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Abstract

This master’s thesis work in Mathematical Engineering in collaboration with the Civil En-
gineering Department was born with the main intention of studying the effects of floods
on the territory. The urgency was created by the flood events in the Marche region on
the 15th and 16th of September 2022, in which there were 12 victims, 50 injured and
150 people displaced. In total, the monetary damage amounted to approximately EUR 2
billion.
In this context, floods are a term that refers to the overflowing of a river that brings with
it debris and sediment with the serious risk of damaging everything around it. Conse-
quently, the intent of this thesis is to simulate erosion and sediment transport in order to
help studying the risks and consequences of such an event.
In order to do this, the pre-existing particle finite element method for the fluid was used,
integrating the sediment information into the code as a scalar concentration variable. This
addition to the code was done in the form of a diffusion-transport equation, evaluating
the effect of each term on the model. In this part of the work, knowledge of mathematical
analysis was essential to assess the correct functioning of the equation within the code.
Under these objectives, an extensive analysis was made of the results of many tests per-
formed using this model, and not only in the area of sediment transport. Indeed, the
dynamics of diffusion-transport in a fluid can also describe a contaminant: some tests
have been carried out in this light, evaluating the areas damaged by the spillage of a
contaminant.
Finally, the focus also shifted to the research for an erosion model to study the main effect
of river overflow or, in a particular case studied in this thesis, marine erosion of beaches.
This area of study is also important in analysing the risk of beaches disappearing. Thus,
such work can assess the criticality of certain places to the erosion by sea waves that
slowly carry away the beach sediment.

Keywords: Particle Finite Element Method, Computational Fluid Dynamics, Flood-
ing, Erosion





Abstract in lingua italiana

Questo lavoro di tesi magistrale in ingegneria Matematica in collaborazione con il dipar-
timento di ingegneria Civile è nato con il principale intento di studiare gli effetti delle
alluvioni sul territorio. L’urgenza è stata creata dagli eventi alluvionali avvenuti nelle
Marche del 15 e 16 settembre 2022, in cui ci sono state 12 vittime, 50 feriti e 150 per-
sone sfollate. In totale, il danno monetario è stato di circa 2 miliardi di Euro. In questo
contesto, le alluvioni sono termine che fa riferimento all’esondazione del fiume che porta
con sè detriti e sedimento con il grave rischio di danneggiare tutto ciò che c’è intorno. Di
conseguenza l’intento di questa tesi è di simulare l’erosione e il trasporto del sedimento
per poter aiutare lo studio di rischi e conseguenze di un avvenimento del genere.
Per poter fare ciò, ci si è avvalsi del metodo già preesistente degli elementi finiti par-
ticellari per il fluido, integrando il sedimento nel codice come una variabile scalare di
concentrazione. Questa aggiunta al codice è stata fatta sotto forma di un’equazione di
diffusione-trasporto, valutando l’effetto di ogni singolo termine sul modello. In questa
parte dell’elaborato, è stata fondamentale la conoscenza dell’analisi matematica per val-
utare il corretto funzionamento dell’equazione all’interno del codice.
Sotto questi obiettivi, è stata fatta una larga analisi dei risultati di molti test eseguiti uti-
lizzando questo modello, non solamente nell’ambito di trasporto del sedimento. Difatti,
la dinamica di diffusione-trasporto in un fluido può interessare anche un contaminante:
alcuni test sono stati effettuati sotto questa luce, valutando le aree danneggiate dallo
spillamento di un contaminante.
Infine, il focus è passato anche sulla ricerca di un modello di erosione per studiare l’effetto
principale dello straripamento del fiume oppure, in un caso particolare studiato in questa
tesi, dell’erosione marina delle spiagge. Anche questo ambito di studio è importante
nell’analisi del rischio di scomparsa delle spiagge. Quindi un lavoro del genere può val-
utare le criticità di alcuni luoghi all’erosione dovuta alle onde del mare che piano piano
portano via il sedimento della spiaggia.

Parole chiave: Metodo agli Elementi Finiti Particellari, Fluidodinamica Computazionale,
Alluvioni, Erosione
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1

Introduction

Studying the effects of flooding events in the territory is fundamental in order to evaluate
a way of simulating natural disasters that include river overflow. The aim is to build a
model that can be the starting point of many risk assessment simulations regarding river-
bank and beach erosion, land damages or even destruction of buildings due to flooding
events. The disaster happened in the Marche region on the 15th and 16th of September is
the main example where this thesis sets its application. It may help predict the causes and
consequences of potential climatic disasters. In order to achieve this objective, a model
for the flow movement composed by fluid and sediment must be built. A large variety of
models of this kind are available in the literature, with different types of approaches.
Messa et al. [25] study a two phase flow in order to get the best possible approximation of
the problem. This leads to a very complex set of equations and a very high computational
cost. Indeed, solving the equations for the fluid and for the trajectory of the solid may
require a high effort in the modelling part. To make things worse, almost all two-phase
approaches use an Eulerian-Eulerian mesh or an Eulerian-Lagrangian mesh [26]. So in the
literature the fluid phase is mainly solved in an Eulerian mesh. This is not our case since
the starting fluid framework relies on a Lagrangian mesh. So the two-phase modeling is
avoided.
Many different works use an equation for the sediment transport considering the volumet-
ric concentration as a variable. This equation is applied in the framework of river flow
or sea movement. Rowan et al. [31] present a weakly coupled model with an advection-
diffusion equation that describes the sediment behaviour in the fluid. This model has a
drawback to address: it works only when the concentrations are low. To this matter,
in this work high concentrations are considered when the target is to check the correct
mathematical behaviour of the model. Towards the end of the work, following [18], a
modification is taken into account to consider the low concentration hypothesis.
Regarding the erosion process, the research is initially driven by finding a simple way to
describe the change of the morphology of the bed. Galano et al. [15] explore the idea of
applying the Shields shear stress criterion in order to see if the particle on the flow-bed
interface is dragged away or not. The violation condition is based on checking if the value
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of the shear stress on the bottom surpasses a limit value. However, in the paper that
describes this model, the particle that is snatched from the bottom and becomes part of
the fluid is not considered as sediment. Here, the idea is to consider the eroded particles
to become part of the mixture of fluid-sediment. In order to get the best possible approx-
imation, a totally coupled model is considered: it addresses the loss of energy in the fluid
due to its eroding action by changing its density and viscosity.
The starting mathematical model used is the Particle Finite Element Method (PFEM).
This method is characterized by the usage of a Lagrangian mesh, which has the peculiar-
ity of being able to follow the particles trajectory. This framework has also many benefits
numerically, mostly because the solution system becomes linear. This creates a very easy
way to find the solution, but it is an approach which is more complex to manage. This
is due to the fact that the mesh moves along with the fluid and has to be frequently
reconstructed. So, it seems that the computational cost lost from solving a linear system
is gained by making a new mesh when needed. Actually, following [7], the cost gained is
not so much since the remeshing is done only by reconstructing the connectivity of the
mesh. The position of the nodes remain the same. This makes the code more easy to use
and faster than other models that solve numerically the Navier-Stokes equations. This
approach takes the ALE version of the solving system and simplifies it in order to get a
more efficient solver.

Figure 1: Before and after the remeshing procedure

In figure 1, it can be seen that the mesh before is more stretched leading, in worst cases, to
have a bad solution of the problem in terms of stability. After remeshing, the connectivity
is changed and the triangles have a more uniform shape.
One of the main focus in this project is to check the robustness of the model after each
block is added. Indeed, the structure of the work has been conceived as a step by step
built model. Each chapter considers a particular aspect of the total system, and checks its
correct functionality through mathematical convergence analysis, stability issues, domi-
nated advection problems and confrontation with other models through test cases. This
computational saving is kept in mind throughout the whole work, especially when a way
to describe the sediment motion is searched. The physical model that relies on consid-
ering a mixture of fluid-sediment is feasible with the PFEM framework: in this way, it
can be used to describe the majority of concrete problems regarding sediment transport
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and erosion. To this matter, future development can include fluid-structure interaction
considering the simulation of buildings collapse due to flooding events.

Thesis structure

Chapter 1 - State of art
In this chapter an overview of the state of the art is provided for the sediment equation
and the erosion model.

Chapter 2 - Sediment equation: Diffusion problem
The sediment equation is introduced and its diffusion part is studied in order to insert
it in the code. Convergence analysis and comparison with the heat equation is made in
order to check the correct functionality.

Chapter 3 - Sediment equation: Transport through gravity
The effect of gravity on the model is studied considering a transport term in the equation.
The transport dominated problem and its stabilization are considered to have correct
results also in these particular cases.

Chapter 4 - Sediment equation: Transport through fluid motion
Here the fluid motion is activated and so new problems are addressed, such as: imposing
boundary conditions to Eulerian nodes, modifying the stabilization term for the transport
dominated problem and treating the limits of using a weakly coupled model. All the
changes are controlled considering some test cases.

Chapter 5 - Sediment equation: Complete model
In this chapter, 4 different studies are attacked in order to see what the model can achieve
in different fields. The main focus is on mixing, contamination and turbulence problems.

Chapter 6 - Bed erosion model
A model for erosion based on the Shields scouring criterion is presented. This basic
model checks the shear stress at the bed level in order to check if the sediment particles
are eroded or not. Some tests are presented in order to evaluate the fields of application
of this model.

Chapter 7 - Conclusions and future developments
The final chapter summarizes the results of all the simulations performed, giving a fi-
nal overview of what this model can represent in concrete and useful cases. Possible
developments for this thesis work are then explained.
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1| State of Art

There are many different problems in the engineering field that require a description of
the transport of sediment in a fluid flow. The aim is to find a model that can represent the
majority of river transport and erosion problems. The state of art is structured in such a
way that the fluid framework and the sediment one are addressed in their completeness.
The fluid framework is described using a Lagrangian model, while the sediment one is
studied considering a model for transport and erosion.

1.1. Fluid modeling

1.1.1. Lagrangian framework

The particle finite element method is a numerical tool that relies on the Lagrangian
framework. This point of view is focused on the small fluid particle moving, tracking its
movement in space and in particular its trajectory. Regarding the Eulerian point of view,
a fixed volume of moving particles is studied, not caring for the single particle movement.
Numerically speaking, there are many differences between the Eulerian approach and
Lagrangian one. First of all, using a Lagrangian approach, we can solve the fluid dynamic
problem using a mesh that follows the moving particles. In this way the Navier-Stokes
problem becomes linear since the non linear convective term is contained inside the total
derivative. In other words, the integration points move with the fluid, making this method
useful for fluids which have a history dependent behaviour.
Considering an Eulerian mesh, the nodes are fixed and do not move while the fluid moves
inside the grid. In this formulation, the convective term has to be considered and the
problem is more difficult to treat, opening for a very large number of methods that aim
to make the system solvable numerically. In practice, a mixed formulation is used and is
called Arbitrary Lagrangian Eulerian (ALE) formulation [10], which solves in some nodes
the Eulerian system and in the other ones the Lagrangian one. This system for weakly
compressible fluids is shown in 1.1.
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ρ

[
∂u

∂t
+ (uc · ∇)u

]
= ∇ · σ + ρb on Ωt × [0, T ]

∂p

∂t
+ (uc · ∇) p+K (∇ · u) = 0 on Ωt × [0, T ]

(1.1)

Where uc (x, t) = u (x, t) − r (x, t), with r (x, t) denoting the mesh velocity. To recover
the Lagrangian formulation, just set uc = 0; while for the Eulerian one, set uc = u (the
velocity of the mesh is null in this case). K is the fluid bulk modulus, σ (x, t) is the stress
tensor and b (x, t) are the body forces.

1.1.2. Particle Finite Element Method

The mathematical method used to attack the fluid problem is the Particle Finite Element
Method. This approach allows us to track easily boundaries and interfaces making the
boundary condition imposition more immediate.
One of the biggest consequences of using a Lagrangian mesh is its deterioration. Since
the nodes follow the movement of the fluid, if the deformations are very big the mesh
could eventually be very distorted. In order to avoid this, Cremonesi et al. [7] consider
a remeshing technique so that a new mesh is created. The related drawback of creating
a new grid at each time is that the computational cost is very high. This cost is lowered
by only building a new connectivity and keeping the nodes at the same position of the
previous mesh. The new connectivity is built using the Delaunay tessellation.

This method has many different applications where it can be helpful, especially in fluid-
structure interaction problems. Franci et al. [14] presents the simulation of the Vajont
disaster of 1963 where the river overflowed beyond the limit of the dam, flooding the
nearby country and causing the death of almost 2000 people. Bravo et al. [4] instead
describes the simulation of the movement of an erodible bed of a river using the PFEM
method. This paper describes the Exner equation, which will be a topic of discussion in
[1.2].

As described in [7] the general solution scheme of the PFEM can be summarized in these
steps:

1. Insert in the domain a set of points which are the starting particles considered in
the system (1.1a);

2. Generate a mesh with these particles (1.1b);

3. Recover the internal and external boundaries of the domain (1.1c);
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4. Solve the Lagrangian form of the equations using FEM (1.1d);

5. Compute the particle movement and update the position of the nodes (1.1e, 1.1f,
1.1g);

6. Pass to the next time step, if remeshing is needed go turn back to step 2, if not go
to step 5.

Figure 1.1: Steps of PFEM [7]

1.1.3. Delaunay triangulation

To generate the mesh from the particle nodes, the Delaunay triangulation is used. Starting
from a set of N points, the Voronoï diagram is defined as the partition of the domain Ω

in convex regions Ti where to each region is related a node of the set. In this way all the
points of Ti are included in it following this definition:

Ti = {x ∈ Ω : d (x,xi) ≤ d (x,xj) ∀j ̸= i} (1.2)

where d (x,xi) = ||x− xi|| is the Euclidean norm.

The Delaunay triangulation is built by connecting the center nodes of the Ti Voronoï
cells which have a boundary in common. By making all the connections, the mesh is
constructed.



8 1| State of Art

Figure 1.2: Voronoï diagram [7]

The problem of this method is that the resultant mesh can reproduce only a convex
geometry, which is obviously a problem in many cases. To overcome this hitch when
dealing with non-convex domains, the alpha-shape method is applied.

1.1.4. Alpha-shape method

A geometrical criterion based on the index of elemental distortion αe is introduced to
remove unnecessary elements from the mesh. As said in [23], the elements which do not
fulfil the condition are the most distorted ones. This method is able to naturally deal
with particles that detach from a surface or to define the contact interface between fluid
and structure. The coefficient of elemental distortion is defined as:

αe =
Re

hmean

(1.3)

where Re is the radius of the circumsphere of the element and hmean is the characteristic
mesh size, which has to be chosen carefully. The criterion eliminates every element whose
distortion coefficient is greater than a fixed threshold value α. In figure 1.3 is shown an
example of domain which may require this method. The Delaunay tessellation applied
to the R-form domain gives a not satisfactory result, since the final product does not
represent correctly the desired one. To recover the correct form of the R letter, the alpha
shape method is applied.
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Figure 1.3: Application of the alpha-shape method to the R-figure [23]

Franci et al. [13] presents a very deep study on the alpha-shape method and makes some
examples showing how the PFEM makes the phenomena more easier to understand since
the free surface are tracked naturally.
This phase is very tricky, since eliminating elements can give life to some problems in the
continuity equation. This is due to the fact that the presence of some new elements add
fluid that was not there before, so there are inconsistencies in the mass conservation law.
An example of this is shown in [13], where is presented a study of the collapse of a dam
break against a rigid step. The setup of the test is presented in 1.4.

Figure 1.4: Initial geometry of the dam break test against a rigid step [13]

During the start of the simulation the elements move towards the right. During the move-
ment of the water column we can see some mechanism of volume variation, in particular
of two types related to creation and elimination of elements. To advance, the method
must create some element ahead of the column, in order to solve the equations in those
points where the fluid will be (figure 1.5a). On the other hand, during this process the
height of the water column decrease in time and elements are deleted since the model does
not care to find the solution where the fluid is no more present (figure 1.5b). If the sum
of the volume of the erased elements is different than the new added, the overall volume
is not conserved, possibly leading to mass oscillations.
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(a) Adding elements to the do-
main

(b) Removing elements to the do-
main

Figure 1.5: Two mechanism of volume variation [13]

In PFEM, contact surfaces are automatically tracked using the alpha-shape method, like
contact with rigid walls, as shown in figure 1.6b. In this case when contact with surfaces
is activated, elements are added and the overall volume is increased. Another feature
present in the model is the ability to release a free particle from the flow, as we see
in figure 1.6a. Considering this behaviour, the total volume is decreased: despite these
possible fluctuations, choosing a proper value of α keeps a limited variation of the value
of total volume.

(a) Impact of a fluid with the
boundary

(b) Formation of a free particle

Figure 1.6: Free particles and fluid-wall contact treatment [13]
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1.1.5. Adding and removing nodes

To maintain a good quality of the mesh, a possible thing to do in this framework is to
add and remove nodes. There are many different algorithms to treat situations where it
can be useful to change the disposition of the computational points. These cases are two:

• if a node comes too close to another one or a boundary, it should be eliminated;

• if an element becomes too large then a node should be inserted inside it.

By doing this, the grid is no more considered a Delaunay mesh.

1.1.6. Space and time discretization

A consequence of remeshing done by changing only the connectivities and maintaining
invariated the positions of the nodes is that only linear interpolation functions can be
adopted. This is due to the fact that higher-order functions would require to remap
the values of the solutions in the middle of the edges of the elements. Additionally,
the curvature of the mesh is lost if high order elements are used, so only linear shape
functions can be used in the PFEM framework. From a mathematical point of view this
forced choice gives rise to another problem: choosing linear interpolating functions for
velocity and pressure make the problem unstable because the inf-sup condition is not
fulfilled. As a consequence, to study the problem using PFEM a proper stabilization
method is needed.

For what concerns the time discretization, both implicit and explicit approaches can be
adopted. Typically, implicit schemes are preferred with maybe considering fractional
steps methods. As of late, explicit time integration formulations are more considered in
the PFEM framework. They are very appealing for fast dynamical simulations and for
non-linear problems that suffer from numerical issues with convergence. Explicit solvers
are less computationally expensive since they give rise to a linear problem which is more
easier to solve than the implicit one. The implicit treatment of the problem gives rise to
a set of equations that must be resolved using particular methods like the Newton one or
the fixed point one. The Courant-Friedrichs-Lewy stability condition must be fulfilled in
order to have a stabilized solution without spurious oscillations. This property gives to
the quality of the mesh a crucial role for the calculation efficiency of explicit methods, as
the presence of excessively distorted elements can make the stable time step dimension
vanish and compromise the calculation.
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1.1.7. Boundary conditions

As said before, PFEM is very good at following modifications of the free surfaces, since
they are automatically detected by the position of the external nodes of the domain. On
the other hand, treating boundaries that require to have nodes with fixed velocity defined
is tricky, giving less flexibility on the impositions of non zero Dirichlet boundary condi-
tions. So complementary methods are searched in order to allow this kind of imposition.
In free surface contours, the normal component of the stress tensor should vanish: in
strong form this leads to the imposition of a null pressure at the boundary, leading to the
violation of the mass conservation equation. In multi-fluid problems, a condition must be
imposed on the interface between fluids. Even in fluid-structure interaction problems, an
accurate imposition of boundary condition is very important.

If we want to impose slip boundary conditions to the problem, a case where the slip
condition can be defined is when a correlation between the slip velocity and the tangen-
tial stress must be imposed. This relation is mediated through a material friction-like
parameter. The slip condition is needed in several applications where a liquid flows on
solid surfaces, and an example is the Navier boundary condition. As described in [9], the
general slip condition can be illustrated with the Couette flow, where a flow is moving
between two plates thanks to the movement of the upper plate, which is moving with a
particular velocity. Figure 1.7 shows three different cases of slip. In (a), it can be seen
that the velocity at the bottom is 0, which is the particular condition of no-slip condition;
in (b), the velocity is greater than 0 so there is some slip; in the end in (c), the slip velocity
is the same of the moving plate, so the condition applied is the free slip one. In this final
case there is no dissipation of energy at the plate. A slip length hslip can be defined as
the distance from the lower plate to the point at zero velocity obtained extrapolating the
linear velocity profile. This slip length is a property of the fluid-wall interface.

Figure 1.7: Different cases: (a) no slip (hslip = 0), (b) slip (hslip > 0), (c) free slip
(hslip → ∞) [9]
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In practice, the slip is present when a critical value of the tangential stress at the wall is
reached, making this model an analogy with the Bingham one. This slip model is very
useful for cases like the movement of a landslide over the side of a mountain. Examples
of applications using the slip condition can be found in [9], [8] and [14].

Regarding inflow and outflow boundaries, the definition of the condition in the PFEM
framework must be taken into account carefully. When a particular profile of velocity or
pressure is imposed at the boundary, the nodes interested in this imposition move in the
next time steps. In this way on the successive step they are no more forced to have the
values imposed before, making the boundary condition definition lost. There are many
way to deal with this problem, for example for inflows when the boundary nodes move
away, a new set of points is introduced to occupy the empty space left. Cremonesi et al.
[7, 10] instead defines fixed (Eulerian) nodes at the inlet so that they does not move in time
and are always interested in the imposition of the condition values. For the outlet, the
same comments regarding the inlet apply. No other big precautions should be adopted,
if not that the nodes that go outside the computational domain must be relocated.

1.2. Models of transport

In this master thesis work, the interest is focused in considering a way to simulate the
erosion and the transport of sediment in a river course. The aim shifts now in seeing what
the literature has to offer in these regards.
Both the bed of a watercourse and its banks are composed of sediments that may be more
or less cohesive. Depending on the current flowing through them, these may or may not
move; the onset of motion depends on both the nature of the sediment and the speed
of the current. The movement of the detached particles is called solid transport. Once
the material has started moving, it can continue its motion in two substantially different
ways:

1. Ground motion due to rolling, creeping or hopping: the material moves by rolling
along the bottom or through alternating small jumps, detaching itself from the
bottom for short periods and at a relatively small distance from the bottom (of
the order of the particle size). The bottom transport causes important actions on
hydraulic structures

2. Suspension motion: the particle is lifted to a height above the bottom of the order
of the water level and then travels long distances without touching the bottom.

In figure 1.8, it is shown the two types of sediment movement, highlighting the different
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ground motion of the sediment at the bed level.

Figure 1.8: Sketch of bed load and suspended load sediment transport [16]

1.2.1. Suspension transport

For what concerns the suspended transport of sediment, an advection-diffusion equation
is solved in order to find the volumetric concentration c:

∂c

∂t
+∇ ·

(
u + ws

g
|g|

)
c = ∇ ·

(
νt
σc

∇
)

(1.4)

ws is the fall sediment velocity, defined as the velocity of the particle when dropped
vertically in a quiescent fluid under the effect of gravity. νt is the sediment diffusivity
and σc is the Schmidt number. Due to the interaction among settling grains, the settling
velocity normally decreases as the concentration of the sediment increases. As shown in
[29], the formula for ws is:

ws = (1− c)ξ ws0 (1.5)

where ws0 is the settling velocity for natural sands in clear water, which is used in [32]:

ws0 =
ν

d50

[(
10.362 + 1.049D3

∗
)1/2 − 10.36

]
(1.6)

In [6], a different formulation of the falling sediment velocity is described, where it is
shown that is independent on the concentration but dependent on the diameter d50. [16]
instead presents an equation constructed by considering the shallow water assumption,



1| State of Art 15

which make the problem one-dimensional by integrating along the height of the water
level. This equation inserts the effect of erosion and deposition, two terms that will be
further studied in 1.3.1.

∂ (hc)

∂t
(x, t) +

∂ (huc)

∂x
(x, t) = E (x, t)−D (x, t) (1.7)

This model is very approximative given the hypothesis, but interesting since it considers
the sediment deposition and erosion.

1.2.2. Bedload transport

The objective is now to understand whether in a certain watercourse, characterised by
a certain flow rate (and velocity), the sediment on the bed is moving or standing still.
Considering a model of a watercourse with sediment on the bottom, gradually increasing
flows are introduced. As long as we do not consider a certain flow limit value, the sediment
remains stationary on the river bed. Calling F the forces that originate motion and R

the hydrodynamic resistance of the particles, we have:

• if F < R, the particles do not move;

• if F > R, the particles do move;

Consequently, there will be a flow Q such that the limit condition F = R is reached. This
situation is called limit equilibrium condition or incipient motion condition. However,
it is more convenient to analyse the situation dynamically by considering the tangential
actions at the boundary. The actions that the current exerts on the riverbed follow the
direction of the current itself; due to the action-reaction principle, the forces that the
bottom exert on the current are in the opposite direction. It is often convenient to refer
to a mean tangential boundary action, called τ0.
Considering a channel with a slope if , with a current in uniform motion, and isolating a
section of riverbed of length L, we have that:

• The resistance acting on the bottom is τ0Lp where p is the wet perimeter;

• The acting force (water weight projected along the direction of the motion) is γΩLif .
γ is the specific weight and Ω is the area of the section.

Equalising the two terms gives the value of the tangential tension acting on the bottom
in uniform motion:
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τ0 = γRif (1.8)

Shields’ investigation shows that particles on the bottom only stand still if

τ0 < τ0,crit (1.9)

It is assumed that under critical conditions the resistance to motion of granules of diameter
d and specific gravity γs equals the drag force at the bottom at the start of transport.
Resistance depends linearly on the weight of the submerged granule (i.e. its own weight
adjusted for Archimedes’ thrust) and is therefore the final relation in the critical condition
reads:

(γs − γ)d3 =
1

θcrit
τ0,critd

2 (1.10)

So:

θcrit =
τ0,crit

(γs − γ)d
(1.11)

θcrit is the critical Shields number, which is basically the adimensionalisation of the shear
stress. Generally to describe the current state of stress on the surface of the riverbed, the
Shields parameter will be defined generally as in equation 1.12.

θ =
τ

(γs − γ)d
(1.12)

If θ > θcrit, the critical value is exceeded and on the bed level there will be a movement of
the sediment. This will introduce a bedload transport per unit width. In [20], is presented
a formulation of this new variable:

qb =

18.74 (θ − θc) (θ
0.5 − θ0.5c )

√
Rgd50d50 if θ > θc

0 if θ < θc
(1.13)

θ =
τ

ρgRd50
(1.14)
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R =
ρsed − ρ

ρ
(1.15)

which is a formula from the work of Engelund and Fredsøe [12]. Here, the critical value
of the Shields parameter value is proposed by Allen [1]:

θc
θco

= cosβ +
sinβ

tanϕ
(1.16)

β is the slope angle between the sand bed and the horizontal plane and ϕ is the sediment
angle of repose. θco is the threshold shields parameter that can be calculated following
[32]:

θco =
0.3

1 + 1.2D∗
+ 0.055 [1− exp (−0.02)D∗] (1.17)

where D∗ is the dimensionless sand size.
Considering the morphological formation of the bed which may not be flat, the slope effect
has to be considered. It modifies the value of the components of the bed load transport
rate per unit width by considering also the elevation of the bed.

qbi = qb
τi
|τ |

− C|qb|
∂η

∂xi

(1.18)

C is the constant which is used to reflect the slope effect on the sediment flux. Considering
a particular direction, when the bed has a positive derivative, the value of qb in that
direction is decreased since gravity works against the movement of the sediment at the
bed level. If the bed has a negative derivative, the opposite happens.

1.3. Models of erosion

To describe the morphological change of the bed elevation, different approaches are avail-
able in the literature. Some of them aim to describe it microscopically, considering the
impact of the single particle with the bed. Others try to model the elevation change
considering a new variable which is the bed height.
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1.3.1. Exner equation

The Exner equation gives a way to describe the change in the height of the bed elevation.
It is recovered by applying the mass continuity balance on the sediment:

∂η

∂t
=

1

1− n
(−∇ · qb +D − E) (1.19)

η is the bed height, n is the porosity of the bed. qb is the bedload transport rate as
we have seen it in equation 1.13. D and E are respectively the deposition rate and the
entrainment rate of the sediment at the bed level, which are modeled in many different
ways. In [30], Van Rijn defines them as:

D = csws (1.20)

E =
ν + νt
σc

∂c

∂z
(1.21)

cs is the sediment concentration very near to the bed. To compute this value, many
empirical models can be adopted. It is interesting to notice that E depends on the
vertical concentration gradient, which has to be evaluated near the bed. Claire et al. [6]
evaluates D and E in the Exner equation at z = η+δ, where δ is the interface that divides
the bedload zone and the suspended sediment one. The structure of the Exner equation
relates the erosion of the bed with the transport model that are described in 1.2. In this
way erosion is a consequence of the actions of transport.

Another formulation for E and D can be found in [16]. The entrainment is due to
turbulence, while the deposition is due to gravity:

E =

φ (θ−θc)u
hd0.2

if θ ≥ θc

0 if θ < θc
(1.22)

D = γcω0 (1− γc)m (1.23)

φ is a constant dimensionless number related to the sediment properties, while γ is the
non-equilibrium adaption coefficient of the suspended load. For further information on
these parameters check [5] and [34].
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In many works the hypothesis of non cohesive sediment is made. For cohesive sediment,
the critical shear stress for erosion is different from the critical shear stress for depo-
sition, and at a particular bed shear stress, cohesive sediments undergo either erosion
or deposition but not both simultaneously. Cohesionless sediments, on the other hand,
have only one critical condition that is valid for both erosion and deposition and undergo
simultaneous erosion and deposition processes under all bed shear stress conditions.

1.3.2. Particle erosion

A different way to approach the erosion problem can be seen by studying the particle
contact with the bed of the river. The process of simulation of the wall wear is divided
in three steps, as shown in figure 1.9 [28]. First, the simulation of the particle-laden flow
is carried; then, the impact of the particle with the wall is analysed; in the end, a proper
erosion model is applied and some particles are freed from the wall, becoming part of the
flow. This procedure is iterated for each time step.

Figure 1.9: Steps of erosion [28]

The case of study will be the impact erosion on ductile targets, which is divided in two
parts: cutting wear and deformation wear. The first phenomena consist in the formation
of the crater by crawling. The removed bedload part is shifted to the side of the hole; the
other phenomena consists in the nearly vertical impact of the particle with the wall. The
hole is formed by compression. In [24], these two mechanisms are summed to form a new
variable which is the total loss of material produced by an impact:

Ep = Fs (Ec + Ed) (1.24)

Fs is a numerical coefficient related to particle shape, that take values of 1, 0.53, and 0.2
for sharp, nearly-rounded, and fully-rounded [22]. The formulation of the two components
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is:

Ec =

C1mp
|vp|2.41sinθp(2Kcosθp−sinθp)

2K2 if θp ≤ K

C1mp
|vp|2.41cos2θp

2
otherwise

(1.25)

Ed =

C2mp (|vp| sinθp − Utsh) if |vp| sinθp > Utsh

0 otherwise
(1.26)

The parameters C1, C2, K and Utsh are related to the material of the particle. vp and θp

are the particle velocity and angle of impact. It is worth to notice that the deformation
wear occurs only if the component of the impact velocity normal to the wall exceeds the
threshold value Utsh.

The erosion potential caused by a particle depends on several types of parameters, which
have direct or indirect effects on the detachment of material from the wall:

• Particle size

• Particle shape

• Particle material

• Impact velocity

• Impact angle

They all convey in this formulation that has to be found through experiments:

Ėp = ṁpf (vp, θp, particle, target) (1.27)

Equations 1.25 and 1.26 are found starting from this functional relation. Described in a
work of Messa et al. [27], the empirical relation is:

Ėi = ṁpFsKvnp f (θp) (1.28)

f (θp) = (sinθp)
b1 (1.5− sinθp)

b2 (1.29)

For each particle, one can calculate the mass flow of material removed from the soil Ėi

and then derive the amount of material removed per cell by summing the values of all
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particles. From this value, one can then derive the penetration rate, i.e. the rate at which
the erosion depth of the cell increases:

η̇cell =

∑
i∈cell Ėi

Aρt
(1.30)

From these information, the integral erosion ratio can be recovered. This value tells in
what percentage the material is eroded with respect to total mass impacting the wall.

IER =

∑
i∈cell Ėi

Ṁs

(1.31)

From this value, the number of particles that are released from the solid can be derived:
simply multiply IER by the total number of particles. This can be useful in a Lagrangian
view of the problem: the freed particles become part of the computation of the total
system of equation.
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2| Sediment equation: Diffusion

problem

In this chapter a first implementation of the sediment equation will be discussed. The
action inspected here is the diffusion of the sediment in a fluid: this is helpful to see how
the concentration changes due to the presence of a gradient in the domain. It may serve
in concrete applications where the fluid is still and the sediment moves within it to find
an equilibrium condition that satisfies all the boundary conditions. Generally, the aim of
this thesis is to integrate correctly the sediment model within the PFEM framework. The
fluid model is complete, the task is to couple it with the sediment. The equation that
has to be implemented is a diffusion advection equation, and it can be found in many
different papers present in the literature. It is described in section 1.2 and it reads:

∂c

∂t
+∇ ·

[(
u + ws

g
|g|

)
c

]
= ∇ ·

(
νt
σc

∇c

)
(2.1)

It is worth to underline that the transported particles do not have mass, so the sediment is
treated like a concentration which is passively transported and diffused in the fluid, that
in our case of study is water. For all the test studies, cohesionless sediment is considered.
This work will be structured in the following way: as the first step, the base model with
many hypothesis will be treated, then all the other pieces are inserted one by one. In this
way, the full model will be built step by step giving a good overview of the meaning of
each part.

2.1. Weak formulation

The first target is to study only the diffusion motion of the sediment. To do this the
advection component should be eliminated: this can be achieved by considering null the
effect of the gravity on the sediment. In this way the falling velocity term can be neglected
by leaving us to:
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∂c

∂t
+∇ · (uc) = ∇ ·

(
νt
σc

∇c

)
(2.2)

In this chapter the focus remains still on the diffusive part of the equation: to this aim
the fluid is still and does not move, so that in equation 2.2 u = 0 m

s
. Suppose also that

the ratio between the sediment diffusivity and the Schmidt number is constant. The final
form of the equation reads:

dc

dt
=

νt
σc

∆c (2.3)

By rewriting the equation in this way, the Lagrangian framework can be exploited giving
the described benefits in section 1.1. Due to the null velocity, the total derivative of the
concentration appears: numerically speaking this term will be very easy to discretize since
the sediment particles are followed.

The generic problem to solve is shown in 2.4: next step is to write its weak formulation.


dc

dt
− νt

σc

∆c = 0 ∀x ∈ Ω ⊆ R2, ∀t ∈ (0, T ]

c (x, t = 0) = c (x) ∀x ∈ Ω

c (x, t) = h (x, t) ∀x ∈ ∂Ω = Γ

(2.4)

The choice of the space for the solution is H1 (Ω). Below are defined the solution and test
spaces used for the derivation of the weak formulation.

V =
{
v ∈ H1 (Ω) : v = h on Γ

}
(2.5)

V0 = H1
Γ (Ω) (2.6)

From the first space the solution is taken, while from the second one the test function is
taken. V is defined in such a way that on the edge the function is equal to the boundary
datum, while V0 is defined like the last but considering a null value on the boundary.
Since the problem is an elliptic one, the property of elliptic regularity applies so that it
can be assured that the function is in H2 (Ω). This will be helpful when the error estimate
are presented and discussed.

Multiply the equation with a function belonging to the test space and then integrate over
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the domain, applying integration by parts to the term with the Laplacian. Then drop the
boundary term since in V0 the values at the boundaries are null:

∫
Ω

dc

dt
v dΩ −

∫
Ω

νt
σc

∆c v dΩ =

∫
Ω

dc

dt
v dΩ +

+

∫
Ω

νt
σc

∇c · ∇v dΩ = 0 ∀v ∈ V0

(2.7)

The lift operator is introduced, which allows us to solve the problem by considering
homogeneous Dirichlet boundary conditions:

c = ĉ+ h̃ (2.8)

where h̃ is defined such that h = h̃|Γ. In practice h̃ is the extension of the boundary
datum to the whole domain: is zero everywhere except on the boundary. After making
this substitution in the equation, take to the second member all terms containing h̃.

∫
Ω

dĉ

dt
v dΩ +

∫
Ω

νt
σc

∇ĉ · ∇v dΩ = −
∫
Ω

dh̃

dt
v dΩ +

−
∫
Ω

νt
σc

∇h̃ · ∇v dΩ = 0 ∀v ∈ V0

(2.9)

From now on ĉ will be only c for simplicity. Define the bilinear form and the functional,
which will be useful later:

a : V0 × V0 → R s.t. a (k, r) =

∫
Ω

νt
σc

∇k · ∇r dΩ (2.10)

F : V0 → R s.t. F (v) = −
∫
Ω

dh̃

dt
v dΩ −

∫
Ω

νt
σc

∇h̃ · ∇v dΩ (2.11)

In the end, the weak formulation is: given c (t = 0) = c, find c ∈ V0 such that ∀t ∈ (0, T ]

the equation 2.12 is satisfied.

∫
Ω

dc

dt
v dΩ + a (c, v) = F (v) ∀v ∈ V0 (2.12)
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2.1.1. Discretization in space and time

The discretization in space is now introduced: first of all define the space from which
is taken the basis that will allow us to write the solution as a linear combination of
its elements. The domain is discretized and the partition Υh is introduced, creating a
number N of nodes all contained in the subset Φ = {x1,x2, ...,xN}. Below are showed
the definition of the piecewise linear finite element space and the new discretized solution
and test spaces:

X1
h =

{
v ∈ C0 (Ω) : v|K ∈ P1 (Ω) ∀K ∈ Υh

}
(2.13)

Vh = V ∩X1
h , Vh,0 = V0 ∩X1

h (2.14)

Define the basis composed by the element-wise linear functions {φj}Nj=1 ⊆ Vh,0. Each
function is defined as:

φj (x) =

1 if x = xj

0 otherwise
(2.15)

Now given the finite element approximated problem, the formulation becomes: find ch ∈
Vh,0 such that for ch (t = 0) = c and ∀t ∈ (0, T ]:

∫
Ω

dch
dt

vh dΩ + ah (ch, vh) = Fh (vh) ∀vh ∈ Vh,0 (2.16)

Given the definition of the functional in 2.11, the force term on the right in this case will
be zero since the datum will be always piecewise constant in space and in time. Since
the solution ch belongs to the discretized solution space, it can be written as the linear
combination of the elements of the basis defined in 2.15:

ch (x, t) =
N∑
j=1

cj (t)φj (x) (2.17)

Substitute this expression in the equation and take vh = φi (x) with i = 1, 2, ...N :
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∫
Ω

d

dt

(
N∑
j=1

cj (t)φj (x)

)
φi (x) dΩ + ah

(
N∑
j=1

cj (t)φj (x) , φi (x)

)
= 0 (2.18)

The time derivative can be brought outside the integral because the domain is independent
from time. Since the integral of the sum is equal to the sum of the integrals, the summation
can be taken outside. This can be done with the nodal variables cj (t). In the end, the
system ends up to be written like this:

N∑
j=1

(∫
Ω

φj (x) φi (x) dΩ

)
dcj (t)

dt
+

N∑
j=1

ah (φj (x) , φi (x)) cj (t) = 0 (2.19)

Now introduce the matrices that will allow the definition of the linear system. The two
matrices are the mass one and the stiffness one.

Mij =

∫
Ω

φj (x)φi (x) dΩ (2.20)

Aij = a (φj (x) , φi (x))

=

∫
Ω

νt
σc

▽φj (x) · ▽φi (x) dΩ
(2.21)

After having defined the matrices, it is straightforward to notice in the summation the
matrix product, that allows to reduce the equation to this linear system:

Mċ (t) + Ac (t) = 0 (2.22)

Clearly, since the number of nodes are N , it should be that M ∈ RN×N and A ∈ RN×N .
Passing to the discretization in time, it is important to understand how to treat the time
derivative of the concentration. The time domain is partitioned in steps with ∆tn =

tn+1 − tn, which are not necessarily equal.
Since a Lagrangian mesh is used, the remeshing phase has to be performed when the
grid is too distorted. This implies a high computational cost even if in this model this
phase is done by only making a new connectivity. So it is helpful to use the very simple
explicit Euler approximation of the equation, that saves some computational cost gained
by remeshing.
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ċ
(
tn+1

)
=

c (tn+1)− c (tn)

∆tn
(2.23)

All the other terms in the equation are considered as known at the time instant tn. The
final system that has to be solved is:

Mcn+1 =
(
M − A∆tn

)
cn = fn (2.24)

2.1.2. Matrix assembling

Consider now the construction of the diffusion matrix A. Consider a triangular element:
the local concentration can be written in this way:

c =
[
φ1 (x, y) φ2 (x, y) φ3 (x, y)

]c1c2
c3


= lTcL

(2.25)

So that the gradient is

▽c = ▽ [φ1c1 + φ2c2 + φ3c3] =

[
φ1,xc1 + φ2,xc2 + φ3,xc3

φ1,yc1 + φ2,yc2 + φ3,yc3

]

=

[
φ1,x φ2,x φ3,x

φ1,y φ2,y φ3,y

]c1c2
c3

 = BcL

(2.26)

Considering the definition 2.21, the effect of the diffusion term on the concentration of
the i-th node is:

a (c, φi) =

∫
Ω

νt
σc

∇c · ∇φi dΩ =

∫
Ω

νt
σc

BcL · ∇φi dΩ

=

∫
Ω

νt
σc

BT∇φi · cL dΩ

= Ai · cL

(2.27)

So the local diffusion matrix can be finally written as:
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AL =

AT
1

AT
2

AT
3

 =


∫
Ω

νt
σc
(∇φ1)

T BdΩ∫
Ω

νt
σc
(∇φ2)

T BdΩ∫
Ω

νt
σc
(∇φ3)

T BdΩ

 =

∫
Ω

νt
σc

BTBdΩ (2.28)

Each integral is computed using the mid point rule: all the values inside the integral are
evaluated at the mid point and then this value is multiplied by the area of integration.
Passing to the mass matrix, the transformation onto the elementary triangle is performed.
This can be done through a linear transformation of the coordinate system, which includes
the computation of the Jacobian. The linear transformation map is shown in figure 2.1:

Figure 2.1: Transformation map from a distorted element to the elementary triangle

Mij =

∫
Ω

φj (x)φi (x) dΩ =

∫
Ω̂

φj (x̂)φi (x̂) JdΩ̂ (2.29)

In this case the Jacobian is simply two times the area of the element. Keeping in mind
that the integrals are calculated via the mid-point rule, the final matrix is:

ML =
area
12

2 1 1

1 2 1

1 1 2

 (2.30)

Finally the global matrices are composed by the local ones, passing through the connec-
tivity of the grid.

2.1.3. Code implementation and system resolution

The overall assembling is done with a parallel computation, involving different cores in
order to speed up the code. Each core takes on a fraction of the total number of elements
and of each element computes its local matrix. Then this is immediately applied to the
local concentration, giving as result a vector shown in 2.31.
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dLi =
3∑

j=1

(
−AL

ijc
L
j

)
for i = 1, 2, 3 (2.31)

This diffusion vector called dL is added to the global vector through the connectivity. In
this way each core has a part of the global diffusion vector d.
As it may be seen from 2.30, recovering the mass matrix is not a big deal computationally
speaking. After each core computes the mass matrices for the elements available to them,
a lumping is done so that each core has a vector containing the sum of the values on the
columns.

mL
i =

3∑
j=1

ML
ij for i = 1, 2, 3 (2.32)

In the end, each core computes its global mass lumped vector mi passing through the
connectivity of the mesh. The resolution part of the system in the code is treated with
a for loop on the nodes. Until now, every core has computed their part of the global
vectors m and d. Now a summation of these is done over all the cores, giving as result
two complete vectors.
During the assembling of the global vectors m and d, only the internal nodes are con-
sidered and not then boundary ones. This is done because the boundary conditions are
applied directly to the solution vector and are not enforced automatically by solving the
linear system. This means that in the code the dimensions of the global vectors are
(N −NΓ), where NΓ is the number of boundary nodes.
Then an analysis on the type of node considered is done. Each node is considered in a
way such that it has a label in relation of where it is. If it is on the boundary, there is
a Boolean variable called "bound" that will have assigned the value "True". Vice versa,
the label will be "False" if the node is internal. To each node xi in the for loop, its type is
checked: if the considered point is on the boundary the value ci is imposed; otherwise, the
solution system is solved by performing the computation shown in 2.33. This procedure
is repeated at each iteration until the end of the simulation.

cn+1
i = cni +

di∆tn

mi

(2.33)
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2.2. Bucket diffusion problem

To test the functionality of the mathematical setting built for the diffusion part of the
equation, a simple test case is considered. The domain is shown in figure 2.2: a bucket
Ω = [0, 4] × [0, 4] m is filled with water and at the interface with the atmosphere the
concentration of the sediment is set to be 1. The system to solve is the one shown in 2.4,
the boundary condition is 2.34 and the inital solution is 2.35.

h (x, t) = 1 , x ∈ ∂Ω = Γ (2.34)

c (x) =

1 if y = 4

0 otherwise
(2.35)

σc will be always taken equal to 1. Instead the values of νt will change to make the code
stronger and its effect will be inspected later.

Figure 2.2: Initial solution, hm = 0.1 m

2.2.1. Stability in time issues

Performing several tests with different diffusivities values revealed many problems. For
values of diffusivity in the order of 101 m2

s
or bigger, the solution explodes. Bigger problems

were created if the adopted mesh was finer. The mesh dimension hm is an average value of
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the external radius of the element. An example of critical instabilities is shown in figure
2.3, where the values of concentration are out of scale.

Figure 2.3: νt = 10 m2

s
, σc = 1, hm = 0.1 m

This problem is related to the CFL condition: in order to not have stability issues, ∆tn

must be recalibrated to consider the insertion of the new equation. Without the sediment
equation the CFL condition reads [10]:

∆tn = CN min
e

hn
e

ve
(2.36)

where he is a current characteristic size of the deformed element e, ve is the speed of dila-
tional waves in the fluid depending on the element density and CN is a safety parameter.
The speed of dilational waves depends on the coefficient of comprimibility: it should be
infinite in principle, but in our case it can be taken big and not infinity. This is due to
the fact that the deviatoric stress is much bigger than the volumetric one, where inside is
found the coefficient of comprimibility:

σ = Dε = σdev + σvol ≃ σdev (2.37)

σvol =
k

3
εvol (2.38)

Since the volumetric component of the stress is neglected, the value of k and so of ve can
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be chosen to be big but not infinity. In this latter case, the approximation made in 2.37
would not be true. In the code its value is ve = 250 m

s
.

For what concerns the modification of the CFL condition for the added sediment equa-
tion, a new velocity of propagation due to the diffusion of the particles is introduced.
This velocity has been obtained by dividing the sediment diffusivity with the current
characteristic size of the deformed element:

vd =
νt
hn
e

(2.39)

The modified CFL condition now writes:

∆tn = CN min
e

(
hn
e

ve
,
hn
e

vd

)
= CN min

e

(
hn
e

ve
,
(hn

e )
2

νt

) (2.40)

This modification, along also with a change in the value of the constant CN , heals the
problem encountered. The results of the corrected simulation are shown in figure 2.4.

Figure 2.4: νt = 10 m2

s
, σc = 1, hm = 0.1 m
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2.2.2. Convergence analysis

After having made different simulations varying the sediment diffusivity and the mesh
size, a convergence analysis has been carried on. Since to do this task the analytical
solution is required and this could be very long to find, a fictional solution is introduced.
Its formula and shape are shown in equation 2.41 and in figure 2.5.

c̃ (x, y, t) = tsin (πx) cos
(
πy − π

2

)
(2.41)

Figure 2.5: Fictional solution

It’s a sinusoidal function which goes to zero at the boundaries, meaning that the bound-
ary conditions imposed must be slightly changed. In order to make the solution fit the
equation, also a fictional force term must be inserted, which is computed in 2.42.

dc̃

dt
− νd

σc

∆c̃ = sin (πx) cos
(
πy − π

2

)
+ 2π2 νd

σc

tsin (πx) cos
(
πy − π

2

)
=

(
1 + 2π2 νd

σc

t

)
sin (πx) cos

(
πy − π

2

)
= f̃

(2.42)

This new forcing has been inserted in the assembling phase inside the vector d. The
diffusion equation gives to the solution the property of elliptic regularity so that it is
assured to be inside the Hilbert space H2 (Ω). The error considered is in L2 (Ω), which
has this convergence estimate:

∥c− ch∥L2(Ω) ≤ Chr+1 |c|Hr+1(Ω) (2.43)
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c is the real solution of the continuous problem, ch is the approximated one, C is a
constant, r is the grade of the polynomials used to represent the solution and | · | is
the semi-norm. Four different meshes have been used, with an average dimension of the
elements of: 0.2 m, 0.1 m, 0.08 m and 0.05 m. In figure 2.6 is shown the convergence
result and in table 2.1 are displayed the values computed.
In our case r = 1 so that the rate of convergence should be 2. Lower grid dimensions
should have been used in order to capture the perfect quadratic behaviour of the error.
With the available tools, this could not be done: the restriction on the number of mesh
nodes in GID© (the meshing program) limits the minimum size to 0.05 m. Nevertheless,
the convergence result is in line with the theory.

Figure 2.6: Plot of the L2 error (log-log scale)

∥c− ch∥L2(Ω)

h[m] 0.2 0.1 0.08 0.05
T = 0.5s 0.03607 0.00694 0.00405 0.00152
T = 1s 0.05656 0.01260 0.00731 0.00274

Table 2.1: Values of the L2 errors

2.2.3. Comparison with ABAQUS © simulation

To assess the final accuracy of the model, a comparison with a simulation on the commer-
cial software ABAQUS© has been done. The studied equation is analogous to the heat
equation, which is implemented in the program and available for analysis. The set up is
the same of the problem depicted in this chapter, with the only difference that the values
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shown by the result interface are related to temperature. T = 1◦C has been imposed
on the upper part of the domain, while T = 0◦C is the value on the other part of the
boundary. The time of the simulation has been set to 1s, the thermal diffusivity to 100 m2

s

and the results at the final time are shown in figure 2.7a and 2.7b:

(a) ABAQUS: µ = 100 m2

s , hm = 0.1 m (b) PFEM: νt = 100 m2

s , σc = 1, hm = 0.1 m

Figure 2.7: Isolines comparison between PFEM and ABAQUS simulations

Figure 2.8: Comparison between the two solution in time in point (2, 3.5)

These images are showing the isolines with intervals of 0.1 unit between the different color
schemes. The two solutions are in line with each other and so do the change of solution
in time in a specific point, as shown in figure 2.8.
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through gravity

Now consider the effect of gravity on the sediment, an extra step compared to previous
cases. This part of the phenomena can represent the deposit of sediment on the basis of the
domain. Taking equation 2.1, the gravity term is somehow summed up with the velocity
transport term. Normally the gravity is inserted in PDEs as a force term: however, in
this case, the gravity can not act as a force because the sediment has no mass and can
not be dropped down by a force. Still, to simulate the effect of gravity, a transport term
is introduced: it is a velocity like parameter ws called falling velocity, which has the same
direction of the gravity. The falling velocity term may depend on the concentration, but
for now is considered constant. From the equation 2.1, the new formulation dealt with in
this chapter is recovered by dissolving the transport term:

∂c

∂t
+∇ · (uc) +∇ ·

(
ws

g
|g|

c

)
= ∇ ·

(
νd
σc

∇c

)
(3.1)

As seen in 2.2, part of the advection term is considered null since u = 0 m
s

and so the
total derivative appears. In addition, consider constant νt and σc so that the Laplacian
can appear.

dc

dt
+∇ ·

(
ws

g
|g|

c

)
=

νt
σc

∆c (3.2)

3.1. Weak formulation

The new system to solve is the following:
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dc

dt
+∇ · (ws

g
|g|

c)− νt
σc

∆c = 0 ∀x ∈ Ω ⊆ R2, ∀t ∈ (0, T ]

c (x, t = 0) = c (x) ∀x ∈ Ω

c (x, t) = h (x, t) ∀x ∈ ∂Ω = Γ

(3.3)

The final form of the new problem will not be derived step by step since it is practically
the same of the diffusion problem shown in the previous chapter. It must be remembered
that the fluid velocity is still zero because it has not yet been activated in the equation.
To better approach the equation of the problem, apply the divergence term to the product
so that:

dc

dt
+

(
∇ · ws

g
|g|

)
c+

(
ws

g
|g|

)
· ∇c− νt

σc

∆c = 0 (3.4)

The hyphotesis of constant falling velocity comes into play: considering this, the term with
the divergence of the falling velocity goes away since all the terms derived are constant.
In this way the final equation to study is:

dc

dt
+

(
ws

g
|g|

)
· ∇c− νt

σc

∆c = 0 (3.5)

Considering the 2D problem, the gravity acts downwards in the y direction and so the
scalar product with the gradient of the concentration contains only the contribution of
the derivative in y.

dc

dt
− ws

∂c

∂y
− νt

σc

∆c = 0 (3.6)

The space of the solution and of the test function are the same as the problem of chapter
2. Integrate the equation over the domain and make the same simplifications of 2.7. In
this way:

∫
Ω

dc

dt
v dΩ +

∫
Ω

νt
σc

∇c · ∇v dΩ− ws

∫
Ω

∂c

∂y
v dΩ = 0 ∀v ∈ V0 (3.7)

The new inserted element in the equation is connected to a new bilinear form, which is
define as:
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p : V0 × V0 → R s.t. p (k, r) = ws

∫
Ω

∂k

∂y
v dΩ (3.8)

Here a limit of the model can be pointed out: gravity acts only when there is a concen-
tration gradient in the y direction. This is not an ideal situation since gravity should act
in every case, but this is the main simplification of the suspended sediment model. The
sediment does not have mass, it is carried by the fluid and does not interact with it. It is
something which is passively transported around. In the next chapter, an upgrade that
simulates this behaviour will be introduced. It is also noted that the lifting operator has
been applied also in this case and the forcing functional introduced is set to zero due to
the piecewise constant nature of the datum in space and in time.
The weak formulation for the gravity problem reads: given c (t = 0) = c, find c ∈ V0 such
that ∀t ∈ (0, T ] the equation 3.9 is satisfied.

∫
Ω

dc

dt
v dΩ − p (c, v) + a (c, v) = 0 ∀v ∈ V0 (3.9)

3.1.1. Discretization in space and time

As seen in section 2.1.1, a partition of the domain in a triangular mesh Υh is introduced
and the finite element spaces X1

h, Vh and Vh,0 are defined as in 2.13 and 2.14. Redefining
the variables, functionals and bilinear forms in these spaces, the new weak formulation
of the problem discretized in space is: find ch ∈ Vh,0 such that for ch (t = 0) = c and
∀t ∈ (0, T ] the equation 3.10 is satisfied.

∫
Ω

dch
dt

vh dΩ − ph (ch, vh) + ah (ch, vh) = 0 ∀vh ∈ Vh,0 (3.10)

Exploiting the basis of the finite element test space of 2.15, the solution can be written
as in 2.17, giving as result:

N∑
j=1

(∫
Ω

φj (x) φi (x) dΩ

)
dcj (t)

dt
−

N∑
j=1

ph (φj (x) , φi (x)) cj (t)+

+
N∑
j=1

ah (φj (x) , φi (x)) cj (t) = 0

(3.11)

Then the new matrix related to the action of gravity is introduced in 3.12.
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Pij = ph (φj (x) , φi (x))

= ws

∫
Ω

∂φj

∂y
φi dΩ

(3.12)

Considering this matrix along with the mass and stiffness matrices described in the pre-
vious chapter, the ordinary differential equation to solve in time is:

Mċ (t)− Pc (t) + Ac (t) = 0 (3.13)

As the other matrices, the gravity matrix belongs to the space RN×N , where N is the
number of nodes of the mesh domain. Regarding the discretization in time, the newly
added term is considered as something known at each time instant since the time scheme
used is the explicit Eulerian one. So the approximation of the time derivative is the same
of 2.23. This gives rise to the following linear ststem to solve:

Mcn+1 =
(
M + P∆tn − A∆tn

)
cn = fn (3.14)

3.1.2. Assembling the gravity matrix

The gravity matrix is found following the computations done in section 2.1.2. To this
aim, using the formulation of the concentration as 2.25, the y-derivative of the solution
at the local mesh scale is recovered as:

∂c

∂y
=

∂

∂y
(φ1c1 + φ2c2 + φ3c3) = φ1,yc1 + φ2,yc2 + φ3,yc3

=
[
φ1,y φ2,y φ3,y

]c1c2
c3

 =
(
BT ĵ

)
· cL

= by · cL

(3.15)

with ĵ =

[
0

1

]
being the y-axis versor used to recover the second row of the B matrix, then

denoted as the vector by.
Considering this notation, it is possible to write in a concise manner the local gravity
matrix:
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p (c, φi) = ws

∫
Ωk

∂c

∂y
φi dΩ = ws

∫
Ωk

(
by · cL

)
φi dΩ

=

(
ws

∫
Ωk

byφi dΩ

)
· cL

= Pi · cL

(3.16)

The subscript k is related to the element on which the integral is made, since the compu-
tation of the matrix is local.

PL =

PT
1

PT
2

PT
3

 =

ws

∫
Ωk

bT
y φ1 dΩ

ws

∫
Ωk

bT
y φ2 dΩ

ws

∫
Ωk

bT
y φ3 dΩ

 = ws

∫
Ωk

l⊗ by dΩ (3.17)

The sign ⊗ refers to the outer product. As seen in the computation of the other matrices,
each integral is computed using the mid point formula. The product between this matrix
and the local concentration is added to the vector dL along with the diffusion action of
the sediment.

dLi =
3∑

j=1

(
−AL

ijc
L
j + PL

ij c
L
j

)
for i = 1, 2, 3 (3.18)

So it can be said that this vector is constructed like a force given by the actions of the
diffusion and of the gravity. As before, through the connectivity the new global vector d
is recovered. In the end the solution at time instant tn+1 is found applying the equation
2.33.

3.2. Bucket with gravity transport

The domain in which the new problem is studied is the same as the previous chapter,
namely the bucket filled with water. No movement of the fluid is imposed so that the
study results can be analyzed considering the effect of gravity and comparing them with
the ones due to only diffusion. The problem to study is 3.3 with the same conditions of
the diffusion problem, namely 2.34 and 2.35.
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3.2.1. Simulation results

In figures 3.1a and 3.1b is shown a comparison at time T = 1s between considering the
effect of gravity on the sediment and not considering it. It is clearly visible that the action
of gravity enhances the movement of the sediment towards the bottom of the bucket. All
the solutions are smooth and fulfill all the boundary conditions imposed by the problem.
It can be seen that, considering that the height of the tank is 4m, the sediment difference
in positioning between the two cases is approximately of 1m, reflecting that the values of
the falling velocity is ws = 1m

s
. This is reasonable considering that the simulation time is

1 second.

(a) ws = 0 m
s , νt = 1 m2

s , hm = 0.1 m (b) ws = 1 m
s , νt = 1 m2

s , hm = 0.1 m

Figure 3.1: Comparison between considering gravity and not

3.2.2. Dependent formulation of the falling velocity on the con-
centration

Until now, the falling velocity parameter has been considered as something constant which
does not depend on the solution. In this section, the effects of the concentration on ws

will be considered. Its formulation is like the one seen in equation 1.5:

ws = (1− c)ξ ws0 (3.19)

Given all the information in the literature, the hindered settling exponent is set equal
to ξ = 5, while the settling velocity can be modified in function of the dimension of the
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sediment particles. The weak formulation in this case changes since the second term in
equation 3.4 is not eliminated. Considering the full equation in system 3.3, the transport
term is bisected in this way:

∇ · (ws
g
|g|

c) = ∇ ·
(
−wsjc

)
= −ws0

∂

∂y

(
c (1− c)ξ

)
= −ws0

[
∂c

∂y
(1− c)ξ − ∂c

∂y
cξ (1− c)ξ−1

]
= −ws0

∂c

∂y
(1− c)ξ

[
1− cξ

1− c

] (3.20)

This new term is non linear, but considering the explicit Euler time discretization scheme
it gives no problems since it will be considered at the previous time instant. Rewriting
the resulting equation and integrating, it becomes:

∫
Ω

dc

dt
v dΩ +

∫
Ω

νt
σc

∇c · ∇v dΩ +

−
∫
Ω

ws0
∂c

∂y
(1− c)ξ

[
1− cξ

1− c

]
v dΩ = 0 ∀v ∈ V0

(3.21)

All the spaces and comments are the same of section 3.1. Also the bilinear formulation
related to the gravity component is different, namely:

p : V0 × V0 → R s.t. p (k, r) =

∫
Ω

ws0
∂k

∂y
(1− k)ξ

[
1− kξ

1− k

]
r dΩ (3.22)

With this modified bilinear form the weak formulation is the same as in the equation 3.9
for the continuous problem and as in 3.10 for the discretized problem in space. Regarding
the assembling phase, here there are some differences with respect to the section 3.1.2.
Since the formulation of the falling velocity is very intricate, the matrix P will not be
recovered and used. Instead the value of the concentration at the previous time instant is
substituted directly into the integral passing through the basis of the linear finite element
space. In this way the term can be seen as a force vector:

F n
i =

∫
Ω

ws0
∂cn

∂y
(1− cn)ξ

[
1− cnξ

1− cn

]
φi dΩ (3.23)

where cn =
∑N

j=1 c
n
j (t)φj (x). The final system is showed in equation 3.24.
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Mcn+1 =
(
M − A∆tn

)
cn − Fn∆tn (3.24)

The results show a more sensibility of the sediment to gravity in the points where the
concentration is smaller, and less sensibility in points with high concentration. This is
due to the nature of the formula of the falling velocity shown in 3.19:

c → 0+ ⇒ ws → ws0

c → 1− ⇒ ws → 0+
(3.25)

If the concentration goes to zero the falling velocity tends to be the one in clear water.
This behaviour is confirmed by the results. Indeed the figures 3.2a and 3.2b show the
difference between the case of constant falling velocity and the case of ws dependent on
the concentration.

(a) ws = 1 m
s , νt = 1 m2

s , hm = 0.1 m (b) ws0 = 10 m
s , νt = 1 m2

s , hm = 0.1 m

Figure 3.2: Comparison between constant gravity and variable gravity

The results show that the sediment is less dragged down where is highly present and vice
versa where there is less sediment.

3.3. Transport dominated problem

Now the focus is shifted to transported dominated problem. This is useful in order to
make the approach stronger which can be good for some particular situations in concrete
cases. The effect of gravity is increased while the diffusion action is limited by decreasing
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the sediment diffusivity parameter νt. In this way the problem is stressed from a stability
point of view of the solution: the task is to be able to reach the convergence of the solution
also in this particular case.

3.3.1. Peclet number definition

In order to make an assessment of the correct functionality of the model in transport
dominated problem, convergence must be reached. This is a focal point in the study since
in these particular cases it is not trivial to have such property. Passing through the Ceà
lemma and the interpolation error estimate, the Galerkin error inequality on this problem
gives as result

∥c− ch∥V ≤ M

α
inf

vh∈Vh

∥c− vh∥Vh
≤ M

α
hr
k |c|Hr+1 (3.26)

where M is the continuity constant, α is the coercivity constant and r is the grade of the
polynomial chosen to represent the solution. When the upper-bounding constant M

α
grows,

which happens when the convective term dominates over the diffusive one, the Galerkin
method can give inaccurate solutions. In such cases a suitable numerical stabilization
must be introduced to avoid spurious solutions. In the problem processed in this chapter,
the error inequality 3.26 must be fulfilled at each time instant in order to have an accurate
solution. The task is now to find the continuity and coercivity constants.

• Continuity constant: find M > 0 such that |a (c, v)− p (c, v)| ≤ M ∥c∥V ∥v∥V
∀v ∈ V :

|a (c, v)− p (c, v)| ≤ |p (c, v)|+ |a (c, v)|

≤
∣∣∣∣ws

∫
Ω

∂c

∂y
v dΩ

∣∣∣∣+ ∣∣∣∣∫
Ω

νt
σc

∇c · ∇v dΩ

∣∣∣∣
≤ ∥ws∥L∞

∫
Ω

∣∣∣∣∂c∂yv
∣∣∣∣ dΩ +

∥∥∥∥ νtσc

∥∥∥∥
L∞

∫
Ω

|∇c · ∇v | dΩ

≤ ws

∥∥∥∥∂c∂y
∥∥∥∥
L2

∥v∥L2 +
νt
σc

∥∇c∥L2 ∥∇v∥L2

≤ ws ∥c∥H1 ∥v∥H1 +
νt
σc

∥c∥H1 ∥v∥H1

≤
(
ws +

νt
σc

)
∥c∥V ∥v∥V = M ∥c∥V ∥v∥V
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• Coercivity constant: find α > 0 such that a (v, v)− p (v, v) ≥ α ∥v∥2V ∀v ∈ V :

a (v, v)− p (v, v) = −ws

∫
Ω

∂v

∂y
v dΩ +

∫
Ω

νt
σc

∇v · ∇v dΩ

= −1

2
ws

∫
Ω

∂v2

∂y
dΩ +

∫
Ω

νt
σc

(∇v)2 dΩ

= −1

2

∫
Ω

(wsj) · ∇v2 dΩ +

∫
Ω

νt
σc

(∇v)2 dΩ

=
�����������1

2

∫
Ω

∇ · (wsj) v2 dΩ−
�����������1

2

∫
Γ

(j · n)wsv
2 dΩ +

∫
Ω

νt
σc

(∇v)2 dΩ

=

∫
Ω

νt
σc

(∇v)2 dΩ

=
νt
σc

∥∇v∥2L2

≥
νt
σc

1 + C2
Ω

∥∇v∥2H1 = α ∥∇v∥2V

Where the Poincarè inequality has been used setting CΩ = 0.5. The two simplifica-
tions made are due to the fact that ws is constant in space and v on the boundary
is 0 due its belonging to the space V0.

So in the end:

M = ws +
νt
σc

(3.27)

α = 0.8
νt
σc

(3.28)

So the need of the discussed case is to have the ratio M
α

to be small as possible. Unfor-
tunately, considering different values of realistic parameters of ws and νt

σc
there is a good

chance to not fulfill this condition. In the literature [3, 17, 33, 35], sediment diffusivity
values range from 10−4 m2

s
to 0.1 m2

s
, considering different types of materials that can

be transported. While for the sediment falling velocity values can range from 10−5 m
s

to
0.01 m2

s
.

From 3.26, the Peclet number for the sediment equation is defined (considering linear
polynomials, r = 1).

Pek = hk
M

α
= 1.25hk

(
ws +

νt
σc

νt
σc

)
= 1.25hk

(
1 +

wsσc

νt

)
(3.29)
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Its value is computed for each element, so the condition should be fulfilled for each com-
putational cell. If not, the stabilization term in that cell is inserted in the solution system.
Now consider the real case where νt = 10−4 m2

s
, ws = 0.01 m

s
and σc = 1 as usual. Follow-

ing equation 3.29 the value of the Peclet number in this case for a mesh with hm = 0.1 m

is Pe = max
k,t

Pek = 12.625. The resulting concentration field at T = 100 s is shown in

figure 3.3.

Figure 3.3: Pe = 12.625, T = 100 s

It is clearly visible that the solution shows some bad behaviours, first of all the upper
value reaches a number bigger than 1, which is not realistic. So the aim is to now stabilize
the solution.

3.3.2. Streamline diffusion stabilization

The process of stabilization consists in adding new terms to the discretized equation. In
general two terms are added, one bilinear form and one functional. The aim is now to
find ch ∈ Vh such that:

∫
Ω

dch
dt

vh dΩ − ph (ch, vh) + ah (ch, vh) + sh (ch, vh) = Gh (vh) ∀vh ∈ Vh,0 (3.30)

In the case of streamline diffusion, a new diffusive term is added in order to balance the
highly advective nature of the problem. Indeed, if the falling velocity ws is very high the
Peclet number is also very high and could pass the threshold to have a stable solution.
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sh(ch, vh) =
hk

∥ws∥L∞

∫
Ωk

(
ws

g
|g|

· ∇ch

)(
ws

g
|g|

· ∇vh

)
dΩ

= hkws

∫
Ωk

∂ch
∂y

∂vh
∂y

dΩ

(3.31)

While Gh (vh) = 0 ∀vh ∈ Vh,0.
In the assembling phase, the stabilization matrix S is calculated as before passing through
the local computation.

sh (ch, φi) = hkws

∫
Ω

∂ch
∂y

∂φi

∂y
dΩ = hkws

∫
Ω

(
by · cL

) ∂φi

∂y
dΩ

=

(
hkws

∫
Ω

by

∂φi

∂y
dΩ

)
· cL

= Si · cL

(3.32)

SL =

ST
1

ST
2

ST
3

 =

hkws

∫
Ωk

by
∂φ1

∂y
dΩ

hkws

∫
Ωk

by
∂φ2

∂y
dΩ

hkws

∫
Ωk

by
∂φ3

∂y
dΩ

 = hkws

∫
Ωk

by ⊗ by dΩ (3.33)

From the definition, is visible that the magnitude of this component is regulated by the
dimension of the element considered. So in the end, the components related to the term
of 3.31 are inserted in the d vector. The solution gains benefits after having added the
streamline diffusion stabilization, as shown in figure 3.4.

Figure 3.4: y-Stabilized solution: Pe = 12.625, T = 100 s
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However this does not cure all the spurious oscillations: on the right side of the bucket,
the sudden change of the solution to 0 imposed by the boundary condition still gives
a concentration higher than 1. Indeed the stabilization term heals only the variations
along y and not along x. In order to get an even better solution, another term like 3.31
is introduced with the difference of acting on the x-direction. This means that the new
bilinear form and matrix related to stabilization write:

sh(ch, vh) = hkws

∫
Ωk

∂ch
∂y

∂vh
∂y

dΩ + δhkws

∫
Ωk

∂ch
∂x

∂vh
∂x

dΩ (3.34)

SL = hkws

∫
Ωk

by ⊗ by dΩ + δhkws

∫
Ωk

bx ⊗ bx dΩ (3.35)

δ is a parameter which takes values inside the interval [0, 1]. The effect is governed by
a constant because the transport is in the y direction, so in x the stabilization acts with
a smaller effect. The result is definitely positive since the values turns to be inside the
correct range of [0, 1]. The resulting simulation is shown in figure 3.5, considering δ = 1.

Figure 3.5: xy-Stabilized solution: Pe = 12.625, T = 100 s

3.3.3. Convergence analysis

In order to check if the solution is still somehow accurate, the convergence analysis of the
stabilized problem is proposed confronting its result to the one of problem 3.10. Consider
the fictional solution 2.5 and plug it in 3.2. Then the forcing term is computed in order
to satisfy the identity of the equation.
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dc̃

dt
+∇ ·

(
ws

g
|g|

c̃

)
− νt

σc

∆c̃ =

(
1 + 2π2 νt

σc

t

)
sin (πx) cos

(
πy − π

2

)
+

+sin (πx) sin
(
πy − π

2

)
wsπt = f̃

(3.36)

The convergence rate in this case is between the linear and the quadratic one, as shown in
figure 3.6. The interpolation error values instead are displayed in table 3.1. In particular
Avijit et al. [2] derive a convergence estimate that shows a rate of convergence of 3

2
.

∥v∥L2 ≤
1
√
γ
∥|v|∥SD ≤ C

√
γ
h3/2 (3.37)

Where the SD norm is derived from [21], with γ being a suitable constant.

∥|v|∥SD :=

(
νt
σc

∥∇v∥2L2 + γ ∥v∥2L2 +
N∑
k=1

∥∥∥∥√hkws
∂v

∂y

∥∥∥∥2
L(Ωk)

2

)2

(3.38)

Figure 3.6: Convergence of the stabilized problem (log-log scale): Pe = 12.625, T = 1 s

∥c− ch∥L2(Ω), T = 1s

h[m] 0.1 0.09 0.08
xy-stab 0.15544 0.13804 0.11919
y-stab 0.09687 0.08427 0.07085

Table 3.1: Values of the L2 errors for the stabilized problem
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The error is bigger with respect to the previous cases: this is due to the fact that some
terms are added in the solving equation and modify the final solution, making it slightly
different from the real one. Indeed for the double direction stabilization, the error is
bigger than the y-stabilization since two terms are added instead of only one. Generally,
it would be desirable to have strong consistency, which means that if the real solution c

of the continuous problem is plugged, then:

sh (c, vh) = 0 (3.39)

So the solution of the continuous problem is recovered. In the case of streamline diffusion,
the property of consistency is verified but not in a strongly way. This means that:

sh (ch, vh) → 0 as hk → 0 (3.40)

but not the condition 3.39. A more accurate stabilized solution should be reached by
applying SUPG method (or GLS, in fact they are the same considering linear finite el-
ements). Indeed, with respect to Streamline Diffusion, SUPG does fulfill the strong
consistency property. On the other hand, computationally speaking is more onerous since
there are too many terms to address and integrals to compute.
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through fluid motion

So far, the fluid was always still and not a big factor in the simulation. Now the focus
shifts in considering a case where the fluid is moving, seeing the effects of its motion on
the value of concentration. Adding this type of transport is important since it allows the
water to have an impact on the sediment. Indeed, in the equation so far the velocity u

was not present.

4.1. Solution in the Eulerian nodes

Considering a Lagrangian point of view of the problem, the attention must be paid to the
imposition of conditions at the left and right hand sides, as said in section 1.1.5. If the
domain is composed by inlet or outlet boundaries, there will be a passage of particles in
and out of the domain. The mesh nodes are following the fluid movement, so when a node
reaches the exit of the domain it will be compressed with other or in the worst case can
exit the domain and be lost outside it. To avoid this problem, the nodes at the entrance
and the exit are treated as Eulerian: in this way they are still and do not move with the
fluid. This solution, together with the remeshing and alpha phase, gives as result a very
good evolution of the position of the nodes.
Considering the Eulerian nodes, a different equation has to be solved in these points: the
total derivative has to be split in the two components and so the Eulerian formulation of
the equation is recovered.

∂c

∂t
+ u · ∇c+∇ · (ws

g
|g|

c)− νt
σc

∆c = 0 (4.1)

Numerically speaking the challenge now shifts in finding a way to solve the Lagrangian
formulation in some nodes and the Eulerian one on the outlet and inlet.
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4.1.1. Solving system and matrix assembly

The structure of the model is more or less the same, but for the Eulerian nodes the
computation includes a new term which has a convective matrix correlated. To recover
the discretized form of the new term in equation 4.1, only Eulerian nodes are considered
in the domain for now. Then through a restriction operator, the newly acquired matrix
will have an effect only on the fixed nodes. Multiply the equation by the test function
taken from the test space so that:

∫
Ω

∂c

∂t
v dΩ +

∫
Ω

u · (∇c) v dΩ +

∫
Ω

νt
σc

∇c · ∇v dΩ− ws

∫
Ω

∂c

∂y
v dΩ = 0 ∀v ∈ V0

(4.2)

Addressing the new term, a bilinear form has to be introduced:

e : V0 × V0 → R s.t. e (k, r) =

∫
Ω

u · (∇k) r dΩ (4.3)

Like for all the other bilinear forms, the analogue in the discretized problem is shown in
4.4. The functional spaces are always the same as in the cases seen before.

eh (φj, φi) =

∫
Ωk

(
ux

∂φj

∂x
+ uy

∂φj

∂y

)
φi dΩ = Eij (4.4)

This matrix will always be effective in a portion of the nodes, since it is present only
on Eulerian nodes. All the nodes which are fixed are saved in the set Ωeul and so the
restriction matrix R ∈ RN×N is defined:

Ri,j =

1 if xi,xj ∈ Ωeul

0 otherwise
(4.5)

Considering the explicit time integration, the final linear system to solve is:

Mcn+1 =
(
M − En+1R∆tn + P∆tn − A∆tn

)
cn = fn (4.6)

The Eulerian matrix is time dependent, since inside the integral there are the two velocity
components. This creates no problems since the value of the velocity is known at the
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time instant tn+1. This is due to the fact that the sediment equation is solved after the
momentum equation.
The assembly of the convective matrix is treated in a different way with respect to the
other components that were added before. So, the local convective matrix computation
for a particular element is:

e (c, φi) =

∫
Ωk

(
ux

∂c

∂x
+ uy

∂c

∂y

)
φi dΩ

=

∫
Ωk

(
ux

(
bx · cL

)
+ uy

(
by · cL

))
φi dΩ

=

(∫
Ωk

(
bxux + byuy

)
φi dΩ

)
· cL

= Ei · cL

(4.7)

EL =

ET
1

ET
2

ET
3

 =


∫
Ωk

(
bxux + byuy

)
φ1 dΩ∫

Ωk

(
bxux + byuy

)
φ2 dΩ∫

Ωk

(
bxux + byuy

)
φ3 dΩ

 =

∫
Ωk

l⊗
(
bxux + byuy

)
dΩ (4.8)

The velocity components are evaluated at the center of the considered element. After
having computed the local matrix, a vector eL related to the convection term is recovered:

eLi =
3∑

j=1

(
−EL

ijc
L
j

)
for i = 1, 2, 3 (4.9)

Then, through the connectivity, the global convection vector e is found and summed up
to the global force vector d. Finally, at instant tn+1 the concentration is:

cn+1
i = cni +

(di + ei)∆tn

mi

(4.10)

4.2. Transport in a channel flow

The effects of these new modifications are studied with a very simple problem: the channel
flow. The water is moving from left to right and on the top and bottom boundaries the
velocity is null. A horizontal velocity profile is imposed at the entrance and at the exit
the natural condition is considered. Regarding concentration the system is the same of
3.3, but considering the diffusivity and falling velocity null.
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∂c

∂t
+ u · ∇c = 0 ∀x ∈ Ω ⊆ R2, ∀t ∈ (0, T ]

c (x, t = 0) = c (x) ∀x ∈ Ω

c (x, t) = h (x, t) ∀x ∈ ∂Ω = Γ

(4.11)

where Ω = [0, 10]× [0, 4] m and

h (x, t) =

1 if x = 0

0 otherwise
(4.12)

c (x) =

1 if x = 0

0 otherwise
(4.13)

In figure 4.1 the starting solution at the initial instant is shown, noting that the concen-
tration is 1 on the left side.

Figure 4.1: Initial solution

Considering the problem 4.11, the boundary conditions 4.12 and the initial solution 4.13,
the time simulation is set to be 5 seconds. The resulting solution is shown in figure 4.2,
using a mean mesh dimension hm = 0.1 m. From the result is clear that the concentration
solution is transported only by the movement of the fluid, since the diffusion and the
gravity transport do not have any influence. While the y-velocity is 0 in all the domain,
the x-component varies in time in x and have constant values in y. This motivates the
fact that the concentration far from the wall is constant along y, further remarked by the
plot of the isolines for concentration.

In this test case, the global relocation of the nodes is a fundamental part of the correct
functionality of the solver. Indeed, this type of relocation is essential in our problem since
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Figure 4.2: Concentration plot with isolines T = 5 s, νt = 0 m2

s
, ws = 0 m

s
, hm = 0.1 m

the nodes that thicken towards the exit of the channel are moved to the start. So these
nodes are relocated to a different element from the previous one. In figure 4.3 is shown
a part of the boundary at the end of the domain and at the start before the relocation.
The elements at the end (4.3a) are compressed while the elements on the entrance are
stretched (4.3b).

(a) Outlet (b) Inlet

Figure 4.3: Before relocation

The code creates a ranking of the elements that are most stretched. Then it takes the
nodes of the most deformed elements and moves them into the elements that need them
most according to the ranking made. So that the final result is a more homogeneous mesh
as it can be seen in figure 4.4.

4.3. Circular source transport problem

Next test case is the transport of a circular source of concentration in the channel. The
domain is the same as the case seen before and also the boundary condition for velocity
and pressure. The concentration is fixed to be 0 but not in the outflow boundary. Here the
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(a) Outlet (b) Inlet

Figure 4.4: After relocation

natural condition is imposed to let the concentration source exit the domain boundary.
The initial solution for concentration is shown in 4.14 and in 4.5. Since the problem is
due to only study the effect of transport, the diffusion is turned off.

Figure 4.5: t = 0 s, νt = 0 m2

s
, ws = 0.05 m

s
, h = 0.1 m

c (x) =

1 if (x− 2)2 + (y − 2)2 ≤ 0.62

0 otherwise
(4.14)

The time of the simulation is set to be 10 seconds, but after 8 seconds the source exits
the domain. The four screenshots in figure 4.6 are taken at t = 1 s, t = 3 s, t = 5 s and
t = 8 s. The ball of concentration is transported to the right by the fluid flow, while in
the meantime it is dragged down by gravity.

To obtain these result, a modification of the model has been made. In particular, the
stabilization term has been updated since until now it would have considered only the
transport due to gravity. Here, also the transport due to the fluid movement must be
inserted in the integral, namely:
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Figure 4.6: Concentration plot at: t = 1s, t = 3s, t = 5s and t = 8s

sh(ch, vh) =
hk∥∥∥ws
g
|g| + u

∥∥∥
L∞

∫
Ωk

[(
ws

g
|g|

+ u

)
· ∇ch

] [(
ws

g
|g|

+ u

)
· ∇vh

]
dΩ (4.15)

The Peclet number has to be modified in order to consider also the transport of the fluid
in the stabilization. So the computation of the solution is differentiated in base of the
value of the Peclet number. If its value is bigger than 1, then the new bilinear form defined
in 4.15 has to be inserted inside the weak formulation. After having calculated the new
continuity and coercivity constants:

Pek = 1.25hk

∥∥∥u+ ws
g
|g|

∥∥∥
L∞

+ νt
σc

νt
σc

(4.16)

The local matrix is written in 4.17. The integrals are computed using the mean value
formula, so the velocity is considered constant on the element, evaluated on its center.

SL =
hk∥∥∥ws

g
|g| + u

∥∥∥
L∞

∫
Ωk

(uy − ws)
2 by ⊗ by dΩ +

∫
Ωk

(uy − ws)ux by ⊗ bx dΩ+

∫
Ωk

(uy − ws)ux bx ⊗ by dΩ +

∫
Ωk

u2
x bx ⊗ bx dΩ

(4.17)

The newly inserted integrals are 4, which increase the computational cost of the solution.
Still, this computation is easier than any other stabilization method, like SUPG.
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4.4. Channel transport solved with totally coupled

model

Up to now, the modelling coupling between the sediment and the fluid has been only weak:
the fluid has an influence on the sediment but not vice versa. Indeed in the advection-
diffusion equation the velocity of the fluid is present but in the Navier-Stokes equations
the concentration is not considered. This reinstates the hyphotesis that the sediment is
passively transported by the fluid.
In order to have a totally coupled model, the Navier-Stokes has to be modified taking
into account the concentration of sediment. The modified version considers the density
and the viscosity of a mixture of the two substances.

ρ = ρf (1− c) + ρsc (4.18)

Here, ρf is the density of the fluid, ρs is the density of the sediment grain and c is the
concentration. The density of the mixture is defined as a weighted balance between the
sediment density and the water density. The weights are given by the amount of sediment
present in the considered space: in our case this value is precisely the concentration.
Regarding the viscosity of the mixture, the formula used is shown in 4.19, where µf is the
viscosity of the fluid.

µ = µf (1 + 2.5c) (4.19)

Due to the effect of the sediment, the viscosity is increased since the mixture gives rise to
a bigger local shear stress. This equation is taken from a work that is dated at least to
Einstein [11], where a very simple relation can be recovered considering a concentration
less than 0.1. So this viscosity model can be used in flows where the sediment presence is
not so big.

To test the effect of the total coupling, the problem considered is 3.3, considering the
initial and boundary conditions 4.12 and 4.13. The imposed concentration on the left is
set to 0.1, in order to fulfill the hypothesis of formula 4.19.
Regarding the values of the sediment density, gravel has been considered with density
ρs = 1680 kg

m3 . Looking at the results in figure 4.7a, it is visible that the higher density
of the gravel drags the sediment downwards creating a drop of the concentration values
in the higher part of the channel. Confronting the weakly coupled model with the total
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(a) T = 5 s, νt = 0 m2

s , ws = 0 m
s , h = 0.1 m (b) T = 5 s, νt = 0 m2

s , ws = 0 m
s , h = 0.1 m

Figure 4.7: Comparison between totally coupled and weakly coupled model

Figure 4.8: Plot of the y-velocity component at T = 5 s

one, it can be noticed that the crest of the perturbation in figure 4.7a is dragged back and
down by the bigger density of the sediment. This gives a more correct approximation of
reality since in the case seen in 4.2 the sediment is not dragged down. The final time is
T = 5 s, and the parameters of the simulation are νt = 0 m2

s
, ws = 0 m

s
, h = 0.1 m. Also

in the y-velocity plot 4.8, at the crest of the sediment perturbation there is a movement
upwards of the fluid that moves aside since the sediment is settling on the bed.
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model

The interaction between a fluid and a sediment is a complex phenomenon of great relevance
in many industrial and environmental applications. The ability to accurately simulate
this type of interaction is of fundamental importance in understanding the processes
that govern sediment transport, deposit formation and the behaviour of sediments under
dynamic conditions.

In this chapter, a detailed study of simulations of the interaction between a fluid and a
sediment will be presented. The main difficulties associated with this type of simulation
will be discussed, including the description of the geometry and properties of the sediment.
In particular, examples of applications of fluid-sediment interaction simulations in different
contexts will be presented, such as passage through a hydraulic channel, modelling of
mixing phenomena and analysis of pollution processes. The ultimate goal of this chapter
is to provide the reader with a comprehensive overview of the methodologies available
to simulate fluid-sediment interaction, along with the main challenges and opportunities
that arise in this field of research.

5.1. Water contaminant mixing

As a first problem, let us consider the case where gravel, representing the sediment, slides
on an inclined plane within a pool of water. In this scenario, we consider sediment as
something that is homogeneously mixed with water, thus always following the laws of
fluid. The behaviour of water is described by the Navier-Stokes equations.
The problem of interest is to determine the behaviour of the sediment as it slides along
the inclined plane under the action of gravity. In particular, it is important to understand
how the movement of the sediment affects the flow of water around it. Being considered
a weakly coupled model, the concentration of the sediment does not influence the motion
of the fluid.



64 5| Sediment equation: Complete model

5.1.1. Problem setup

The problem domain is shown in figure 5.1. A square with c = 1, slides inside the pool with
c = 0. The two fluids with different concentration mix to form a homogeneous substance
which tries to get to a static condition with a particular final fraction of sediment in water.

Figure 5.1: Initial domain

The equations to solve are: the Navier-Stokes (NS) ones and the advection diffusion
equation (AD) for the sediment. For what concerns boundary conditions, they are defined
in 5.1 and 5.2. The boundaries are divided in two: ΓN is the free surface boundary; while
ΓD are all the other boundaries, which will have a type of condition of Dirichlet.

NS =

σ · n = 0 on ΓN

u = 0 on ΓD

(5.1)

AD =

∇c · n = 0 on ΓN

c = 0 onΓD

(5.2)

5.1.2. Results and discussion

The result in figure 5.2 shows that the square with concentration equal to 1 slides correctly
into the pool and the concentration is diffused inside it, giving rise to a mixture with
varying concentration within. As soon as contact occurs, a ridge is formed that allows
the first major mixing. Afterwards, all the momentum that the square had is slowly
dissipated towards an equilibrium condition. Meanwhile, inside the tank there are internal
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Figure 5.2: Concentration plot at T = 20 s, νt = 0.01 m2

s
, ws = 0.05 m

s
, h = 0.05 m

movements in the form of eddies that allow the homogenisation of the sediment. The
concentration inside slowly tends to reach a value between 0.2 and 0.25. The natural
condition imposed on the free surface allows the nodes that come to the surface to maintain
their concentration. To evaluate the sediment concentration at the equilibrium, consider
the mass balance on the sediment in time:

M (t = 0) = M (t = TF ) (5.3)

Define ρs as the mass of the sediment, Vp the volume of the pool and Vs the volume of the
water-sediment pile. Assume that TF is the instant where the new equilibrium condition
is reached. By the definition of volumetric concentration, the volume of sediment is com-
puted by multiplying the volume in which the sediment is present with the concentration
itself.

M (t = 0) = ρsVpcp + ρsVscs = ρsApdzcp + ρsAsdzcs = ρs (Apcp + Ascs) dz (5.4)

M (t = TF ) = ρs (Vp + Vs) ceq = ρs (Ap + As) dzceq (5.5)

Substituting in 5.3:

ρs (Apcp + Ascs) dz = ρs (Ap + As) ceqdz (5.6)
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ceq =
Apcp + Ascs
Ap + As

=
2

9
= 0.222 (5.7)

This value is in line with what the result shows in figure 5.2.

5.2. Cavity flow problem

Cavity flow is a computational fluid dynamics problem that occurs when a fluid flows
through a cavity or slot of complex shape. This type of flow is of particular interest in
numerical mathematics because it presents certain difficulties that make it a challenging
problem to solve using numerical methods. In particular, cavity flow is characterised by
the presence of regions of high turbulence, vorticity and flow separation, which can cause
numerical instability and non-convergent results.
In this thesis, having a Lagrangian model available, it is necessary not to fall into the non-
laminar regime region. Therefore, a very simple case with not too complicated boundary
conditions is considered here. The sediment is inserted inside the upper slot, and its
diffusion-transport motion is studied inside the domain. The aim is to see how it behaves
when coming into contact with a vortex.

5.2.1. Problem setup

The domain is a square of size [0, 1] × [0, 1] m, shown in figure 5.3. The boundary
conditions are shown in 5.8 and 5.9.

Figure 5.3: Starting domain for the cavity problem
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NS =

u = 2i on Γ1

u = 0 on Γ2 ∪ Γ3 ∪ Γ4

(5.8)

AD =

c = 0.1 on Γ1

c = 0 on Γ2 ∪ Γ3 ∪ Γ4

(5.9)

While the starting conditions are 5.10 and 5.11.

u (x) = 0 in [0, 1]× [0, 1] (5.10)

c (x) =

c = 0.1 if y = 1

c = 0 otherwise
(5.11)

The problem is studied considering the totally coupled model seen in section 4.4. In order
to fulfill the hypothesis of small concentration involved, the imposed concentration on the
top side is 0.1.

5.2.2. Results and discussion

(a) Concentration plot (b) Velocity plot

Figure 5.4: T = 60 s, νt = 0.01 m2

s
, ws = 0.05 m

s
, h = 0.02 m
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Figure 5.5: Time plot of the concentration in two points: one inside the vortex and the
other on the vortex

The sediment is inserted from the upper slot and spreads downwards as in the case seen in
chapter 2. Added to this effect is the transport due to the horizontal movement imposed
on the fluid. The final plot is the superposition of the two phenomena: in the case shown
in figure 5.4a and in 5.4b, it can be seen that the sediment mainly enters the domain from
the right-hand edge. In the centre of the square, a vortex is formed in which the sediment
gets stuck inside. The concentration of the sediment reaches a constant solution: in figure
5.5, one can see the reaching of the plateau with the following oscillation around a steady
state value. The figure shows the concentration plots in (0.5, 0.5)m and in (0.9, 0.5)m.
The concentration value reached in the middle of the vortex is around 0.03.
Reaching an equilibrium point would seem to be meaningless, as the concentration at
each instant is set at 0.1 on the upper edge. In reality, from a certain time instant, the
sediment is not continually drawn in. From the flow lines it can be seen that the vortex
forms a barrier and since the diffusion of the sediment is of an order of magnitude smaller
than the transport of the fluid, the concentration does not have time to pass the barrier
that has been made by the vortex. In this way the inserted sediment stays on the top
without going down.

5.3. Fixed circular source in channel flow

In this problem, we are studying the diffusion and transport of a contaminant in a water
channel with a circular source of contamination at its center. The equation that describes
its movement inside the water channel is the same of the sediment one. The Lagrangian
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mesh will be used to analyze the areas in the channel that are affected by the contaminant.
The nodes move along with the fluid, allowing us to accurately simulate the transport of
the contaminant as it moves downstream. By tracking the particles of the contaminant
in the mesh, it is possible to see how the contaminant spreads and diffuses in the channel,
and identify the areas that are most affected.
One of the main challenges in this problem is accurately modeling the interactions between
the contaminant and the fluid in the channel. The contaminant can affect the flow of the
water and vice versa, since a totally coupled model is considered. This requires a detailed
understanding of the physics involved, as well as a robust numerical model that can
accurately simulate the interactions between the fluid and the contaminant.
Overall, this problem is an important one in the field of environmental engineering, as
it helps us understand how contaminants move and spread in water channels, and can
inform strategies for mitigating the impact of pollution on natural ecosystems.

5.3.1. Problem setup

The domain is a channel of size [0, 10] × [0, 4] m, shown in figure 5.6. The boundary
conditions are shown in 5.12 and 5.13. The source in the circle is imposed through all the
time of the simulation, as if there is a constant injection of a contaminant.

Figure 5.6: Starting domain of the problem

NS =


u = 1i on Γin

u = 0 on Γt ∪ Γb

σ · n = 0 on Γout

(5.12)
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AD =

∇c · n = 0 on Γt ∪ Γb ∪ Γout

c = 0 on Γin

(5.13)

While the starting conditions are 5.14 and 5.15. This last condition is imposed as a source
through all the time of the simulation.

u (x) = 0 in [0, 10]× [0, 4] (5.14)

c (x) =

0.1 if (x− 2)2 + (y − 2)2 ≤ 0.62

0 otherwise
(5.15)

5.3.2. Results and discussion

Figure 5.7: Concentration plot at T = 5 s, νt = 0.1 m2

s
, ws = 0 m

s
, h = 0.1 m

The final instant T = 5 s of the simulation can be seen in 5.7. The falling velocity is null
since the simulation is carried through by seeing the domain from the top. Diffusion and
transport are active obviously. The result shows how and in which areas the contaminant
emitted by the source fouls the water. This simulation can be useful in the context
of groundwater protection, so that it can be known where water may or may not be
withdrawn for service purposes. In fact, an area can be defined where a well should
not be installed for collection, otherwise money would be spent on its installation in a
contaminated and therefore unsuitable location.
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5.4. Circular obstacle in channel flow

In this problem is studied the movement of a contaminant in a water channel with an
obstacle at its center, onto which the contaminant is released. The focus in on how
the contaminant moves within the channel under different flow regimes, by varying the
geometry and velocity of the channel and changing the Reynolds number. The Reynolds
number is a dimensionless parameter that characterizes the flow regime of the channel. At
low Reynolds numbers, the flow is laminar and smooth, while at high Reynolds numbers,
the flow becomes turbulent and chaotic. By changing the Reynolds number, it can be
seen how the movement of the contaminant changes under different flow conditions.
The need of this problem is to accurately model the interactions between the contaminant
and the fluid within the channel. This requires a in depth knowledge of the physics
involved. The main application is in the environmental engineering, since the pollution
problem of turbulent water channels is a fundamental open matter to address.

5.4.1. Problem setup

The domain is a channel with an obstacle inserted inside, which for the simulation purpose
is modeled as a hole in the domain. The dimension of the channel, as it can be seen later,
is variable. The overall shape of the domain Ω is shown in figure 5.8.

Figure 5.8: Starting domain

The boundary conditions are defined in 5.16 and 5.17. The velocity at the inlet Uin will
be changed, since different regimes will be studied.

NS =


u = Uini on Γin

u = 0 on Γt ∪ Γb ∪ Γobs

σ · n = 0 on Γout

(5.16)
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AD =


∇c · n = 0 on Γout

c = 0 on Γt ∪ Γb ∪ Γin

c = 1 on Γobs

(5.17)

While the starting conditions are 5.18 and 5.19.

u (x) = 0 in Ω (5.18)

c (x) =

1 if (x− 2)2 + (y − 2)2 = 0.62

0 otherwise
(5.19)

5.4.2. Results and discussion

The results part is divided in 6 different subsections, because the solution changes in
function of the regime of the flow. Generally, far from the cylinder there is an inviscid
flow, while near the obstacle a boundary layer is formed since the no slip condition must be
fulfilled on the circle. With the boundary layers, there is also the presence of a separation
point and the formation of a wake region. The separation point is the point on the
obstacle where the flow detaches and it may change from each case. The regime of the
flow is described by the Reynolds number, which is defined in this way:

Re =
ρDUin

µ
(5.20)

ρ is the fluid density, D is the diameter of the obstacle, Uinlet is the horizontal velocity
imposed at the inlet and µ is the kinematic viscosity. All the values of the parameters of
the problem are changed in order to have different Reynolds number. The six cases seen
in this section are:

• Re = 10: Stokes flow

• Re = 30: Steady separation bubble

• Re = 100: Laminar von Karman street

• Re = 104: Laminar boundary layer with turbulent wake

• Re = 106: Laminar/turbolent boundary layer with turbulent wake
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• Re = 108: Turbulent boundary layer with turbulent wake

In table 5.1 the parameters for each case are shown:

Parameters of each simulation
Re 10 30 100 104 106 108

Tf [s] 10.0 5.0 10.0 10.0 10.0 10

µ[ kg
ms

] 0.1 0.1 0.01 0.01 0.001 0.0002

ρ[ kg
m3 ] 100.0 100.0 100.0 100.0 1000.0 1000.0

D[m] 0.1 0.1 0.1 1.0 1.0 1.0
Uin[

m
s
] 0.1 0.3 0.1 1.0 1.0 5.0

L[m] 1.0 1.0 1.0 10.0 10.0 1.0

Table 5.1: Table of the parameters

Case 1: Re = 10

(a) Concentration plot (b) Velocity plot

Figure 5.9: Re = 10

The viscous component dominates, and so the velocity field is not affected by the presence
of the obstacle. Everything is affected by the boundary layer, no separation and no wake
are present. This case is actually considered when the fluid is very viscous and very slow
with a very small diameter of the obstacle. The concentration field remains symmetrical
to the centerline and there is no vortex formation. The contaminant is mainly diffused
since the velocity of the fluid is small. Indeed, in figure 5.9a the concentration around the
obstacle varies in a regular way, without any big variations.

Case 2: Re = 30

An initial formation of vortexes is created, which are enclosed within a stationary bub-
ble. The two vortexes are counter-rotating and also stationary, maintaining the solution
symmetry of velocity and concentration. The solution for concentration is very similar to
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(a) Concentration plot
(b) Velocity plot

Figure 5.10: Re = 30

the case of Re = 10, but confronting figure 5.10a with the last case the concentration is a
little pulled back by the bubble. A first case of laminar boundary layer can be seen with
separation point at 108.8◦. The result of the streamlines are shown in figure 5.10b.

Case 3: Re = 100

(a) Concentration plot
(b) Velocity plot

Figure 5.11: Re = 100

In the condition of motion shown in figure 5.11b, a laminar Von Karman wake is formed.
Counter-rotating vortexes are created that recur with a constant frequency and so a peri-
odic detachment of eddies is present in the wake through laminar rotating structures: the
velocity and concentration solutions become unsteady. Diffusion overcomes the influence
of the vortexes, so the solution for the contaminant remains similar to the previous cases,
even if an initial asymmetry can be seen. Still, in figure 5.11a the concentration is more
pushed back with respect to the first two cases.
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Case 4: Re = 104

(a) Concentration plot (b) Velocity plot

Figure 5.12: Re = 104

After a transition phase, a turbulent wake is formed, making the behaviour of the fluid
and also the contaminant highly unstable. Some periodicity in the flow is present: solving
this problem together with some turbulence model, the vortex shedding should be seen.
From experiments, the separation point is known to be situated at more or less 82◦ and
this can be seen also in the results of 5.12b. The concentration field begins to be affected
by the presence of turbulent eddies, as can be seen in figure 5.12a.

Case 5: Re = 106

(a) Concentration plot (b) Velocity plot

Figure 5.13: Re = 106

Until now, only a laminar boundary layer has always been present downstream. When
the Re = 105 limit is exceeded, a turbulent boundary layer is created between the laminar
one and the wake. The wake as a result is narrower but inside the flow is more chaotic
and eddies are more complex. The separation point is shifted once again towards the back
end of the obstacle at 125◦: this is due to the fact that the particles have more energy
and can take an adverse pressure gradient for more space. The concentration shows more



76 5| Sediment equation: Complete model

complexity and in figure 5.13a the wake of the contaminant is underlined by changing
colour scale.

Case 6: Re = 108

(a) Concentration plot (b) Velocity plot

Figure 5.14: Re = 108

The extreme case is the fully turbulent flow and so only the turbulent boundary layer is
present. The separation point is shifted towards the front and the flow behind the obstacle
is totally chaotic. Eddies are extended in the whole vertical extension of the channel and
the solutions are unsteady. The results for concentration and for the stramlines are shown
in figure 5.14a and 5.13b.
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After having integrated the advection-diffusion equation in the code and checked that is
working properly, the focus is shifted on the implementation of an erosion model for the
movement of the bed due to the shearing action of the sediment-water flux. A model
considering a shear stress (Shields) criterion is presented and used.

6.1. Scouring Shields criterion

As seen in 1.2.2, the Shields parameter is fundamental to evaluate if the particle of sed-
iment on the bed is moving or not due to fluid transport. The critical condition where
the resistance of the sediment is leveled by the force due to fluid motion is studied. This
critical value is confronted to the Shields one evaluated on each particle (which in our
model is each bed node) and if the critical value is exceeded the particle is freed.

6.1.1. Shear stress criterion

The basic idea of this criterion is to consider each node belonging to the interface and
check if the shear stress applied is enough to snatch it away from the bed. In this case
the node becomes a part of the fluid flow. Compute the Shields parameter, which is the
adimensionalisation of the shear stress:

θ =
τ

(ρm − ρ) gDm

=
ρ ∥u∗∥2

(ρm − ρ) gDm

(6.1)

Dm is the mean dimension of the sediment, g is the acceleration of gravity, ρm is the
sediment density and u∗ is the friction velocity. If this value is bigger than the critical
one, the node is freed. The critical value is computed using an empirical law shown in
[15]:

θc = 0.22R−0.6
ep + 0.06 10−7.7R−0.6

ep (6.2)
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Where Rep is particle Reynolds number and is defined as

Rep =

Dm

√
Dmg

(
ρm
ρ
− 1
)

µ
(6.3)

To compute the friction velocity, its profile near the wall bed is supposed to be a loga-
rithmic one. In this case its value can be approximated to:

u∗ = κ
u − (u · n)n

ln
(

z∆
z0

) (6.4)

κ = 0.41 is the Von-Karman constant while z∆ is the distance between the wall and its
nearest node. This log law supposition can be made if this distance is in a particular
range:

30 ≤ z∆
z0

≤ 130 (6.5)

z0 =
Dm

30
is the equivalent roughness length. From 6.4, it can be noted that the considered

velocity is the tangential one, since the Shields parameter is the adimensionalisation of
the shear stress (which is related to the tangential velocity).

Figure 6.1: Boundary element: the friction velocity is computed using the velocities at
the third node

6.1.2. Code implementation

To compute all the values of section 6.1 in the code, a loop has been made on all the
scraping nodes. To each one, the nearest non bed node has been searched. Since there
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is the need to compute the tangential velocity, an element has been chosen with the
considered bed node and a side which is part of the bed surface. The tangential direction
t is computed easily considering the direction of the bed side. While the velocity u in 6.4
has been chosen to be the one of the nearest non bed node.
The main problem with treating the soil as part of the domain is to differentiate it from
the flow. To this matter, the input mesh domain is set by considering the soil domain and
the fluid one as something unique, which is then differentiated in the code by imposing
to the bed nodes a boolean label called "bed" with value equal to 1. In these nodes the
solution is fixed as if they are part of the boundary: here c = 1 and u = 0 m

s
. In fact,

initially the bed nodes are labeled by fixing the "bound" boolean to 1: in this way it is
easy to set the value of velocity to zero. When the node is freed due to violating the
Shields criterion, the boolean is set to 0 so that the node becomes part of the fluid flow.

6.2. Bed erosion in a channel flow

In order to see the impact of these changes on the total model, some preliminary problems
are treated. These are simple cases whose results should help in finding if the modifications
are behaving good or not. The problem considered in this section is a channel flow where
the bottom part is composed by an erodible soil. This problem is useful to see how the
fluid-bed interface changes in time due to the movement of the flow.

6.2.1. Problem setup

(a) Gaussian point of view

(b) Velocity at t = 0 s (c) Concentration at t = 0 s

Figure 6.2: Initial domain

The system setup is shown in figure 6.2. The elements which are composed by only bed
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nodes are automatically eliminated by the alpha shape method (figures 6.2c and 6.2b).
The layer dividing the two subdomains can change in time since by erosion a node of
the bed layer in contact with the fluid can be freed and become part of the fluid flow.
The nodes belonging to the ground domain are considered as made by sediment and so a
concentration equal to 1 is imposed to them (brown nodes in figure 6.2a). If the criterion
is violated, the node is freed with concentration equal to 1, and from that moment it can
change its concentration.

The boundary condition for the fluid flow are the same as the problems seen before
regarding a channel in section 4.2: a inlet uniform velocity equal to 1 m

s
is imposed, while

in the outflow boundary the Neumann condition is imposed. On the top boundary and
on the interface the velocity is 0. As of the sediment nature, gravel has been considered
and its parameters with the model ones are shown in table 6.1.

Model parameters
Average sediment
diameter

Dm = 8.0 10−3 m Water density ρ = 1000 kg
m3

Sediment porosity ϕ = 0.25 Sediment density ρm = 1680 kg
m3

Equivalent rough-
ness length

z0 = Dm

30
=

2.66 10−4 m
Explicit particle
Reynolds number

Rep = 1.848

Von karman con-
stant

κ = 0.41 Critical Shields
value

θcrit = 0.1521

Table 6.1: Value of the model parameters

6.2.2. Results and discussion

(a) Concentration plot (b) Streamlines plot

Figure 6.3: T = 20 s, νt = 0.1 m2

s
, ws = 0.05 m

s
, h = 0.1 m

The results in figure 6.3 show that the erosion process is preponderant towards the exit
of the domain. This is due to the boundary conditions, indeed the outflow one allows
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the particles to not have necessarily a horizontal velocity angle at the exit. When erosion
starts to happen towards the end, the bed layer assumes a concave shape which allows
the formation of swirls. These vortexes enhance the erosion process which accentuates
the concave shape. In figure 6.3b, the streamlines at the end of the simulation are shown:
many vortexes can be seen in the end part of the domain. At the front instead a horizontal
velocity profile is imposed at the inflow boundary, so that the case happened at the back
of the channel do not represent: the erosion stays controlled and is not enhanced since
there are no vortexes here. For what concerns the concentration, the plot at the final time
in 6.3a shows that the sediment made free by the erosion process gives rise to a diffusion
of the concentration in the channel flow. The swirls do not affect so much the value of
the concentration, since the diffusion process is much more faster than the velocity of the
water inside the eddies. In this way the sediment does not have time to be trapped inside
them because the diffusion acts in a more preponderant manner.

(a) Gaussian point of view

(b) Velocity at t = 0 s (c) Concentration at t = 0 s

Figure 6.4: Initial domain

A little bit more complex problem is now treated, in order to see if the model behaves in
a coherent and real way. Instead of having a plain starting bed level, a step is considered:
this should be smoothed by the fluid flow in the best way possible. The starting domain
is shown in figure 6.4. The bed level now can change only near the step. This is due to
the fact that the behaviour at the outflow seen in the last case should not happen. In
particular the bed can change between x = 4 m and x = 6 m. The jump is correctly
blunted by the fluid flow, although the soil height change is not so smooth. This is due
to the fact that the step creates some eddies that erode bed level. To have better result,
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maybe a mesh refinement should be introduced in the sand domain in order to have a more
correct view of the shape of the gravel at the bottom of the channel. The concentration
plot and the fluid streamlines are shown in figure 6.5a and 6.5b.

(a) Concentration plot (b) Streamlines plot

Figure 6.5: T = 5 s, νt = 0.1 m2

s
, ws = 0.05 m

s
, h = 0.1 m

6.3. Sand dune erosion

The erosion of a sand dune in a channel through which water flows is a common problem
in hydraulic and environmental engineering. When water flows through a channel, it can
exert a force on the sand particles of the dune, causing some of them to detach.
From the results, it is possible to obtain information on water flow characteristics and sand
particle behaviour in order to predict dune erosion over time. Understanding this phe-
nomenon is important for land management and environmental protection, particularly
in coastal areas prone to sand dune erosion.

6.3.1. Problem setup

The domain is a channel of size [0, 3] × [0, 1] m, shown in figure 6.6. The boundary
conditions are shown in 5.12 and 5.13. As long as the dune particles in Ωd = [0.5, 1.5]×
(0, 0.5] m do not violate the shields condition, they have the imposed condition c = 1 and
u = 0m

s
. The boundary condition for the problem are described in 6.6 and 6.7.

NS =


u = 1i on Γin

u = 0 on Γt ∪ Γb ∪ ∂Ωd

σ · n = 0 on Γout

(6.6)
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Figure 6.6: Starting domain of the problem

AD =


∇c · n = 0 on Γout

c = 0 on Γt ∪ Γb ∪ Γin

c = 1 on ∂Ωd

(6.7)

While the starting conditions are 6.8 and 6.9.

u (x) = 0 in [0, 3]× [0, 1] (6.8)

c (x) =

1 if x ∈ Ωd

0 otherwise
(6.9)

6.3.2. Results and discussion

The results show that the dune is quickly dismantled. At the start the erosion acts more
aggressively since towards the center of the channel the velocity is higher. Then the
erosion is limited but still acting, slowly eroding each sediment particle remaining in the
dune. In figure 6.7 are shown 6 different times in which the erosion can be seen. At the
final simulation time T = 30s, the dune has completely disappeared. From 6.8 the eroded
area is plotted and all the comments made before find some evidence. The erosion is set
to kick in after 0.5 s: this is a conscious choice because the aim is to wait until the flow
reaches full capacity (since the simulation starts with null velocity).
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Figure 6.7: Concentration plot at: t = 1s, t = 2s, t = 4s, t = 10s, t = 20s and t = 30s

Figure 6.8: Plot of the eroded area

6.4. Beach erosion

When the sea is disturbed by waves with a certain average speed, the water begins to move
and transport the sand particles on the beach. This process of eroding sand particles can
be described using the Shields model, which takes into account the strength of the waves
and the properties of the sediment. During erosion, sand particles are removed from the
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beach surface and transported by the flow of water. These particles become part of the
sea, contributing to its turbidity and making it dirty.
To ensure that the model is more accurate, a fully coupled approach is used between
the sediment and the fluid. This means that the equations of motion of the fluid and
sediment transport are solved simultaneously and interact with each other. This should
fix the local energy balance at the beach interface due to the wave energy dissipation at
the sediment surface. This means that the loss of energy due to the wave-beach interaction
is considered and modelled to ensure that the energy balance is respected.

6.4.1. Problem setup

Figure 6.9: Starting domain of the problem

In figure 6.9, the initial domain is shown, composed by the sea and the beach. The sea is
fluid without sediment inside at the start; while the beach is composed only by sediment,
indeed here c = 1 and the nodes are still. The sea is perturbed by a set of waves which
shatter on the beach causing its erosion. When the Shields condition is violated, the
nodes are freed and become part of the sea. The parameters used are considered in table
6.2. The boundary conditions are shown in 6.10 and 6.11, while the starting conditions
are 6.12 and 6.13.

Model parameters
Average sediment
diameter

Dm = 2.0 10−3 m Water density ρ = 1000 kg
m3

Sediment porosity ϕ = 0.25 Sediment density ρm = 1520 kg
m3

Equivalent rough-
ness length

z0 = Dm

30
=

6.66 10−5 m
Explicit particle
Reynolds number

Rep = 0.2020

Von karman con-
stant

κ = 0.41 Critical Shields
value

θcrit = 0.5743

Table 6.2: Value of the model parameters
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NS =


u = Uini on Γ1

u = 0 on Γ2 ∪ ∂Ωd

σ · n = 0 on Γ3

(6.10)

AD =


∇c · n = 0 on Γ3

c = 0 on Γ1 ∪ Γ2

c = 1 on ∂Ωd

(6.11)

u (x) = 0 everywhere (6.12)

c (x) =

1 if x ∈ Ωd

0 otherwise
(6.13)

The waves are created imposing a step boundary condition of Dirichlet type on Γ1. Two
different simulations are performed: one considering 4 singular waves with Dirichlet
boundary condition defined as 6.15; the other one considers 6 waves that are imposed
by pairs on the sea as 6.16. So the boundary condition for velocity on Γ1 are:

Uin =

2 m
s

if t ∈ Θi

0 m
s

otherwise
(6.14)

where i = 1, 2 and:

Θ1 = [0, 2) ∪ [23, 25) ∪ [46, 48) ∪ [69, 71) (6.15)

Θ2 = [0, 2) ∪ [4, 6) ∪ [23, 25) ∪ [27, 29) ∪ [46, 48) ∪ [50, 52) (6.16)

In the previous test cases, there was a problem in the energy balance. In fact, to detach
the nodes from the beach, the fluid must lose energy. This was not the case before since
there was no influence of the concentration on the Navier-Stokes equations: no energy
is released into the sea system. A way to address this problem is to consider a totally
coupled problem since the change in the density or in the viscosity results in a change of
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the orders of magnitude of the terms in the NS equation. The need is to search for a new
model for viscosity since the limit of c ≤ 0.1 is not good since on the soil the concentration
must be equal to 1. Iverson [18] presents an extended model, which can work with higher
concentrations in opposite to the model seen in 4.4. The main change is on the viscosity,
whose formula is in 6.17.

µ = µw

(
1 + 2.5c+ 10.05c2 + 0.00273e16.6c

)
(6.17)

This model can be used considering some assumptions: spherical grains of sediment; drag
and buoyancy forces on the grains more important than the interaction forces between
sediment and fluid; c ≤ 0.4. This last condition relaxes the limit of the last adopted
model.

6.4.2. Results and discussion

(a) Beach morphology

(b) Concentration plot

Figure 6.10: Θi = Θ1, T = 90 s, νt = 0.001 m2

s
, ws = 0.001 m

s
, h = 0.1 m

The results are shown in 6.10 and 6.11. The total simulation time is 90 seconds. The
sediment considered is sand and from the screens of the images the sand is progressively
eroded from the beach. This phenomena causes a change on the morphology of the
beach and the consequent modification of the concentration in the fluid. The eroded sand
carries its concentration into the fluid and it is diffused. At the end of the simulation, the
sediment precipitates on the bottom of the sea while towards the surface the concentration
is practically 0. This reflects that the density of the sediment is bigger than the water
one.
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(a) Beach morphology

(b) Concentration plot

Figure 6.11: Θi = Θ2, T = 90 s, νt = 0.001 m2

s
, ws = 0.001 m

s
, h = 0.1 m
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7| Conclusions and future

developments

This master thesis had the objective of finding a robust, fast and PFEM feasible model
for the sediment propagation in a fluid. This aim has been achieved with many useful
purposes and applications in environmental and civil engineering. Additionally, a way to
describe the erosion process based on the Shields criterion has been introduced. Many
tests have been performed in order to see the correct behaviour of the model. In partic-
ular, the main cases seen in this work are: diffusion-advection in channel flows, mixing
phenomena, contamination of the groundwater environment and erosion of the territory.
The mathematical robustness of the model is checked by considering convergence and
stability analysis, transport dominated problems and totally coupled problems.

The main limit of this model consist in the error made by not considering a two-phase flow.
This choice has been explained by the high computational cost of this type of approach
and the difficult integration to the PFEM model from which the work has started. A
totally coupled problem can in part solve this problem by adding some assumptions, but
still the concentration of the sediment must remain somehow low.
Clearly, the next thing to do is to extend the code to cover 3D problems, which are the
ones that actually matter. A future expansion of this model can cover the implementation
of the Robin boundary condition, which can represent correctly the sedimentation of the
particles on the bottom surface due to gravity. From Kumbhakar et al. [19], this condition
is shown in 7.1.

νt
σc

(∇c · n) + wsc = γ (c− c∗) (7.1)

c∗ is an equilibrium concentration defined on the bottom, while γ is a parameter which
represents the behaviour of the bottom surface. This new condition gives some concerns
on the implementation in the code that must be addressed. Practically in the code the
nodes and the elements belonging to this surface must be searched, and then all the local
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boundary integrals must be computed.
Regarding the erosion model, a more comprehensive description of the bed level can be
represented by the Exner equation, described in section 1.3.1. In a more concrete context,
sediment may not only be eroded, but also deposited and transported on the bed surface
so that its morphology can change. This equation addresses also these other possible
behaviours, making the model more complete. However, it does not consider adding the
eroded particles to the main flow with their concentration, which can change the total
presence of the sediment in the flow. This equation is added to the total solution system,
which will now have 4. The finite element discretization must be implemented, which
can require some computational effort. In fact also here like in the implementation of
the Robin condition, the bed nodes and elements must be selected in order to build the
matrices and vectors of the discretized solution system.

From this work, a way to represent fluid-structure interaction can be built, in order to see
for example if the buildings can resist to flooding events. Another possible application
that this model can represent is the riverbank collapse: an implementation that considers
the infiltration of water in the riverside and the consequent collapse can be found in
literature and applied in this environment.
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A| Model work flow

Below is represented the work flow of the code that is used to solve the whole problem of
sediment transport and erosion.

Algorithm A.1 Pseudocode
1: Read input mesh file .dat and model parameters
2: Set the starting solution values and introduce a partition in time
3: while t < T do
4: Check the mesh distortion and do the remeshing if necessary
5: Divide the elements into each core
6: 1: Momentum equation
7: Each core assembles its part of the momentum solution system
8: Compute the stable ∆tn using the CFL condition
9: Compose the global solution system and find un+1

10: 2: Sediment equation
11: Each core assembles its part of the sediment solution system
12: if Pe > 1 then
13: Apply SD stabilization
14: end if
15: Compose the global solution system and find cn+1

16: 3: Continuity equation
17: Each core assembles its part of the continuity solution system
18: Compose the global solution system and find pn+1

19: 4: Erosion model
20: Select the erodible nodes and insert them in Ωb

21: for xi ∈ Ωb do
22: if θ > θc then
23: Free the node into the flow
24: end if
25: end for
26: end while
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