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Abstract

Spacecraft bound to land on small bodies require reliable and robust Guidance & Control
systems. This applies to Hera’s Milani CubeSat, which will land on (65803) Didymos’ moon,
Dimorphos. In this work is selected an existing control algorithm to land Milani on Dimorphos
and adapted to fire in 300s intervals. The landing performance is evaluated using Monte Carlo
analyses. Here the Multiple Sliding Surface Guidance (MSSG) is selected. MSSG uses closed-
loop sliding mode control to reject bounded perturbations and synchronize the spacecraft with
the asteroid’s body-attached reference frame. The MSSG is implemented using the Two Phased
Descent (TPD) strategy, in which the thrust is first turned on and off in intervals of 300s.
Next, upon crossing a height of 15m above Dimorphos, the control is turned on for 300s more
regardless of the control’s past state. The TPD performance is mainly impacted by navigation
position knowledge. With a position error of σr ≈ 1m, collision velocities remain under 4.5cm/s
with 98% of confidence. The incidence angles are of ≈ 20 deg and the landing ellipse is σr,land ≈
1.1m wide. Fuel consumption is about 10g for Isp between 40s and 80s.
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Sommario

Il Multiple Sliding Surface Guidance (MSSG) viene selezionato come algoritmo di controllo per
l’atterraggio del CubeSat Milani su Dimorphos, la luna dell’asteroide 65803 Didymos. Nella
selezione è stato ipotizzato che il suo sistema GNC possa eseguire una closed-loop navigation
con continuous thrust. La scelta è guidata dalla robustezza dell’MSSG alle perturbazioni limi-
tate, dalla sua semplicità e dal consumo di CPU relativamente basso. L’MSSG utilizza il sliding
mode control per rifiutare le incertezze dinamiche limitate in un tempo finito, annulla le forze
ambientali modellate e dopo genera un’accelerazione per impostare il s/c su una traiettoria
idealmente lineare nel sistema di riferimento attaccato al corpo di Dimorphos. Le vibrazioni
sono state mitigate utilizzando uno Schmitt Trigger e una boundary layer attorno al Sliding
Manifold.

Viene studiato il comportamento del MSSG nell’ambiente dinamico di Didymos e mostra che
i) tempi di atterraggio successivi al passaggio ravvicinato di una traiettoria di riferimento e ii)
tempi di vuoli più lunghi che 300s (la rilevanza di questo limite è spiegata di seguito) sono
vantaggiosi in termini di consumo di carburante (∆m) e velocità di collisione (Vc). Per valutare
le prestazioni del MSSG, prima vengono selezionati i parametri di controllo (Λ e n) utilizzando
una "traiettoria di atterraggio nominale", definita da un’epoca di inizio del controllo e un’epoca
di atterraggio. Gli stati iniziali sono tratti da la citata traiettoria di riferimento. La "traiettoria
di atterraggio nominale" dura 1h ed è lunga ≈ 0, 5km.

Dopo, viene progettata la strategia di accensione Two Phase Descent (TPD), in modo che il s/c
esegua solo lanci di 300s durante ≈ 95% della traiettoria. Nel TPD, la traiettoria di atterraggio
è divisa in due fasi: in primo luogo, durante la Fase di Avvicinamento il controllo viene attivato
e disattivato in sequenza. Lungo la citata "traiettoria nominale" questo fa sì che il ≈ 95%
della distanza da percorrere. Successivamente, a 15m sopra la superficie di Dimorphos, inizia
la Fase di Discesa. In questo periodo, il controllo viene attivato per un massimo di 300s in
attesa del touchdown, indipendentemente dallo stato del controllo all’inizio della fase. Per il
TPD si presume che sia possibile una conoscenza di navigazione di σr ≈ 1m. Un σr di questo
ordine è richiesto per evitare di prendere di mira un punto più in basso o molto al di sopra della
superficie di Dimorphos, che metterebbe in pericolo il successo dell’atterraggio. I parametri di
controllo per le fasi Avvicinamento (1) e Discesa (2) sono diversi e utilizzando un processo di
progettazione iterativo sono stati impostati su Λ1 = 2, 5, n1 = 0, 2, Λ2 = 3 e n2 = 0, 7.

Infine, le prestazioni di atterraggio del TPD vengono valutate utilizzando un analisi Monte
Carlo. Questi mostrano come le prestazioni di atterraggio siano maggiormente influenzate
dalla conoscenza della navigazione. Con un errore di navigazione di σr ≈ 1m, l’errore di
dispersione degli atterraggi rispetto al punto di approdo utilizzando una perfetta conoscenza
della navigazione è di σr,land ≈ 1.1m. Le traiettorie tipicamente collidono con un angolo di
≈ 23 deg rispetto al Nadir locale. L’angolo di incidenza ha una dispersione di σangle ≈ 17 deg.
Il limite di Vc < 4.5cm/s (velocità approssimata di scapo di Dimorphos) è rispettato con
≈ 98% di confidenza. La componente locale-Nadir di Vc ha un valore tipico di ≈ 2cm/s con
una dispersione di σ ≈ 1.3cm/s. I componenti off-local-Nadir di Vc rimangono a valori inferiori
(ordine di 0.5cm/s) e seguono da vicino una distribuzione gaussiana. Il controllo è stato messo in
discussione con errori di puntamento 1 deg e 5 deg, che hanno mostrato di avere un lieve impatto
sulle prestazioni. Nel complesso, la forte autorità di controllo del MSSG è in grado di correggere
rapidamente gli errori rispetto alla traiettoria lineare ideale. Può respingere le perturbazioni
fino alla spinta massima del CubeSat, al momento della scrittura di 10mN . Il consumo di
carburante è strettamente correlato al valore di Isp, ma sempre localizzato aprossimatamente a
O(Isp) = 10g, ed è stato rilevato che l’aumento delle prestazioni è −0.2g per sec. di Isp.
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Chapter 1

Introduction

Motivation

The exploration of Solar System’s bodies is an endeavour that has held on to the public’s and
scientific curiosity for decades. In particular, the study of asteroids has seen a reinvigorated sci-
entific interest in the last years, stemming from the combination of three issues: First, because
asteroids can remain relatively unaltered since their formation, they can become information
vaults containing data regarding the creation of the Solar System [1]. It is on this topic where
the sample return (SR) missions prime, which recover asteroid material to bring it back to
Earth and allow the possibility to study it on laboratory. Examples of SR missions include
NASA’s Stardust, launched in 1999 and first to collect and return cosmic samples of Wild-2
comet [2]; JAXA’s Hayabusa2 [3], that rendezvoused with asteroid Ryugu and returned samples
on 2020; and NASA’s OSIRIS-REx mission, that rendezvoused with asteroid Bennu on 2020
and is bound to return the regolith samples on 2023 [4]. Second, in recent years has awakened
the regard of asteroids as sources of ore mining, which might offer economic returns in the
long-term future or fuel-extraction possibilities for interplanetary missions [5]. Third, asteroids
present a risk to human life in case of a collision with Earth [6]. This fact has stirred a political
and engineering interest to investigate ways to assess the risk of asteroid impacts on Earth and
to devise strategies to avoid them.

In this framework was created the Asteroid Impact & Deflection Assessment (AIDA) collabo-
ration, a joint effort of NASA and ESA to demonstrate the effect of the kinetic impact on an
asteroid trajectory. Such asteroid is the Didymos Binary system, a binary asteroid consisting
of Didymos (main body) and Dimorphos (moon). Didymos is a ≈ 780m wide, approximately
spherical body that has an orbital period of 2.11y. Orbiting it is its moon Dimorphos, a small
ellipsoid with a mean diameter of ≈ 160 m and an orbiting period of ≈ 12h [7]. The system is
eclipsing binary, and thus Dimorphos’ orbit can be measured from optical Earth-based obser-
vations [8].

The AIDA collaboration encompasses a pair of missions (see Fig. 1.1). On one hand, NASA’s
Double Asteroid Redirection Test (DART) mission will send a spacecraft (homonymously re-
ferred as DART) on 2024 that will collide with Dimorphos on 2026. The orbit deflection will
then be evaluated by ground-based observations [8]. On the other hand is Hera mission, with
which ESA plans to send the Hera s/c to rendezvous with the Didymos Binary system on 2027
[9]. Hera’s objective is to study the asteroids and DART’s impact aftermath in order to boost
the overall knowledge return of AIDA. To further enhance the scientific return, Hera spacecraft
(s/c) will carry two 6U CubeSats, called Juventas and Milani. In particular, the Milani CubeSat
(at the time of writing just finished Phase-B of development) will perform optical observations
with ASPECT Hyperspectral camera [10] to characterize the asteroids and evaluate DART’s
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impact. After its scientific goals have been achieved it is expected to attempt landing on Di-
morphos.

Asteroid missions that are to touch-down on an asteroid’s surface typically adopt either of two
approaches: a) A touch-and-go approach, in which the s/c descends, touches the surface and
immediately pushes back to orbit. This is the approach used by the asteroid SR missions up to
date. b) A landing approach, in the s/c is bound to descend to the surface and remain there-
after. An example of this is the Rosetta s/c, that left its lander module Philae to ballistically
descent upon Churyumov–Gerasimenko comet’s surface [11].

The descent is one of the most critical phases of an asteroid mission, since a failure at this stage
is likely to compromise the spacecraft’s integrity. Having a suitable Guidance, Navigation and
Control (GNC) system is key to properly control the s/c with the limited information on its
states. The design of such system is challenging due to asteroids’ particular characteristics [11]:
The weak gravity field implies a dynamical environment ruled by relatively large perturbations
(e.g. the Solar Radiation Pressure, and the Attitude-Orbit Coupling [12]), which usually rend
the dynamical models less accurate, and degrade the performance of the GNC system with
respect to the expected one. Also, usually the asteroid and dynamical environment is relatively
poorly characterised, because data typically exists only from Earth-based observations. This
entails the necessity to produce algorithms that can accommodate range-varying parameters.
Hence, for asteroid landing missions is fundamental to equip the s/c with a dedicated GNC
system.

The engineering job of designing a suitable GNC scheme to land on an asteroid meets the
opportunity that the Milani CubeSat’s mission offers. As mentioned, during its experimental
phase Milani is bound to land on Dimorphos, yet how will it happen remains unanswered.

Figure 1.1: Asteroid Impact & Deflection Assessment (AIDA) collaboration. Credit: ESA Science
Office, available at: https://www.esa.int/ESA_Multimedia/Images/2019/01/Asteroid_Impact_
Deflection_Assessment_AIDA_collaboration.

https://www.esa.int/ESA_Multimedia/Images/2019/01/Asteroid_Impact_Deflection_Assessment_AIDA_collaboration
https://www.esa.int/ESA_Multimedia/Images/2019/01/Asteroid_Impact_Deflection_Assessment_AIDA_collaboration
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Objectives

In this document I present a study aimed to answer the research question:

What is a good way to soft land the Milani CubeSat on Dimorphos?

To achieve this, the technical objective is to devise a control strategy that brings Milani onto
Dimorphos surface with a velocity relative to the asteroid-attached reference frame that is less
than 4.5cm/s, which is a lower limit for the escape velocity from Dimorphos’ surface [13].

In this work I develop a Guidance & Control scheme for Milani CubeSat’s landing on Dimorphos,
including the choice of the control algorithm and firing strategy. To this aim, I have reviewed
the existing Guidance & Control algorithms for asteroid Landing & Descent, and performed a
trade-off based on key requirements. It has been assumed that the GNC system is capable of
closed-loop navigation. At the time of writing, the landing of Milani CubeSat is not critical
to mission success and the GNC system has not been designed to optimize for descent and
landing requirements. In particular, Milani is expected to perform only discrete (300s) firings.
Nonetheless, the requirements of the landing phase (also known as "experimental phase") are
still under consideration and might change. Hence it cannot be excluded that continuous thrust
would be finally adopted. For this reason, in the choice of the algorithm, I first assume that
continuous thrust is available. I propose to use the Multiple Sliding Surface Guidance (MSSG)
algorithm for its robustness in front of dynamical uncertainty, simplicity, and relatively low
impact on CPU resources.

Next, with the aim to minimize the impact of the proposed MSSG on the overall current GNC
design, I have developed a firing strategy that uses 300s firings for ≈ 96% of the approximation
towards the asteroid. To ensure a successful and robust landing, during the last 15m, the control
has been allowed to remain open, if needed, for more than 300s. I call such firing strategy the
Two Phased Descent (TPD) strategy. The TPD requires a position knowledge with maximum
error whose Gaussian std. deviation is of O(σr) = 1m to avoid target a point far below or
far above Dimorphos’ surface. The performance of the TPD has been evaluated with a Monte
Carlo analysis, which show a very good performance (collision velocity is very likely to be below
4.5cm/s) and that the landing ellipse is mainly affected by the navigation knowledge. The fuel
consumption is about 10g.

The document is organised as follows: Chapter 2 briefly introduces the reader to Didymos, its
dynamical environment and the dynamical challenges that the GNC system must face. Chapter
3 consists of a review of existing GNC algorithms for Landing & Descent, as well as the choice
of MSSG among them. Chapter 4 presents an in-depth study of the MSSG, which includes its
derivation and a parametric analysis. In Chapter 5 I present the Two Phase Descent strategy
and argue the choice of the control parameters. Finally, in Chapter 6 is the Monte Carlo analysis
that evaluates of the Two Phase Descent strategy’s performance.
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Chapter 2

65803 Didymos

The aim of this chapter is to briefly introduce the 65803 Didymos binary system, its dynamical
environment, and physical properties.

2.1 Asteroid Fundamentals

2.1.1 Asteroids across the Solar System

Asteroids are small, rocky bodies that orbit the Sun. In literature differ from comets in that
asteroids do not have coma or outgassing, yet during recent years this boundary has become
blurry and is under debate [1]. The dynamics of asteroids are mainly ruled by the Solar gravi-
tational attraction, and it is a commonly good assumption that they follow a two-body problem
with the Sun. The other forces to which they are subject are other planetary pulls (particularly
Jupiter’s) and forces derived from the Solar radiation. These stem into two main effects:

• The Yarkovsky effect: Solar radiation heats up one side of the asteroid, which is cooled
down after the rotation of the asteroid puts that side facing deep space (DS). This tem-
perature gradient along the surface yields a difference in the radiation that the asteroid
emits for being at a given temperature, which then transmits a residual linear momentum
along one direction. Even if the Yarkovsky force is small, it is the dominant perturbation
on asteroids [1] and over the course of millions of years, the Yarkovsky effect can drive
asteroids from the Main Belt towards the inner Solar System.

• The Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect: the rotation of an asteroid
is changed due to the Solar Radiation Pressure (SRP) upon its asymmetrical surface.
Changes in the rotation state can influence the orbital drift generated by the Yarkovsky
effect.

Other effects of the solar radiation include:
• The drift due to impinging photons (not to be confused with YORP effect, which refers

only to its effect on rotation).
• Recoil momentum of specularly reflected radiation.
• Recoil momentum of diffusely reflected radiation.
• Momentum of emitted radiation due to the asteroid’s surface temperature (not to be con-

fused with Yarkovsky’s effect, that refers to the effect of having a temperature difference
due to Sun heating the asteroid’s surface).

Asteroids are present all throughout the Solar System, yet with varying distribution. One of
the areas that show greatest concentration is the Main Asteroid Belt, a broad toroidal region
of the Solar System located between the Earth and Mars. Other regions include Jupiter’s L4
and L5 Lagrangian points, whose asteroids are classically named "Trojans". Fig. 2.1 shows
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the asteroid distribution across the Solar System. Near Earth Asteroids (NEAs) are instead
those Asteroids that orbit the Sun closer to Earth. The Near Earth Object Program Office
(NASA/JPL) classifies them as having a perihelion q < 1.3AU [1].

Figure 2.1: Asteroid Orbital Element Distribution. Credit: Alan Chamberlin (2007, JPL/Caltech),
available at: https://ssd.jpl.nasa.gov/?dist_ae_ast.

Binary asteroids are asteroid systems composed by two bodies that orbit each other. Both
bodies can be arranged in different ways and have different mass proportions. E.g. Castalia is a
contact binary asteroid, where the two bodies touch and have similar size. Binary asteroids are
very frequent around the Solar System [1]. Very frequent are those binary asteroids composed
by a big, primary attractor, and a secondary (or moon) that orbits the primary. An example is
asteroid 243 Ida with its moon Dactyl, that was photographed by Galileo on 1993 (see Fig. 2.2).

Figure 2.2: PIA00069: Ida and Dactyl in Enhanced Color. Credit: NASA/JPL, available at: https:
//photojournal.jpl.nasa.gov/catalog/PIA00069.

2.1.2 Small Bodies’ Dynamical Environment

The dynamical environment around small bodies differs from that of major bodies in that the
attractor’s pull is not as prominent over other dynamical perturbations. Indeed, near a planet
like Earth and far from the atmosphere, the motion of a spacecraft (s/c) is almost only influ-
enced by Earth’s gravity. Instead, for example, about small bodies the gravity pull can be of
the same order as the SRP. This drives the necessity to include attitude information in the
dynamical model. To do so has been used the cuboid model, in which the s/c is consists of
a set of planar faces with some light emission coefficients. The model is based on that of Fig. 2.3.

https://ssd.jpl.nasa.gov/?dist_ae_ast
https://photojournal.jpl.nasa.gov/catalog/PIA00069
https://photojournal.jpl.nasa.gov/catalog/PIA00069
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Figure 2.3: Model of the Milani CubeSat at the time of writing. Credit: Tyvak International, available
at: https://www.esa.int/ESA_Multimedia/Images/2021/06/Milani_CubeSat.

A relevant phenomenon is what can be called Attitude-Orbit Coupling (AOC). It consists in
the following: the gravity pull’s magnitude on an asymmetric s/c depends on its attitude,
since an appendix farther from the attractor will be attracted less and the inverse. Thus, the
attitude influences the gravity vector, which then rules the translational motion. Hence, the
translational motion (as well as the gravity pull on the s/c) induces changes in the attitude of
the s/c, which in its turn affects the gravity pull’s magnitude and so on. This effect depends
on a small parameter

ε =
ρ

r0
(2.1)

where ρ is a characteristic dimension of the s/c and r0 the orbital radius [14]. Bigger s/c
will have greater gradients of pull along their bodies. Smaller orbits will mean stronger local
changes in gravity due to changes in position. About bigger planets (and hence larger orbits)
the term ε is negligible, but not about small bodies, where ε can take values of the order of
0.01. Previous works show how the AOC can have a significant impact on the stability of
self-stabilizing terminator orbits around asteroids and thus it is important to model this effect
in order to evaluate the orbit’s performance [12]. In this work it has been assumed that the
attitude of Milani CubeSat is given because it is critical to the scientific return and optical
navigation. Then, the translational motion is informed by the attitude. The full and restricted
6DOF model is derived in Appendix B.

2.2 Asteroid 65803 Didymos

Table 2.1: Didymos system principal properties.
Extracted from [7].

Property Value

D1 Diameter 0.780km± 10%
D2 Diameter 0.163± 0.018km
System mass (5.278± 0.04) · 1011kg
Component bulk
density 2100kg m−3 ± 30%

D1 spin period 2.2600± 0.0001h
Component separation 1.18 + 0.04/− 0.02km
D2 orbital period 11.920 + 0.004/− 0.006h

The binary system 65803 Didymos (also
"Didymos system") is a NEA that or-
bits the Sun in a region between the
Earth and Mars (see Fig. 2.4). Didymos
system’s primary, referred as Didymos
(also "D1"), is approximately a spheri-
cal body with diameter of ≈ 780m [7].
In this work D1 will be modelled as a
sphere. The secondary (also "D2") is as-
sumed to be a triaxial ellipsoid with radii
(α, β, γ) = (104, 80, 66) m. A representa-
tion of the Didymos system in MATLAB
can be seen in Figs. 2.5 and 2.6. The

https://www.esa.int/ESA_Multimedia/Images/2021/06/Milani_CubeSat
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data on asteroids’ positions, trajectories and geometry has been retrieved from the up-to-date
kernels of the Hera mission study1.

Didymos system’s basic properties are shown in Table 2.1. Importantly, D2 is assumed to be
tidally locked with D1 [7], hence the biggest axis of the ellipsoid is pointing always along the
vector D2-D1 [1]. Also, the spin of D1, D2 and the translation of D2 around D1 are opposite
to the motion of D1 around the Sun. This is, the equatorial planes of D1 and D2 are nearly
flipped upside down with respect to the ecliptic. Throughout this work will be used reference
frames that are defined in terms of the asteroids’ position, particularly the D2 Body-Attached
Reference Frame (D2 B RF or D2 RF) shown in Fig. 2.6. Didymos is drawn in the N RF,
which is aligned along Ecliptic J2000 RF and centered in Didymos’ barycenter (see Table B.1
in Appendix B).

Figure 2.4: Inner Solar System at 25-Jan-2027 (UTC).
Didymos system is marked in white and its orbit in violet.
Credit: TheSkyLive.com 3d Solar System Viewer.

Figure 2.5: Top view of the Didymos
system represented in MATLAB in the
N RF.

Figure 2.6: Side view of the Didymos system represented in MATLAB in the N RF. The red-green-blue
vectors represent the D2 RF (xD2, yD2, zD2 respectively).

1ESA SPICE Service, Hera Working Groups, Instrument Teams. Hera Spice Kernel Set. 2020. Last Accessed:
aug-2021. [online]. Available: https://www.cosmos.esa.int/web/spice/spice-for-hera

TheSkyLive.com
 https://www.cosmos.esa.int/web/spice/spice-for-hera
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Chapter 3

Guidance & Control Algorithm
Selection for Dimorphos Landing

The goal of this chapter is to choose and present a Guidance and Control (GnC) algorithm
suitable for the soft landing of Milani CubeSat on Dimorphos. To this aim, first a compre-
hensive review of the state-of-the art GnC algorithms is performed; followed by an appropriate
trade-off and selection of the algorithm. The navigation subsystem falls outside of the scope of
this work, and it will be simplified to a stochastic knowledge of the states. For completeness
sake, a review of current Navigation strategies can be found in Appendix A.

To design a GNC system for a small body descent is particularly challenging within GNC engi-
neering due to three specific characteristics of the asteroid Descent & Landing (DnL) problem
[11]. First, usually there is only limited prior information on important parameters that will
be key on defining the s/c environment (e.g. asteroid geometry or its surface properties). This
void of information imposes a big flexibility requirement on the GNC system, that needs to
accommodate possibly widely ranging parameters. Secondly, the dynamical environment is
particularly complex: an accurate gravity field is usually hard to model due to loosely known
parameters of the asteroid, i.e. its rotational state or density distribution. This, alongside a
strongly perturbed environment (e.g. the AOC, Solar Radiation or third-body perturbations),
usually introduces big modelling errors, which the GNC must compensate or be very robust to.
Third and finally, close-body operations entail a need of quickly reacting to information on the
s/c state, which is made very difficult to implement by the ground segment due to the usual
communication time delay. Such problem must be tackled by as much on-board autonomy as
possible, both in Navigation and Guidance & Control.

The objective of a s/c Guidance and Control system during its descent upon an asteroid is
to generate an acceleration command profile a(t) that generates a trajectory which satisfies a
number of constraints. Such constraints can be:

• Terminal constraints: constraints on start/final states of the s/c trajectory or acceleration
command. Examples are boundaries on the touch-down velocity or impact direction.

• Path constraints: constraints that are to be complied with during the trajectory itself.
Examples are limitations on thrust or a given shape of the command function.

There are several schemes to generate an appropriate a(t), and a clear classification is of the
uttermost importance to be able to choose among them. Different approaches to classify the
current Guidance & Control (GnC) strategies are available. In Ref. [11] is proposed to de-
part from whether the GnC scheme requires information on the state error with respect to a
reference trajectory (called trajectory-tracking) or not (called trajectory-free). On the other
hand, the review by Simplício et al. [15] takes a more comprehensive approach. This section is
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mainly based on Simplício’s et al. work and will follow their approach, to later merge it with
contributions from Ref. [11] and other sources, cited accordingly. Finally, a diverse paradigm
coming from other works is commented. The most fundamental classification between schemes
is whether they are closed-loop or open-loop:

• Open-loop: a reference trajectory {r(t)ref ,v(t)ref} and its corresponding acceleration
command profile a(t)ref are computed before the operation. During the operation, the
command profile is not re-computed by the Guidance CPU. Using measurements, it may
be corrected by an appropriate compensator. These open-loop schemes have emanated
from planetary landing trajectory design, and are based on imposing an acceleration
function (e.g. a(t) = C0 +C1t+ ...CN t

N ) whose coefficients will implement both terminal
and path constraints. The computation of these coefficients may require a relatively large
CPU power which traditionally was only available on ground, and therefore constricted
this approach to open-loop schemes. Recent advances in numerical performance have
enabled the such computations to be performed on-board in a closed-loop fashion. This
new paradigm is called "Computational GnC".

• Closed-loop: during the operation, measurements are used to compute a reference accel-
eration command a(t)ref , which in addition may be corrected by a compensator. They
emanate from the Control Theory field of Optimal Feedback Control, a problem which
is solved via the Pontryagin Maximum Principle or Calculus of Variations. These Tra-
ditional Closed-Loop schemes, take into account terminal constraints alone, and their
operating principle is to construct an acceleration command from the difference between
the desired states (e.g. rf and vf ) and the current ones. Recently, they have been
augmented using Slide Mode Control (SMC) theory to provide robustness in presence of
inaccurate measurements and unmodeled dynamics. Path constraints can be taken into
account indirectly, as will be mentioned later.

Within both categories is available a palette of algorithms. Fig. 3.1 displays a classification
map. Regarding the classification based on trajectory-tracking vs. trajectory-free proposed
by [11], open-loop schemes (and therefore Computational GnC as well) would fall under the
trajectory-tracking label, because they inevitably compute a full path which the control tracks.
On the other hand, since closed-loop schemes work with the error between two states, the
desired state may or may not be a reference trajectory (e.g. a landing target), and therefore
they do not necessarily need a trajectory to track. Below are highlighted the characteristics of
each algorithm of Fig. 3.1.

3.1 Mathematical Foundation

Before describing state-of-practice GnC algorithms, it is convenient to introduce mathematical
nomenclature and physical concepts. The problem is traditionally cast as point-mass Full 3-
Body-Problem, and the EOM are expressed in a Sun-Centered, Inertially-fixed RF (N RF).
The equations of motion (EOM) of the Target (T) and s/c (S) with respect to the N RF (see
Table B.1 in Appendix B) and the relative EOM are, respectively:{

ṙT = vT

v̇T = gT (rT )
(3.1){

ṙS = vS

v̇S = gS(rT , rS) + a + p
(3.2)


r , rS − rT

ṙ = v

v̇ = g(rT , r) + a + p

(3.3)

where gT contains the gravity terms acting on the Target due to the sun and gS contains the
gravity terms acting on the s/c due to the Target and the Sun. g = gS − gT . The term p
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Closed-
loop

Open-
loop

Traditional
Closed-Loop

Computational
GnC

Quadratic

Optimal w/ Path
constraints

Proportional

Predictive &
Hybrid

Optimal w/o
path constraints

Non-linear
robust

Guidance &
Control schemes

Figure 3.1: General classification of state-of-the art GnC schemes. Squared, shadowed boxes refer
to categories; rounded boxes refer to algorithms. The abbreviations w/ and w/o refer to "with" and
"without" respectively. Dashed arrows go from an algorithm towards its conceptual augmentation.

contains all the unmodeled dynamics and uncertainties and will hereafter be ignored. a is the
acceleration command and is defined as

a(t) =
T(t)

m(t)
(3.4)

For a given trajectory that goes from t0 to tf , we define:

Time-to-Go: tgo(t) , tf − t (3.5)

Line-of-Sight: Λ , r(t)/|r(t)| ≡ r̂(t) (3.6)

Closing velocity: Vc(t) , −|v(t)| (3.7)

Another two important quantities, which are states that define the system, are:

• Zero-Effort-Miss: position error at tf if no correction is applied after t (see Eq. (3.8)).

• Zero-Effort-Velocity: velocity error at tf if no correction is applied after t. (see Eq. (3.9)).

ZEM(t) , rf − r(tf )|a(τ)=0 = rf −
[
r(t) + (tf − t)v(t) +

∫ tf

t

∫ τ

t
g(τ ′)dτ ′dτ

]
(3.8)

ZEV(t) , vf − v(tf )|a(τ)=0 = rf −
[
v(t) +

∫ tf

t
g(τ)dτ

]
(3.9)

Note that if the final states rf and vf are truly reached due to the effect of a command a, then

ZEM(t) ≡
∫ tf

t

∫ τ

t
a(τ ′)dτ ′dτ ⇒ ˙ZEM(t) =

d

dt

(
−
∫ t

tf

(t− τ)a(τ)dτ

)
= −tgoa(t) (3.10)

ZEV(t) ≡
∫ tf

t
a(τ)dτ ⇒ ˙ZEV(t) =

d

dt

(
−
∫ t

tf

a(τ)dτ

)
= −a(t) (3.11)

3.2 Open-Loop schemes

Open-loop schemes (or alternatively trajectory-tracking) were originally developed for Plan-
etary Landing, from which two scheme families have evolved, the Quadratic Scheme and its
augmentation, which is Optimal with Path Constraints.
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3.2.1 Quadratic

Used for the first time for Apollo’s Moon landing, imposes the acceleration command func-
tion to have a linear and quadratic dependence on time, and lets the terminal conditions on
r(tf ), (tf ), v̇(tf ) determine the coefficients of such function:

a(t) = C0 + C1t+ C2t
2 (3.12)

The integration of the acceleration yields the velocity and position profiles, dependent on the
coefficients. If the states are evaluated at tf , a linear system that relates the coefficients with
the terminal states is achieved (Eq. (3.13)), from which the terminal states are extracted.{

v(t) = v(t0) +
∫ t
t0

(a(τ,Ci) + g)dτ

r(t) = r(t0) +
∫ t
t0

v(τ,Ci)dτ

 f(tf )


C0 + g

C1

C2

 =

 v̇(tf )
vf − v0

rf − r0 − v0tf

 (3.13)

Note that the time-of-flight (or tf if initial time is taken at 0) is a free variable and needs to
be selected. This scheme is simplistic, doesn’t enforce fuel-optimal constraints and imposes a
certain polynomial shape on the acceleration profile, and thus the trajectory.

3.2.2 Optimal with Path Constraints

This scheme is an augmentation of the Quadratic scheme, based on the idea that selecting a
function for a(t) with more coefficients will allow for enforcement of both terminal and path
constraints; in particular fuel-optimality. The acceleration is therefore defined as:

a(t) = C0 + C1t+ ...CN t
N (3.14)

And the linear system of Eq. (3.13) alongside with other equations bounding the coefficients Ci

determine the acceleration profile. There is a great number of solvers to solve such problem,
which also allow to use a different profile than Eq. (3.14). In this scheme, the tf is again a free
parameter, but path constraints are enforced. In general, open-loop schemes are simple and
do not require measurements, but manage poor accuracy and do not yield strategies that are
suitable for complex gravitational environments [15].

3.3 Traditional Closed-Loop

Within Traditional Closed-Loop schemes are those that take navigation information to compute
acceleration commands in real time. The flight heritage of them is by far the greatest among
the schemes mentioned in this work.

3.3.1 Proportional

Proportional schemes have been typically used for the missile-interception problem, and the
algorithm is labeled as Proportional Navigation Guidance (PNG). The operational principle is
to apply acceleration commands perpendicular to the line-of-sight Λ. The performance improves
deducting the gravity component perpendicular to Λ, which yields the Augmented Proportional
Navigation Guidance:

PNG : a(t) , nVc(t)Λ̇(t); n ∈ [3, 5] (3.15)

APGN : a(t) , nVc(t)Λ̇(t)− n

2
g⊥(t) ≡ n

t2go(t)
ZEM(t); n ∈ [3, 5] (3.16)

where a greater gain n yields more robustness, greater accelerations, but more fuel consump-
tion. Note that PNG can be written as a proportional gain of ZEM. The time-of-flight is
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undetermined. The angle of the impact Λ with the surface can be bounded, a method for
non-continuous thrust has been developed. The reader is referred to [15] and the references
therein.

3.3.2 Predictive & Hybrid

The predictive algorithms function based on computing the difference between the predicted
impact relative velocity direction and the current one. They cast the problem as ∆v firings
over a span ∆tp, and the acceleration command is defined as in Eq. (3.17), where T is the
Set of times when the firing is allowed to occur. The predictive methods can be separated in
Predictive-Impulsive (PI), and Kinematic-Impulsive (KI):

a(t) =

{
∆v(t)
∆tp

, for t ∈ T
0, for t /∈ T

(3.17)

• Predictive-Impulsive: The current states r(t) and v(t) are known, and the line-of-sight at
tf (rp(tf )) is predicted using the state propagation matrix

Finally, the ∆v command is defined as:

∆v(t) , Vc(t)r̂
p(tf )− v(t) (3.18)

• Kinetic-Impulsive: If the estimates of the current states r(t) and v(t) are not known, they
need to be estimated using optical measurements on Vc(t) and Λ(t), for then to initialize
the process to obtain a(t) for the PI algorithm.

Therefore, KI is just a conceptual augmentation of PI, and in reality the one in practice, since
the current states have to be measured somehow. Predictive algorithms are more fuel efficient
than proportional ones, and earlier firings (i.e. T closer to t0) reduce fuel consumption but
degrade performance at impact. For this, Hybrid algorithms use PI/KI during first stages of
flight and on mid-course they change to PNG to increase the final performance.

3.3.3 Optimal Without Path Constraints - Optimal Guidance Laws

The closed-loop algorithms that are fuel optimal and don’t enforce path constrains are labelled
"Optimal Guidance Laws". They emanate from the solution of the Feedback Control Problem,
cast as the minimization of a the fuel cost function Eq. (3.19).

J(a(t)) =

∫ tf

t
L(x(τ),a(τ))dτ =

∫ tf

t

1

2
a(τ)Ta(τ)dτ (3.19)

The solution to this problem can be approached by using a transformation of the equations
of motion (EOM) using certain co-states, and can be shown that the acceleration profile that
points at the extreme of Eq. (3.19) is of the shape:

a(t) = pv(tf ) + pr(tf )tgo(t) (3.20)

where pv(tf ) and pr(tf ) are the aforementioned co-states, evaluated at tf . Their value depends
on the terminal constraints (e.g. v(tf ) = vf ) and on the time-of-flight through the value of tf .
Note that given a time-of-flight and the constraints, the acceleration profile for the trajectory
will be linear with time. For a more detailed description the reader is referred to [15] and the
references therein. Since in one hand the values of the terminal co-states will depend on the
terminal conditions and the time-of-flight (or alternatively the time-to-go), but on the other
so do the ZEM/ZEV, it can be shown how the acceleration laws can be written in terms of
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ZEM/ZEV. Below are displayed those for the case of a constricted terminal velocity guidance
(CTVG) and a free terminal velocity guidance (FTVG):

CTV G : a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t) (3.21)

FTV G : a(t) =
3

t2go(t)
ZEM(t) (3.22)

The FTVG is also called ZEM/ZEV algorithm or ZEM/ZEV method. Note that:

• No path constraints have been imposed, in particular no control constraints such as the
maximum magnitude of a(t) have been imposed. A list of ways to indirectly deal with
such constraint can be found in [15].

• FTVG structure coincides with the algorithm used in PNG, meaning that with a proper
selection of the n parameter the latter is fuel-optimal.

• The complexity of the gravity field modeling and integration
∫

(g(r(τ))dτ is embedded in
the computation of ZEM and ZEV. To perform accurately such integration is important
in order to not degrade the performance of the control. If ZEM/ZEV is too heavy due
to the time-dependent g, an alternative is to compute segments of a(t) with the desired
states being way points on a reference trajectory, while considering g constant within each
segment.

Regarding the performance comparison between CTVG and FTVG, from the results a robustness-
assessing simulation in [15] is shown how:

• CTVG spends more than FTVG due to the extra effort of controlling velocity magnitude
and direction.

• Both CTVG and FTVG show a great dispersion facing uncertainties, with FTVG sensi-
tivity being larger due to the usage of information on position error only.

3.3.4 Non-Linear Robust

Since the Optimal Guidance Laws strongly rely on the modeling of the problem’s dynam-
ics (which are introduced as the modeling of g), the robustness of the algorithms on errors
or uncertainties of such models is a figure of merit of the schemes. Recently, sliding mode
control (SMC) theory has been used to generate algorithms that are robust to dynamical uncer-
tainty. Two examples are the Optimal Sliding Guidance (OSG) algorithm, in which the CTVG
(or ZEM/ZEV method) is augmented with a non-linear term; or the Multiple Sliding Surface
(MSSG) algorithm, that uses two sliding surfaces to drive the s/c towards the desired states.

Optimal Sliding Guidance Algorithm

In the Optimal Sliding Guidance algorithm the ZEM/ZEV algorithm is augmented with a non-
linear term that rends it robust to uncertainty [16]. The formulation stems from the definition
of a sliding surface:

s(t) = ZEM(t) + λ(t)ZEV(t)⇒ ṡ(t) = ... = −K(t)a(t); K(t) > 0 (3.23)

The aim is to bring the system to s(t) = 0, which is an equilibrium point since the ZEM/ZEV
are zero and the acceleration command is zero. It can be shown how the usage of CTVG or
FTVG results in s → 0 when t → tf [16], and the rate of convergence is ∝ e−λ(t)t [15]. Then,
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to ensure the stability of the sliding surface dynamics, Lyapunov’s Second Stability Theorem is
used to search an a(t) that enforces:

V (s) ,
1

2
sT s (3.24)

{
V (s) > 0 ∀s > 0

V̇ (s) ≤ 0 ∀s > 0
(3.25)

Complying acceleration commands can be as simple and robust as switching ±amax(sgn(s)) so
that s(t) oscillates around 0. Eq. (3.25) is also satisfied with CTVG and FTVG augmented
with a non-linear term, an example being:

a(t) =
6

t2go(t)
ZEM(t)− 2

tgo(t)
ZEV(t)− Φ

tgo(t)
sign(s(t)) (3.26)

Which will yield global stability if Φ ≥ |pmax| ∀t [16], where pmax is the maximum perturba-
tion or uncertainty. Eq. (3.26) is called the Optimal Sliding Guidance algorithm. Note:

• The non-linear term in Eq. (3.26) provides an additional contribution to the acceleration
command, which in general will mean a higher control effort in exchange of increasing
robustness.

• The increase in robustness also allows for a decrease on the number of tracked way points
across a reference trajectory [15].

• The proposed non-linear term forces s(t) to continuously chatter around s(t) = 0, which
greatly degrades the performance with continuous firings around a nominal trajectory.

• In a numerical example in [15] is shown how the SMC augmentation reduces the sensitivity
of the solution to uncertainties with respect to the optimal laws by a half.

In [15] is presented a parametrisation of the Traditional Closed-Loop, that share common struc-
tural properties. The guidance laws aforementioned can be generalised as:

a(t) = [kr kv] ·

[
ZEM
t2go

ZEV
tgo

]
− φ h(ZEM,ZEV, tgo) (3.27)

Where h is a non-linear function for the SMC augmentation and the parameters ki weight the
linear part of a(t). It has been shown above how fuel consumption optimization is brought by
kr = 6 and kv = −2 but it can be shown how other configurations can yield more desirable
results. In general appears a trade-off between the error in closing velocity and the spent ∆v.
References on how to systematically optimise such parameters can be found in [15]. Note that
these laws become singular when t → tf , a situation that would yield bursts in acceleration
commands. The singularity can be avoided by switching off the control system before impact.

Multiple Sliding Guidance Algorithm

The OSG method described in the section above strongly relies on the propagation of the un-
controlled dynamics in order to compute the ZEM/ZEV quantities. In a simple gravitational
environment (e.g. g(t) ≈ ct.), OSG may be effective, since an adequate change in the initial
states that generate the propagated uncontrolled orbit may properly change the final states of
the same. Nonetheless, in a highly changing gravity environment it can be advantageous to
work with an algorithm that has more control authority and is still robust to uncertainty.

The Multiple Sliding Surface Guidance (MSSG) algorithm has been developed in the recent
years [17] and spans from the ideas of SMC to achieve, just as with the OSG, a control that
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is robust to uncertainty. In the MSSG, the objective is to make the system reach a Sliding
Phase in which the current difference between target and actual states will decrease in finite
time. Then, the control is chosen such that the system converges to that Sliding Manifold in
finite time and stays there in the face of perturbations. First, a sliding variable that contains
the state errors is defined:

s1 , r(t)− rd(t) (3.28)
∂(s1)/∂t = ṡ1 = ν(t)− νd(t) (3.29)

where ν is the velocity of the s/c with respect to an asteroid-attached RF and xd is the desired
state x. r is the position of the s/c with respect asteroid-attached RF. The goal is to put the
system on a Sliding Manifold defined by the sliding variable s2:

s2 = ṡ1 +
Λ

tgo
s1, tgo = tF − t (3.30)

which, if s2 ≡ 0, will bring s1 and ṡ1 to 0 at tf . Using Lyapunov methods, it can be shown
that a control that brings the system to s2 = 0 in finite time (FT) and makes the system stable
around s2 = 0 is one such that:

ṡ2 = −Φsign(s2), Φ > 0 (3.31)

In such case, the system will reach s2 = 0 in tr s.t. Φ = |s2(0)|
∆tr

, and will yield global stability
if Φ ≥ |pmax|. Using the definition of s2, one can include the dynamics of the problem in
Eq. (3.31), to obtain the expression for the control action a:

a = − Λ

tgo
ṡ1 −

Λ

t2go
s1 − Φsign(s2)− gNI(t, r) (3.32)

where gNI(r, t) = g(t, r)−Ra(t)− [2ω × ν + ω × ω × r]; and Ra is the position of the asteroid-
fixed RF center at every time. g(t, r) is the gravity force experienced by the s/c. The main
difference wrt. the OSG algorithm is that the position and velocity errors are taken as the
between of the current states and the target states. Also, the dynamics are cancelled at each
instant. This method has been simulation-tested on a binary asteroid case [18], which is a good
precedent of applicability for the current work. The fuel performance of the MSSG greatly
depends on the choice of the algorithm parameters tr and Λ, [17], [18] and developments have
been made to tune the algorithm using Reinforcement Learning [19].

3.4 Computational Guidance & Control

Computational GnC is based on the idea to recurrently compute open-loop schemes during
flight, each time with up-to-date navigation information. This allows to implement both path
and terminal constraints. Such task is computationally heavy, but recent developments have
provided a plethora of algorithms to efficiently tackle it are available. In [15] are mentioned
two trends: Convex Optimisation and Pseudo Spectral Methods. In [11] are stated different
examples in literature on how such problems have been achieved.

Regarding Convex Optimisation, both reviews highlight that one of the major problems is how
to treat constraints that are not convex. In some cases, a process called lossless convexification
(lc.) is performed, which transforms the constraints’ variables so that the former become con-
vex. If the constraints are hard to convexify, i.e. non-linearities in the constrain remain after
the lc., an iterative process called successive convexification is performed, where the constraint
is successively approximated with information from the previous iteration. This framework can
handle hig-order gravitational harmonics and enables the extension of the 3DOF problem into
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a 6DOF by coupling the thrust with the attitude.

In Pseudospectral Methods, the infinite-dimensional problem of minimizing J =
∫

aTadτ is
transformed in a discrete, finite-dimensional Non-Linear Programming problem, that can be
solved using off-the-shelf solvers. Challenges in this approach are that the quality of the so-
lution strongly depends on the Jacobian matrix of the model, and therefore on the ability to
accurately model the dynamics. Another challenge is that the real-time implementation remains
difficult due to the heavy computational cost.

Both in [11] and [15] can be found references that point towards works that explore different
applications of the problem. In particular, [11] mentions how advances on Model Predictive
Control theory promise to generate a framework of control methods that can account for weak
gravity and strong perturbations, which are particular problems of the Asteroid’s environment.
To tackle the high uncertainty environment, [11] points towards the usage of desensitized optimal
control, a framework to construct the reference trajectory where the sensitivity of the solution
to the system’s state uncertainty is penalised. Another approach to tackle the same problem is
to search for, alongside the fuel-optimality, a solution that minimized the system’s covariance.

3.5 Other Paradigms

There exist other algorithms (although in some form related to what has been shown) that
have been used in past works. For example, in [20] is presented a general framework that in-
cludes trajectory propagation, optical-based navigation and an approach for maneuver design
and targeting. Regarding the latter, the authors use what could be understood as a mix of the
Proportional and Predictive algorithm to provide stochastic corrections among deterministic
burns during an asteroid descent. The control algorithm used in [20] is Eq. (3.34). rt is a
target position state on the reference trajectory at the time of the next maneuver, r the current
position and K a sensitivity matrix whose computation is done numerically.

K ,
[
δrt
δ∆v

]
(3.33) ∆v , K−1r (3.34)

The reference trajectory around which these corrections are done uses 4 maneuvers to take the
s/c from an asteroid-fixed hovering position towards a point in the surface. This hovering-to-
surface guidance approach was also used in the Hayabusa2 mission [3] in an approach they
call Pin-point Touchdown. In that mission, the descent phase was separated in a ground-aided
navigation phase ("CGP-NAV", from 20km to 45m) and a final autonomous GNC landing
("6DOF Control", below 45m). During CGP-NAV, the guidance in the vertical direction was
done first by a SMC law (aided by ground-segment) and upon smaller heights changed to a
proportional-derivative law (completely autonomous). In the aforementioned cases the guidance
is based on the availability of great control authority and both require of strict initial conditions
to start the descent. In the experimental phase, Milani is likely to perform 5 control maneuvers,
the last of which would put it in a interception ballistic trajectory from a height of 10km approx.
Therefore, a GnC algorithm that operates within a framework of body interception is preferred,
which in one hand will minimize the impact of the landing phase design on the rest of the
mission; and in the other will be simpler and more reliable. Therefore, the GnC algorithm
choice will be done among those summarized in section 3.6.
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3.7 Algorithm Selection for Milani’s DnL

In this section is presented the rationale for the choice of one algorithm among those in Table 3.1.
At the time of writing, the landing of Milani CubeSat is not critical to mission success and the
GNC system has not been designed to optimize for descent and landing requirements. In partic-
ular, Milani is expected to perform only discrete (300s) firings. Nonetheless, the requirements
of the landing phase (also known as "experimental phase") are still under consideration and
might change. Hence it cannot be excluded that continuous thrust would be finally adopted.
For this reason, in the choice of the MSSG, I first assume that continuous thrust and closed-loop
control are available.

3.7.1 Selection Criteria

The High Level Requirements (HLR) with which the GnC algorithm shall comply are displayed
in Table 3.2:

Table 3.2: High Level Requirements for the Descent & Landing guidance algorithm.

ID Requirement statement

HLR-01 The algorithm shall operate in a binary asteroid dynamical environment.

HLR-02 The algorithm shall comply with the limited CubeSat’s capabilities.

HLR-03 The GNC system shall operate autonomously

Each of the HLR of Table 3.2 leads to design drivers. These are:

1. The algorithm shall operate in a binary asteroid dynamical environment.

1.1. The algorithm shall be robust in front of unmodeled dynamics.
1.2. The algorithm shall provide an accuracy sufficient to perform a soft landing.

2. The algorithm shall comply with the limited CubeSat’s capabilities.

2.1. Lower CPU resources expense is preferable.
2.2. Lower Fuel resources expense is preferable.

3. The GNC system shall operate autonomously.

3.1. The algorithm shall be reliable.
3.1.1. Simple algorithms are preferable.
3.1.2. Algorithms with higher TRL are preferable.

3.2. The possibility to enforce path constraints is preferable.

The algorithms’ performance on compliance with these drivers has been evaluated and is visually
shown in Table 3.3 below. From such evaluation it follows:

• Computational GnC poorly complies with 2.1 and 3.1

• Open-Loop schemes poorly comply with 1.1 and 1.2

• Proportional, Predictive & Hybrid poorly comply with 1.1, 1.2 and 3.2

• Optimal without Path Constraints algorithms poorly comply with 1.1

and hence they can be first ruled out. The ones remaining are the MSSG and the OSG algo-
rithms. In the section below I discuss the choice between the two.
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3.7.2 Choice between OSG and MSSG

The MSSG has been chosen over the OSG. The reasons can be synthesised in two points:

• A main feature of the OSG is that is near fuel-optimal. Nonetheless, it requires on-line
propagation of the orbital dynamics which punishes its robustness. Since the s/c is at
its mission end, the remaining fuel is fully available for the landing process, and thus the
fuel consumption is secondary with respect to robustness. This means that the MSSG
robustness primes over the OSG fuel optimization.

• It has been observed1 that on the Didymos environment the MSSG algorithm has greater
control authority than OSG at optimal gains. This results in the OSG having robustness
weaknesses (detailed below) that the MSSG does not, and so the MSSG is chosen over
the OSG.

The aforementioned weaknesses from which the OSG suffers in the Didymos dynamical envi-
ronment are:

1. The fact that the landing point rotates wrt. inertial space with a relatively high velocity2

imposes a problem that can be described from two points of view:

• If the OSG command is computed on the N RF (see Table B.1), the landing point
moves fast, rotating about an axis, and the algorithm needs to constantly update
what would be a desired trajectory to impact the target with the relative desired
states (namely zero position and velocity error). This makes the OSG fail to converge
to a static landing trajectory.

• If the OSG command is computed on the D2 RF (see Table B.1), the target states
are constant, but the dynamics of the trajectory is ruled by the gravitational field
and the quickly changing inertial forces. Then, the OSG computes at each time an
acceleration command in the D2 RF that should move the uncontrolled trajectory
endpoint towards a desired position, but this last step is greatly degraded by the
strong non-inertial dynamics.

2. The second point of view above entails that the OSG is slower to converge to s1 = 0, ṡ1 = 0
than the MSSG (even the latter being at minimum gains and its slowest convergence rate).
In the end, the OSG does reach ZEM = 0, ZEV = 0, but starts to strongly converge only
when tgo gets closer to zero and the control gains grow. Also, since typically is needed
to reduce the velocity to perform a soft-land interception, the OSG has the tendency to
reach the landing target by doing a small loop (radius of O(1m)) that passes below the
surface of the asteroid. Path constraints to avoid this effect can be introduced by tuning
the OSG gains previous or during flight [21], but such tuning would require dedicated
studies and is left out of the scope of this work.

3. Another issue of the OSG method is related with the choice of the ToF and the ability
of the algorithm to drive the endpoint of the virtual uncontrolled trajectory towards the
desired landing point. If the ToF is selected such that the endpoint of the uncontrolled
trajectory is further away than the asteroid, the OSG needs to bring the endpoint closer
to the current position. A problem arises in the computation of these kinds of virtual
uncontrolled trajectories. That computation can be done in two ways:

• Do not inform the OSG method that there is an asteroid, and let the virtual uncon-
trolled trajectories pass through. It has been observed that this leads to the virtual

1Using the implementation proposed in Appendix B with unbounded thrust and unperturbed environment.
2Note that this issue is present because the target is Dimorphos. In past literature the Asteroid-attached RF

was assumed to be rotating but at lower rates and also non-accelerated. See [15]–[17], [19].
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trajectory pass near the asteroid’s center and hence be impossibly accelerated by a
fictitious gravity.

• Inform the OSG method that there is an asteroid, and stop the virtual trajectories
if they collide with the surface. This has been observed to generate jumps in the
position error, that greatly degrade convergence. Also, it has been noted that the
virtual trajectories colliding with the asteroid will reach it with a relatively large
relative velocity, which then the OSG needs to slow down and the problem mentioned
in point 1 is encountered again

Finally, it could be argued that the gains of the OSG method could be tuned (probably by
increasing them significantly) such that its control authority increases and the issues presented
are nullified. In that case though, the fuel expense becomes larger than the optimal (which OSG
would generate at optimal gains); and therefore it would become pointless to use an algorithm
that is more complicated in terms of computation and CPU than the MSSG, and whose main
advantage was to be derived from an Optimal Guidance Algorithm that minimized fuel usage.
Another way to avoid the issues mentioned above would be to use the OSG method to track a
reference trajectory. This has been done before [15] and the method is great at it, since it would
target consecutive points on a dynamically compatible3 reference trajectory. Nonetheless, to use
a reference trajectory in Milani would require knowledge of Didymos’ dynamical environment;
which, even if available, would punish the robustness criterion.

On the contrary, as explained in sec. 3.3.4, the MSSG operates differently and does not suf-
fer from the mentioned issues: the MSSG cancels the modelled perturbing dynamics at each
instant, and if enforced in the asteroid-attached RF, synchronizes the s/c with the rotation of
the asteroid. Then, in that frame, the MSSG exerts commands that monotonically decrease the
distance between the s/c and the landing target, as well as the relative velocity.

From the above discussion, I have chosen the MSSG over the OSG method. Note that the
elimination process is fundamentally ruled by robustness (which in small bodies’ operations
implies accuracy) and CPU, which are important drivers to adress the specific problem of
operating a CubeSat in a distant small body environment.

3Meaning that the desired states (r, ν) would be relatively easy to achieve by deflecting the actual s/c
trajectory to match a reference one.



3.7. ALGORITHM SELECTION FOR MILANI’S DNL 21

T
ab

le
3.

3:
T
ra
de
-o
ff

ai
m
ed

at
th
e
se
le
ct
io
n
of

a
G
nC

al
go
ri
th
m

fo
r
M
ila

ni
’s

D
nL

.
G
re
en
er

co
lo
rs

re
pr
es
en
t
a
be

tt
er

pe
rf
or
m
an

ce
an

d
re
d
re
pr
es
en
t
a
w
or
se

pe
rf
or
m
an

ce
.
W

hi
te

ce
lls

ar
e
th
os
e
w
he
re

a
co
m
pa

ri
so
n
in

th
e
gi
ve
n
co
lu
m
n
do

es
no

t
ap

pl
y.

N
-O

:N
on

op
ti
m
al
.
O
:O

pt
im

al
.

P
ar
en

t
D
ri
ve
rs

C
u
b
eS

at
P
at
h
C
on

st
ra
in
ts

A
st
er
oi
d
p
ro
b
le
m

p
ar
ti
cu

la
ri
ti
es

R
el
ia
b
il
it
y

A
lg
or
it
hm

s/
D
ri
ve
rs

C
P
U

c.
Fu

el
c.

-
R
ob

u
st
n
es
s

(s
en

si
ti
vi
ty

to
u
n
ce
r.
)

A
cc
u
ra
cy

(d
is
p
er
si
on

at
ta
rg
et
)

M
ea
su
re
m
en
ts

(a
re

n
ee
d
ed

?)
F
li
gh

t
H
er
it
ag
e

Q
u
ad

ra
ti
c

O
pe

n-
Lo

op
N
-O

(s
ea
rc
h
T
oF

fo
r
fu
el
)

N
o

Lo
w

(e
rr
or
s
in

g
pr
ed

ic
ti
on

)
Lo

w
(n
o
m
ea
s.
)

N
o

Y
es

(A
po

llo
,C

ur
io
si
ty
)

O
p
ti
m
al

w
/
P
at
h
co
n
st
ra
in
ts

O
pe

n-
Lo

op
O

Y
es

Lo
w

(r
es
ea
rc
h
to

ap
pl
y

SM
C

ha
s
be

en
do

ne
)

Lo
w

(n
o
m
ea
s.
)

N
o

Y
es

(F
al
co
n)

P
ro
p
or
ti
on

al
Lo

w
(g

ca
n
be

co
ns
t.

or
no

t
it
eg
ra
te
d)

N
-O

N
o

M
id

(i
nf
o
on

g
op

ti
on

al
,c

an
no

t
de

pe
nd

on
m
od

el
)

M
id

(m
ea
su
re
m
en
t

on
po

si
ti
on

)
Y
es

Y
es

(I
nt
er
ce
pt
or
s)

P
re
d
ic
ti
ve

an
d
H
yb

ri
d

M
id

(l
in
ea
ri
ze
d
or
bi
t

pe
rt
ur
ba

ti
on

s
pr
op

ag
at
io
n)

N
-O

(b
et
te
r

th
an

P
ro
po

r.
)

N
o

Lo
w

(d
ep

en
de

nc
e

on
pr
op

ag
at
io
n
of

dy
na

m
ic
s)

Lo
w

(d
ep

en
de

nc
e

on
pr
ed

ic
ti
on

)
Y
es

(K
I)

Y
es

(I
nt
er
ce
pt
or
s)

O
p
ti
m
al

w
/o

P
at
h
C
on

st
ra
in
ts

H
ig
h

(Z
E
V
/Z

E
M

in
te
gr
al
.
U
se

w
ay

po
in
ts
.)

O

N
o,

bu
t
ca
n
be

in
di
re
ct
ly

de
al
t
w
it
h

M
id

(u
sa
ge

of
in
fo

on
po

si
ti
on

an
d
ve
lo
ci
ty
.)

M
id

(s
ou

rc
e
of

in
ac
cu

ra
ci
es

is
m
od

el
in
g
er
r.
)

Y
es

N
o,

bu
t
in
du

st
ri
al

tr
en

d

O
p
ti
m
al

S
li
d
in
g
G
u
id
an

ce
H
ig
h

(S
am

e
as

ab
ov
e)

N
-O

(c
lo
se

if
ch
at
te
ri
ng

-f
re
e

au
gm

en
ta
ti
on

s)

N
o,

bu
t
ca
n
be

in
di
re
ct
ly

de
al
t

w
it
h

H
ig
h

H
ig
h

(i
m
pr
ov
ed

du
e

to
hi
gh

ro
bu

st
ne

ss
)

Y
es

N
o,

bu
t
in
du

st
ri
al

tr
en

d

M
u
lt
ip
le

S
u
rf
ac
e
S
li
d
in
g
G
.

Lo
w

(n
o
pr
op

ag
at
io
n)

N
-O

(t
un

ab
le
)

Sa
m
e
as

ab
ov
e

H
ig
h

H
ig
h

Y
es

N
o,

bu
t
in
du

st
ri
al

tr
en

d.
A
pp

lic
ab

le
ca
se
s
st
ud

ie
d.

C
om

p
u
ta
ti
on

al
G
n
C

V
er
y
H
ig
h

Y
es

O
H
ig
h
(m

et
ho

ds
to

op
ti
m
is
e
ro
bu

st
ne

ss
)

H
ig
h
(m

et
ho

ds
to

op
ti
m
is
e
ro
bu

st
ne

ss
)

Y
es

N
o,

in
de

ve
lo
pm

en
t



22

Chapter 4

The Multiple Sliding Surface Guidance
Algorithm

In this chapter I study in detail the Multiple Sliding Surface Guidance Algorithm (MSSG);
discuss how to implement it and how does it perform under Didymos’ dynamical environment.
The model and validation of the dynamical environment, as well as the summary of how the
MSSG is implemented can be found in Appendix B. The chapter is organized as follows: Section
4.1 goes through an introduction to Sliding Mode Control theory; Section 4.2 presents the
derivation of the MSSG; and Section 4.3 contains the study of the MSSG performance and a
parametric analysis on Didymos’ environment. In this last section are studied the sliding mode
dynamics, the effect of the MSSG parameters, the effect of the trajectory’s ToF, and the effect
of random perturbations.

4.1 Introduction to Sliding Mode Control Theory

4.1.1 Basic Definitions

A system ẋ = f(x, t) is said to be in Sliding Mode1 if its states x evolve through a prescribed
trajectory called Sliding Surface (if its defined by a linear combination of states) or a Sliding
Manifold (if it is a non-linear combination of states). A Sliding Manifold is defined by the 0
contour of the Sliding Variable function, that we can call s:

s = s(x, t) (4.1)

In other words, when s = 0 the system is said to be in Sliding Condition. Sliding Mode Control
(SMC) is the control discipline whose objective is to rule a system by bringing it to a desired
Sliding Manifold and make it remain thereafter, because in such case the dynamics of the sys-
tem will be the ones defined by the Sliding Manifold. A particularly interesting aspect of SMC
is its ability to guarantee that a system is brought to and maintained on a Sliding Condition
regardless of the presence of bounded disturbances. The order of the Sliding Mode is determined
by the time derivative of the output at which the control first appears explicitly:

Definition: Let ẋ = f(x, t) be a smooth system with a smooth output y(x, t). Provided that
y, ẏ, ÿ..., y(r−1) are continuous, and that y, ẏ, ÿ..., y(r−1) = 0, the motion on the set
{y, ẏ, ÿ..., y(r−1)} = {0, 0, 0, ...0} is said to exist in r-th order sliding mode (or r-sliding mode)
[17]. Also, the output y is said to be of relative degree r.

This is, if the control first appears in the r-th time derivative of the output and not on the previ-
ous, but all of the derivatives are continuous, the system is in an r-th order sliding mode. E.g. a

1Also said to be on the Sliding Phase, or in the Sliding Condition
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system excited by a control u will be on 2nd order sliding mode if ÿ = g(u) and (y, ẏ) = 0 6= h(u).

The phase during which the system is driven towards (but is not on) the Sliding Surface is
called Sliding Phase. The desired dynamics of the Sliding Variable when outside the Sliding
Surface is called Reachability Condition. Meeting it means that the system is driven towards the
Sliding Surface. Typically the Reachability condition is designed using Lyapunov techniques,
to ensure that the system is stable and is brought to zero (s→ 0) in finite-time (FT). Hence it
is convenient to introduce the Second Lyapunov Stability Theorem.

4.1.2 Second Lyapunov Stability Theorem and Finite Time Stability

Theorem: Let ṡ = f(s, t) be an autonomous non-linear dynamic system with an isolated equi-
librium point at s∗. If in the neighborhood D of the point s∗ exists a scalar function V (s)
s.t.:

V (s) > 0 ∀s 6= s∗, V (s∗) = 0 (4.2)
d(V (s))/dt ≤ 0 ∀s 6= s∗, d(V (s∗))/dt = 0 (4.3)

then the system is said to be asymptotically stable (perturbations are driven to zero asymptot-
ically). If D contains all possible states s then the system is globally asymptotically stable.

To make the system FT stable (perturbations about the equilibrium are driven to zero in FT),
the Reachability Condition on Eq. (4.3) can be further restricted to:

d(V (s))/dt ≤ −η|s| ∀ s 6= s∗, d(V (s∗))/dt = 0, η > 0 (4.4)

A typical candidate function satisfying Eq. (4.2) is V (s) = 1
2s

2. Using such function, a system
meeting the Reachability Condition of Eq. (4.4) will evolve as:

ṡ ≤ −η|s| → ṡ ≤ −η|s|/s = −ηsign(s)→ ∀s ≥ 0 : ṡ ≤ −η →
∫ s(t)

s0

ds ≤ −η
∫ tf

t0
dt

→ s(t) ≤ s0 − η(t− t0)→ s0 = η(tr − t0) = η∆tr

and therefore the system will reach s(tr) = 0 if η ≥ s0
∆tr

. Importantly, using a control u that
imposes ṡ = −Φsign(s2) ≤ −ηsign(s) is equivalent to meeting Eq. (4.4), and thus it yields a
system that is finite time stable, with a reaching time2 of ∆tr = |s0|

Φ .

Let s now be a sliding variable that we wish to bring to 0. If the derivative of the control
already appears explicitly on the first derivative of s, i.e. the system of 1st relative order, using
the process described above: ṡ = −Φsign(s) = g∗(u)→ u = g(−Φsign(s)), and thus u is very
straight-forward to obtain. Then, u and can keep the system at exactly s = 0 by switching
infinitely fast following the sign(s) function about s = 0. If the system is of higher order this is
not true and other techniques shall be used to design appropriate controllers, a discipline called
Higher Order Mode Control (HOMC) [22].

4.1.3 Chattering for 1st order SMC

When the system reaches the sliding phase (s(t) = 0 ∀t ≥ tr), a control such as the proposed
above (i.e. u(t) s.t. ṡ = −Φsign(s)) will keep s = 0, and thus ṡ = 0. This is achieved by
an infinitely fast switching of the function sign(s). In computer simulations or real systems,

2Reaching time: time at which the system reaches the Sliding Surface: tr. In this work it is used synonymously
to refer at the time it takes the system to reach the sliding surface: ∆tr := tr = ∆tr + t0. Also ∆tr = n∆tf =
n · ToF .
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this switching is not infinitely fast, and typically undesirable, since makes the control function
u(t) switch equally fast. To mitigate chattering in 1st relative order systems, there are different
approaches [22], [23]:

• Boundary Layer (continuous control): in a boundary layer around s = 0, approximate the
discontinuous sign(s) function by a continuous one, such as the sigmoid function:

sigmoid(s) =
s

|s|+ ε
ε > 0 (4.5)

where ε is a small number. This approach degrades the performance and the system
cannot maintain s = 0 exactly, although can be tuned to remain close. For this reason,
this is called quasi-sliding mode control.

• Asymptotic Sliding Mode: a way to attenuate chattering is to use a virtual variable ν
as control (the one ruled by sign(s)), and let the system input u be the integral of such
control: u̇ = β. In this way, the physical input is

u(t) =

∫ t

t0

βdt =

∫ t

t0

β(sign(s))dt (4.6)

and the chattering is "hidden" in ν. The variable u(t) still suffers from chattering, but
much more reduced in magnitude. With this method a computer still needs to integrate
a very fast switching function β.

4.2 MSSG Derivation

4.2.1 Dynamics Notation

To now tackle the Multiple Sliding Guidance method, first it’s needed to introduce some notation
describing the dynamics. Consider the RF described in Table 4.1. Let R be the inertial position
of the s/c, and Ra the inertial position of the asteroid, then the relative position of the s/c with
respect to the asteroid, in the D2 RF:

r = R−Ra (4.7)

let now ν be the relative velocity of the s/c with respect to the D2 RF, expressed in the D2 RF:

ν =
∂r

∂t

∣∣∣
D2

= ṙ (4.8)

Assume that D2 is in equilibrium within the full 2BP and hence its rotational state is constant
[1]. Then, the dynamics of a constant-mass s/c relative to the asteroid are described by:{

ṙ = ν

ν̇ = −2ω × ν − ω × ω × r − R̈a + g(r, t) + u
(4.9)

where ω is the angular velocity of the D2 RF, g(r, t) are the gravitational and perturbing forces
on the s/c and u is the control acceleration. In Eq. (4.9) the D2 RF acceleration, R̈a = d2Ra

dt2

∣∣∣
N
,

is extracted from the target asteroid’s ephemeris.
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Table 4.1: Reference frames being used for the derivation of the MSSG algorithm.

Abbreviation Full name Inertiallity Comment

D2 RF Dimorphos Body-attached RF No Centered in D2 CoM, fixed on the body.
Defined by ESA’s Kernels.

4.2.2 SMC Applied to Asteroid Landing

The derivation shown on this subsection is extracted from [17] unless otherwise stated. The
objective of the MSSG is to control the relative position and velocity of the s/c (r, ν) such that
they reach a desired value (rd, νd) (landing states) at a time tf (landing time). The control is
sought to be robust to bounded perturbations. At the same time, it is advantageous to prevent
chattering, and an option is to define a sliding surface that is only crossed when the problem
ends (the s/c lands). To do so, a sliding surface s is defined as:

s1(r, t) = r(t)− rd(t) (4.10)

where rd(t) is the desired landing position. All the vectors in Eq. (4.10) and all vectors men-
tioned hereafter are expressed in the D2 RF. Note that the problem driving and maintaining
s(r, t) on 0 is a 2nd order SMC, since the control first appears explicitly on the 2nd derivative
of the surface s:

s1 = r − rd (4.11)
ṡ1 = ṙ − ṙd = ṙ (the landing point is fixed on the D2 base) (4.12)

s̈1 = r̈ = −2ω × ν − ω × ω × r − R̈a + g(r, t) + u (4.13)

to grant a sliding mode on the surface s1 = 0, the Lyapunov FT stability conditions of Eqs. (4.2)
and (4.4) have to be met. This is done by, instead of imposing a ṡ1 = g(u(t)) (because the
system has a 2 relative order), using the velocity ṡ1 as the virtual controller, such that:

ṡ1 = − Λ

tgo
s1, tgo = tf − t (4.14)

where Λ is a diagonal matrix of positive gains. If such equality is fulfilled, it can be shown how:

s1(t) = s1,0(1− t/tf )Λ (4.15)

ṡ1(t) = −Λ

tf
s1,0(1− t/tf )Λ−I (4.16)

and therefore the surface will get to s1 = 0 at tf if Λ > I and ṡ1 = 0 at tf if Λ > 2I. Then,
the Lyapunov conditions are met and the s1 will FT stable. Importantly, the minimum gain
to achieve a landing with zero relative velocity is Λ = 2I. The second step is to seek a control
such that Eq. (4.14) is met. This is done by defining another sliding surface:

s2 = ṡ1 +
Λ

tgo
s1 (4.17)

which is of 1 relative degree and therefore can be controlled by the standard SMC methods:

ṡ2 = s̈1 +
∂

∂t

(
Λ

tgo
s1

)
= −2ω × ν − ω × ω × r − R̈a + g(r, t) +

Λ

tgo
ṡ1 +

Λ

t2go
s1 + u

note the control u appearing as the last term of the RHS of the equation above. Finally, the
control u is set such that ṡ2 = −Φsign(s2)⇒ Eq. (4.3) is fulfilled and s2 → 0 in FT:

u = 2ω × ν + ω × ω × r + R̈a − g(r, t)− Φsign(s2)− Λ

tgo
ṡ1 −

Λ

t2go
s1 (4.18)



4.3. MSSG PERFORMANCE AND PARAMETRIC ANALYSIS 26

where g(r, t) stores all the modelled perturbations on the s/c (in this work, the gravitational
pulls and the SRP). It can be easily shown how s2 will remain stable (sign(ṡ2) = −sign(s2))
if Φ ≥ |pmax|, where pmax is the maximum unmodeled perturbation, and thus this algorithm is
robust in front of bounded unmodeled dynamics [17]. The expression can be further compressed
by storing all the non-inertial accelerations and perturbing accelerations in a term gNI(t, r):

u = −Φsign(s2)− Λ

tgo
ṡ1 −

Λ

t2go
s1 + gNI(r, t) (4.19)

where gNI(t, r) = 2ω × ν + ω × ω × r + R̈a − g(r, t).

4.3 MSSG Performance and Parametric Analysis

Eq. (4.19) is called the Multiple Sliding Guidance Algorithm. Note the following observations:

• The landing states, expressed in the D2 RF, are constant, and therefore the ToF is a
free parameter: changing the ToF will change the landing time and therefore the inertial
location of the landing target. Such change of position is "hidden" in the term R̈a of the
dynamics’ propagation in Eq. (4.9).

• Since the dynamics equations upon which the MSSG has been constructed describe the
relative position and velocity of the s/c with respect to the D2 RF, the control effort will
try to nullify ν and thus the s/c will synchronise itself with the rotation of D2, which is
advantageous from the relative navigation perspective.

• The MSSG algorithm as presented does not have information about the presence of the
asteroid’s surface and the possibility of collision at a different point than rd. Indeed, the
trajectory generated will not collide with the asteroid surface in the case that the selected
target point is on the surface cap visible to the s/c at the start of the control.

• Chattering will appear s2 = 0, ideally only when t > tr .

• Compared to the OSG (see section 3.3.4), the MSSG is a "brute force" approach, since
it does not take into account that the dynamics would propagate on its own: instead,
it cancels the dynamics and commands the s/c towards the landing target. By this,
the MSSG sacrifices fuel performance but compensates it by having a greater control
authority, since the trajectory on the D2 RF is no longer bounded by the propagation of
gravitational dynamics.

The aim of the rest of Chapter 4 is to study the behaviour of the MSSG as derived using
the implementation presented in Chapter B. Even if the dynamical environment is Didymos’,
the spirit of this study is to analyse the MSSG algorithm alone, and thus no thrust constraints
derived from the Milani s/c design have been introduced. Specifically, in this section the thrust is
left to be unbounded in magnitude and direction, and it is not quantized. Also, the states (r, ν)
are assumed to be perfectly known in the closed-loop control. Nonetheless, since chattering
of sign(s2) introduces simulation challenges, a Schmitt trigger and a sigmoid() function (see
section 4.1) have been used in all simulations that appear hereafter. Both devices are tuned as
explained in section 4.3.2.

4.3.1 Sliding Mode Dynamics

The standard order SMC action (u(t) s.t. ṡ2 = −Φsign(s2)) is responsible for

• Driving the surface s2 to 0 in FT (see in section 4.1). The reaching time is: ∆tr : Φ =
|s2(0)|
∆tr

; after which the s1, ṡ1 → 0 in FT and s1, ṡ1 = 0 at tf (landing time) due to the
dynamics imposed by Eq. (4.14).
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• Reject perturbations bounded by |p| < Φ and keep the system converging towards s2 = 0
regardless of bounded unmodeled dynamics

Thus, the value of Φ can be determined from two requirements: i) the necessity to converge at
a time tr departing from an initial error s2(0) and ii) the necessity to to reject disturbances up
to a given magnitude pmax. Therefore, two Φ constants can be introduced: one that rules the
reaching time and another that rules the stability on sliding mode:

Φconv =
|s2(0)|

∆tr
(4.20)

Φstab > |pmax| (4.21)

The value of ∆tr will usually be specified by the constant n: ∆tr = n ·ToF . Both Φ values can
diverge significantly, as the s2(0) might be great when the control is started but the disturbances
to reject can be relatively small. Thus, it could be advantageous to decouple the two problems
and establish two different Φ. Importantly, note that if Φstab > Φconv, and Φ = Φconv ∀ t < tr,
during the Reaching Phase the system would not be able to reject disturbances, and therefore
it would not be guaranteed that s→ 0 in tr. This could be tackled by setting Φ s.t.:

Φ =

{
max

(
|s2(0)|
∆tr

, |pmax|
)
∀ t < tr

|pmax| ∀ t ≥ tr
(4.22)

Another subject is the effect of the failure to impose s2 during the flight. In practice it is not
needed for the system to be at s2 = 0 to drive the states s1 → 0, just with s2 getting closer to
0 s1 → 0. E.g., if s2 = c ∈ R ∀t and Λ = 2:

ṡ1 = c− 2

tgo
s1 → s1(t) = s1,0

(
tgo
tf

)2

+
c

tf

[
tgo
tf
−
(
tgo
tf

)2
]

(4.23)

an example of the evolution of s1(t) for the case where c� 0 is displayed in Fig. 4.1a below.
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(a) s2 = ct. = c = 1m/s
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(b) s2 = ct. = c = −1m/s

Figure 4.1: Evolution of s1(t) for fixed parameters: tf = 100s, s1(0) = 10m, and Λ = 2.

In Fig. 4.1a can be seen how if s2 = c 6= 0 ∀t, the control still brings s1 to s1 = 0 at tf .
This is important because i) it means we can expect to reach the landing point even if the
reaching time is the landing time; and ii) even if the control u can’t keep s2 = 0 exactly (but
s2 = ct. = c ≈ 0) the system will still reach the landing point. Nonetheless, note that a convex
evolution is shown, which would mean that the s/c would start to drift away from the landing
point before pointing back towards it. This can be avoided by ensuring that

s̈1 ≤ 0→ 0 ≥ d

dt

[
c− Λ

tgo
s1

]
→ c ≤ (Λ− I)

s1

tgo
(4.24)
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This is, to maintain the error of s2 6= 0 low enough. Note that if c is kept perfectly at 0 the
condition is always met. In addition, there is a restriction on the fixed value of s2(0): the
surface s1 will cross 0 at a time determined by the solution of:

0 = s1,0

(
tgo
tf

)2

+
c

tf

[
tgo
tf
−
(
tgo
tf

)2
]
→ tcol = f(c, s1(0)) (4.25)

or what is the same, at each t there is a limit value of c, the distance from s2 = 0, beyond which
s1 will be crossing s1 = 0:

clim(t) =

(
1−

tf
t

)
s1(0) (4.26)

note that this is a non-issue if t → tf , because then clim → 0 but at that moment the s/c is
expected to be reaching the landing point s1 → 0 at a small relative velocity (ṡ1 → 0), and
thus s2 → 0 naturally. Indeed, in Fig. 4.1b is displayed an example of such case. Luckily, in
practical terms it is not true that s2 = ct. = c ∀t because the control u s.t. ṡ2 = −Φsign(s2)
will quickly drive s2 to 0. Nonetheless, in reality unmodeled dynamics will make s2 remain in
a boundary layer around s2 = 0, or at a value s2 = ct. = c � 1, and thus the s/c will never i)
first-time cross s1 at tf exactly and ii) with ṡ1 = 0. Importantly, the velocity ṡ1 will show the
same behaviour, since in sliding mode ṡ1 is constant-proportional to s1 (see Eq. (4.9)).
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Figure 4.2: Dynamics of the s1 surface in the ideal sliding mode, i.e. s2 = 0 ∀t > tr

Figure 4.3: Example of a trajectory on
the Sliding Surface s2 = 0 expressed in
the D2 RF.

The effect of changing the gain Λ can be under-
stood as tuning how slow is the final approach to
the landing point. Let the system be on the ideal
sliding mode (s2 = 0 ∀t > tr). The evolu-
tion of s1, ṡ1 for different Λ is shown on Fig. 4.2.
There, it can be seen how Λ ↑ makes the veloc-
ity ṡ1 asymptotically approach the coordinates axis
faster, meaning that the s/c will quickly approach
the landing point to descend upon it progressively
more slowly. Note that for Λ = 2, ṡ1(t) is a
straight line: for smaller gains velocity would not con-
verge.

Since the monotonic decrease of relative of position and
velocity error is defined in the D2 RF, a decrease of tr
means that the s/c will synchronize itself with the aster-
oid motion quicker, "chasing" it so that the s/c remains
in a relative linear descend towards the landing target.
An example of that can be seen in Fig. 4.3. Also, the
higher is Λ, the more time will be the s/c forced to slowly fall towards the target point. The
combination of such effects mean that for a stronger control (Λ ↑ and tr ↓) the s/c chases the
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target more intensely. An example of such phenomena can be seen in Fig. 4.4.

(a) Λ = 2, n = 0.9 (b) Λ = 10, n = 0.1

Figure 4.4: Example of inertial motion of the controlled s/c for high and low gains, expressed in the
N RF (DidymosECLIPJ200). Note that the trajectory does not collide with D2 before the landing time
but rather the s/c falls to D2 from its front.

4.3.2 Dealing With Chattering

In this work I have mitigated chattering using a mix between 2 of the previously presented
approaches. First, a boundary layer around s2 = 0 is introduced, by setting a constant ε
s.t. that the bottom limit of the boundary layer activates the 1% of the sigmoid function3:
0.01 = sigmoid(s2,low). This makes the control profile smoother, but in exchange degrades the
performance because if s2 → 0, |Φ · sigmoid(s2)| < Φ,( e.g. |sigmoid(≈ 0)| ≈ 0.5 < |sign(≈
)| = 1), and the control cannot reject the maximum disturbance there. This has been observed
to minimally affect the final performance of the algorithm. Indeed, for the fuel-optimal case of
Fig. 4.7a below the relative difference on collision velocity between the use of sigmoid(s2) and
sign(s2) with the proposed ε is of the ≈ 2% on a value of ≈ 0.9 cm/s.

Importantly, the sigmoid function can also produce a very fast switching if slow is relatively
small. To ensure that the period of control oscillations is higher and that the SMC perturbation
compensation is not activated if we are close to s2 = 0, I have introduced a Schmitt Trigger to
generate an oscillation between shigh and slow The boundaries shigh and slow have been set ex
post simulation to:

shigh = 10−2 m/s, slow = 10−4 m/s (4.27)

Note that under the acceleration of Φstab or the common accelerations during a nominal ap-
proach4, the period of oscillation in the band is of: Tband ≈

shigh−slow
10−4 ≈ 100s. If the environ-

mental acceleration was suddenly 10 times the max. expected, the period of oscillation would
be still of Tband ≈ 10s.

For illustration purposes, in Fig. 4.5 is displayed the evolution of some parameters involved in
the MSSG execution (i.e. s2, s1, the acceleration command) for an example trajectory. The
gains are Λ = 2.1 and n = 0.6. In Fig. 4.5 can be readily seen how the control brings s2 to

3The mission Hayabusa2 also used this approximation [3].
4They are up to O(10−4), see Table 4.4.
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0 at approximately tr. Note that it is not at tr precisely due to the control degradation from
the sigmoid and the trigger. Regardless, s2 is firmly maintained around s2 ≈ 0, and on the
east-most plot Fig. 4.5 can be seen how the states r and ν go to zero at tf . Note that the
evolution of ν shows the "parabolic" shape of Fig. 4.1a due to n = 0.6 and the system being
far from s2 = 0 for a long time.
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Figure 4.5: Evolution of the quantities involved in an MSSG execution. tF − star is used to label the
reaching time, marked with a violet vertical line. The final time tf is marked with a green vertical line.

4.3.3 Effect of Guidance Gain Λ and Reaching Yime tr

Impact of Λ and tr on Landing Performance

For some given departure states (t0, r(t0), ν(t0)), and a landing target (rL = ct.), the perfor-
mance of the MSSG algorithm depends on the control starting epoch t0; the wished landing
time tf ; the value of Φ; and in which way the control is exerted (e.g. a Schmitt trigger, a
PWPF modulator...). Usually a given trajectory is desired, which imposes a t0 and tf ; and the
value of Φ is fixed either the environmental perturbations or s2(0). Since Φstab is fixed from the
dynamical environment, Φconv is the only Φ up to choice. Then, the gains of the control are Λ
and Φconv ∝ 1/∆tr = 1/n(tf − t0) ∝ 1/n (see section 4.1). Hence, the tuning of the MSSG will
be fundamentally based on the choice of

Λ ∈ [2, ∞) (4.28)
n ∈ (0, 1] (4.29)

The parametric dependence of the MSSG’s performance has been tested in MATLAB , using the
model described in Appendix B. To study the MSSG itself, the thrust has been left unbounded
both in magnitude and direction, and the gain matrix is spherical. For the test, the initial states
have been retrieved from a reference trajectory Kernel computed by Milani Mission Analysis
Team5. This particular reference trajectory is expected to perform a close passage about D2
at approximately 18-jun-2027-20:45:00 (UTC). The target landing point has been chosen as
displayed in Table 4.2 below.

5Part of DAER in Politecnico di Milano
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Table 4.2: Initial and final states for the parametric analysis test. The landing target has been selected
as DART spacecraft’s crater.

Time (UTC) Position Velocity

Start 18-jun-2027-18:00:30 Retrieved Ref. Trajectory

Landing 18-jun-2027-20:45:59 [-25.45 -74.51 17.57] [ 0 0 0 ]

The collision velocity (Vc , ν(tf )) and the fuel spent have been captured for a number of
combinations of gains Λ and Reaching Times tr, the latter specified by as the fraction of the
landing time tf with a constant n: ∆tr = n(tf − t0). For this particular case, the performance
of the MSSG is displayed in Figs. 4.6a and 4.6b below.

Regarding Vc, Fig. 4.6a shows that the Vc is mainly insensible to changes in Λ and tr. Nonethe-
less, if Λ < 2, Vc suddenly climbs as the ṡ1 follows Eq. (4.9) with an exponent < 1. Changes
on tr also have a minor impact on Vc, excepting when ṡ is out of the proper convergence rate
with Λ < 2. It is noteworthy that the maximum collision velocity is < 2.5cm/s, meaning that
even with the lower performance parameters the algorithm yields an acceptable soft landing.
Regarding ∆m, in Fig. 4.6b can be observed how indeed higher Λ yields higher ∆m and smaller
tr yields smaller ∆m. Nonetheless, in contrast with the Vc dependence on Λ and tr, is notewor-
thy that, the smaller is tr, changing the parameters does have a big impact on ∆m. Also, it is
noteworthy that with greater tr, ∆m loses sensitivity to changes in Λ.

Selection of Λ and tr for Continuous MSSG

The aim of this section is to discuss the selection of the gain matrix Λ and the reaching time
tr [n] for continuous thrust MSSG. This is relevant as a tool to scope to understand how MSSG
behaves and for Mission Analysis purposes. The Milani landing on Dimorphos imposes a set of
necessities that rule the selection of the MSSG parameters. These are:

1. Necessity to keep a good landing performance in front of uncertainty

1.1. Necessity to keep the descent velocity big enough to ensure a convergence towards
r → rL in front of perturbations. This drives for small Λ values, since the lower is Λ
the less time does the trajectory shown in Fig. 4.4 spend at low relative velocities.

1.2. Necessity to keep the collision velocity low, < 4.2 cm/s in front of perturbations.
This drives for a higher Λ and a small tr that minimize velocity error at landing.

1.3. Necessity to keep the actual landing spot near the landing target by a defined amount.
First, this drives for greater Λ and smaller tr. Secondly, this drives for earlier firing
start because the later the firing starts the greater is the uncertainty on the s/c states
at that position which will degrade the thrust pointing accuracy.

1.4. Necessity to reduce the time during which the control is switched on to avoid accu-
mulation of thrust pointing errors. This drives for small firing time. If there is just
one firing, this means a small ToF.

2. Necessity to maintain the fuel consumption low. This drives for smaller Λ and greater tr
as well as an adequate geometry of the binary system at the firing start. As mentioned
in section 3.7, fuel consumption is a design parameter but landing performance is the
priority.

As a preliminary approach the gain matrix Λ has been considered spherical. The Gain Matrix
and reaching time have been selected as shown in Table 4.3.
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(a) Collision velocity for evolving MSSG parameters

(b) Fuel expense for evolving MSSG parameters

Figure 4.6: Fuel consumption and collision velocity of the MSSG for different gains Λ and reaching
times. Isp = 80 s

4.3.4 Effect of the Time-of-flight

The aim of this subsection is to evaluate the influence of the Time-of-Flight (ToF) on the landing
performance of the MSSG algorithm. The nominal Λ and tr have set to Λ = 2.1 and tf = 0.6
as in Table 4.3. The consumption for different combinations of Starting Times (at which the
control is turned on) and Landing Times (tf ) has been surveyed. The specific impulse has been
set to6 Isp = 80 s. Milani is expected to approach D2 with a close passage at approximately
18-jun-2027-20:45:00 (UTC). The reference trajectory at the time of writing does not intersect
D2, and passes with a significant relative velocity in front of D2. In Fig. 4.7a is displayed
the mass expense for different combinations of departing times and landing times. The initial
states are taken from the reference trajectory provided by Milani Mission Analysis Team and
the target states in the D2 RF are the ones displayed in Table 4.2, which correspond to a point

6While the order of magnitude of the Isp of Milani’s cold thrusters can range from 40 − 120 s, the exact
value of Isp is not relevant at this stage, since the aim is to show the fuel expense evolution and not extracting
particular values.
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Table 4.3: MSSG parameters used for mission times analysis.

Parameter Value Responding to criteria Compromising criteria

Λ 2.1 1.1; 2 1.2; 1.3

tr [n] 0.6 1.2; 1.3 2

on D2’s surface close to the trajectory at the closest pass.
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Figure 4.7: Map of fuel consumption for different starting and landing times. Λ = 2.1 and tr[n] = 0.6.
Isp = 80s The minimum ToF computed is 1 min. The times correspond to 18-jun-2027 and 19-jun-2027
(UTC). Simulation is stopped if Milani reaches D2 surface.

In Fig. 4.7a is shown how the window for less fuel consumption is located at slightly later times
than the close pass. This is because to radially descend on the landing target as imposed by
the MSSG dynamics (Eq. (4.9)) at the time of close pass, the s/c needs to "search" D2 in a
previous orbital location than the closest pass, for then radially descend and touch-down at
the time of closest pass. This "search" on the backward orbital motion is inefficient, and it is
advantageous instead to synchronise the "search" of D2 to the time similar to the close pass
and then add extra time to descend on the surface. On the east side of Fig. 4.7a there is a layer
of very low fuel consumption which corresponds at when the control is started at the closest
passage. In that case the s/c would be made to hover for a relatively long time, and the fuel
expense is greatly decreased but Vc is increased, as can be seen from the values of the same
region appearing on Fig. 4.7b.

It is noteworthy that the margin to delay the landing once the control is started ( the margin
to extend the ToF), decreases if the starting time is closer to the close pass. Such fact drive
for selecting a starting time far from the close pass. Nonetheless, greater ToF may induce to
accumulated disturbances due to thrusting pointing errors and hence it would be advantageous
to reduce the ToF of the controlled trajectory. Finally, in Fig. 4.7b can be seen how the collision
velocity remains under 1 cm/s excepting when the control is started very close to the surface
in which case the faulty convergence of s1 → 0 due to n > 0 is magnified.

4.3.5 Perturbations’ Effect and SMC Gain Selection

The effect of perturbations has been analysed for a gain Λ = 2.1 and a tr = 0.6 in order to un-
derstand what is the degradation that can be expected. To do so, a model for the perturbations
along the trajectory has been introduced, explained below. To evaluate the system response to
perturbations, first is needed to select a the value for Φstab.
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Sliding Mode Control Gain Selection

To estimate Φstab (see Eqs. (4.20) and (4.21)) such that Φstab < |pmax|, the maximum magnitude
of the unmodeled dynamics has been estimated. To do so, the nominal case of Table 4.2 has
been taken and the maximum value of the environmental accelerations has been recorded. Then,
it will be assumed that

1. At least the order of magnitude of the accelerations is well modelled and hence errors in
modelling are up to the 10% of the maximum acceleration. Therefore, order of magnitude
of the maximum perturbation will be:

O(pmax) = O(|amax|/10) (4.30)

where |amax| represents the maximum value of any environmental acceleration acting on
the s/c.

2. The perturbations due to modelling errors are constant during the trajectory whose value
follows a Gaussian distribution as:

p ∼ N
(

0 m/s2, [O(|pmax)|/3]2
)

(4.31)

where p is the perturbing acceleration due to the poor modelling of some environmental
acceleration and pmax its maximum value. This model accounts for an unmodeled bias
in the dynamics (e.g. an error in the SRP or a constant shift of the barycenter of all
gravitational forces). The fact that p is constant during all the trajectory allows the error
to accumulate in a given direction, which is more conservative that allowing p to change
freely. A p = 0.1amax is consistent with the estimation error of 3σ = 30% in Didymos
density and existing literature [7], [24].

Note that the last assumption implies that the value of p is expected to be below |amax/10| with
a 99.7% of probability. The considered perturbations are described below and their maximum
estimated value is shown in Table 4.4.

• Solar Tide: the Solar gravity has not been modeled because it holds minor importance in
close operations [25]. Its value has computed using the spherical gravity model.

• Non-inertial effects: the computation of the acceleration in the D2 RF requires knowledge
on its rotation state which might be poor.

• Higher resolution gravity fields: D2 is modelled using spherical harmonics and D1 as a
sphere and not shape-models.

• Solar Radiation Pressure: the effect of the SRP might be poorly estimated from errors on
attitude determination and modelling of the s/c surfaces’ reflective properties.

Therefore, following the first assumption mentioned above and with the data of Table 4.4:

O(pmax) = 10−5 m/s2 (4.32)

Fig. 4.8 below shows the effect of the such perturbations . There, the environment was perturbed
by an instance ofN (0, |pmax|2). To protect the system from diverging while facing perturbations
of O(pmax) = 10−5 m/s2 (e.g. 2 · 10−5, 9.9 · 10−5...), the Sliding Mode Control gain Φstab will
be set to:

Φstab = 10−4 m/s2 (4.33)

and indeed with the 99.7% of probability in the Gaussian distribution, |p| < 10−4 m/s2.
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Table 4.4: Maximum values of environmental accelerations on the s/c. The accelerations have been
retrieved from a simulation along a reference trajectory using the model proposed in Appendix B.

Perturbation Magnitude [m/s/s] Description

Solar Tide 10−9 [25] Spherical gravity of the Sun on the s/c
Non-inertial
RF effects 10−5 Term 2ω × ν + ω × ω × r + R̈a

in the dynamics with respect to the D2 RF.
Higher resolution
gravity field

D1: 10−4 and
D2: 10−4

Ellipsoidal gravity pull on the s/c by D2. Near D2
its gravity primes over D1’s.

SRP 10−8 SRP accelerations affecting the s/c translational motion

(a) Long time of flight, greater dispersion (b) Short time of flight, greater dispersion

Figure 4.8: Comparison between uncontrolled, unperturbed reference trajectory (yellow), uncontrolled
perturbed trajectory (red), and controlled perturbed trajectory (violet). O(pmax) = 10−5 m/s2. and
p = ct. ≈ [1.8, 6.1, −7.5] · 10−6 m/s2.

Effect of Perturbations - Soft case

In this section it is investigated the effect of a soft perturbation on the performance of the
control with the nominal Φ value, this is:

O(|pmax|) = 10−5 m/s2, Φstab = 10−4 > O(|pmax|) (4.34)

The fuel consumption and collision velocity for different combinations of control-starting epochs
and landing epochs has been evaluated. In Figs. 4.9a and 4.9b below can be seen how changes
in performance for different control start epochs and landing epochs with respect to the unper-
turbed performances (see Fig. 4.7a) are small. This was expected since the thrust is limited to
≈ 1mm/s2, which is higher than amax and pmax. Hence, with enough time to converge, the
thruster may always bring s2 → 0.

Effect of Perturbations - Extreme case

The aim of this section is to show how the nominal control of Φstab = 10−4 can deal with
perturbations 10 times as big as the ones considered nominally, this is:

O(|pmax,extreme|) = 10O(|pmax|) = 10−4 m/s2 (4.35)

The fuel expense and collision velocity for different combinations of starting times and land-
ing times have been evaluated, in which the environment was perturbed by an instance of
N (0, |10pmax|2). In Fig. 4.10a can be observed how the minimum consumption point is re-
markably similar to that of Fig. 4.7a. Nonetheless, in the perturbed dynamics case the fuel
expense increases far quicker moving away from the lobe of small fuel expense that starts after
the close passage time. It is important to note that even if in the unperturbed case, greater ToF
were advantageous as they didn’t punish fuel expense but provided greater time margin for the
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(a) Fuel consumption for different combinations of
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Figure 4.9: Map of fuel consumption for different starting and landing times for a nominal dynamically
perturbed environment, where p(t) ∼ N (0, [O(|pmax)|/3]2). Λ = 2.1 and tr[n] = 0.6. The minimum
ToF computed is 1 min. The times correspond to 18-jun-2027 and 19-jun-2027 (UTC).

landing, in the case at hand the perturbations during a longer flight force the control to exert
a greater effort, and in Fig. 4.10a can be observed how only departures near to the closing-pass
time are fuel efficient. The collision velocity on different starting/finish times is displayed on
Fig. 4.10b. In comparison to the unperturbed case of Fig. 4.7b, it is important to note that the
extreme perturbation mainly increases the collision velocity for trajectories whose landing time
is below or at the time of short passing. I.e. the extreme perturbations punish the trajectories
in which the s/c is going "backwards" to "search" for D2. Nonetheless, for trajectories with
greater ToF and if the landing time is greater than the close pass time, Vc remains acceptably
small (approx < 4cm/s). In conclusion, even if under the effects of nominal perturbations are
small, lower ToF and landing epochs set later than the close passage would provide further
shielding towards extreme perturbations.
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(a) Fuel consumption for different combinations of
starting times and landing times
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(b) Collision velocity for different combinations of
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Figure 4.10: Map of fuel consumption for different starting and landing times for an extreme dynam-
ically perturbed environment, where p = ct. ∼ N (0, [10O(|pmax)|/3]2). Λ = 2.1 and tr[n] = 0.6. The
minimum ToF computed is 1 min. The times correspond to 18-jun-2027 and 19-jun-2027 (UTC).

The bottom line result is that trajectories should target the blue lobe of small fuel consumption
after the close passage, which requires a ToF � 300s, the current limit of firing time for
Milani. Hence, a necessity to perform longer-than 300s flights appear, which will be tackled in
the following chapters.
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Chapter 5

Firing Strategy for Descent & Landing

In this chapter I introduce the design of a firing strategy for Milani CubeSat’s Landing. The
control algorithm is the MSSG, implemented as is shown in Appendix B. At the time of writing,
the landing of Milani CubeSat is not critical to mission success and the GNC system has not been
designed to optimize for descent and landing requirements. In particular, Milani is expected to
perform only discrete (300s) firings. Nonetheless, the requirements of the landing phase (also
known as "experimental phase") are still under consideration and might change. Hence it cannot
be excluded that continuous thrust would be finally adopted. For this reason, in the choice of
the MSSG, I first assume that continuous thrust is available. Next, with the aim to minimize
the impact of the proposed MSSG on the overall current GNC design, I have developed a firing
strategy that uses 300s firings for ≈ 96% of the approach towards the asteroid. To ensure a
successful and robust landing, during the last 15m, the control has been allowed to remain
open, if needed, for more than 300s. In this chapter is presented such firing strategy.

5.1 The Two Phased Descent Strategy

From the study in Chapter 4 it is understood that the role of the MSSG is to bring s2 to 0
and keep it thereafter. In general, if the thrust is 0, s2 will tend to diverge from 0 and the
s/c will no longer be in a sliding mode that brings s1 = r(t) − rd and ṡ1 = ν(t) to 0 in FT.
Therefore, if the control is applied discontinuously, the more frequently it is applied, the more
will the performance resemble that of the continuous MSSG performance (also called "ideal
performance" hereafter). The firing strategy shall be based on the following needs:

1. The soft-landing needs a high performance (i.e. high accuracy) of the control system,
which can be achieved only during the periods in which the control is turned on.

2. The continuous thrust periods are desired to be ≤ 300s, but the controlled trajectories
that i) spend less fuel and ii) are far from the ToF zones with high Vc risk, have time-of-
flights of at least ≈ 3600s (see Figs. 5.5a and 5.5b below 1).

3. The strategy needs to be suitable for different starting epochs and landing epochs.

From these needs, a 2-phase approach has been selected, in which first the s/c approaches D2
with a discontinuous thrust and below a certain height the s/c performs a fully controlled 300s
descent. This strategy will be hereafter called Two Phased Descent Strategy (TPD) and is
explained below. Let there be a boundary layer around the surface of D2 of a given height
h [m] above its surface (an example with h = 10m is shown in Fig. 5.1). Then, the landing
trajectory is divided in two phases. In each phase the control uses a different set of Λ and
Φconv ∝ 1/n. The two phases are:

1This figure was already displayed and is re-presented here for clarity’s sake. See Fig. 4.10a, Fig. 4.10b in
section 4.3.
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Figure 5.1: Dimorphos surrounded by a boundary layer at 10m from its surface. The red, green and
blue arrows respectively represent the x, y and z axis of the D2 RF.

I. Approach Phase

The s/c targets the landing point (rL, νL) at a desired time t∗landing and the control is turned
on and off sequentially with a period of Ton/off = 300s (see Fig. 5.2):

300s 300s 300s 300s

300s300s 300s 300s 270s

300 s
tland*tboundary*tstart

tboundary

tland**

300s300s 300s 300s 270s

tboundary

300s300s 300s 270s
tboundary

tland**

Approach Phase
Descent
Phase

The s/c might reaches the boundary at tboundary

Figure 5.2: Planned sequence of the Approach Phase and Descent Phase at tstart. Red: control off.
Green: control on. The number of displayed segments before t∗boundary is random.

Since ∆tr = n1 ·300s, typically Φconv � Φstab. For this reason, in the TPD strategy, Φ typically
coincides with Φconv. At the start of each firing, Φconv is recomputed to ensure that the system
brings s2 to 0 during the firing time:

Φconv,ton =
s2(ton)

n1 · 300s
(5.1)

The Approach Phase finishes when the s/c reaches the boundary layer surrounding D2. The
time that the s/c has to reach the boundary layer is constructed as follows. Given a desired
landing time t∗landing, the s/c shall reach the boundary layer 300s earlier (see Fig. 5.2):

t∗boundary = t∗landing − 300s (5.2)

Given a certain starting epoch tstart the time stamps at which the control is to be turned on
and off are computed as follows:

{tk}Nk=0 where tk =

{
t0 k = 0

tk−1 + 300s tk ≤ t∗boundary
(5.3)

The control is supposed to start at tstart, and the s/c shall reach the boundary layer with the
thruster off to be able to perform a powered descent the subsequent 300s. It can be easily
shown that this happens if there is an odd number of control time points, which an be ensured
by adding another point of +300s if the length N of the sequence above is even.
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II. Descent Phase

After reaching the boundary layer at a height h, the s/c performs a 300s powered descent
towards the landing point. The actual time at which the s/c reaches the boundary layer is
registered as tboundary and the new desired landing time at which the s/c is to land using the
MSSG is defined as (see Fig. 5.3) :

t∗∗landing = tboundary + 300s (5.4)

300s 300s 300s 300s

300s300s 300s 300s 270s

300 s
tland*tboundary*tstart

tboundary

tland**

300s300s 300s 300s 270s

tboundary

300s300s 300s 270s
tboundary

tland**

Approach Phase
Descent
Phase

The s/c might reaches the boundary at tboundary

Figure 5.3: The s/c reaches the boundary at tboundary, then targets t∗∗land. The boundary can be
reached with the control off (up) or on (down). Red: control off. Green: control on.

Note that the landing time t∗∗landing (or tf ) won’t be equal to the one specified as reference in
Eq. (5.2). Importantly, the perturbations and non-ideal application of the MSSG will make the
s/c touch down at a time different than t∗∗landing, probably earlier. The actual time of touchdown
is tlanding (see Fig. 5.4):

tlanding 6= t∗∗landing 6= t∗landing (5.5)

300s 300s 300s 300s
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300 s
tland*tboundary*tstart
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tboundary

tland**

Approach Phase
Descent
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280s270s
tboundary tland**

300s270s
tboundarytland 30s

tland
or

Figure 5.4: The s/c touches the surface at tland. The surface can be reached before t∗∗land ≡ tf (left)
or after (right). Red: control off. Green: control on.

5.2 Comments & Observations on the TPD

Importantly, the landing performance of the control in the TPD depends on:

• The set of parameters with which the control is tuned during the Approach Phase:

Λ1 ∈ [2, ∞) (5.6)
n1 ∈ (0, 1] (5.7)

• The height of the boundary layer, which imposes the epoch at which the control has to
start final descent. Hence it partially determines which are the initial states of the final
descent for a given performance of the Approach Phase.

h ∈ (0,∞) m (5.8)

• The set of parameters with which the control is tuned during the Descent Phase:

Λ2 ∈ [2, ∞) (5.9)
n2 ∈ (0, 1] (5.10)

Due to the degradation of control authority during the Approach Phase, it is possible that the
s/c reaches the boundary layer while having the control turned on. In such case, there are 3
possible control decisions that could have been taken:
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1. The s/c continues firing for the rest of the 300s, then stops firing. At the end of the firing
the s/c will be close to the surface of D2 and it will free-fall to the surface. The Descent
Phase is half-powered.

2. The s/c stops firing, drifts for 300s, and starts the Descent Phase by firing 300s more.

3. The s/c starts a new firing batch of 300s without stopping, thus transgressing the require-
ment of 300s firings.

Option 1 has been discarded due to the uncertainty on when the firing would stop: depending
on the control’s performance, it could happen that the boundary layer was reached at t = 1s
of a firing, thus still having 299s left to actuate; or at t = 299s, and hence preventing any
control action after 1s. This would imply a widely varying performance of the control during
the Descent Phase, which would make the scheme non-robust. Option 2 has been discarded
for two reasons: first, because the s/c reaches the boundary layer with a non-zero velocity, and
turning off the control at a height h would imply to descent with an uncontrolled speed close to
the surface. Second, because due to uncertainty in position, the s/c could target a point set at
varying altitudes from D2, again impairing robustness. Therefore, Option 3 has been retained,
and I have have considered that at such range from the surface it would be in the interest of
the mission to transgress the desire for maximum 300s firings.

Due to the degradation of control authority during all the flight, it is possible that

1. The control reaches tf before touch-down and stops firing.

2. The control touches-down before tf

In case 1, the s/c will start a free-fall from within the boundary layer and it has been observed
to have a Vc of O(1 − 5cm/s). Because the s/c would perform a free fall, it is expected that
its trajectory won’t have enough mechanical energy to escape D2. In case 2, it is expected that
the s/c will reach the surface with Vc of O(1 − 5cm/s), because during tgo < 50s the velocity
of descent is already small.

5.3 Control Tuning and Boundary Height Selection

With the TPD, the s/c can perform Approach Phases whose total Time of Flight is much
greater than 300s. As a conservative approach, the extreme perturbation case of section 4.3
can be considered. Indeed, suiting trajectories are those located in the blue lobe of Fig. 5.5a,
as discussed previously. The farther the landing time from the close pass line, the farther will
the trajectory be from the high ∆m, Vc zones in the bottom-right of Figs. 5.5a and 5.5b. Si-
multaneously, greater-than-necessary ToF should be avoided to keep thrust pointing errors and
other state estimation errors from accumulating.

The gains Λ1,2, the reaching times n1,2, and an adequate boundary layer h, have been selected
by optimising the performance in a nominal trajectory, extracted from Figs. 5.5a and 5.5b. The
selected trajectory has the epochs shown in Table 5.1.

Table 5.1: Start and landing times selected for the nominal trajectory. With this starting epoch the
control starts at ≈ 400 m of D2.

Start time (tstart) Desired Landing time (t∗landing)

18-jun-2027-20:15:00 (UTC) 18-jun-2027-21:15:00 (UTC)
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(a) Fuel consumption for different combinations of
starting times and landing times
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(b) Collision velocity for different combinations of
starting times and time of flights

Figure 5.5: Map of fuel consumption for different starting and landing times for an extreme dynamically
perturbed environment, where p = ct. ∼ N (0, [10O(|pmax)|/3]2). Λ = 2.1 and tr[n] = 0.6. The minimum
ToF computed is 1 min. The times correspond to 18-jun-2027 and 19-jun-2027 (UTC).

If the thrusting was continuous for the whole flight, they would leave the s/c around the min-
imum point of the blue lobe in Fig. 5.5a, while still being far from the east layer of high Vc
appearing in Fig. 5.5b. The landing target is DART spacecraft’s crater, extracted from Hera’s
Kernels2. The uncontrolled trajectory and the unbounded continuous-thrust controlled tra-
jectory are displayed in Figs. 5.6a and 5.6b. The performance of this landing is reported in
Table 5.2 . At the time of writing the Kernels provided by Hera’s data repository generate a
DART landing point that is some cm below the surface defined by the ellipsoid whose radii
are given by ESA’s Kernels. rerr is small enough so that it can be attributed to the kernel’s
distance and thus it can be considered negligible.

Table 5.2: Nominal trajectory landing performance for the unbounded, continuous thrust profile and
Λ = 2.1, n = 0.6; targeting DART spacecraft’s crater.

ToF [s] ∆m [g] |Vc| [cm/s] |rerr(tc)| [cm]

3600 4.93 0.38 16.6

Then, the control will be tuned such that it has a good performance on the nominal trajectory
and its robustness to changes on the start/landing epochs will be evaluated ex post. The
performance has been scoped for different combinations of Λ1,2, n1,2 and h in an unperturbed
environment. To simplify the analysis, I performed an iterative process, shown in Fig. 5.7. Its
final iteration will be presented here. Indeed, Figs. 5.8a and 5.8b below respectively shown how
Vc and ∆m change with the Descent Phase parameters; while having fixed a reasonable control
performance for the Approach Phase: Λ1 = 2.5 and n1 = 0.2. There, it can be seen how

1. Vc is relatively insensitive to changes on Λ2, n2 and h if n2 ∈ (0.2, 0.9], which would drive
to select n2 > 0.2. If n2 < 0.2 and Λ2 < 3, the collision velocity ramps up dramatically.

2. ∆m increases monotonically with Λ2, and at each combination of Λ2 and height h, the
smaller is n2 the smaller is ∆m. This would drive towards selecting a small Λ2 and a
small n2

3. The height of the boundary layer plays a relatively small role, and is only significantly
impacting the landing performance if n2 ≈ 0.1 and Λ2 < 3. For several combinations of
Λ2 and n2 I have observed that

2ESA SPICE Service, Hera Working Groups, Instrument Teams. Hera Spice Kernel Set. 2020. Last Accessed:
aug-2021. [online]. Available: https://www.cosmos.esa.int/web/spice/spice-for-hera

https://www.cosmos.esa.int/web/spice/spice-for-hera
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(a) Drawn in D2 RF.

(b) Drawn in N RF.

Figure 5.6: Nominal uncontrolled, and unbounded continuous-thrust controlled trajectories. Λ = 2.1,
n = 0.6. D1 is colored and D2 is grey. D1 and D2 are drown at the landing time. Environment is
unperturbed.

Select reasonable
values for Λ1, n1

Study influence of Λ2,
n2, h on performance

Select reasonable
values for Λ2 , n2

Study influence of Λ1,
n1, h on performance

Figure 5.7: Iterative process for the study of effect of Λ1, n1, Λ2, n2 and h on the landing performance.

• A boundary layer that is too large decreases the performance because the control
needs to accelerate the s/c to reach the surface in 300s and then it does not have
time to break the speed again.

• A boundary layer that is too small decreases the performance because the control
has too small amount of time to reach the sliding mode and then, inside the sliding
mode, converge to s1 = 0.

For the reasons stated above, the Descent Phase gains are chosen so that the control is far
from the zones of risk (i.e. n2 � 0.1) while keeping the fuel expense low (Λ1 ↓). Hence, the
Descent Phase gains have been set to Λ2 = 3 and n2 = 0.7. The height h is chosen to be 15m,
which I observed to generate a suitable landing performance with the set of gains that are being
selected. The parameters are shown in Table 5.3.

In the other hand, Fig. 5.8c and Fig. 5.8d respectively show the influence of the Approach Phase
gains Λ1 and n1 on the collision velocity Vc and the fuel expense ∆m. Both of them shown a
great sensitivity of the landing performance to Λ1 and n1. In particular, can be observed that:

1. From Vc performance, Λ1 shall be Λ1 ∈ [2, 4), while the role of n1 should be n1 > 0.1.

2. From ∆m performance, Λ1 should be as small as possible inside Λ1 ∈ [2, 4). n1 can be
chosen as big as possible.

3. Greater h has a negative impact on Vc, and the performance is maximized if h ∈ (5, 20) m.
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(a) Collision velocity (Vc) performance with Λ1 = 2.5
and n1 = 0.2.

(b) Fuel expense (∆m) performance with Λ1 = 2.5 and
n1 = 0.2.

(c) Collision velocity (Vc) performance with Λ2 = 3
and n2 = 0.7.

(d) Fuel expense (∆m) performance with Λ2 = 3 and
n2 = 0.7.

Figure 5.8: Landing performance for different values of Λ2, n2, Λ1, n1 and h. The firings are limited
to 300s, the environment is unperturbed and the thrust is bounded and quantized.

For the reasons stated above the gain Λ1 has been set to Λ1 = 2.5. For a boundary layer height
h = 15m, the role of n1 is non-important and has been set to a relatively low value of n1 = 0.2
because it ensures that the s/c reaches the sliding mode earlier and hence the information
on what is the shape of the trajectory, which is defined in the sliding mode, is richer. The
parameters are shown in Table 5.3.

Table 5.3: Selected parameters for the control of Milani’s landing.

h [m] Λ1 n1 Λ2 n2

15 2.5 0.2 3 0.7

An instance of the nominal trajectory3 performed with the TPD is shown in Figs. 5.9a and 5.9b.
A zoom on its Descent Phase is displayed in Fig. 5.10. In this trajectory, the environment is
unperturbed, the states are perfectly known; and the thrust is bounded and discontinuous. The
performance of that landing is shown Table 5.4, which shows that is remarkably good in terms
of Vc and ∆m. In this instance the s/c landed at tgo(t) = tf − t ≡ tlanding − t = 53.3 s > 0,

3Start and landing epochs as shown in Table 5.1.
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meaning that the Descent phase was completed in 244 s, and hence was fully controlled (see in
Fig. 5.10 how the controlled segment reaches the surface).

Table 5.4: Performance of a nominal trajectory for the Two Phased Descent strategy. States are
assumed to be known perfectly. Thrust is discontinuous and bounded. Environment is unperturbed.

ToF [s] ∆m [g] |Vc| [cm/s] |rerr(tc)| [cm]

2315.2 8.42 0.73 12.1

(a) Drawn in D2 RF. (b) Drawn in N RF.

Figure 5.9: Instance of the nominal trajectory for the Two Phased Descent strategy. States are
assumed to be known perfectly. Thrust is discontinuous and bounded. Environment is unperturbed.
The control parameters are those shown in Table 5.3. D1 is colored and D2 is grey. D1 and D2 are
drown at the landing time.
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Figure 5.10: Zoom on the Descent Phase of the trajectory shown in Fig. 5.9a. Drawn in the D2 RF.
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Chapter 6

Evaluation of the Two Phased Descent
Strategy

In this chapter I evaluate the performance of the Two Phased Descent Strategy applied to Mi-
lani’s landing. This has been done with a Monte Carlo campaign, in which the initial conditions,
the state knowledge, the dynamical environment, the pointing accuracy, and the Isp have been
noised with Gaussian processes. The chapter starts by presenting the model adopted to degrade
state knowledge and introduce dispersion in the initial conditions; then follows by presenting
an instance of the nominal trajectory with navigation errors; and finally presents the statistical
results of the Monte Carlo campaign.

6.1 State knowledge and initial states’ dispersion

In this section is defined what is the error in state estimation during the TPD and the dispersion
on the initial states at the start of the TPD. To do so, an effort has been made to use the data
provided by the Milani Mission Analysis Team (available in [10] and in Milani’s Mission Analysis
Report (MAR) [26]). Further assumptions (detailed below) have been made in cases where the
data in MAR was insufficient or incompatible with the use of the TPD.

6.1.1 State Knowledge Estimation & Implementation

State Knowledge Error Estimation

The state knowledge has been estimated using the data provided in the Milani’s Mission Analysis
Report [26] in the form of the 1σ value in the (r, ν) estimation error. The error, which increases
in time, will be computed from a starting value at the start of the trajectory (t0). It has been
assumed that:

• The uncertainty on the velocity wrt. the N RF (v) is the same as wrt. the D2 RF (ν).
This is reasonable because:

V ar[v] = V ar[ν + ωD2/N × r]

Considering ωD2/N as a deterministic variable, and taking into account that O(|ωD2/N |) =
10−4 rad/s:

V ar[v] ≈ V ar[ν] + (10−4)2V ar[r] ≈ V ar[ν] and σv =
√
V ar[v] =

√
V ar[ν] = σν

• The σ estimation error in [26] refers to the magnitude of each component of r and ν and
hence, in the implementation, each component of r and ν will be noised by σr and σν .
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From the second assumption:
|r̃i| ∼ N (|ri|, σ2

r ) (6.1)

and similarly for ν. The evolution of σ during the trajectories without measurements increases
linearly in time. From [26] it has been estimated that:

σr(t) = (50 m/d) · (t− t0) + σr(t0) [m] (6.2)

σν(t) = (10−3m/s/d) · (t− t0) + σν(t0) [m/s] (6.3)

The value of σr(t0) has been computed assuming that at the start of the control one LIDAR
measurement on D2 is done, whose accuracy is [26]:

σr(t0) = σLIDAR = σsensor = 1 m (6.4)

See Appendix C for an adaptation of the TPD strategy for σLIDAR =
√
σ2
sensor + σ2

shape =

10.05 m and a discussion on the impact of σr. The value σν(t0) is computed by propagating
σν(t) from the Landing Orbit Acquisition Maneuver (LOAM) until t0:

σν(t0) = (10−3m/day) · (t0 − tLOAM ) + σν(tLOAM ) [m/s] (6.5)

where σν(tLOAM ) = 2 · 10−4 m/s and tLOAM has been taken as 17-jun-2027-22:30:00 (UTC).
Hence:

σν(t0) = 1.12 mm/s (6.6)

which is about 1% of the actual velocity at t0.

State Knowledge Error Implementation

The on-board Navigation filter (i.e. the Extended Kalman Filter) is supposed to compute a set
of positions and velocities that are consistent with a trajectory biased from the real one. This
can be refereed to the perceived trajectory. The perceived trajectory will be separated by an
error defined by σr,ν from the real trajectory. Hence, to model the Navigation error it has been
assumed that:

• At the start of the controlled trajectory (t0), the on-board Navigation filter is able to
compute the real trajectory with a bias defined by σr,ν . This is:

|∆r̃i| ∼ N (0, σr(t0)2) (6.7)

|∆ν̃i| ∼ N (0, σν(t0)2) (6.8)

Thus, during all the trajectory, the geometry perceived by the acceleration command
algorithm will be:

r̃i(t) = ri(t) + ∆r̃i (6.9)
ν̃i(t) = νi(t) + ∆ν̃i (6.10)

• The navigation filter keeps that same bias during all the trajectory.

• The bias is also applied on computation of the relative position to the boundary layer.
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6.1.2 Uncertainty On Initial States

The uncertainty during the Landing Orbit is not provided by Milani Mission Analysis Team at
the time of writing (see [26]), and hence an assumption has to be performed to determine the
position and landing dispersion at t0. The σ values for the components of r and ν have been
taken as:

σr =
40

3
m (6.11)

σν =
1

3
cm/s (6.12)

which with 99.7% of probability will yield errors up to ≈ 10% from the nominal trajectory at
t0 and are consistent with existing literature [24]. The assumption of an error consisting of the
relatively small 10% fraction is reasonable particularly for ν, since an error of → 100% of the
nominal value would mean that the trajectory could be pointing in any random direction, which
is unreasonable. The 10% error in position might be optimistic, but the strong control authority
of the MSSG can bring r → rL from a wide range of positions and hence the this uncertainty is
not critical to the study. The limiting factor in σr is that the s/c must not start the control too
close to the actual surface of D2, for the TPD strategy needs time (ToF � 300 s) to converge.

6.1.3 Instance of the Nominal Trajectory with the Noised State knowledge
and Dispersed Initial Values

Here is presented an instance of the nominal trajectory (start and landing epochs set as in
Table 5.1), in which the navigation information has been degraded with the model presented
above. The landing performance is in Table 6.1. There it can be seen how the collision velocity is
very small but the landing error is 10 times bigger than for the case with perfect state knowledge
(see Table 5.4). The main reason is that in this particular instance the position navigation bias
was:

∆r̃ = [0.54 1.83 − 2.25]T m (6.13)

meaning that the perceived target point was ≈ 2m above the surface. This can be seen in
Fig. 6.1, where the perceived landing point is shown to be above the surface of D2. Note that
the s/c reaches that point in 300 s, with a relative velocity (wrt. the perceived target point)
close to zero. Then, the control runs out of time and the s/c free falls towards the surface.
This is one of the cases commented in section 5.1. It is here that the reason for existence of
the assumption O(σr) = 1 m comes to play1: the relatively small error in position knowledge
ensures that the s/c will probably free fall a very short distance, and will soft land regardless
of the navigation error in position.

Table 6.1: Performance of a nominal trajectory for the Two Phased Descent strategy. Knowledge of
states is degraded. Thrust is discontinuous and bounded. Environment is unperturbed.

ToF [s] ∆m [g] |Vc| [cm/s] |rerr(tc)| [m]

2693.9 8.34 1.53 1.43

The effect of the dispersion in the initial conditions can be appreciated in Fig. 6.2, where is
shown the complete instance of the nominal trajectory with degraded state knowledge and
initial dispersion. For this particular instance, the dispersion in initial states was:

∆r = [−5.8 4.6 47.7]T m (6.14)

∆v = [0.92 − 0.45 1]T cm (6.15)

1see Appendix C for σr ≈ 10 m
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Figure 6.1: Zoom on the Descent Phase of an instance of the nominal trajectory. The states knowledge
is noised, the environment is unperturbed. The thrust is bounded, discontinuous. Expressed in the D2
RF.

which slightly impacts the direction in of the the trajectory with respect to the Reference
Trajectory (yellow in Fig. 6.2 but has a 40m shift from the reference starting point. Note that
this is about a 10% error in distance from D2. Regardless of such error, the great control
authority of the MSSG, even degraded by the discontinuity of the TDP, ensures that the s/c
reaches the perceived landing point with great precision.

Figure 6.2: Instance of the nominal trajectory. The states knowledge is noised, the environment is
unperturbed. The thrust is bounded, discontinuous. Expressed in the D2 RF.

6.2 Performance of the TDP Under Stochastic Simulations

6.2.1 Stochastic state knowledge and dynamical perturbation

This section’s goal is to understand what are the statistical properties of the TPD’s performance
when the latter is degraded by:

• Stochastic knowledge of the states (r,ν) determined by the model presented above.
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• Stochastic dispersion on the initial conditions determined by the model presented above.

• Stochastic nominal perturbations as introduced in section 4.3.5 and summarized in Ap-
pendix B.

The thrust has been bounded and quantized as summarized in Appendix B. The landing target
is DART’s crater location as shown by Hera’s Kernels2. Starting and landing epochs are those of
the nominal trajectory chosen in Chapter 5. 1000 Monte Carlo (MC) runs have been performed.

Landing Precision

The landing ellipse under the stochastic conditions mentioned above is shown in Figs. 6.3a
and 6.3b below. From both of them can be seen how the landings are confined in the vicinity
of the landing point without stochastic variables (called "ideal landing point" hereafter). In
particular, the landings occur inside a maximum radius of ≈ 3.5m from the ideal landing point.
This deviation is due to the poor state estimation error. Indeed a σr = 1m error in position
estimation has lead to an σr ≈ 1m error in landing position.

Initial conditions play a minor role due to the high control authority of the MSSG. The modelled
disturbances, which are very likely to be pmax < Φconv, have been observed to play a small role
in the distributions presented here. This is noteworthy because, even if from MSSG theory (see
section 4.2) it is known that when Φ > pmax the control is stable in FT, in the TPD strategy the
control is turned off approximately half of the time. During the uncontrolled periods the system
might diverge irreversively, which is helped by p being constant (see section 4.3.5). Instead,
in the studied case, since Φ = Φconv � pmax the control manages to converge the trajectory
just with its turn-on time even. Notably, this is possible because Tmax = 10mN ⇒ umax ≈
8.3 · 10−4m/s2, and umax is big enough to allow a selection of a great enough Φconv.

(a) Landing ellipse on D2 surface. Expressed in a base
aligned with D2 RF and centered on the target landing
point.
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(b) Landing ellipse on plane perpendicular to the
Zenith at the target landing point. The axes i and
j are its base, which approximately correspond to xD2

and yD2.

Figure 6.3: Landing ellipse for a control degraded by stochastic state knowledge, stochastic dispersion
on initial conditions and stochastic nominal perturbations

.

2ESA SPICE Service, Hera Working Groups, Instrument Teams. Hera Spice Kernel Set. 2020. Last Accessed:
aug-2021. [online]. Available: https://www.cosmos.esa.int/web/spice/spice-for-hera

https://www.cosmos.esa.int/web/spice/spice-for-hera
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Collision Velocity

The magnitude of Vc along the local Nadir and the angle of Vc with respect to Nadir is shown
in Figs. 6.4a and 6.4b below, in which the occurrences of each magnitude are fit to a Normal
Distribution. The local Nadir points towards:

N̂D2 ≈ [0.19 0.93 − 0.32]T (6.16)

and is expressed on the D2 RF. Note that, approximately N̂D2 ≈ [0 1 0]T . The distributions
in Figs. 6.4a and 6.4b significantly differ from Gaussian ones, but it is still remarkable that:

• Typically the s/c collided normally to the ground at ≈ 1.9cm/s; and the std. dev. of
the normal velocity was σnormal vel. ≈ 1.3cm/s. The distribution is asymmetrical with a
strong concentration of points on the interval Vc ∈ [0, 2] cm/s.

• The typical angle of collision wrt. the local Nadir was ≈ 22.6 deg and the variance of the
collision angle was σcol.angle ≈ 17.2 deg. The distribution is asymmetrical with a strong
concentration of points on angle ∈ [0, 20] deg

Importantly, in Fig. 6.6 below can be seen how the probability to land with a velocity lower
than the scape one (≈ 4.5cm/s) is near to 98%. For completeness’ sake, in Fig. 6.5 are displayed
the probability distributions for the components of Vc along D2 RF. There it can be observed
that the component of Vc along yD2, which is close to the local Zenith (see Eq. (6.16)) is always
positive, since the s/c approaches D2 along the direction of yD2 and Vc , νerr = ν(t). Instead,
the other components of Vc fit good over a symmetric Gaussian Distribution which is due to
a Gaussian stochastic variation of the state knowledge. Finally, in Fig. 6.7 can be seen how
the fuel consumption closely follows a Gaussian distribution centred at ∆m ≈ 5.3 g and with
σ∆m = 0.4g, for an Isp = 80g.

In conclusion, the off-Nadir components of Vc and all the components of the landing error
are strongly related to the navigation knowledge. For the studied conditions (i.e. navigation
error and constant disturbance along the flight, with σp = 10−5/3 m/s2 (see section 4.3.5))
perturbations and initial dispersion have a small impact. The landing performance is very
acceptable: Vc−i < 4.5cm/s with 98% of likely hood.
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(a) Magnitude of Vc along the local Nadir at target
landing point.
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Figure 6.4: Histograms and Normal Distribution fit of collision velocity along local Nadir and Vc
direction with respect to local Nadir.
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Figure 6.5: Histograms and Normal Distribution fit of the components of Vc along D2 RF.
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Figure 6.6: Accumulated probability of Vc com-
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Figure 6.7: Probability distribution of fuel con-
sumption for Isp = 80s

6.2.2 Effect of Thruster’s Performance

Stochastic Thruster Pointing

From the results of section 6.2.1 can be concluded that the control is able to reject reasonable
perturbations even being turned off half of the time, and that the landing performance is mainly
impacted by the poor navigation knowledge. What can also degrade performance of the control
is thrust pointing errors. In this section I study its combined effect with the poor navigation
knowledge.

The thrust pointing error has been modeled with a random set of 3 Euler rotations along
xN , yN , zN . The rotation angle along each direction follows:

θi ∼ N (0, σ2
thrust) (6.17)

The error is constant during the trajectory. The TDP has been tested with two values of σthrust:

• σthrust = 1 deg, consistent with assumptions in [26].

• σthrust = 5 deg, as a more conservative take.
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The degradation on the landings’ performance in both cases has been minimal. In Figs. 6.8a
and 6.8b is shown the landing ellipse for the σthrust = 1 deg and σthrust = 5 deg respectively.
It can be seen how the difference between the two is very small, as is the difference with the
perfect thrust pointing of Fig. 6.3b. In Figs. 6.9a and 6.9b are shown the distribution of Vc
components for both cases. Again, the difference between both thrusting accuracies is small:
the worse thrust pointing has recorded only a 0.1cm/s increase in std. dev. of the off-Nadir
components wrt. the 1 deg pointing error.
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(a) 1 deg of error in thrust pointing.
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(b) 5 deg of error in thrust pointing.

Figure 6.8: Landing ellipse for stochastic state knowledge and thrust pointing error.

Stochastic Specific Impulse

In this work an Isp = 80s has been assumed. It is expected that the impact of its value on
the dynamics is small, since the typical change in mass is O(∆m) = 10g, a 1% of the s/c
mass. Nonetheless, it is expected that its magnitude proportionally affects the amount of fuel
expended, since ṁ is computed as ṁ = T

Ispg0
. To asses the variation in ∆m for uncertainty in

Isp, 1000 MC runs have been performed randomly extracting Isp from:

Isp ∼ N (60, 20/3) s (6.18)

which will vary Isp between an optimistic value of 80s and a conservative value of 40s. The
thrust pointing has been noised with a σthruster = 5 deg error and stochastic knowledge of the
states and the dynamical environment has been introduced as proposed in the previous section.

As expected, in Figs. 6.10 and 6.11 can be observed how the landing performance for Isp
ranging form (40, 80) s does not change significantly wrt. to the performance at 80s previously
shown in Figs. 6.8b and 6.9b. Nonetheless, the consumption distribution (see Fig. 6.12) directly
reflects the Gaussian character of Isp: it is centered at µ ≈ 10g (likely from Isp ≈ 60s, and
is limited on the bottom by ∆m ≈ 7g, the consumption that was characteristic of Isp = 80g
(see Fig. 6.7), which is the 3 − σ limit of the Isp Normal distribution. Hence, for expected
values of Isp ∈ [40, 80]s the values of ∆m will remain in a small interval with the order of
O(∆m) = 10g. Simultaneously, consumption will be strongly impacted by the value of Isp.
With Isp, the uncertainty on the consumption is of σ = 0.4g (see Fig. 6.7). The change in ∆m
with Isp follows

∆(∆m)

∆Isp
≈ −0.2 g/s (6.19)
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(a) 1 deg of error in thrust pointing.
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(b) 5 deg of error in thrust pointing.

Figure 6.9: Distribution of Vc components and Gaussian fit for stochastic state knowledge and error
in thrust pointing.
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Figure 6.10: Distribution of Vc components and Gaussian fit for stochastic state knowledge, initial
values, dynamical perturbations, thrust pointing error and Isp.
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Figure 6.11: Landing ellipse for for stochastic
state knowledge, initial values, dynamical pertur-
bations, thrust pointing error and Isp.
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Chapter 7

Conclusions

Results

In this work I have selected the Multiple Sliding Surface Guidance (MSSG) as control algo-
rithm for Milani CubeSat’s landing on Dimorphos, the moon of the asteroid 65803 Didymos. In
the selection has been assumed that its GNC system may perform close-loop navigation with
continuous thrust. The choice is driven by the MSSG’s robustness to bounded perturbations,
simplicity and relatively low CPU consumption. The MSSG uses sliding mode control to re-
ject bounded dynamical uncertainties in finite time, cancels the modelled environmental forces
and then generates an acceleration to set the s/c on an ideally linear trajectory in Dimorphos’
body-attached reference frame. Chattering has been mitigated using a Schmitt Trigger and a
boundary layer around the sliding manifold.

I have studied MSSG’s behaviour in Didymos’ dynamical environment, and observed that i)
longer time of flights than 300s (relevance of this limit is explained below) ii) landing times
later than the close pass of a reference trajectory are beneficial in terms of fuel consumption
(∆m) and collision velocity (Vc). To evaluate the MSSG’s performance I first tune the control
parameters (Λ and n) using a "nominal landing trajectory", defined by a control starting epoch
and a landing epoch. The initial states are drawn from a the mentioned reference trajectory.
The "nominal landing trajectory" lasts 1h and is ≈ 0.5km long.

Then, I design a firing strategy called the Two Phase Descent (TPD), so that the s/c performs
only 300s firings during ≈ 95% of the trajectory. In the TPD, the landing trajectory is divided
in two phases: First, during the Approach Phase the control is turned on and off sequentially.
Along the mentioned "nominal trajectory" this makes for ≈ 95% of the distance to be traveled.
Next, at 15m above Dimorphos’ surface, the Descent Phase starts. In this period, the control
is turned on for up to 300s while awaiting touchdown, regardless of the control’s state at the
start of the phase. For the TPD I have assumed that a navigation knowledge of σr ≈ 1m may
be possible. A σr of this order is required to avoid targeting a point further below or far above
Dimorphos’ surface, which would endanger landing success. The control parameters for the
Approach (1) and Descent (2) phases are different, and using an iterative design process have
been set to Λ1 = 2.5, n1 = 0.2, Λ2 = 3 and n2 = 0.7.

Finally, I study the landing performance (i.e. landing ellipse and collision velocity) of the TPD
using Monte Carlo analyses of 1000 runs. They show how, when perturbations are lower than
the rejection term Φstab, the landing performance is mainly impacted by the navigation knowl-
edge. With a navigation error of σr ≈ 1m, the dispersion error of the landings with respect to
the landing point using a perfect navigation knowledge is of σr,land ≈ 1.1m. The trajectories
typically collide with an angle of ≈ 23 deg with respect to the local Nadir. The incidence angle
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has a dispersion of σangle ≈ 17 deg. The limit of Vc < 4.5cm/s (approximate Dimorphos’ scape
velocity) is respected with ≈ 98% of confidence. Indeed the local-Nadir component of Vc has
a typical value of ≈ 2cm/s with a dispersion of σ ≈ 1.3cm/s. The off-local-Nadir components
of Vc remain at lower values (order of 0.5cm/s) and closely follow a Gaussian distribution.
The control has been challenged with 1 deg and 5 deg pointing errors, which have shown to
faintly impact the performance. Overall, the strong control authority of the MSSG is capable
to quickly correct errors with respect to the ideal, linear trajectory. It can reject perturbations
up to the spacecraft’s maximum thrust, at the time of writing 10mN . The fuel consumption of
the flight is closely related to the value of Isp, but always located at O(Isp) = 10g, and it has
been detected that the increase in performance is −0.2g per sec. of Isp.

Discussion and Further Work

When used with continuous thrust for the complete trajectory, the MSSG reveals itself as a
very good control algorithm in terms of accuracy and robustness to dynamical perturbations.
Indeed, in Didymos’ dynamical environment it can land Milani with collision velocities of the
order of cm/s. Implementation is straightforward and, unlike e.g. the Optimal Sliding Guid-
ance algorithm, the MSSG does not require recursive propagation of the dynamics to compute
the acceleration command. This of course goes against fuel optimization but in the case at hand
the environmental accelerations and s/c mass are so small that fuel consumption is always at
the order of 10g, which is acceptable.

In previous works [17] has been shown how fuel consumption during the flight can critically
depend on how far is the prescribed Time-of-Flight (ToF) from the ToF of a fuel-optimal tra-
jectory. In this work such information has not been used and a line of further research could
be to compute fuel-optimal trajectories to understand whether the results of [17] appear in
Didymos, and in such case to ensure that the prescribed ToF is greater than the fuel-optimal
ToF.

Still in the continuous thrust framework, the performance of the MSSG in terms of Vc and
∆m has been observed to be separated into regions of, rather than different ToFs, varying
combinations of control-starting epochs and landing epochs. In particular, landings after the
close passage of a reference, uncontrolled trajectory about Dimorphos were beneficial. Future
research could shed light on the impact of varying Time of Flights and starting/landing epochs
and evaluate which has the greatest effect. This could inform on whether it is more important to
achieve long controlled flights or rather to reach the binary system at a given epoch to perform
the flight within a predicted system’s geometry.

The adaptation of the continuous thrust MSSG to mostly use 300s firings (in what I have called
the Two Phased Descent) has shown a remarkable ability to maintain the landing performance
in terms of Vc, landing ellipse and ∆m. This opens the door to consider using the MSSG in
a discrete-maneuver fashion: future research could determine the feasibility to use the MSSG
in pre-commanded, discrete maneuvers, which has not been proposed before. Open questions
are what would be the maximum allowable uncontrolled flight time between maneuvers while
maintaining an acceptable performance; or how long should the firings be in terms of such time.
Fundamentally, it could be further investigated what degradation in performance comes from
using the MSSG in discrete firings with respect to continuous thrust.

At the current state of development, the TPD does not enforce a strict requirement of always
firing for ∆t ≤ 300s. In some cases, during the last 15m the TPD may let the control be active
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for longer times. This is a reasonable transgression: during the final minutes of descent towards
the asteroid, it could be advantageous to leave the control be less restricted in order to ensure
mission success. Other alternatives that would maintain the 300s limit have been considered
and are commented in this work. This design choice has been made to favor robustness and let
the performance and decisions of the Guidance & Control logic be as independent as possible to
variations on how the s/c ends up approaching the asteroid. Indeed, this particular issue could
be subject of further investigation, and iterations on the design could let to slight changes on
how the control behaves near the asteroid.

Hence, the TPD strategy has shown that it is possible to use simple closed-loop algorithms like
the MSSG to generate acceleration commands during prescribed time batches, and that the per-
formance of the overall trajectory using this approach is related to that of the continuous-thrust
usage of the MSSG. In the case at hand, the landing performance is statistically remarkably
good, which could mean that the system has not been perturbed enough. Indeed, it confirmed
that the MSSG has the ability to resist bounded dynamical perturbations. For this reason,
future extensions of this work could be to investigate which is the perturbation’s limit (envi-
ronmental, control etc.) that the TPD endure, and provide worse-case scenarios to robustify
the control design. Regarding dynamical uncertainty, the limit the MSSG can correct is ruled
by the value of the constant Φ, which is translated in to the maximum thrust the thruster
can exert can exert. Milani thruster is currently assumed to exert 10mN maximum, which
is greater than the accelerations received from Didymos’ environment. Stronger control could
induce stronger chatter, but the use of a Schmitt trigger has revealed to be an effective way to
mitigate it; and the usage of sigmoid() instead of sign() values have been effective in softening
the control without significant degradation in performance.

In particular, in this document I perturb the environment with a random but constant accel-
eration in a given direction, which is bound to more easily accumulate an error in a random
direction when the control is turned off. Nonetheless, other approaches have been taken in
previous works to perturb the environment. E.g. to randomly and slightly modify the mass of
the attractor body or the magnitude of the SRP [17]. Other approaches could be to generate
a random, constant, percentual change for both magnitude and direction of the environmental
accelerations. Overall, to degrade the environment and experimentally confirm the limits of the
control would be an interesting line of work to pursue.
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Appendix A

Navigation Schemes

Missions to small bodies have used different navigation schemes, both fully autonomous or
mixed with ground intervention, [3]. The navigation part of the GNC system can be divided
in the measurement generation and the state estimator, which is typically a version Kalman
Filter. To obtain measurements, typically is used an IMU aided by an Optical Navigation
(OpNav) camera, complemented by altitude information coming from LFR or LIDAR at lower
altitudes [11]. The OpNav part is fundamental and can be done by either "Image Correlation"
or "Landmark Matching". Such classification is depicted in Fig. A.1. Below are highlighted the
alternative implementations for both the measurement unit and the estimation unit.

Image
Correlation
methods

Landmark 
Mathing
methods

Measurement unit Estimation unit

Gaussian
system
filters

Non-
Gaussian 
system 
filters

NAVIGATION SUBSYSTEM

Figure A.1: Elements of the navigation part of the GNC. Shadowed boxes indicate systems, rounded
boxes indicate alternative implementations.

A.1 Measurement Unit

Apart from IMU, LRF and LIDAR measurements, a fundamental part of the Measurement Unit
is the OpNav part, where measurements coming from asteroid images have to be constructed.
The way in which such measurements, using images, are constructed, is separated in Image
Correlation and Landmark Matching. Operational principle is to compare a taken image with
another one, that either is taken by the s/c at similar times or it is extracted from an on-board
map.

In Landmark Matching framework, the operational principle is to identify particular features of
the asteroid’s surface (called landmarks or control points), whose position on the target body
is known. The measurements are linked to the difference inside the picture frame between the
expected position of such landmarks and the their actual position. The measurements are ob-
tained using the following logic [27], [20]:
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1. Suppose a nominal position of the landmark in the photo (which emanates from a nominal
position of the s/c.

2. Take a picture and measure the difference between expected and actual change of position
in the picture frame, in terms of pixel and line (∆p, ∆l).

3. Apply Least Squares method to obtain a a corresponding deviation in position and atti-
tude of the satellite (∆P, ∆Q); where P ≡ r and Q contains a set of three small Euler
angles.

The logic between using Least Squares Method is that there is a link between the s/c deviation
from a nominal state and a deviation of the landmark appearing in the photo with respect to an
expected position. Such link can be exploited to find use the Least Squares method as shown
below:

(p, l) = f(P,Q)→

{
dp = ∂p

∂PdP + ∂p
∂QdQ

dl = ∂l
∂PdP + ∂l

∂QdQ
(A.1)

φ ≡ [∂(·)/∂P ∂(·)/∂Q]T (A.2)

θ ≡ [dP dQ]T ≡ [∆P ∆Q]T (A.3)

ym = φT θ + e; e ∼ G(0,R−1) (A.4)

θ̂ =

Npic∑
i

(
[φTRφ]−1 · φRym

)
(A.5)

The analytical expression of Eq. (A.1) can be found in [20]. There are several schemes to au-
tomatically obtain landmarks, them being craters (which not always exist) or other features
of interest. For the later, the method requires images with similar illumination and resolution
with moderate stereo separation, which derives in large absolute uncertainties. Recently there
have been developments using machine learning that can directly detect craters in images [11].
A new technique to improve Landmark Navigation is presented by Gaskell et al. [27]. There,
is proposed to first explore the asteroid with ground-based navigation in order to generate a
high-resolution Global Topographic Map (GTM), which is a 3-D map of the asteroid made out
of tiles whose centers are the new Landmark points. The position of these centers is precisely
known, and images of them can be rendered from the GTM with different illumination condi-
tions and viewpoints, to then be compared with their respective images taken by the OpNav
cameras and to follow the process aforementioned.

This technique allows an autonomous, reliable navigation on the asteroid but requires an a
priori exploration of it and the capability to compute (either on-ground or on-board) a GTM.

Regarding Image Correlation Methods, they do not require of an identification of geographic
feature points in the photos. In this framework, image taken are compared to an a priori loaded
on board map. Then the sensed image is correlated with the stored one, and this information
is used to correct the IMU estimation on the s/c position [28].

Landmark Matching techniques are the most resistant to noise in the data, distortions, changes
in viewpoint and illumination [11], but require an a priori knowledge of the terrain if large
absolute uncertainties are to be avoided. To tackle this dilemma, Hayabusa missions brought
their own artificial Landmark, which enabled to perform the landing with great relative position
accuracy [3]. Image Correlation techniques are easy to implement but they are sensitive to scale
and perspective differences between on-board map and sensed images.
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A.2 Estimation Unit

The Estimation Unit takes measurements to filter the propagation of the system dynamics
which yields the current states of the system. Such procedure is done by taking into account
the propagation of uncertainty of the system. In [11] is noted how in the state-of-the art there
are two main approaches to construct the filterers.

In one hand, there are the group of schemes that consider the system Gaussian. To this group
belong the classical Kalman Filter and its augmentations, such as the Extended, where the
dynamics of the system are linearized around a nominal state trajectory. To increase the con-
vergence accuracy that is obtained with such filter, the Uscented Kalman Filter is available,
where the dynamics are approximated with an unscented transformation instead of a lineariza-
tion.

On the other, the Gaussian stochasticity assumption can be avoided using a Particle Filter
(based on Monte-Carlo simulations) or using Polynomial Chaos to approximate the stochas-
tic properties of the system by an orthogonal polynomial expansion. The Polynomial Chaos
approach has been shown to provide the same accuracy as the Particle Filter but with more
accuracy. To further account for modeling errors, developments that use Minimum Model Error
approach or mixed H2/Hinf approaches estimate the states.
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Appendix B

Modelling & Implementation

The aim of this appendix is to detail what is the dynamical model and what is the control
algorithms used for the s/c simulations. The control algorithm is analysed in detail in Chapter
4 and hence here it will only be summarized the way in which it has been applied in the
simulations. This appendix is divided as follows: Sections B.1 and B.2 present the dynamical
equations used to model the problem and its validation. Section B.3 summarizes what is the
control algorithm and what are the dynamical perturbations.

B.1 Dynamical Modelling

B.1.1 Mathematical notation and reference frames

In the following derivation, vectors and matrices are noted in bold lowercase and uppercase
respectively. Transposed tensors are noted with the superscript xT . A vector that goes to point
P from point Q is noted as: xP−Q.

An item expressed in a given reference frame is noted with a superscript xY , where x is a generic
quantity and Y is the base on which it is expressed. The rotation matrices that go to base B
from base A are defined as:

CB/A =

bA,T1

bA,T2

bA,T2

 =
[
aB1 aB2 aB2

]
(B.1)

where the vectors ai and bi represent the unit vectors defining the bases A and B respectively.
The reference frames (RF) that are going to be used are displayed in Table B.1 below.

A derivative with respect to a reference frame A is noted as: dy
dx

∣∣∣
A

The upper dot symbol is analogous to the derivative of a tensor in the frame it is expressed.
I.e. ṙN = drN

dt

∣∣∣
N

or ω̇B = dωB

dt

∣∣∣
B

.
Any of the notation described above may be replaced with an in-text definition, e.g.: "The
vector r points to the s/c CoM from Barycenter." Which means r = rc−Bar. Also, the term "D
RF" will be used to generally refer to either D1 or D2 RF.

B.1.2 Translational EOM

The spacecraft is assumed to be a rigid container that loses mass during operations. The change
of linear momentum of the solid can be evaluated using the Navier-Stokes equations expressed
with respect to an inertial RF (e.g. N RF); and considering a control volume (CV) attached in
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Table B.1: Reference frames being used in the derivation.

Abbreviation Full name Inertiallity Comment

N RF DidymosECLIPJ2000 Yes
Centered in Didymos Barycenter (Bar),
oriented as ECLIPJ2000.
Defined by ESA’s Kernels.

B RF Body Reference Frame No Centered in Milani CoM, fixed on the body.

D1 RF Didymos Body-attached RF No Centered in D1 CoM, fixed on the body.
Defined by ESA’s Kernels.

D2 RF Dimorphos Body-attached RF No Centered in D2 CoM, fixed on the body.
Defined by ESA’s Kernels.

the interior of the s/c walls. The Navier-Stokes momentum conservation equation is:
d

dt

∣∣∣
N

∫
V

uNρdV +

∫
S

uNρ(uN − vNCV ) · ndS =

∫
S

f(n)dS +

∫
V

gNρdV +
∑

FN
i (B.2)

where uN is the inertial velocity of all particles in the CV with respect to Didymos Barycenter.
vNCV is the inertial velocity of the CV walls with respect to Didymos Barycenter, both expressed
on the N RF. f(n) = σ ·n are the forces acting on the CV’s walls as result of a stress tensor. The
term

∑
Fi contains all external forces that are not gravitational. Note that the second term

on the LHS is zero except for the point where the mass exits the control volume and leaves to
space. The terms of Eq. (B.2) can be further developed as:

d

dt

∣∣∣
N

∫
V

uNρdV + ṁvexhaust = Ae nozzle(Pambient − Pe nozzle)noutlet +
∑

Fexternal (B.3)

The first term on the LHS can be integrated over the body to refer to the CoM quantities:

d(mvNCoM )

dt

∣∣∣
N

= −ṁvexhaust +Ae nozzle(Pambient − Pe nozzle)noutlet +

Natt.∑
i

FN
g,i + FSRP (B.4)

The term −ṁvexhaust + Ae nozzle(Pambient − Pe nozzle)noutlet can be identified as the thrust
exerted by the propulsion device, and be renamed T:

T , −ṁvexhaust +Ae nozzle(Pambient − Pe nozzle)noutlet (B.5)

which allows to compress the expression of the change in momentum to:

d

dt
(mvN )

∣∣∣
N

=

Natt.∑
i

FN
g,i + FN

SRP + TN (B.6)

where it has been noted that the external non-gravitational forces acting on the s/c is just the
SRP and vCoM has been renamed v. The following assumption can be done:

• Change of momentum of the CV due to change in its mass (ṁv) is negligible

which allows to develop Eq. (B.5) as follows:

d

dt
(mvN )

∣∣∣
N

=

Natt.∑
i

FN
g,i + FN

SRP + TN

dm

dt

∣∣∣
N

vN +
dvN

dt

∣∣∣
N
m =

Natt.∑
i

FN
g,i + FN

SRP + TN

dvN

dt

∣∣∣
N
m ≈ +

Natt.∑
i

FN
g,i + FN

SRP + TN
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where v is the inertial velocity of the s/c CoM.
∑Natt.

i Fg,i is the sum of gravitational forces due
to the presence of several attractors. The gravitational environment about the Didymos system
can be divided into different regions. In [25] is shown how the Solar Tide can be neglected for
close-proximity operations around Dimorphos. In such case:

Natt.∑
i

FN
g,i = FN

g,D1 + FN
g,D2 (B.7)

Let rN be the vector that goes from Didymos Barycenter to the s/c CoM expressed in the N
RF (i.e. rNc−Bar). Since d(rN )/dt|N = ṙN = vN the system can be expressed in terms of r as a
combination of two first-order PDE:{

ṙN = vN

v̇N = gND1(rNC−D1,C
N/B) + gND2(rNC−D2,C

N/B) + CN/BaBSRP + CN/B TB

m

(B.8)

where the terms gND are the force over mass executed by the gravity of the asteroid D-i upon
the s/c. aSRP is the analogous quantity exerted by the SRP.

B.1.3 Rotational EOM

The rotational dynamics are described by the so-called Euler Equations, which express the
rotational state of the asteroid in terms of its instantaneous angular velocity ωB = [ωx ωy ωz]

T

wrt. N RF expressed in the B RF. Considering the s/c as a rigid asteroid with inertia JB and
a set of reaction wheels whose inertia is JBr (JBr ∈ JB), it can be shown how the Conservation
Of Angular Momentum yields [29]:

dHB

dt

∣∣∣∣
N

=
dHB

dt

∣∣∣∣
B

+ ΩB
B/N ×HB =

∑
MB; ΩB

B/N = ωB (B.9)

where:

HB = JBb ω
B + JBr (ωB + ωBr ) = (JBb + Jr)ω

B + JBr ω
B
r ; J = JBb + JBr

= JBωB + JBr ω
B
r

and therefore:

JBω̇B + ωB × JBωB + J̇BωB + JBr ω̇
B
r + ωB × JBr ω

B
r + J̇Br ω

B
r =

∑
MB (B.10)

where ωB is the ang. vel. of the s/c body in the B RF; ωBr is the relative ang. vel. of the RWs in
the B RF; Jr is the inertia of the body excluding RWs and MB are the external moments acting
on the s/c in the B RF. The moments M are the disturbances and the control action:

∑
M =∑

Md +
∑

Mc. In this model:
∑

Mc = Mthrusters and
∑

Md = Mg,D1 + Mg,D2 + MSRP .
The dynamics of the RWs are described by:

JBr ω̇
B
r = MB

r (B.11)

where MB
r is a moment applied by the control system on the wheel to control its spin rate.

B.1.4 Kinematic link

The attitude can be represented by a Quaternion, which is equivalent to a corresponding Cosine
Direction Matrix but uses less parameters and thus its advantageous for numerical computation.
The evolution in time of the attitude Quaternion is dependant on the angular velocity ω and
can be shown to be [29]:
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
q̇B/N (t) = 1

2Ω(ω(t)BB/N )q(t)B/N

Ω ,

[
[ωB]× ωB

−ωB,T 0

]
(B.12)

where [·]× is the operator that yields the skew matrix. The Attitude Quaternion can be trans-
formed back to an Cosine Direction Matrix CX/Y following the transformation in Eq. (B.13):{

C =
(
q2

4 − qTq
)
I3 + 2qqT − 2q4[q]×

q, q4 := q = [q q4]T
(B.13)

Note that the Translational and Rotational EOM are linked through the attitude matrix C(t):
the projections of the forces acting on the s/c CoM depend on the attitude, which in turn
depends on the angular velocity. Simultaneously, the transnational motion of the s/c implies a
constant change in the environment, which in its turn affects the Rotational dynamics through
the torques that the s/c experiences.

B.1.5 Variation of mass

The mass variation is given by the fuel spending during operations. Such change of mass also
implies a change on its distribution and therefore on the inertia tensor of the body. The variation
of mass and inertia is modeled as:

ṁ = − |T|
Ispg0

(B.14)

J̇ = 0 (B.15)

B.1.6 Full 6DOF system

The states of the system consist in:

x =
[
rN vN ωB qB/N m JB

]T (B.16)

where r ∈ R3x1, v ∈ R3x1, ω ∈ R3x1, q ∈ R4x1, m ∈ R1x1 and J ∈ R3x3 (stacked in a R6x1

vector). In the sections have been developed the equations that yield the states derivatives.
Below are displayed together:

ṙN = vN

v̇N = gND1(rNC−D1,C
N/B) + gND2(rNC−D2,C

N/B) + CN/BaBSRP + CN/B TB

m

ω̇B = J−1
[
−
(
ωB × JBωB + J̇BωB + JBr ω̇

B
r + ωB × JBr ω

B
r + J̇Br ω

B
r

)
+ MB

g,D1 + MB
g,D2 + MB

SRP + MB
c

]
q̇B/N (t) = 1

2Ω(ωB(t))qB/N (t)

ṁ = − |T|
Ispg0

J̇ = 0

(B.17)

B.1.7 Reduced Orbit-Attitude Coupled Dynamics

The principal aim of this work is to introduce and implement a control action that can rule the
translational motion of the s/c so that it lands on an asteroid with a certain performance. As it
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has been discussed in Chapter 2, the orbit-attitude coupling and the SRP are most important
in an asteroid dynamical environment, and hence it is fundamental that the translation motion
described by the equation v̇N above is fed by the attitude CN/B information.

At the time of writing, the attitude control Mc → ω̇B is being designed by DART Group,
and hence in this project the attitude CN/B will be considered as given by the attitude control
system, and to be independent from the translational control system. In this framework CN/B(t)
has been set so that

• The navigation camera in Milani points constantly towards the center of D2

• The star tracker points along the direction to-s/c-from sun, setting the solar panels in
the perpendicular plane of the solar vector and protecting the star tracker of direct solar
exposure

For this reason, the propagated dynamics correspond to the system:

ṙN = vN

v̇N = gND1(rNC−D1,C
N/B) + gND2(rNC−D2,C

N/B) + CN/BaBSRP + CN/B TB

m

ṁ = − |T|
Ispg0

CN/B = f(r)

(B.18)

B.2 Environmental Modelling

B.2.1 Gravitational Pull

The gravity field of the bodies D1 and D2 is modeled with spherical harmonic potential ex-
pansion. The potential of each is expressed in their respective body-attached RF. If D1, D2
RF are centered at the asteroids’ CoM and oriented along their principal inertia axis, the first
non-trivial function on the potential expansion is [1]:

U(rDc−D) =
µ

r

[
1 +

(
1

r

)2{
C20

(
1− 3

2
cos(δ)2

)
+ 3C22cos(δ)

2cos(2λ)

}]
(B.19)

hereafter called J2 Expansion, where λ, δ and r are the spherical coordinates used to represent
the target point r in the Cartesian D RF. The Cij noted in this work correspond to [1]:

C20 =
1

5

(
γ2 − α2 + β2

2

)
(B.20)

C22 =
1

20

(
α2 − β2

)
(B.21)

where α, β and γ are the radii of the triaxial ellipsoid. Note that here the potential is defined
as a positive quantity and therefore the resultant gravitational gorce acting over the s/c body
B is defined as:

FD
g ,

∫
B

+∇DUdm (B.22)

where ∇D(·) is the gradient operator over the coordinates of the D RF. Using the J2 Expansion
allows to analytically develop Eq. (B.22) and leave Fg in terms of the inertia tensor J . Using
the transformation from spherical to Cartesian coordinates the potential can be expressed in
Cartesian coordinates by the following developments:
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rDc−D = [x y z]T
rcos(λ)cos(δ) = x

rsin(λ)cos(δ) = y

rsin(δ) = z

cos(δ)2 = ... =
r2 − z2

r2

cos(2λ) = cos(λ)2 − sin(λ2)

= sin(λ)2

(
(
x

y
)2 − 1)

)
= ... =

x2 − y2

r2 − z2

and therefore:

U(rDc−D) =
µ

r
− µC20(x2 + y2 − 2z2)

2r5
+

3µC22(x2 − y2)

r5
= Us + UNSG (B.23)

where the vector r points to a target point from the asteroid’s CoM. Note that the first term is
the classical gravitational potential of a spherically-distributed mass, and thus the orientation
of the s/c position wrt. the body does not affect the potential’s magnitude, only the distance
to its center. The other two terms contain non-spherically-symmetric terms and therefore the
position of the s/c wrt. to the body comes into play through the coordinates {x, y, z}. Both the
spherical term and the non-spherical gravity (NSG) terms will yield Attitude-Orbit Coupling
(see Chapter 2).

Gravitational Force

The spherical term integration in Eq. (B.22) can be developed as shown in [30]. This section
walks through that work. Let now RD = [x y z]T be the vector to a target-point from the
asteroid’s CoM; r be the vector to the same point from the s/c CoM; and Rc the vector to the
s/c CoM from the asteroid CoM:

R = Rc + r (B.24)

For clarity’s sake the following notation simplification will be used:
• Vectors are notated in non-bold font. I.e. rBc−D → rB

• A vector appearing in a denominator refers instead to the modulus of that vector. I.e.
1/|r| → 1/r.

Consider first the spherical gravity term of Eq. (B.23) alone. Then, the Gravitational force that
the whole body experiences is:

FD
g,s =

∫
B

∂Us
∂RD

dm =

∫
B
− µ
R

(RDc + rD)dm→ FB
g,s =

∫
B
− µ
R

(RBc + rB)dm

Let RBc , rB and RB be hereafter noted as Rc, r and R respectively. If the integral is performed
on the B RF, by definition

∫
B r

Bdm = 0 and thus:

FB
g,s = −µRc

∫
B

1

|Rc + r|3
dm

the term inside the integral can be approximated with a Second Order Taylor Expansion on the
vicinity of the point Rc:

|Rc + r|−3 = R−3
c

[
1 +

2Rcr

R2
c

+ (
r

Rc
)2

]−3/2

= R−3
c · f(r)

∂f
∂r = −3

2

[
1 + 2Rcr

R2
c

+ ( r
Rc

)2
]−5/2

·
(

2Rc
R2

c
+ 2r

R2
c

)
∂2f
∂r2

= 15
4

[
1 + 2Rcr

R2
c

+ ( r
Rc

)2
]−7/2

·
(

2Rc
R2

c
+ 2r

R2
c

)2
− 3

2

[
1 + 2Rcr

R2
c

+ ( r
Rc

)2
]−5/2

2
R2

c

f(r) ≈ f(0) +
∂f

∂r

∣∣∣
r=0

r +
1

2

∂2f

∂r2

∣∣∣
r=0

(r · r) = 1− 3
Rcr

R2
c

− 3

2

r · r
R2
c

+
15

2

(
Rc · r
R2
c

)2
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And therefore:

FB
g,s = −µRc

∫
B

1

|Rc + r|3
dm ≈ −µRc

∫
B

1

R3
c

[
1− 3

Rcr

R2
c

− 3

2

r · r
R2
c

+
15

2

(
Rc · r
R2
c

)2
]
dm

Note that all the terms above are of order O(R−4
c ) or greater. Higher order terms have been

implicitly discarded by using the Taylor Expansion up to Second Order. Using the identity
a× (b× c) = (a · c)b− (a · b)c allows to re-write the expression as:

FB
g,s =− µ

R3
c

{
mRc −

3

R2
c

∫ [
r × (r ×Rc) + r2Rc

]
dm− 3

2R2
c

∫
B
r2Rc dm

+
15

2R4
c

∫
B
Rc ·

[
r × (r ×Rc) + r2Rc

]
Rc dm

}
Realizing that

∫
B r

2dm = 1
2 tr(J

B) and1 J =
∫
B−[r]×[r]×dm, the expression above can be

re-expressed as:

gBD,s = FB
g,s/m = − µ

|rc−D|3
rBc−D − 3

µ

|rc−D|5
ΓBrBc−D +

15

2

µ(rB,Tc−DJBrBc−D)

|rc−D|7
rBc−D (B.25)

where ΓB = 1
2 tr(J

B)I + JB and the notation of rc−D ≡ Rc has been recovered. Note that
Eq. (B.25) reports the gravity acceleration on the s/c CoM exerted by only the spherical grav-
ity field term. The first term in the RHS is the classical central force, while the other two
terms are responsible for the spherical gravity AOC. The attitude of the s/c is introduced
through the projection of rc−D in the B RF. In order to reduce the computational burden the
gravitational acceleration will hereafter be evaluated in the N RF directly, and therefore the
information on the s/c attitude will enter through the projection of the tensor J on the N RF:
JN = CN/BJB(CN/B)T .

The gravity acceleration terms coming from the NSG part of the potential expansion can be
retrieved from [12] and are:

gDNSG,D =


− µC20xc
|rc−D|5

+
5µC20xc(x2c+y2c−2z2c)

2|rc−D|7
+ 6µC22xc
|rc−D|5

− 15µC22xc(x2c−y2c)
|rc−D|7

− µC20yc
|rc−D|5

+
5µC20yc(x2c+y2c−2z2c)

2|rc−D|7
− 6µnC22yc
|rc−D|5

− 15µC22yc(x2c−y2c)
|rc−D|7

2µC20zc
|rc−D|5

+
5µC20zc(x2c+y2c−2z2)

2|rc−D|7
− 15µC22zc(x2c−y2c)

|rc−D|7

 (B.26)

where rDc−D = [xc yc zc]
T . Note that in the expression above the integral hasn’t been re-

expressed with JB because it has been performed on the D RF, retaining again terms up to
order O(|rc−D|−4).

Finally, the total gravitational acceleration exerted by the asteroid D on the s/c CoM, expressed
in the N RF is:

gND = gNs,D + CN/DgDNSG,D

= − µ

|rc−D|3
rNc−D − 3

µ

|rc−D|5
ΓNrNc−D +

15

2

µ(rN,Tc−DJNrNc−D)

|rc−D|7
rNc−D + CN/DgDNSG,D

where JN = CN/BJB(CN/B)T ; ΓN = CN/B
[

1
2 tr(J

B)I + JB
]

(CN/B)T ; and gDNSG,D is available
from Eq. (B.26).

1The operator [·]× yields the skew-matrix.
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Gravitational Torque

Let again R = [x y z]T be the vector to a target-point from the asteroid’s CoM expressed in
the D RF; r be the vector to the same point from the s/c CoM; and Rc the vector to the s/c
CoM from the asteroid CoM:

R = Rc + r (B.27)

For the moment, consider only the spherical term of UD. The gravitational torque with respect
to the s/c CoM, created by the spherical gravity of D, in the D RF is:

MD
g,s =

∫
B
r × ∂UD

∂RD
dm =

∫
B
r ×− µR

|R|3
dm =

∫
B
r ×−µ(Rc + r)

|Rc + r|3
dm

=

∫
B
r ×− µRc

|Rc + r|3
dm = Rcµ×

∫
B

r

|Rc + r|3
dm

The denominator can be approximated with a First Order Taylor Expansion using the same
procedure proposed for the gravitational force section. This yields:

MD
g,s ≈ Rcµ×

∫
B

r

R3
c

[
1− 3

Rcr

R2
c

]
dm =

3µ

R5
c

Rc × JDRc (B.28)

And, expressing the moment in the B RF while recuperating the general vector notation:

MB
g,s =

3µ

|rc−D|5
rBc−D × JBrBc−D (B.29)

Hereafter, as in the gravitational force section, only the terms of order ≥ O(|rc−D|−4) are
retained. This implies that the non-spherical gravity terms do not contribute to the gravitational
torque [12] and therefore:

MB
g,D =

3µ

|rc−D|5
rBc−D × JBrBc−D (B.30)

B.2.2 SRP acceleration and torque

The SRP acceleration has been modeled using the cuboid model, available in [29] and tested in
[12]:

Fi = −PAi(ŜB · ni)
[
(1− ρs)ŜBi + (2ρs(Ŝ

B · nBi ) +
2

3
ρd)n

B
i

]
(B.31)

FB
SRP =

N∑
i=1

Fi (B.32)

MB
SRP =

N∑
i=1

rBi × Fi (B.33)

Where nBi is the unit vector normal to the each lighted surface; and rBi is the vector CoMsc,GCi.
In the summation of Eq. (B.31) only the forces with (ŜB · ni) ≥ 0 are retained. The following
assumptions have been done:

• The direct solar radiation pressure has a value of 4.539807335646850e− 06 Pa.
• The Asteroid’s radiation and its Albedo have been neglected.
• The shadow of the s/c upon its own surfaces has been neglected.
• The Absorption, Diffuse Reflection and Specular reflection coefficients are homogeneous

through the surface of each element.
• The solar panels’ thickness-wise area is negligible.
• The center of pressures (CoP) of each element coincides with its CoM.

The diffuse (d) and specular (s) emission coefficients for the have been set to:
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Table B.2: Radiation emission coefficients

Body Yoke Panel

ρs 0.75 0.8 0.09
ρd 0.15 0.1 0.01

B.2.3 Validation of environmental forces

The modelled environment has been validated by comparing the propagated trajectory and the
forces acting on the s/c to the values provided by a reference trajectory and the dynamical
study in [25]. Importantly, in [25] is used the Cannonball model to evaluate the SRP. In order
to approximate the results to those of [25] as much as possible, for the validation process the
SRP has been modeled using the Cannon Ball Model too. Also, no control has been applied on
the s/c; the attitude has been left to change freely; and no perturbation have been introduced.
The reference trajectory as well as the propagated one can be observed in Fig. B.1a. There,
it can be observed that the propagation error is remarkably small. The latter can be better
appreciated in Fig. B.1b, where is shown how over ≈ 7 h of simulation the error in position has
the order of O(cm) and the error in velocity the order of O(10−2 mm/s).In Fig. B.2 can be
observed the evolution of the acceleration exerted by the different perturbations upon the s/c.
It is consistent with the dynamical study of [25] and therefore the model is accepted as validated.

(a) Reference and propagated trajectory expressed in
the N RF frame.
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(b) Error between the reference and propagated tra-
jectory in the N RF.

Figure B.1: Comparison between reference and propagated trajectory for the validation process. SRP
model: Cannon Ball. Without control on translational and rotational dynamics.
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Figure B.2: Evolution of the perturbations over distance. SRP model: Cannon Ball.
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B.3 Control implementation

The objective of this section is to synthesize the control implementation, the rationale of which
has been introduced and discussed in section 4.3. A different notation wrt. environmental
modelling has been adopted for clarity’s sake. Notation changes as follows:

• Vectors and matrices are expressed in non-bold font.
• All vectors are expressed in the D2 RF unless stated otherwise.

rD2
c−D2 → r, rD2

D2−D → Ra, aD2
c → u

and note that:

ν = ṙ =
dr

dt

∣∣∣
D2

=
dr

dt

∣∣∣
N
− ωD2/N × r = vD2

c−D2 − ωD2
D2/N × r

D2

B.3.1 MSSG formula

The Multiple Sliding Surface Guidance (MSSG) algorithm has been implemented by evaluating
the function below at every time step:

u = −Φsigmoid(s2)− Λ

tgo
ṡ1 −

Λ

t2go
s1 + gNI(r, t) (B.34)

The definition of the variables appearing on the MSSG expression are:

tgo = tf − t
s1 = r − rL

ṡ1 = ν − νL

s2 = ṡ1 +
Λ

tgo
s1

(B.35)

And, since the problem is vectorial (i.e. s1 ∈ R3×1):

gNI(t, r) = 2ω × ν + ω × ω × r + R̈a − g(r, t) (B.36)

Φ = ΦI3×3, Φ = max

(
|s2,i(0)|

∆tr
, |pmax|

)
(B.37)

Λ = ΛI3×3 (B.38)

sigmoid(s2) =
s2

|s2|+ ε
, ε =: sigmoid(s2,low) = 0.01 (B.39)

Note that:
• For all simulations the control is completely turned off 5 s before touch-down to avoid a

burst in the control when tgo → 0.
• The gains of the control are Λ and Φ ∝ 1/∆tr = 1/n(tf − t0) ∝ 1/n. Hence, the tuning

of the MSSG will be fundamentally based on the choice of

Λ ∈ [2, ∞)] (B.40)
n ∈ (0, 1] (B.41)

B.3.2 Chattering-avoidance

The perturbation-rejection term asmc = Φsigmoid(s2) is activated using a Schmitt trigger with:

s2,high = 10−2 m/s

ss,low = 10−4 m/s
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B.3.3 Perturbing accelerations’ model

The dynamics described by Eq. (B.18) have been artificially perturbed using randomly-generated
perturbation vectors ap(t), whose components’ magnitude follows a normal distribution as:

ap ∈ R3×1 ∼ N
(

0 m/s2, (|pmax|/3)2
)

and |pmax| has been assumed to be

|pmax| = 10−5 m/s2

For a given trajectory simulation ap = c.t.

B.3.4 Thrust limitation and quantization

For the implementation of Milani’s thrusters (i.e. not during the MSSG analysis), in this work
the thrust has been saturated and quantized in the B RF. Central to this process is the fact that
the GNC system has a command frequency of fgnc = 1Hz. Some properties of the thrusters are
yet to be defined at the time of writing. Indeed, the Minimum Impulse Bit of Milani’s thruster
has been assumed to be equal to the one of a commercial 6DOF control thruster with equal
maximum thrust. The properties are the following:

• Minimum Impulse Bit (MIB): 25µNs. Assumed to be equal to a 6DOF cold gas propulsion
system from GOMSpace [31].

• Minimum Increase in Thrust: MIB · fgnc = 25µN

• Minimum Thrust: 25µN

• Maximum Thrust: 10mN . Extracted from Milani’s Mission Analysis Report [26].
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Appendix C

Landing Greater Navigation Error

In this appendix is discussed the effect of using a greater navigation error in position, which is
closer to what can be extracted from from [26] at the time of writing. From [26] it is known
that LIDAR measurements on D1 have an error of

σLIDAR ≈ 10m (C.1)

An effort to consider this value for σr while applying the TPD strategy presented in sec. 5.1
has been made. To use σr ≈ 10m induces:

• The perceived landing point (PLP) by the navigation system will fall inside a sphere with
radius ≈ 30m with a 99.7% of probability (3-σ property of Gaussian distributions).

This means that the MSSG would leave the s/c with high performance (i.e. r, ν ≈ 0) at a point
up to 30m above the surface. This implies that

• The position that the Control system targets can diverge significantly from the actual
target, and with relatively great magnitude.

• The s/c can then perform a free fall of 30m towards the surface.

• The s/c might be left with an out-ward velocity. This happens if, simultaneously:

1. The PLP is above the surface.

2. The s/c surpasses the PLP and has to go back.

3. The control has still firing time to push the s/c up towards the surpassed PLP.

An example of this problem is shown in Fig. C.1a. To tackle these issues, the TBD has been
modified:

1. The boundary layer is to be set at 30m, so that the landing point is perceived to be within
the boundary with 99.7% probability.

2. Once the s/c perceives that the boundary layer has been crossed, a new measurement of
the LIDAR is to be done on D2 with:

σLIDAR = 1m (C.2)

This allows the MSSG to re-target to a point closer to the actual landing target.

3. Since h ↑ to h = 30, the descent in 300s would need an average velocity of ν̄ = 30m/300s =
10cm/s. The s/c typically reaches the boundary layer at O(5cm/s), and hence to reach
rL in 300s the control needs to first accelerate greatly the s/c and then quickly break



76

its speed to reach rL with ν = 0 (see vy in Fig. C.1b). This rises Vc significantly, up to
10cm/s in the case of Fig. C.1a. To tackle this, the Descent Phase firing is still limited to
300s, but the tf that the MSSG uses is extended to 1200s, so that tgo ↑ and minimization
of ν primes over r while minimizing1

s2 = ṡ1 +
Λ

tgo
s1 = ν(t) +

Λ

tgo
(r(t)− rL) (C.3)

Note that the increase on tf to 1200s has been done because σr = 30m ⇒ h = 30m ⇒
ν̄ ↑⇒ tf ↑.

This modified TPD performs reasonably well in front of such strong error in Navigation knowl-
edge, the changed version of Fig. C.1a is shown in Fig. C.2. In that case Vc = 4.3cm/s. There,
the control is limited to greately stop the s/c during the 300s after the perceived boundary
layer crossing, and then the s/c free falls towards the surface.

From this study it can be concluded that:

• The value of σr determines how close to the surface is the PLP. After reaching the PLP,
the s/c performs a free fall towards the surface. High values of σr may imply that:

– The s/c performs a free fall from a great height, increasing Vc.

– The s/c reaches the PLP with an acceleration out-ward from D2.

• Requirements on the maximum free-fall distance may impose a requirement on σr. In
this work, the MSSG parameters Λ2 = 3 and n = 0.7, as well as the boundary layer
height h = 15m were selected while considering perfect state knowledge. To add the state
knowledge a posteriori, a σr has to be enforced s.t. the PLP is within the boundary layer
of h = 15m.

• The TBD strategy can be adapted to use greater values of σr (e.g σr ≥ 10 m), which
needs to use a low σr close to the surface anyway, and an artificial increase of tf in the
MSSG to avoid a peak in ν.

To use the modified TBD strategy has finally been discarded because:

• The choice of σr = 1m for the whole trajectory would allow the choice of h = 15m (as in
sec. 5.1).

• For the reasons explained above, land with σr = 10m, during the descent phase σr has
to be O(1m) anyway, and hence σr = 1m has to be imposed at some point. Then,
it reasonable to already require σr = 0 for the whole descent and avoid using an h of
h = 50m.

1See 4.3
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(a) Last moments of the trajectory in the D2 RF.
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(b) Evolution of ν and r in the
last stages of Fig. C.1a.

Figure C.1: TBD used with a Navigation knowledge of σr = 10m. The simulation stops at collision.

Figure C.2: TBD starting with a Navigation knowledge of σr = 10m, and setting it to σr = 1m after
the boundary layer, with tf = 1200s during the descent phase, but a firing time of 300s.
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