
Transfer Learning Analysis of Fashion
Image Captioning Systems

Master of Science in
Computer Science and Engineering - Ingegneria Informatica

Author: Filippo Colombo

Student ID: 940304
Advisor: Prof. Paolo Cremonesi
Co-advisors: Federico Sallemi, Umberto Pietroni
Academic Year: 2020-21

i

Abstract
Modern deep learning technologies generate text samples of outstanding quality, and when
combined with a visual feature extractor, they accurately describe the subjects or the
scenes depicted in images at the cost of time-consuming training procedures over a large
number of data samples. However, the performance of these models and the quality of the
generated texts drop when they process input samples that depart from the distribution of
the training data. In this thesis work, we analyze the generalization capabilities of systems
able to automatically generate captions of images, trying to overcome variations and
perturbations in the input samples and still achieve high-quality descriptions. Specifically,
we tackle this problem in the fashion domain, where clothing samples have several details,
making the task of describing garments expensive and only feasible for experts. Besides,
online catalogues continuously grow and change when new releases of fashion items enter
the market, increasing the need for a robust model able to overcome the variations in new
clothing samples, saving the time, energy, and resources required to train a new model to
describe the last releases of said items.

We will design a pre-training procedure that, together with a noise generation strategy,
improves the performance of fashion image captioners on unseen distributions of data.
We will then observe that by performing a final adaptation stage of the pre-trained model
using a very narrow set of target samples, the fashion image captioner achieves competi-
tive performance and high-quality captions compared to the model extensively trained on
the target source. Additionally, we will propose a novel Transformer-based approach that
leverages the generative performance of the GPT-2 language model along with the Vision
Transformer (ViT) and BERT encoders to generate text from an image of a garment
and its metadata. To train this architecture, we will consider an additional contrastive
objective to align the embeddings of the two input modalities; we will analyze how it
reflects on the representation learned by the model and compare the results with baseline
works. Finally, we will perform a user study to evaluate the quality of the description of
clothing samples generated by image captioner systems pre-trained through our approach.

Keywords: Image Captioning, Transfer Learning, Fashion, NLP, Deep Learning

iii

Sommario
Le moderne tecnologie di deep learning generano campioni di testo di qualità notevole e,
se combinate con un componente che processa input visuali, descrivono accuratamente
i soggetti o le scene rappresentate in immagini al costo di lunghe procedure di training
su molti dati. Tuttavia, le prestazioni di questi modelli e la qualità dei testi generati
diminuiscono quando si processano campioni che si discostano dalla distribuzione dei dati
di training. In questo lavoro di tesi, analizziamo le capacità di generalizzazione di sistemi
in grado di descrivere immagini automaticamente, cercando di limitare gli effetti provo-
cati da variazioni nei dati in input e ottenere comunque descrizioni di alta qualità. Nello
specifico, affrontiamo questo problema nel campo della moda, dove i prodotti sono carat-
terizzati da parecchi dettagli, rendendo il compito di descrivere i capi costoso e fattibile
solo da esperti. Inoltre, i cataloghi online crescono e cambiano continuamente quando
entrano nel mercato nuovi articoli, aumentando il bisogno di un modello robusto in grado
di gestire le variazioni nei nuovi dati, risparmiando tempo, energia e risorse necessarie per
formare un nuovo modello che descriva gli ultimi arrivi dei prodotti di cui sopra.
Progettiamo una procedura di pre-training che, insieme a una strategia di generazione
del rumore, migliora le prestazioni dei sistemi che generano descrizioni di immagini di
moda appartenenti a nuove distribuzioni di dati. Osserviamo che eseguendo una fase
di adattamento finale del modello pre-addestrato utilizzando un insieme molto ristretto
di dati appartenenti al dominio di destinazione, si ottengono prestazioni competitive e
descrizioni di qualità comparabili al modello ampiamente addestrato sul dominio di des-
tinazione. Inoltre, proponiamo un nuovo approccio basato su Transformer che sfrutta le
prestazioni generative del modello GPT-2 insieme a Vision Transformer (ViT) e BERT
per generare testo da un’immagine di un capo e dai suoi metadati. Per allenare questa ar-
chitettura, consideriamo un ulteriore funzione obiettivo per allineare gli embedding delle
due modalità di input; analizziamo come questo si riflette sulle rappresentazioni imparate
dal modello e confrontiamo i risultati con altri algoritmi. Infine, eseguiamo un sondaggio
per valutare l’opinione di utenti sulla qualità delle descrizioni dei capi di abbigliamento
generati da sistemi sviluppati secondo il nostro approccio.
Parole chiave: Descrizione di immagini, Transfer Learning, Moda, NLP, Deep Learning

v

Contents

Abstract i

Sommario iii

Contents v

1 Introduction 1
1.1 Context: Transfer Learning in Fashion Image Captioning 1
1.2 Scenario and Problem Statement . 1
1.3 Contributions . 2
1.4 Structure of Thesis . 3

2 Background 5
2.1 Transfer Learning . 5

2.1.1 The need for Transfer Learning . 5
2.1.2 Definition . 6
2.1.3 Approaches in Deep Learning . 7
2.1.4 Applications in Computer Vision and NLP 8
2.1.5 Related areas: Multi-task and Contrastive Learning 9

2.2 Image Captioning . 11
2.2.1 Convolutional Neural Networks . 11
2.2.2 Natural Language Processing . 13
2.2.3 LSTM . 14
2.2.4 The Transformer . 16

2.3 Summary . 23

3 Related work 25
3.1 Transfer Learning . 25

3.1.1 Target task adaptation . 25

vi | Contents

3.1.2 Contrastive Learning . 27
3.2 Image Captioning . 29

3.2.1 Show, Attend, and Tell . 29
3.2.2 Oscar: Object-Semantics Aligned Pre-training for Vision-Language

Tasks . 30
3.2.3 Image tagging and captioning for fashion catalogues enrichment . . 31

4 Datasets 33
4.1 Fashiongen . 33
4.2 Private data sources . 35

4.2.1 Industrial Dataset 1 . 35
4.2.2 Industrial Dataset 2 . 37
4.2.3 Industrial Dataset 3 . 39

4.3 Dataset Comparison . 41

5 Pre-Training for Fashion Image Captioning 45
5.1 Goal and Requirements . 45
5.2 Data preparation . 46
5.3 Imbalance problem . 47
5.4 Noise generation . 49

5.4.1 Fashion taxonomies . 50
5.4.2 Generation of forged samples . 53

5.5 Fine-tuning . 54

6 Contrastive Learning: approach and model architecture 57
6.1 Vision-Text Multi-Encoder Decoder . 57

6.1.1 Extension of the Transformer decoder block 58
6.2 Contrastive objective . 59

6.2.1 Multi-objective optimization . 60
6.2.2 Pre-alignment . 61

7 Experiments and Results 63
7.1 Evaluation metrics . 63
7.2 Experimental setup . 66
7.3 Model comparison . 66
7.4 Transfer Learning analysis . 70
7.5 Vision-Text Multi-Encoder Decoder . 78
7.6 User study . 89

8 Conclusion and Future Work 97
8.1 Outputs and contributions . 97
8.2 Limitations . 99
8.3 Future Works . 99

Bibliography 101

A Taxonomy 105

B Additional Tables 107

C Examples of generated captions 109

List of Figures 113

List of Tables 117

Acknowledgements 119

1

1| Introduction

1.1. Context: Transfer Learning in Fashion Image
Captioning

This thesis work focuses on the research areas of Transfer Learning and Image Captioning
applied to the fashion industry. The former consists of all the approaches whose goal is to
leverage the knowledge acquired from the solution of past problems to solve new ones; the
latter, instead, aims to generate syntactically and semantically correct descriptions of the
subject or scene depicted in images. More precisely, Image Captioning systems exploit
both Computer Vision and Natural Language Processing techniques to understand the
context of visual sources and handle textual data to interpret and reproduce the human
language.

We study and analyze the application of Transfer Learning techniques to Image Caption-
ing systems to define a training procedure and a model architecture to implement fashion
image captioners.

1.2. Scenario and Problem Statement
Fashion firms that want to make their products available online require detailed descrip-
tions of each clothing item in their catalogues to provide the users with all the necessary
information about the garment they could buy through an e-commerce platform.

The process of describing each clothing product is expansive and requires a professional
stylist to look at the images and write a textual description taking into account all the
details regarding the types of garments, colors, fabrics, and all the other features that
distinguish a fashion item. In addition, online catalogues continuously increase and change
when new releases of fashion items enter the market, causing a fashion expert to spend
more time doing this mechanical task.

2 1| Introduction

Modern deep learning technologies generate text samples of outstanding quality1, and
when combined with a visual feature extractor, they precisely describe the subjects or the
scene depicted in images. These models can automatically provide such descriptions of
clothing items at the cost of expensive implementations: they require powerful computa-
tional resources to address the time-consuming training procedures and a large amount
of data. Moreover, the performance and the quality of the generated texts drop when the
model needs to process input samples that depart from the distribution of the data used
during training.

In the fashion industry, the process of describing clothing samples is expensive, and it is
crucial to have high-quality descriptions of the products a fashion firm wants to sell online
to attract more effectively the attention of customers. Moreover, online catalogues may
change frequently: it would be beneficial to have a system able to overcome the variations
in the distribution of the data samples and still generate high-quality descriptions of
clothing products.It could save the time, energy, and resources required to train a new
model from scratch.

1.3. Contributions
To train models able to overcome possible variations in the distribution of the data source
in input, we propose a pre-training procedure that exploits Transfer Learning paradigms
and the generation of noisy samples to improve the generalization capabilities of Image
Captioning systems applied to the fashion domain. In this way, the fashion image caption-
ers can still achieve high-level performance without explicit training on a target dataset
or with a limited adaptation stage.

Our training procedure does not depend on the architecture of the image captioner, so we
first compare the current state-of-the-art architecture in the “general” Image Captioning
task with a recent promising model specifically designed for the fashion domain. We
then perform a transfer learning analysis using both public and private datasets, showing
how the performance of trained fashion image captioners varies according to the input
distribution. Pre-training a model through our approach with a narrow conditioning
stage on the target domain allows obtaining effective fashion image captioners even when
constrained by resource requirements like limited computational time or memory, as well
as few or costly training samples.

Additionally, we propose a novel Transformer-based architecture [Vas+17] that lever-
1https://openai.com/blog/better-language-models/

https://openai.com/blog/better-language-models/

1| Introduction 3

ages the generative performance of the GPT-2 [Rad+19] language model, along with the
recent Vision Transformer (ViT) [Wu+20] and BERT [Dev+19] encoders to process a
multi-modal input, applied to the task of Image Captioning. In section 6, we present our
architecture and the training options that arise when considering a self-supervised align-
ment between the embeddings of the two input modalities: we carry out a performance
study showing how the alignment of the embeddings reflects on the representation learned
by the model and how it improves the performance of fashion image captioners compared
to baseline works.

Finally, we perform a user study to evaluate the quality of the description of clothing
samples generated by image captioner systems pre-trained through our approach.

1.4. Structure of Thesis
In this section, we provide a brief description of the following chapters.

• Chapter 2 presents the background technologies and findings related to this thesis
to provide the reader with the knowledge to understand our work.

• Chapter 3 outlines the relevant works of the research community both on Transfer
Learning and Image Captioning.

• In chapter 4, we provide a description of the datasets used to train and evaluate the
models involved in our analysis.

• Chapter 5 presents all the aspects and decisions that lead us to our pre-training
approach.

• In chapter 6, we introduce a new architecture for Fashion Image Captioning and its
training options.

• Chapter 7 presents the results of our pre-training procedure and architecture and
compares them with baseline works.

• Chapter 8 summarizes our findings and the limitations of this thesis work and
provides possible future research directions.

5

2| Background
This chapter provides the reader with an overview of topics and challenges faced in this
thesis work. Starting with Transfer Learning, we discuss the motivations worth exploring
this field, how to approach it with practical applications, and the research areas related
to it that are connected with our work. Later the focus moves to Image Captioning. We
present the task and the technologies used in Computer Vision and Natural Language
Processing to build image captioning systems.

2.1. Transfer Learning
Transfer learning, or knowledge transfer, is the idea of leveraging the knowledge acquired
from the solution of past problems to solve new related ones.

Humans have this inherent ability that is used each time they need to learn a new task, by
exploiting the skills acquired to solve similar problems. Machines instead are historically
designed to solve problems in isolation, by tackling a task in a specific domain of interest.
It is up to the designer of the algorithm to find a way to model or exploit previous
knowledge concerning similar tasks or domains.

We start this section by briefly describing the reasons why transfer earning is important
when developing machine learning solutions. Afterward, we provide a formal definition
supported by practical applications in the deep learning field. Lastly, an overview of
related research area is given.

2.1.1. The need for Transfer Learning

Machine learning and data mining methods are able to achieve good results in many
supervised and unsupervised tasks. Thanks to the advent of deep learning technologies,
we can also process effectively unstructured data (such as images, documents and sounds)
at the cost of a long learning time and a large amount of data to extract relevant features
from this kind of sources.

6 2| Background

However, as discussed in [PY10], many of these methods rely on the assumption that
training and test data are drawn from the same distribution. So, due to the statistical
properties of the models under discussion, when there are perturbations or changes in the
distribution of the test data, the performance significantly decreases, and a new model is
built from scratch using fresh training data to be collected from the new distribution.

In this scenario, having a way to still exploit the knowledge acquired from a different
distribution would be beneficial, because in real-world applications problems can arise
from different perspectives.

• The collection of new data could be at a prohibitive cost or even impossible: the
gathering of samples could require extensive manual-labeling efforts, or in case of
data that become easily outdated, a sufficient amount of new training samples is
collected over time and not immediately available, making the learning impossible.

• The computing resources could be limited, so the process of rebuilding the model
from scratch may require an amount of training time that is not available, or it may
even be impossible in case of memory or processing constraints.

Along the same lines, a way to transfer the learned representation of a model may come
in handy when one wants to tackle a different task in the same domain of interest, saving
computing time and resources. For example, two neural architectures that face different
tasks in the same domain, such as regression and classification, can differ only at the last
layer while reasonably assuming that all the remaining ones can have similar weights.

2.1.2. Definition

Here we define transfer learning as proposed in [PY10] and further analyzed in [Rud17].
First of all, the definition requires the concepts of “domain” and “task”, here explained.

A domain D consists of a feature space X and a marginal probability distribution P (X)

where X = x1, ..., xnxi ∈ X .

Given a domain, D = {X , P (X)}, a task T is defined as the combination of a label space
Y and a predictive function which is the conditional probability distribution P (Y |X),
learned from the training data consisting of pairs xi ∈ X and yi ∈ Y .

Now that the concepts of domain and task are provided, it is possible to formally define
what is the goal of transfer learning as stated in [Rud17]:

Given a source domain DS, a corresponding source task TS, as well as a target
domain DT and a target task TT , the objective of transfer learning is to enable

2| Background 7

us to learn the target conditional probability distribution P (YT |XT) in DT

with the information gained from DS and TS where DS 6= DT or TS 6= TT .

Note that as both domain and task are tuples of two elements each, the definition allows
four distinct transfer learning scenarios that are deeply discussed in [PY10] and [Rud17].

1. The feature spaces of the source and target domains are different: XS 6= XT .

2. The probability distributions over the feature space of the source and target domains
are different: P (XS) 6= P (XT).

3. Source and target tasks have different label spaces: YS 6= YT .

4. The conditional probability distributions over the label space of the source and
target task are different: P (YS|XS) 6= P (YT |XT).

Our work falls into the third scenario, generally known as domain adaptation: in our ex-
periments, we consider the differences in the images and metadata in input to our models,
that according to the classification above, translates into different marginal probability
distributions over the feature space between the source and target domains.

2.1.3. Approaches in Deep Learning

As briefly mentioned in 2.1.1, deep learning makes it possible to face more challenging
problems, but on the other hand, these techniques require longer training times and larger
amounts of data with respect to classical data mining and machine learning techniques.

Deep learning models rely on artificial neural networks that are layered architectures
whose goal is to learn a hierarchical representation of features. To take advantage of the
representation learned by previous models, i.e. to transfer the knowledge of a pre-trained
network about a domain or task, the idea is to avoid training a newly initialized deep
network, and instead refine the pre-trained model to the new use case.

The way the pre-train model is used determines the type of transfer learning strategy. In
[Sar18] those strategies are discussed, and we report them here:

• use of the pre-trained model as features extractor,

• fine-tuning of the pre-trained model.

The underlying idea of the former option is to exploit the pre-trained model’s weights of
the first layers to extract features from the input data. Those layers are kept “frozen”
while training either a set of newly initialized layers on top of the old ones or, more in
general, a new shallow model that uses the extracted features as input. This option is

8 2| Background

effective when little training data are provided and when the pre-trained model is expected
to match the domain of the problem at hand.

Figure 2.1: Transfer learning with a pre-trained model as features extractor [Sar18].

The latter strategy is more involved and does not just expect a substitution of the layer
on top of the pre-trained network, but even the old layers are updated during the training
phase. Since artificial neural networks are highly configurable through hyper-parameters,
it is up to the designer to determine which subset of layers to keep frozen during training,
if any.

Also known as supervised-domain adaptation through fine-tuning, this option is effective
when enough training data are provided or when the pre-trained model is not expected
to match the problem at hand, and an alignment of the source domain to the target one
is desirable.

2.1.4. Applications in Computer Vision and NLP

In this section, we provide applications of transfer learning techniques in the fields of
Computer Vision and Natural Language Processing.

Transfer Learning for Computer Vision
Deep learning is used extensively in computer vision tasks through several CNN archi-
tectures. When dealing with such tasks, a common procedure is to use the off-the-shelf
features of a pre-trained CNN architecture that reaches state-of-the-art performance on
a large, publicly available dataset such as ImageNet.

ImageNet[Den+09] is an image database containing data about a wide variety of objects.
Researchers use this dataset to evaluate and compare their findings with related works of
computer vision tasks such as object detection and image classification.

Architectures that are trained on this dataset capture, through their parameters, the
useful, general knowledge related to the concepts depicted in the images that went through

2| Background 9

the network during training. This very same knowledge can be exploited to excel in many
other tasks.

So, transfer learning techniques allows reaching high-level performance in new tasks by
either keeping the pre-trained parameters fixed or tuning them with a small learning rate
to prevent the harmful behavior of knowledge forgetting. This last choice is affected by
the amount of available data to face the new task. Popular architectures used as described
include VGG[SZ15], Inception[Sze+14], ResNet[He+15].

Transfer Learning for NLP
Similar to Computer Vision, even Natural Language Processing models require very long
training on huge amounts of data, thus transfer learning techniques became essential to
build machine learning tools that handle words, sentences, or documents as input.

Historically the first applications of transfer learning applied to textual sources date back
to word embeddings such as GloVe[PSM14] and Word2vec[Mik+13]. The embeddings
were trained on multiple sources and used as a black box for tasks like word/sentence
classification or information retrieval, sharing the knowledge acquired from the source
domains to solve new tasks.

Later on, with the release of the Transformer architecture, new models have been de-
veloped and made available as already pre-trained with different objectives on massive
datasets. Examples are BERT and GPT-2, which allow anyone to build machine learn-
ing models applied to textual data by fine-tuning the pre-trained model in a supervised
manner, achieving high performance not only on word/sentence classification, but also on
text generation tasks.

2.1.5. Related areas: Multi-task and Contrastive Learning

As discussed in the previous sections, transfer learning allows the implementation of high-
performance models which generalize better when dealing with new domains, by leveraging
a relatively small number of samples.

This is not the only research area that aims to pursue the goal above: several other
directions related to transfer learning try to learn a domain-invariant representation of
the input data, making related concepts that come from different domains more similar.
Here we introduce two of them: multi-task and contrastive learning.

10 2| Background

Multi-task Learning
While transfer learning focuses on a single target task or domain, multi-task learning takes
advantage of the knowledge acquired by learning how to approach several different tasks
simultaneously. This approach brings improvements in single tasks and reduces the need
for labeled data [BS17].

Figure 2.2: Multi-task approach: the learner receives information from all the tasks si-
multaneously [Sar18].

This approach is mainly studied when applied to NLP, where models process input texts
that follows a structure designed to fulfill a particular task. In [Raf+19], they define a
common format across tasks, making it possible to consider a unified challenge where
a model receives text as input and produces new text as output. This approach allows
machine learning developers to adopt the same architecture and the same training options,
like loss function, hyperparameters, and others, to tackle a set of multiple tasks.

Contrastive Learning
This learning technique is centered on how to learn without labels using a self-supervised
approach. We present its main aspects as described in [Tiu21].

The idea of contrastive learning is to teach the model which data points are similar,
without knowing the target labels. This paradigm is task-independent and allows the
model to learn general features by considering similarities and differences in the input
samples.

In real-world scenarios collecting and preparing samples is an expensive task, and con-
trastive learning offers a viable option to have competitive models when only a fraction
of the dataset is labeled.

2| Background 11

A common approach is to use this technique to pre-train a model, which is then fine-
tuned for a specific task with the labeled samples that are available. Having the initial
self-supervised step can improve the performance of the learner, and potentially outdo
even “full” supervised methods.

Contrastive learning most commonly deals with images through data augmentation, but
recent works proposed this approach with textual or multi-modal sources.

2.2. Image Captioning
In this thesis work, we propose an analysis of captioning systems for fashion products from
the perspective of their generative performance in different transfer learning scenarios.

The research community defines image captioning as the process of generating textual
descriptions from images. Systems meant to tackle this assignment expect to handle visual
and textual data, exploiting both Computer Vision and Natural Language Processing
techniques. In this section, we review the technologies adopted in captioning systems,
starting with how images are processed, and then moving towards the modern techniques
to deal with textual data.

2.2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are neural networks specifically designed to process
data in a “grid-like” shape, such as images. The CNN typical structure is a hierarchy of
blocks that transform the input in a sequence of volumes. Each block receives as input
and returns a volume; as the depth increases, the spatial extent of the volume decreases.
The main blocks of this class of networks include convolutional layers, pooling layers, and
fully-connected layers with activation functions.

A convolutional layer performs a linear combination of all the values in a region of the
input, whose parameters compose a so-called filter (or kernel). A filter moves through the
whole spatial extent of the input volume producing a two-dimensional representation that
is known as activation map. The size of the filter determines the receptive field, which is
the region of the input involved in the convolution. In a convolutional layer usually, there
are multiple filters, each of which contributes to a single slice of the output volume.

Pooling layers reduce the spatial extent of the volume. They operate on every slice of
the volume by resizing its height and width. In this way, a smaller number of weights is
required, which reflects in faster computations and smaller memory requirements.

12 2| Background

Activation layers introduce non-linearities in the network, making the CNN able to learn
non-linear separation boundaries in the feature space. As for multi-layer perceptron ar-
chitectures (MLP), the typical activation function is the ReLU, which applies a threshold
on the activation map through a max operator. ReLU is effective, but it suffers from the
dying neuron problem: a behavior that makes neurons of the network insensitive to the
input. To overcame this limitation, it was introduced the Leaky ReLU activation, which
includes a slope for negative values.

CNNs achieve high performance when dealing with images because of the way they oper-
ate: while MLP networks use dense, fully connected layers that allow every output unit
to be influenced by each input one, CNNs use filters whose dimension is smaller than the
input, that slide over each region of the image, allowing parameters sharing. In this way,
the hidden representations learned by the network are invariant of spatial translations.

ResNet
Residual Network [He+15] was one of the most relevant works in Computer Vision of
the last decade. The ResNet architecture was presented in 2015, and from there on,
researchers have deeply analyzed the network to find the reasons for its success, proposing
refinements and even applications for other deep learning fields.

Figure 2.3: Training error (left) and test error (right) with 20-layer and 56-layer “plain”
networks. The deeper network has higher training error, and thus test error [He+15].

In the deep learning research community, there is a common trend for which the net-
work architecture needs to go deeper to avoid overfitting and achieve better results than
shallower networks. This is not always the case as demonstrated in [He+15], where they
analyze if it is possible to continuously improve the performance of a CNN by stacking
more and more layers. As shown in figure 2.3, increasing the depth of a simple CNN is not
always effective: the training and test errors follow the same behavior, highlighting that
the decline of the performance of the deeper network is not due to overfitting. In that

2| Background 13

case, the training error would have been low, while the test error would have diverged.

The reason why the deeper network fails in reaching the performance of the shallower
one is the vanishing gradient problem: deeper networks are hard to train because the
update of early weights requires repeated multiplications that can make the gradient very
small, preventing the learning. To overcome this limitation, making possible the training
of deeper networks, the ResNet architecture introduces an “identity shortcut connection”
(figure 2.4).

Figure 2.4: The ResNet block with the identity shortcut connection [He+15].

Skipping one or more layers through the new connection forces the network to learn a
“residual” that is added on top of the identity, to improve the solution of the shallow
network. In this way, it is ensured that higher layers will reach performance at least as
high as the lower ones. Notice that the skip connection does not introduce any additional
weight, and allows stacking more and more blocks in the overall architecture that can be
trained through back-propagation also over path introduced by the skip connection itself,
avoiding the vanishing gradient problem.

2.2.2. Natural Language Processing

Natural language processing (NLP) is a subfield of linguistics, computer science, and
artificial intelligence concerned with the interactions between computers and human lan-
guage1. The goal of NLP techniques is to provide a machine able to understand natural
language text and react accordingly. Computer systems that want to pursue this goal re-
quire models to face linguistics tasks such as word-level processing, syntactic processing,
lexical and compositional semantics, dialog structure, and others. Historically these chal-
lenges have been faced through either finite-state and context-free methods, grammars, or

1https://en.wikipedia.org/wiki/Natural_language_processing

https://en.wikipedia.org/wiki/Natural_language_processing

14 2| Background

first-order logic until the take-up of modern machine learning and deep learning methods.

This field of AI is in constant growth, driven by the enormous amount of knowledge
available in machine-readable form and the fact that human-to-human communication
is nowadays increasingly mediated by computers. Examples of applications of NLP are
question answering, conversational agents, summarization, and machine translation; all
of them require a representation of the distribution of sequences of words, achievable
through a language model.

Language Modeling
A language model is a probabilistic model meant to predict the next word in a sequence,
given the words that precede it. Also known as statistical language model, it learns
the probability of words to occur based on text samples. These probabilistic models are
fundamental for complex tasks that require language understanding.

A simple language model can be an n-gram model: the probability of observing the ith

word wi given all the preceding ones is approximated by the probability of observing wi in
the context of the n-1 preceding words. The conditional probabilities are computed using
the frequencies of the n-grams in the training corpus and a smoothing term. The latter
is necessary to avoid inference problems when dealing with n-grams not seen before.

The main limitation of this method is that only the n-1 previous words influence the
probability distribution of the next word. It is not easy to determine a ”good” amount
of preceding words to use as context, besides the higher memory and data requirements
necessary to store and compute reliable n-gram probabilities, as the number of permuta-
tions of n words increases. Deep learning techniques based on LSTMs or the Transformer
address this limitation.

2.2.3. LSTM

LSTM, short for Long-Short Term Memory, is a type of Recurrent Neural Network (RNN)
proposed by Hochreiter and Schmidhuber in 1997. RNNs are a way to extend plain feed-
forward neural networks via recurrent connections, making the network capable of mem-
orizing a representation of past inputs. They are trained with backpropagation through
time but they suffer of the vanishing gradient problem: several backpropagation using
sigmoids and hyperbolic tangents make the gradients close to zero. LSTMs solve this
problem using a memory cell composed of logistic and linear units: the information loops
over the cell state having a fixed weight, so backpropagation is possible independently by

2| Background 15

the length of the sequence. These architectures are designed to deal with sequences; thus,
language modeling is a proper use of LSTMs since sentences are just sequences of words.

(a) Standard RNN. (b) LSTM cell.

Figure 2.5: Comparison between the repeating module of RNNs and LSTMs.1

Three distinct gates allow the update of the cell state by optionally letting information
through. The “forget” gate determines the values of the cell state to keep. The information
to store in the cell is computed by the “input” gate: first, it decides the values of the
state to update, then it computes the new candidate values that could be added to the
state. Now that both the values to forget and the new candidates are available, the new
cell state is computed. Finally, the “output” gate filters the cell state to build the new
hidden state. The new cell and hidden states are the input in the next timestep.

16 2| Background

(a) Forget gate.

(b) Input gate.

(c) Memory update.

(d) Output gate.

Figure 2.6: Gates of a LSTM cell.1

2.2.4. The Transformer

RNN based architectures, like LSTMs, do not allow parallelization within training ex-
amples due to their intrinsic sequential nature, making the computation expansive when
processing long sequences. The Transformer [Vas+17] model overcomes this limitation,
besides outperforming LSTMs, and generally RNNs, in NLP tasks: without recurrence,

1RNN and LSTM images from https://colah.github.io/posts/2015-08-Understanding-LSTMs

https://colah.github.io/posts/2015-08-Understanding-LSTMs

2| Background 17

nor convolution, it deals with sequences through an attention mechanism and informa-
tion about the position of tokens to preserve the concept of order in the utterance. The
attention mechanism allows the model to learn to focus on the most important pieces of
the sequence at each step.

The Transformer is an encoder-decoder model, where both the encoding and decoding
components are a stack of repeating modules, respectively encoders and decoders blocks.
Figure 2.7 shows the overall architecture of the model. All the details of the architecture
are deeply analyzed in [Ala18].

Figure 2.7: Architecture of the Transformer model [Vas+17].

The encoder block processes its input through an attention layer, then a feed-forward
neural network. The decoder block interleaves those layers with an “encoder-decoder
attention” which allows focusing on pieces of the input sequence.

At first, each input token is converted into the related embedding, making the input of
the stack of encoders a list of vectors of the same size. As this model avoids recurrences,
a positional encoding is added to each input embedding to account for the specific order
of words in the sequence. The input of an encoder block can be either the initial tokens
embeddings, with the addition of the positional encoding, or the output of the previous

18 2| Background

Figure 2.8: Summary of the steps of the multi-head self-attention layer [Ala18].

block of the stack.

The goal of the attention layer is to provide hints coming from other positions of the
sequence, that help in encoding the current token. To do so, three vectors for each input
embedding, namely query, key, and value vectors, are used to provide a score representing
how much each other token is relevant for the current one. The three vectors are the
result of the multiplication of the input with supplementary matrices learned during the
training. The computation of the scores happens by taking the dot product of the query
vector of the current token and the key vector of the others. The scores are rescaled and
then normalized through a softmax, making them sum up to 1. The final softmax score
determines how much each word is expressed at a position of a sequence; by multiplying
these scores with the respective value vectors, the values of all the tokens are rescaled
according to how much they are relevant to the current one. The final output is the sum
of the rescaled value vectors.

Here we considered the computation of the attention for a single token; however, to allow
faster processing, the Transformer process the entire sequence at a time in matrix form.

In each block of the stack, the self-attention described above is replicated, making a more
complex mechanism called “multi-head” attention. The softmax scores of the attention
heads are combined by multiplying the concatenation of the scores with a further weight
matrix learned during training. In this way, the input of the feed-forward neural network
is independent of the number of heads that are used. Figure 2.8 summarizes all the steps
performed by the multi-head self-attention mechanism.

This mechanism improves the performance of the model mainly because it introduces
distinct sets of query/key/value matrices for each head, that allow the projection of the

2| Background 19

input embeddings into multiple representation subspaces.

The decoder block works similarly to the encoder one. It adds an “encoder-decoder at-
tention” layer that operates as the base self-attention block, except it builds the query
vectors from the output of the previous layer of the decoder stack, while the key and
value vectors come from the encoder side output. Additionally, the self-attention layer
can attend only to earlier tokens in the sequence. This is achieved by masking future
positions before computing the softmax score.

The output of the decoder stack flows through a final linear layer and later through a
softmax layer. The linear layer is a feed-forward neural network that projects the vector
produced by the decoder stack into a higher-dimensions representation called the “logits”
vector, whose size is equal to the vocabulary length, containing a score for each word. The
softmax layer processes the scores by turning them into probabilities of words to occur.
The most probable word is the final output of the current step.

BERT
With the release of the Transformer architecture, the research community started analyz-
ing variations of the original model, and the understanding of how to represent sentences
and words rapidly evolved.

BERT [Dev+19], or Bidirectional Encoder Representations from Transformers, is a method
of pre-training language representations by learning a general-purpose Transformer-based
model trained on a large corpus. The BERT architecture consists only of the encoding
stack of the Transformer, using a higher number of attention heads and encoder blocks
than the original implementation of the Transformer proposed in [Vas+17].

The pre-train phase is the first stage of the learning process of the model. In this phase,
the model learns a language representation in which words are conditioned on both left
and right contexts. BERT achieves this by training its stack of encoder blocks on the task
of “masked language modeling”: a fraction of the input tokens of each sentence (15%)
is replaced with the [MASK] token; moreover, the model tries to predict the original
values given the context provided by all the non-masked tokens. Since the loss function
is computed taking into account only the masked positions, the model converges slower
than other models.

Additionally, in the BERT pre-training process, the model receives pairs of sentences
and learns to predict whether the second one is the subsequent sentence in the original
document. The input is formatted so that a [SEP] token is inserted at the end of each

20 2| Background

sentence; also, the model uses an additional vector indicating which is the source sentence
of the token in the corresponding position.

(a) Masked Language Modeling (MLM). (b) Next Sentence Prediction (NSP).

Figure 2.9: BERT architecture according to the pre-training task.2

By exploiting the pre-training procedure described above, one can download the pre-
computed parameters; finetune the model; save time, knowledge, and resources; and
achieve higher performance than a language-processing model built from scratch. BERT
achieves state-of-the-art results on a wide range of NLP tasks.

GPT-2
GPT-2 [Rad+19] is a Transformer-based language model that outperforms previously
developed architectures in text-generation capabilities. This model is trained on a very
large corpus of ~40GB of text data with the simple objective of predicting the next word,
given all the previous words in a text.

Unlike BERT, the architecture of GPT-2 is made of Transformer decoder blocks only:
it outputs one token at a time, adding the last predicted one to the sequence of inputs,
making the model “auto-regressive” by nature.

The blocks composing the stack of the GPT-2 architecture include a masked self-attention
layer and a feed-forward neural network. The self-attention layer achieves the “auto-
regression” property by masking the tokens related to future words, blocking information
from tokens right of the position being calculated.

2Images from https://jalammar.github.io/illustrated-bert/

https://jalammar.github.io/illustrated-bert/

2| Background 21

During training, the input sentence comes entirely from the batch, whereas at inference
time the last predicted token is appended to the current input to predict the next one;
the inference process goes on until the prediction of the end-of-sequence token, or the
maximum generation length is reached.

Decoder-only Transformer-based architectures are not used only for language modeling,
but also in different NLP tasks: thanks to the simple but effective way it is pre-trained and
the huge amount of training samples, GPT-2 allows reaching high performance through
fine-tuning on text summarization, question answering, and others.

GPT-2 comes with variants according to the size of the architecture. Recently the same
research team has developed GPT-3: a language model which is larger, more versatile,
and qualitatively stronger than GPT-2. GPT-3 during the training procedure is exposed
to 300 billion tokens of text, and it is estimated to cost 355 GPU years and cost $4.6m. At
the time of writing, it is accessible only through a cloud-based application programming
interface with usage-based pricing.

Vision Transformer
CNNs have been used as standard technology in computer vision tasks since AlexNet
(2012). When building a machine learning model that processes visual input, CNNs
avoid using hand-designed features, while instead learning visual features directly from
data. Architectures built upon them are effective for image processing, but are specifically
designed for this type of input and can be computationally demanding when the goal is
to build scalable vision models.

When dealing with textual sources, the Transformer model proposed in [Vas+17] (2017)
is computationally efficient and scalable, making it possible to train large models on
huge corpora. From 2020 researchers started wondering if it were possible to exploit a
Transformer-like architecture to process visual inputs.

The Vision Transfomer (ViT) [Wu+20] is a vision model based on the Transformer archi-
tecture. The goal of the model is to process an input image as if it were a textual input,
making the fewest possible modification to the classical Transformer model. [Wu+20]
demonstrates that ViT reaches excellent performance when trained on sufficient data,
outperforming a comparable state-of-the-art CNN being at the same time more efficient
(it requires four times fewer computational resources).

ViT exploits a stack of encoder blocks, each of which has the structure presented in the
original model. The input image is split into a square grid of patches; each patch is

22 2| Background

flattened into a single vector by concatenating the color channels and then projecting the
vector to the desired dimension through a linear layer. A learnable positional embedding is
added to each patch, making the model able to learn the structure of the images through
information about the dispositions of the patches. The final sequence of vectors flows
through the standard Transformer encoder. To perform the classification of the input
images, a [class] learnable token is prepended to the sequence of embedded patches;
the final class is the output of a prediction head on top of the last encoder block. Figure
2.10 summarizes all the steps done by the model.

Figure 2.10: Model architecture and processing steps of ViT [Wu+20].

ViT is pre-trained on large datasets and finetuned to smaller downstream tasks; the
finetuning step requires the removal of the pre-trained prediction head with a newly
initialized feedforward layer.

The model comes with variants according to the number of parameters; the configurations
of the variants are based on those used for BERT: ViT-Base (86M), ViT-Large (307M),
and ViT-Huge (632M). The performance of the model depends on the size of the dataset
used for pre-training: Figure 2.11a shows the results after finetuning to ImageNet when the
model is pre-training on datasets of increasing size as ImageNet (1M images), ImageNet-
21k (14M images), and JFT (300M images). Notice that the ImageNet pre-trained models
are also finetuned on the same dataset because the resolution increases during finetuning,
improving the final performance.

To compare the amount of computation performed when training the models, [Wu+20]
provides an analysis of several different ViT models and CNNs trained on the same dataset
(Figure 2.11b). For a given amount of compute, ViT yields better performance than the

2| Background 23

equivalent CNNs.

(a) ViT models perform worse than BiT3ResNets
(shaded area) when pre-trained on small datasets,
while they excell when pre-trained on larger
datasets.

(b) Performance versus pre-training compute
for different architectures: Vision Transform-
ers and ResNets. ViT generally outperform
ResNets with the same computational budget.

Figure 2.11: ViT performance and training requirements analysis.

Recently a pre-training method inspired by BERT and its masked language modeling
objective has been applied to ViT. BEiT [BDW21], which stands for Bidirectional Encoder
representation from Image Transformers, proposes a masked image modeling task that uses
two representations of the images through patches of pixels and visual tokens. The goal
is to recover the original visual tokens related to patches of the input image that were
randomly masked.

2.3. Summary
In this chapter, we present an overview of transfer learning: we define its goal and the
practical needs that make it essential for the development of a competitive deep learning
model. Among the research areas that aim to generalize better when dealing with new
domains there is contrastive learning, which we adopt in the training procedure of our
proposed fashion image captioner.

Regardless of the business application, an image captioning system has a standard struc-
ture that involves two fundamental modules: an image feature extractor and a caption
generator. We present the CNN architecture and the modern Vision Transformer that
we use as feature extractors; the caption generator module of the systems we analyzed

3https://ai.googleblog.com/2020/05/open-sourcing-bit-exploring-large-scale.html

https://ai.googleblog.com/2020/05/open-sourcing-bit-exploring-large-scale.html

24 2| Background

is an LSTM architecture or a Transformer language models, implemented through either
BERT or GPT-2.

25

3| Related work
In this chapter we present the research works related to this thesis. The first section
dives into works about transfer learning, initially by presenting different approaches and
application scenarios, and further by providing an overview of recent achievements in
applying a contrastive learning objective for the training of multi-modal (joint image and
text) deep learning models. In the last section, we provide both common and modern
choices of deep learning architectures meant to tackle the task of image captioning.

3.1. Transfer Learning
The transfer learning capabilities of deep learning models are widely studied with several
distinct approaches. We focus on the techniques that allow the adaptation to a target
task, providing a use-case of cross-domain adaptation. In the end, we discuss the role and
the benefits of a contrastive pre-training objective and the model that exploit it.

3.1.1. Target task adaptation

The usual transfer learning procedure from a pre-trained deep learning model to a target
task consists of two phases: the pretraining, where the model learns a representation of
the input samples related to a source task, and the adaptation, where the representation
learned by the model is transferred and applied to a new task. While the former stage
involves the selection of a proper training objective and model architecture, the latter
consists in the exploitation of practical methods to adapt the knowledge of the model,
which is held in the weights of the model, to the final task.

As discussed in 2.1.3, the main paradigms of adaptation are feature extraction and fine-
tuning. In [PRS19] the authors provide a set of adaptation guidelines that specify when
the paradigms above are effective, therefore preferred, when applied in the NLP domain.

The feature extraction adaptation form provides for the use of the pre-trained representa-
tion as they are, keeping the weights of the model frozen; i.e., fixed during the adaptation
process. This technique is suitable for “recycling” precomputed features on similar tasks,

26 3| Related work

so being cheaper as the features are computed once. Differently, fine-tuning adapts the
pre-trained representation by allowing the eventual changing of the model weights that
can be “unfrozen” while fine-tuning the model on the target task. This second approach
is convenient when a general-purpose representation is used as starting point to face new
tasks. Fine-tuning implies the selection of the parameter groups of the pre-trained model
that can be trained during the adaptation process: this selection is a design choice that
affects the final performance of the model on the target task. A possible approach is to
gradually make the parameters learnable during fine-tuning (a.k.a. gradual unfreezing).

[PRS19] computes the relative performance of two popular pre-trained architectures (ELMo
[Pet+18] and BERT [Dev+19]), which at the time of writing reach state-of-the-art per-
formance across several NLP tasks, when employed with the two forms of adaptation
described above. In our work, we use a similar approach to evaluate the effectiveness of
both the pre-training and adaptation choices proposed in our transfer learning analysis,
applied to different architectures for fashion image captioning.

Feature extraction and fine-tuning are two basic adaptation paradigms: it is possible to
design adaptation processes that are more complex but more powerful, that are strictly
related to the application domain and the pre-trained model architecture. [VN21] provides
an adaptation procedure that aims to exploit the success of the GPT-2 English generative
language model to other languages (Italian and Dutch). Their work is prompted by
the fact that non-English language models are less powerful due to data limitations, so
they describe a method to adapt existing pre-trained models to new languages. The
adaptation of the language model requires four key steps. At first, the small version of
the pre-trained English GPT-2 is trained by keeping fixed the transformer layers and re-
initializing the lexical embeddings. In this way, the knowledge acquired in the transformer
layers is preserved and the model is already capable to generate realistic text in the target
language. The next step is adopted if one wants to increase the model size: a least-squares
regression allows the project of the embeddings of the smaller model to a larger size; the
newly projected embeddings can be optimized by additional training, always keeping the
transformer layer weights fixed. Finally, the entire model is “unfrozen” so that all the
weights are trainable and fine-tuned to the target language. Even though the retraining
of the lexical embeddings could be an expensive procedure, the projection to a larger
representation space keeps the overall cost limited.

3| Related work 27

3.1.2. Contrastive Learning

While the previous section focused on the adaptation of a pre-trained model, here we
discuss the pre-training objectives that allow the learning of a general-purpose represen-
tation of the input data, more precisely to contrastive learning, whose key aspects are
presented in 2.1.5.

Contrastive learning is extensively used in CLIP [Rad+21], short for Contrastive Lan-
guage–Image Pre-training, which is a neural network model that uses natural language
supervision to allow generalization and transfer of knowledge to correctly understand vi-
sion features of objects that were not seen during training. The main motivation that led
to CLIP comes from the poor performance of current vision models when adopted with
input data coming from different distributions from the one used for training, reflecting
on a significant effort to adapt to new scenarios.

CLIP is an image classification model that exploits the meaning of class labels associated
with images to make a powerful “zero-shot” learning model through a contrastive pre-
training; differently, standard classification models discard the meanings related to class
labels, by replacing the class names with numerical identifiers. To do so, CLIP uses an
image encoder (ResNet/ViT-based) and a text encoder (Transformer-based) to predict
the correct pairings of a batch of image and text pairs. The contrastive learning objective
exploited by CLIP is the minimization of the cross-entropy loss over the cosine similarities
scores of image and text embeddings in the batch: in this way, it is maximized the cosine
similarity of the N correct pairs of image-text samples in the batch, while minimizing
the cosine similarities of the N2 − N incorrect pairs. Figure 3.1a shows the contrastive
pre-training steps. At test time, the dataset classes are converted into captions then CLIP
predicts the class related to the caption with the highest similarity with a given image.
Figure 3.1b shows the model behavior during inference.

We propose a deep learning model that exploits the innovative pre-training approach of
CLIP while applied to the generative task of producing captions that describes input
images.

The contrastive pre-training carried out by CLIP can be seen as multi-objective pre-
training, as the model tries to learn two tasks at the same time: first, the learning of an
image embedding space; second, the learning of a text embedding space used to perform
the alignment with the image embeddings. As experimented in [Zha+21], contrastive
pre-training on image-text solves both of these tasks simultaneously but it may be a
sub-optimal approach. [Zha+21] proposes “contrastive-tuning” : a method that exploits
contrastive learning to align image and text models while still taking advantage of their

28 3| Related work

(a) CLIP training steps.

(b) CLIP inference steps.

Figure 3.1: CLIP contrastive approach during training, and inference behavior.

3| Related work 29

pre-training and that allows you to select which modality to keep locked during the
alignment. The use or not of a pre-trained model, together with the choice of keeping a
modality locked, introduces several tuning options, which are explored in [Zha+21] and
depicted in figure 3.2.

Figure 3.2: Contrastive-tuning: the design choices for the image-text pre-train. L stands
for locked and initialized from a pre-trained model, U stands for unlocked and initialized
from a pre-trained model, u stands for unlocked and initialized from scratch (random).
Image from [Zha+21].

They empirically found out that keeping locked the pre-trained image model is the option
that works best; anyhow, several options are available, and exploring them could improve
the overall pre-training performance.

3.2. Image Captioning
The research community has developed several approaches to tackle the Image Captioning
problem. While in section 1.5 we provide a description of the challenge and an overview
of Computer Vision and NLP technologies, here we discuss classical and modern models
that exploit those technologies to build a captioning system.

3.2.1. Show, Attend, and Tell

Show, Attend, and Tell [Xu+15] was the most common choice to build captioning systems
until the advent of the Transformer architecture. The neural network model is based on
an encoder-decoder architecture that uses a CNN encoder and an LSTM decoder. The
two components are interconnected with an additional attention mechanism that makes
the model focus on salient regions of the input image.

30 3| Related work

Figure 3.3: Examples of attended regions (in white) with the corresponding word gener-
ated as output [Xu+15].

The CNN extracts a set of feature vectors that are the output of the last convolutional
block, without the use of fully connected layers on top: this allows to maintain a cor-
respondence between the feature vectors and the 2D regions of the input images. The
LSTM decoder composes the final caption by generating one word at a time. Each de-
coding step determines the word to output, conditioned on a context vector, the previous
hidden state, and the last generated words. The context vector keeps the relevant fea-
tures of the input image: each feature vector ai is rescaled according to a weight αi, which
represents the probability that ai contains the visual features of the region of the input
image that is the most relevant to produce the next word. The weights are computed by
the attention model as the output of a fully-connected layer, having as input the feature
vectors and the previous hidden state of the LSTM. Figure 3.3 shows some examples of
attended regions of the input image with the corresponding output word. The attention
mechanism allows to improve the generative performance of the model and gives more
interpretability into the caption generation process.

3.2.2. Oscar: Object-Semantics Aligned Pre-training for Vision-
Language Tasks

With the advent of the Transformer architecture, cross-modal pre-training methods ap-
plied to Transformer-based models have become the usual solution to approach vision-
language tasks like Image Captioning. Standard pre-training approaches exploit the self-
attention layer of the Transformer to align vision and text embeddings; differently, Oscar

3| Related work 31

(Object-Semantics Aligned Pre-training) [Li+20] uses object metadata detected in im-
ages as anchor points during the pre-training. This is achived by extending the training
samples to triples, each composed of a set of regions of the input image, the object tags,
and a sequence of word embeddings (the textual caption in our scenario).

The object tags, along with the regions of the input images, can be computed by modern
object detectors: [Li+20] uses a Faster R-CNN to retrieve that information. Figure 3.4
illustrates the Oscar pre-training procedure and the model architecture.

Figure 3.4: Oscar pre-training [Li+20].

The pre-training objective combines a masked token loss and a contrastive loss. The
masked token loss, similarly to the masked language model adopted by BERT, randomly
replaces 15% of the token with [MASK]. The goal is to predict the values of the masked
tokens by minimizing the negative likelihood given the surrounding, which consists of the
other unmasked tokens (caption and object tags) and the image features.

The contrastive pre-training objective randomly replaces with 50% probability the se-
quence of object tags, then performs a binary classification to predict whether the tags
sequence is the original one or not.

Transformer-based models with Oscar pre-training define the state-of-the-art performance
in several vision-language challenges, such as Image Captioning.

3.2.3. Image tagging and captioning for fashion catalogues en-
richment

As opposed to the previous approaches discussed in this section, now we present a model
that focuses on fashion captioning: the specific application of Image Captioning systems
that we analyze in this thesis work.

[PSC20] tackles the broad challenge of fashion catalogs enrichment that aims to automat-
ically generate metadata and captions of fashion image products to enrich the catalog

32 3| Related work

of e-commerce websites of fashion companies. They propose two distinct deep learning
models used for the generation of clothing tags and garment descriptions, respectively;
moreover, they combine the two in a unique model that performs both tasks simultane-
ously.

As our analysis investigates fashion captioning systems, we focus only on the captioner
architecture they named Multimodal GPT-2, shown in figure 3.5.

Figure 3.5: Multimodal GPT-2 architecture [PSC20].

The model exploits the successful generative capabilities of the GPT-2 architecture to
produce captions of clothing images, taking advantage of the visual features extracted
through a CNN encoder and the textual embeddings of the metadata related to the input
product. In this way, the model can leverage additional textual information to ease the
generation of the final caption and improve the quality.

The visual features extracted by the CNN encoder flow through a remapper block, which
is a set of fully-connected layers each of which produces a visual token by projecting the
input into the textual token embeddings size of GPT-2. The textual token embeddings
associated with the product metadata are retrieved from the pre-trained GPT-2 tokenizer.
Through the remapper block, the visual tokens share the same embedding space of the
textual tokens, making GPT-2 able to process the multi-modal input composed of text
and visual information.

33

4| Datasets
In this chapter, we present the data sources used to train and evaluate the model architec-
tures we investigate applied to the task of Fashion Image Captioning. The datasets consid-
ered in this thesis work are either publicly available or property of our industrial partners:
we start presenting the public one, then the focus moves to three private datasets; finally,
we compare the main properties of all the four datasets used in our research work.

4.1. Fashiongen
Fashiongen [Ros+18] is a large-scale dataset used in the Generative Fashion Challenge1.
It consists of fashion images (1360 × 1360 pixels2) annotated with descriptions and cat-
egories provided by professional stylists. The competition related to this data source is
on the task of text to image generation, but, as for MS COCO [Lin+14], the research
community exploits this dataset for other benchmarks that require image and text pairs,
like image captioning. Each clothing product belongs to a main category and a more
detailed subcategory. The dataset contains 48 main categories and 122 fine-grained ones.
The plot in figure 4.1 shows the name and the distribution of the main categories of the
dataset.

1https://fashion-gen.com/
2Even though the authors present a dataset composed of high-resolution images of size 1360 × 1360,

the dataset available online consists of 256× 256 fashion images.

https://fashion-gen.com/

34 4| Datasets

Figure 4.1: Bar plot representing the distributions of the categories of the fashion items
belonging to Fashiongen.

The fashion items are paired with descriptive captions provided by professional stylists.
Table 4.1 shows examples of descriptions with the main category of the related products.

Category Description
SWEATERS Short sleeve rib knit jersey t-shirt in navy. Signature ‘slim’ fit. Mock neck

collar. Stripes in pink and gold-tone at sleeves and bust. Tonal stitching.
TOPS Short sleeve crewneck ribbon hemmed t-shirt in black. Tonal bar code stripe

woven pattern throughout. Ribbed crewneck. Wide woven ribbon trim at
hem. Tonal stitching.

PANTS French terry slim-fit lounge pants in black. Elasticized woven cotton waistband
with concealed drawstring. Button-fly. Three-pocket styling. Ribbed hems.
Tonal stitching.

Table 4.1: Examples of descriptions of fashion items belonging to Fashiongen with the
corresponding product categories.

We plot in figure 4.2 the number of words and the number of sentences per caption.

4| Datasets 35

(a) Number of words per caption.

(b) Number of sentences per caption.

Figure 4.2: Statistics of the descriptions of clothing samples belonging to Fashiongen.

4.2. Private data sources
In the following sections, we describe three data sources that are property of our industrial
partners. We cannot share these datasets, but we provide detailed descriptions of their
features and statistics.

4.2.1. Industrial Dataset 1

The first private dataset we consider consists of high-resolution fashion images that are
extensively annotated with descriptions and metadata. A clothing sample may have
multiple photos that differ according to the particular pose of the model: each picture
can illustrate the entire garment, the overall outfit of the model, or a detail of the fashion

36 4| Datasets

item.

Metadata are either categorical data (classes) or attributes. The dataset contains 17 main
categories, 12 colors, 102 more detailed subcategories, and 121 fine-grained colors; each
fashion item may be annotated with multiple attributes among the 593 available. We
provide the name and distribution of the main categories of the dataset in figure 4.3.

Figure 4.3: Bar plot representing the distributions of the categories of the fashion items
belonging to the industrial dataset#1.

The captions of the fashion items follow a complex structure and refined words. Examples
are available in table 4.2.

Category Description
Shirts Lightweight pure cotton striped Oxford enriches this spread collar shirt, a

must-have menswear piece. Fitted lines that are close through the chest char-
acterize the slim fit.

Topwear Refined stretch silk satin enriches the essential design of the top with the
excellence of materials. The slightly rounded silhouette pairs with the fabric’s
fluid effect to enrich summer looks with a shiny touch.

Trousers The excellence of materials defines the style of these new Bermuda shorts, a
must-have of the summer wardrobe. Slight color shading along the edges and
seams characterizes the workmanship with the garment-dyed cotton gabardine,
adding a sporty note to the style of this piece.

Table 4.2: Examples of descriptions of fashion items belonging to the industrial dataset#1
with the corresponding product categories.

We plot in figure 4.4 the distributions of the number of words and the number of sentences

4| Datasets 37

per caption.

(a) Number of words per caption.

(b) Number of sentences per caption.

Figure 4.4: Statistics of the descriptions of clothing samples belonging to the industrial
dataset#1.

4.2.2. Industrial Dataset 2

This second dataset consists of high-resolution images that, differently from Fashiongen
and the industrial dataset#1, represent clothing items without fashion models wearing
them. Besides the corresponding image and the textual caption, each clothing sample has
a category representing its main class and a set of attributes describing details like the
color, a possible subcategory, and wearability. The dataset contains 25 categories and 255
attributes; the plot in figure 4.5 shows the distribution of the categories of the clothing
samples belonging to the dataset.

38 4| Datasets

Figure 4.5: Bar plot representing the distributions of the categories of the fashion items
belonging to the industrial dataset#2.

The captions of the clothing samples consist, on average, of a few short sentences; table
4.3 shows some examples.

Category Description
Knitwear Cardigan in a soft knit with dropped shoulders long sleeves and

front pockets. No buttons.
T-Shirts & Vests T-shirt in soft cotton jersey. Regular Fit.
Shirts & Blouses V-neck blouse in woven fabric with long sleeves with wide flared

cuffs with a slit and a rounded hem with slits in the sides.

Table 4.3: Examples of descriptions of fashion items belonging to the industrial dataset#2
with the corresponding product categories.

Figure 4.6 provides the statistics about the number of words and sentences per caption.

4| Datasets 39

(a) Number of words per caption.

(b) Number of sentences per caption.

Figure 4.6: Statistics of the descriptions of clothing samples belonging to the industrial
dataset#2.

4.2.3. Industrial Dataset 3

The last dataset we use in our experiments is designed to tackle the challenge of fashion
outfit completion. As for the industrial dataset#1, a clothing sample may have multiple
pictures, each of them representing either the garment worn by a fashion model through
different perspectives or the clothing product alone.

In addition to the description, each sample has a category and may have attributes re-
garding its composition. Besides, it is possible to infer the color of the garment: a
clothing sample is identified by a unique string structured as COLOR_CODE (e.g., NAVY
BLUE_2253-401 and BEIGE_3834-520). Overall, the dataset contains 16 categories and
134 colors; the plot in figure 4.7 shows the distribution of the categories.

40 4| Datasets

Figure 4.7: Bar plot representing the distributions of the categories of the fashion items
belonging to the industrial dataset#3.

The captions of the clothing samples are short and usually single-sentence; table 4.4 shows
some examples.

Category Description
tshirts High neck T-shirt with short sleeves.

knitwear Loose-fitting short sleeve sweater made of cotton.
dresses Dress with a straight neckline, thin straps with adjustable tie fastenings, and

ruffle trims.

Table 4.4: Examples of descriptions of fashion items belonging to the industrial dataset#3
with the corresponding product categories.

Figure 4.8 provides the statistics about the number of words and sentences per caption.

4| Datasets 41

(a) Number of words per caption.

(b) Number of sentences per caption.

Figure 4.8: Statistics of the descriptions of clothing samples belonging to the industrial
dataset#3.

4.3. Dataset Comparison
The datasets described in the previous sections differ in their sizes and the structures
of the captions of fashion items. Table 4.5 provides how we split the samples of each
dataset along with the average number of words per caption w, and the average number
of sentences per caption s.

42 4| Datasets

Dataset Train Valid Test w s

Fashiongen 54132 6015 7519 30.9 6.5
Industrial dataset#1 1235 153 138 54.1 2.9
Industrial dataset#2 39282 4365 5921 23.0 2.2
Industrial dataset#3 1881 233 209 18.0 1.9

Table 4.5: Number of items in train, validation, and test splits along with the average
number of words (w) and sentences (s) per caption.

Fashiongen and the industrial dataset#2 are the datasets with the highest number of
samples among the four available. Considering the average number of words and sen-
tences per caption, the industrial dataset#2 and the industrial dataset#3 are similar,
while Fashiongen has captions that contain several short sentences. On the contrary, the
industrial dataset#1 contains clothing samples with very long captions and few sentences.

Figure 4.9 shows examples of images belonging to each of the four datasets.

4| Datasets 43

(a) Fashiongen. (b) Industrial dataset#1.

(c) Industrial dataset#2. (d) Industrial dataset#3.

Figure 4.9: Example of fashion images of the dataset used in this thesis work.

45

5| Pre-Training for Fashion Image
Captioning

In this chapter we present our pre-training method for Fashion Image Captioning. We
start by providing the goal of our analysis; afterwards, we dive into the challenges behind
each aspect of our pre-training procedure, including processing data from multiple sources
and a technique to improve the generalization capabilities of the model. Finally, we discuss
why fine-tuning to a target domain is necessary for this application scenario.

5.1. Goal and Requirements
Our analysis aims to find a way to design image captioning systems applied to the fashion
domain that achieve high-level performance without explicit training on the target dataset
or with little adaptation through fine-tuning. In this way, it would be possible to get
effective deep learning models even when constrained by resource requirements (limited
computational time or memory, few or costly training samples, as well as environmental
considerations).

To benefit from the information of other domains, in which the clothing products can
differ in the way they are depicted in the images, the kind of metadata, and the style of
the description, we follow an approach similar to the multi-task paradigm presented in
section 2.1.5.

Multi-task learning usually refers to a pre-training procedure that solves multiple chal-
lenges simultaneously (here intended as “tasks”). Examples in NLP are models that
tackle at the same time sentence classification, question answering, machine translation,
and possibly others. We instead use this idea applied to the challenge of Fashion Im-
age Captioning in a broader sense: captioning models learn simultaneously from different
sources that highly differs in several aspects, such as the metadata labels associated with
clothes, the poses and the surrounding in which garments are pictured, and the description
to generate.

46 5| Pre-Training for Fashion Image Captioning

5.2. Data preparation
Our pre-training approach leverage the information of various sources, which are presented
and compared in chapter 4. Textual data coming from multiple sources have differences
that make it difficult for the model to learn general patterns without considering non-
relevant information specific to a single dataset. Therefore, we have designed a set of
textual transformations used to manipulate clothing metadata and captions to obtain a
common format across datasets.

Table 5.1 lists these transformations, highlighting whether they are applied to metadata
and/or captions.

Description M C
ToLowerCase It returns a string where all characters are in

lower case. The models we train use subword-
based tokenizers that differentiate between upper
and lower case texts. Since clothing metadata are
upper or lower case depending on the dataset, this
transformation provides a format independent of
the source dataset.

Debranding It removes brand names from the input string.
NumberReplacement It returns a string where percentages and num-

bers are replaced with <PERC> and <NUM> tokens,
respectively.

FilterDuplicates It returns the metadata string filtered by possi-
ble duplicates. This transformation avoids du-
plicate clothing tags in the metadata string,
which can arise once the NumberReplacement and
Debranding transformation are applied.

Table 5.1: Description of the textual transformations; the last two columns show whether
a transformation is applied to metadata (M) and/or captions (C).

Table 5.2 shows samples before and after applying the transformation described above.

5| Pre-Training for Fashion Image Captioning 47

Scarves, Solid Scarf, Beige, Beige, Woman,
Scarf measures approx. 70 cm x 220 cm, Short
side with fringe

woman, solid scarf, scarf measures approx.
<NUM> cm x <NUM> cm, beige, scarves, short side
with fringe

SHIRTS, CLOTHING, Men, SHIRTS clothing, men, shirts
Clothing, Trousers & Leggings & Pants,
trousers, chinos, slim, beige, adult, BRAND
man, man

clothing, trousers & leggings & pants, trousers,
chinos, slim beige, adult, man

woman, sweatshirts, PETROL BLUE, 100%
polyester, CHENILLE SWEATSHIRT

woman, sweatshirts, <PERC> polyester, petrol
blue, chenille sweatshirt

Table 5.2: Metadata samples before (left) and after (right) applying the textual transfor-
mations.

5.3. Imbalance problem
The data sources employed during the pre-training stage can be very different in size,
making the overall training set imbalanced. In this case, it gets difficult for a deep
learning model to generalize over all the available sources without a bias towards the
dominant one in the overall training set.

Machine learning solutions usually tackle this issue through over/under-sampling tech-
niques. Oversampling of minor sources means the replication of random samples to get
larger sources whose length is comparable to the length of the dominant one. Undersam-
pling of the dominant source, instead, means the selection of a random subset of samples
to get a smaller source whose length is comparable to the length of minor ones.

Both the techniques rebalance the distribution of samples of the training set but have
drawbacks: oversampling introduces redundant data that can cause the model to overfit,
furthermore the training time increases; undersampling can discard plenty of useful infor-
mation. To avoid too long training procedures with redundant samples, but still leverage
all the available information, we train the models using a stratified batch sampler algo-
rithm together with a weighted loss function.

Batch sampler
During the pre-train, the model weights should be updated using batches that contain
at least one sample per data source to ease the learning process and avoid single dataset
specialization.

As explained before, standard oversampling would be too expansive in terms of training

48 5| Pre-Training for Fashion Image Captioning

time, so we implement a batch sampler that minimizes the total number of training
batches without losing samples. The number of samples per dataset in the batch depends
on all the sizes of the data sources used for pre-training the model and can be optimized
by solving the minimax problem in equation 5.1.

min maxi
Li

xi

subject to
n∑

i=1

xi = BS,

xi ∈ N+, i = 1, . . . , n

(5.1)

The batch size BS and the length of the n data sources Li are the input of the ILP
optimization. The total number of batches is determined by maxi

Li

xi
. The goal of the

optimization is to determine the number of samples per batch for each data source that
minimizes the total number of batches, thus the optimization needs a minimax objective
function. All the training batches are complete, so a limited number of data points are
replicated to compose the final batches of the epochs and avoid truncation.

Weighted train loss
While the batch sampler allows controlling the number of batches, thus the training time,
the weights in the loss function give more importance to samples coming from sources less
prevalent in the training batch.

As our goal is to learn a language model, which translates into the estimation of the
conditional probability distribution over labels of the model vocabulary, the optimization
criterion we use is the cross-entropy loss. Equation 5.2 shows this error function for a
given step t, where V is the vocabulary, st is the tth label of the input sequence, and ŷ t is
the probability distribution over the vocabulary at the tth step, i.e., how probable is each
label of the vocabulary given the input up to t− 1.

l(t)(s) = −
∑
v∈V

stvlog(ŷ
t
v) (5.2)

When dealing with a sequence of length T , the cross-entropy error over the entire input
is:

l(s) =
1

T

T∑
t=1

l(t)(s) = − 1

T

T∑
t=1

∑
v∈V

stvlog(ŷ
t
v) (5.3)

5| Pre-Training for Fashion Image Captioning 49

At each training step, to make each data source contribute the same as the other, inde-
pendently by its frequency in the batch, we aggregate the loss of the batch samples as in
equation 5.4:

L =
BS∑
i=1

w(si)l(si)
BS∑
i=1

w(si)

(5.4)

Weights are computed as the reciprocals of the frequencies of the data source in the batch:

w(s) =
BS

#samples coming from the same source of s
(5.5)

Figure 5.1 shows an example when the training batches contain 8 samples.

Figure 5.1: Example of weights given a batch assignment.

5.4. Noise generation
In this section, we present how it is possible to combine existing clothing samples to
improve the generalization capabilities of a fashion captioner.

Given that the data sources have different probability distributions over the feature space,
learning a common representation across datasets allows the model to catch and process
correctly more details in input samples; nevertheless, the model is prone to recognize
which is the data source that most probably includes the input sample. Due to this
behavior, the model generates the final caption using a generative style and information
related only to the dataset identified as the most suitable for the current input.

50 5| Pre-Training for Fashion Image Captioning

Figure 5.2: The input image and the metadata are from Fashiongen, which is not used in
the pre-training stage. The upper generated caption is less desirable as it relies only on
captions seen in the industrial dataset #3; contrary, the lower one mixes captions seen in
industrial dataset #3 and #1.

We present a method that introduces noise in the training samples as forged products
that mix data coming from different sources: in this way, the model is more robust and
able to generate more general caption of clothes without focusing only on a single source
of information, as the unintended discrimination among the training data sources is now
prevented.

5.4.1. Fashion taxonomies

We introduce noise in the training samples by combining products of different data sources:
a forged product has the image and the metadata coming from a dataset X while the target
caption from another dataset Y . The goal is to teach the model that both the semantic
and the syntax of the generated captions are independent by not relevant features like the
background of the image, having or not a human wearing the garment, or the metadata
format (e.g., the order of words).

The way the samples are mixed affects the performance of the captioner: combining
products at random, despite the ease of development, confuses the model as there is no
semantic relationship between the two samples merged; contrary a one-to-one mapping
between products of different sources would be very effective but too complex to achieve.
Our approach uses a reference taxonomy that guides the matching between products of
various sources, starting from the metadata associated with each product.

Dataset taxonomy
The first step is to build a taxonomy for each source involved in the pre-training.

Each dataset organizes the metadata associated with products in a tabular structure

5| Pre-Training for Fashion Image Captioning 51

specific to the particular dataset. This structure consists of a set of fields and a list
of admissible values for each of them. In principle, there is no hierarchical relationship
between the fields; however, there are fields more general than others that instead provide
low-level details about the products, making it possible to infer a hierarchy like “gender”
→“product department” →“category”. Values admissible for “product department” could
be “footwear” and “clothing”; while possible “category” values for items whose “product
department” is “footwear” could be “sneakers” and “boots”.

We follow this insight to build a taxonomy of a dataset: first, we infer a hierarchy among
the metadata fields; then, we scan the products of the dataset to build a tree according to
the previously defined hierarchy. Algorithm 5.1 shows the pseudo-code of the procedure.

Algorithm 5.1 Build taxonomy from dataset.
Require: D: dataset, H: hierarchy of fields of D

1: T ← Tree()

2: T.root← "root" //Insert a helper root in the tree
3: for d in D do
4: node← T.root

5: for h in H do
6: if d.h is not child of node then
7: insert(node, d.h) //Insert the value of h as child of node
8: end if
9: node← d.h

10: end for
11: end for
12: return T

By running algorithm 5.1 over all the data sources involved in the pre-training, we obtain
a taxonomy for each of them. Results are available in appendix A.

Reference taxonomy
Now that there is a way to get a tree-shaped taxonomy for each dataset, the challenge of
matching similar products across sources translates into finding pairings between leaves of
the trees. Assignments between taxonomies are manually designed by inspecting the trees,
and due to different levels of granularity in describing the garments through metadata,
pairings between leaves are not always symmetric. Figure 5.3 shows an example.

52 5| Pre-Training for Fashion Image Captioning

Figure 5.3: Pairings between two taxonomies when dealing with sweaters. The connections
are usually symmetric, except for cardigans. The taxonomy on the left (industrial dataset
#1) is more granular than the one on the right (fashiongen).

Having N taxonomies to match together with connections that are not always symmetric
implies at least N×(N−1)

2
set of rules to be coded. This process is expensive and time-

consuming, so we define an additional reference taxonomy T ∗ that acts as a proxy: each
dataset taxonomy Tn is mapped to the reference T ∗, reducing the total number of map-
pings to be coded to N . If clothing products of various sources share a leaf of the tree of
T ∗, then they are similar, thus suitable to forge hybrid samples.

We choose to define a new taxonomy T ∗ instead of using already available ontologies like
Fashionpedia: “an ontology built by fashion experts containing 27 main apparel categories,
19 apparel parts, 294 fine-grained attributes, and their relationships”1. This complex
ontology mainly provides semantic relationships between apparel parts of garments, which
is not the kind of relationship we require: we find out that only a tight portion of the
overall ontology might help in our use case, so we opt to design a new taxonomy. It is
entirely available in Appendix A, while figure 5.4 shows only a subset.

1https://fashionpedia.github.io/home/

https://fashionpedia.github.io/home/

5| Pre-Training for Fashion Image Captioning 53

Figure 5.4: Subset of the reference taxonomy.

5.4.2. Generation of forged samples

The generation of forged (or hybrid) samples leverages the mappings to the reference tax-
onomy T ∗ to introduce noise in the training samples by mixing similar clothing products.
As specified in the previous section, two products of various sources are similar, therefore
joinable, if they share the same leaf of the tree of T ∗.

Hybrid samples do not replace the original ones; they are new clothing products added
to the overall training set. Here we describe the entire generation process.

Each training sample consists of the triple <image, metadata, caption>, identified
through an id. The example below shows two product samples of two distinct datasets.

Before starting the training procedure, iterating over a source dataset X allows the ex-
traction of the metadata of each clothing sample s in X. The coded rules TX →T ∗ convert
the metadata from the structure defined by the dataset taxonomy TX to the structure
of the reference T ∗. The id of s and its converted metadata are stored to be used later
during the pre-training.

54 5| Pre-Training for Fashion Image Captioning

The same procedure is repeated for all the datasets.

At training time, with probability p, a product a is merged into another b to build a
new hybrid sample h. The mapping computed before allows retrieving the metadata of
a, represented according to the structure defined by T ∗: in this way, a similar product b

is selected by scanning the previously computed mapping of another dataset (chosen at
random). The final hybrid sample h contains the image and the metadata of a and the
caption of b.

Figure 5.5 shows a sample forged using the procedure described above.

Figure 5.5: Hybrid sample: it introduces noise in the training set by mixing similar
clothing products.

5.5. Fine-tuning
As discussed in 2.1.3, fine-tuning is an adaptation paradigm that aims to transfer and
apply the knowledge learned by a model into a new scenario.

In chapter 4, we show the main difference among the data sources we consider by com-
paring the various styles of the captions. When dealing with fashion captioning systems,

5| Pre-Training for Fashion Image Captioning 55

besides producing a semantically correct description, the model should generate captions
according to a particular structure: fine-tuning allows matching the stylistic decisions of
a fashion firm in describing garments through captions.

In our analysis, the pre-trained model is fine-tuned to a target dataset that was not used
during the previous learning stage. We only use a restricted fraction of the clothing sam-
ples available (5%) and a fixed limited number of epochs (5) to simulate a scenario in which
few training samples are available, and the learning procedure has a time constraint.

57

6| Contrastive Learning:
approach and model
architecture

We present a new architecture for Fashion Image Captioning that takes inspiration from
recent works that exploit contrastive learning objectives to tackle joint Computer Vision
and NLP tasks. In this chapter, first, we describe our Transformer-based model and how
it processes multi-modal input samples; afterward, we describe the pre-training options
that arise when considering a contrastive objective.

6.1. Vision-Text Multi-Encoder Decoder
The Transformer architecture [Vas+17] processes textual input samples through two “tow-
ers” of blocks: the encoding and the decoding stacks. Over the years, the research commu-
nity has revised this milestone architecture proposing several variations that exploit one
of the two stacks of blocks: BERT [Dev+19], an encoder-only Transformer, and GPT-2
[Rad+19], which instead use only decoding blocks.

Transformer-based models achieve state-of-the-art performance in all the NLP challenges,
and recently its application with images and joint image-text samples is being studied.
As analyzed in section 3.2, joint CV and NLP challenges like Image Captioning deal with
visual and textual sources, and models that pursue these challenges usually leverage a
projection or an adaptation layer to map the visual features into the very same stack of
blocks of the transformer-based architecture.

In the Fashion Image Captioning scenario, an input sample consists of a triple <image,
metadata, caption>, where image and metadata are two distinct but complementary
modalities in describing a garment, so their hidden representations should be quite alike
as they refer to the same clothing product.

Driven by this insight, we propose a Transformer-based architecture named Vision-Text

58 6| Contrastive Learning: approach and model architecture

Multi-Encoder Decoder that learns the visual and the metadata hidden representations us-
ing two different encoding stacks that keep the two modalities apart. It generates captions
of clothing products focusing on images and metadata by exploiting two cross-attention
layers on the decoding side. Figure 6.1 shows an overview of the model architecture.

Figure 6.1: Vision-Text Multi-Encoder Decoder architecture.

The encoders learn their hidden representations according to the overall language model-
ing objective but mutually conditioned by a contrastive restraint that keeps their repre-
sentations close. This additional contrastive loss is described later on in the chapter.

6.1.1. Extension of the Transformer decoder block

The decoder block proposed in [Vas+17], here presented in figure 6.2a, has a cross-
attention layer that uses key and values vectors obtained by the output of the top encoder
block, and query vectors from the previous block of the decoding stack. The Transformer
leverages the cross-attention mechanism to focus on relevant parts of the input during the
generation process.

Our model requires that the decoder attends not only the output of a single encoding
stack but two of them, as the visual and textual modalities are treated separately. To do
so, we extend the standard decoder block by adding a multi-head attention layer and an
additional normalization layer as reported in figure 6.2b.

6| Contrastive Learning: approach and model architecture 59

(a) Standard decoder block. (b) Vision-Text MED decoder block.

Figure 6.2: Comparison between the decoder blocks of the standard Transformer and
Vision-Text Multi-Encoder Decoder.

This extension of the decoder block is independent of the modality of the encoders (vi-
sual/textual). This structure is also proposed in [Zho+20], where used in a transformer
architecture that faces the challenge of code-switching for speech recognition.

6.2. Contrastive objective
The image and metadata are complementary ways to describe a clothing product, and
ideally, regardless of the modality, their embeddings are nearby in shared representation
spaces. To promote this behavior, our Vision-Text Multi-Encoder Decoder leverages the
contrastive pre-training objective proposed in CLIP [Rad+21], applied to images and
textual metadata of the fashion domain. Figure 6.3 provides an illustration of the pre-
training steps.

60 6| Contrastive Learning: approach and model architecture

Figure 6.3: The vision and the text encoders are jointly trained to predict the correct
pairings between images and metadata of the current training batch. Image adapted from
[Rad+21].

The goal is the prediction of the correct pairings between images and metadata of the
current training batch. Given a batch size of N , there are N × N pairings, so N2 − N

incorrect matchings. In practice, the embeddings of the image encoder and the text
encoder are projected to a multi-modal representation space, and a similarity measure
(cosine) is maximized for the N correct pairs of image and metadata embeddings while
minimized for the other N2−N . To perform this optimization is used a symmetric cross-
entropy computed over the similarities scores. Algorithm 6.1 shows the pseudo-code to
compute the final loss.

Unlike CLIP, which is used for Image Classification, our goal is the generation of captions
of clothing products having as input their images and metadata. The model generates
the captions through a decoding stack trained using a language modeling objective, while
the overall learning procedure can leverage the contrastive pre-training in two different
ways: using a multi-objective loss function or through a pre-alignment stage.

6.2.1. Multi-objective optimization

To take advantage of the contrastive alignment of vision and text embeddings, one option
is to train simultaneously the model with the language modeling objective (cross entropy)
and the loss computed as in Algorithm 6.1 in a multi-objective manner:

L = λLcontrastive + (1− λ)Lc.e. (6.1)

6| Contrastive Learning: approach and model architecture 61

Algorithm 6.1 Contrastive loss computation.
Require: I: set of N images; T : set of N textual metadata;

//extraction of image and metadata features
1: If ← vision_encoder(I) //shape: N × dimage

2: Tf ← text_encoder(T) //shape: N × dtext
//projection to a shared embedding space

3: Ie ← vision_projection(If) //shape: N × de
4: Te ← text_projection(Tf) //shape: N × de

//normalization and computation of the scaled cosine similarity matrix
5: Ie ← normalize(Ie)
6: Te ← normalize(Te)
7: S = Ie · Te × scale_param //shape N ×N

//loss computation
8: labels = range(0, N − 1)
9: lossimage = cross_entropy(S, labels, axis = 0)

10: losstext = cross_entropy(S, labels, axis = 1)

11: loss =
lossimage+losstext

2

12: return loss

where the hyperparameter λ ∈ [0, 1].

In this way, the pre-training procedure has a single stage in which the model is trained
according to a joint generative and contrastive objective function.

6.2.2. Pre-alignment

Another option that arises when considering the contrastive objective is to split the pre-
training procedure into two separate stages: a former that performs the self-supervised
alignment of the encoders embeddings and a second one in which the overall model is
updated based on the generative criteria. The model input in the first stage consists of
<image, metadata> pairs, while in the second one the caption of clothing products is
also included.

As we describe in chapter 4, two out of four data sources have multiple images associated
with the same product sample, and when training an image captioner to learn a language
model, we use the most relevant image among the available ones. When performing the
initial contrastive alignment, we add the possibility to include also less informative images
through a weighted random selection: if available, the data source organizes the images of
a product according to their importance (for example, first the frontal picture, then the
complete outfit, and lastly the cropped details of the garment); we associate a probability
to each image proportional to its importance.

62 6| Contrastive Learning: approach and model architecture

Since the number of images associated with each product is variable, we compute the
probabilities of each image using a cumulative distribution function defined as:

FX(k) =

tanh(α · k), if k < nIMAGES

1, if k = nIMAGES

(6.2)

where α is a hyperparameter that we set equal to 2
nIMAGES

. Figure 6.4 shows an example.

Figure 6.4: Weighted random selection of the images of a garment when the total number
of images is four.

63

7| Experiments and Results

7.1. Evaluation metrics
To compare the results of several experiments involving image captioning systems, we
use a set of evaluation metrics that use different criteria to measure the correspondence
between the machine computed sentences and the ground truth captions. The scores we
consider in the performance evaluations are BLEU, GLEU, METEOR, and ROUGE: each
generated caption of the model under analysis is compared with its reference, computing
a single score; then they are averaged over the whole test partition to provide an estimate
of the overall quality of the image captioner.

BLEU

The underlying idea of BLEU [Pap+02] to measure the performance of a machine trans-
lation is that “the closer a machine translation is to a professional human translation, the
better it is”. BLEU-n measures the similarity between a candidate text with a reference
by using a modified n-gram precision.

The classic n-gram precision computes the number of n-grams in the candidate text which
occur in the reference (ground truth) divided by the total number of n-grams in the
candidate text. Reaching a high precision does not always imply a high-quality generated
text: generating a large number of times an n-gram which is in the reference text reflects in
a high precision score even though the resulting candidate is highly improbable. Therefore,
BLEU-n computes a modified n-gram precision by first counting the maximum number
of times an n-gram occurs in the reference text, then the total count of each candidate
n-gram is clipped by its reference count. Finally, the sum of the clipped count of each
candidate n-gram is divided by the unclipped count of the n-grams in the candidate text.
Table 7.1 includes the example proposed in [Pap+02].

64 7| Experiments and Results

Candidate the the the the the the the.

Reference #1 The cat is on the mat.

Reference #2 There is a cat on the mat.

Table 7.1: The unigram precision is 7
7
, as the word “the” is a matching unigram that

appears 7 times in the candidate text, whose total number of unigrams is 7. The modified
unigram precision is instead 2

7
: the clipped count of the word “the” is 2, which is the

maximum count of that unigram in any reference text. The words used to compute the
modified precision are underlined.

A slightly different score known as GLEU (Google BLEU) [Wu+16] was designed to be a
single sentence metric instead of a corpus measure. It computes the 1, 2, 3, and 4-grams
of the candidate and target sentences, then provides as final score the minimum between
the recall and precision, where the former is the ratio between the number of matching
n-grams and the total number of n-grams in the ground truth sentence, and the latter is
the ratio between the number of matching n-grams and the total number of n-grams in
the candidate sequence. This score is still in [0, 1] and is symmetrical when switching the
candidate and target sentences.

METEOR

METEOR [BL05] is a machine translation metric that relies on unigram matching, but
differently from other scores, it leverages linguistic properties to make matchings that
take into account the root and the meaning of words by using stemming and synonyms
matching techniques.

Given a candidate and a reference sentence, METEOR computes an F-score weighted
through a penalty term that measures the level of fragmentation of the matched unigrams
in the reference sentence. Unigram precision P and recall R are computed as:

P =
m

uC

, R =
m

uR

where m is the number of unigrams of the candidate sentence that are also in the reference,
uC is the total number of unigrams in the candidate sentence, and uR is the total number
of unigrams in the reference text. The F-score weights the recall nine times more than
the precision:

F =
10PR

P + 9R

7| Experiments and Results 65

To take into account how the matching of unigrams reflects over larger portions of texts,
METEOR computes an alignment between the two sentences. An alignment is a mapping
between unigrams of the two sequences, such that every unigram can be associated with
at most one unigram of the other. Matched unigrams that are adjacent both in the
candidate and in the reference compose a chunk. METEOR computes the alignment that
has the fewest possible number of chunks. The penalty term P is computed as follows:

penalty = 0.5× (
#chunks

#unigrams_matched
)3

It decreases as the number of chunks decreases while it is at most 0.5 if there are no
matched bigrams. The final meteor score is:

METEOR = F × (1− penalty)

ROUGE

ROUGE [Lin04] is a set of metrics devised to evaluate automatic summarization but gen-
erally adopted when dealing with machine translations. Among all the available ROUGE
measures, we consider ROUGE-N and ROUGE-L.

Given two sentences, a candidate and a reference, ROUGE-N computes the n-gram recall
between the candidate and the reference as

ROUGE-N =
number of matching n-grams

total number of n-grams in the reference

ROUGE-N is formally defined as a recall measure, but it is possible to extend this metric
considering either the precision or the F-score.

ROUGE-L computes the longest common subsequence between the generated text and
the reference sentence. The idea proposed in [Lin04] is that “the longer the LCS is, the
more similar the two texts are.” Given a candidate sequence X and a reference text Y ,
whose lengths are m and n respectively, the final score Flcs is:

Rlcs =
LCS(X,Y)

n
, Plcs =

LCS(X,Y)

m

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs

The advantage of ROUGE-L is that it considers in-sequence matches instead of exact

66 7| Experiments and Results

consecutive matchings; moreover, it does not require a predefined n-gram length.

7.2. Experimental setup
We performed all the experiments using Amazon Web Services1 instances (p2.xlarge)
equipped with one NVIDIA Tesla K80 GPU.

The models along with the training and evaluation procedures are developed in Python
using PyTorch2 and PyTorch Lightning3 frameworks. The core implementation of the
Transformer-based architectures used in our experiments is available in the Hugging Face
Transformers4 library. This library provides thousands of pre-trained models that deal
with different modalities such as text, vision, and audio.

The visual processor component of each image captioner model we analyze receives as
input a normalized tensor of size 224x224, which is randomly horizontally flipped with
50% probability during training. All the experiments have been conducted using an
early stopping callback and the Adam optimization algorithm with a plateau learning
rate scheduler. The scheduler allows the learning rate to decrease by a 0.1 factor when
the validation loss stops improving; we set the patience parameter of the early stopping
callback as ~2× the one of the scheduler.

7.3. Model comparison
In this section, we analyze the performance of different approaches of Image Captioning
systems that deal with fashion products. The architectures under observation are based
on the ones presented in chapter 3.

Show, Attend, and Tell vs Image GPT-2

The first architecture we analyze is the one proposed in Show, Attend, and Tell [Xu+15].
It consists of a ResNet encoder that process images, an LSTM decoder to generate captions
of products, and an attention layer that allows the decoder to focus on relevant parts of
the input image at each decoding step. More details of this captioning architecture are
available in section 3.2.1.

We compare this model with Multimodal GPT-2 presented in [PSC20]. Multimodal GPT-
1https://aws.amazon.com/
2https://pytorch.org/
3https://www.pytorchlightning.ai/
4https://github.com/huggingface/transformers

https://aws.amazon.com/
https://pytorch.org/
https://www.pytorchlightning.ai/
https://github.com/huggingface/transformers

7| Experiments and Results 67

2, described in sec 3.2.3, is an encoder-decoder architecture that exploits a ResNet encoder
and the GPT-2 Transformer as decoding module. To perform a fair comparison, as
the Multimodal GPT-2 generates captions receiving as input images and metadata while
the Show, Attend, and Tell model process only images, we do not use the additional
textual metadata as input of Multimodal GPT-2, here referenced simply as Image GPT-
2. Additionally, since GPT-2 leverages an extensive pre-training over almost 40 GB of
textual sources as initialization of the token embeddings, we initialize the embeddings
of the Show, Attend, and Tell decoder using the one of GPT-2. The goal is to leverage
the expensive pre-training on both two architectures: to do so, besides the embeddings
initialization, the Show, Attend, and Tell decoder uses the vocabulary and the tokenizer
of the pre-trained GPT-2 model. This is necessary to enforce that the Show, Attend, and
Tell decoder module maps word pieces of captions in the correct token embeddings, as
learned by the pre-trained GPT-2 model.

Results Table 7.2 summarizes the results obtained by the two models on the Fashiongen
dataset and the industrial dataset#1.

Algorithm BLEU GLEU METEOR ROUGE ROUGE-L
Results on Fashiongen

Show, Attend, and Tell 37.39 22.89 41.49 53.12 50.33
Image GPT-2 48.19 29.56 51.70 61.56 57.83

Results on the industrial dataset#1
Show, Attend, and Tell 28.65 12.95 23.32 35.57 26.09

Image GPT-2 31.85 16.03 27.33 38.25 29.55

Table 7.2: Results of Show, Attend, and Tell and Image GPT-2 on the Fashiongen dataset
and the industrial dataset#1.5

According to the results, Image GPT-2 achieves a higher score than the Show, Attend,
and Tell model in all the metrics. Both architectures use a ResNet-150 visual feature
extractor but differ from their decoding module and the way the attention is computed.
Image GPT-2 uses a GPT-2 decoding module that leverages the self-attention layer of
the Transformer to focus on the input and all the previously generated textual tokens.
Using this layer in each block of the decoding stack, Image GPT-2 captures fine-grained
details of the input image and achieves better performance than the Show, Attend, and
Tell model, which instead uses an LSTM decoding module.

5The table reports the model results according to a subset of metrics: the ‘BLEU’ and ‘ROUGE’ scores
refer to BLEU-1 and ROUGE-1, respectively. Scores related to other choices of n-grams are consistent
with the ones provided, thus omitted. More detailed results are available in Appendix B.

68 7| Experiments and Results

OSCAR vs Multimodal GPT-2

OSCAR [Li+20] is one of the most common architectures for Image Captioning, so we
analyze its performance when applied to caption fashion products. As described in 3.2.2,
OSCAR defines a pre-training method that processes as input the regions of the input
image along with the object tags provided by an object detection module. Its performance
relies on the ability of the object detector to correctly provide object tags and relevant
regions of the input images: OSCAR uses a Faster R-CNN to extract a set of visual
features along with their semantics in the form of textual labels, as for the example
shown in figure 7.1.

Figure 7.1: Example of the visual semantics extracted by the object detector module used
by OSCAR.

Since in our scenario the metadata associated with clothing products are already available,
there is no need to rely on modules that provide such information: we build training
samples as the triple <image, metadata, caption> and analyze the OSCAR pre-training
method applied to its BERT-based architecture without relying on an object detection
module. In our analysis, we refer to this architecture as OSCAR*. Figure 7.2 shows how
we adapt the architecture presented in [Li+20] to our use case.

Figure 7.2: Our adaptation of OSCAR for Fashion Image Captioning.

We choose to compare this model with Multimodal GPT-2 because the former reaches
state-of-the-art performance on several datasets available for Image Captioning by using a
masked language model objective, and the latter is specifically designed to deal with fash-
ion clothing products and reaches high-level performance by solving a language modeling
task using a generative learning objective.

7| Experiments and Results 69

Results Table 7.3 summarizes the results obtained by the two models on the Fashiongen
dataset and the industrial dataset#1.

Algorithm BLEU GLEU METEOR ROUGE ROUGE-L
Results on Fashiongen

OSCAR* 42.16 24.01 46.01 56.00 52.03
Multimodal GPT-2 48.87 30.33 52.44 62.41 58.72

Results on the industrial dataset#1
OSCAR* 39.26 22.71 37.84 49.60 38.59

Multimodal GPT-2 41.14 24.35 39.97 50.66 39.39

Table 7.3: Results of OSCAR* and Multimodal GPT-2 on the Fashiongen dataset and the
industrial dataset#1.5

The two architectures achieve a good level of performance in all the metrics, with Multi-
modal GPT-2 that overcome OSCAR* in both datasets. According to the results, training
a Transformer-based fashion image captioner using a generative objective allows reaching
higher performance in describing clothing products: such captions, as we described in
chapter 4, are long descriptions of the input images and are usually more complex than
the ones available in the general Image Captioning task, making the use of the GPT-2 de-
coder and its generative learning objective more effective than using a pre-trained BERT
encoder.

Comparing the results achieved by Multimodal GPT-2 in the two scenarios, where in the
first one it generates captions using only images (therefore named Image GPT-2) while
in the second one it also uses the metadata associated with clothing products, having
a multi-modal input leads to better performance. This achievement is deeply analyzed
in [PSC20]: leveraging the metadata of products along with their images improves the
generation capability of the image captioner; in our experiments, this improvement is
more significant for the industrial dataset#1 than the Fashiongen dataset, as the latter
contains less detailed and shorter metadata than the former.

Notice that in the experiments described above, we do not perform an extensive hyper-
parameter search: it is out of the scope of our research work, and the results we collect
through these experiments are used to determine the most promising architecture for Fash-
ion Image Captioning, which according to our work turns out to be Multimodal GPT-2.
We use this model to perform a deep transfer learning analysis following the approach
described in chapter 5.

70 7| Experiments and Results

7.4. Transfer Learning analysis
The image captioning architectures we have compared in the previous section are made
up of deep learning technologies that, as discussed in chapter 2.1.1, can effectively process
visual and textual inputs, achieving high-level performance at the cost of a long learning
time and a large amount of data. Those models rely on statistical properties that cause a
significant drop in the model performance when the distribution of the input data changes.
Moved by this behavior, our work focuses on exploiting transfer learning to build fashion
image captioning models that still achieve competitive performance when employed with
clothing products collected from a different distribution from the one used for training.

In the following sections, first, we define a source and a target dataset. The models
trained on only one of these two datasets determine the upper and lower bounds of
the performance of the model under analysis; then, we follow the pre-training approach
presented in chapter 5 to bridge the gap to “target-only” models, which are the models
that are extensively trained and then tested on clothing samples that come from the same
data distribution.

Reference models

The first step of our analysis is the selection of a source and a target dataset. In our transfer
learning scenario, we define as target-only model the model with the best achievable
performance on the target dataset; therefore, it is obtained when train and test datasets
lean on the same data distribution, i.e., belong to the same dataset. On the other hand, the
source-only model represents the simple condition in which an already available captioning
system, trained on the source dataset, is used with clothing samples of a different dataset
without adopting any pre-training or adaptation technique that eases the transfer of
learned representations.

Data In the following experiments, among the data sources presented in chapter 4,
we use Fashiongen, the industrial dataset#1, and industrial dataset#2. Depending on
whether we consider the source-only or the target-only model, we compute the final perfor-
mance on Fashiongen and the industrial dataset#2 when trained using the train partition
of the very same source or the one of the industrial dataset#1.

Target-only experiments We train Multimodal GPT-2 using the train partition of
Fashiongen and the industrial dataset#2 and assess its performance on their test one,
respectively. Table 7.4 shows the results.

7| Experiments and Results 71

Algorithm BLEU GLEU METEOR ROUGE ROUGE-L
Results on Fashiongen

Multimodal GPT-2 48.87 30.33 52.44 62.41 58.72
Results on the industrial dataset#2

Multimodal GPT-2 49.41 31.72 53.50 61.56 56.28

Table 7.4: Results of Multimodal GPT-2 on the Fashiongen dataset and the industrial
dataset#2. These models are trained and tested on the respective target source.

The time and data requirements to achieve these results are provided in table 7.5.

Target Dataset #Train Samples GPU Time
Fashiongen 54132 12169 sec (1.55 days)

Industrial dataset#2 39282 8456 sec (1.08 days)

Table 7.5: Time and data requirements to train the target-only models.

Source-only experiments Here we train Multimodal GPT-2 using the train partition
of the industrial dataset#1 and then assess its performance using the test partitions of
Fashiongen and the industrial dataset#2. The results are available in table 7.6. No
adaptation or pre-training techniques are applied in this experiment: we use the model
as it is, after training on the industrial dataset#1.

Model BLEU GLEU METEOR ROUGE ROUGE-L
Results on Fashiongen

source-only 3.18 -93.50% 0.83 -97.26% 3.15 -93.99% 5.46 -91.26% 4.64 -92.10%

target-only 48.87 30.33 52.44 62.41 58.72
Results on the industrial dataset#2

source-only 8.62 -82.55% 2.40 -92.43% 10.74 -79.92% 12.91 -79.02% 9.64 -82.87%

target-only 49.41 31.72 53.50 61.56 56.28

Table 7.6: Results of Multimodal GPT-2 on the Fashiongen dataset and the industrial
dataset#2 when trained on the industrial dataset#1. These models are the source-only
references when considering as target source Fashiongen or the industrial dataset#2. To-
gether with the scores, we report also the drop in the performance.

Table 7.6 reports the drop in the performance between the source-only and target-only
models. The gap between the two defines the region in which we operate through our
pre-training and adaptation techniques to reduce the drop.

72 7| Experiments and Results

The target-only model clearly determines the correct product category and high-level
details of the clothing sample in input, like the color of the garment and the target
gender of the clothes; sometimes, it misses fine-grained features and generates a final
product description that contains similar but wrong details compared to corresponding
the ground truth. For example, it might mix up the type of fastening of a garment without
distinguishing press-studs, zips, or buttons.

As expected, the source-only model struggles even in determining details of clothing prod-
ucts that seem easy to catch: changing the distribution of the input samples makes the
model unable to distinguish the main features of the garment like its category or the
target gender. This wrong behavior is due to the less relevant details in the input sample
that the model learns as critical for the final description of the garment. Examples could
be the background, having or not having a person wearing the clothing product, and even
the particular type of shot of the input image (like the pose of the fashion model).

Figure 7.3 provides examples of captions generated by the source-only and the target-only
models, compared with the corresponding ground truth.

Metadata: clothing, women, pants, trousers.
Ground truth: Pillar-leg trousers in black. Accordion pleats throughout. Six-pocket styling
with removable patch pocket at legs with press-stud fixtures. Tonal stitching. Button fly.
Source-only: The excellence of materials enriches the essential and versatile style of the new
Crispy silk shirt. Manufacturing of the refined transparent and slightly shimmering fabric
characterizes the garment with a sporty touch, while the edges of the sleeves showcase a pre-
cious artisanal embellishment. The fit is comfortable with slightly dropped shoulders.
Target-only: Wide-leg pleated culottes in black. Four-pocket styling. Zip-fly. Tonal stitch-
ing.

Metadata: clothing, t-shirts & vests, polo, men, tshirts, blue.
Ground truth: Short-sleeved polo shirt in cotton piqué with a printed pattern. Collar button
placket and short slits at sides.
Source-only: The excellence of materials enriches the casual style of these new shorts from the
Travelwear line, dedicated to moments of relaxation and free time. Lightweight techno cotton
French terry is combined with contrast color elasticated edges on the sleeves and bottom. The
fit is comfortable both in the seat and along the leg.
Target-only: Short-sleeved polo shirt in cotton jersey with a collar button placket and short
slits at sides.

Figure 7.3: Comparison between the captions generated by the target-only and the source-
only models with the corresponding ground truth: the captions generated by the target-
only models match the clothing categories of the related ground truths; the source-only
models, instead, predict a wrong clothing category. Finer details that the target models
mispredict are highlighted. The upper clothing product belongs to Fashiongen while the
lower one to the industrial dataset#2.

7| Experiments and Results 73

Pre-Training

The first way to tackle the gap in performance between the source-only and target-only
models is by considering a pre-training procedure that learns a more general representation
of the input samples. We showed that using an already available fashion image captioner
on clothing samples that belongs to a new input distribution is not feasible because the
model learns non-relevant patterns in the input samples of the training set that prevent the
model generalization capabilities. We use the pre-training procedure defined in chapter
5 to make the model learn a more general representation of the input, improving its
performance on unseen data distributions. The main aspects of this procedure are the
simultaneous learning from multiple sources through a stratified batch sampler along with
a weighted loss function and the generation of noisy samples. Chapter 5 provides all the
implementation details.

Data We assess the performance of our pre-training method on the test partition of the
Fashiongen dataset and the industrial dataset#2. The model learns from multiple sources
but is tested on a new distribution, so, according to the final target dataset, we leverage
all the datasets described in chapter 4 as stated in table 7.7.

Pre-Train Target
Industrial dataset#1
Industrial dataset#2
Industrial dataset#3

Fashiongen

Industrial dataset#1
Fashiongen
Industrial dataset#3

Industrial dataset#2

Table 7.7: Assignment of datasets among pre-training and test sources: the train partition
of the dataset used to assess the model performance is not available during the pre-training
stage.

We add 5% of noise according to the procedure described in chapter 5: before training,
we use Algorithm 5.1 to generate a taxonomy for each train source; they are used to
define the rules that allow the generation of noisy samples following the steps discussed
in section 5.4.2.

Results Table 7.8 compares the results achieved by the pre-trained model with the
source-only and the target-only models, using the available data sources as described
above. A model trained according to our pre-training approach achieves higher scores

74 7| Experiments and Results

than the source-only model and reduces the gap in performance between the two reference
models. Models of both datasets benefit from the pre-training procedure, even though
the model tested on Fashiongen registered the highest increment.

Model BLEU GLEU METEOR ROUGE ROUGE-L
Results on Fashiongen

source-only 3.18 -93.50% 0.83 -97.26% 3.15 -93.99% 5.46 -91.26% 4.64 -92.10%

pre-training 10.59 -78.33% ↑15.17 3.89 -87.18% ↑10.08 13.59 -74.09% ↑19.89 23.52 -62.32% ↑28.94 17.95 -69.44% ↑22.66
target-only 48.87 30.33 52.44 62.41 58.72

Results on the industrial dataset#2
source-only 8.62 -82.55% 2.40 -92.43% 10.74 -79.92% 12.91 -79.02% 9.64 -82.87%

pre-training 10.85 -78.03% ↑4.52 3.68 -88.40% ↑4.04 12.94 -75.81% ↑4.10 18.77 -69.51% ↑9.51 14.48 -74.27% ↑8.60
target-only 49.41 31.72 53.50 61.56 56.28

Table 7.8: Performance of our pre-training methodology applied to Multimodal GPT-2
when tested on the Fashiongen dataset and the industrial dataset#2. Together with the
scores and the drop in the performance, the table shows the improvement compared to
the source-only model.

As reported in figure 7.4, the generalization capability of the fashion captioner increases:
the model is now able to recognize the correct clothing category of the input product
(source-only models identify “trousers” for “jackets” and a “polo shirt” for “shorts”);
though, it can struggle with close colors or finer details like the type of collar (a “polo”
collar is described as a “crewneck”).

Besides catching the correct details in the input, an important aspect is the structure of the
generated caption: each data source adopt a singular style in describing products, which
is the result of brand-related design choices such as the type of narrative, or which kind of
information should or should not be in a textual description. For example, the Fashiongen
dataset requires that the final captions include information about the color of the garment
and are characterized by multiple short sentences; otherwise, the ground truth captions
of the industrial dataset#2 are single-sentence and do not include information about the
color. A fashion image captioner does not learn these stylistic choices when trained only
with sources that adopt a structure of captions different from the target one, and metrics
that rely only on n-gram matching can get low-level scores even with semantically correct
output captions.

A captioning model can learn source-dependent properties, like the ones identified above,
through an adaptation paradigm like fine-tuning, which is the approach we chase in the
following experiment.

7| Experiments and Results 75

Metadata: clothing, women, pants, trousers.
Ground truth: Tapered wool trousers in black. Pinstripe throughout in white. Four-pocket
styling. Unfinished hem at ankle cuffs. Zip-fly. Tonal stitching.
Source-only: The excellence of materials enriches the essential and versatile style of the
Crispy silk new outerwear jacket. […]
Pre-Training: Slim fit trousers in washed stretch twill with a regular waist zip fly and button
and skinny legs.
Target-only: Straight-leg wool trousers in black. Four-pocket styling. Pleats at front. Zip-
fly. Partially lined. Tonal stitching.

Metadata: clothing, t-shirts & vests, polo, men, tshirts, blue.
Ground truth: Short-sleeved polo shirt in cotton piqué with a printed pattern. Collar button
placket and short slits at sides.
Source-only: The excellence of materials enriches the casual style of these new shorts from
the Travelwear line. […]
Pre-Training: Long sleeve cotton jersey t-shirt in black. Rib knit crewneck collar. Logo
printed in white at front. Tonal stitching.
Target-only: Short-sleeved polo shirt in cotton jersey with a collar button placket and short
slits at sides.

Figure 7.4: Comparison between the captions generated by the pre-trained model with the
ones provided by the model references and the corresponding ground truth: the quality
improves since the main features of the clothes are predicted correctly, but still there
could be mispredicted words in each caption.

Fine-tuning

Leveraging previously learned representations of deep learning models without adapting
them to the new scenario does not allow the model to learn dataset-dependent properties.
As discussed in the previous experiment, the structure of captions to predict is a deter-
mining factor for the quality of a fashion image captioner, and models that tackle this
challenge can provide such structures of output sentences only by performing additional
learning steps with clothing samples belonging to the target distribution.

In this experiment, we fine-tune the pre-trained model on the target dataset by using
a limited amount of training samples for a fixed number of epochs. More in detail,
the architecture is initialized using the weights of the pre-trained model, and the training
procedure does not end according to an early stopping callback but it lasts five epochs only.
In this way, besides producing a semantically correct description, the output sentences of
the fashion image captioner follow the stylistic decisions of the target data source.

Data We use the two pre-trained models of the previous section and fine-tune them
on the Fashiongen dataset and the industrial dataset#2, respectively. The number of
training samples used in this experiment is limited and fixed to 5% of the train partition.

76 7| Experiments and Results

Table 7.9 provides a detailed recap of the training datasets used in each stage of our
analysis according to the target dataset.

Target dataset
Fashiongen Industrial dataset#2

target-only Fashiongen Industrial dataset#2
source-only Industrial dataset#1 Industrial dataset#1
pre-training Industrial dataset#1 Fashiongen

Industrial dataset#2 Industrial dataset#1
Industrial dataset#3 Industrial dataset#3T

ra
in

da
ta

se
ts

fine-tuning Fashiongen (5%) Industrial dataset#2 (5%)

Table 7.9: Recap of the training datasets used in each stage of our analysis according to
the target dataset.

Results Table 7.10 provides the scores achieved by the fine-tuned models along with
the performance of the pre-trained ones and the two references. As expected, fine-tuning
allows covering a large portion of the gap in the performance between the source-only and
target-only models.

Model BLEU GLEU METEOR ROUGE ROUGE-L
Results on Fashiongen

source-only 3.18 -93.50% 0.83 -97.26% 3.15 -93.99% 5.46 -91.26% 4.64 -92.10%

pre-training 10.59 -78.33% ↑15.17 3.89 -87.18% ↑10.08 13.59 -74.09% ↑19.89 23.52 -62.32% ↑28.94 17.95 -69.44% ↑22.66
fine-tuning 31.28 -35.99% ↑57.50 19.60 -35.37% ↑61.89 36.62 -30.16% ↑63.83 50.06 -19.80% ↑71.46 47.80 -18.60% ↑73.50
target-only 48.87 30.33 52.44 62.41 58.72

Results on the industrial dataset#2
source-only 8.62 -82.55% 2.40 -92.43% 10.74 -79.92% 12.91 -79.02% 9.64 -82.87%

pre-training 10.85 -78.03% ↑4.52 3.68 -88.40% ↑4.04 12.94 -75.81% ↑4.10 18.77 -69.51% ↑9.51 14.48 -74.27% ↑8.60
fine-tuning 28.17 -42.97% ↑39.58 14.67 -53.76% ↑38.67 30.14 -43.66% ↑36.25 41.36 -32.82% ↑46.21 36.81 -34.60% ↑48.26
target-only 49.41 31.72 53.50 61.56 56.28

Table 7.10: Comparison of the performance achieved in each step of our transfer learning
methodology applied to Multimodal GPT-2 when tested on Fashiongen and the industrial
dataset#2. The last fine-tuning step allows covering a large portion of the gap in perfor-
mance between source-only and target-only models.

Notice that, as stated in table 7.11, these levels of performance are achieved through a
highly constrained training procedure characterized by a small number of training samples
(5%) and training epochs (5), which reflects on a drastic reduction of the time requirements
with respect to the one of the target-only model provided in table 7.5 (3.5% of the total
time to train the target is now required). These results underline the benefits of leveraging
a pre-trained architecture when dealing with constraints such as costly or limited training
samples and computing resources with bounded training time or memory.

7| Experiments and Results 77

Target Dataset #Train Samples GPU Time
Fashiongen 2706 4275 sec (1.18 h)

Industrial dataset#2 1964 3556 sec (0.98 h)

Table 7.11: Time and data requirements to fine-tune the pre-trained models.

Through this adaptation step, the model learns the information to include in the final cap-
tion and the particular type of narrative to use in describing the garment in input. Figures
7.5 provide complete examples taken from Fashiongen and the industrial dataset#2.

Metadata: clothing, women, pants, trousers.
Ground truth: Tapered wool trousers in black. Pinstripe throughout in white. Four-pocket
styling. Unfinished hem at ankle cuffs. Zip-fly. Tonal stitching.
Source-only: The excellence of materials enriches the essential and versatile style of the
Crispy silk new outerwear jacket. […]
Pre-Training: Slim fit trousers in washed stretch twill with a regular waist zip fly and button
and skinny legs.
Fine-Tuning: Slim-fit cotton twill trousers in black. Mid-rise. Four-pocket styling. Zip-fly.
Tonal stitching.
Target-only: Straight-leg wool trousers in black. Four-pocket styling. Pleats at front. Zip-
fly. Partially lined. Tonal stitching.

Metadata: clothing, t-shirts & vests, polo, men, tshirts, blue.
Ground truth: Short-sleeved polo shirt in cotton piqué with a printed pattern. Collar button
placket and short slits at sides.
Source-only: The excellence of materials enriches the casual style of these new shorts from
the Travelwear line. […]
Pre-Training: Long sleeve cotton jersey t-shirt in black. Rib knit crewneck collar. Logo
printed in white at front. Tonal stitching.
Fine-Tuning: T-shirt in cotton jersey with a printed design.
Target-only: Short-sleeved polo shirt in cotton jersey with a collar button placket and short
slits at sides.

Figure 7.5: Comparison between the captions generated by the models involved in each
step of our transfer learning analysis: the adaptation through fine-tuning improves the
quality of the generated captions by learning source-dependent properties that were missed
by leveraging only the pre-training stage.

The captions generated by the fine-tuned models follow the structure of the ground truth:
the model fine-tuned on Fashiongen predicts an output caption that, differently from the
pre-trained model, includes correct information about the color and consists of multiple
short sentences as more appropriate to describe clothing products belonging to this data
source.

78 7| Experiments and Results

7.5. Vision-Text Multi-Encoder Decoder
In this section, we analyze the Vision-Text Multi-Encoder Decoder architecture presented
in chapter 6 applied to the task of Fashion Image Captioning. We discuss the training
options that arise when considering a contrastive objective applied to our transfer learning
analysis, comparing the performance of our architecture with Multimodal GPT-2.

In the following experiments, each encoder/decoder stack of the Vision-Text Multi-Encoder
Decoder architecture is initialized using the weights of a pre-trained model available in
the Hugging Face Transformers6 library. The vision encoder is a ViT model pre-trained
using the BEiT masked image modeling task [BDW21], the text encoder is a pre-trained
uncased BERT, and the decoder uses the weights of the pre-trained GPT-2 model.

Transfer Learning analysis

The training methodology presented in chapter 5 does not depend on the particular choice
of deep learning technologies that build the overall image captioning model. So, moved
by the same goal of the analysis carried out in section 5, we investigate the transfer
learning capabilities of the Vision-Text Multi-Encoder Decoder architecture through the
same learning procedure but adding a contrastive learning objective.

As done for the experiments in section 7.4, the first step of our analysis is the definition
of the source-only and the target-only models that define a range of performance that
the pre-training method aims to thin. Then, we leverage our pre-training procedure
exploiting several data sources to learn a general representation according to multiple
data distributions; finally, the fine-tuning stage allows the adaptation of the pre-trained
architecture to the target dataset, making the model able to match the stylistic properties
defined by the target source.

Data The setup of the experiments and the use of data sources are the same as the ones
in section 7.4. We assess the performance of Vision-Text Multi-Encoder Decoder using
the test partitions of the Fashiongen dataset and the industrial dataset#2; the train data
sources vary according to the learning stage or if the model is one of the two references.
The target-only model is trained using the samples of the train partition belonging to
the same dataset used for testing, while the train dataset of the source-only reference is
the industrial dataset#1. The pre-training procedure leverages all the datasets presented
in chapter 4 but the one used to test the final performance. We add 5% of noise to

6https://github.com/huggingface/transformers

https://github.com/huggingface/transformers

7| Experiments and Results 79

the training samples using the noise-generation procedure in chapter 5.4.2. In the next
section, we discuss all the details of the pre-training procedure applied to the Vision-Text
Multi-Encoder Decoder architecture. In the final fine-tuning stage, the number of training
samples is limited to 5% of the train partition of the target dataset.

Results Table 7.12 provides the results of the pre-training and the fine-tuning stages
compared with the scores achieved by the two references.

Model BLEU GLEU METEOR ROUGE ROUGE-L
Results of Vision-Text Multi-Encoder Decoder on Fashiongen

source-only 2.00 -96.08% 0.56 -98.24% 1.84 -96.65% 3.00 -95.37% 2.62 -95.69%

pre-training 12.59 -74.24% ↑19.25 4.08 -86.54% ↑10.71 13.97 -73.35% ↑20.63 23.31 -62.66% ↑28.60 17.31 -70.53% ↑21.57
fine-tuning 39.76 -18.64% ↑74.86 22.74 -25.03% ↑72.23 43.03 -17.95% ↑76.03 54.88 -12.08% ↑79.18 51.13 -12.94% ↑79.16
target-only 51.08 32.14 54.90 64.78 60.71

Results of Vision-Text Multi-Encoder Decoder on the industrial dataset#2
source-only 6.54 -87.39% 1.95 -94.23% 6.19 -89.17% 9.32 -85.53% 7.45 -87.39%

Pre-Training 14.19 -71.28% ↑11.27 4.95 -84.40% ↑8.03 14.60 -72.71% ↑7.21 24.86 -59.62% ↑19.40 18.82 -66.57% ↑16.30
Fine tuning 34.91 -29.34% ↑53.22 18.50 -41.69% ↑50.74 38.40 -28.23% ↑51.69 47.70 -22.51% ↑56.51 42.72 -24.11% ↑58.76

target 51.85 33.74 57.18 64.42 59.12

Table 7.12: Comparison of the performance achieved in each step of our transfer learning
methodology applied to Vision-Text Multi-Encoder Decoder when tested on Fashiongen
and the industrial dataset#2.

Even for Vision-Text Multi-Encoder Decoder, the source-only models struggles in deter-
mining all the most relevant features of the clothing product in input; the target-only
models instead generate high-quality descriptions of products and identify all the details
of the input garment. Figure 7.6 shows examples of captions generated by all the models
and the references involved in our training approach.

The encoding side of Vision-Text Multi-Encoder Decoder consists of two separate trans-
former stacks, whose outputs are handled at the decoding side through a double cross-
attention layer. Even when exploiting the decoder weights of the GPT-2 architecture,
those cross attention layers are newly initialized because they were not required when
pre-training GPT-2 over the 40GB of text available as done in [Rad+19]. Newly ini-
tialized cross-attentions layers affect the performance of the source-only models: in the
experiments involving the source-only models, those layers are trained only over the input
samples available in the industrial dataset#1, making the models sensitive to changes in
the input samples, causing the generation of low-quality output captions. By learning over
multiple distributions of clothing samples, the pre-training stage overcomes this limitation
and allows the model to generate fluent descriptions that predict the relevant information

80 7| Experiments and Results

of the input garment but may miss details or generate misleading information. The cap-
tion of the coat provided in figure 7.6 mentions a “concealed zip” that is not the correct
type of closure of the garment depicted in the corresponding input image; the lower cloth-
ing sample concerns a t-shirt which the pre-trained model describes as black while instead
has a printed pattern, and “rib knit” details or “button fastening” should not be present in
the output description. The pre-training stage of the Vision-Text Multi-Encoder Decoder
includes a contrastive objective and allows multiple learning options that we analyze in
the next section.

Fine-tuning the pre-trained Vision-Text Multi-Encoder Decoder architectures allows reach-
ing high-level performance: even though this final stage considers a small number of sam-
ples and a fixed number of epochs, the final captions are high-level quality descriptions
of the clothing samples in input.

Metadata: clothing, women, jackets & coats, coats.
Ground truth: Long sleeve wool coat in ’dark night’ navy. Notched lapel collar. Double-
breasted woven faux-leather button closure at front. Welt pockets at waist. Padded shoulders.
Central vent at back hem. Fully lined. Tonal stitching.
Source-only: The natural, natural and versatile inspiration of the elegant world define the
style of this new Pino scarf. Cable yarn elegant, […]
Pre-Training: Long coat with a collar and concealed zip at front. Side pockets in matching
fabric-seam side seams. Lined.
Fine-Tuning: Long sleeve wool coat in black. Notched lapel collar. Button closure at front.
Flap pockets at waist. Single-button barrel cuffs. Tonal stitching.
Target-only: Long sleeve wool-blend coat in black. Notched lapel collar. Button closure at
front. Flap pockets at waist. Central vent at back hem. Fully lined. Tonal stitching.

Metadata: clothing, tops, short sleeves, ladies, black, adult, basics.
Ground truth: T-shirt in lightweight cotton jersey with a rounded hem. Slightly longer at
the back.
Source-only: Refined and shiny effect of the new, the new Feather Silver […]
Pre-Training: Short sleeve cotton jersey t-shirt in black. Rib knit crewneck collar and cuffs
striped at front. Tonal stitching featuring signature trims throughout with button fastening,
note zippered pocket detail on the back of neck.
Fine-Tuning: T-shirt in soft viscose jersey with a slightly wider neckline and short sleeves.
Rounded hem for best fit over the body.
Target-only: T-shirt in lightweight cotton jersey with a rounded hem. Slightly longer at
back.

Figure 7.6: Examples of captions generated by the models involved in each learning stage,
compared with the ground truth and the source-only and target-only references: the target
datasets are Fashiongen (up) and the industrial dataset#2 (down).

7| Experiments and Results 81

Pre-training options

The pre-training procedure defined in chapter 5 allows the model to learn a more general
representation of the input data by leveraging the simultaneous learning from multiple
sources through a stratified batch sampler along with a weighted loss function, and the
generation of noisy samples. This pre-training procedure aims to improve the performance
of a fashion image captioner on unseen data distributions.

As described in chapter 6, The Vision-Text Multi-Encoder Decoder architecture introduces
the possibility to consider an additional contrastive learning objective in the pre-training
procedure: the underlying idea is that images and metadata are complementary ways to
describe a garment, and ideally, their embeddings should be close in a shared represen-
tation space, regardless of the input modality. We compute a contrastive loss between
image and metadata embeddings using algorithm 6.1, as it is done in [Rad+21].

In the pre-training stage applied to Vision-Text Multi-Encoder Decoder, we analyze three
possible ways of leveraging the contrastive alignment:

• a multi-objective optimization, in which the model updates its weights simultane-
ously according to the language modeling objective and the contrastive loss;

• a pre-alignment step that performs the contrastive alignment between metadata and
image embeddings to condition the embeddings before the language modeling task;

• a combination of the two options above.

The multi-objective optimization and pre-alignment techniques are described in section
6.2.1 and 6.2.2, respectively. Figure 7.7 summarizes the two approaches. In our experi-
ments, we set the hyperparameter λ = 0.3.

(a) Multi-objective learning (MOL). (b) Pre-alignment.

Figure 7.7: Visual representation of the two techniques we use to perform the contrastive
alignment between the image and metadata embeddings.

Data The three scenarios defined above are tested on Fashiongen and the industrial
dataset#2. We use the data sources in the same way as in the pre-training stage of
Multimodal GPT-2 in section 7.4: Vision-Text Multi-Encoder Decoder is pre-trained using

82 7| Experiments and Results

all the data sources but the one for testing. So, the model tested on Fashiongen uses
the industrial datasets#1, #2, and #3 as train sources, while the model tested on the
industrial datasets#2 uses Fashiongen together with the industrial datasets#1 and #3
as train sources. We add 5% of noise to the train samples using the procedure in section
5.4.2.

Notice that adding the pre-alignment as an additional step of the pre-training stage re-
quires splitting the train partitions to avoid overfitting (figure 7.8).

Figure 7.8: Train and validation partitions according to the pre-training step.

Results Table 7.13 provides the results of the three approaches identified above tested
on Fashiongen and the industrial dataset#2.

Approach BLEU GLEU METEOR ROUGE ROUGE-L
Pre-training stage on Fashiongen

MOL 12.59 4.08 13.97 23.31 17.31
Pre-alignment 10.21 3.40 13.11 21.31 15.75

MOL + Pre-alignment 10.95 3.71 14.27 21.79 16.08
Pre-training stage on the industrial dataset#2

MOL 14.06 4.53 16.54 23.06 16.53
Pre-alignment 13.94 4.66 15.84 23.15 17.15

MOL + Pre-alignment 14.19 4.95 14.60 24.86 18.82

Table 7.13: Comparison of the results of the three pre-training approaches when tested
on Fashiongen and the industrial dataset#2.

On both datasets, the pre-alignment of image and metadata embeddings alone is less effec-
tive than the single pre-training stage that leverages the multi-objective learning (MOL)
task. Combining the two approaches does not guarantee an improvement of the perfor-
mance: having an additional pre-alignment step before the MOL one is beneficial on the
industrial dataset#2 while it worsens the scores of four metrics out of five on the Fashion-
gen dataset. These opposite behaviors may be due to the differences in the metadata of

7| Experiments and Results 83

the target datasets: metadata of clothing products belonging to the Fashiongen datasets
consist of a few general pieces of information regarding the garment in input; industrial
dataset#2, instead, uses a higher number of tags and classes, catching more details of the
clothing samples. The conditioning of the embeddings through the pre-alignment step
before the MOL pre-training improves the performance on datasets that make extensive
use of additional metadata related to clothing samples. This consideration is further con-
firmed by the comparison carried out in the next section: the increment in performance
provided by the Vision-Text Multi-Encoder Decoder pre-training stage with respect to
Multimodal GPT-2 is higher for industrial dataset#2 compared to Fashiongen. The more
a dataset leverages the metadata related to garments, the more the contrastive alignment
of the embeddings is effective.

Notice that we analyze three potential settings, but in principle, there could be others
according to the order of the pre-training steps. Besides, a deep optimization of the
hyperparameter λ could provide additional insights.

Comparison with Multimodal GPT-2

In this section, we analyze the performance of Vision-Text Multi-Encoder Decoder com-
pared to Multimodal GPT-2. The comparison is performed for each stage of our transfer
learning analysis, including the source-only and target-only models.

Table 7.14 provides the results on Fashiongen and the industrial dataset#2. For each
dataset and learning stage of the analysis conducted in sections 7.4 and 7.5, we consider
the performance achieved by the Vision-Text Multi-Encoder Decoder (Vision-Text MED
in table) and Multimodal GPT-2.

84 7| Experiments and Results

Model BLEU GLEU METEOR ROUGE ROUGE-L
Results on Fashiongen

source-only
Multimodal GPT-2 3.18 0.83 3.15 5.46 4.64
Vision-Text MED 2.00 0.56 1.84 3.00 2.62

pre-training
Multimodal GPT-2 10.59 3.89 13.59 23.52 17.95
Vision-Text MED 12.59 4.08 13.97 23.31 17.31

fine-tuning
Multimodal GPT-2 31.28 19.60 36.62 50.06 47.80
Vision-Text MED 39.76 22.74 43.03 54.88 51.13

target-only
Multimodal GPT-2 48.87 30.33 52.44 62.41 58.72
Vision-Text MED 51.08 32.14 54.90 64.78 60.71

Results on the industrial dataset#2
source-only

Multimodal GPT-2 8.62 2.40 10.74 12.91 9.64
Vision-Text MED 6.54 1.95 6.19 9.32 7.45

pre-training
Multimodal GPT-2 10.85 3.68 12.94 18.77 14.48
Vision-Text MED 14.19 4.95 14.60 24.86 18.82

fine-tuning
Multimodal GPT-2 28.17 14.67 30.14 41.36 36.81
Vision-Text MED 34.91 18.50 38.40 47.70 42.72

target-only
Multimodal GPT-2 49.41 31.72 53.50 61.56 56.28
Vision-Text MED 51.85 33.74 57.18 64.42 59.12

Table 7.14: Comparison of the performance achieved in each step of our transfer learning
methodology by Multimodal GPT-2 and Vision-Text Multi-Encoder Decoder when tested
on Fashiongen and the industrial dataset#2.

Our architecture improves the performance of Multimodal GPT-2 in all the stages, except
the source-only: using an additional encoder stack that processes the metadata related
to the clothing samples becomes effective when the overall architecture is pre-trained
over multiple sources. In that case, the fine-tuned Vision-Text Multi-Encoder Decoder
outperforms Multimodal GPT-2 by a significant margin. As discussed in the previous
section, the relative improvement in the pre-training stage is different according to the
target data source: the improvement is more significant for the industrial dataset#2
than the Fashiongen dataset, as the latter contains less detailed and shorter metadata
than the former. Figure 7.9 shows examples of captions generated by the two fine-tuned

7| Experiments and Results 85

architecture.

Metadata: clothing, women, jackets & coats, coats.
Ground truth: Long sleeve wool coat in ’dark night’ navy. Notched lapel collar. Double-
breasted woven faux-leather button closure at front. Welt pockets at waist. Padded shoulders.
Central vent at back hem. Fully lined. Tonal stitching.
Multimodal GPT-2: Long sleeve French terry coat in black. Spread collar. Button closure
at front. Welt pockets at waist. Two-way zip closure at back. Fully lined. Tonal stitching.
Vision-Text Multi-Encoder Decoder: Long sleeve wool coat in black. Notched lapel collar.
Button closure at front. Flap pockets at waist. Single-button barrel cuffs. Tonal stitching.

Metadata: clothing, tops, short sleeves, ladies, black, adult, basics.
Ground truth: T-shirt in lightweight cotton jersey with a rounded hem. Slightly longer at
the back.
Multimodal GPT-2: Short-sleeved top in soft jersey with a V-neck.
Vision-Text Multi-Encoder Decoder: T-shirt in soft viscose jersey with a slightly wider
neckline and short sleeves. Rounded hem for best fit over the body.

Figure 7.9: Comparison between the captions generated by the fine-tuned Multimodal
GPT-2 and Vision-Text Multi-Encoder Decoder when the target dataset are Fashiongen
(up) and the industrial dataset#2 (down).

The captions are similar since both recognize the main properties of the clothing sample
in input; the two descriptions differ in small details of the garment.

Visualization of the contrastive alignment between embeddings

In this section, we analyze the behavior of image and metadata embeddings when lever-
aging the contrastive alignment of Vision-Text Multi-Encoder Decoder.

We train two models using the data of the industrial dataset#2: for the first one, we
use only the language modeling objective without forcing the alignment between the two
modalities; differently, we train the second one using the multi-objective approach defined
in section 6.2.1 with the hyperparameter λ = 0.3. For both the models, we extract the
image and metadata embeddings of the clothing samples of the test partition of the
industrial dataset#2.

Regardless of the training objective, the image and metadata embeddings related to a
clothing sample should be close in a shared representation space: we use the t-distributed
stochastic neighbor embedding (t-SNE) dimensionality reduction technique to project the
embeddings in a 2-dimensional space and visualize them. To highlight the clothing cat-

86 7| Experiments and Results

egory of the embeddings, we leverage the reference taxonomy that we also exploit to
generate noisy samples during the pre-training procedure. In this way, independently of
the particular taxonomy of a data source, we are able to visualize how similar clothing
products are projected in the representation space. Figure 7.10 shows the projection of
the embeddings when the model either does or does not use the contrastive alignment
between the two modalities. We use · and + to represent the embeddings of images and
metadata, respectively.

Using the contrastive objective, the embeddings of the two modalities are close; otherwise,
the model differentiates between image and metadata embeddings even though the cloth-
ing category is the same. Besides, leveraging the contrastive objective helps the model in
understanding the clothing category of embeddings of the same modality more clearly: the
clusters of the image embeddings in figure 7.10a are less cohesive and separated than the
ones in figure 7.10b, showing that the alignment between image and textual embeddings
improves the ability of the model to differentiate among clothing categories.

Following this insight, we test if using a contrastive objective improves the performance
not only of pre-trained models but also models trained and tested on the same data source
(the target-only models). Table 7.15 provides the results of Vision-Text Multi-Encoder
Decoder on Fashiongen and the industrial dataset#2 compared with Multimodal GPT-2,
in both the scenarios in which it is either used or not used the contrastive alignment
through the multi-objective learning approach.

Model BLEU GLEU METEOR ROUGE ROUGE-L
Results on Fashiongen

Multimodal GPT-2 48.87 30.33 52.44 62.41 58.72
Vision-Text MED 51.08 32.14 54.90 64.78 60.71

Vision-Text MED + MOL 51.13 32.63 55.06 65.42 61.47
Results on the industrial dataset#2

Multimodal GPT-2 49.41 31.72 53.50 61.56 56.28
Vision-Text MED 51.85 33.74 57.18 64.42 59.12

Vision-Text MED + MOL 53.38 35.52 58.65 66.00 60.73

Table 7.15: Comparison of the results of Multimodal GPT-2 and Vision-Text Multi-
Encoder Decoder when trained either using used or not using the contrastive alignment
through the multi-objective learning approach.

The data source that benefits the most of the contrastive alignment is the industrial
dataset#2, but this additional objective in the overall loss function determines an im-
provement of the final performance on both datasets. To summarize the comparison

7| Experiments and Results 87

(a) Training without the contrastive alignment.

(b) Training with the contrastive alignment.

Figure 7.10: Visualization of image and metadata embeddings of clothing samples through
t-SNE according to the training procedure of Vision-Text Multi-Encoder Decoder. It con-
sists of the language modeling objective either alone (a) or with the additional contrastive
alignment (b).

88 7| Experiments and Results

between Multimodal GPT-2 and Vision-Text Multi-Encoder Decoder, figure 7.11 shows
the results achieved on Fashiongen and the industrial dataset#2 in each stage of our
transfer learning analysis.

(a) Results on Fashiongen.

(b) Results on the industrial dataset#2.

Figure 7.11: Results of Multimodal GPT-2 and Vision-Text Multi-Encoder Decoder in
each stage of our transfer learning analysis using as test data source Fashiongen (a) and
the industrial dataset#2 (b).

7| Experiments and Results 89

7.6. User study
In the previous sections, we evaluate the performance of the fashion image captioners
through automatic metrics designed for Natural Language Generation tasks. They are
inexpensive, deterministic, thus repeatable, and quick to compute ways to approximate
the quality of automatically generated text samples. As described in section 7.1, all
the metrics rely on the computation of a mapping between the generated candidate and
the ground truth reference: the most common way to achieve it is by considering n-
gram overlaps, but there are also different approaches like the alignment computed by
METEOR or the longest common subsequence of ROUGE-L. Their main drawback is
that the words in both candidate and reference sentences are equally weighted, so missing
out on content-bearing pieces of sentences instead of less significant ones is valued the
same rather than being penalized more.

We design a survey to elicit judgments from users about the quality of descriptions of cloth-
ing products, following some of the guidelines and best practices discussed in [van+21].
The goal is to compare the captions generated by models trained through the methodol-
ogy described in chapter 5 with the corresponding ground truths. The models we consider
in the survey are Multimodal GPT-2 and our Vision-Text Multi-Encoder Decoder, which
are trained as analyzed in sections 7.4 and 7.5, respectively.

Evaluation Evaluating the quality of a text sample is not easy to assess, especially
when dealing with the description of fashion items characterized by several details; thus,
we identified three criteria that jointly determine the overall quality of the caption of a
clothing product. First, a precision measure to evaluate the correctness of the informa-
tion provided in the description; second, a recall oriented score stating the number of
relevant details mentioned in the description concerning the garment; finally, we ask to
give feedback on the syntactic correctness of the text sample under evaluation.

We provide the image and metadata related to a garment, and the users express their
level of agreement or answer to the following sentences using 5-point Likert scales:

1. The description contains only correct information about the garment in question.

2. The description contains all relevant information to describe the garment.

3. How do you evaluate the syntactic correctness of the sentence?

Eventually, the user can provide textual hints to help us analyze the results.

The survey contains each clothing sample three times, differentiating the caption of the

90 7| Experiments and Results

fashion item among the ground truth and the texts generated by Multimodal GPT-2 and
Vision-Text Multi-Encoder Decoder. Figure 7.12 shows an example of the user interface.

Figure 7.12: UI of the user study.

Data The clothing items evaluated in the survey belong to Fashiongen and the industrial
dataset#2. We extract a random subset of 15 samples of the test partitions of each dataset
and generate their descriptions using the fine-tuned Multimodal GPT-2 and Vision-Text
Multi-Encoder Decoder, making the overall number of captions of the survey equal to 90.

Overall, we collect 786 ratings of descriptions of items by 33 users. Notice that users
answering our survey usually do not rate all the 90 captions: on average, a user provides
24.1 ratings of descriptions of clothing items. Additionally, we check the distribution of
answers per user and item and filter out the ratings of users that answered to a number
of descriptions below a threshold (< 5 items rated) and the descriptions of clothing items
that received few ratings (< 5 ratings of users) in at least one of the three scenarios (ground
truth, Multimodal GPT-2, Vision-Text Multi-Encoder Decoder). Finally, we standardize

7| Experiments and Results 91

the remaining rates by removing the user biases: in this way, each rate does not depend
on the user preference.

Results Figure 7.13 shows the distributions of the ratings the users give in the three
questions to the ground truths and the captions generated by the two models. By visual
inspection of the plots, the distributions of ratings related to the syntactical quality of
the captions are almost completely overlapped (7.13c), highlighting that both Multimodal
GPT-2 and Vision-Text Multi-Encoder Decoder generate captions of clothing items whose
syntactical quality is very close to captions written by professional stylists. Considering
the first two questions, the distributions of the ratings of the generated captions are similar
to the one of the ground truths but not as close as in the third question: the measure of
correctness of the information provided in the description generated by Vision-Text Multi-
Encoder Decoder is closer to the ground truth reference than Multimodal GPT-2 (7.13a);
instead, for both models, the distribution of ratings related to the number of relevant
details mentioned in the descriptions is more distant to the reference with respect to the
other two questions (7.13b).

Given the observed data, we perform equivalence tests to draw statistical inferences con-
cerning the average ratings of the description either generated by Multimodal GPT-2
and Vision-Text Multi-Encoder Decoder or provided by experts. More precisely, given
independent samples of the average rating of items in the three scenarios (ground truth,
Multimodal GPT-2, and Vision-Text Multi-Encoder Decoder), we perform an equivalence
test for each question of the survey to compare whether the mean ratings related to de-
scriptions generated by our models differ by a small amount to the average ground truth
rating. The statistical test we use is the two one-sided t-test (TOSTs): given a pre-defined
margin of equivalence, it determines whether the means of two populations are equivalent,
i.e., “statistically reject the presence of effects large enough to be considered worthwhile”
[Lak17]. Given a margin of equivalence θ on a 5-point Likert scale, TOST considers the
null and alternative hypotheses defined as:

H0 : µ2–µ1 ≤ –θ or µ2–µ1 ≥ θ

HA : –θ < µ2–µ1 < θ
(7.1)

Practically, this test performs two one-sided t-tests considering one part of the null hy-
pothesis at a time. The p-value of the TOST is the p-value with the higher value among
the two tests.

By considering a statistically significant threshold of 0.05 and an equivalence region with
±1.0 rating margin, for both models and all the three questions, we can reject the null

92 7| Experiments and Results

(a) First question.

(b) Second question.

(c) Third question.

Figure 7.13: Distributions of the ratings provided by the users: the plots highlight the
scenario and the question under observation.

7| Experiments and Results 93

hypothesis in favor of the alternative one and claim that the means of the ratings of the
generated captions and the reference descriptions are equivalent, implying “either an effect
that falls within the bounds or the absence of an effect that is worthwhile to examine”
[Lak17]. Table 7.16 provides the results of the tests.

θ=1.0 Q1 Q2 Q3
Multimodal GPT-2 0.042114 0.000546 1.265574e-13
Vision-Text MED 9.508813e-08 0.000005 4.157115e-09

Table 7.16: The resulting p-values of the equivalence tests (TOST) when considering an
equivalence bound θ = 1.0.

Reducing to ±0.5 rating margin, thus considering a smaller equivalence region, we can
draw different conclusions concerning the means of ratings related to the captions gen-
erated by Multimodal GPT-2 and Vision-Text Multi-Encoder Decoder compared to the
mean of the ratings of the ground truth captions. The results of the tests are provided in
table 7.17.

• The syntactical quality (Q3) of both models can be assumed equivalent to the one
of the ground truth, as we can reject H0 and accept HA at the given significance
level.

• Considering the first two questions, we can’t reject effect sizes larger than the equiv-
alence bound for the ratings of the descriptions generated by Multimodal GPT-2,
while we can accept HA for the ratings related to the captions generated by Vision-
Text Multi-Encoder Decoder.

θ=0.5 Q1 Q2 Q3
Multimodal GPT-2 0.881406 0.877911 0.000014
Vision-Text MED 0.008875 0.035432 0.000165

Table 7.17: The resulting p-values of the equivalence tests (TOST) when considering an
equivalence bound θ = 0.5.

In this analysis, we compare using three different criteria the quality of descriptions writ-
ten by professional stylists with captions related to the same fashion items generated by
architecture pre-trained according to our approach and fine-tuned using a very narrow
set of target samples. Besides plotting the distribution of the survey data, we leverage
statistical equivalence tests to highlight the performance of our training methodology and

94 7| Experiments and Results

novel architecture, showing whether the mean values of the collected ratings are equivalent
according to different values of tolerance (equivalence margins). We find that the mean
syntactical quality of generated captions is indistinguishable from the one related to the
ground truths independently by the automated model. Differently, the question 1 and 2
measure the correctness of the descriptions in relation to the precision of the information
provided and the relevance of the details mentioned, and according to the samples col-
lected and the fixed significance level α = 0.05, their mean values of ratings related to the
captions generated by Multimodal GPT-2 are statistically equivalent to the mean values
related to the ground truths within a 1.0 rating margin. For Vision-Text Multi-Encoder
Decoder, the same equivalence properties hold even within a 0.5 rating margin.

Using TOST, we can draw statistical conclusions about the means of the distributions of
the ratings given by the users. To perform a more detailed comparison, we can consider
other properties of the distributions of ratings, such as the dispersion of the observed
data from their average value. We use the two-sample Kolmogorov–Smirnov test (KS
test) to determine if there are significant differences between the distributions of the col-
lected ratings. The KS statistic computes the distance between the empirical cumulative
distribution functions of the two samples. Figure 7.14 shows the empirical CDFs of the
observed data divided by questions.

Figure 7.14: Empirical CDFs of the observed data divided by questions. The KS statistic
is the distance between the empirical CDFs.

Given the empirical cumulative distribution function of ratings related to descriptions gen-
erated by an automated model M(x) and the empirical cumulative distribution function

7| Experiments and Results 95

of ratings related to ground truth descriptions G(x), the KS statistic is defined as:

D = max
x
|M(x)−G(x)|

The null hypothesis is H0: the two samples come from the same distribution; the alter-
native is HA: the two samples do not come from the same distribution.

Table 7.18 provides the results of the KS tests. At the significance level alpha α = 0.05,
we can reject the null hypothesis in favor of the alternative in all the three tests related to
Multimodal GPT-2, claiming that there is a statistical difference between the distribution
of ratings related to the ground truth and the captions generated by the model. Differently,
considering the results of the KS tests to compare the distributions of ratings related to
the ground truths and the captions generated by Vision-Text Multi-Encoder Decoder, we
can reject the null hypothesis in favor of the alternative only for the ratings related to
the second question of our survey.

KS test, α=0.05 Q1 Q2 Q3
Multimodal GPT-2 0.00333382 2.4583e-05 0.00889019
Vision-Text MED 0.18855666 0.02166983 0.09956245

Table 7.18: The resulting p-values of the KS tests to compare the distributions of observed
data relative to generated captions and the ground truths.

While the TOST tests claim that, at a predefined equivalence margin θ, the means of the
distributions of the ratings are statistically equivalent, the KS tests highlight a statistical
difference between the distributions of ratings related to captions generated by automated
models and the description written by professional stylists. This distance may be due
to the structure of captions generated by the models. Through the final adaptation
stage, the image captioners implicitly learn a suitable “average number” of details that
should be present in the texts describing the clothing items; differently, the descriptions
provided by fashion experts have higher variability in the number of details provided in the
descriptions. This difference between the ground truths and the generated captions does
not necessarily imply a “bad” behavior of the fashion captioner, as we provide statistical
guarantees that the mean of the distributions of ratings related to ground truths and
generated captions are similar.

To better describe the dispersion of the ratings, further analysis should be performed,
even considering variations in the structure of the survey and maybe the consciousness
level of the users regarding the fashion domain: details that fashion stylists deem obvious

96 7| Experiments and Results

could be relevant for usual e-commerce consumers and vice versa.

97

8| Conclusion and Future Work
In this chapter, we discuss the main outputs and the contribution of our research work.
Modern deep learning technologies generate text samples of outstanding quality, and when
combined with a visual feature extractor, they precisely describe the subjects or the scene
depicted in images at the cost of time-consuming training procedures over a large number
of data samples. Moreover, the performance and the quality of the generated text samples
drop when the model needs to process input samples that depart from the distribution of
the data used during training.

In this thesis work, we analyze the generalization capabilities of such models, trying to
overcome variations and perturbations in the input samples and still achieve high-quality
descriptions of images. Specifically, we tackle this problem in the fashion domain, where
clothing samples have a large number of details, and it is crucial to have high-quality
descriptions of the products a fashion firm wants to sell online to attract more effectively
the attention of customers. Besides, online catalogues continuously increase and change
when new releases of fashion items enter the market: it would be beneficial to have a
robust model able to overcome the variations in new clothing samples, saving the time,
energy, and resources required to train a new model from scratch that describes the last
releases of fashion items.

8.1. Outputs and contributions
We study and analyze the performance of fashion image captioning systems when the
distribution of the data in input to the model changes. We design a pre-training procedure
and a model architecture for the task of Fashion Image Captioning that we test using both
the Fashiongen public dataset and other private ones. This task has recently gained more
attention from the research community; we hope to provide further insights to help the
research in this direction.

We propose a pre-training procedure that allows learning simultaneously from different
sources and leverages a noise generation strategy to improve the generalization capabilities

98 8| Conclusion and Future Work

of fashion image captioners. This pre-training approach does not depend on architectural
choices, so we first compare the current state-of-the-art architecture in the “general”
Image Captioning task with a recent promising model specifically designed for the fashion
domain. We then perform a transfer learning analysis, showing how the performance of
trained fashion image captioners varies according to the input distribution: in section
7.4, we show that the use of a model which is simply trained over a different source
reflects a drastic reduction in the performance and the quality of the generated captions,
not being able to recognize the clothing samples in input anymore, and by leveraging
our pre-training method, we can improve the performance over unseen distributions of
data, making the model generalize better. Still, the pre-trained model may struggle in
identifying fine-grained details of clothing samples belonging to the target data source,
but most importantly, a little conditioning stage on the target source allows to adapt the
structure of generated description to the style of the target domain. We show that by
performing a final adaptation stage of the pre-trained model using a very narrow set of
target samples, the fashion image captioner achieves competitive performance and high-
quality captions compared to the model extensively trained on the target source. This
adaptation stage is far less expensive than the complete training procedure of a fashion
image captioner from scratch: we show in 7.4 that only 5% of training samples and
almost 3.5% of training time is required, underlying the saving in time, data samples, and
resources.

Additionally, we design a novel Transformer-based [Vas+17] approach for Fashion Image
Captioning that leverages the generative performance of the GPT-2 [Rad+19] language
model along with the recent Vision Transformer (ViT) [Wu+20] and BERT [Dev+19]
encoders to process a multi-modal input. Having two encoder stacks allows considering an
additional self-supervised contrastive objective that aligns the embeddings of the two input
modalities: we carry out a performance study among the different pre-training options
that arise when using this additional learning objective. Moreover, we show in section 7.5
how the contrastive alignment between embeddings reflects on the representation learned
by the model and how it improves the performance of fashion image captioners compared
to baseline works.

Finally, we perform a user study to evaluate the quality of the description of clothing
samples generated by image captioner systems pre-trained through our approach. We
perform equivalence tests on the observed data to draw statistical inferences concerning
the mean of the distributions of the ratings provided by the users. We demonstrate
that the mean values of the distributions of the ratings given to the ground truths and
to the captions generated by fashion captioners are statistically equivalent, assuming a

8| Conclusion and Future Work 99

pre-defined tolerance value. Additionally, we find out that the tolerance value required
to ensure the equivalence property between the mean values of the ratings related to
the ground truths and the captions generated by our model is lower than the tolerance
required by other fashion captioners.

8.2. Limitations
Our pre-training procedure presented in chapter 5 aims to improve the generalization ca-
pabilities of fashion image captioners by leveraging a noise generation strategy that com-
bines clothing samples of different sources. We manually designed a reference taxonomy
and the rules that guide the mapping between data sources: the granularity of the rules
that map the clothing samples of different sources reflects the likelihood of noisy samples,
thus the performance of our pre-training approach. Moreover, this pre-processing task is
time-consuming and requires the design of a set of rules for each data source involved in
the pre-training procedure.

Another limitation regards the hyperparameters optimization of our pre-training method
and architecture: our analysis involves extensive training procedures, and our novel ar-
chitecture introduces further contrastive learning options. Additionally, [Zha+21] empir-
ically finds out that the simultaneous contrastive alignment of image-text embeddings
using pre-trained architectures may be suboptimal while keeping a modality locked could
improve the performance. In this work, we analyze some of the learning settings among
the ones that, in principle, could arise when considering our pre-training method and a
contrastive alignment.

Finally, the sample size of the user study we perform to evaluate the quality of the
description of clothing samples generated by our models is limited, and a higher user
involvement would have been better to back our findings.

8.3. Future Works
This research work introduces a pre-training method that exploits the taxonomies of
datasets and hand-crafted rules to map clothing samples. A possible research direction
is the study of automated techniques that generate a taxonomy given a data source or
classify a fashion item to a taxonomy different from the one the clothing sample belongs
to. These techniques would provide a “universal” mapping across datasets that, besides
improving the performance of our pre-training method, could be used as a structured
input to the encoder of our Transformer-based architecture. Having a standardized input

100 8| Conclusion and Future Work

structure across sources could ease the learning procedure of the model and improve its
generalization capabilities.

In section 2.1.2, we provide a definition of transfer learning which involves the notions
of domain and task. Given source and target domains DS and DT , and source and
target tasks TS and TT , there are four possible transfer learning scenarios, and the one we
analyze in this thesis work is known as domain adaptation. Our experiments focus on the
generalization capabilities of models when employed with data sources whose marginal
probability distributions over the feature space are different from the training source, i.e.,
P (XS) 6= P (XT). In particular, we consider differences in the images and the metadata
in input to our models. Another difference worth considering between source and target
task concerns the language of the descriptions of the clothing products: according to
the classification provided in section 2.1.2, a cross-lingual analysis is characterized by
YS 6= YT and P (YS|XS) 6= P (YT |XT). The label spaces and the conditional probability
distributions between source and target tasks are different. This research direction has the
practical implication that fashion firms often sell their products worldwide and, therefore,
require descriptions in several languages.

As mentioned in the section concerning the limitation of our work, the research com-
munity is deeply investigating contrastive and self-supervised learning objectives to align
embeddings of different modalities, and our architecture could benefit from these tech-
niques.

In section 7, we draw statistical inferences regarding the mean values of the distribu-
tions of the survey data, and then we extend our analysis considering more generally the
distance between the distributions of the ratings. The distributions of the ratings have
different levels of dispersion: we impute this difference to the variability in the number
of details provided in the descriptions written by fashion experts. To better describe this
behavior, further analysis should be performed, even considering variations in the struc-
ture of the survey and maybe the consciousness level of the users regarding the fashion
domain: details that fashion stylists deem obvious could be relevant for usual e-commerce
consumers and vice versa.

Another research step related to our work is the exploration of our approach along with
Fashion Tagging solutions: fashion firms that sell their products online leverage systems
that automatize the labeling of the clothing products, and they need to work together
with the fashion image captioner. The integration of the two modules could not be trivial
and can affect their performance.

101

Bibliography
[Vas+17] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.03762

[cs.CL].
[Rad+19] Alec Radford et al. “Language models are unsupervised multitask learners”.

In: OpenAI blog 1.8 (2019), p. 9.
[Wu+20] Bichen Wu et al. Visual Transformers: Token-based Image Representation and

Processing for Computer Vision. 2020. arXiv: 2006.03677 [cs.CV].
[Dev+19] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].
[PY10] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE

Transactions on Knowledge and Data Engineering 22.10 (2010), pp. 1345–
1359. doi: 10.1109/TKDE.2009.191.

[Rud17] Sebastian Ruder. Transfer Learning - Machine Learning’s Next Frontier. http:
//ruder.io/transfer-learning/. 2017.

[Sar18] Dipanjan Sarkar. A Comprehensive Hands-on Guide to Transfer Learning with
Real-World Applications in Deep Learning. https://towardsdatascience.
com/a-comprehensive-hands-on-guide-to-transfer-learning-with-
real-world-applications-in-deep-learning-212bf3b2f27a. 2018.

[Den+09] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[SZ15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[Sze+14] Christian Szegedy et al. Going Deeper with Convolutions. 2014. arXiv: 1409.
4842 [cs.CV].

[He+15] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:
1512.03385 [cs.CV].

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2006.03677
https://arxiv.org/abs/1810.04805
https://doi.org/10.1109/TKDE.2009.191
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385

102 | Bibliography

Language Processing (EMNLP). 2014, pp. 1532–1543. url: http://www.
aclweb.org/anthology/D14-1162.

[Mik+13] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector
Space. 2013. arXiv: 1301.3781 [cs.CL].

[BS17] Joachim Bingel and Anders Søgaard. Identifying beneficial task relations for
multi-task learning in deep neural networks. 2017. arXiv: 1702.08303 [cs.CL].

[Raf+19] Colin Raffel et al. “Exploring the limits of transfer learning with a unified
text-to-text transformer”. In: arXiv preprint arXiv:1910.10683 (2019).

[Tiu21] Ekin Tiu. Understanding Contrastive Learning. https://towardsdatascience.
com/understanding-contrastive-learning-d5b19fd96607. 2021.

[Ala18] Jay Alammar. The Illustrated Transformer. https://jalammar.github.io/
illustrated-transformer/. 2018.

[BDW21] Hangbo Bao, Li Dong, and Furu Wei. BEiT: BERT Pre-Training of Image
Transformers. 2021. arXiv: 2106.08254. url: https://arxiv.org/abs/
2106.08254.

[PRS19] Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. “To Tune or Not
to Tune? Adapting Pretrained Representations to Diverse Tasks”. In: ArXiv
abs/1903.05987 (2019).

[Pet+18] Matthew E. Peters et al. Deep contextualized word representations. 2018.
arXiv: 1802.05365 [cs.CL].

[VN21] Wietse de Vries and Malvina Nissim. “As Good as New. How to Successfully
Recycle English GPT-2 to Make Models for Other Languages”. In: Findings
of the Association for Computational Linguistics: ACL-IJCNLP 2021 (2021).
doi: 10.18653/v1/2021.findings-acl.74. url: http://dx.doi.org/10.
18653/v1/2021.findings-acl.74.

[Rad+21] Alec Radford et al. Learning Transferable Visual Models From Natural Lan-
guage Supervision. 2021. arXiv: 2103.00020 [cs.CV].

[Zha+21] Xiaohua Zhai et al. LiT: Zero-Shot Transfer with Locked-image Text Tuning.
2021. arXiv: 2111.07991 [cs.CV].

[Xu+15] Kelvin Xu et al. “Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention”. In: Proceedings of the 32nd International Conference
on Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceed-
ings of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 2048–
2057. url: https://proceedings.mlr.press/v37/xuc15.html.

[Li+20] Xiujun Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-
Language Tasks. 2020. arXiv: 2004.06165 [cs.CV].

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1702.08303
https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607
https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/1802.05365
https://doi.org/10.18653/v1/2021.findings-acl.74
http://dx.doi.org/10.18653/v1/2021.findings-acl.74
http://dx.doi.org/10.18653/v1/2021.findings-acl.74
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2111.07991
https://proceedings.mlr.press/v37/xuc15.html
https://arxiv.org/abs/2004.06165

8| BIBLIOGRAPHY 103

[PSC20] Umberto Pietroni, Federico Sallemi, and Paolo Cremonesi. “Image tagging
and captioning for fashion catalogues enrichment”. In: (2020). url: https:
//www.politesi.polimi.it/handle/10589/169410?mode=complete.

[Ros+18] Negar Rostamzadeh et al. “Fashion-gen: The generative fashion dataset and
challenge”. In: arXiv preprint arXiv:1806.08317 (2018).

[Lin+14] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

[Zho+20] Xinyuan Zhou et al. Multi-Encoder-Decoder Transformer for Code-Switching
Speech Recognition. 2020. arXiv: 2006.10414 [eess.AS].

[Pap+02] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation of Machine
Translation”. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics. Philadelphia, Pennsylvania, USA: Association for
Computational Linguistics, July 2002, pp. 311–318. doi: 10.3115/1073083.
1073135. url: https://aclanthology.org/P02-1040.

[Wu+16] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation. 2016. arXiv: 1609.08144
[cs.CL].

[BL05] Satanjeev Banerjee and Alon Lavie. “METEOR: An Automatic Metric for
MT Evaluation with Improved Correlation with Human Judgments”. In: Pro-
ceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization. Ann Arbor, Michigan: As-
sociation for Computational Linguistics, June 2005, pp. 65–72. url: https:
//aclanthology.org/W05-0909.

[Lin04] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”.
In: Text Summarization Branches Out. Barcelona, Spain: Association for Com-
putational Linguistics, July 2004, pp. 74–81. url: https://aclanthology.
org/W04-1013.

[van+21] Chris van der Lee et al. “Human evaluation of automatically generated text:
Current trends and best practice guidelines”. In: Computer Speech & Language
67 (2021), p. 101151. issn: 0885-2308. doi: https://doi.org/10.1016/j.
csl . 2020 . 101151. url: https : / / www . sciencedirect . com / science /
article/pii/S088523082030084X.

[Lak17] Daniël Lakens. “Equivalence Tests: A Practical Primer for t Tests, Correla-
tions, and Meta-Analyses”. In: Social Psychological and Personality Science
8.4 (2017). PMID: 28736600, pp. 355–362. doi: 10.1177/1948550617697177.
eprint: https://doi.org/10.1177/1948550617697177. url: https://doi.
org/10.1177/1948550617697177.

https://www.politesi.polimi.it/handle/10589/169410?mode=complete
https://www.politesi.polimi.it/handle/10589/169410?mode=complete
https://arxiv.org/abs/2006.10414
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/https://doi.org/10.1016/j.csl.2020.101151
https://doi.org/https://doi.org/10.1016/j.csl.2020.101151
https://www.sciencedirect.com/science/article/pii/S088523082030084X
https://www.sciencedirect.com/science/article/pii/S088523082030084X
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1177/1948550617697177

105

A| Taxonomy
Here we report the entire reference taxonomy we leverage in our noise generation approach.

Figure A.1: Reference taxonomy.

107

B| Additional Tables
This chapter provides more detailed results about the architectures we present in 7: we
consider multiple choices of n-grams when computing the BLEU and ROUGE scores. As
mentioned in chapter 7, the scores related to choices of n-grams with n > 1 are consistent
with the ones related to unigram.

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 GLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L
Results on Fashiongen

Show, Attend, and Tell 37.39 28.87 19.80 14.28 22.89 41.49 53.12 32.81 50.33
Image GPT-2 48.19 38.30 28.68 21.58 29.56 51.70 61.56 40.14 57.83

Results on the industrial dataset#1
Show, Attend, and Tell 28.65 15.79 9.06 6.48 12.95 23.32 35.57 12.05 26.09

Image GPT-2 31.85 18.81 11.50 9.37 16.03 27.33 38.25 15.00 29.55

Table B.1: Results of Show, Attend, and Tell and Image GPT-2 on the Fashiongen dataset
and the industrial dataset#1 considering multiple choices of n-grams.

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 GLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L
Results on Fashiongen

OSCAR* 42.16 32.27 22.09 15.38 24.01 46.01 56.00 34.47 52.03
Multimodal GPT-2 48.87 39.10 29.60 22.24 30.33 52.44 62.41 41.15 58.72

Results on the industrial dataset#1
OSCAR* 39.26 27.36 20.23 16.87 22.71 37.84 49.60 25.81 38.59

Multimodal GPT-2 41.14 28.63 21.73 18.58 24.35 39.97 50.66 27.00 39.39

Table B.2: Results of OSCAR* and Multimodal GPT-2 on the Fashiongen dataset and
the industrial dataset#1 considering multiple choices of n-grams. The architecture of
OSCAR* is described in 7.3.

108 B| Additional Tables

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 GLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L
Results on Fashiongen

Multimodal GPT-2 48.87 39.10 29.60 22.24 30.33 52.44 62.41 41.15 58.72
Vision-Text MED 51.13 41.56 32.31 24.90 32.63 55.06 65.42 44.22 61.47

Results on the industrial dataset#2
Multimodal GPT-2 49.41 38.41 30.19 24.18 31.72 53.50 61.56 39.23 56.28
Vision-Text MED 53.38 42.82 34.74 28.45 35.52 58.65 66.00 44.24 60.73

Table B.3: Results of Multimodal GPT-2 and our Vision-Text Multi-Encoder Decoder on
the Fashiongen dataset and the industrial dataset#2 considering multiple choices of n-
grams. The training objective of Vision-Text Multi-Encoder Decoder is the combination
of the language modeling objective loss and the contrastive loss as discussed in section
6.2.1; The hyperparameter λ is set to 0.3.

.

109

C| Examples of generated
captions

In this section we provide examples of captions generated by our approach, here identified
as Vision-Text Multi-Encoder Decoder, and the Multimodal GPT-2 architecture proposed
in [PSC20]. Both models are fine tuned as discussed in chapter 7. The clothing samples
are random examples taken from the test partitions of the industrial dataset#2 and the
Fashiongen dataset.

Fashiongen

Metadata: clothing, men, tops, t-shirts.
Ground truth: Short sleeve t-shirt in black. Ribbed crewneck collar. Monster eyes leather
appliqué in yellow with silver-tone studded detail. Tonal stitching.
Multimodal GPT-2: Short sleeve cotton jersey t-shirt in black. Rib knit crewneck collar.
Tonal stitching.
Vision-Text Multi-Encoder Decoder: Short sleeve cotton jersey t-shirt in black. Rib knit
crewneck collar. Logo printed at front. Tonal stitching.

Metadata: clothing, men, jeans.
Ground truth: Skinny-fit jeans in ’mariner’ blue. Distressing throughout. Five-pocket
styling with logo embroidered at back pocket in off-white. Button-fly. Contrast stitching in
tan.
Multimodal GPT-2: Skinny-fit stretch denim jeans in black. Four-pocket styling. Zip-fly.
Tonal stitching. Approx. 6.5” leg opening.
Vision-Text Multi-Encoder Decoder: Slim-fit jeans in blue. Mid-rise. Fading, whiskering,
and honeycombing throughout. Five-pocket styling. Logo patch at back waistband. Zip-fly.
Silver-tone hardware. Contrast stitching in tan. Approx. 6” leg opening.

Metadata: clothing, men, shorts.
Ground truth: Relaxed-fit French terry lounge shorts in black. Drawstring at elasticized
poplin waistband. Three-pocket styling. Raw edge at hem. Tonal stitching.
Multimodal GPT-2: Relaxed-fit denim shorts in black. Four-pocket styling. Button-fly.
Tonal stitching. Zip-fly.
Vision-Text Multi-Encoder Decoder: Relaxed-fit cotton jersey sarouel shorts in black.
Drawstring at elasticized waistband. Four pocket styling. Zip-fly. Tonal stitching.

110 C| Examples of generated captions

Metadata: clothing, women, jackets & coats, jackets.
Ground truth: Long sleeve ribbed silk jacket in faded black. Self-tie straps at spread collar,
sleeves, and waist. Patch pockets at chest. Press-stud closure at front. Tonal stitching.
Multimodal GPT-2: Long sleeve French terry jacket in black. Spread collar. Two-way zip
closure at front. Welt pockets at waist. Fully lined. Tonal stitching.
Vision-Text Multi-Encoder Decoder: Long sleeve cotton jacket in navy. Spread collar.
Button closure at front. Flap pockets at body. Single-button barrel cuffs. Tonal stitching.

Metadata: clothing, men, sweaters, sweatshirts.
Ground truth: Long sleeve sweatshirt striped in black and white. Ribbed crewneck collar.
Logo print at front center. Overlong zip-away sleeves with two functional zippers. Tonal
stitching.
Multimodal GPT-2: Long sleeve French terry sweatshirt in black. Rib knit crewneck collar,
cuffs, and hem. Tonal stitching.
Vision-Text Multi-Encoder Decoder: Long sleeve French terry sweatshirt in white. Rib knit
crewneck collar, cuffs, and hem. Logo printed at front. Tonal stitching.

Industrial dataset#2

Metadata: clothing, shirts & blouses, casual, men, shirts, blue.
Ground truth: Shirt in an airy patterned weave made of cotton blend with a turn-down
collar French front and yoke at the back. Long sleeves with adjustable buttoning at the cuffs
and a rounded hem.
Multimodal GPT-2: Short-sleeved shirt in woven fabric with a stand-up collar button down
the front and long sleeves with buttoned cuffs.
Vision-Text Multi-Encoder Decoder: Shirt in woven cotton fabric with a collar buttons
down the front and long sleeves with adjustable buttoning at cuffs. Rounded hem slightly
longer at back. Regular fit – designed to create a comfortable tailored silhouette.

Metadata: clothing, hoodies & sweatshirts, sweatshirts, hoodies & sweatshirts, men, pink.
Ground truth: Long-sleeved top in printed sweatshirt fabric with ribbing around the neckline
cuffs and hem. Soft brushed inside.
Multimodal GPT-2: Long-sleeved sweatshirt in soft cotton jersey with a printed pattern.
Ribbing at neckline cuffs and hem.
Vision-Text Multi-Encoder Decoder: Sweatshirt in soft cotton jersey with a printed design.
Ribbing at neckline cuffs and hem. Soft brushed inside.

C| Examples of generated captions 111

Metadata: clothing, vests, tops, ladies, pink, divided.
Ground truth: Pleated top in woven fabric containing glittery threads in a narrow cut at
the top with short narrow shoulder straps and a faceted button at the back. Lined.
Multimodal GPT-2: V-neck top in a viscose blend with short sleeves and a rounded hem.
Vision-Text Multi-Encoder Decoder: Sleeveless top in woven fabric with a narrow shoulder
straps and smocking at the back. Lined.

Metadata: clothing, t-shirts & Vests polo, men, tshirts tanks, blue.
Ground truth: Short-sleeved polo shirt in cotton piqué with a printed pattern. Collar button
placket and short slits at sides.
Multimodal GPT-2: T-shirt in cotton jersey with a printed design.
Vision-Text Multi-Encoder Decoder: T-shirt in soft cotton jersey with a printed design.
Regular fit.

Metadata: clothing, skirts, shortskirts, ladies, red, adult, everyday fashion.
Ground truth: Short skirt in viscose-blend twill with a high waist and removable tie belt.
Pleats concealed side-seam zip and gathered seam at hem with flounce.
Multimodal GPT-2: Knee-length skirt in woven fabric with an elasticated drawstring waist
and a concealed zip at the back.
Vision-Text Multi-Encoder Decoder: Short skirt in woven crêpe with a high waist and
concealed zip. Unlined.

Metadata: clothing, t-shirt & vests, short sleeves, men, tshirts tanks, white.
Ground truth: T-shirt in cotton jersey with a printed pattern.
Multimodal GPT-2: Short-sleeved T-shirt in cotton jersey.
Vision-Text Multi-Encoder Decoder: T-shirt in cotton jersey with a printed motif. Regular
fit.

113

List of Figures

2.1 Transfer learning with a pre-trained model as features extractor [Sar18]. . 8
2.2 Multi-task approach: the learner receives information from all the tasks

simultaneously [Sar18]. 10
2.3 Training error (left) and test error (right) with 20-layer and 56-layer “plain”

networks. The deeper network has higher training error, and thus test error
[He+15]. 12

2.4 The ResNet block with the identity shortcut connection [He+15]. 13
2.5 RNN vs LSTM. 15
2.6 Gates of a LSTM cell. 16
2.7 Architecture of the Transformer model [Vas+17]. 17
2.8 Summary of the steps of the multi-head self-attention layer [Ala18]. 18
2.9 BERT pre-training. 20
2.10 Model architecture and processing steps of ViT [Wu+20]. 22
2.11 ViT performance. 23

3.1 CLIP approach. 28
3.2 The design choices of ”contrastive-tuning”. 29
3.3 Examples of attended regions (in white) with the corresponding word gen-

erated as output [Xu+15]. 30
3.4 Oscar pre-training [Li+20]. 31
3.5 Multimodal GPT-2 architecture [PSC20]. 32

4.1 Bar plot representing the distributions of the categories of the fashion items
belonging to Fashiongen. 34

4.2 Statistics of the descriptions of clothing samples belonging to Fashiongen. . 35
4.3 Bar plot representing the distributions of the categories of the fashion items

belonging to the industrial dataset#1. 36
4.4 Statistics of the descriptions of clothing samples belonging to the industrial

dataset#1. 37

114 | List of Figures

4.5 Bar plot representing the distributions of the categories of the fashion items
belonging to the industrial dataset#2. 38

4.6 Statistics of the descriptions of clothing samples belonging to the industrial
dataset#2. 39

4.7 Bar plot representing the distributions of the categories of the fashion items
belonging to the industrial dataset#3. 40

4.8 Statistics of the descriptions of clothing samples belonging to the industrial
dataset#3. 41

4.9 Example of fashion images of the dataset used in this thesis work. 43

5.1 Example of weights given a batch assignment. 49
5.2 Comparison of generated captions. 50
5.3 Pairings between two taxonomies . 52
5.4 Subset of the reference taxonomy. 53
5.5 Hybrid sample . 54

6.1 Vision-Text Multi-Encoder Decoder architecture. 58
6.2 Comparison between decoder blocks. 59
6.3 The vision and the text encoders are jointly trained to predict the correct

pairings between images and metadata of the current training batch. Image
adapted from [Rad+21]. 60

6.4 Weighted random selection of the images of a garment when the total
number of images is four. 62

7.1 Example of the visual semantics extracted by the object detector module
used by OSCAR. 68

7.2 Our adaptation of OSCAR for Fashion Image Captioning. 68
7.3 Example of captions generated by the target-only and the source-only models. 72
7.4 Example of captions generated by the pre-trained model and the ones

provided by the model references and the corresponding ground truth. . . 75
7.5 Comparison between the captions generated by the models involved in each

step of our transfer learning analysis. 77
7.6 Examples of captions generated by the models involved in each learning

stage, compared with the ground truth and the source-only and target-only
references. 80

7.7 Visual representation of the two techniques we use to perform the con-
trastive alignment between the image and metadata embeddings. 81

7.8 Train and validation partitions according to the pre-training step. 82

| List of Figures 115

7.9 Comparison between the captions generated by the fine-tuned Multimodal
GPT-2 and Vision-Text Multi-Encoder Decoder. 85

7.10 t-SNE visualization of image and metadata embeddings. 87
7.11 Results of Multimodal GPT-2 and Vision-Text Multi-Encoder Decoder in

each stage of our transfer learning analysis. 88
7.12 UI of the user study. 90
7.13 Distributions of the ratings provided by the users 92
7.14 Empirical CDFs of the observed data divided by questions. The KS statis-

tic is the distance between the empirical CDFs. 94

A.1 Reference taxonomy. 105

117

List of Tables
4.1 Examples of descriptions of fashion items belonging to Fashiongen with

the corresponding product categories. 34
4.2 Examples of descriptions of fashion items belonging to the industrial dataset#1

with the corresponding product categories. 36
4.3 Examples of descriptions of fashion items belonging to the industrial dataset#2

with the corresponding product categories. 38
4.4 Examples of descriptions of fashion items belonging to the industrial dataset#3

with the corresponding product categories. 40
4.5 Number of items in train, validation, and test splits along with the average

number of words (w) and sentences (s) per caption. 42

5.1 Textual transformations applied to clothing metadata and captions. 46
5.2 Metadata samples before (left) and after (right) applying the textual trans-

formations. 47

7.1 BLEU-n example . 64
7.2 Results on Fashiongen and the industrial dataset#1 of Show, Attend, and

Tell and Image GPT-2 . 67
7.3 Results on Fashiongen and the industrial dataset#1 of OSCAR* and Mul-

timodal GPT-2. 69
7.4 Results of the target-only model on Fashiongen and the industrial dataset#2 71
7.5 Time and data requirements to train the target-only models. 71
7.6 Source-only scores on Fashiongen and the industrial dataset#2 71
7.7 Assignment of datasets among pre-training and test sources. 73
7.8 Performance of our pre-training methodology applied to Multimodal GPT-

2 when tested on the Fashiongen dataset and the industrial dataset#2. . . 74
7.9 Recap of the training datasets used in each stage of our analysis according

to the target dataset. 76

118 | List of Tables

7.10 Comparison of the performance achieved in each step of our transfer learn-
ing methodology applied to Multimodal GPT-2 when tested on Fashiongen
and the industrial dataset#2. 76

7.11 Time and data requirements to fine-tune the pre-trained models. 77
7.12 Comparison of the performance achieved in each step of our transfer learn-

ing methodology applied to Vision-Text Multi-Encoder Decoder when tested
on Fashiongen and the industrial dataset#2. 79

7.13 Comparison of the results of the three pre-training approaches when tested
on Fashiongen and the industrial dataset#2. 82

7.14 Comparison of the performance achieved in each step of our transfer learn-
ing methodology by Multimodal GPT-2 and Vision-Text Multi-Encoder
Decoder when tested on Fashiongen and the industrial dataset#2. 84

7.15 Comparison of the results of Multimodal GPT-2 and Vision-Text Multi-
Encoder Decoder when trained either using used or not using the con-
trastive alignment through the multi-objective learning approach. 86

7.16 The resulting p-values of the equivalence tests (TOST) when considering
an equivalence bound θ = 1.0. 93

7.17 The resulting p-values of the equivalence tests (TOST) when considering
an equivalence bound θ = 0.5. 93

7.18 The resulting p-values of the KS tests to compare the distributions of
observed data relative to generated captions and the ground truths. 95

B.1 Complete results on Fashiongen and the industrial dataset#1 of Show,
Attend, and Tell and Image GPT-2 . 107

B.2 Complete results on Fashiongen and the industrial dataset#1 of OSCAR*

and Multimodal GPT-2 . 107
B.3 Complete results on Fashiongen and the industrial dataset#2 of Multi-

modal GPT-2 and Vision-Text Multi-Encoder Decoder 108

119

Acknowledgements
First, I would like to thank my supervisor, Prof. Paolo Cremonesi, for the support and
the opportunity to join the high-level working environment of ContentWise.

This work would not have been possible without Federico Sallemi and Umberto Pietroni:
thank you for your constant help and guidance during these months.

I would like to thank my parents, who have always supported and trusted me along this
journey, and my brothers, Riccardo and Tommaso, who have been a precious presence
during these years.

I also wish to thank all my friends and coursemates for all the time and fun we have
shared during these university years.

Finally, my deepest thanks to Arianna: thank you for being with me since the beginning
of this journey and for your fundamental support, especially in the most tirings moments.

	Abstract
	Sommario
	Contents
	Introduction
	Context: Transfer Learning in Fashion Image Captioning
	Scenario and Problem Statement
	Contributions
	Structure of Thesis

	Background
	Transfer Learning
	The need for Transfer Learning
	Definition
	Approaches in Deep Learning
	Applications in Computer Vision and NLP
	Related areas: Multi-task and Contrastive Learning

	Image Captioning
	Convolutional Neural Networks
	Natural Language Processing
	LSTM
	The Transformer

	Summary

	Related work
	Transfer Learning
	Target task adaptation
	Contrastive Learning

	Image Captioning
	Show, Attend, and Tell
	Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks
	Image tagging and captioning for fashion catalogues enrichment

	Datasets
	Fashiongen
	Private data sources
	Industrial Dataset 1
	Industrial Dataset 2
	Industrial Dataset 3

	Dataset Comparison

	Pre-Training for Fashion Image Captioning
	Goal and Requirements
	Data preparation
	Imbalance problem
	Noise generation
	Fashion taxonomies
	Generation of forged samples

	Fine-tuning

	Contrastive Learning: approach and model architecture
	Vision-Text Multi-Encoder Decoder
	Extension of the Transformer decoder block

	Contrastive objective
	Multi-objective optimization
	Pre-alignment

	Experiments and Results
	Evaluation metrics
	Experimental setup
	Model comparison
	Transfer Learning analysis
	Vision-Text Multi-Encoder Decoder
	User study

	Conclusion and Future Work
	Outputs and contributions
	Limitations
	Future Works

	Bibliography
	Taxonomy
	Additional Tables
	Examples of generated captions
	List of Figures
	List of Tables
	Acknowledgements

