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Abstract

In recent years, quadcopter unmanned aerial vehicles (UAVs) have become so
widespread and advanced that they are not only used for entertainment but also
outdoor autonomous applications such as parcel delivery. However, the same can-
not be said for indoor environments due to a lack of global positioning system
(GPS) availability. In this Thesis, the goal is to get an accurate understanding of
such a quadcopter’s metrological characteristics and use them for programming it
towards autonomy in indoor environments without the need for further expensive
equipment. What are the metrological limits of a quad-copter equipped with a
low-cost inertial measurement unit (IMU)? and how can we use it for tasks such
as route following in a room?

In order to understand the accuracy and limits of tools such as sensors for altitude
and acceleration and technologies like image processing and attitude estimation
used in AR.Drone 2.0, the quadcopter in question, tests were run and their data
were analyzed. Later, using the results from the previous tests, the drone was
programmed to use its image processing technology to follow the prepared path on
the floor of a room without pilot interaction. The results indicated that with low-
cost IMU and primary technologies embedded in an AR.Drone, it is possible to have
a relatively low-cost autonomous route following drone for indoor environments.
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Sommario

Negli ultimi anni, i veicoli aerei senza pilota (UAV) del tipo quadricotteri sono di-
ventati cos̀ı diffusi ed avanzati che non vengono utilizzati solo per l’intrattenimento
ma anche per applicazioni autonome all’aperto, come ad esempio la consegna di
pacchi. Tuttavia, lo stesso non si può dire per gli ambienti interni a causa della
mancanza di disponibilità del sistema di posizionamento globale (GPS). In questa
Tesi, l’obiettivo è quello di ottenere una comprensione accurata delle caratteris-
tiche metrologiche di un quadricottero ed utilizzarle per programmarlo in modo
che possa volare in autonomia in ambienti interni, senza la necessità di ulteriori
costose apparecchiature. Quali sono i limiti metrologici di un quadricottero dotato
di un’unità di misura inerziale (IMU) a basso costo? e come possiamo usarlo per
il nostro obiettivo, come ad esempio seguire il percorso in una stanza?

Diversi test sono stati eseguiti ed i risultati ottenuti sono stati analizzati, al fine di
comprendere l’accuratezza ed i limiti degli strumenti montati sul drone AR.Drone
2.0 (il quad-elicottero in questione) e delle tecnologie in esso implementate: come
i sensori di altitudine, i sensori di accelerazione, l’elaborazione delle immagini e
la stima dell’assetto. Successivamente, utilizzando i risultati di tali test, il drone
è stato programmato in modo tale da utilizzare la sua tecnologia di elaborazione
delle immagini per seguire un determinato percorso preparato sul pavimento di una
stanza, senza l’interazione del pilota. I risultati hanno indicato che, con una IMU
a basso costo e con le tecnologie primarie incorporate nell’ AR.Drone, è possibile
far seguire al drone un percorso autonomo in ambienti interni.



Chapter 1

Introduction

During the recent years micro unmanned aerial vehicles (mUAV) or drones

have been developed in regards of maneuverability, stability and other ca-

pabilities. This jump in the technology has prompted a series of researches

with the subject of drones and the challenges surrounding them. Most of

these studies have a common general goal and that is to have the drone to do

a particular task with less interaction from the pilot or at least with higher

level commands.

Autonomy of robots in general has reached spectacular heights in recent

years. Therefore, it is not out of expectation that flying robots also reach

similar levels. With the advancement of electronics, computer science and

mechanics that exist in today’s engineering, it does not seem too long until

our world looks like a page out of a science fiction book from 1990s.

1.1 A brief history on drones

When two brothers and a professor made the first quad-copter ”Gyroplane

No 1” in 1907, they probably did not think how far this mechanical bird

would evolve in a hundred years. Jacques and Louis Brequet, with the help

of Nobel prize winner Prof. Charles Richet, invented the most elementary

drone that needed multiple people to balance and could not get very high.

However, this embarked the idea of military drones at 1917. The idea of a



bomb that would fly towards the target on its own was very desirable. The

first operational military drone was made by Germans in 1943 during world

war II. ”FritzX” a 2300-pound bomb which was used to sink ships while being

controlled remotely [9].

Going back to quad-copters, on April 14, 1924 French engineer Étienne

Oehmichen flew his quad-copter, which was the developed model of his sec-

ond multi-copter design built in 1920, a distance of 360 meters setting a

world record which was the Fédération Aéronautique Internationale (FAI)

distance record for helicopters. In the same year he flew a 1 kilometer circle

in 7 minutes and 40 seconds [12].

Figure 1.1: The Oehmichen drone

After Oehmichen, Dr. George de Bothezat and Ivan Jerome developed the

aircraft in figure 1.2 for the US army, with six bladed rotors at the end

of an X-shaped structure. This quad-rotor first flew in October 1922; fol-

lowed by nearly 100 tests with the maximum altitude of 5 meters. Despite

demonstrating feasibility, it was under-powered, unresponsive, mechanically

complex and susceptible to reliability problems [2].
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Figure 1.2: The de Bothezat aircraft

Convertawings Model ”A” Quad-copter built in 1956 was designed with a

broader range of applications in sight. However, due to lack of commercial or

military orders, its project was terminated. The design featured two engines

driving four rotors with wings added for additional lift in forward flight. No

tail rotor was needed and control was obtained by varying the thrust between

rotors. This prototype flew successfully many times during the mid 1950’s

and it was the first quad-copter to fly forward successfully [1].

Figure 1.3: Convertawings Model ”A” Quad-copter

Following the development in the transistor industry in 1960s, the radio

controlled components were able to be made in smaller sizes. Popularity of

RC (radio controlled) planes surged specially in USA. They mostly came in

kits for both indoors and outdoors applications. They were the early example

of the consumer drones which would spread through the market half a century

later.

In 2006, after considering the potential of non-military drones, the Federal

Aviation Administration (FAA) in USA, issued the first drone permits for
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commercial uses. Primarily there were not many requests for it; soon how-

ever, the numbers sped up.

The first ready to fly drone which was controlled by Wi-Fi through the pi-

lot’s smart phone, was introduced by the French company Parrot in 2010.

The AR.Drone was considered a success very soon by customers and critics

alike. Its successor AR.Drone 2.0, which is the subject of this thesis, was the

improved and easier to fly version.

Three years later, Jeff Bezo, the founder of Amazon, showcased a drone de-

livery system. Although this was not the first time the idea was mentioned,

it was the first time that the technology was brought into the public’s au-

dience. Following this, many corporations and postal organizations invested

time and resources on drone based delivery which will be discussed further

in this chapter.

In 2016, the company DJI’s drone called phantom 4 was introduced to the

market. This drone combines computer vision and machine learning to avoid

obstacles and successfully track people, animals and objects autonomously

[9].

Nowadays, drones from corporations like DJI or small startup companies like

skydio have obstacle avoiding abilities as a given; so much that it is almost

taken for granted at this point. They can track a single person as they are

riding their bike in a mountain trail and dodge canopies and branches at the

same time. Additionally, with the abilities of a drone like skydio 2, multiple

drones can take off and operate together on an inspection without the human

control in the loop. With all of these developments in capabilities of drones

and the steps taken towards their automation, the range of their applications

grows bigger every day [16] [20].

1.2 Application of drones in today’s world

In manufacturing environments, tasks such as material handling and part

feeding have been done by UGV (Unmanned Ground Vehicle) for years now.

However, UAV (Unmanned Aerial Vehicle) is a fairly newer part of these

environments. Equipped with an imaging device, drones can have a 360-

degree inspection of an object in a three dimensional space. Also with sensors,

they are easily able to sense any specific chemical in the environment and
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report back immediately through wireless connections. Additionally, they

only occupy the empty upper-air space which was left idle by UGV [21].

These aspects make drones a very suitable agent for inspection tasks, es-

pecially in harsh environments and situations such as nuclear power plants

or search and rescue missions, where the drone helps the emergency crew

plan the best and most secure mode to operate. For instance, a flying gas-

sensor that could scout an environment and report back on the existence or

lack thereof some target gases, without intervention of humans is very desir-

able [22]. Gases are only an example of sensors; any kind of measurement

units can be planted on UAVs for similar missions.

However, these are not the only cases where drones are used indoors. Hospi-

tals, green houses and production companies also employ UAVs for surveil-

lance and logistics purposes. Additionally, autonomous mapping mechanisms

have been implemented in fields like architecture and building managing for

drones because of their low cost, high spatial resolution and versatility. Un-

known structure interiors like abandoned mines are sometimes too risky for

usual ways of mapping either due to harsh environment, space constraints or

security reasons; therefore, UAVs are a much better choice [10].

In a study a quad-copter was used for mapping and monitoring of multi-

ple floor buildings using an on-board inertial measurement unit (IMU) and

camera plus a scanning laser range sensor retro-fitted with mirrors for beam

redirection to the floor and ceiling serving as a primary source of informa-

tion for position and yaw estimation. In this project two separate extended

Kalman filters (EKF) were used for data fusion to increase the data frequency

to 100 HZ. Additionally they used Vicon (Variable Independent Control) mo-

tion capture systems to get the accurate location and pose of the quad-copter

and compare them with the estimated values [32].

Mentioned above was a part of UAV applications in closed environments,

with denied access to GPS. However, outdoors, where this restriction does

not exist, drones have extended uses including but not limited to: traffic

monitoring, crowd monitoring [29], urban planning, civil security applications

and drone delivery systems.

Some studies [6] describe a path planning algorithm for a quad-copter based

delivery system. This proposed algorithm was a combination of sampling

based Bidirectional RRT algorithm and improved Artificial potential field
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(APF) algorithm, so that the former is made more goal oriented. This algo-

rithm was dependant on the information from the environment by the sensors

to improve the pre-planned path and to decrease the execution time.

More about delivery systems, after Amazon showcased a drone based one,

their project called Prime Air now has development centers in USA, UK,

Austria, France and Israel. They are working on making a system that is

efficient, stable and most of all safe for everyone [3].

Other than Amazon, Corporations such as Walmart, Google, UPS and many

other postal organizations are working on a similar means of delivery. In

the meantime, some are already using such a system. Project Wing is now

developing an unmanned traffic management platform that will allow drones

navigate around other unmanned or manned aircraft, humans and any other

obstacles. Wing delivery drone is operating in Helsinki, Finland and Can-

berra, Australia.

On October 1st 2019, UPS Flight Forward Inc. (a subsidiary of UPS) an-

nounced it has received the U.S. government’s first full Part 135 Standard

certification to operate a drone airline. The company will initially expand

its drone delivery service further to support hospital campuses around the

country. UPS drones will also provide solutions for customers beyond those

in the healthcare industry. UPS Flight Forward plans in the future to trans-

port a variety of items for customers in many industries, and regularly fly

drones beyond the operators’ visual line of sight.

However, drone delivery for medical purposes is not a new concept in Africa.

Rwanda is a country in central Africa which is sometimes called ”Pays des

mille collines” in French (”Land of a thousand hills”). Because of this, some

rural areas are separated by long stretches of roads despite being close to one

another. In May 2016, the first commercial drone delivery system started in

Rwanda by delivering blood and blood samples from and to multiple med-

ical care centers. Zipline, the US Robotics and Drones company, provides

and manages this system. Each drone delivery flight takes less than thirty

minutes for a trip that would take a motorcycle, hours; but costs the same

amount. This project has saved many lives up to now since blood loss after

birth and maternal mortality used to be very common in this country. After

Rwanda, Zipline has made a similar contract with the government of Ghana

in April 2019 to fly thirty drones out of four distribution centers to 2000

6



health centers. This projects will do 600 flights a day and serve 12 million

people [8].

Apart from practical applications for drones, they have been the subject of

more entertaining and free-topic researches. These studies although seem

more about the entertainment at first, research the challenges surrounding

the relatively new vehicles that are quad-copters. The studies that are done

in these areas result in developing more stable quad-copters with more ver-

satility, maneuverability and flight safety.

Take ball juggling for instance [25]. In an study, a quad-copter was used along

with studying the flight pattern of balls and their interaction with rackets. In

result, they were able to develop a quad-copter that would receive a thrown

ball and hit it back towards the target with an attached racket. This would

enable a human to play with a robot or two quad-copters playing with each

other. In a similar study a method was developed in which a fleet of drones

would be attached around a net and would all cooperate to catch and throw

a ball using the net [27].

In another study a quad-copter was used to hold, balance and fly an upside-

down pendulum of half a meter length. This pendulum was allowed to move

up to 50 degrees on top of the quad-copter but after that the drone would

intervene and move so that it would not fall. This research developed a

control system that would take the drones further from their usual near

hovering positions to more challenging and dynamic flights [14].

There also has been copious studies with AR.Drone as their test subject.

Most of the autonomous navigation and mapping projects done using this

particular drone have involved some external cameras or sensory system as

a feedback loop for stabilizing and calibrating the attitude estimations done

by the drone [28] [5].

Few particular studies however use the vision tools included in the drone

for this purpose. In one work a Kalman filter was used to fuse the pose

data already estimated by the drone and the data the drone gets from a

particular marker seen in the camera to get a better estimate of the drone’s

pose and location. Using this autonomous control system they have been

able to develop autonomous flight plans which include but are not limited to

hovering in place and coming back to the designated position after external

disturbances [31]. In another similar research an ArUco marker was used for
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the drone to find the target spot for landing. The algorithm is so that the

data from front camera is fused with IMU sensor data in a Kalman filter to

navigate the drone towards the marker when it is in sight [30].

1.3 Objective of this thesis

As mentioned previously, currently there are drones that can autonomously

follow or track humans or objects in outdoors and although in GPS-denied

environments such as indoors, this autonomy faces more challenges, there

are still means to realize them. Motion capture systems, scanning lasers

and many other tracking systems such as these can be utilized to develop

autonomous unmanned aerial vehicles. These systems and drones however

can be quite costly and realizing them could be most complicated.

The main goal of this thesis was to develop a navigation system for an au-

tonomous low-cost quad-copter. This drone would have to rely on its own

internal low-cost inertial measurement unit to estimate the position and fol-

low a pre-planned path. The drone would have no prior knowledge of the

indoor environment and with no extra sensory data from expensive motion

tracking systems, it would have to know when to turn or go straight.

To explain more in detail, the quad-copter in question would be given a

prepared program before taking off and then it would not receive further

demands from the pilot until the very end that it had gone through the

mission completely. In particular this program would urge the drone to go

forward a decided length along the X axis and compensate for any deviation

to right or left (Y axis). Secondly it would need to decide which way to

turn and how to continue its path according to the prepared environment.

Therefore, it would continue a complete route in an indoor environment with

no prior knowledge of the room all without human intervention.

To realize this goal, first one needs to get an understanding of the drone in

question. In this thesis AR.Drone 2.0 has been the quad-copter in which the

research is based on. Therefore, in order to apply an autonomous naviga-

tion algorithm on it, its metrological characteristics needed to be studied. It

needed to be determined that how accurate the drone’s estimated velocity

and general attitude estimations were. How far the drone’s sight is in differ-

ent altitudes and questions as such. The answers to these were crucial for

8



reaching the main objective therefore they needed to be studied at first.

1.4 Thesis Outline

In the following the main chapters in this thesis are briefly described bellow.

• Chapter 2: In this chapter the flying principles of quad-copters in gen-

eral is discussed briefly. Furthermore, the Parrot AR.Drone 2.0 in par-

ticular is expressed in detail. Its hardware and software features, inter-

nal control algorithms and image processing capabilities. Additionally

a complete archive of the drone’s output data and their definitions is

provided.

• Chapter 3: This chapter is primarily dedicated to describing algorithms

and processes for defining the metrological characteristics of the drone.

This thesis mainly concentrates on the estimated linear horizontal ve-

locities provided by the drone.

• Chapter 4 : In this chapter the algorithms from previous chapter are

applied in numerous tests and their results are provided and analysed.

• Chapter 5: This chapter describes an algorithm for autonomous tar-

get approach flight also another algorithm for autonomous pre-planned

route tracking with minimal human interaction in the beginning and

end of the path using the results from previous chapter.

• Chapter 6: This chapter includes the result and feasibility proof of

applied algorithms from previous chapter.

• Chapter 7: In this chapter the conclusion of the whole research is

provided along with suggested future work ideas.

9



Chapter 2

Parrot AR.Drone 2.0 power

edition

AR.drone 2.0 was introduced in 2012 in Las Vegas by the French company

Parrot. In comparison to AR.drone 1.0, the design was almost the same but

the performance was hugely improved. The former version required some

strict training before a safe flight but its successor is much easier to fly, and

any person with zero experience of flying drones can securely operate it.

In AR.Drone 2.0 a 3-axis Magnetometer was added to the already existing

Inertial Measurement Unit of AR.Drone 1.0. Also for measuring the altitude

in any height, a pressure sensor was added. But the main difference was the

quality of the two cameras which were both improved in AR.Drone 2.0 [18].

Additionally, the Power edition, which was the drone used in this thesis,

provided two high-density lithium polymer batteries (1.11 Volt 1500 mAh)

in the package, increasing the flight time from 12 minutes (In Ar.Drone 2.0

with a 1000 mAh battery) to 36 minutes. It also comes with two hauls for

protection of the drone. One is used when the drone is flown indoors and

the hauls is needed so that the propellers and motors are not damaged in

case of crashes. The outdoor haul only covers the central part of the drone,

protecting the circuits and cameras.

The official way for controlling this drone is through the AR.Freeflight app

on any smart phone or tablet. AR.Drone creates its own Wi-Fi network



and the control device needs to connect to it. Through out the years that

the AR.Drone has reached the market, apart from controlling it through the

official app, many developers have developed other applications to control

the drone using the open-source software development kit (SDK) provided

by Parrot [4].

The pilot can take videos and pictures while flying but it might exhaust

the battery faster therefore a USB port is provided for storing the video or

images and to be collected after landing.

Other than the video stream that the drone delivers, either from the front

camera, the ground camera or both in a picture in picture video, a stream

of data is also sent frequently with time lapses of around 5 milliseconds.

This data stream which will be mentioned as “NavData”, is used to get an

understanding of the drone’s state [7].

In table 2.1, the specification of the components and tools used in this drone

are reported.

Technical aspects
720p 30fps HD
Wide-angle lens: 92◦ diagonal
Basic encoding profile: H264
Photo format: JPEG

Horizontal Camera

Connection: Wi-Fi
QVGA 60 FPS

Vertical Camera
Wide-angle lens: 64◦ diagonal

Processor ARM Cortex A8 1 GHz 32-bit processor with DSP video 800 MHz TMS320DMC64x
OS Linux 2.6.32
RAM DDR2 1 GB at 200 MHz
USB High-speed USB 2.0 for extensions
Gyroscope 3 axles, accuracy of 2, 000◦/second
Accelerometer 3 axles, accuracy of +/- 50 mg
Magnetometer 3 axles, accuracy of 6◦

Pressure sensor Accuracy of +/- 10 Pa
4 ”inrunner” type brush-free motors: 14.5 watts and 28,500 rev/min

Motors
Micro ball bearing:
Nylatron Gears:
Bronze self-lubricating ball bearings:

Yes
Yes
Yes

Table 2.1: Technical aspects

11



2.1 Control algorithms implemented in the

drone

Quad-rotors such as AR.Drone are manufactured mostly as an entertaining

product. If they were not safe and easy to fly, the number of customers would

not be so high. Commercial drones need to be stable even when contingencies

happen. Contingencies such as loss of communication or crashing to objects

can easily be disastrous if there is not an internal control algorithm. A

simplified explanation of the safety operational plan is expressed in figure

2.1.

Figure 2.1: Simplified Flowchart of safety control algorithm in the AR.Drone 2.0

As shown in figure 2.1, when the drone is disconnected from the pilot it goes

to hovering mode; it stops at the altitude that it already is and hovers in the

air. This action requires accurate velocity estimation, so that the drone can

make sure its velocity in all three axis is almost zero.

Additionally, there are other aspects of safety such as altitude control. In

this drone, the pilot can preset a maximum and minimum altitude limit so
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that, while flying, even if the pilot wants to fly the drone outside those limits,

the drone would stay in the preset altitude range. For this kind of action,

the drone needs to observe its exact altitude at all times. Therefore, multiple

sensors have been implemented on the drone and their data are fused in a

complex control and navigation algorithm to ensure the sufficient accuracy

in attitude and velocity estimation.

2.1.1 Quad-copter flight basics

Quad-copters are in the rotary wings category of unmanned aerial vehicles.

They have four arms in the shape of an X with a rotor attached to the tip

of each arm. In the center of the cross the control and sensory units are

placed [29].

Figure 2.2: Simple quad-copter design

As seen in figure 2.2, in quad-copters the opposite rotors spin in opposite

directions to produce the opposite direction forces to keep the drone afloat.

For maneuvering the quad-copter all the work lies in the speed of each rotor.

If all the rotors are spinning in the same speed, they create the same amount

of force. Therefore the quad-rotor either hovers in the place or flies up or

down depending on the forces created and the weight of the drone. However,

it does that by keeping the rotors at the same relative altitude to each other

or in other words in near-hovering position. In figure 2.3 each movement and

its respective rotor speed changes are provided.
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Figure 2.3: Quad-copter movement principles

In flying objects or air-crafts in general three angles are most used in litera-

ture; roll, pitch and yaw are what makes describing the pose of the object in

respect to the inertial frame possible [4].

Figure 2.4: Roll, Yaw and Pitch

2.1.2 AR.Drone flight basics

For the AR.Drone the indicated body frame axis is different from 2.2 and it

is indicated in figure 2.5. Therefore if this drone wanted to go forward as it

is meant for it, the speed of the two back rotors would need to be more than
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the pair in the front which would cause the drone to have a non-zero pitch

angle. Respectively for a velocity along the yb axis the drone’s two rotors on

the right or left would have to have less speed that the ones on the other side

of the xb axis.

The movement commands for the AR.Drone are encoded under a specific

protocol. In this protocol, the command signals are arranged as elements of

the control signal vector:

u = [uż uψ̇ uφ uθ]

Where:

uż represents a linear velocity command, which causes displacements along

the zw axis or in other words takes the drone up or down.

uψ̇ represents an angular velocity command, which causes rotations around

the zw axis and gives the drone an angle of yaw.

uφ represents an inclination command related to the xw axis, which indirectly

represents a command of linear velocity related to the yb axis. For this reason

it also can be called uvy ;

uθ represents an inclination command related to the yw axis, which indirectly

causes linear velocity related to the xb axis. For this reason it also can be

called uvx .

Each of these variables can take a value between -1 to 1 [31] [23] [15] [11].
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Figure 2.5: Coordination frames with respect to the AR.Drone

This is also the reason that for flight commands, the drone does not take

a metric unit of velocity like m/s, but a fraction of its maximum velocity.

Therefore a typical command would be like: Forward(m). In this command

m is a number between 0 to 1. But it also can be a number from -1 to

0 which in this case the drone would not go forward but backwards with

the fraction of speed indicated. This is also true for the turning action of

the drone around its axis zb. If the pilot wants the drone to turn clockwise

around itself, they would have to send a command such as Clockwise(0.4).

In this case the drone turns in clockwise direction with 0.4 of its maximum

angular speed. If instead of 0.4, the pilot uses -0.4 this would be interpreted

as a command such as Anticlockwise(0.4)

2.1.3 Inertial Measurement Unit

Inertial Measurement Units, also commonly known as IMU, have been used

for years now for attitude estimation in moving objects. They usually con-

sist of an accelerometer and a gyroscope for sensing the angular velocity

of the moving object. In this drone there is also a 3-axis magnetometer

implemented. The data from these sensors are needed for attitude (pose)

estimation.

Using low-cost inertial sensors implies dealing with bias and misalignment

angles, and scale factors are not negligible and differ from one AR.Drone
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sensor board to another.

Regarding a 3-axis accelerometer if we note Ym its measured value and Yv
the true value,

Ym = αRYv + β

Where R represents a first order misalignment matrix between the frame of

the camera to the frame of the sensor board, α stands for scale factors and

β for accelerometer bias.

R =

 1 ψ −θ
−ψ 1 φ

θ −φ 1



β = [β1, β2, β3]
T

α = diag(α1, α2, α3)

However, accelerometers do not measure the acceleration directly. They mea-

sure external specific forces which need to be processed to provide the 3-axis

metric acceleration. As indicated in figure 2.6 the data of the gyroscope and

accelerometer is processed in order to estimate the orientation and position

of a moving object.

Figure 2.6: IMU data for attitude estimation

However, the attitude estimated only by inertial measurement units are not

very accurate due to the noisiness of the sensor data. The bias of the

AR.Drone IMU is not dealt with by its control algorithm. Therefore, the
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data is fused with information from the camera or the GPS for more ac-

curacy and robustness. The velocity estimates from drone vision is more

discussed in the following section.

2.1.4 AR.Drone 2.0 Vision

The vertical camera under the drone uses two complementary algorithms

to estimate the horizontal velocity of the drone. They can be altered back

and forth to each other in different circumstances. The first one uses The

Lucas and Kanade method following by Horn-Schunck method to calculate

the optical flow in the bottom-facing camera feed.

In digital images, the Lucas–Kanade method is a broadly used differential

method for optical flow estimation developed by Bruce D. Lucas and Takeo

Kanade. In this method it is assumed that the flow is essentially same for the

neighbourhood of the pixel under consideration. Thus they solve the basic

optical flow equations for all the pixels in that neighborhood.

By regarding the information from several nearby pixels, the Lucas–Kanade

method is less sensitive to image noise than point-wise methods. On the other

hand, since it is a purely local method, it cannot provide flow information in

the interior of uniform regions of the image.

The Lucas–Kanade method uses the assumption that the displacement of the

image contents between two nearby instants (frames) is small and approxi-

mately constant within a neighborhood of the pixel p under consideration.

Therefore, the optical flow equation can be assumed to be true for all pixels

within a window centered at pixel p. where, the local image flow (velocity)

vector (Vx, Vy). If we note the brightness of the image in point (x, y) at time

t E(x, y, t) and assume that the brightness of a point stays constant if the

pattern moves therefore:
dE

dt
= 0

Also by the chain rule of differentiation:

∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t

Now if we note dy
dt

as Vy and dx
dt

as Vx we will have:
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Ex(qn)Vx + Ey(qn)Vy = −Et(qn)

where:

Ex(qn), Ey(qn) and Et(qn) are derivatives of the image matrix in nth pixel in

regards to x, y, and time respectively.

If the equations for all the pixels 1 to n are written, they can be written in

matrix form Av = b.


Ex(q1) Ey(q1)

Ex(q2) Ey(q1)
...

...

Ex(qn) Ey(qn)

 .
[
Vx
Vy

]
=


−Et(q1)
−Et(q2)

...

−Et(qn)


Since this system is over-defined, the Lucas-Kanade method applies the least

square principle and solves the 2× 2 system and provides [17] [24]:

v = (ATA)−1AT b

[
Vx
Vy

]
=

[ ∑n
i=1E

2
x(qi)

∑n
i=1Ex(qi)Ey(qi)∑n

i=1Ex(qi)Ey(qi)
∑n

i=1E
2
y(qi)

]−1 [−∑n
i=1Ex(qi)Et(qi)

−
∑n

i=1Ey(qi)Et(qi)

]

The second algorithm is called “corner tracking” and estimates the displace-

ment of several points of interest (trackers). The motion of the camera is

deduced from these computed displacements through an iteratively weighted

least-squares minimization procedure. The algorithm uses a first processing

of data with a FAST type corner detector of Trajkovic and Hedley [33]. Af-

ter a second analysis a fixed number of trackers are placed over the corner

positions. Additionally, some erroneous tracker points are eliminated. Af-

terwards within a frame depending on the expected tracker’s screen speed,

their update positions are searched in the image [26].

Since the Lucas-Kanade equation coefficients provide a cheap but useful es-

timation of the overall picture contrast, it is a good method for when the
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contrast in the picture is low. Additionally, due to its constant computational

cost, it is used as the default vision algorithm.

The drone can switch to the second algorithm when the speed and scene are

suitable. The scene would have to be fine for the corner detector and the

image speed would need to be low. This is the reason that in higher speeds

only the first algorithm is applied. Also when number of trackers is lower

than needed, the vision algorithm goes back to default.

The drone stability and estimated velocity accuracy is dependant on this

feature. Since the attitude estimated only based on the IMU sensor data is

very noisy and erroneous, the drone depends on its vision to have a better

estimate of its velocity. Otherwise when it is needed to be hovering in place,

which is done by estimating its horizontal velocity and compensating for

any significant changes in the position, it would have a much bigger drifting

range. The velocity estimate based on the drone’s vision is more accurate

when the ground is sufficiently textured and the environment is well-lit.

This incident was also observed in the tests done for this thesis that the

drone’s estimated velocity lies heavily on its vision. So far that on a floor

such as figure 2.7 the drone would send the message that it has no vision in

its flying state data array and it would drift away instead of actually hovering

in a relatively constant position. Therefore for tests on that location some

colorful markers were added to the floor to increase the texture seen by the

drone camera.
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Figure 2.7: A sample of non-preferable floor for AR.Drone

2.1.5 Attitude Estimation

At first, when the battery is attached, the IMU sensors are calibrated based

on the stationary data. This is done automatically, unless the Magnetometer

needs calibration. In that case, a notification is received by the pilot to

calibrate it. In the next step the sensor data enter a complimentary (Kalman)

filter which estimates the attitude and de-biases the gyroscope.

The estimation done by the data from vision is also fused and used to de-

bias the accelerometer, which then will feed to the primary filter to update

the estimated attitude. This is a rather simplified explanation of the control

sequence done in the drone. The complete details of control principle of an

AR. Drone is shown in the block diagram in figure 2.8 [26].
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Figure 2.8: The control principle and sensor data fusion in AR.Drone

This procedure gives a fairly accurate estimation of horizontal velocity, Euler

angles and the altitude. These information are updated and sent over by the

drone to the pilot in a data stream called ”NavData”. In the next section

this data stream will be analyzed more closely.

2.2 NavData Analysis

The data stream that the AR.Drone sends over to the connected device with

a frequency of 200 HZ, is called ”NavData”; because it includes the naviga-

tion information among other things. If the pilot chooses, they can have the

summarized format or the ”demo” with less frequency. However, by changing

the configuration it is possible to receive all the data.

Understanding the demo is quite simple, the complete format of the data

however is another matter. Unfortunately there is not any complete source

that would explain each and every part of this stream. Although in the

official developer guide provided by parrot [4] and also files from people who
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have studied and worked with the drone before [19] [13] , there are some

comments and notes on what they have figured out about NavData. In the

following tables, the available comments have been gathered from and about

each part of NavData.
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Demo
controlState control state (CTRL TRANS LOOPING, CTRL TRANS LANDING, etc)
flyState Flying state (landed, flying, hovering, etc.)
batteryPercentage State of charge of the battery expressed in percentage.
rotation A vector of roll, pitch and yaw
frontBackDegrees Theta or Pitch in millidegrees
leftRightDegrees Phi or Roll in millidegrees
clockwiseDegrees Psi or Yaw in millidegrees
altitude/altitudeMeters Altitude in meters
velocity A vector of VX, VY and VZ
xVelocity Estimated velocity in X axis in mm/s
yVelocity Estimated velocity in Y axis in mm/s
zVelocity Estimated velocity in Z axis in mm/s
frameIndex Streamed frame index
detection Type of the tag searched in detection

Table 2.2: Demo

Drone state
0 1

flying Drone is landed Drone is flying
Video Enabled Video is disabled Video is enabled
Vision Enabled Vision is disabled Vision is enabled
Control Algorithm Euler angles control Angular speed control
Altitude Control Algorithm Altitude control is disabled Altitude control is enabled
Sart Button State /User feedback Start button is not pressed Start button is pressed
Control CommandAck None Received
Camera Ready Camera is not ready. Camera is ready.
Travelling Enabled Traveling is disabled. Traveling is enabled.
USB Ready USB is not ready to use. USB is ready to use.
Navdata Demo All of NavData is provided. Only NavData demo is provided.
Navdata Bootstrap Options are sent. There are no options of NavData.
Motor Problem Motor is alright. Motor has a problem.
Communication Lost Communication is alright. Communication has a problem.
Software Fault Software is alright. Software is faulty.
Low Battery Battery SoC is alright. Battery SoC is low.
User Emergency Landing User emergency landing is disabled. User emergency landing is enabled.
Timer Elapsed Timer has not elpsed. Timer has elapsed.
Magnometer Needs Calibration No calibration is needed. Calibration is needed.
Angles Out Of Range Angles are in the range. Angles are out of the range.
Too Much Wind Wind speed is alright. It is too windy.
Ultrasonic Sensor Deaf Ultrasonic sensor is alright. Ultrasonic sensor is deaf.
cutout Detected Cutout system is not detected. Cutout system is detected.
PIC Version Number Ok Version number is faulty. Version number is alright.
ATCodec ThreadOn ATCodec thread is disabled. ATCodec thread is enabled.
NavData ThreadOn NavData thread is disabled. NavData thread is enabled.
Video ThreadOn Video thread is disabled. Video thread is enabled.
Acquisition ThreadOn Acquisition thread is disabled. Acquisition thread is enabled.
Control Watchdog Delay Watchdog is well scheduled. Watchdog has a delay more than 5 ms.
ADC Watchdog Delay Uart2 is alright. It has a delay more than 5 ms.
COM Watchdog Problem Communication watchdog is alright. Communication watchdog is faulty.
Emergency Landing There is no emergency landing at the moment. The drone is in emergency landing.

Table 2.3: Drone state
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rawMeasures
accelerometers filtered accelerometer [x,y,z]
gyroscopes/gyrometers filtered gyrometers [x,y,z]
gyroscopes110/gyrometers110 gyrometers [x,y] 110 deg/s
Battery MilliVolt Battery voltage in milliVolts
us
usDebutEcho
usFinEcho
usAssociationEcho
usDistanceEcho
usCourbeTemps
usCourbeValeur
usCourbeRef
echo
flagEchoIni
nbEcho
sumEcho
altTemp/altTempRaw Altitude in millimeters

Table 2.4: RawMeasures

physMeasures
temperature of accelerometer temperature in Celsius
temperature of gyroscope
accelerometers acceleration in mg
gyroscopes angular velocity in deg/s
alim3V3 3.3volt alim
vrefEpson ref volt Epson gyro
vrefIDG ref volt IDG gyro

Table 2.5: PhysMeasures
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References
theta Theta reference embedded in mdeg
thetaI Theta reference int in mdeg
phi Phi reference embedded in mdeg
phiI Phi reference int in mdeg
psi Psi reference embedded in mdeg
pitch Pitch reference embedded in mdeg
roll Roll reference embedded in mdeg
yaw Yaw reference embedded in mdeg/s
vx X-velocity reference in mm/s
vy Y-velocity reference in mm/s
thetaMod Theta modele in radian
phiMod Phi modele in radian
kVX
kVY
kMode
ui

Table 2.6: Refrences

PWM
motors PWM
satMotors PWM
gazFeedForward PWM
gazAltitude mm/s
altitudeIntegral mm/s
vzRef PWM
uPitch PWM
uRoll PWM
uYaw PWM
yawUI PWM
uPitchPlanif PWM
uRollPlanif PWM
uYawPlanif PWM
uGazPlanif PWM
motorCurrents mA
altitudeProp PWM
altitudeDer PWM

Table 2.7: PWM
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Altitude
vision Altitude by vision in mm
velocity Z-velocity in mm/s
ref Altitude reference in mm
raw Raw sensor data in mm
observer (acceleration(m/sˆ2), altitude(m), x, state)
estimated (vb, state)

Table 2.8: Altitude

Vision
state
misc
phi(trim,refProp) rad
theta(trim,refProp) rad
newRawPicture
capture(theta, ohi, psi, altitude,time) time in TSECDEC format
bodyV(x,y,z) mm/s
delta(phi,theta,psi)
gold(defined,reset,x,y)

Table 2.9: Vision

VisionDetect
nbDetected number of found tags
type type of detected tags
xc X position of the found tag inside the picture (0-1000) 0=left
yc Y position of the found tag inside the picture (0-1000) 0=top
width optical width of the tag
height optical height of the tag
dist distance of the tag (0-1000) or cm needs to be checked
orientationAngle orientation of the tag for oriented tags in degrees
rotation
translation
cameraSource The camera that the tag is detected on

Table 2.10: VisionDetect
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VideoStream
quant quantizer reference used to encode frame [1:31]
frame(size,number) frame size (bytes) and frame index
atcmd sequence atmcd ref sequence number
atcmd meangap mean time between two consecutive atcmd ref (ms)
atcmd vargap (SU)
atcmd quality estimator of atcmd link quality
bitrate out measured out throughput from the video tcp socket
bitrate desired last frame size generated by the video encoder
data misc temporary data
tcpQueueLevel queue usage
fifoQueueLevel queue usage

Table 2.11: VideoStream

Magneto
mx
my
mz
raw(x,y,z) magneto in the body frame(mG)
rectified(x,y,z)
offset(x,y,z)

heading
heading unwrapped
heading gyro unwrapped
heading fusion unwrapped

ok
state SU
radius mG
error(mean, variance)

Table 2.12: Magneto

Wind Speed
speed m/s

angle
estimated wind direction in North-East frame [deg]
e.g. if wind angle is pi/4, wind is from South-West to North-East

compensation(theta,phi) rad
stateX SU
debug

Table 2.13: Wind speed
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KalmanPressure
offsetPressure [Pa]
estimated altitude mm

velocity m/s
angle(pwm,pressure) (m/sˆ2,Pa)
us(offset, prediction) (m,mm)
covariance(alt,pwm,velocity) (m,pwm,m/s)
groundeffect (SU)
sum mm
reject SU
umultisinus
gazaltitude
flag multisinus
flag multisinus start

Table 2.14: KalmanPressure

HDvideoStream
hd video state
storageFifo
usbkey size USB key in kbytes - 0 if no key present
usbkey freespace USB key free space in kbytes - 0 if no key present
usbkey remaining time time in seconds

frameNumber
’frame number’ PaVE field of the frame starting
to be encoded for the HD stream

Table 2.15: HDvideoStream
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Scattered data without categories
sequenceNumber incremented for each sent packet

time
time elapsed since the battery
has been connected in milliseconds.

gyrosOffsets (x,y,z) gyroscope offset in deg/s
trims
angularRates (r)
eulerAngles (Theta,Phi) in mdeg
rcReferences (pitch, roll, yaw, gaz, ag) rc embedded
visionRaw(tx,ty,tz)
visionOf(dx,dy)
visionPerf
trackersSend(locked,point)
watchdog Watchdog control
adcDataFrame (version, dataframe)
games (double tap counter, finish line counter)
pressureRaw(up,ut,tempreture[0 1C],pressure(Pa))

Table 2.16: Scattered data without categories
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2.3 AR.Drone’s Tag Detection Feature

The AR.Drone 2.0 also has a tag detection feature, that is, by image pro-

cessing and using the two cameras, the drone is able to detect the specific

tags shown in figure 2.9. This capability makes multi-player games possible

in which tags are stuck to the sides of drone hauls so the friends and enemy

drones will be detected by each other.

Figure 2.9: Detectable tags by AR.Drone 2.0
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However, games are not their only application. In this thesis, this particular

capability is used for planning and preparing the path of an autonomous

drone. When using the ”Oriented roundel”, the drone detects the tag in every

picture taken by the cameras and if seen, sends the responding notification

in the NavData. When the drone is above the tag the vector nbDetectd of

the NavData will be [1,0,0,0] and with the orientation angle vector we will be

able to understand the position of the tag in respect to the drone. In figure

2.10, the front camera is marked as a red dot and the orientation angles are

shown respectively.
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Figure 2.10: The Orientation Angle with respect to the drone
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Chapter 3

Methodology For Defining the

Metrological Characteristics

The goal of this project was to make a low-cost autonomous drone that would

follow a pre-made path in GPS deprived environments. For this purpose the

technologies and tools embedded in the drone are used. They include but

are not limited to horizontal velocity estimation and tag detection.

First part of research was focused on the metrological characteristics of the

measurement units in the drone. For instance to find the error of the esti-

mated horizontal velocities developed in the drone. Also to distinguish the

area of sight the drone has in different altitudes. As expected, the area on

the floor that the drone can see, increases in size as the drone goes higher.

Additionally, with the area of sight, its ability to detect tags located on the

floor also increases. One section of this part of research was to determine

how far the drone can be from the tag in the x − y (horizontal) plane and

still be able to detect it correctly in a specific altitude. Take 2 meters for

instance, how much to the left or right and forward or backward of the tag,

the drone can be, to still detect it completely. These algorithms and their

test results will be discussed in respectively current and next chapter.

Second part of the research was focused on autonomous flight of the drone.

One section was to develop an algorithm for the drone so that it would go

straight in X-direction for n meters (pre-defined) and then stop and land. It



would need to fix its own deviation in Y -direction during and at the end of

the flight path. Also in the final stage, the objective was to prepare a path

in a room using the oriented roundel tags on the floor and have the drone

autonomously follow the path to the the desired destination. The algorithms

and their test results are respectively provided in chapters 5 and 6.

3.1 Interfacing With the Drone

For this work the Ar-drone module of Node.js by Felix Geisendörfer [13]

is used. This module allows the user to program the drone in high-level

commands and receive the NavData along the way. In this work a code

is written beforehand mostly by the choice in the software notepad++ and

then operated in Node.js command prompt window. During the flight the

program is not changed unless in case of emergencies, when the running

code is stopped and emergency landing code is applied. When during the

flight the running code is terminated the drone is lost without any commands

therefore it initiates its own Hovering control procedure until a new command

is delivered.

If in the code we include specific lines we can observe the data we want in the

command prompt window with the speed they are received from the drone.

This can also be useful to know which loops or commands is being run by

printing specific distinguished comment messages.

3.2 Estimated Altitude

Due to the pressure sensors and the sonic-altimeter that is included in the

drone, the altitude estimated by it is quite accurate. An algorithm was

developed for it regardless. In the simple algorithm seen in figure 3.1, the

drone would take off and after stabilizing itself, it would allow the NavData

stream to be received by the station. In the next step the drone’s altitude

would be regarded from the demo pack of NavData. If it was less than

Htarget, the designated height that we want the drone to be in, it would fly

upwards with the command speed of 0.1; which as discussed in chapter 2 can

be interpreted as 10% of the maximum speed.
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Figure 3.1: Altitude control algorithm

When the estimated altitude reaches the desired value, the hovering com-

mand is sent to it repeatedly until the pilot terminates the code all together

and runs the landing command. This cycle would run with each new package

of NavData that arrives with frequency of 200 HZ.

While the drone is hovering it is possible to measure its real altitude to

compare with the estimated value.

3.3 Tag Detection area of sight

For the final step of this work it was required to know how far can the drone

get from the tag in a constant altitude Ĥ to still be able to detect it.

Since this distance was difficult to measure while flying, the algorithm was
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written to be run while the drone has not taken off. In this code the drone

would still continuously send the NavData package to the station where only

the tag detection section was reviewed and recorded.

In this process an oriented roundel tag would be stuck on the floor and the

drone would be held manually directly upon it in the approximate altitude

of Ĥ for instance 1 meter. The program would be already running so the

drone would confirm that it detects the drone at that position. In the next

step the drone would be moved slowly to right and the tag detection data

would be checked simultaneously. The instant that the drone cannot detect

the tag anymore it would be lowered to the floor and the distance from the

tip of the front camera in the starting point to the tip of the front camera in

the end point would be measured and recorded.

If repeated for the four direction of left, right, forwards and backwards for

different levels of Ĥ, a sense of the drone’s area of sight would be achieved.

3.4 Estimated Horizontal Velocity

As mentioned in chapter 2, the estimated horizontal velocity is broadcast by

the drone for X and Y directions in the NavData package along with other

information including the time stamp of the drone starting from the boot up

(The moment the battery was connected).

In this algorithm, the velocities are taken in and integrated discretely over

time to estimate the horizontal displacements. In the figure 3.2, this process

is described.
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Figure 3.2: X-Displacement computation algorithm
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Where:

Vx,n is the horizontal velocity in direction of the x-axis. n is the indicator

of the step of the computation. As seen in each cycle that the NavData is

received, only the newest velocity is used in the calculations.

∆t is the time-step of this cycle of calculation and it is gained by subtracting

the current time provided by the drone and the timestamp from the previous

NavData package that was processed. This is the reason that during the

flight and particularly the beginning of the integration, it is possible for

the program or the drone to miss some packages of NavData or only the

timestamp particularly. Therefore some precautions are taken to prevent

huge errors in the calculations due to this. In case in a step only the velocity

is available or the time-step ∆t is more than 100ms, the average time-step

which is 5ms, is used.

∆x is the X-displacement done in this step of calculation process. It is cal-

culated by multiplying the current velocity and the related time-step. In

transporting the algorithm to the program it is important to take the units

of each variable into consideration. The NavData time package received by

the AR-Drone Module used in this research is in milliseconds and the veloc-

ities have the unit of millimeters per second. Therefore the time-steps are

converted into seconds so that the resulting displacements are in millimeters.

Xn is the current displacement in x-direction which is set to 0 in the beginning

of each program. In each cycle of computation, X-displacement from the

step before (Xn−1) is added to ∆x to calculate the current displacement

and therefore complete the process of discretely integrating the horizontal

X-velocity. The same algorithm is used for the Y-direction displacement.

To find the accuracy of estimated displacements, multiple tests would be

run. In them, the drone would be put on a specific point to mark the starting

position to . After placing it, a mission would be uploaded to the drone. This

mission would include taking off, flying forward for 2 seconds for instance

and then landing. In the meantime, the drone would take the velocities

and compute the horizontal displacements and report them to the station

computer.

After landing, the displacements computed for X and Y directions were

recorded. Furthermore, to compute the error, the position of the drone’s
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landing was marked and its distance from the starting point was also mea-

sured in X and Y directions. In the same way that was done for recording

the distance for the tag-detection tests, the point of the front camera would

be considered as the reference point before taking off and after landing.

More than 130 test were done as mentioned above where the landing distance

was from 1 to approximately 6 meters. They were done in different locations

with different levels of command speed. In figure 3.3 , it is visible that the

computed X-displacement and the measured X-displacement mostly have a

polynomial relationship.

Figure 3.3: X-Displacement after landing: Comparison between measured and com-
puted values

As such an error would be originated from the estimated velocity by the

drone, different kind of tests were required to find it without an external

actual velocity measurement device.
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Vest = Vreal + Ve

Where:

Vest is the velocity estimated by the drone.

Vreal is the real horizontal velocity of the drone.

Ve is the velocity error.

Xest =

∫
Vest dt =

∫
Vreal dt+

∫
Ve dt = Xreal +Xe

Xe =

∫
Ve dt = Xest −Xreal

Ve = dXe/dt

Where:

Xest is the estimated displacement.

Xreal is the real horizontal displacement of the drone.

Xe is the error displacement.

This would be possible to apply if the error displacement was available at

all times during the flight to be discretely deviated over time. However,

throughout the flying period, the real displacement (Xreal) is not available

for recording but only after landing. Therefore another procedure would need

to be followed.
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Figure 3.4: Constant Vest, Vreal and their respective displacements

Assuming the situation in figure 3.4, during the time period from a to b the

X velocity stays constant, then the displacement has a constant slope. And

if the X-displacement is generally in the same trend, by the triangle law we

can assume (see figure 3.4):

∆Xreal =
∆Xest

Xest

Xreal

Vreal =
∆Xreal

b− a

Ve = Vest − Vreal
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Running tests that would create situations in which the estimated velocity

stays constant yields the error with which the drone estimates the horizontal

velocities.
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Chapter 4

Test Results for Metrological

Characteristics

4.1 Estimated Altitude Accuracy test results

Tests were run according to the algorithm mentioned in chapter 3 for different

Htarget
1. The results are available in table 4.1 where Htarget is the target

altitude, Estimated Altitude is the altitude estimated by the drone sensors

and control loops and Measured Altitude is the altitude measured by hand.

However due to difficulty of measuring the altitude of a flying drone the real

measurements are more susceptible to human error.

Htarget 100 125 150 175 200
Estimated Altitude

[cm]
105 126 156 181 204

Measured Altitude
[cm]

110 131 165 184 210

Table 4.1: The results related to tests about the Estimated altitude accuracy

Seen both in table 4.1 and figure 4.1, the estimated altitude by the drone’s

altimeter sensors are quite accurate and reliable.

1https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/

master/altitude_control.js

https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/master/altitude_control.js
https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/master/altitude_control.js


Figure 4.1: Estimated and Measured Altitude for different target heights

4.2 Tag Detection Area of Sight test results

Tests for this purpose and with the respective method were run for the same

5 altitudes of the previous section 2. Additionally, another test was run for

finding the minimum height in which the drone can detect the tag. The least

altitude in which it is possible for the drone to detect the tag is around 30

centimeters, but it is not very reliable. On the other hand, at 50 centimeters

of altitude directly upon the tag the drone is sure to detect the tag. For

higher altitudes, the results are provided in table 4.2.

2https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/

master/flightless_data.js
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Altitude [cm] 75 100 125 150 175 200
Forward direction

(X-)[cm]
-15 -20 -26 -33 -44 -51

Backward direction
(X+)[cm]

31 42 48 57 77 100

Right direction
(Y-)[cm]

-27 -32 -51 -63 -81 -103

Left direction
(Y+)[cm]

28 33 48 63 90 102

Table 4.2: The results related to tests about Tag-Detection area of sight

For better visual understanding of the drone’s detection limits reported in

table 4.2, the data were plotted to give a 3-dimensional sense of the values

(see Figures 4.2 - 4.5). In these figures, take figure 4.2 for instance, if we

consider the tag to be approximately at point (0, 0, 0) then the drone for

instance at altitude of 100 centimeters with its center of mass almost aligned

with the center of tag, it can move left or right about only 33 centimeters to

still be able to detect the tag. Also it can move forward for 42 centimeters

and backwards 20 centimeters for the same detection.

Figure 4.2: Tag detection limits (X-Y) plane

Figure 4.3 shows the Y −Z plane and it is visible that the drone has approx-
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imately equal area of sight in its right in respect to its left.

Figure 4.3: Tag detection limits (Y-Z) plane

Figure 4.4 shows the X−Z plane and it is visible that the drone has a wider

area of sight in its back than its front.

Figure 4.4: Tag detection limits (X-Z) plane
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Figure 4.5 shows a 3 dimension view of the data from altitude 75 centimeters

up to 2 meters.

Figure 4.5: 3D plot of Tag-detection limits in different heights

As seen in both table and figures above the detection limit is similar for both

sides of the y-axis as expected since the bottom facing camera is implemented

in the center of y-axis and if the tag is in either left or right side of the drone,

it has the relative same distance from the camera.

This however does not hold for the x-axis since the bottom facing camera is

in the rear end of AR.Drone’s body, the detection sight area is more limited

when the tag is in front of the drone along the x-axis. Unsurprisingly it is

reverse when the drone is in front of the tag.

4.3 Estimated Horizontal Velocity Error Test

Results

In order to estimate the error for the velocity, a situation such as the one

described in previous chapter was created by uploading a mission to the

drone that include flying for some time with a relative constant velocity and

then landing 3. In these tests, the velocity and X-displacement would have

a trend such as figure 4.6.

3https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/

master/velocity_data.js
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Figure 4.6: X-Velocity and Displacement over approximately 10 seconds

Additionally the drone would set its estimated displacement to zero (Xest =

0) upon seeing a tag. This was done so that the drone would not start

integrating the velocity before stabilizing itself after the takeoff. Therefore

a tag would be placed on the floor near the take off position of the drone

so that it would be detected after the drone has taken off. This is also

visible in figure 4.6 that the X-displacement does not start increasing above

0 before when the time is approximately 518.5 seconds. This matter was

also considered in measuring Xreal which was 464 cm in this case. The real

displacements (Xreal) were measured from the tag as the starting point to

the landing point.

In this example ta = 518.55 s and tb = 523.97 s.

∆Xest = X(b)−X(a) = 2976.8 mm

ˆ∆Xreal =
∆Xest

Xest(end)
×Xreal(end) =

2976.8

3810.8
× 4640 = 3624 mm

Ve = mean(Vest)−mean(Vreal)

Ve =
∆Xest − ˆ∆Xreal

tb − ta
= −119.25 mm/s

Where:

∆Xest is the displacement during the time period of [a-b].
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X(b) and X(a) are the displacements estimated by the drone at times tb and

ta.

ˆ∆Xreal is the real displacement during the time period of [a-b] that we cal-

culate from the data at hand.

Xest(end) is the total displacement estimated by the drone at the end of the

path.

Xreal(end) is the total displacement measured manually after the drone’s

landing.

Ve is the error velocity.

mean(Vest) is the average velocity estimated by the drone during the time

period of [a-b]. The average is taken because in real flights the velocity has

little perturbations and cannot stay exactly constant.

mean(Vreal) is the average real velocity during the time period of [a-b].

As seen in the example above for the [a,b] period that had a mean velocity

of 547.8 mm/s, the error velocity was about −119mm/s.

This test was done for different levels of velocity for x direction and it was

seen that Ve is not constant and changes with Vest. The results are available

in table 4.3.

Mean Velocity Estimated
by the drone (mean(Vest)) [mm/s]

Error Velocity (Ve)
[mm/s]

191.39 -69.1
260 -62.5

503.11 -123.1
547.8 -119.25
559.08 -114.1
632.38 -120.8
654.51 -168.3
955.25 -219.6

Table 4.3: The Ve for different X-velocities

By using a curve fitting tool on these data the relationship bellow was

achieved for drone’s estimated velocity and its error.
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Ve = a× Vest + b

a = −0.2038 and b = −14.97

Goodness of fit: R-square: 0.9117 The closer R-square is to 1, the better the

fitted curve matches the observations. Therefore, this model seems to fit our

data well.

We can apply the correction for this error in the displacement estimation

algorithm. Because these results are consistent with the relationship seen in

figure 3.3.

Vreal = Vest − a× Vest − b = (1− a)× Vest − b

This is also consistent with the data seen in figure 3.3 since:

Xreal = (1− a)Xest − b∆t

The same procedure was done for the Y -Velocity. The results are available

in table 4.4. The curve fitting tool was also applied to this data.

a = −0.1497 and b = −24.05

Goodness of fit: R-square: 0.8142

R-square of 0.81 is also acceptable for our curved fit.

Mean Velocity
[mm/s]

Error Velocity
[mm/s]

Mean Velocity
[mm/s]

Error Velocity
[mm/s]

211.40 -30 -456.647 36.3
307.09 -44 -560.159 108.4
391.51 -56.5 724.417 -196.7
606.67 -112.8 738.22 -190.5
985.69 -216.3 -706.85 23
990.55 -240.7 -330.95 52.4
316.727 -39.50 -330.95 52.4
518.53 -64.30 -706.85 23
1019.10 -162.2 -1077 90.2
-690.77 18.70 649.88 -78.9
-884.95 186.20 466.315 -13.8

Table 4.4: The error velocity (Ve) for different Y -velocities
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Chapter 5

Autonomous Flight

Methodology

5.1 Autonomous Target Locating and Land-

ing

The goal of this section is to develop an algorithm in which the drone would

fly a distance forward to a target on x-axis. It would need to fly straight to

that spot, stop and land. During the flight the drone should autonomously

detect its deviation along y-axis and compensate for them so that it stays on

a straightforward path.

Utilizing the results from the previous chapter, it is possible to achieve better

estimates with the drone regarding horizontal displacement. For applying the

correction factors, it is enough to add the errors to the estimated velocities

before the integration process.

V̇x = 1.2038× Vest + 14.97

V̇x = 1.1497× Vest + 24.05

These velocities are integrated to calculate the horizontal displacements. Af-

ter applying the correction factors so that the drone would have a more



accurate estimate of its position, a control algorithm would be needed so

that the drone would not miss its target due to high speed. Based on figure

5.1, the drone’s forward speed must be controlled with the simple equation

bellow.

Speed = α(Xest −Xcontrol) + SpeedMax

Where:

α =
Speedmin − SpeedMax

gap

Xest is the calculated x-displacement using the estimated velocity.

Xtarget is the distance we need the drone to fly to and land upon.

Xcontrol is the point during the flight where the declining speed begins.

SpeedMax is the maximum fraction of speed that we are willing to use for

our command speed during our flight.

Speedmin is the minimum fraction of speed that we want the drone to use

right before it reaches the target.

Figure 5.1: Speed control for X-direction target approach
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In this series of tests, the drone’s mission would be to take off, fly forward,

fix deviation in Y -axis, approach the target and then land upon reaching it.

The detailed algorithm is available in figure 5.2.

Figure 5.2: The main algorithm for target approach, speed control and two level
Y -direction deviation control

As seen in figure 5.2, the flight would start with taking off and starting

to receive the NavData stream. The first act is to compute Xest and Yest
using the corrected velocities based on algorithm from chapter 3. Next, the

command speed for the forward flight is calculated based on figure 5.1. In

this algorithm during the flight, the drone would fix any deviation bigger

than primary limit in Y -direction; however when it had reached the target it

would compensate for any residual deviation bigger than the final limit. The

primal limit is bigger than final limit so that during the flight the priority
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is put upon reaching the target along the x-axis but at the same time big

deviations are taken care for safety reasons.

When the drone estimates that it has reached Xcontrol it starts to use the

decreased calculated command speed for the forward flight.

And finally when the drone estimates that it has reached the target it com-

pensates for y-deviation in order to be inside the final limit range.

For these flights for each target, the operator has five degrees of freedom in

choosing the SpeedMax, Speedmin, Gap, Primary Y -deviation limit and Final

Y -deviation limit.

5.2 Autonomous Pre-planned Route Follow-

ing

After developing an algorithm that would program the drone to approach a

target in the X-direction with Y -deviation control, it os possible to proceed

to autonomous path following.

For this purpose, once again another tool of the drone is to be utilized. It is

possible to configure the drone to hover over the oriented roundel tag seen

in chapter 2. In a normal flight, this feature would let the pilot fly the drone

freely until a tag would come into the vision of down-facing camera. Then

the internal control algorithm of the drone would take over and align itself

on the tag so that the corresponding orientation angle β would be 0. This

tool is available by changing the flying mode configuration of drone to 0 for

free flight of pilot or to 2 for hovering over tag in case of visibility.

Therefore, a path similar as figure 5.3 would need to be prepared on the floor.
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Figure 5.3: A sample path prepared by tags

In this procedure the distances between tags need to stay constant because

the complete path following is the repetition of the algorithm seen in figure

5.4; so the target which is the distance between tags, needs to be constant

for the whole flight.

It is possible to place the drone anywhere in the path that as long as after

taking off and flying forward, it would fly over a tag and detect it, it would

be matched with the path and follow it until it gets the landing command

from the station. The algorithm flowchart is available in figure 5.4. In which:

Tag flag: A variable utilized for distinguishing between different states of

flight for the drone.

Flying mode: Control configuration for enabling or disabling the hovering

procedure.

Angle β: The orientation angle provided by the NavData when the tag is

visible.
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Figure 5.4: Autonomous Path following algorithm

In this algorithm 5 situations are predicted which are shown in the flowchart

of figure 5.4.

1. This is a contingency plan for when the drone has reached the target

but has not located the tag yet. Therefore it goes backwards for some

time in case the tag was missed on the way.

2. In this situation the drone is on the path between two tags approaching

the tag on the next target.

3. In this situation the drone has seen the tag and because the tag flag

was zero, the program pauses for 8 seconds in which time the drone
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aligns itself on the tag in a proper angle and hovers. After 8 seconds

the estimated displacements Xest and Yest are set to 0. Also the tag

flag is set to 1 to embark the alignment on the tag for the next step.

4. This situation also solely exists as a contingency plan for when the

drone has noticed the tag and gone through situation 3 but for some

reason it has not aligned itself on the tag with the right angle. Thus,

we check if the orientation angle was around 0 or 360 degrees before

continuing. If the angle is not the one that is desired, the drone is to

go backwards and be configured once again to hover and align atop the

tag.

5. This is the situation in which the drone is still seeing the tag but since

tag flag is one (meaning situation 3 has already happened), it is ready

to continue to the next target. Therefore, the drone is configured to

have the free flight and go forward. As soon the tag is out of drone’s

vision boundary, we are back to situation 2 and on the path to the next

target.
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Chapter 6

Autonomous Flight Test

Results

6.1 Autonomous Target Locating and Land-

ing Test Results

In almost all of these tests 1, the minimum command speed was set to 0.

Maximum command speed and the control gap was set according to the

target to get the best results. In targets closer than 6 meters, the maximum

command speed was set to 0.05 with a gap of 1.5 meters, and for further

targets, it was set to 0.08 with a gap of 3 meters. In figure 6.1, the landing

position for all the target approaches from 2 to 10 meters is shown. For

each target at least 12 and at most 20 tests were performed, measured and

recorded.

1https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/

master/target_approach.js

https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/master/target_approach.js
https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/master/target_approach.js


Figure 6.1: The estimated and measured landing positions and their respective tar-
gets.
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In figure 6.2 to 6.5 the histograms for error of landing regarding the distance

from respected targets in both directions of X and Y are provided.

In figure 6.2 specifically, the target of each test is subtracted from its real

measured displacement (Xreal −Xtarget).

Figure 6.2: The measured distance from respected targets in X-direction Histogram

In figure 6.3 the target of each test is subtracted from its displacement esti-

mated by the drone (Xest −Xtarget).
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Figure 6.3: The estimated distance from respected targets in X-direction Histogram

In figure 6.4, the measured displacement in Y -axis of the drone is depicted.

Similar to figures 6.2 and 6.3, Ytarget is subtracted from Yreal; but in our

missions the drone should not have displacement in y-axis therefore, Ytarget =

0. Thus it is simply ignored and the Y -displacements are the data for the

histogram.
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Figure 6.4: The measured deviation from zero in Y -direction Histograms

In figure 6.5, the estimated displacement in Y -axis of the drone is depicted.

Figure 6.5: The estimated deviation from zero in Y -direction Histograms

As seen in table 6.1, in average the drone lands almost 29 cm after its target

in X-direction which is equal to the average of nearly 17 cm estimated by

the drone. This distance can be caused by the procedure of final Y -deviation
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control after reaching the target and the landing procedure itself that takes

the drone further from the target.

Regarding the Y -deviation after landing, it can be understood from table 6.1

that the estimated deviation mean is near zero which is the intended value.

However, as the real measurements’ mean shows, the drone tends to land to

the right in average.

Mean
[cm]

Standard deviation
[cm]

Y 11.16 25.89
Yest 0.78 15.47
X −Xtarget 28.81 12.53
Xest −Xtarget 16.87 11.56

Table 6.1: Mean and standard deviation

6.2 Autonomous Pre-planned Route Follow-

ing Test Results

A path similar to the test path considered in figure 5.3 was prepared.

Figure 6.6: The test path prepared in an auditorium. The floor texture is increased
with colored stickers for the sake of vision estimated velocity
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In this test the target distance between the tags was chosen 4 meters. In

other tests and paths the target was chosen 2 meters, some other 3 meters,

and in some up to 5 meters 2. As expected if the distance between tags

is increased the drone is more susceptible to faults; since the drone aligns

and stabilizes itself over each tag and they are similar to checkpoints for

following the path. However, with closer tags the flight time increases and

more preparation is needed for the environment before flight. Therefore the

distance between tags is a trade-off between flight time and reliability.

Figure 6.7: The test path prepared with four Oriented Roundel tags

Additionally other paths with corners with angles different than 90◦ were

also prepared as seen in figure 6.8.

2https://github.com/fereshte75/Autonomous-path-following-ar.drone/blob/

master/path_following.js
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Figure 6.8: The test path prepared with four Oriented Roundel tags in random angles
setting

The videos proving the feasibility of this algorithm are available in the link

bellow:

https://www.youtube.com/playlist?list=PLMgMMhA1mz0TW52uztdYwuiSyRUfi9Xbp
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Chapter 7

Conclusion and Future

Research Suggestions

The goal of this thesis was to develop an algorithm for an autonomous low-

cost quad-copter to follow a pre-planned route in GPS-denied environments.

The objective included achieving it without expensive external motion track-

ing system. Therefore in order to do so, it was imperative to find the metro-

logical characteristics of the drone at hand.

AR.Drone 2.0 with its low-cost inertial measurement system (IMU) was a

good choice of subject. For defining the accuracy of said sensors, numerous

test were run and it was observed that the double sensors implemented on the

drone for estimating the altitude were quite accurate and reliable. However,

the horizontal velocities estimated by drone which was the result of fused

data from IMU and the bottom facing camera were somewhat erroneous and

needed correcting factors to be used in horizontal displacement estimation

calculations.

After correcting the estimated velocity values, it was possible to describe al-

gorithms for autonomous flight with acceptable accuracy. In target approach

tests done for up to 10 meters the drone landed averagely 28.81 centimetres

after and 11.16 centimetres to the right of the intended target. Finally, based

on autonomous target approach with deviation control, a new algorithm was

developed to have the drone autonomously follow a prepared path using the



oriented roundel tag as indicators of the path to the drone. The final al-

gorithm proved functional in multiple tests over diverse floors, in different

rooms and with different angles as turning points in corners.

Further studies on this research are recommended as following.

• As seen in some of the test results the correction factors do not result in

complete accuracy of the estimated horizontal displacement. It could

provide fruitful to study the estimated velocity’s sensitivity in regards

to the battery voltage.

• It could be possible to mount proximity sensors on the drone’s haul

to add another control loop considering the objects around the quad-

copter for obstacle avoidance purposes.

• As mentioned in chapter 5, the path following algorithm only takes into

account 5 outcomes and in regards to not seeing the tag it can only go

backwards. It is possible to predict more situations and add branches

to this algorithm or come up with more conclusive contingency plans.

• It is possible to plan routes based on this work’s final algorithm in

corridors of a building and add a video stream block of code to the

program to use the drone as an autonomous surveillance camera. This

project would have constant patrol paths and live and recorded video

streams at the main station.
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