or issues. In this case, the first and 

last two runs succeeded, and the rest of the runs 

mark the pipeline's evolution from its initial 

working state through updates.  

 

7. Controller design and tuning 

After reviewing techniques and available data, an 

open-loop controller was chosen due to real-time 

constraints. Open-loop controllers are less robust 

than closed-loop ones but were the only viable 

option because real-time feedback on part quality 

was unavailable. 

 

Figure  7-1. Diagram of open loop controller. 

The open-loop controller uses the ML model to 

predict part quality based on machine parameters, 

and employs the GridSearch technique for 

hyperparameter tuning, evaluating all parameter 

combinations to find the best quality. 

Here's the data flow: machine input parameters are 

inputted into the ML model, which predicts 

quality. GridSearch uses this prediction as an initial 

guess for optimal quality and searches for better 

combinations, considering variable changes per 

step and search depth. The final output is the 

optimal quality and corresponding machine 

parameters suggested to the operator. 

The controller was implemented in Python, but it 

didn't perform as expected. The machine 

parameter values changed, but the predicted 

quality remained constant instead of approaching 

zero (indicating an OK piece). Despite numerous 

trials and thorough inspection, the root cause of the 

issue remained unidentified. 

8. Conclusions 

Injection molding is a complex, interconnected 

process for producing quality plastic parts. This 

work has addressed part quality control challenges 

by creating an automated pipeline that provides  

ML model replicating the IM process, which is then 

used for a part quality controller. 

Dealing with an imbalanced dataset (less than 2% 

defective parts) posed challenges, however, the ML 

model successfully predicted quality, achieving an 

F1-score of 0.97 after dividing the data by mold 

types and training separate models. 

Initial dataset results were lower due to data 

quality and using a single model for all mold types. 

Various techniques and algorithms were tested, 

with resampled and weighted ML models yielding 

the best F1-scores (0.317 and 0.316, respectively). 

The automated pipeline, comprising eight steps, 

worked correctly, but real-world testing with a 

deployed ML model remains as future work. 

Initially, a closed-loop controller was planned, but 

due to dataset constraints and quality inspection 

delays, an open-loop controller was implemented 

with unexpected results. 

In summary, the framework of a ML model, AI 

pipeline, and controller is promising but requires 

additional time and effort. This solution can be 

extended to other machines and industries, 

providing efficiency, feedback, robustness, and 
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easier management at the expense of an initial data 

collection investment. 

8.1. Limitations of the study 

Limitations include an imbalanced dataset, with 

data augmentation offering imperfect solutions 

due to the difficulty of obtaining enough real 

defective samples. 

Additionally, AI-driven production model 

development demands incredible data amounts, 

and any changes in machines, products, or the 

environment can render previous data obsolete, 

impacting model performance. 

The dataset's binary output (OK-NOK) and 

delayed quality inspection constrained controller 

techniques that could be used. Implementing a 

closed-loop controller became increasingly 

complex and time-restricted, resulting in 

modifications to the approach. 

8.2. Future work 

The ML model was integrated successfully with 

the automated pipeline, but the controller couldn't 

be added to the equation, nor tested on a real 

machine, making all presented results theoretical. 

Therefore, real-world validation is crucial. 

Moreover, continuous pipeline operation over a 

prolonged period is necessary to ensure proper 

adaptation to new data trends. Achieving this 

could be challenging as machine conditions ideally 

should change minimally to maintain part quality. 

Relocating the machine or introducing 

neighboring systems might pose environmental 

and variable changes. 

Once a complete system, including the ML model, 

pipeline, and controller, is validated on a shop 

floor, it could be tested on machines in other 

industries with a new model. While demanding, 

such an effort could pave the way for future 

industry applications. 
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