
Problem-tailored model
parametrization for the autotuning
of event-based controllers

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Marco Zamuner

Student ID: 975725
Advisor: Prof. Alberto Leva
Academic Year: 2022-23

i

Abstract

This thesis is about the (automatic) tuning of industrial modulating controllers – most
typically, PIDs – also considering their event-based realization, i.e., implementations in
which the control signal is not computed periodically but when some triggering mechanism
requires a new value for it.

More precisely, the work refers to model-based tuning, i.e., on tuning techniques that first
use the collected process input/output data to identify a process model and then exploit
that model to tune the regulator.

In this context, two problems are addressed. The first one comes from the effect on the
tuning quality of the procedure used to parametrize the model form data, the second one
from the non parameter-free nature of event triggering mechanisms.

On the first problem, the thesis presents and discusses a technique to select the best
combination of model parametrization procedure and controller tuning rule (in both cases
within given sets) so that the resulting control be optimal with respect to a quality index
of choice, here too within a given set.

On the second problem, a methodology is proposed to extend tuning rules conceived in the
continuous time domain – hence naturally keen to periodic, fixed-rate implementations –
to the event-based setting.

Simulation examples are reported to back up the statements made, and as a conclusion of
the work, future research directions – most notably, a joint treatise of the two problems
above – are outlined.

Keywords: Autotuning, Event-Based Control, Model Parametrization Procedure, Digi-
tal Controller, Tuning Quality Indices

Abstract in lingua italiana

Questa tesi tratta della taratura (automatica) di controllori industriali – tipicamente PID
– considerando anche la loro realizzazione a eventi, cioè implementazioni in cui l’azione di
controllo non è calcolata periodicamente ma solo quando un meccanismo di generazione
degli eventi ne richiede un nuovo valore.

Più in dettaglio, questo lavoro si riferisce a metodi di taratura basati su modello, cioè
tecniche di taratura che utilizzano i dati di input/output per identificare un modello del
processo, che è usato per la successiva taratura del regolatore.

In questo contesto vengono affrontati due problemi. Il primo è legato a come la procedura
utilizzata per parametrizzare il modello dai dati influenza la qualità della taratura; il
secondo riguarda la taratura dei parametri di controllo che sono relativi al meccanismo
di generazione degli eventi.

Per il primo problema questa tesi propone una tecnica per selezionare la miglior com-
binazione tra il metodo di parametrizzazione del processo e la regola di taratura del
controllore (scelti in set predefiniti) in modo tale che il controllo risultante sia ottimo dal
punto di vista di alcuni indici di qualità, anch’essi scelti in un insieme dato.

Per il secondo problema, si è utilizzata una metodologia per estendere al contesto a eventi
delle regole di taratura originariamente sviluppate per essere utilizzate nel tempo continuo
e di conseguenza per implementazioni a passo fisso o periodico.

Il lavoro presenta degli esempi di simulazione a supporto delle soluzioni proposte e si con-
clude con la descrizione di alcune direzioni per la ricerca futura, in particolare in merito
a come integrare i due problemi sopra menzionati.

Parole chiave: Regole di Taratura, Controllo a Eventi, Metodi di Identificazione, Con-
trollo Digitale, Indici di Qualità della Taratura

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 Brief Literature Review 3

3 Background 7
3.1 Model-Based PI and PID Tuning . 7

3.1.1 PI controller . 8
3.1.2 PID controller . 9

3.2 Event-Based Realization . 11
3.3 Test Benchmark . 17

4 The Proposed MPP-TR Selection Technique 19
4.1 Design . 19

4.1.1 Model Parametrization Procedure 19
4.1.2 Tuning Quality Indices . 20
4.1.3 Offline Part of the Technique . 22
4.1.4 Online Part of the Technique . 24

4.2 Benchmark Assessment . 26

5 Going Digital and then Event-Based 37
5.1 Event-Based Realization Technique . 37
5.2 Event-Based Realization Assessment . 38

6 Conclusions, Open Issues, Future Work 51

Bibliography 53

A Appendix A 59

List of Figures 65

List of Tables 67

Acknowledgements 69

1

1| Introduction

This thesis is about autotuning industrial controllers, specifically of the model-based
type, and offers two main contributions. First, it evidences the role of the technique
used to parametrize the used process model, and makes that technique an integral part
of the controller synthesis procedure together with the tuning rule of choice. Second,
with reference to event-based (as opposite to fixed-rate) digital controller realizations, it
addresses the problem of extending tuning rules conceived in the continuous time so as
to also determine the controller parameters that refer to the event triggering mechanism.

When designing a controller, one would like to obtain the best performances with the
least effort; there are many techniques that help with such a purpose, and autotuning
is a widely used and well studied example. Autotuning gives through simple equations,
based on mathematical models and experimental data interpolation, a starting point for
the tuning parameters. These parameters can be improved if the performance does not
satisfy the requirements. From an industrial point of view this represents a time saving
operation and consequently an economic advantage.

In modern control systems – think for example of the so called “Industry 4.0” paradigm
– the presence of potentially overloaded communication channels (for example, wireless)
and in general the need for reducing the burden imposed to the used networks, collectively
call for event-based controller realizations. In such implementations the control signals are
not computed periodically but “when necessary”, thereby reducing transmissions and also
undue (small) actuator movements. For battery-operated devices this approach allows to
save energy so improve the life cycle.

It is quite evident that the scenario just sketched pose new challenges to the (automatic)
tuning of industrial controllers. On one hand, it is nowadays possible to identify process
models online even with low-end hardware, which increases the applicability and impor-
tance of model-based tuning but at the same time makes the procedure used to compute
the process model parameters critical for the uniformity and the quality of the tuning
results. On the other hand, in the event-based case, the controller and its triggering
mechanism form a unit that must be synthesized in a unitary manner, as an incorrect

2 1| Introduction

operation of the said triggering would impair the tuning results.

In this work we consider the setting outlined above and evidence two problems, one general
and one related to an event-based realization.

• Given the same data and tuning rule, changing the model parametrization procedure
has a relevant impact on the results. Hence it is useful to be able to select the
best tuning procedure, for which we mean a parametrization procedure-tuning rule
couple, to fit the problem at hand; this in turn entails defining/choosing a selection
indices.

• A tuning procedure should also be capable of providing the control law parameters
that pertain to the event-based realization. As we shall point out, certain kinds
of such realizations lend themselves particularly to the context we are building,
and these are the ones where “event-related” parameters have the least influence on
important properties like stability.

This thesis attempts to help solve the two problems above, and in the light of the consid-
erations just reported, its contributions can be better qualified as follows.

• Based on a literature review and some consequent considerations, a set of indices is
selected and motivated for tuning quality evaluation in the case of regulatory and
servo tuning [43].

• Based on the said indices, a technique is proposed to exploit the gathered process
I/O data to select the “best” tuning procedure for a given problem. The proposed
technique is evaluated by applying it to a well assessed literature benchmark.

• Employing a particular event-based realization paradigm, extension are proposed to
some tuning procedures in a view to also determining their event-related parameters.
This extension was to date tested in structurally nominal conditions, benchmark
assessment is underway.

3

2| Brief Literature Review

The work by Ziegler and Nichols [53], dating back to 1942, is considered by the majority of
the researchers the starting point of auto-tuning (PID) control. The authors formulated
two methods, based one on an open-loop experiment (a step test) and the other on a
closed-loop test (proportional feedback to generate a permanent oscillation condition).

The resulting tuning methods were in fact significantly empirical, and as such the research
community saw room for improvement, and numerous authors started to develop their
own tuning rules on a more or less rigorous basis. This research has led throughout
the years to a large number of tuning rules [35] some of which are employed in different
industrial products [27].

The auto-tuning research is still an open field, also because control techniques have evolved
beyond PID, while at the same time model identification has progressed and learning-base
methodologies have emerged; for example, (auto)tuning methods can now be integrated
with neural networks [24] and applied to gain scheduling or model predictive control [1].

This thesis focuses on model-based auto-tuning, i.e., on tuning techniques that first use
the collected process Input/Output (I/O) data to identify a process model (most typically,
a transfer function) and then exploit that model to tune the regulator; the counterpart
(not addressed herein) is data-based tuning, where the collected I/O information is used
directly to tune the controller, without any model as intermediate step.

It is important to notice that tuning procedures most frequently run on low-end hardware
and in any case the tuning time must be as short as possible to reduce the process
upset. As a consequence tuning rules should be simple, and explicit ones (i.e., rules that
compute the controller parameters as functions of model parameters and specification
without solving any implicit system of equations) are strongly preferred.

As a direct consequence the used models should be simple, and their structure end up
being dictated by that of the controller to tune — for example, in the case of a PID, a
second order model is the choice of election.

Besides simplifying the scenario, the point above has a subtle but important effect. As

4 2| Brief Literature Review

the model structure is chosen a priori and not based on the collected data, a potentially
significant process-model structural mismatch is inevitable, hence the procedure used to
determine the model parameters from data has a relevant impact on the overall tuning
procedure.

Curiously enough, in the literature this aspect is seldom considered, so that most papers
that present a tuning rule do not even specify which model parametrization procedure was
used to obtain the shown results. A relevant example to support the statement just made
is the comprehensive work “Handbook of PI and PID Controller Tuning Rules” by A.
O’Dwyer [35], that collects and analyses several hundreds of tuning rules for PI and PID
controllers. Considering the PI case, it turns out that only 42% of the shown rules were
presented by their authors together with some information on the Model Parametrization
Procedure (hereafter MPP for short); the rest of the rules were discussed either with no
consideration of the MPP, or simply taking the process model as known.

In the literature one can find many MPPs, and quite intuitively it was sometimes observed
that the quality – and also the uniformity – of the tuning results highly depends on the
parametrization accuracy. It is however difficult to quantify the said accuracy, so that
most works of the type just mentioned ultimately resort to empirical best practices [30].

This MPP impact on tuning has been analysed in [25], where the closed-loop system
in structurally nominal conditions is compared to the one obtained from various MPPs,
making it clear that the parametrized system is worse than the structurally nominal one.
In [42] the compound of Model Parametrization Procedure and Tuning Rule (hereafter
the MPP-TR compound) is studied through some quality performance indices. Such
indices are a useful tool that allows to compare tuning results [2] from various methods.
Several indices can be defined depending on which aspect of the obtained control result
is most relevant; the set can include for example the ISE (integral square error), the IAE
(integral absolute error), the settling time, the overshoot, and so forth. Some such indices
are more relevant in set-point tracking, others in disturbance rejection; some quantify
the high-frequency control sensitivity and this the effect of measurement noise, others
consider the position of the controller zeros with respect to the dominant process (model)
poles, and the list could continue. The main point here is that previous research shows
that the MPP influences the control quality and – most important – that the “optimal”
MPP for a given quality index depends on the particular problem at hand.

Summing up on this first aspect, a way to select the best MPP-TR compound given the
recorded I/O data and the quality index to optimise is highly desirable.

Carrying on, another research area that is growing in recent times is Event-Based (EB)

2| Brief Literature Review 5

control. This is testified by survey work like [3], where, through the analysis of 2299

research papers from 1999 to 2018, the authors report a large publication increment
during this time span. This interest in EB control is also fuelled by the industry trend
to make distributed control system nodes able to update and retrieve information to and
from other nodes in a network.

In the literature there are many techniques to design an EB industrial controller, typically
of PI(D) type [41, 49, 52], with applications e.g. to wireless control valves [7], unmanned
aerial vehicle guidance [47], and more.

The EB approach can be implemented in both wired and wireless systems, and is gaining
particular importance in the latter case owing to the need for rapid plant reconfiguration
that is typical of modern manufacturing. Also and more in general, in a system where
there are tight requirements on the information exchanged, the ability to reduce the traffic
load is important to prevent delays and data losses. In these situations EB control can
yield benefits because each node/device transmits only when an event occurs.

The advantages of the EB approach are numerous; for example in a distributed sensor
network some sensors are installed where the power/data cable can not be placed due to
difficulties in maintenance, hence they must work on battery. In battery-supplied nodes
the most energy consuming part is the radio transmitter, which consumes some mW

with respect to µW of the low power part hence keeping the radio always on is not an
option. An EB realization of the node behaviour can turn on the radio only when needed,
therefore the life-cycle of the device increases as a consequence.

Implementing a controller in an EB scenario is not as simple as designing the same con-
troller in a classical (fixed-rate) one, as noted in several works such as that by Tiberi
et al. [49]. In [13] Durand and Marchand compare different EB controller realization,
observing that different set of control parameters for different implementations will give
better performances. The point here is that any mechanism to generate events has pa-
rameters, and therefore any tuning procedure for an EB controller should provide these
parameters together with those strictly relative to the control law. Some solutions have
been proposed, like the one in [26] on which we build in this thesis.

Summing up on this second aspect, there is the need to extend tuning rules – and as
a consequence MPP-TR compounds – to the EB case; strictly, one would like to select
together with MPP-TR also the way to generate events and not only the event-related
parameters once the way is chosen, but we leave this to future research.

To conclude, from the brief literature review above it is clear that two (intertwined)

6 2| Brief Literature Review

problems are open. One is how to choose the MPP-TR compound properly for the control
quality index of choice. The other is how to extend a tuning rule to the EB context. This
thesis addresses the two said problems individually, in a view to first help solving them
and then provide the foundations for future research to comprehend them jointly.

7

3| Background

In this chapter we are introducing and explaining the elements of the proposal.
In the first section we list all the tuning rules that are used in the following chapters.
The second section introduces a generic Event-Based (EB) realization before analysing a
specific technique based on multitransmission.
In the last section, the Åström benchmark systems are presented.

3.1. Model-Based PI and PID Tuning

We focus on model-based tuning in order to have uniformity on the results and on the
model parametrization procedure, we work only in normalized conditions and with nor-
malized rules as in [21], where possible, to ease the comparison. The availability of the
model allows us to forecast the tuning results and also to set up quality indices that
employ the model parameters as in [22].

All the rules selected use the First Order Plus Dead Time process (FOPDT) to tune the
parameters. We consider the process in nominal conditions.

P (s) = µ
e−sD

1 + sT
(3.1)

We have unitary gain µ = 1 and to make the results comparable we used the normalized
time delay θ such that it will range from 0 to 1.

θ =
D

D + T
(3.2)

Some rules are parameter-free, some are not; for a fair comparison a uniform procedure
was introduced to select the tuning parameter λ because in literature most of the times
the parameter selection procedure is not specified. The parameter λ can be interpreted
as the closed-loop time constant. However, this matter needs further investigation in the
future.

λ =
T + D

5

ka
(3.3)

8 3| Background

Where ka is the acceleration factor.

We will use the two most common structures of controller, PI (Proportional-Integral
controller) and PID (Proportional-Integral-Derivative controller). The PI is simply a PID
without the derivative action. Each part of the controller has a different purpose. The
proportional part determines the ratio of the output response to the error signal, it simply
scales the error between the set-point and the output by a factor KC . The integral part
reduces the steady-state error but increases the overshoot. The integral response will
continually increase over time unless the error is zero because it sums (integrates) the
error term over time. The integral time Ti is a scaling factor for the integral operation.
The derivative part determines how fast the error varies. The derivative response is
proportional to the slope of the error variable, the derivative time parameter Td will cause
the control system to react more strongly to changes in the error and it will increase the
speed of the overall control system response.

Now we present the different tuning rules selected.

3.1.1. PI controller

The PI tuning rule refers to the asymptotically stable FOPDT and the one-degree-of-
freedom PI controller

C(s) = KC

(
1 +

1

sTi

)
(3.4)

The rules selected are:

• IMC-PI, formulæ Morari and Zafiriou [33], Braatz [8], Leva and Colombo [19]. In-
dicated here as ‘IMC’;

• SIMC rules by Skogestad [44, 45], indicated with ‘Sko’;

• IMC improved PI, ‘Rivera PI’ [39], here ‘Riv’;

• ‘Direct Synthesis for disturbance’ method by Chen and Seborg [10], termed here
‘Dsd’;

• Formulæ used in ABB Easy-Tune and reported in Li et al. [28], indicated with
‘ABB’;

• Rules based on the minimization of the IAE (Integral of Absolute Error) given by
Lopez et al. [31], here ‘LSM’;

• Formulæ by Daniel and Cox [12], a specialisation of Vranc̆ić et al. [50], indicated
here as ‘D&C’;

3| Background 9

• Method 31 or 32 for 0 < D/T < 2, closed loop response overshoot < 5% from Mann
et al. [32], termed with ‘Mann’;

• Method 1 from Hägglund and Åström [15], here ‘H&A’;

• Method 1 by Lee et al. [18], indicated with ‘Lee’;

• Method 1 for T > D from Isaksson and Graebe [16], here ‘I&G’;

• Method 1 from Smith [46], termed here as ‘Smith’;

KC Ti

IMC T
µ(D+λ)

T

Sko T
µ(D+λ)

min(T, 4(D + λ))

Riv T+D/2
µλ

T +D/2

Dsd T 2+TD−(λ−T)2

µ(D+λ)2
T 2−TD−(λ−T)2

D+λ

ABB 1.164
µ

(
D
T

)0.977 60
40.44

T
(
D
T

)0.68
LSM 0.758

µ

(
D
T

)−0.861 T
1.02−0.323D

T

D&C 1
2µ

T 3+T 2D+0.5TD2+0.167D3

T 2D+TD2+0.667D3
T 3+T 2D+0.5TD2+0.167D3

T 2+TD+0.5D2

Mann 0.51T
µD

T

H&A 1
µ

(
0.14 + 0.28 T

D

)
0.33D + 6.8DT

10D+T

Lee
T+ D2

2(λ+D)

µ(D+λ)
T + D

2(λ+D)

I&G T+0.25D
µλ

T + 0.25D

Smith T
µD

T

Table 3.1: PI tuning rules

3.1.2. PID controller

The PID tuning rules are based on two control structures, with and without filtration of
the derivative part. The difference between these two implementation is that the filtered
one performs a filtering action of the noise that a sensor could add. It is more similar
to how a real PID will be developed. The non-filtered controller is the academic PID
structure.

The PID structure with filtered derivative part is:

C(s) = KC

(
1 +

1

sTi

+
sTd

1 + sTd/N

)
(3.5)

10 3| Background

The rule that uses this controller structure is IMC-PID [20, 40], indicated as ‘IMC’:

Ti = T +
D2

2(λ+D)
, KC =

Ti

µ(λ+D)

N = T
λ+D

Tiλ
− 1, Td =

λDN

2(λ+D)
(3.6)

The academic PID takes the form:

C(s) = KC

(
1 +

1

sTi

+ sTd

)
(3.7)

The tuning rules are:

• Method 2 approximated quarter decay ratio from Connell [11], here ‘Connell’;

• Method 1 from Moros [34] attributed to Oppelt, indicated here as ‘Moros’;

• Method 2 by Liptàk [29], termed as ‘Liptàk’;

• Formulæ from Sree et al. [37], here ‘Sree’;

• Method 1 for minimum IAE, 0.05 < D/T < 6 from Wang et al. [51], indicated with
‘Wang’;

• Method 2 D/T < 0.33 from Fruehauf et al. [14], here ‘Fruehauf1’;

• Method 2 D/T ≥ 0.33 from Fruehauf et al. [14], here ‘Fruehauf2’;

• Method 1, λ > 0.T, λ ≥ 0.8D by RIvera et al. [39], termed as ‘Riv’;

• Method 1 from Lee et al. [18], here ‘Lee’;

3| Background 11

KC Ti Td

Connell 1.6T
µD

1.6667D 0.4D

Moros 1.2T
µD

2D 0.42D

Liptàk 0.85T
µD

1.6D 0.6D

Sree 1
µ

(
T
D
+ 0.5

)
T + 0.5D 0.5D(T+0.1667D)

T+0.5D

Wang
T i(0.7645+ 0.6032

D/T)
µ(T+D)

T + 0.5D 0.5TD
T+0.5D

Fruehauf1 0.56T
µD

5D 0.5D

Fruehauf2 0.5T
µD

T 0.5D

Riv Ti
µ(λ+0.5D)

T + 0.5D TD
2T+D

Lee Ti
µ(λ+D)

T + D2

2(λ+D)
D2

2(λ+D)

(
1− D

Ti

)
Table 3.2: PID tuning rules

3.2. Event-Based Realization

An EB controller updates its control law only when an event is triggered, this means
that something has changed in the system and the old control action does not meet the
specifications.

In the realization of an EB controller there are some elements to figure out, first of all
how to move from continuous-time to discrete-time then how to manage, generate and
trigger an event.

For the first problem in literature [9, 17] there are different discretization methods that
allow to express a continuous-time system into a discrete-time one e.g. Euler methods,
Runge-Kutta methods, Tustin. These discretization methods can be divided in two groups
implicit methods and explicit methods. Both have their pros and cons, but explicit
methods tend to develop instability for large step size [6].

In an EB implementation an event can occur at any time, and this brings about some
problems such as the well known Zeno behaviour. Other problems could be for example
if two events occur at the same time which one has priority? Also when the controller
is in the middle of a task and an event occurs should it continue with the previous task
or abort it? This is a major problem in the implementation of an EB system and some
solutions can be adopted, for example creating a priority hierarchy for the events.

In order to avoid such problems, and thanks to the inherently clocked nature of any
industrial (digital) control system, we decided to use a periodic EB control. This approach

12 3| Background

can be treated as a fixed-rate control where some steps are skipped thanks to an event-
triggering mechanism. The event-triggering mechanism generates the events. Given the
fixed-rate nature of the controller and the event-triggering mechanism an event can occur
only at a multiple of a quantum q that is a finite amount of time.

There are many ways to compute the quantum, we choose to constrain the phase margin
reduction caused by the digital controller realization to be less than a prescribed ∆φm.

q =
∆φm

kcωc

(3.8)

Where ωc is the nominal cutoff frequency, and kc is a parameter that ranges from 1/2 to
3/2.

The event-triggering mechanism can be implemented in different ways e.g. integrate
and fire or send on delta, but it mainly depends on the specific implementation and
technologies adopted. The send on delta, SoD, policy triggers an event when in a multiple
of q the difference in magnitude between the current measurement y and the past one
yold is greater than a certain threshold δy. A drawback of this policy is that it is sensible
to noise, and spikes in the measurement will trigger an event. In integrate and fire the
signal is integrated and when a certain threshold is passed an event is generated, it is less
sensitive to noise but how the threshold is selected is less clear with respect to SoD.

Now listed the main elements of a generic EB realization we report the results taken from
a particular technique based on multitransmission [26].

This technique considers the controller a switching system. The switching signal σ is a
boolean variable that changes status when an event is triggered; σ distinguishes between
a Running mode (R, σ = 1) and an Holding mode (H, σ = 0).

When the kth event is triggered the controller commutes from H-mode to R-mode and
the event generator (e.g. a sensor) transmits the present value y(k) and the last vp past
values y(k− 1), . . . , y(k− vp). When an event is triggered the sensor will unconditionally
transmit at step q for the further vf − 1 instants then σ is set equal to 0.

In R-mode the new value of u(k), control signal, is computed and actuated, hence an event
causes vf subsequent computations of u that is kept constant between its computations.
In H-mode the last value of u is kept.

3| Background 13

Figure 3.1: Event-based loop

The technique aims to compute the event-related parameters that do not affect critical
parameters such as stability and to do so it has to ensure the stability of the closed-loop
system composed by a Linear Time-Invariant (LTI) asymptotically stable strictly proper
process P and an asymptotically stable switching controller C.

In order to apply this technique we have to discretize the process, the controller is already
in the discrete-time domain. The discretization method should not affect significantly the
results.

The process P has order nP , input u(k) and output y(k), it can be described by the
matrices AP , bP , cP , dP such that

AP = diag{λPi
}, b′P = [ρP1 · · · ρPnP

]

cP = [1 · · · 1], dP = 0 (3.9)

Where {λPi
} is the set of eigenvalues and {ρPnP

} is the set of the corresponding residues.

The switching linear controller has order nC , with output u(k), and input e(k) = r(k)−
y(k), r(k) is the set-point. The controller is described in the I/O form as

u(k) =u(k − 1), σ = 0

u(k) =αC1u(k − 1) · · ·+ αCnC
u(k − nC)

+ βC0e(k) . . . βCmC
e(k −mC), σ = 1 (3.10)

Where mC < nC .

The following hypotheses are assumed true.

• AP is Schur with real distinct eigenvalues;

• The closed-loop (LTI) system with C in R-mode is asymptotically stable.

• In the transition from H-mode to R-mode at a certain k = kHR C receives the values
y(kHR), . . . , y(kHR −mC).

14 3| Background

• The H-mode can be maintained for an arbitrarily large but finite number of NH of
subsequent steps.

Under the hypotheses the following statements hold true.

• For the sequence of steps, even of infinite length, in H-mode the 2-norm of the
closed-loop system state is limited.

• The ratio between the 2-norm of the closed-loop system state at the end and at the
beginning of a sequence of steps in H-mode is overbound by√

1 + (nC − 1) min
i=1,...,nP

(
1− λPi

ρPi

)2

(3.11)

• Aσ is the dynamic matrix of the switching closed-loop system, there is a finite min-
imum R-mode dwell time such that the origin of the state-space of the autonomous
linear system

x(k) = Aσx(k − 1) (3.12)

is a globally asymptotically stable equilibrium.

The proof is available on the paper [26], we report the principal tools that will be used in
chapter 5.

The closed-loop state state can be written as

x(k) =

[
xP (k)

xC(k)

]
(3.13)

Where xP and xC are the states of P and C.

Figure 3.2: Switching representation of the controller

3| Background 15

The controller C can be expressed in state-space form as

ACσ =

σ(αC1 − 1) + 1 σαC2 · · · σαCnC−1 σαCnC

0

InC−1
...
0

bCσ =

σ

0
...
0

c′Cσ =

σ(βC1 + βC0αC1 − 1) + 1

σ(βC2 + βC0αC2)
...

σ(βCnC−1 + βC0αCnC−1)

σ(βCnC
+ βC0αCnC

)

, dCσ = σβC0 (3.14)

With σ = 0 for H-mode and σ = 1 R-mode, if mC < nC then βC coefficients are zero. Note
that (3.14) is a minimum realization of C and it does not represent the actual operation
of the controller as per (3.10), in H-mode u is held and no values of y are received. When
transitioning from H to R the transmission of the mC past values of y properly set the
state xC as C has evolved.

The closed-loop switching dynamic matrix is

Aσ =

[
AP − bPdCσcP bP cCσ

−bCσcP ACσ

]
(3.15)

and takes as base for the state space the one corresponding to xP and xC as per (3.9) and
(3.14).

In case of H-mode Aσ becomes AH (3.16). The upper left triangular submatrix AH11 has
dimension np + 1 and it is diagonalizable because its eigenvalues are the unity and those

16 3| Background

of AP , that are distinct eigenvalues for hypothesis.

AH =

λP1 0 · · · 0 ρP1 | 0 · · · 0

0 λP2 0 ρP2 | 0 · · · 0
...

... | ...
...

0 · · · 0 λPnP
ρPnP

| 0 · · · 0

0 · · · · · · 0 1 | 0 · · · 0

− − − − − − − − −
0 · · · · · · 0 1 | 0 · · · 0
...

...
... |

0 · · · · · · 0 0 | · · · 1 0

(3.16)

The diagonalizing matrix of AH11 is TH11 and TH is built as

TH =

[
TH11 OnP+1×{nC−1}

Onc−1×{nP+1} InC−1

]
(3.17)

TH is used as a change of base to compute the R/H-mode dynamic matrix Ãσ = T−1
H AσTH

for the closed-loop system with state ξ = T−1
H x. From now on Ãσ is the closed-loop R/H-

mode dynamic matrix “in the ξ base”.

The maximum multiplicative expansion that the 2-norm of the closed-loop state in the ξ

base can undergo along a sequence of H-mode steps, even infinite, is

EH,ξ =

√
1 + (nC − 1) min

i=1,...,nP

(
1− λPi

ρPi

)2

(3.18)

which is the sought overbound that does not change since the ordering of eigenvalues and
residues in (3.9) is arbitrarily.

Given, by hypothesis, the closed-loop stability of the system in R-mode, AR, then the
2-norm of the iterated matrix will contract for k large enough, ∥Ak

R∥2 → 0 for k → ∞.
Consequently, there is a quantity ∆R such that

EH,ξ∥ÃR
k∥2 < 1 ∀k ≥ ∆R (3.19)

In conclusion there will be an H-mode sequence of arbitrary length that will expand the
state of the system at a rate of EH,ξ followed by an R-mode contraction one of length at
least equal to ∆R.

3| Background 17

∆R is an event-based parameter and it will be used to determine the minimum time of
transmission from the last event received. It is the lower bound that guarantees not to
loose important information about control, if an event is triggered during the ∆R-time of
transmission the transmission time will reset.

We can add a mechanism that will generate an event even if the sensor does not measure
any difference on the output. A time-out mechanism is suitable for this task, if an event
is not triggered and the timeout is overtaken then a time-out event is created to update
the system. This can be thought as a safety measure to keep the system always alive to
avoid malfunctions.

3.3. Test Benchmark

We decided to use the first five benchmark classes of [4] because they are well represen-
tative of most scenarios that can be found on a real implementation and are standard
systems that are well suited for parametric studies.

P1(s) =
1

(s+ 1)α
α = 2, 3, 4, 5, 6, 7, 8;

P2(s) =
1

(s+ 1)(1 + αs)(1 + α2s)(1 + α3s)
α = 0.05 : 0.05 : 0.95;

P3(s) =
1− αs

(s+ 1)3
α = 0.1 : 0.1 : 5;

P4(s) =
1

1 + sα
e−s α = 0.1 : 0.1 : 10;

P5(s) =
1

(1 + sα)2
e−s α = 0.1 : 0.1 : 10;

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

The first class (3.20) is widely used as test cases by controller manufacturers, for large
values of α the system behaves like a ones with long delays. P2 processes have four poles
spaced through the parameter α, we decided not to consider the case α = 1 because it is
represented by the previous class. These systems (3.22) have an unstable zero and three
equal poles, the performances deteriorate as α increases. The fourth class is the FOPDT,
it is used in all autotuning rules (subsection 3.1.1 for PI and 3.1.2 for PID). For large α it
represents lag dominated systems. The last class (3.24) is similar to P4 but with a higher
frequency roll off. For all classes we decided to not consider the degenerate cases, the
pure time delay (α = 0 in (3.23), (3.24)) or the single pole process (α = 1 in (3.20)).

19

4| The Proposed MPP-TR

Selection Technique

This chapter is about taking process I/O data and selecting the best procedure (parametriza-
tion procedure-tuning rule compound) given the servo or regulatory problem, acceleration
factor where applicable. The involved indices are computed analytically wherever possi-
ble, and in any case the entire treatise is carried out in the continuous time, hence in this
part of the overall proposal there is no role for the event-based realization, not even for
the digital nature of the real controller.

4.1. Design

The model-based tuning rules use the process in the FOPDT form to determine the tuning
parameters, but the benchmark processes that we will use to test the tuning rules have
different structures. In order to compute the equivalent FOPDT model from one of the
benchmark classes we need a model parametrization procedure.

We select and present some tuning quality indices that are suitable for industrial use and
allow to compare directly different tuning rules.

We also present one technique composed by an offline part, used to evaluate the quality
indices and compute the tables and an online part that can be used directly on the field
to quickly determine which rules is the best. The online part of the technique cannot be
used standalone because we need the tables computed in the offline part, hence one run
of this part of the technique is necessary.

4.1.1. Model Parametrization Procedure

In literature there are many model parametrization procedures that allow to express an
unknown process in the FOPDT form. Most of them require a step response of the process
others use a frequency analysis in order to return the parameters necessary to tune the
controller.

20 4| The Proposed MPP-TR Selection Technique

The two parametrization procedures selected are the Method of Areas [36], and the Sun-
daresan and Krishnaswamy method [48], for brevity percentage procedure, both are step
response procedures.

The method of areas (M1) expresses the process step response yus(t) and symbolically
computes [23] the two integrals:

A0 =

∫ ∞

0

(yus(∞)− yus(t))dt, A1 =

∫ A0/yus(∞)

0

yus(t)dt (4.1)

where yus(∞) = limt→∞yus(t), then set

µ = y(∞), T = e
A1

µ
, D =

A0

µ
− T (4.2)

The percentage procedure (M2) selects two instants t1 and t2 that correspond to the 35.3%
and 85.3% of the total process step amplitude, respectively. Then the parameters are:

µ = y(∞), T =
2

3
(t2 − t1), D = 1.3t1 − 0.29t2 (4.3)

We selected these two procedures because the parameter computation is very different,
this affects the normalized time delay and, as a consequence, the indices evaluation.

4.1.2. Tuning Quality Indices

If we want to determine the optimal MPP-TR compound rule we have to use some tuning
quality indices in order to compare the results.

The two most common control scenarios are servo control or set-point tracking and reg-
ulatory control or disturbance rejection. In literature, it is known that the problems of
set-point tracking and disturbance rejection require different control tuning.

In servo problems the controller must be able to follow a variation of the set-point reference
y0(s), figure 4.1. The controller designed for regulatory problems has the purpose to
attenuate the disturbances that come from different sources, represented in the figure 4.1
as an external input d(s).

In case of disturbance rejection the controller has to be robust but the set-point response
would be too nervous with a big overshoot or many oscillations that cause stress on an
actuator. In servo control the tuning can be done through cancellation of the dominant
dynamic causing a weak disturbance rejection which means introducing an offset in the

4| The Proposed MPP-TR Selection Technique 21

tracking that can be difficult to recover.

Given the block diagram, figure 4.1, where C(s) is the controller, P (s) is the process, servo
control takes the complementary sensitivity function T (s) while disturbance rejection
takes the control sensitivity function K(s).

T (s) =
y(s)

y0(s)
=

P (s)C(s)

1 + P (s)C(s)

K(s) =
y(s)

d(s)
=

P (s)

1 + P (s)C(s)

(4.4)

(4.5)

Figure 4.1: Block diagram of the considered closed-loop system

In this thesis we selected the following indices for set-point tracking:

• ISE, integral square error, indicated here as ISEsp;

• Maximum overshoot, here Ovr;

• 99% settling time.

For disturbance rejection we have:

• ISE, integral square error, indicated here as ISEdr;

• Maximum absolute error, here |e|.

The selected indices are well representative of the respective problems, they are also
suitable for industrial use as criterion for selecting the best controller for an application.

The settling time is the time required for the response to reach and stay within a range
of 2% of the final value. It tells how long a system takes to stabilize to the new reference
after a set-point change.

The maximum overshoot, Ovr, is the maximum peak value of the response curve measured
from the final steady-state value. It is used to understand how strong the control action

22 4| The Proposed MPP-TR Selection Technique

is, bigger values of overshoot are produced by stronger control actions.

Ovr =
ymax − y∞

y∞
(4.6)

The maximum absolute error will say what is the maximum value taken with respect
to the steady-state, yss when a disturbance is introduced. We take the absolute value
because we do not know if the disturb will cause a larger positive or negative error. A
controller that minimizes the error will be more robust to disturbances.

|err| = |ymax/min − yss| (4.7)

ISE integrates the square of the error, hence penalises large errors more than smaller ones.
A system designed to minimize this index usually shows a fast decrease in a large initial
error, the result is a system with a fast oscillatory response and a poor relative stabil-
ity [38]. The minimization of this index involves the minimization of power consumption
for some systems.

ISE =

∫ ∞

0

e2(t)dt (4.8)

Where e(t) is the error.

4.1.3. Offline Part of the Technique

We now describe the offline part of the proposed technique, that is, how the selection
tables for online use are created; the operations are summarized below.

1. Select a benchmark class;

2. Make the class parameter change in a predefined range;

3. Compute the equivalent FOPDT model through an MPP;

4. Compute for each model the normalized estimated delay, θsi as (3.2);

5. Tune the controller for each model and tuning rule;

6. Compute the indices;

7. For each MPP create a table of the best tuning rule per index.

In the figure 4.2 is reported the flowchart of the offline part of the evaluation technique
and how the results can be represented and stored in the rule nI[A,C].

4| The Proposed MPP-TR Selection Technique 23

Figure 4.2: Flowchart of the offline part of the evaluation technique

24 4| The Proposed MPP-TR Selection Technique

This is an offline technique because it uses the benchmarks to compute the tables.

Each table of the model parametrization procedure-tuning rule (MPP-TR) is codified,
through interpolation or a threshold method, in the rule nI[A,C] where n is the bench-
mark class, I is the index selected and [A,C] gives the aggressive (A) or conservative (C)
approach.

All the tuning rules that are too unstable or too low damped for a certain θsi are discarded
from the pool of results.

Given the same step response the two procedures return different values of θsi hence the
results are not directly comparable. A solution to this problem is to always compute the
two θsi then choose the one that better exploits the application. The greater normalized
delay matches the most conservative implementation while the smaller one matches the
most aggressive one as noted in [5], this implies that in an aggressive implementation a
conservative rule is the best choice for having the response not too nervous reducing the
risk of saturation.

4.1.4. Online Part of the Technique

This section describes how the information created in the offline part are used online to
actually select the MPP-TR compound for a given problem.

1. Perform the process response;

2. Compute the equivalent FOPDT and θ with all MPPs hence there will be nMPP

models and nMPP θ;

3. For each MPP:

(a) Identify in which benchmark class the process can be approximated and select
which table to use; at the present state of the work this needs to be done
manually, but research is underway and ideas are already available about how
to automate the selection;

(b) Decide the θ approach (aggressive, conservative...);

(c) Select the tuning rule from the table and save the corresponding index value;

4. Select the best index and get the optimal MPP-TR compound.

Here another problem arises, how to understand which benchmark class does a process
belong to. We can look for similarities between the real process data and the model for
example we know that if the process step response presents an initial undershoot it will

4| The Proposed MPP-TR Selection Technique 25

belong to the third benchmark class, if it has a significant dead time then it will be class
four or five, in other cases it will be class one or two. Another solution is to look at the
difference between the real process data and the model, if the difference is below a certain
threshold then it is more likely to have identified the class. This problem will not be
treated in this thesis, we assume that we know which class the unknown process belongs
to.

26 4| The Proposed MPP-TR Selection Technique

Figure 4.3: Flowchart of the online part of the evaluation technique

4.2. Benchmark Assessment

In this section the results obtained from the evaluation of the offline technique are pro-
posed and analysed. Firstly we analyse the two parametrization procedures looking at

4| The Proposed MPP-TR Selection Technique 27

the estimated normalized delay then we will propose the results of the technique for each
benchmark class.

Analysing the two parametrization procedures from the point of view of θs we can say
that the areas method is usually more aggressive than the percentage method θs1 < θs2.

We plotted on the figures 4.4 the comparison of the θs of the two procedures. On the
vertical axis there are the values of θs and on the horizontal axis the values of the class
parameter α.
The only benchmark class that has a different behaviour is the third one, for α > 0.8 the
areas method is more conservative.

In figure 4.4c the two θs ranges are very different, θs2 goes from 0.45 to 0.74 while θs1

from 0.41 to 0.97 this means that M2 has some problems with this benchmark class. The
step response of P3 (3.22) presents an initial undershoot due to the unstable zero, this
undershoot is considered and computed in the areas method because it is an analytical
procedure but percentage procedure considers only the positive part of the dynamics, the
undershoot is treated as a pure dead time.

We can see that the two procedures have basically the same performance for the fourth
class. This is reasonable because the goal of these two procedures is to compute the
equivalent FOPDT parameters.

We can evaluate the quality of each procedure by computing the deviation between the
estimated parameter and the benchmark class parameters that are D = 1 and T = α.
The deviation of M1 for both parameters can be considered zero, the maximum absolute
deviation is 0.01% for D and 0.001% for T . M2 has a bigger absolute deviation, D ranges
from 1.2% to 11.1% and T deviates in the range of 1.1% to 1.3%. For both procedures we
can state that the estimation of the delay is the most critical part because a pure dead
time can only be approximated and each approximation method introduces some errors.
M2 clearly struggles under this aspect with respect to M1. In conclusion M2 is worse than
M1 in terms of approximation but it is easier to implement because it does not need to
compute any integration.

Looking at the other three classes we can see that the difference between M1 and M2 is
almost constant in the first class, it slightly increases for higher α values. In the figure
4.4b the difference increases as θs increases, instead in class five the difference increases
as θs decreases.

In the figures 4.4 there is a clear trend, θs grows as α increases for the first three benchmark

28 4| The Proposed MPP-TR Selection Technique

classes while for the last two θs decreases as α grows. The only difference between these
classes is the presence of a pure time delay otherwise classes four and five, for T = 1,
would be equal to P1, this behaviour can be further analysed.

(a) class 1 (b) class 2

(c) class 3 (d) class 4

(e) class 5

Figure 4.4: θs comparison with respect to benchmark class parameter, the colors are blue
for M1 and red for M2

As said before the tuning rules that are too low damped or unstable are discarded from
the pool of suitable results, we set as minimum acceptable phase margin to be φm = 20◦.
The indices comparison follows the rule that the smallest value is the best.

Given the problem noted in section 4.1.3 concerning θs we can not have a single table

4| The Proposed MPP-TR Selection Technique 29

where we put together the two parametrization procedure, hence for each index there is
one table for M1 and one table for M2.

The following tables coupled with the θs analysis form the rule nI[A,C] to use in the
online technique.

To improve the readability the tables are represented in figures where the best tuning rule
is highlighted in red, the others are grayed. Each plot reports the value of parameter θs

on the horizontal axis while the tuning rules are on the vertical axis. We reported both
PI and PID rules in each table to save space, a bold line marks the separation between
the two controllers.

The twelve PI tuning rules (hereinafter TR1 to TR12) are - in this order - IMC, Sko, Riv,
Dsd, ABB, LSM, D&C, Mann, H&A, Lee, I&G and Smith. The nine PID tuning rules
(TR13 to TR21) are - again, in this order - IMC, Connell, Moros, Liptàk, Sree, Wang,
Frehauf, Riv and Lee.

All the performance indices are computed in response to a unit set-point step and to a
unit load disturbance step. To have the results as uniform as possible all the tuning rules
are simulated for 500 seconds, we chose this simulation time because the controllers that
have a bigger settling time have worse performance.

We observe that all the controllers appear at least one time in the tables; an exception is
Sko that has the same performance as IMC-PI.

These two rules have the same performances because the controller is tuned in the same
way. The proportional part KC is obtained through the same equation, the integral
time Ti is computed differently. Sko computes Ti taking the minimum between T and
20kaD+20T+4D

5ka
that is always bigger for our choice of λ (3.3) and the benchmark parameters,

hence never taken in consideration.

In the figures there is not one controller that is the best for all benchmark processes. We
have some tuning rules that overcome others for some indices e.g. maximum |e| for P2.

The figures of the maximum overshoot index have the regulator that changes frequently.
This is caused by the computational power and the numerical approximation of the com-
puter since some values are in the order of magnitude of 10−16. This hardly happens with
other indices because the values computed are bigger.

30 4| The Proposed MPP-TR Selection Technique

Figure 4.5: Best tuning rule per index, benchmark class 1. Red best tuning rule, Gray
others

In the first benchmark class the indices of disturbance rejection (Max|e| and ISEdr)
show different controllers for the two indices, ABB is the only rule that is present for both
indices. This means that some tuning rules exploit better some indices than others, this
observation is also true for all other classes and also for the indices of set-point tracking.

Comparing the two parametrization procedures the tuning rules are the same in the same
range, only minimum |e| in M2 has an additional rule for the last value of θs = 0.66 that
is I&G.

For the set-point tracking scenario there is more variety of the rules. ISEsp is similar
to disturbance rejection indices, we have the same tuning rules in both methods but in
different θs ranges.

In the settling time figures we can see that the rules for the two procedures are different
in the PID case, for M2 there are two controllers Sree and Wang but for M1 there are also
Lee, IMC and Moros. For the PI there are the same rules and M2 has an additional rule
for the θs value outside the M1 range. This is an anomaly, since we would expect to find
the same rules in a similar range as it is for the other indices, this means that settling
time index is more susceptible to how the tuning parameters are computed.

The maximum overshoot shows this chess-pattern, it will be more evident for the other
processes.

4| The Proposed MPP-TR Selection Technique 31

Figure 4.6: Best tuning rule per index, benchmark class 2. Red best tuning rule, Gray
others

P2 indices are more stable with respect to the previous ones. In most of them we find
fewer rules, or even one rule.

We see that PID rules are more consistent, in |e|, ISEdr and partially in ISEsp one rule
turns out to be optimal for both procedures. We have Connell in |e|, Riv in ISEdr. For
ISEsp Connell in M2 and Sree and Connell for M1. On the PI side of this indices M2

changes tuning rules more, this can be caused by the greater uncertainty in parameter
estimation or simply one rule works better than another for the computed θs.

For the 99% settling time we observe that there is a chess-pattern for the PI controllers,
we have almost the same tuning rules but for different θs. The PID on the other hand
has different tuning rules, for M1 we have only two rules Lee and Wang while for M2 we
have Sree, Connell and Moros.

The maximum overshoot for M1 shows that the best rules, for the PI, are IMC and Lee.
Since the rules are two we can say that this result is consistent with respect to the others
where the rule changes often like for the second procedure or the M1’s PID.

32 4| The Proposed MPP-TR Selection Technique

Figure 4.7: Best tuning rule per index, benchmark class 3. Red best tuning rule, Gray
others

The third class is the most challenging for the controller due to the unstable zero; we have
just analysed that the two procedures do not parametrize in the same way the process
hence the indices results will be different. We can see that the unstable zero is challenging
because the rule varies frequently.

Dsd appears only in this class. If we perform a step response of the closed-loop system
in the set-point tracking framework we will see that it is a very conservative rule because
the settling time is high therefore it can counteract the instability. This rule turns out
to be unstable for most of the benchmark parameters but for the last values, α > 4.6, it
is stable with a huge settling time. Dsd is particularly suitable for disturbance rejection,
in both indices it is the best in the last θs and in maximum overshoot has zero overshoot
due to the long settling time. This tuning rule only show up in areas method because it
parametrizes better the class achieving bigger values of θs.

As anticipated the results in M1 figures are different from M2 ones. We have different
controllers, only few of them are the same; for example in ISEdr Liptàk PID performs
better in most of the results for both procedures.

The settling time index has a chess-pattern mostly for PID controllers; while for PI Mann
seems to exploit better this index but this rule does not appear for the other indices.

The maximum overshoot is more regular for this class with respect to the others because
fewer tuning rules are able to manage the instability of the zero.

We can see that in all M2 indices in the second half of the samples one rule overcomes the

4| The Proposed MPP-TR Selection Technique 33

others; LSM for |e|, ISEdr and maximum overshoot, D&C for settling time and H&A for
ISEsp this is because the values of θs are very close to each others.

Figure 4.8: Best tuning rule per index, benchmark class 4. Red best tuning rule, Gray
others

For this benchmark class we can see that the two procedures return the same results for
|e|, ISEdr and ISEsp with small variations caused by the higher uncertainty of M2.

The maximum overshoot instead has a completely different behaviour, as we see a large
fragmentation. In M1 figure few controllers achieve the best results but for fraction of θs,
over 100 samples I&G has the longest sequence of 7 consecutive samples. M2 on the other
hand shows that Riv-PID overcomes the others for the first half of the samples then there
is more variety, on the PI side we have a situation similar to M1 where here I&G covers
at most 10 consecutive samples.

Settling time is another index where the two parametrization procedures have different
controllers, here the percentage procedure changes rule more frequently and more tuning
rule appears. In PI controllers M2 has Mann as additional controller in the first samples,
for PID controllers there is Moros that does not appear in M1. We can also see that the
two PI controllers that have the majority of the samples are LSM and D&C but with
switched positions for the two procedures. In PID we have mostly one rule that is Wang.

34 4| The Proposed MPP-TR Selection Technique

Figure 4.9: Best tuning rule per index, benchmark class 5. Red best tuning rule, Gray
others

In this benchmark class we can make similar observations to P4. For this class we have
IMC-PI that exploits better ISEdr for both procedures but for M1 in the first part ABB
has better performance. On the PID side we have the same controllers in the same range
of the one of the previous benchmark class.

The maximum error has Smith for PI and Connell for PID that overcomes the others for
most of θs , there is not a significant difference between the two MPPs.

Smith and Connell have the same behaviour also for ISEsp, the two indices have very
similar results in terms of tuning rule selected.

We have differences in settling time for the PID where for M1 Sree exploits better the
index while in M2 we have Wang, this is similar to what observed for the same index for
P1 process. On the PI side I&G is the best in the first part of the results.

In overshoot we see that IMC-PI and PID develop the best results, another rule that
works great is Lee for both control structures and Riv-PID. As observed for this index in
the past classes there is a lot of fragmentation, we have the same rules that are the best
for few instants then changes.

In conclusion we can say that the indices that present more uniformity from the point of
view of the type of tuning rules selected are the two ISEs and |e| with variations from
benchmark to benchmark. The overshoot and settling time are the most variable because

4| The Proposed MPP-TR Selection Technique 35

how the two indices are computed is highly dependent on the computational power and
precision of the computer.

As reported we do not have a rule that is the best for all the indices and in the same
index there can be a lot of variations of tuning rules. This analysis can be extended to
other tuning rules to have a clearer view of which perform better and to other MPPs to
have more approaches than aggressive and conservative.

Figures 4.10 finally show an example in which the selected MPP-TR compound is com-
pared with another one in a load disturbance rejection case with the ISE as quality index
and in a set-point tracking case with the maximum overshoot as quality index: as can be
seen, a proper compound selection does help.

(a) ISE disturbance rejection

(b) Maximum overshoot set-point tracking

Figure 4.10: Comparison of the MPP-TR compound for disturbance rejection and set-
point tracking. Process benchmark class 2, θs1 = 0.46, θs2 = 0.51

37

5| Going Digital and then

Event-Based

In this chapter we take the results of Chapter 4 and extend the technique so as to compute
the event-related parameters of the selected realization paradigm. We will then test the
obtained design in structurally nominal conditions.

For process in structurally nominal condition we mean that the process is not identified
through a model parametrization procedure, hence the values of T , D and µ are considered
“correct”. The process in structurally nominal condition is the following FOPDT

P (s) = µ
e−sD

1 + sT
(5.1)

where µ = 1, T = 1 and D comes from the normalized delay (3.2), such that θ ∈ (0, 1).

D =
θT

1− θ
(5.2)

We decided to keep the value of T fixed and make θ varying from 0 to 1 with a constant
step because it was easier than combining different values for T and D to have θ varying
with a constant step.

5.1. Event-Based Realization Technique

Starting from the realization [26] we used the technique proposed to compute ∆R for all
tuning rules previously tested.

The technique is the following:

1. Tune the continuous-time PI(D);

2. Form a continuous-time loop with the tuned controller and the normalized FOPDT,
compute ωc and the sampling time q as in (3.8);

38 5| Going Digital and then Event-Based

3. Discretize the controller and an approximation of the process both at step q and form
the process equivalent state-space representation (3.9) and the controller equivalent
state-space matrices (3.14) in R-mode and H-mode;

4. compute the closed-loop switching dynamic matrix Aσ (3.15) for both R-mode and
H-mode;

5. Compute the change of base TH (3.17);

6. Evaluate the maximum multiplicative expansion EH,ξ (3.18);

7. Compute ÃR = T−1
H ARTH ;

8. Repeatedly check the condition EH,ξ∥ÃR
k∥2 < 1 ∀k ≥ ∆R (3.19), until a suitable

∆R is found.

The multiplicative expansion EH,ξ, evaluated with the normalized FOPDT is EH,ξ =
√
nC .

This means that the state of the system with a PI controller is non-expanding because
the order of the controller nC is 1 hence EH,ξ = 1. For a PID the order of the controller
is 2 hence the multiplying factor is

√
2.

To discretize the process and the controller we used the Backward Euler method

s =
z − 1

q
z−1 (5.3)

To approximate the process we decided to use Padé1,1 approximation (5.4).

We keep the same parameters for all the computations setting ∆φm = 5◦ and kc = 0.5,
θ ranges from 0.1 to 0.9 with a step of 0.025. For the computation of ∆R we decided to
make ka varying from 0.5 to 2 with a step of 0.25 to see the effect on the λ-dependent
controllers.

5.2. Event-Based Realization Assessment

Now we present the results obtained from the technique described above.

In the figures 5.6 and 5.8 we can see that not all the tuning rules are able to satisfy the
condition (3.19). During the iteration of EH,ξ∥ÃR

k∥2 some rules fail to converge to zero
with ∆R that goes to infinity. We tested the step response of the closed-loop system of
the failed configurations and the result is that some of them are unstable other have so
many oscillations that the evaluation of the iterated condition can not be satisfied. Due
to the fixed T this behaviour arises when there is a higher dead time D and, if present, a

5| Going Digital and then Event-Based 39

wrong acceleration factor for the dynamic of the closed-loop system.

Using the FOPDT process in structurally nominal conditions helped to diagnose that
many of the tuning rules selected become unstable or too low damped when the ratio D

T

is too high. If the tuning rule depends on the parameter λ a too high accelerator factor
coupled with an high D

T
can compromise the stability as well.

We observe a common behaviour for all the controllers, ∆R decreases as θ grows and ∆R

increases as the accelerator factor ka increases.

In the figures 5.6 and 5.8 it is possible to understand when a controller becomes unstable
because ∆R starts growing significantly; we did not plot the values of the unstable tuning
rule, hence some lines are truncated.

We observe that for θ ∈ [0.6, 0.7] all the tuning rules have a small spike, this is caused by
the coupling of the discretization method and the Padé approximation of the process. We
used Padé1,1 approximation (5.4) and for θ = 2

3
the matrix bP becomes singular hence the

condition EH,ξ∥ÃR
k∥2 < 1 cannot be satisfied. To prove this we repeated the technique

using Padé0,1 approximation (5.5), in this case ∆R has a spike for θ = 0.5. This has to be
taken into account because the pure time delay has to be approximated, a solution could
be to flatten the values around the singularity point considering it constant.

Padé1,1 =
2− sD

2 + sD

Padé0,1 =
1

1 + sD

(5.4)

(5.5)

Analysing the PI tuning rule that are parameter-free we see that ∆R decreases as θ

increases for all the controllers except for ABB that has the opposite behaviour. This
tuning rule has a growing ∆R instead of a decreasing one and for θ > 0.6 is unstable, for
θ < 0.35 it has results similar to the λ-dependent rules.

The other tuning rules show ∆R usually higher with respect to the λ-dependent rules.
The EB parameter decreases rapidly reaching the other rules for θ > 0.35, an exception is
H&A that has better performances than others from the beginning. LSM is another rule
that is unstable for θ > 0.75. Mann and D&C have very similar performances. Smith
is the controller that starts with the worst performance, ∆R > 90, but improves quite
rapidly then remains with average results. The 66% of the λ-independent rules are able
to satisfy the condition (3.19).

40 5| Going Digital and then Event-Based

(a) ABB (b) H&A

(c) LSM (d) Mann

(e) D&C (f) Smith

Figure 5.1: ∆R plots of PI parameter-free tuning rules. ∆R vertical axis, θ horizontal axis

Looking at the λ-dependent tuning rules we can see that the only controller that is
stable for all θ and ka is IMC-PI. Sko, as previously noted in section 4.2, tunes the
controller identically to IMC-PI hence the EB parameters are the same. For ka = 0.5

∆R is quite constant, as the accelerator factor increases the behaviour previously noted is
more evident. Keeping θ fixed we can see clearly that ∆R grows more for larger accelerator
factor. As shown in the surface plot below for θ > 0.5 ∆R changes of few units in the ka

range with respect to the first half of the normalized time delay.

5| Going Digital and then Event-Based 41

Figure 5.2: Surface plot of IMC-PI

Dsd is a tuning rule that fails to complete the technique for most of θ and the range of
instability grows as ka increases. For ka = 0.5 Dsd is stable for θ ∈ [0.6, 0.9], this is the
only time when this rule is stable in this range. For ka ≥ 0.75 the rule has usable results
for θ < 0.4. As noted for ABB ∆R grows rapidly before becoming unstable.

Figure 5.3: Surface plot of Dsd-PI

42 5| Going Digital and then Event-Based

Riv is another rule that results unstable for larger values of ka. We can see both be-
haviours, the decrement of ∆R as θ increases followed by the quick growth of ∆R due to
the instability (e.g. for ka = 2). As the accelerator factor is greater than 1.25 the range
of stability decreases.

Figure 5.4: Surface plot of RIV-PI

Lee for most of θ values has good performances but for θ > 0.8, it develops instability.
We have a plateau for θ < 0.6 followed by a spike caused by the approximation and the
instability. I&G is similar to Lee but its interval of stability is smaller.

(a) (b)

Figure 5.5: Surfaces for Lee-PI on the left and I&G-PI on the right

5| Going Digital and then Event-Based 43

The following figures report all the PI tuning rules compared keeping the accelerator
factor ka fixed; on the horizontal axis there are the values of θ, on the vertical axis the
values of the EB parameter ∆R. As the accelerator factor increases many tuning rules
become unstable. It can be seen that all tuning rules for θ ∈ [0.6, 0.7] present a spike. For
small values of θ the λ-dependent controllers exploit the technique with similar values of
∆R. For small ka it is possible to recognize the parameter-free rules to the others because
of the higher ∆R value. As ka grows, this distinction is less clear.

44 5| Going Digital and then Event-Based

(a) ka = 0.5 (b) ka = 0.75

(c) ka = 1 (d) ka = 1.25

(e) ka = 1.5 (f) ka = 1.75

(g) ka = 2

Figure 5.6: ∆R comparison of PI tuning rules, ka is fixed and θ is variable. ∆R vertical
axis, θ horizontal axis

5| Going Digital and then Event-Based 45

Unlike PI controllers where the difference between the λ-dependent rules and the parameter-
free ones is quite evident, the PID tuning rules present similar performances; we have a
distinction between the parameter-dependent/independent rules but it is less clear as
shown in figures 5.8. Most of the rules are stable in all the θ interval, the only controllers
that are unstable for certain values are Sree and Lee.

We can see that Connell and Moros show a similar behaviour, for θ < 0.6 the curve
becomes less steep where ∆R decreases in the range of 5-10 unity. After the singularity
region θ ∈ [0.6, 0.7] there is a quick decrement, we pass from ∆R = 40 to ∆R = 10.

Liptàk develops a similar behaviour to the previous two controllers but we can see an
initial fast decrement for θ < 0.3 then a plateau and for θ > 0.7 we have another steep
decrement.

The other λ-independent rules have a similar behaviour to the one observed for PI con-
trollers. Sree is a parameter-free rule and is able to satisfy the iterated condition for
θ ∈ [0.1, 0.85], it behaves like Wang but with worse performances. ∆R ranges from over
200 to 20 and for the first half of θs it has the worst performances.

Wang presents the ∆R curve behaviour that is the most similar to the PI ones. It has the
second worst performance and it is able to reach the other controllers for values close to
θ = 0.6.

Frehauf is the only switching rule, we can see that for the first part (θ < 0.33) we have
an increment in ∆R then when the control law changes it behaves like Wang.

46 5| Going Digital and then Event-Based

(a) Sree (b) Connell

(c) Moros (d) Liptàk

(e) Wang (f) Frehauf

Figure 5.7: ∆R plots of PID parameter-free tuning rules. ∆R vertical axis, θ horizontal
axis

5| Going Digital and then Event-Based 47

(a) ka = 0.5 (b) ka = 0.75

(c) ka = 1 (d) ka = 1.25

(e) ka = 1.5 (f) ka = 1.75

(g) ka = 2

Figure 5.8: ∆R comparison of PID tuning rules, ka is fixed and θ is variable. ∆R vertical
axis, θ horizontal axis

48 5| Going Digital and then Event-Based

The λ-dependent rules (IMC, Riv and Lee) have similar performances. The increment of
∆R caused by an increasing ka is more evident for small values of θ.

Lee has the best performances but becomes unstable for θ > 0.8 and ka > 0.75. It also
has a significant spike in the interval of singularity. Riv, like Lee, has an evident spike in
the same interval but it is stable for all θ and ka. This tuning rule has higher ∆R than
the other λ-dependent tuning rules.

(a) (b)

Figure 5.9: Surfaces for Lee-PID on the left and Riv-PID on the right

IMC is in the middle. For lower θ IMC reaches the performances of Riv and for higher θ
it has ∆R similar to Lee. For θ ∈ [0.6, 0.7] it manages to keep ∆R under control better
than the other two controllers, this is similar to what happens for the PI implementation
(figure 5.2).

5| Going Digital and then Event-Based 49

Figure 5.10: Surface plot of IMC-PID

From the analysis above, we can see that not all the tuning rules are suitable for this
particular implementation. PI controllers have more problems, there are more tuning
rules that are unstable and unable to satisfy the iterated condition. The results obtained
in terms of ∆R are similar, PID controllers return slightly higher results due to the higher
complexity of the control structure for the presence of the derivative action. We can state
that for lower θ and high ka a higher number of iterations are necessary to satisfy the
condition (3.19) therefore choosing an appropriate accelerator factor is very important if
the goal is to reduce at a minimum ∆R or to match the performances of the parameter-free
tuning rules.

We can take the results above and interpolate some functions to compute the parameter
∆R, in addition we can interpolate the sampling time q. For example the interpolating
functions for ABB, θ ∈ [0.1, 0.6], are

∆R = 8.855e6θ8 − 2.311e7θ7 + 2.549e7θ6 − 1.547e7θ5 + 5.624e6θ4

−1.249e6θ3 + 1.646e5θ2 − 1.717e4θ + 353.2

q = −8.79θ5 + 23.49θ4 − 23.02θ3 + 10.41θ2 − 0.779θ + 0.6482

(5.6)

(5.7)

50 5| Going Digital and then Event-Based

and for IMC-PID, θ ∈ [0.1, 0.9] and ka = 1, are

∆R = 3616θ6 − 1.01e4θ5 + 1.079e4θ4 − 5563θ31453θ2 − 195.7θ + 26.55

q = 149.2θ6 − 388.1θ5 + 400.2θ4 − 204.8θ3 + 54.46θ2 − 6.693θ + 0.499

(5.8)

(5.9)

These two parameters, related to an EB implementation, can be coupled with the results
previously obtained in chapter 4.2 to choose the best model parametrization procedure-
tuning rule compound for an event-based application.

This means that the rule previously set to find the best MPP-TR compound must be
changed to return all the information previously returned and the event-related parame-
ters. We have to take into account that not all the tuning rules are able to provide a value
of ∆R hence we should add some conditions to the comparative algorithm that produces
the tables (e.g. figure 4.6), as a consequence the figures will probably change.

We could be satisfied with these results since the technique used to compute the event-
related parameters starts from the design of the closed-loop system in continuous time
but further research can be done. First of all we can test the technique with a campaign
of benchmark directly in discrete-time to see if the stability is preserved and if the results
for the best MPP-TR compound, obtained in continuous time, are valid for discrete time.
Secondly we can implement an EB system to see how the number of transmission is
managed by different tuning rules with respect to a fixed-rate implementation and how
the tuning quality indices are affected by the EB implementation. This would be harder
to carry out, but it can be object of a future research. The developer has to take into
account, in addition to the problems that can arise in the realization of the controller,
how events are created and managed by the event-triggering policy (e.g. send on delta,
integrate and fire...) that depend on the specific implementation.

51

6| Conclusions, Open Issues,

Future Work

The goal of this thesis was to show that in the still flourishing field of autotuning new
problems are emerging that deserve attention and to address two of these, namely

• the influence of the model parametrization procedure (MPP) on the results achiev-
able by the controller,

• the need for extending tuning rules (TRs) to novel control computation paradigms
such as the event-based one.

Concerning the first item, we proposed a technique that allows to choose the best MPP-
TR compound given an index (discussed as well) to quantify the tuning quality for the
particular problem at hand; the obtained results can be implemented and applied in the
industry to ease the process of providing the optimal tuning for a given application.

Concerning the second item, we extended previous research results on an event-based
paradigm based on multitransmission, using various tuning rules. We highlighted some
problems about discretization and approximation of the process and the controller. We
proved that the multitransmission realization is applicable with all the controllers, while
the stability degree and more in general the results obtained depend on the tuning rule.

This treatise – as expected – leaves several open issues for future research, as outlined
below.

• As said in Section 4.1.4 in order to apply correctly the online technique we have
to develop a procedure to clearly determine to which benchmark class an unknown
process belongs.

• It is necessary to implement and extend the technique for non model-based con-
trollers.

• With reference to Section 5.1 we also need to perform, in the event-based frame-
work, a complete benchmark campaign to have a clear idea of which controllers

52 6| Conclusions, Open Issues, Future Work

save more transmissions maintaining good performances through the computation
of performance indices.

• A study is in order on how to integrate the selection of the event-based parameters
– in the addressed case, q and ∆R – in the rule nI[A,C]. This is not an easy task
because the indices are computed in the continuous time, hence we have to find a
way to express them in discrete time effectively. This introduces more problems
related to for example the discretization method or the choice of the sampling time.

As future work the rule nI[A,C] can be modified to accept composite indices as input
instead of simple indices. This could be done for example by assigning a weight to each
index needed, e.g. someone could ask for the optimal tuning rule for 30% maximum |e|
and 70% ISE in disturbance rejection.

As for the identification of the benchmark class, we could develop a method that looks for
similarities or could compute the difference between the real process data and the model;
if the difference is smaller than a threshold then the process is identified. We could provide
these information to a voting system composed by different elements. Each element will
provide its identification of the benchmark class then all the results are compared and the
most voted is selected.

The indices evaluation procedure can be extended to other model parametrization proce-
dures and other tuning rules. We could also evaluate different tuning quality indices, in
order to have a more comprehensive overview.

53

Bibliography

[1] A. Afram and F. Janabi-Sharifi. Theory and applications of hvac control systems–a
review of model predictive control (mpc). Building and Environment, 72:343–355,
2014.

[2] A. P. Antony and E. Varghese. Comparison of performance indices of pid controller
with different tuning methods. In 2016 International Conference on Circuit, Power
and Computing Technologies (ICCPCT), pages 1–6. IEEE, 2016.

[3] E. Aranda-Escolastico, M. Guinaldo, R. Heradio, J. Chacon, H. Vargas, J. Sánchez,
and S. Dormido. Event-based control: A bibliometric analysis of twenty years of
research. IEEE Access, 8:47188–47208, 2020.

[4] K. J. Åström and T. Hägglund. Benchmark systems for pid control. IFAC Proceedings
Volumes, 33(4):165–166, 2000.

[5] K. J. Åström and T. Hägglund. Revisiting the ziegler–nichols step response method
for pid control. Journal of process control, 14(6):635–650, 2004.

[6] B. Biswas, S. Chatterjee, S. Mukherjee, and S. Pal. A discussion on euler method:
A review. Electronic Journal of Mathematical Analysis and Applications, 1(2):2090–
2792, 2013.

[7] T. Blevins, M. Nixon, and W. Wojsznis. Event based control applied to wireless
throttling valves. In 2015 International Conference on Event-based Control, Com-
munication, and Signal Processing (EBCCSP), pages 1–6. IEEE, 2015.

[8] R. Braatz. Internal model control. In S. Levine, editor, The control handbook, pages
215–224. CRC Press, Boca Raton, FL, 1996.

[9] J. C. Butcher. A history of runge-kutta methods. Applied numerical mathematics,
20(3):247–260, 1996.

[10] D. Chen and D. Seborg. PI/PID controller design based on direct synthesis and
disturbance rejections. Industrial & Engineering Chemistry Research, 41(19):4807–
4822, 2002.

54 | Bibliography

[11] B. Connell. Process instrumentation applications manual. McGraw-Hill Professional
Publishing, 1996.

[12] C. Cox, P. Daniel, and A. Lowdon. QUICKTUNE: a reliable automatic strategy
for determining PI and pPI controller parameters using a FOPDT model. Control
Engineering Practice, 5(10):1463–1472, 1997.

[13] S. Durand and N. Marchand. Further results on event-based pid controller. In 2009
European control conference (ECC), pages 1979–1984. IEEE, 2009.

[14] P. S. Fruehauf, I.-L. Chien, and M. D. Lauritsen. Simplified imc-pid tuning rules.
ISA transactions, 33(1):43–59, 1994.

[15] T. Hägglund and K. J. Åström. Revisiting the ziegler-nichols tuning rules for pi
control. Asian Journal of Control, 4(4):364–380, 2002.

[16] A. J. Isaksson and S. F. Graebe. Analytical pid parameter expressions for higher
order systems. Automatica, 35(6):1121–1130, 1999.

[17] N. Kazantzis and C. Kravaris. Time-discretization of nonlinear control systems via
taylor methods. Computers & chemical engineering, 23(6):763–784, 1999.

[18] Y. Lee, S. Park, and M. Lee. Pid controller tuning to obtain desired closed-loop
responses for cascade control systems. IFAC Proceedings Volumes, 31(11):613–618,
1998.

[19] A. Leva and A. Colombo. On the IMC-based synthesis of the feedback block of
ISA-PID regulators. Transactions of the Institute of Measurement and Control, 26
(5):417–440, 2004.

[20] A. Leva and A. M. Colombo. On the imc-based synthesis of the feedback block of
isa pid regulators. Transactions of the Institute of Measurement and Control, 26(5):
417–440, 2004.

[21] A. Leva and F. Donida. Normalised expression and evaluation of pi tuning rules.
IFAC Proceedings Volumes, 41(2):12260–12265, 2008.

[22] A. Leva and F. Donida. Quality indices for the autotuning of industrial regulators.
IET Control Theory & Applications, 3(2):170–180, 2009.

[23] A. Leva and M. Maggio. On the use of models with delay in pi (d) autotuning.
In 49th IEEE Conference on Decision and Control (CDC), pages 3319–3324. IEEE,
2010.

| Bibliography 55

[24] A. Leva and L. Piroddi. Model-specific autotuning of classical regulators: a neural
approach to structural identification. Control Engineering Practice, 4(10):1381–1391,
1996.

[25] A. Leva, S. Negro, and A. V. Papadopoulos. Pi/pid autotuning with contextual
model parametrisation. Journal of Process Control, 20(4):452–463, 2010.

[26] A. Leva, F. Terraneo, and S. Seva. A multitransmission event-based architecture for
energy-efficient autotuning wireless controls. IEEE Transactions on Control Systems
Technology, 30(4):1510–1524, 2021.

[27] Y. Li, K. H. Ang, and G. C. Chong. Patents, software, and hardware for pid control:
an overview and analysis of the current art. IEEE Control Systems Magazine, 26(1):
42–54, 2006.

[28] Y. Li, K. Ang, and C. Chong. Patents, software, and hardware for PID control—an
overview and analysis of the current art. IEEE Control Systrems Magazine, pages
42–54, february 2006.

[29] B. Lipták. Controller tuning ii: Problems and methods. Control Engineering On Li
ne, 2001.

[30] X. Litrico, P.-O. Malaterre, J.-P. Baume, P.-Y. Vion, and J. Ribot-Bruno. Automatic
tuning of pi controllers for an irrigation canal pool. Journal of irrigation and drainage
engineering, 133(1):27–37, 2007.

[31] A. Lopez, C. Smith, and P. Murril. Controller tuning relationships based on integral
criteria. Instrument Technology, 14(11):57, 1967.

[32] G. Mann, B.-G. Hu, and R. Gosine. Time-domain based design and analysis of new
pid tuning rules. IEE Proceedings-Control Theory and Applications, 148(3):251–261,
2001.

[33] M. Morari and E. Zafiriou. Robust Process Control. Prentice-Hall, Upper Saddle
River, NJ, 1989.

[34] R. Moros. Strecke mit ausgleich hoherer, 1999. URL http://techni.tachemie.

uni-leipzig.de/reg/regeintn.html.

[35] A. O’dwyer. Handbook of PI and PID controller tuning rules. World Scientific
Publishing Company, 2006.

[36] T. Ohta, N. Sannomiya, Y. Nishikawa, H. Tanaka, and K. Tanaka. A new optimiza-
tion method of PID control parameters for automatic tuning by process computer. In

http://techni.tachemie.uni-leipzig.de/reg/regeintn.html
http://techni.tachemie.uni-leipzig.de/reg/regeintn.html

56 | Bibliography

Prepr. IFAC Symposium on CAD of control systems, pages 133–138, Zürich, Switzer-
land, 1979.

[37] R. Padma Sree and M. Chidambaram. Control of unstable reactor with an unstable
zero. Indian Chemical Engineering, 46:21–26, 2004.

[38] M. A. Rahimian and M. S. Tavazoei. Improving integral square error performance
with implementable fractional-order pi controllers. Optimal Control Applications and
Methods, 35(3):303–323, 2014.

[39] D. Rivera, M. Morari, and S. Skogestad. Internal model control 4 - PID controller
design. Industry and Engineering Chemical Process Design and Device, 25(1):252–
265, 1986.

[40] D. E. Rivera, M. Morari, and S. Skogestad. Internal model control: Pid controller
design. Industrial & engineering chemistry process design and development, 25(1):
252–265, 1986.

[41] J. Sánchez, A. Visioli, and S. Dormido. An event-based pi controller based on feed-
back and feedforward actions. In 2009 35th Annual Conference of IEEE Industrial
Electronics, pages 1462–1467. IEEE, 2009.

[42] S. Seva, C. Cimino, and A. Leva. On the criticality of the model parametrisation
method in industrial autotuning controllers. In 2021 60th IEEE Conference on De-
cision and Control (CDC), pages 1137–1142. IEEE, 2021.

[43] F. G. Shinskey. Process control: as taught vs as practiced. Industrial & engineering
chemistry research, 41(16):3745–3750, 2002.

[44] S. Skogestad. A method for improving the robustness of PID control. IEEE Trans-
actions on control systems technology, 52(6):1669–1676, 2005.

[45] S. Skogestad. Tuning for smooth PID control with acceptable disturbance rejection.
Industrial & Engineering Chemistry Research, 45(23):7817–7822, 2006.

[46] C. L. Smith. Intelligently tune pi controllers: automatic tuning offers only dubi-
ous advantages.(instrumentation & control). Chemical Engineering, 109(8):169–178,
2002.

[47] R. Socas, S. Dormido, and R. Dormido. Event-based control strategy for the guidance
of the aerosonde uav. In 2015 European Conference on Mobile Robots (ECMR), pages
1–6. IEEE, 2015.

[48] K. Sundaresan and P. Krishnaswamy. Estimation of time delay time constant param-

6| BIBLIOGRAPHY 57

eters in time, frequency, and laplace domains. The Canadian Journal of Chemical
Engineering, 56(2):257–262, 1978.

[49] U. Tiberi, J. Araújo, and K. H. Johansson. On event-based pi control of first-order
processes. IFAC Proceedings Volumes, 45(3):448–453, 2012.

[50] D. Vranc̆ić, Y. Peng, S. Strmc̆nik, and R. Hanus. A new tuning method for pi
controllers based on a process step response. In Proc. CESA’96, pages 790–794,
Lille, France, 1996.

[51] F.-S. Wang, W.-S. Juang, and C.-T. Chan. Optimal tuning of pid controllers for
single and cascade control loops. Chemical Engineering Communications, 132(1):
15–34, 1995.

[52] X.-M. Zhang, Q.-L. Han, and B.-L. Zhang. An overview and deep investigation
on sampled-data-based event-triggered control and filtering for networked systems.
IEEE Transactions on industrial informatics, 13(1):4–16, 2016.

[53] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. Trans-
actions of the American society of mechanical engineers, 64(8):759–765, 1942.

59

A| Appendix A

In figures A.1, A.2 and A.3 are reported the Matlab script used to evaluate the indices
and compute the tables; the additional Matlab packages necessary to run the script are
‘Symbolic Math Toolbox’ and ‘Control System Toolbox’.

We report only the script for the first benchmark class, in order to evaluate the other
classes we have to change only the benchmark class parameter ‘a’ and the benchmark
process ‘P ’.

The indices are grouped in matrices of dimension rw by bb. Where rw is the total number
of the controllers and bb is the length of the vector of the benchmark class parameter.
Each index matrix is named as “Cn_I_A/P ” where Cn is the class number, I is the
index and _A/P is the parametrization procedure used, A for areas method and P for
percentage procedure. For I we have “errDR” for maximum error in disturbance rejection,
“iseDR” for ISE in disturbance rejection, “iseSP ” for ISE in set-point tracking, “ovrSP ”
for maximum overshoot in set-point tracking and “t99setSP ” for 99% settling time in
set-point tracking.

60 A| Appendix A

Figure A.1: Matlab script 1 of 3

A| Appendix A 61

Figure A.2: Matlab script 2 of 3

62 A| Appendix A

Figure A.3: Matlab script 3 of 3

The function tuning_Rules(T,D, ka,mu, rw, s) in figure A.4 returns the controller C

tuned.

It is a simple switching function where the switching parameter is rw, the other input
parameters are the process parameters computed by the model parametrization procedure,
the accelerator factor ka and the continuous time transfer function s. We decided to
show one case for each type of controller because completing with the other rules is
straightforward. The PI tuning rule cases are in order from rw = 1 to rw = 12: IMC,
Sko, Riv, Dsd, Abb, LSM, D&C, Mann, H&A, Lee, I&G and Smith. The PID tuning
rules cases are in order from rw = 13 to rw = 21: IMC, Connell, Moros, Liptàk, Sree,
Wang, Frehauf, Riv and Lee.

A| Appendix A 63

Figure A.4: Function tuning_Rules

The figure A.5 show a portion of code used for comparing the tuning rules. The first
part of the code defines the matrices that will be displayed, they have dimensions rw+1,
bb + 1 otherwise the last tuning rule and the last value of θs will not be plotted by the
function pcolor(...). This script compares the indices results keeping the smaller one and
highlighting the corresponding tuning rule in the matrix displayed. In the comparison we
maintained separated PI from PID.

We show only the comparison for the maximum error in disturbance rejection for the first
parametrization procedure, the others are straightforward.

64 A| Appendix A

Figure A.5: Indices comparison

65

List of Figures

3.1 Event-based loop . 13
3.2 Switching representation of the controller 14

4.1 Block diagram of the considered closed-loop system 21
4.2 Flowchart of the offline part of the evaluation technique 23
4.3 Flowchart of the online part of the evaluation technique 26
4.4 θs comparison with respect to benchmark class parameter, the colors are

blue for M1 and red for M2 . 28
4.5 Best tuning rule per index, benchmark class 1. Red best tuning rule, Gray

others . 30
4.6 Best tuning rule per index, benchmark class 2. Red best tuning rule, Gray

others . 31
4.7 Best tuning rule per index, benchmark class 3. Red best tuning rule, Gray

others . 32
4.8 Best tuning rule per index, benchmark class 4. Red best tuning rule, Gray

others . 33
4.9 Best tuning rule per index, benchmark class 5. Red best tuning rule, Gray

others . 34
4.10 Comparison of the MPP-TR compound for disturbance rejection and set-

point tracking. Process benchmark class 2, θs1 = 0.46, θs2 = 0.51 35

5.1 ∆R plots of PI parameter-free tuning rules. ∆R vertical axis, θ horizontal
axis . 40

5.2 Surface plot of IMC-PI . 41
5.3 Surface plot of Dsd-PI . 41
5.4 Surface plot of RIV-PI . 42
5.5 Surfaces for Lee-PI on the left and I&G-PI on the right 42
5.6 ∆R comparison of PI tuning rules, ka is fixed and θ is variable. ∆R vertical

axis, θ horizontal axis . 44

66 | List of Figures

5.7 ∆R plots of PID parameter-free tuning rules. ∆R vertical axis, θ horizontal
axis . 46

5.8 ∆R comparison of PID tuning rules, ka is fixed and θ is variable. ∆R

vertical axis, θ horizontal axis . 47
5.9 Surfaces for Lee-PID on the left and Riv-PID on the right 48
5.10 Surface plot of IMC-PID . 49

A.1 Matlab script 1 of 3 . 60
A.2 Matlab script 2 of 3 . 61
A.3 Matlab script 3 of 3 . 62
A.4 Function tuning_Rules . 63
A.5 Indices comparison . 64

67

List of Tables

3.1 PI tuning rules . 9
3.2 PID tuning rules . 11

69

Acknowledgements

Il primo ringraziamento va ai miei genitori per avermi permesso di intraprendere questo
percorso di studi.

Un enorme grazie va a mia sorella Lara e a tutta la mia famiglia per aver sempre creduto
in me sostenendomi e aiutandomi durante tutti gli alti e bassi di questi anni.

Ringrazio il Professore Albero Leva per avermi dato l’opportunità di lavorare a questa tesi
e per la disponibilità per chiarimenti e spiegazioni. Grazie a lui ho capito cosa significa
svolgere un lavoro di ricerca e come bisogna destreggiarsi per fare in modo che il proprio
lavoro sia il più chiaro e completo possibile.

Ringrazio i miei amici storici per essere una valvola di sfogo e un punto fisso per stemperare
la tensione e farsi quattro risate davanti a una birra. Grazie ai nuovi amici trovati sui
banchi dell’università per aver alleggerito le tante ore di lezione e per essere un punto di
confronto e di scambio costante.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Brief Literature Review
	Background
	Model-Based PI and PID Tuning
	PI controller
	PID controller

	Event-Based Realization
	Test Benchmark

	The Proposed MPP-TR Selection Technique
	Design
	Model Parametrization Procedure
	Tuning Quality Indices
	Offline Part of the Technique
	Online Part of the Technique

	Benchmark Assessment

	Going Digital and then Event-Based
	Event-Based Realization Technique
	Event-Based Realization Assessment

	Conclusions, Open Issues, Future Work
	Bibliography
	Appendix A
	List of Figures
	List of Tables
	Acknowledgements

