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Abstract

Cardiotocography is one of the most used tool to clinically evaluate the well-

being of the fetus. This thesis presents a novel machine learning approach

applied to classifying disease states in fetuses during pregnancies. The study

has evaluated CardioTocoGraphic (CTG) traces that provide Fetal Heart

Rate signal and Uterine contractions. Other features are the mother’s age

and the gestational week. Due to the increasing success of machine learning

models in the classification environment, this work explores both machine

learning and deep learning models to understand which performs better.

Multiple machine learning algorithms have been studied while exploiting

features selection techniques to have various subsets on which to test the

models. Instead, our deep learning models focus not only on learning from

the above-said data but also on images extracted from CTG signals utilizing

mathematical models that allow signal-to-image transformations. By exploit-

ing multiple architectures like Multi-Layer Perceptron, Convolutional Neural

Networks, and Long Short-Term Memory, we use a hybrid approach by com-

bining these models. Our results show that our deep learning models perform

better than machine learning models by reaching an 80% accuracy compared

to 70%. This opens a possible integration in the clinical environment. The
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proposed approach could integrate the existing processing techniques on the

evaluation of fetal disease states.



Introduzione

La Cardiotocografia è uno degli strumenti più utilizzati per analizzare lo

stato di benessere del feto. Questa tesi presenta un approccio di machine

learning per la classificazione di stati patologici del feto nella gravidanza. Lo

studio si è basato sui traccati della CTG contenenti il segnale del battito

fetale e le contrazioni uterine. Altre informazioni usate sono l’età materna e

la settimana gestazionale. Grazie al continuo successo del machine learning

nel classificare set di dati, questo lavoro esplora tecniche di machine learn-

ing e deep learning per confrontare e capire quale modello possa performare

meglio. Nello specifico multipli algoritmi di machine learning sono stati us-

ati, sfruttando tecniche di features selection per creare più sottoinsiemi di

dati su cui poter testare i modelli. Per i modelli di deep learning sono stati

usati non soltanto i dati sovramenzionati, ma anche immagini estratte dai

segnali provenienti dalla CTG usando modelli matematici che permettono la

conversione di un segnale in immagine. Avendo usato più architetture come il

Multi Layer Perceptron, Convolutional Neural Networks e Long Short-Term

Memory, abbiamo pensato di usare un approccio misto combinando questi

modelli. Questa tesi mostra come i modelli di deep learning performano

meglio rispetto a quelli di machine learning raggiungendo un’accuratezza
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dell’80% rispetto ad un 70%. Questi risultati portano ad una possibile in-

tegrazione nell’ambiente clinico. L’approccio proposto potrebbe integrare le

già presenti tecniche di processamento sulla valutazione degli stati patologici

del feto.



Extended Abstract

Cardiotocograph traces are widely used since their interpretation represents

the golden standard for monitoring the well-being of the fetus. However there

is a lack of guidelines regarding the visual inspection and interpretation of

the traces that brings doctors in having discordant interpretations. In fact,

complex signal changes in the short period are almost undetectable. For

this reason, a combination of machine learning and deep learning approaches

could help in clinical decisions.

In this thesis, we based our work on a software named 2CTG. A CTG

trace contains two signals: fetal heart rate (FHR) and uterine contractions.

These signals are sent from the cardiotocograph to a laptop, that analyzes all

the information recorded. These data are then sent to another laptop that

contains the software 2CTG that examine the data based on linear and non-

linear parameters. The data are sampled with an interval of 500ms. After

the sampling, signals are averaged over periods of 2.5s to avoid redundancy.

CTG recordings may contain artifacts due to two phenomenons: double-

counting (the FHR is sampled two times and summed) half-counting (only

half of the signals are sampled). The variability is an important param-

eter extracted from the FHR, as it can indicate a pathological status of
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the fetus, like severe hypoxia. It can be measured on a three-time scale:

Short Term Variability (STV), medium-term (Delta), Long Term Irregular-

ity (LTI). As the pregnancy progresses over time also the variability increases,

but in pathological situations, the variability decreases creating possible and

dangerous consecutive deceleration. This thesis aims to create a framework

for the classification of CTG signals using machine learning and deep learning

algorithms.

The dataset used in this work comes from the Hospital Federico II of

Naples. It comprises 9476 pregnant women with 24095 cardiotocographic

traces. The features chosen to be important are the date of birth, the health

status of the patient (which was used to divide our dataset into healthy and

pathological), the date in which the CTG trace was recorded, the gestational

week, and other linear and non-linear parameters that can be extracted from

the FHR signal like STV, LTI, DELTA, number of accelerations and deceler-

ations. The signals, before being used by our algorithms, had to be cleaned

of artifacts. A modified version of Mantel’s algorithm was used to extract

the baseline. We were able to extract the linear and non-linear features from

the signal that enriched our dataset.

Lastly, we used multiple signal-to-image techniques to generate our last

part of the dataset, crucial for the Convolutional Neural Networks, present in

our work. The FHR signals were split into sub-sequence of 20 minutes each

containing 2400 sampled data. Then they were transformed using Continuous

Wavelet Transform (CWT), Gramian Angular Summation/Difference Field

(GASF/GADF), Markov Transition Field (MTF), Recurrence Plot (RP),

Self-Similarity Matrix (S), Power Spectrogram (PS), and Persistence Spec-
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trum (PSP). With these transformations, we reached a total of 48398 images,

of which 20588 were healthy and 27810 were pathological.

Regarding the machine learning approach, we applied feature selections

techniques like Univariate Feature Selection (UFS), Recursive Feature Elimi-

nation (RFE), Decision Tree (DT), and Principal Component Analysis (PCA)

to eliminate redundant or irrelevant variables. The features got scaled-down

between the range (0,1) using the MinMax method. The models used are Lo-

gistic Regression (LR), Random Forest (RF), K-Nearest Neighbors (k-NN),

Adaboost, Multi-Layer Perceptron (MLP), Support Vector Machine (SVM),

Bagging, Gradient Boosting, Extreme Gradient Boosting (XGB).

The hyperparameters have been tuned using Randomized Search with 5-

fold cross-validation. For the reference model ”Logistic Regression” we used

L2 regularization with C equal to 10, using liblinear and lbfgs as solvers. For

the Support Vector Machine, we use C equal to 13 with rbf as kernel. For the

Multi-Layer Perceptron, we used 4 hidden layers, respectively: 500, 250, 150,

50. For the k-NN, the neighbors were 5, with metric Manhattan distance.

For the Bagging, the estimators chosen was the SVM, with 20 estimators.

For the Gradient Boosting the estimators were 200 with a learning rate of

0.1. For AdaBoost, the estimators were 100. For the XGB we used 100

estimators with a learning rate of 0.1. For the Random Forest, we used 100

estimators with entropy as the criterion.

In our results we added values like Recall, F1-Score, R2, Root Mean

Squared Error and Area Under the Curve. The overall best performing model

is XGB as it was the model with the highest R2, for all the subsets generated

by each feature selection technique. Using Univariate Selection the best
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performing models are Random Forest and XGB achieving a 0.7 R2, RMSE

0.56, F1-Score 0.68, Recall 0.68, and an AUC of 0.682.

Since the results achieved with Machine Learning were not as we ex-

pected, we tested also the performances deep learning algorithms. To avoid

overfitting we used regularization techniques like weight decay, batch normal-

ization, and drop out. Our first model is an MLP where all the dense layers

use the ReLU function except for the last layer which uses the softmax for

classification. The dataset has been split for all the models between training

and test (80%/20% respectively) and cross-validation has been performed.

The layer of this model is composed as following: dense layer of 500 neu-

rons, 40% dropout, dense layer of 250 neurons, 40% dropout, dense layer of

150 neurons with both L1 and L2 regularization penalty, bias and activity

regularizers L2, dense layer of 50 neurons, 40% dropout and output layer 2

neurons. The value for L1 is 1e−5, for L2 is 1e−4. We have used as optimizer

Adam with learning rate 10−4 and decay 10−4

200
. The loss function used is the

binary cross-entropy. With this model, the accuracy achieved is 75.7%.

Our next goal was to use the power of Convolutional Neural Networks

by feeding them the images extracted using the following tools: Continuous

Wavelets Transform, Gramian Angular Summation Field, Gramian Angular

Difference Field, Markov Transition Field, Self-Similarity Matrix, Recurrence

Plot, Power Spectrogram, and Persistence Spectrum. We extracted various

images sizes 32x32x3, 64x64x3, 128x128x3 and 256x256x3 and tried multiple

combinations of images to understand which were more meaningful for the

model. To run this model we used the website Kaggle as it provided GPU

computation that speeded up the training. Although the main limitation of
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using Kaggle was the maximum RAM available capped at 13GB, that did

not allow us to train our model on images greater than 64x64x3, as it would

have required more than 15GB of memory.

The CNN model configuration was inspired by the LeNet architecture.

The convolutional layers use the ReLU function except for the last layer

which uses the softmax function for classification. The model structure is as

follow: Convolutional Layer with 16 filters and a 5x5 kernel, batch normal-

ization layer, max pooling layer 2x2, convolutional layer with 32 filters and

5x5 kernel, batch normalization layer, max pooling layer 2x2, 80% dropout,

flatten layer, dense layer with 64 neurons, batch normalization, dropout 80%,

dense layer with 16 neurons and the final output layer with 2 neurons. The

model reached a 68% accuracy with the 64x64x3 images, compared to 64% of

the 32x32x3 images. These results are congruent to the fact that the model

should be able to learn better in discriminating classes by having more in-

formation.

By having the raw FHR’s signal, we decided to test Recurrent Neural

Networks, that perform great in temporal predictions. Since RNNs suffer

the problem of vanishing/exploding gradient, we opted for LSTMs. We used

as dataset only the signals with 2400 data points, and if there were more, we

resorted to an overlapping technique to create multiple signals. The dataset

has been scaled down using the MinMax function. The model architecture

is simple: LSTM layer with 8 units, batch normalization, LSTM layer with

8 units, batch normalization, LSTM layer with 8 units, and an output layer

of 2 neurons with softmax as the activation function for classification. The

accuracy reached is 55%, which indicates that our model was almost as good
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as random guessing. We think that this scarce result is due to the nature

of the signal. In fact, the FHR is a stochastic signal compared to an almost

periodic heartbeat signal, making it difficult for the LSTM in finding patterns

inside the signal.

Lastly, we have tried multiple hybrid approaches that concatenate the

last layers in the above architectures and attach an additional dense layers

of 128 neurons and activation function ReLU before the final output layer.

The best performing hybrid model is the MLP combined with the CNN, as it

reached an averaged accuracy of 79.1% with a peak accuracy of 85.2% during

the training session.

Another combination was the MLP with CNN and LSTM. This model

reached an accuracy of 78.9%, slightly lower than the MLP with the CNN.

Confirming that the LSTM is not providing additional information, but it is

slightly penalizing the model. The last model is the MLP with the LSTM.

It reached the least accuracy, as the LSTM did not add any information to

the MLP. In fact, the accuracy remained the same as for the MLP 75.7%.

We believe that the accuracy of our models could be further increased

by training our models on images bigger than 64x64x3 as they would add

more information, since the limited resolution might reduce the ability of the

model to learn and improve and by having more data about the mother’s

general status like BMI, blood pressure and so on.

Lastly, we think that the LSTM training was impaired by the stochastic

nature of the signal, making it hard to find correlations. Especially because

some signals have been corrected by interpolating some points. We want to

end by adding some other further future improvements: use other temporal
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aspects of the signal in association to the FHR for the LSTM training, explore

other images transformations, re-calculate the mean values for the signal and

create a website with a user interface, that has our pre-trained deep learning

model in the backend allowing doctors to upload their CTG traces and get

a prediction of the state of the pregnancy.
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Chapter 1

Cardiotocography

This work aims to create a tool that can help doctors discerning if the fetal

heart during pregnancy is normally developing or if pathological fetal changes

are in progress. As it can be easily understood, the job is complex, and the

objective is ambitious. To accomplish this goal, we used machine learning

techniques and deep learning algorithms to analyze the temporal series of the

CardioTocoGraphic(CTG) signals as well as numerical data related to the

mother and signals. The temporal series have been transformed in images to

exploit the power of Convolutional Neural Networks (CNN) in understanding

peculiar details.

1.1 Pregnancies and Risks Factors

Although most pregnancies proceed physiologically, approximately 8% of

them have complications. [1] These complications might arises due to ad-

verse mother’s health conditions, thus leading to various medical conditions
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2 1.2. HISTORY OF CARDIOTOCOGRAPHY

further impacting the health of both the mother and fetus.

The negative impact on the fetus’s health is usually referred to as ”fetal

distress”, which is linked to an alteration and decrease in the Fetal Heart

Rate (FHR).

1.2 History of Cardiotocography

Cardiotocography (CTG) was introduced to monitor the health status of

the fetus and currently is the most used technique. A typical CTG pattern

is considered a good indicator for the fetus’s well-being thanks to its wide

adoption and the amount of data gathered, but the opposite is not true.

The efficacy of the CTG antepartum decreases if there is a need to iden-

tify fetal distress. At the core of this problem, there is a lack of guidelines

regarding the interpretation of the CTG. There are currently numerous vi-

sual reading systems, but still, no standard has been reached. Even if in

the same center the same guidelines are followed, discordant interpretation

might arise.

As a matter of fact, complex signal changes in the short period are almost

impossible to detect with the naked eye. Hence, it is possible to conclude

that the CTG visual reading is inaccurate and thus cannot extract all the

information inside the signal, despite its large use. To process CTG signals

we used a software named 2CTG, adopted by the Hospital Federico II of

Naples. [2]

The CTG is comprised of two components: a cardiotocograph, which cap-

tures the FHR signal, uterine contractions, and fetal motor activity through
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Doppler or heartbeats, and a software installed on an ordinary laptop that

analyzes all the information captured by the former, then the trace is sent to

another laptop containing the software 2CTG, which analyzes all the sample

based on the linear and non-linear parameter of the FHR. [3]

The system 2CTG, that we used, reads:

1. time interval between two following cardiac contractions

2. activation status of the autocorrelation function

3. opening and closing of the cardiac fetal valves generate sounds

that are registered by the doppler probe. ACF algorithm iden-

tifies the associated peaks and generates the reconstructed FHR

properly sampled at 2 Hz

4. values of internal or external tocodynamometry

5. fetal motor activity

The data are sampled with a minimum interval of 250ms, but we sampled

with an interval of 500ms. After the sampling, the value of the FHR and

tocometry are averaged over periods of 2.5s to avoid redundancy. The main

limitation of this system is that there are artifacts, as the sensor in old

CTGs could record the mother’s heart rate instead of the fetal one. The new

generation CTGs samples the mother’s heart rate together with the FHR to

reduce these artifacts. Although there are two phenomenons called:

1. double-counting : the FHR is sampled two times and summed, hence

simulating a fetal tachycardia
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2. half-counting : only half of the signals are sampled because the FHR is

high and the signals are so close to each other that the transductor is

not able to distinguish them.

The transductor is programmed to identify the interval between consec-

utive R waves. The transductor to discern the signals from the noise coming

from the mother’s heart rate or the mother’s abdomen selects the highest sig-

nal closest to the previous R wave, although this can lead to having hidden

arrhythmias that are not recognized by the probe due to shape and height.

Another scenario might arise when the mother’s QRS coincides with a P

wave or part of the fetal QRS; the system recognizes it as a correct signal to

record, but it contains vertical spikes.

To process these signals and remove theirs artifacts, we have used a modi-

fied version of the Mantel algorithm, which will be better explained in section

2.2.1

1.2.1 Fetal Heart Rate

The FHR signal is sampled with a frequency of 2Hz and is initially expressed

in beats per minute (bpm). We are going to refer to this signal as F120(i)

where 120 is the number of points in a minute, while i is the time in which the

signal has been sampled. In literature, we might find the FHR expressed in

milliseconds (R-R interval); thus, in this case, we will refer to it as T120(i). To

calculate the baseline, the program subsamples the signal F120(i) by averaging

every 5 points from the starting series, thus getting F24(i). This nomenclature

will become useful later on in chapter 3, where it will be used to calculate
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other essential parameters of the signal.

A typical pattern should have a baseline between 110-160 (bpm); if it is

below 110 bpm, then there is bradycardia, while if it is above 160 tachy-

cardia. The FHR is regulated by two Autonomous Nervous System (ANS)

components: parasympathetic and sympathetic. The parasympathetic in-

fluences the heart rate by reducing its frequency through the vagus nerve,

while the sympathetic increase the baseline. The former develops later than

the latter; thus, the FHR baseline decreases as the pregnancy progresses. [4]

The most recent guidelines are the FIGO 2015, which are better described

in the table 1.1 as with some other guidelines.

When the FHR is between 161-180 bpm for at least 10 minutes of sam-

pling, then we refer to it as tachycardia, and if it is above 180, it is consid-

ered highly dangerous. The FHR is highly correlated with either mother’s

condition or the fetus itself. In fact, mother’s hyperpyrexia can shift the dis-

sociation curve of fetal hemoglobin to the right, thus leading to less oxygen

for the fetus resulting in hypoxia. [5] Also, movements from the fetus or

maternal tachycardia influence the FHR.

Instead, when the baseline is between 90-109 bpm for at least 10 minutes

of sampling, we refer to it as bradycardia; it is high-risk if it is below 90

bpm. Even this condition can be correlated with the mother’s condition or

the fetus. For the former, we have autoimmune diseases or prolonged hypo-

glycemia, while for the latter hypoxia or placental abruption. Lastly, there

are forms of idiopathic bradycardia that vanish throughout the pregnancy or

at delivery.

The FHR variability is defined as the difference from the highest to low-
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est frequency in one minute of sampling. It can be described as the ampli-

tude/range of the frequency with values between 6-10 bpm, with the highest

at 25, or as the oscillation frequency in a minute with typical values from 2-6

cycles per minute.

The autonomous nervous system, as stated before, regulates the car-

diac frequency both with the sympathetic and parasympathetic components.

Thus as the pregnancy progresses over time also the variability increases,

while instead, in the presence of pathological situations like severe hypoxia,

the FHR’s variability decreases while at the same time creating dangerous

consecutive deceleration. The variability can be measured on three different

time scale: short-term (Short Term Variability, STV), medium-term (Delta),

long-term (Long Term Irregularity, LTI), which will be defined more in-depth

in chapter 3.

Variability hence is a crucial factor in the discrimination of the health

status of the fetus. Numerous studies underlined how this discrimination is

problematic when considering time intervals greater than 1 minute of sam-

pling. Thus the beat-to-beat variability, which is obtained only through the

CTG, is the most accurate parameter to understand the fetus’s well-being.[6]

The variability is physiologically reduced during sleep or inactivity of the

fetus thanks to the parasympathetic system, but it is healthy only in a time

frame of 15-30 minutes, while above 60 is pathological. Therefore if there is an

alternation of regions of inactivity with those of typical reactivity, the tracing

is not considered pathologic. There are cases in which the variability reduces

after a deceleration due to its come back to the baseline. This happens

because the deceleration caused a state of transitory hypoxia, which activates
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Guidelines

RCOG 2001 ACOG 2009 FIGO 2015

Reassuring Category I Normal

Baseline: 110-160 Baseline: 110-160 Baseline:110-160
Variability: ≥ 5 bpm Variability: moderate Variability: 5-25 bpm
Decelerations: absent Late Decelerations or vari-

ables: absent Early Decel-
erations: present or absent

Decelerations: absence of
repeated decelerations

Accelerations: present Accelerations: present or
absent

Non-Reassuring Category II Suspicious

Baseline: 100-109, 161-180 Baseline: Bradychardia /
Tachycardia

Variability: < 5 for 40’-90’ Variability: minimum, ab-
sent without repeated decel-
erations, increased

Decelerations: premature,
variable, 1 prolonged < 3′

Decelerations:

- repeated variables with
minimum or moderate
variability

- atypical variables

- late repeated with moder-
ate variability

- prolonged > 2′ < 10′

Lacks at least one charac-
teristics of normality, but
with no pathological fea-
tures

Accelerations: absent Accelerations: absent after
stimulation

Abnormal Category III Pathological

Baseline: < 100 > 180, si-
nusoidal for ≥ 10′

Baseline: < 100

Variability: < 5 bpm for ≥
90′

Absent variability associted
to:

1. Repeated variable de-
celerations

2. Repeated late deceler-
ations

3. Bradychardia

Reduced variability > 50′

Increased variability > 30′

Sinusoidal pattern > 30′

Decelerations: atypical
variables, late 1 prolonged
> 3′

Late decelerations or re-
peated prolonged for > 30′

or > 20′ if reduced variabil-
ity, 1 prolonged if lasts > 5′

Accelerations: absent Sinusoidal pattern

Table 1.1: Guidelines
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the anaerobic metabolism in the organism’s peripheral district, causing a

lowering of the peripheral pH, which causes the reduced variability. If this

reduced variability persists even after they come back to the baseline, there

is a state of prolonged hypoxia. Another cause is pre− eclampsia, which is

characterized by high blood pressure and some damage to other organs, that

associated with an intrauterine slower growth can lead to reduced variability

since there is an alteration in the uteroplacental perfusion, thus lowering the

oxygen influx in the fetus.

When there is a sudden reduction or absence of variability, it is possible

to suppose that there is an artifact. CTG signals contain multiple artifacts

which have to be taken into consideration when analyzing the trace. How

we processed these signals and their artifacts will be further described in

chapter 2. The variability can spike, thus having a jumping pattern, when

the oscillation’s amplitude is greater than 25 bpm as a result of increasing

vagal activity. The absence of variability, acceleration, and deceleration in

the FHR is also called silent trace. It may be due to multiple conditions

like Fetal Metabolic acidosis, sleep, inactivity, or arrhythmia. Lastly, there

is the sinusoidal trace in which the FHR’s oscillations are between the base-

line; thus, the variability can be 5-15 bpm, while the oscillation frequency is

usually around 2-5 cycles per minute.

Another important parameter when evaluating the FHR is the presence

of accelerations. Acceleration is referred to as the increase of the FHR of at

least 15 bpm above the baseline for more than 15 seconds until 2 minutes,

with a later return to the baseline. If it is between 2-10 minutes, it is called

prolonged acceleration; otherwise, if it is > 10, there is a baseline variation.
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Like the variability, the advancement of the pregnancy influence, due to

the further development of the ANS, the amplitude and the frequency of

the accelerations. In fact, in pre-term pregnancies or delayed intra-uterine

growth, there is a higher presence of small accelerations, in the former is

due to the immaturity of the ANS, while for the former, it is caused by the

restriction of the movement to save oxygen. [7] The absence of accelerations

for more than 30 minutes is usually due to sleep or inaction. [8]

Accelerations can be:

1. non−periodic, due to the fetal movement that consumes oxygen and in-

creases the supply from the placenta, it increases its cardiac frequency.

2. periodic, happening during uterine contractions that partially com-

presses the umbilical cord as well as the umbilical vein, causing fetal

hypotension activating the baroreceptor response, thus increasing the

FHR.

3. component of the variable decelerations due to the compression of the

umbilical cord. These types of accelerations are usually components of

variable decelerations, and in fact, the latter is most often preceded by

a primary or initial acceleration and followed by a secondary one called

overshoot.

4. followed by a deceleration and takes the name of lambda pattern. This is

thought to be due to the interruption of the sympathetic activity, with

a consecutive activation of the parasympathetic system, thus causing

the deceleration, also called undershoot.
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5. as a result of the Clark test : stimulation of the fetus head during labor

Decelerations, instead, are transitory states in which there are transitory

slowdowns and periodic of the FHR from the baseline of at least 15 bpm and

for more than 15 seconds.

There are two types of decelerations:

1. uniforms: have the same shape and are the inverted specular

image of the uterine contraction. It is divided in also two sub-

categories:

a. premature decelerations: lasts at least 20-90 seconds,

but the decrement is not greater than 50 bpm. The vari-

ability is almost preserved, and the baseline is in the nor-

mal range. It is caused by a compression of the fetus’s

head during labor, producing an increase in the intracra-

nial pressure reducing cerebral blood flow. When this

stimulus is ceased, all the values retrace back to normal,

hence they are usually linked to a good functioning of

the Central Nervous System (CNS). [9]

b. late decelerations: delayed by at least 20 seconds in re-

spect to uterine contractions. The decrement can be as

high as 45 bpm, and the variability is reduced too due

to a lower oxygen inflow, thus characterizing a pathologi-

cal status. In fact, during excessive uterine contractions,

the fetus reaches a status of hypoxia because there is a

reduction of blood flow in the intervillous space. [10] [11]
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2. variables: different morphologically from the uterine contraction.

It is preceded by an initial acceleration and followed by a final

acceleration. If it has a normal variability and a normal baseline,

it is a sign of good health because it can compensate a hypoxic

stimulus. [12] [13]

1.2.2 Tocography

CTG allows getting data of the uterine tone thanks to an external transduc-

tor. This technique has its limits, but it suffices for a qualitative valuation

since it can pick up:

1. amplitude: it depends on the intrauterine pressure. It is around 10-15

mmHg, and usually, it does not go above 30 mmHg

2. duration: lasts around 15-20 seconds

3. frequency : it varies depending on the gestational weeks. There are the

so-called Braxton−Hicks contractions that are irregular, not close to

each other, and can stop at any moment. While the labor’s contractions

happen at a regular time interval.

4. uterine tone: it is the uterine pressure between the contractions, the

value is between 5-10 mmHg. If the uterus does not go back to its

basal tone in between the contractions, this could lower the placental

perfusion leading to hypoxia.

5. rhythmicity : might comes in the form of couples, triplets, or quartets.
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6. configuration: usually bell-shaped, but also sheer or pointed aspect

during labor. [14]

1.3 State of the Art

This work is relatively new, hence it was challenging to find researches that

aim to predict pregnancies’ outcome.

Zhao et al. [15] uses FHR signals transformed into images thanks to Con-

tinuous Wavelet Transform. Their models consist of an 8-layer Convolutional

Neural Networks (CNN) with a single Convolutional Layer. Their dataset is

comprised of 2682 and 630 for normal and pathological fetal classes. Even

though their model reaches a 98.34% of accuracy with an AUC of 97.82%,

the imbalances on their dataset might indicate overfitting. The work of

Petrozziello et al. [16] doesn’t use images but raw signals from Electronic

Fetal Monitoring (EFM) to predict fetal distress. Their approach is to use

the FHR and contractions signals to both Long Short-Term Memory (LSTM)

and CNN. Results achieved are 61% and 68% respectively. The dataset used

was wider as it comprised of 35429 signals, but contained 33959 healthy

newborns, while only 1470 compromised. Fergus et al. [17] utilize Machine

Learning models to classify caesarean section and normal vaginal deliveries

based on cardiotocographic traces. 552 FHR signal recordings, of which 506

controls and 46 pathological, were used as dataset, from which have been ex-

tracted features like baseline, accelerations, decelerations, Short-Term Vari-

ability (STV) and many others. The models proposed in this paper are:

Multi-Layer feedforward neural network, Fishers Linear Discriminant Anal-
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ysis (FLDA) and Random Forest (RF). The best performing model is the

MLP that on the unbalanced dataset reaches an 87% AUC. Lastly, Iraji

et al. [18] explores soft computing techniques to predict fetal state using

cardiotocogram recordings. Neuro-fuzzy inference system (MLA-ANFIS),

Neural Networks and deep stacked sparse auto-encoders (DSSAEs) are im-

plemented. The dataset is composed of 2126 samples already processed that

were divided in three classes: 1655 normal, 295 suspect, and 176 pathologic.

On the full dataset, the best performing approach is deep learning with an

accuracy of 96.7%. The second best is ANFIS that reaches an accuracy of

95.3%.



Chapter 2

Database & Preprocessing

2.1 Dataset

The dataset is taken from the Hospital Federico II of Naples. The cohort

is comprised of 9476 pregnant women with 24095 cardiotocographic entries.

All the women are from the area of Naples or the neighboring hospitals, and

this will play a key role in section 2.1.3 of data labeling.

Pregnancies in this work were binary categorized based on the CTG sig-

nal: 0 as healthy and 1 as pathological. The dataset presents a column

NOTA, filled by the doctors of the hospital, which contains information

about the status of women or pregnancies. This will be further explained

in section 2.1.2.

2.1.1 2CTG Software

The software used to process the data is the 2CTG, which is a software

developed in the 1993 [2]. It is composed of a series of cardiotocographs that

14
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register the CTG trace after it is sent to the computer, where it is stored and

displayed on a screen. The data is then sent to another computer containing

the software 2CTG, which instantaneously makes an analysis based on linear

and non-linear parameters of the FHR. The FHR’s tracing is displayed on the

top part of the windows with the colors green and yellow influenced by the

activity of the autocorrelation function, while when there is a loss of signal

is in red. The fetal movements are displayed in the middle part as black

dashes right under the FHR’s tracing. In the bottom part, there are uterine

contractions. The software analyzes the baseline and all the parameters every

minute, hence the whole tracing is re-analyzed each time. An example of the

2CTG’s user interface is in the following Figure 2.1, some data have been

blurred as they contained private information.

Figure 2.1: 2CTG User interface with a CTG tracing
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HP fetal monitor uses an autocorrelation technique to compare the de-

modulated Doppler signal of the fetus heartbeat with the next one. Each

Doppler signal is sampled at 200Hz. The autocorrelation function is calcu-

lated in 1,2 seconds, which corresponds to a minimal FHR of 50 bpm. Hence

the software that identifies the peak determines the interval R-R from the

autocorrelation function. Interpolation for these peaks is applied and results

in a speedup of 2ms.

As of now, the computer can read 10 consecutive values every 2.5 seconds,

and the resulting FHR is the mean of these 10 values (corresponding to a

sampling frequency of 0.4Hz). The software can sample the FHR at 2Hz

(every 0.5s), which is a reasonable value to reach a sufficient bandwidth

(Nyquist frequency 1Hz) and a reasonable accuracy.

As stated earlier, there are linear and non-linear parameters for the FHR

which will be explained in-depth in chapter 3. [19]

These parameters are:

1. linear:

a. time domain:

i. Baseline

ii. Short-Term Variability (STV)

iii. Delta

iv. Long-Term Irregularity (LTI)

v. Interval Index (II)
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b. frequency domain:

i. Low Frequency (LF)

ii. Movement Frequency (MF)

iii. High Frequency (HF)

2. non-linear:

a. Approximate Entropy (ApEn)

2.1.2 Data extraction

The dataset was stored in a Microsoft Access Database file (.mdb). It con-

tains 6 tables but the important one for this project were only 3: ANA-

GRAFE PCC, ESAME CTG, PARAMETRI CTG.

Dataset Columns Records

ANAGRAFE PCC 14 9879
ESAME CTG 19 29353

PARAMETRI CTG 73 24095

Table 2.1: Records example in ANAGRAFE PCC table

The tables contained the following features, and only the most important

one will be listed:

1. ANAGRAFE PCC:

i. PATNUM , Patient number used as a key to referencing

each patient

ii. NOME , Patient’s name
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iii. COGNOME , Patient’s surname

iv. DATA NASCITA, Date of birth

v. NOTA, Notes related to the health status of patient or if

is coming from another hospital

vi. CITTA, City from which the patient comes from

2. ESAME CTG:

i. PATNUM

ii. ID PRESTAZIONE , The ID linked to a CTG tracing

iii. DATA, date and time in which the CTG was recorded

iv. SETT GESTAZIONE , Gestation week

3. PARAMETRI CTG:

i. ID PRESTAZIONE

ii. STV MED , Short-Term Variability

iii. II MED , Interval Index

iv. DELTA TOT

v. LTI MED , Long-Term Irregularity

vi. APEN MED , Approximate Entropy

vii. LF MED , Low Frequency

viii. MF MED , Movement Frequency

ix. HF MED , High Frequency
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x. RC MED ,

xi. NUM ACCEL GRANDI , Number of big accelerations

xii. NUM ACCEL PICCOLE , Number of small accelera-

tions

PARAMETRI CTG contains for all the features listed above, their re-

spective Minimum, Maximum, and quantile values, except for ID PRESTAZIONE.

These features were excluded for the sake of brevity. The visual structure of

these tables can be find in the tables 2.1, 2.2 and 2.3 respectively.

In order to link the data contained in the dataset tables, we used the

women’s personal information. To calculate the age of patients, as it was not

provided in the dataset, we had to extract the date on which the CTG record-

ings have taken place. Lastly, we extracted all the information regarding the

CTG trace.

We used Python with the module pandas to perform all the data extrac-

tion and processing. A more thorough explanation of the tools and libraries

used is in section 2.3.

In order to get the information of each woman, we performed a join

between ESAME CTG, PARAMETRI CTG, and ANAGRAFE PCC on

ID PRESTAZIONE between the first two tables and on PATNUM between

the first and the last table.
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The resulting MSQL query is the following:

SELECT ANAGRAFE_PCC.NOME, ANAGRAFE_PCC.COGNOME,

ANAGRAFE_PCC.DATA_NASCITA, ANAGRAFE_PCC.NOTA,

ANAGRAFE_PCC.CITTA, ESAME_CTG.DATA, ESAME_CTG.QUALITA,

ESAME_CTG.SETT_GESTAZIONE, PARAMETRI_CTG.*

FROM ESAME_CTG, PARAMETRI_CTG, ANAGRAFE_PCC

WHERE ESAME_CTG.ID_PRESTAZIONE=PARAMETRI_CTG.ID_PRESTAZIONE and

ANAGRAFE_PCC.PATNUM=ESAME_CTG.PATNUM

The query returned a total of 24095 records.

All the data shown in the following tables are not representing any real

person.
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2.1.3 Data Labeling

First of all, the main focus was on the column NOTA that contained a code,

given by the hospital Federico II, for each type of category in which each

woman/pregnancy would fall into. The categories were as follow:

01: Physiological

02: Twinning physiological

03: Fetal Pathology:

(a) Intra Uterine Growth Restriction (IUGR)

(b) Flowmeters alterations

04: Maternal Pathology

(a) Diabetes type I

(b) Diabetes type II

(c) Gestational Diabetes

(d) Essential hypertension

(e) Drug addiction

(f) Cardiopathy

(g) Thyroid

05: Fetal malformation

06: Fetal pathology + maternal pathology

07: Fetal pathology + fetal malformation



23 2.1. DATASET

08: Maternal pathology + fetal malformation

09: Twinning + fetal pathology

010: Twinning + maternal pathology

011: Twinning + fetal malformation

012: Gestational week < 30

In this study, we divided the dataset into healthy, 01 and 02, and patho-

logical, from 03 to 12. We were not interested in discerning all the different

pathologies but rather in understanding if the pregnancy was healthy or not.

The resulting dataset needed to be skimmed through because in the col-

umn NOTA, there was another category which was ”pz da unità remota” or

patient coming from remote unit and it did not contain the category’s code.

To understand how to categorize the woman/pregnancy, Federico II Hospi-

tal provided a list containing these neighboring hospitals with the correlated

category, thus helping us discerning if the patient was healthy or pathological.

We extracted a blob file from the column PARAMETRI in the table

PARAMETRI CTG which had essential parameters like the FHR, TOCO,

and decelerations of a specific CTG tracing. The blob was then passed

through the software 2CTG that extracted these parameters. We needed

to merge these records with the dataset from ESAME CTG to retrieve only

the women who had an available CTG tracing. To accomplish this, we

had to use a naive solution because the blob file did not contain any in-

formation about the original patient, and for how the 2CTG works, there

was not an easy way to link these types of data. After inspecting how
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the files were processed by the 2CTG, we understood that they had the

same order as the one from the database; more specifically, they were or-

dered by the ID PRESTAZIONE column. Hence we intersected the list of

ID PRESTAZIONE from ESAME CTG with the list of ID PRESTAZIONE

from PARAMETRI CTG. The resulting dataset was cleaned of patients that:

had an invalid CTG tracing (< 2400 points), did not contain a CTG trac-

ing, and contained null values in the columns NOME, COGNOME, NOTA,

SETT GESTAZIONE, DATA NASCITA, resulting in a total of 17483 valid

records.

We derived two different datasets from this dataset: one containing only

the overall mean values of the CTG tracing, while the other contained all the

values calculated by the original CTG system.

2.2 Pre-Processing

2.2.1 Signals correction and baseline extraction

Most CTG signals contain artifacts, as stated in chapter 1, due to an overlap

of the mother heart rate and the FHR, sudden movement by the mother

or fetus, or simply an impossibility of the transductor to sample the signal.

Although artifacts are expected in a CTG signal, they are not valid for

machine learning training.

To solve this issue we used a modified version of the Mantel’s algorithm

to extract the baseline[20] and it is contained in the 2CTG software. Before

this algorithm the baseline estimation was done in intervals and thus losing
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some signal’s oscillations. An example of a before and after the algorithm

can be seen in Figure 2.2 and 2.3.

Figure 2.2: Example of a signal containing artifacts
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Figure 2.3: Example of a signal after the correction

2.2.2 Final dataset

After all the signals were corrected, we had to create one last part of the

dataset, which were the images used for the CNN part of our work. From

our initial 17483 valid records, we first split each FHR signal into a sub-

sequence of 20 minutes that contains 2400 sampled data (the minimum to be

considered valid) with an overlapping algorithm. These sub-sequences were

then converted into images of different sizes (32x32x3, 64x64x3, 256x256x3)

using multiple techniques:

1. Wavelets

2. Gramian Angular Summation Field (GASF)
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3. Gramian Angular Difference Field (GADF)

4. Markov Transition Field (MTF)

5. Recurrence Plot (RP)

6. Self-Similarity Matrix (S)

7. Power Spectrogram (PS)

8. Persistence Spectrum (PSP)

The mathematical background and theory behind these techniques will

be further explained in section 4.3.1. The final images dataset was then

comprised of 48398 images, of which 20588 were healthy, while the remaining

27810 were pathological.

2.3 Tools & libraries

Our work used popular libraries for Machine Learning/Deep Learning:

1. Python 3.7.6 : was the primary language used to perform most of the

data extraction, pre-processing, training of the machine learning mod-

els. The required libraries were:

- Numpy 1.19.2 is the most commonly used library to compute

operations between multi-dimensional arrays.

- Pandas 1.1.5 is the most famous library to process and ma-

nipulate tabular data.
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- Scikit-learn 0.24.2 is a simple and efficient set of tools for pre-

dictive data analysis. It has a variety of Machine Learning

models.

- Scipy 1.4.1 is used to perform statistical analysis and compu-

tations. Used only to load Matlab (.mat) files.

- Keras 2.4.3 is one of the most common Deep Learning APIs

for python

- Tensorflow 2.4.1 is a ML library that contains Deep Learn-

ing modules used for the most complex models pertaining to

Neural networks.

- Matplotlib 3.4.1 was used for data visualization

- Seaborn 0.11.1 is another data visualization tool in order to

have more complex and decorated plots

- Pyodbc 4.0.30 was used to interact with Microsoft Database

file (.mdb)

- Xgboost 0.71 a library to use this model

2. Matlab R2021a: was the main programming language used to operate

on signals since it is easy to perform operations on multi-dimensional

arrays and to convert signals into images. Also, it was needed because

the implementation of the Mantel algorithm was in Matlab.

3. Jupyter Notebooks 6.4.0 for interactive execution and results’ display

To train and test our models, we used Kaggle, a website that allows users
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to upload datasets, implement machine learning models, and test them using

their hardware.



Chapter 3

Machine Learning

In this chapter, we start with introducing CTG’s features and how they are

calculated, proceeding with the machine learning algorithms adopted and the

results achieved.

3.1 CTG’s Features

CTG’s systems, like already stated in chapter 1, calculate various parameters

that are crucial for doctors in understanding fetus’s status. We will re-use

the annotation, firstly described in chapter 1, of the signal:

1. F120(i): normal signal with 120 points in a minute

2. T120(i): signal when expressed in milliseconds (R-R interval)

3. F24(i): subsampled signal by 5 points

4. T24(i): subsampled signal by 5 points, but in milliseconds

30
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3.1.1 Time Domain Parameters

Short-Term Variability

It is employed to quantify the FHR’s variability over a short temporal scale.

The definition explained here comes from Dalton et al. [21] and Arduini et

al. [2].

Considering an interbeat sequence of 1 minute, T24(i) in ms, where i =

1,...,24, the STV is defined as:

STV = mean [|T24(i+ 1)− T24(i)|]i =

∑23
i=1 |T24(i+ 1)− T24(i)|

23
, i = 1, ..., 23

where T24(i) is sampled every 2.5s.

The STV is calculated each minute on signal segments of 3 minutes,

excluding the FHR’s periodic variation like accelerations and decelerations.

It is the most used parameter for a proper clinical evaluation of fetuses

with intrauterine growth retardation, as it correlates with the degree of fetal

hypoxia/acidosis and with the neonatal outcome at birth [22]. In fact, ab-

normal values are linked to drastic changes in fetal conditions, increasing the

risk of delayed motor and neurological development while also damaging spe-

cific brain areas with long-term cognitive effects. This parameter is crucial

for fetal homeostasis, especially for medium/long-term variability, because it

checks the ANS’s integrity and its connections with the CNS. When the STV

is high, the ANS is healthy and functioning correctly; low STV is associated

with an oxygen detriment, thus fetal distress. [23] [24]
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Long-Term Irregularity

The LTI proposed by De Haan et al. [25] measures the global trend of

the frequency of long-term fluctuations. It can be either expressed in terms

of range or frequency. The former is calculated starting from the FHR’s

baseline over one minute of recording while noting its highest and lowest

point. The usual variability range is between 5 and 20 bpm. The latter,

instead, is measured by counting the number of FHR’s fluctuations in 1

minute of recording. A typical range is between 2-6 fluctuations; lower than

2 is considered abnormal.

The LTI is measured over interbeat sequences of 3 minutes each in mil-

liseconds, but it does not account for big accelerations and decelerations,

as suggested by Arduini et al. [2], to avoid deviation caused by spurious

measurements of variability. The whole sample has to contain a continuous

segment of at least 30 seconds.

With a given signal T24(i), LTI is the interquantile interval

[
1

4
;
3

4

]

of the distribution m24(j) with j ∈ [a; b− 1]:

m24(j) =
√
T 2
24(j) + T 2

24(j + 1)

Delta

Given a 1 minute signal in milliseconds T24(i) with j ∈ [1; 24], Delta is the

difference between the max and the min values of the FHR in a 1-minute
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recording:

Delta = maxT24(i)−minT24(i)

In [2] the big accelerations and decelerations are excluded.

Interval Index

It is one of the most widely used indices. Firstly proposed by Yeh et al.[26]

as a long-term variability parameter. The system 2CTG, though, uses the II

proposed by Arduini et al. [2].

II =
std [T24(i+ 1)− T24(i)]

STV

where STV stands for Short-Term Variability.

The Interval Index is a variation coefficient of the differences between

all the FHR’s values in a 1-minute recording, averaged over periods of 2.5

seconds.

3.1.2 Frequency Domain Parameters

The ANS controls the FHR’s variability, thus it is essential to quantify its

development during pregnancy. The Power Spectral Density (PSD) is used

to gather information related to the activity of the ANS on the FHR’s. Three

frequency bands are considered: Low Frequency (LF), Movement Frequency

(MF), and High Frequency (HF). [3]
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Low Frequency

The LF is influenced by the baroceptor feedback activity that is linked to

the oscillations of blood pressure and mediated by the sympathetic activity

of the ANS, while according to some authors, it includes both sympathetic

and parasympathetic activity. The range for the LF is 0,03-0,15 Hz.

Movement Frequency

The MF considers the fetal movements, specifically of the trunk, correlating

with the mother’s breathing frequency. It works on a small time frame of

about 3-5 minutes, approximately 300 data points. The range for the MF is

0,15-0,5 Hz.

High Frequency

The HF represents the effect that breathing has on the sinus node and is

mainly associated with the parasympathetic activity of the ANS. The range

is 0,5-1 Hz.

3.1.3 Non-linear Parameters

The use of a non-linear approach allows the usage of methods that study the

geometric and dynamic properties of the temporal series, although only esti-

mations can be made on these parameters, which results in being important.
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Approximate Entropy

The Approximate Entropy (ApEn) quantifies the complexity (irregularity)

of the FHR’s variability on windows of 3 minutes each. Low ApEn values

indicate a lower complexity of the signal and vice versa. Li et al. indicate

that lower values of ApEn are associated with fetal distress, hypoxia, and res-

piratory and metabolic acidosis in women close to labor. [27]. The definition

is taken from Pincus [28].

ApEn(m, r) =

∑N−m+1
i=1 logCi(m, r)

N −m+ 1
−
∑N−m+1

i=1 logCi(m+ 1, r)

N −m

It works specifically for short and noisy temporal series, less than 100

samples. N is the fixed length of the experimental temporal series, m is the

length of the segment in respect to the series, r is the signal’s percentage std

(that works as a filter), and Ci is the frequency of similar patterns given a

pattern in the window m.
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3.2 Feature Selection

We used multiple feature selection methods to eliminate redundant or ir-

relevant variables. These techniques are 6: 2 filter methods, 2 embedded

methods, 1 wrapper method, and the last one is dimensionality reduction.

We also used a Variance threshold to discard less meaningful features.

1. Univariate Feature Selection (UFS) [29], uses univariate tests to

extract the most relevant features

2. Recursive Feature Elimination (RFE) [30], recursively eliminates

features with the least importance

3. Random Forest Feature Selection (RFFS) [31], selects the most

important features according to random forest scoring

4. Decision Tree (DT) [32], can be used also for feature selection. In

fact it selects the most important features, by keeping them close to

the root of the tree

5. Lasso Regularization [33], shrinks less important features to zero

6. Principal Component Analysis (PCA) [34], reduces dimensionality

of the dataset and minimizes information loss

3.2.1 Principal Component Analysis

We talk more in-depth about PCA than the other techniques, as it returns

not a list of selected features but a list of Principal Components that explains

the most variance inside the dataset.
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The following table has been created to make more readable the subse-

quent graphs:

Feature ID

SETT GESTAZIONE 1

STV MED 2

II MED 3

DELTA TOT 4

LTI MED 5

FHRB MED 6

APEN MED 7

LF MED 8

MF MED 9

HF MED 10

RC MED 11

NUM ACCEL GRANDI 12

NUM ACCEL PICCOLE 13

AGE 14

DEC 15

Table 3.1: Features’ ID

We first plotted the dataset and the Principal Components found by the

algorithm. The arrow have been scaled up by a factor of 1.15 for readability

purposes.
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Figure 3.1: Plotted dataset and its principal components

From figure 3.1 we can already understand which PC explains the most

variance, but we plotted the explained variance for each feature.
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Figure 3.2: Explained variance by each feature

We set the threshold for the PC explained variance 90%. To understand

which were the most crucial PC, we used the chart described in figure 3.3.

We can see clearly how 9 features explain 90% of the variance. Based on this

result, we trained our model, and the results can be seen in the next section

in the table 3.3
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Figure 3.3: Cumulative explained variance
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3.3 Feature Scaling

Our dataset contained features with different scales. To avoid any feature

obscuring another, we applied normalization because we did not know the

distribution of our data. We used the MinMax method to scale all the fea-

tures between the range (0,1).

3.4 Hyperparameters Tuning

We used Randomized Search with 5-fold cross-validation [35] to find the best

hyperparameters for each of our models. In section 3.5 will be described

more in-depth models’ specifications.

3.5 Algorithms

This section introduces the algorithms used in our work that had to binary

classify our dataset (healthy/pathological).

1. Logistic Regression (LR) [36] is used to model the probability of a

certain class using the logistic function.

2. Random Forest (RF) [37] utilizes ensemble learning, which is a tech-

nique that, by combining many decision trees (classifiers), chooses the

class selected by most trees.

3. K-Nearest Neighbors (k-NN) [38] is a supervised non-parametric clas-

sification method. It works based on voting: a new sample is classified

by a plurality vote of its neighbors (the closest training examples based
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on a distance metric). The class chosen is the most common among

its k nearest neighbors. It is a lazy learner as it will not remember the

model and make all the calculations at run time; because of this it is

considered memory-intensive.

4. Adaboost [39] is a ML meta-algorithm based on the concept of boosting:

weak learners are trained, and their output is combined into a weighted

sum which represents the output of the boosted classifier. It reduces

drastically overfitting [39].

5. Multi Layer Perceptron (MLP) is a type of Neural Network that can

recognize underlying correlations in a dataset. We used 4 hidden layers

with L2 regularizers, as loss function, we used binary cross-entropy, the

optimizer chosen was Adam, and the sigmoid function as the activation

function.

6. Support Vector Machine (SVM) is a supervised learning model with

associated learning algorithms that tries to maximize the width of the

gap between the two categories by mapping points in space. When

there is a new data point, the SVM checks where it belongs into that

space and classifies it depending on which side of the gap it fell.

7. Bagging is a machine learning ensemble meta-algorithm that helps in

improving the stability and accuracy of machine learning algorithms.

Like boosting, it helps in reducing overfitting, but Bagging also re-

duces the variance. It generates multiple new training sets, each of a

specific size n, by sampling from the original dataset uniformly and
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with replacement.

8. GradientBoosting It works similarly to the other boosting methods. It

combines weak ”learners” into a single strong learner in an iterative

way.

9. Extreme Gradient Boosting (XGB) [40] is one implementation of Gra-

dient Boosting, but it is more regularized than its ancestor Gradient

Boosting. XGB uses advanced regularization (L1 & L2), which im-

proves model generalization capabilities. It is notably faster and has

better performance than Gradient Boosting, while it can also be par-

allelized.

All the hyperparameters were extracted using Randomized Search with

5-fold cross-validation [35]. For the reference model ”Logistic Regression”

we used L2 regularization with C equal to 10, using liblinear and lbfgs as

solvers. For the Support Vector Machine we uses C equal to 13 with rbf as

kernel. For theMulti-Layer Perceptron we used 4 hidden layers, respectively:

500, 250, 150, 50. For the k-NN the neighbours were 5, with metric Man-

hattan distance. For the Bagging, the estimators chosen was the SVM, with

20 estimators. For the Gradient Boosting the estimators were 200 with a

learning rate of 0.1. For AdaBoost the estimators were 100. For the XGB

we used 100 estimators with learning rate of 0.1. For the Random Forest we

used 100 estimators with entropy as the criterion.
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3.6 Results

We trained multiple models to understand which performed better. Before

testing our algorithms, we used a variance threshold that helped us to take

out features as ApEn and II as they had low variance, thus low statistical

significance. In Table 3.2 we show the features selected by each technique,

but we omit PCA as explained earlier. In Table 3.3 we show the results of

our trained models. To have a clearer overview of our results, we added:

1. Recall, also known as sensitivity, indicates the percentage of patho-

logical data point in the test set that the model was able to label as

such

2. F1-Score, is the harmonic mean of recall and precision, so it adds

extra information that recall alone does not provide

3. R2, explains the proportion of the variation in the dependent variable

from the independent variable,

4. Root Mean Squared Error (RMSE), is the standard deviation of

the prediction errors. These errors are a measure of how far from the

regression line data points are.

5. Area Under the Curve (AUC), is an integrated measurement of a

measurable effect or phenomenon. Describes how well the classifier can

distinguish between the two classes. It is calculated by doing a definite

integral between two points.
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3.7 Limitations

Although Machine Learning algorithms can learn to discriminate different

datasets in complex planes, we understood that the results were not great and

that only numerical data were not enough to understand how to classify our

dataset. Our idea was to combine the MLP with the power of Deep Learning,

using images and temporal series. In the next chapter, we dive further into

this topic, explaining how we performed and achieved improvements.
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Models Features Selected Discarded Features

Variance Threshold SETT GESTAZIONE,
STV MED, DELTA TOT,
LTI MED, FHRB MED,
LF MED, MF MED,
HF MED, RC MED,
NUM ACCEL GRANDI,
NUM ACCEL PICCOLE,
AGE, DEC

II MED, APEN MED

Univariate Selection SETT GESTAZIONE,
STV MED, DELTA TOT,
LTI MED, FHRB MED,
HF MED,
NUM ACCEL GRANDI,
NUM ACCEL PICCOLE,
AGE, DEC

II MED, APEN MED,
LF MED, MF MED,
RC MED

Recursive Feature Elim-
ination

SETT GESTAZIONE,
FHRB MED, HF MED,
NUM ACCEL PICCOLE,
AGE

II MED, APEN MED,
STV MED, DELTA TOT,
LTI MED, LF MED,
MF MED, RC MED,
NUM ACCEL GRANDI,
DEC

Random Forest Feature
Selection

SETT GESTAZIONE,
STV MED, DELTA TOT,
LTI MED, FHRB MED,
LF MED, MF MED,
HF MED, RC MED,
NUM ACCEL GRANDI,
II MED, APEN MED,
AGE

DEC,
NUM ACCEL PICCOLE

Decision Trees SETT GESTAZIONE,
STV MED, II MED,
APEN MED,
DELTA TOT, LTI MED,
RC MED, FHRB MED,
LF MED, MF MED,
HF MED, AGE

NUM ACCEL GRANDI,
NUM ACCEL PICCOLE,
DEC

Lasso Regularization SETT GESTAZIONE,
DELTA TOT,
FHRB MED, LF MED,
NUM ACCEL GRANDI,
AGE

II MED,
APEN MED,STV MED,
LTI MED, MF MED,
HF MED, RC MED,
NUM ACCEL PICCOLE,
DEC

Table 3.2: Features Selected by each algorithm
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Models Best Model R-Squared RMSE F1-Score Recall AUC

Whole
Dataset

XGB 0.697 0.561 0.68 0.68 0.685

Variance
Threshold

XGB 0.699 0.563 0.68 0.68 0.682

Univariate
Selection

RF/XGB 0.7 0.56 0.68 0.68 0.682

RFE XGB 0.692 0.569 0.67 0.67 0.672
Random
Forest

Bagging 0.687 0.566 0.68 0.68 0.676

Decision
Trees

SVM 0.695 0.562 0.68 0.69 0.688

Lasso / 0.164 / / / /
PCA Bagging 0.689 0.569 0.67 0.68 0.679

Table 3.3: Classifiers trained on datasets with different features



Chapter 4

Deep Learning

In this chapter, we explain our approach using Neural Networks (NN), in the

specific both Multi Layer Perceptron (MLP) and Deep Learning (DL), and

how we managed to achieve better results. In the specific, we first make a

general introduction on Neural Networks, then focusing on the architectures

used in our work: MLP, Convolutional NN (CNN), and Long Short-Term

Memory (LSTM). Before diving into the CNN, we explain the images ex-

tracted from the signals and the theory behind them. We want to compare

these techniques related to the Machine Learning approach by comparing

their accuracy and how we can improve our architecture.

4.1 Introduction to Neural Networks

As the Machine Learning’s results were stuck to a local optimum of 70%,

we opted in trying a new pioneering hybrid approach. We used Neural Net-

works, also known as artificial neural networks (ANNs), which are a subset of

48
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machine learning and are the core of deep learning algorithms. Their name

and structure are inspired by the human brain and how it learns, mimicking

how its neurons communicate with each other.

Neural Networks are versatile, and their applications are multiple. They

can be used for classification, as in this work, regression, object detection,

speech recognition, and many other domains. Their recent success is due to

Deep Learning, a subset of machine learning, which is essentially a neural

network with three or more layers. The need to create a deeper structure was

suggested by Bengio and Delalleau [41]. They thought it is natural to search

for a deeper structure since the human neural system is a deep architecture

and that humans tend to represent abstract concepts using multiple lower-

level concepts.

The linear perceptron could not be a universal classifier, but when a hid-

den layer with unbounded width and nonpolynomial activation function is

added to a network, creating a deep architecture, it can become a univer-

sal classifier. Deep learning discovers complex structures [42] in large data

sets by using the backpropagation algorithm that tune the internal network

parameters of the previous layers.

In Deep Learning, there are multiple architectures:

1. Convolutional Neural Networks (CNN), use kernels and

filters to slide through images, videos, or time series to learn to

classify them. They are widely used in image and video recog-

nition, image classification, image segmentation, medical image

analysis, and other domains. CNNs were inspired by biological

processes as their organization resembles the visual cortex. In-
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dividual cortical neurons respond to stimuli only in a specific

visual field region known as the receptive field. The receptive

fields of different neurons partially overlap, covering the entire

visual field.

2. Recurrent Neural Networks (RNN), use their ”memory”

as they take information from prior inputs to influence the cur-

rent input and output. Deep neural networks assume that inputs

and outputs are independent of each other, while recurrent neu-

ral networks’ output depends on the prior elements within the

sequence. They are used temporal problems, natural language

processing, speech recognition, and image captioning.

3. Long Short-Term Memory (LSTM), is an RNN architec-

ture. It has feedback connections. It is used primarily on time

series data. LSTMs were solves the problem of the vanishing

gradient problem that pertains to traditional RNNs.

4. Autoencoders, they pertain to the unsupervised learning field

as they learn unlabeled data. [43] The autoencoder learns a rep-

resentation of the data; it ignores the noise and applies a dimen-

sionality reduction as it needs to have a compressed knowledge

of the input.

At the core of each ML technique is the amount of data that will be

fed as input to these algorithms. We expect the model to generalize from

these known examples, which is a challenging task. To accomplish this, the
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dataset is split between train/test and applied k-fold cross-validation. The

most common scenario is that the model overfits. Usually, this happens

because the model has been trained too much on the training dataset and

can learn noise and details that negatively impact its ability to discriminate.

4.1.1 Avoid Overfitting

Overfitting is a crucial problem to overcome in Machine Learning. Especially

in Neural Networks. In fact Multi Layer Perceptrons are composed of fully

connected layers, where each neuron in one layer is connected to all neurons

in the subsequent layer. This ”full connectivity” that characterizes these

networks makes them prone to overfitting data. To solve this problem, there

are regularization techniques that prevent overfitting:

1. Weight Decay, which is similar to L2 regularization, every weight is

multiplied by a factor wd, where 0 < wd < 1

2. Batch Normalization, [44] it re-scale and re-center layer’s input to

make the network more stable and faster.

3. Dropout, [45] it avoids complex co-adaptations on training data. To

accomplish this some neurons are ”dropped out” or turned off com-

pletely.

4. Skip Connections, allows to skip certain layers in the architecture

and the output of one layer is fed as input to another layer (instead of

only the next one). As cited in Drozdzal et al. [46] the model that had

skip connections performed better and had a faster convergence.
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In our work, we used Batch Normalization and Dropout. We penalized

our CNN heavily, with Dropout reaching almost 80%, while for the MLP we

had 40%. We used weight decay only in one layer of the MLP as it boosted

the accuracy by 5%.

4.2 Multilayer Perceptron

As stated earlier, the MLP is a fully connected network. It is helpful as it

allows approximate solutions for very complex problems. We have used it

as a classifier to discern if a pregnancy was pathological or not by giving it

as input the numerical data about the mother’s personal details and CTG’s

signal.

Neurons uses activation function, just like the action potentials of biolog-

ical neurons. There exists different activation function:

1. Rectified Linear Unit (ReLU): is a non-linear function, also known as

ramp function

f(x) = max(0, x)

2. Leaky ReLU : solves the problem of the dying neurons of the ReLU

f(x) =


x if x > 0,

0.01x otherwise.

3. Sigmoid : mainly use to predict the probability to pertain to a specific
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class, since it exists between (0, 1)

S(x) =
1

1 + e−x

4. Softmax : is a generalization of the logistic function, and it is used at

the end of the neural network to normalize the output to a probability

distribution over a set of classes

σ(~x)i =
exi∑K
j=1 e

xj

In our network, we used ReLU and the Softmax function, as they achieved

the best results. The network is a sequential model that contains 4 hidden

layers with an output layer to binary classify.

Figure 4.1: Example of a Multi Layer Perceptron
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4.2.1 Our Model

The structure of our MLP is as follow:

1. Input: 16 features

2. Hidden Layer 1: 500 neurons, activation function ReLU

3. Dropout: 40%

4. Hidden Layer 2: 250 neurons, activation function ReLU

5. Dropout: 40%

6. Hidden Layer 3: 150 neurons, activation function ReLU with

kernel regularizers both L1 and L2 regularization penalty, bias

and activity regularizers L2. The value for L1 is 1e−5, for L2 we

have 1e−4.

7. Hidden Layer 4: 50 neurons, activation function ReLU

8. Dropout: 40%

9. Output Layer: 2 neurons, activation function Softmax

We have used as optimizer Adam with learning rate 10−4 and decay 10−4

200
.

The loss function used is the binary cross-entropy.
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4.2.2 Results Achieved

The dataset used for the MLP contains the mean values of the following

features for each recording: DELTA, II, STV, LTI, APEN, LF, MF, HF,

RC, FHRB, except for Small accelerations, Big accelerations, Decelerations,

Gestational Week and Mother’s age. The recording to be considered valid

had to contain at least 2400 points; otherwise, it got discarded.

The dataset was split between training and test (80%/20% respectively),

and our model was subsequently trained.

The accuracy reached by our model was 75.7%.



56 4.3. CONVOLUTIONAL NEURAL NETWORKS

4.3 Convolutional Neural Networks

This section explains the images we used and how we trained our classifier on

the new dataset composed of images using Convolutional Neural Networks

(CNN), and the results achieved.

4.3.1 Images Transformation

In order to use the CNN with images, we had to transform our signals into

images that our network could read. Signal to image transformations are

becoming more common as deep learning recent successes in computer vision

inspire different methods to approach old problems. We can classify a time

series transformed into an image by exploiting the techniques of computer

vision.

We decided to use multiple techniques to have a richer dataset that tried

to generalize the problem. Our dataset was comprised of images of dimen-

sions: 32x32x3, 64x64x3, and 256x256x3. We wanted to test on different

dimensions to see how much it would have impacted our results. All the

images have been extracted using Matlab, and some were created thanks to

built-in functions of Matlab, while others were algorithmically created by us,

using as reference the papers cited.

Continuous Wavelets Transform

The Continuous Wavelet Transform (CWT) [47] is used to decompose a sig-

nal into wavelets. Wavelets are small oscillations that are highly localized in

time. Wavelet decomposition is performed by analyzing or so-called ”mother”
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wavelet, a time-localized oscillatory function. The mother wavelet is continu-

ous in both time and frequency and is the source function that constructs the

scaled and translated basis functions. The CWT constructs a time-frequency

representation of a signal that has a good time and frequency localization.

Figure 4.2 represents one of the wavelets images from our dataset.

The CWT performs well in mapping the changing properties of non-

stationary signals and determines if the signal is overall stationary. It is a

convolution of the data sequence with a scaled and translated version of the

mother wavelet. The convolution can be accomplished directly, as in the first

equation, or via the FFT-based fast convolution in the second equation.

Wn(s) =
N−1∑
n′=0

xn′

√
δt

s
Ψ0 ∗

[
(n′ − n)δt

s

]

Wn(s) = FFT−1

[
N−1∑
k=0

x̂k

(√
2πs

δt
Ψ̂0 ∗ (sωk)e

iωknδt

)]

x̂k =
1

N

N−1∑
n=0

xne
−2πikn

ωk = if

(
k ≤ N

2
,

2πk

Nδt
,−2πk

Nδt

)

In the above equations, the Ψ function is the mother wavelet, ∗ symbolizes

a complex conjugation, N is the data series length, s is the wavelet scale, δt

is the sampling interval, n is the localized time index, and ω is the angular

frequency. Each of the equations contains a normalization so that the wavelet

function contains unit energy at every scale.
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Figure 4.2: Example of a Continuous Wavelet Transformation image

Gramian Angular Field

Gramian Angular Field (GAF) [48] images represent a time series in a po-

lar coordinate system instead of the typical Cartesian coordinates. In the

Gramian matrix, each element is actually the cosine of the summation of an-

gles. They preserve temporal dependency since time increases as the position

moves from top-left to bottom-right.

The following formula is relative to the Gramian Angular Difference Field:

GADF = [cosφi + φj]

= X̃ ′ · X̃ −
√
I − X̃2

′
·
√
I − X̃2
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While the one below here is relative to the Gramian Summation Field:

GASF = [sinφi + φj]

=
√
I − X̃2

′
· X̃ − X̃ ′ ·

√
I − X̃2

X = (x1, x2, ..., xn) is a time series of n real-valued observations. X̃ is the

rescaled X so that the values fall in the interval [−1, 1] or [0, 1]. I is the unit

row vector [1, 1, ..., 1]. Lastly φ:

φ = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃

The respective images are Figure 4.3 and Figure 4.4.

Figure 4.3: Example of a Gramian Angular Difference Field Image
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Figure 4.4: Example of a Gramian Angular Summation Field Image

Markov Transition Field

We used the Markov Transition Field (MTF) used in this paper by Wang et

al. on generating images starting from time series to improve classification

models.[48]

M =



wij|x1∈qi,x1∈qj · · · wij|x1∈qi,xn∈qj

wij|x2∈qi,x1∈qj · · · wij|x2∈qi,xn∈qj
...

. . .
...

wij|xn∈qi,x1∈qj · · · wij|xn∈qi,xn∈qj


M is constructed as follow: Given a time series X = (x1, x2, ..., xn), a data

point xu is assigned to its corresponding quantile bins qj(1 ≤ j ≤ Q), where Q

is the number of states. In this way we can construct from X a Markov chain,
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deriving the QxQ Markov transition matrix (W) where wij(1 ≤ i, j ≤ Q)

in W is the frequency with which a data point in the state qj is followed

by a data point in state qi. After normalizating by
∑

j wij = 1, W is the

Markov transition matrix, where wij represents now the transition probability

of qi −→ qj.Thus, Muv) in the MTF denotes the transition probability of

qi −→ qj, where xu is the data point at time step u and xu ∈ qi and xv is the

data point at time step v and xv ∈ qj. By assigning the probability from the

quantile at time step i to the quantile at time step j at each pixel Mij , the

MTF M actually encodes the multi-span transition probabilities of the time

series. The main diagonal Mii captures the probability from each quantile to

itself (the self-transition probability) at time step i.

The example of an MTF image can be seen in Figure 4.5.

Figure 4.5: Example of a Markov Transition Field Image
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Self-Similarity Matrix

The self-similarity matrix (S) is a graphical representation of pairwise simi-

larities of sequences in a data series.

To explain the similarity in our Self-Similarity Matrix, we used spatial

distance.

S(i) = |x(i)− x|

In the formula i is the index of the column of the image x. The image

extracted is Figure 4.6.

Figure 4.6: Example of a Self Similarity Matrix Image
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Recurrence Plot

The Recurrence Plot (RP) is a plot that shows, for each time step i, the

frequency that a phase space trajectory visits approximately the same area

in the phase space at time step j.

R(i, j) =


1 if ‖~x(i)− ~x(j)‖ ≤ ε,

0 otherwise

The figure for the Recurrence Plot is Figure 4.7.

Figure 4.7: Example of a Recurrence Plot Image
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Power Spectrogram

A power spectrogram (PS) is a visual representation of the spectrum of a

signal’s frequencies as it varies with time. The most common way to show

spectrogram is using a heat map. It uses a system of color-coding to represent

different intensity values.

From a time series, we can create spectrograms in two ways: approx-

imated as a filterbank that results from a series of band-pass filters, or a

more modern way that uses the Fourier transform on the time series. Even

though these methods differ in their representations, they are equivalent to a

certain extent. The former is analog processing of the signal, while the latter

is a digital process thanks to the FFT.

The data is broken up into chunks, which usually overlap, and Fourier

transformed to calculate the magnitude of the frequency spectrum for each

chunk. Each vertical line in the image corresponds to a chunk, a measurement

of magnitude versus frequency for a specific moment in time. These so-called

spectrums are then put sequentially to form the image.

To retrieve the image then we need to apply a short-time Fourier trans-

form (STFT) on the signal s(t) and window width ω:

spectrogram(t, ω) = |STFT(t, ω)|2
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Figure 4.8: Example of a Power Spectrum Image

Persistence Spectrum

The persistence spectrum (PSP) is a histogram in power-frequency space.

The brighter or ”hotter” color in the image means how long a particular

frequency persists in a signal as the signal progresses.
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Figure 4.9: Example of a Persistence Spectrum Image

4.3.2 Our Model

Our CNN model was developed using a basic configuration inspired by the

LeNet architecture. It possesses the basic units of a CNN: convolutional

layer, pooling layer, and fully connected layers. Although in our model, we

introduced also Batch Normalization and Dropout to penalize our model.

The input of our model is a tensor that is created by concatenating all

tensors derived by the images previously introduced. We used only a tensor

as it has to contains multiple images transformation of the same signal. The

labels have been set as 0 for healthy and 1 for pathological.

The sizes of the images, as stated in chapter 2, varies from 32x32x3 to

256x256x3. After some hyper-parameter tuning, we found that the best
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kernels and filters were respectively: 5x5 and 16/32.

Model structure:

1. Input layer: A tensor made by concatenating 8 images

2. Convolutional 2D Layer: 16 filters, 5x5 kernel, activation

function ReLU and no padding

3. Batch Normalization Layer

4. Max Pooling 2D Layer: pool size 2x2

5. Convolutional 2D Layer: 32 filters, 5x5 kernel, activation

function ReLU and no padding

6. Batch Normalization Layer

7. Max Pooling 2D Layer: pool size 2x2

8. Dropout: with 80% drop out rate

9. Flatten Layer: to unroll the output of the convolutional layers

in order to be fed to the fully connected layer

10. Dense Layer: 64 neurons and activation function ReLU

11. Batch Normalization Layer

12. Dropout Layer: with 80% drop out rate

13. Dense Layer: 16 neurons and activation function ReLU

14. Output Layer: 2 neurons with activation function Softmax for

classification
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Figure 4.10: Our CNN model

4.3.3 Results Achieved

The following results are only for the images of size 32x32x3 and 64x64x3,

as the main limitation of our work was that by using Kaggle, we have a

limited amount of RAM, and working with images bigger than 64x64 results

impossible.With the 32x32x3 images, we have achieved an accuracy of 64%,

while with the images 64x64x3, we reached a 68% accuracy. These results

are congruent to the fact that the model should be able to learn better in

discriminating classes by having more information.

Lastly, we want to point out that we trained this model using different

combinations of images to understand which were the more meaningful. In

table 4.1 we show the top-performing combinations. These results will be

later used for our mixed approach. Indeed, this model performs worse than

the MLP, but we understood that the model could learn from these types of

transformed images.
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4.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of artificial neural networks

where the fully connected network can be seen as a directed graph on a tem-

poral sequence. In this way, we achieve a temporal dynamic behavior. They

use their internal state (memory) to process data, and thanks to the loops

in their networks, they allow information to persist. They found application

in handwriting recognition, speech recognition, temporal predictions, music

composition, and other domains.

The main differences in RNNs are that there are finite and infinite ones.

For the former, the network is a directed acyclic graph that can be ”unrolled”

and replaced with a feedforward neural network, while the latter is a directed

cyclic graph that can not be unrolled.

One citation from T. Siegelmann that summarizes the power of the RNNs

is as follow:

”With enough neurons and time, RNNs can compute anything

that can be computed by a computer” [49]

One main limitation of the RNNs is the problem of the vanishing or

exploding gradient. When we have the vanishing gradient, it is due because

the further it goes through the network, the lower the gradient is and the

harder it is to train the weights. The same applies to the exploding gradients,

but the weights tend to grow exponentially.

Even though in our work we did not use RNNs, we had to introduce them

as LSTM are a special kind of RNN, but they are better in remembering

information for long periods of time and have been used by us.
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4.4.1 Long Short-Term Memory

LSTMs [50] have a much more complicated structure compared to RNNs, but

they perform better in terms of memory as they are capable of remembering

for a longer time. Since their introduction, they have been highly refined,

and now they work exceptionally well on a large variety of problems and are

now widely used.

LSTMs have been designed to avoid the long-term dependency problem.

They are similar to RNNs since they are a chain of repeating modules of

neural networks.

Figure 4.11: LSTM architecture

The RNNs usually have a simple tanh layer, while LSTMs keep the chain

structure, but the repeating module is not comprised of only a single layer,

but there are four. Let us introduce the core element of the LSTMs that is

the cell state, which is the horizontal line running at the top of the figure

4.11. [51]

It conveys the information through the entire chain and can have small

interactions, and sometimes the information may remain unchanged. This
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information can be regulated thanks to the other layers that we talked about

earlier, and these are called gates:

1. Input Gate: It is where information flows into the cell state,

which, thanks to the sigmoid layer it decides which values will be

updated, while the tanh layer creates new possible values that

might be added to the state.

2. Forget Gate: It decides what has to be forgotten by the cell

state. The sigmoid layer takes the decision, returning a value

between 1 and 0, which respectively means remember or forget

this.

3. Memory Gate: It is responsible for updating the old cell state

into a new one. By combining the output of the forget gate and

the input gate, LSTMs forget the things that have been already

decided while adding the data that is needed.

4. Output Gate: It outputs based on the cell state, but it is fil-

tered thanks to a sigmoid layer that determines which part of

the state we are going to output. Lastly, a tanh layer that filters

out the parts that matter.
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4.4.2 Our Model

Before explaining the model we used, we need to understand the data given

as input to the model.

We have decided to use the FHR signals that were extracted from our

dataset. As stated in chapter 2, we have taken only the signals with 2400

data points, and if there were more, we have used an overlapping technique

to create multiple signals. We created a tensor that has been scaled using

the MinMax function, which has been fed to our network.

The model structure is the following:

1. LSTM Layer: 8 units

2. Batch Normalization Layer

3. LSTM Layer: 8 units

4. Batch Normalization Layer

5. LSTM Layer: 8 units

6. Output Layer: 2 neurons for classification, using as activation

function softmax

4.4.3 Results Achieved

The results achieved were not as we expected. We have fined tuned some hy-

perparameters, but the networks were not capable of learning. We reached a

55% accuracy, which indicates that our model was almost as good as random

guessing.
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We think that this scarce results is due to the nature of the signal. FHR

signal is a stochastic signal compared to an almost periodic heartbeat signal.

Thus, the LSTM struggles in finding patterns inside the signal.

Chapter 5 explains this limitation further and how we think we can try

to improve the network and the results.

4.5 Mixed Approach

In this section, we will elaborate and explain our approach and the models

created, and at the end of this section, we will explain the results achieved

with all the networks.

Before beginning, it is essential to explain that we used a mixed approach

to try and reach a higher accuracy. This decision was taken based on the

assumption that deep learning networks can find connections between differ-

ent types of inputs. Lastly, we want to highlight that we have used the same

output layer for all the combinations of networks that we have used.

4.5.1 MLP & CNN

Our first idea was to create a network where the output of the MLP and CNN

was concatenated. In order to do so, the last output layer has to be taken out

since the classification is done once the data from the two networks have been

combined. The networks are the same as explained previously. We are going

to refer to their whole model structure as MLP and CNN for convenience.

As input for this network, we have used the same dataset already fed to the

MLP and the images used to train our CNN model earlier.
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The final model is the following:

1. MLP Network

2. CNN Network

3. Concatenation: This is where the output from both networks

gets concatenated into a single input that is fed to subsequent fully

connected layer

4. Dense Layer: It has 128 neurons, with activation function ReLU,

it is needed in order to teach the network how to deal with the

outputs

5. Output Layer: 2 neurons for classification and as activation func-

tion softmax

4.5.2 MLP & LSTM

Another idea was to use the good accuracy achieved by our MLP to boost

the results achieved from the LSTM network. Hence the two outputs have

been concatenated as we did for the mixed MLP and CNN network. In this

case, since we already named the MLP, we will refer to the LSTM as the

whole network structure, with the last classification layer taken out. This

model input was the dataset used for the MLP and the raw signals used for

the LSTM.
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The structure of this network is as follow:

1. MLP Network

2. LSTM Network

3. Concatenation

4. Dense Layer: 128 neurons and activation function ReLU

5. Output Layer: 2 neurons for classification and as activation func-

tion softmax

4.5.3 MLP & CNN & LSTM

The last idea was to combine the MLP, CNN, and LSTM to try and see if

this would perform any better than any of the other models that we have

tried.

This network instead combined all the inputs already used for the net-

works specified.

Below here you can find our last structure:

1. MLP Network

2. LSTM Network

3. Concatenation

4. Dense Layer: 128 neurons and activation function ReLU

5. Output Layer: 2 neurons for classification and as activation func-

tion softmax
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4.5.4 Final Results

As we expected, mixed networks, in some instances, performed better than

every single model. Earlier, we said that we had tried multiple combinations

of images to check, which could lead to better results. When we trained these

mixed models, we used the top-performing sets of images that can be found in

table 4.1. In the following pages, there are the results of these combinations

for all the explained models.

Overall the best performing model is the CNN and MLP combined to-

gether as it reached an accuracy of 79.1%, as shown in table 4.2. This is an

improvement from our high coming from the MLP of 75.7%. This model was

able to use the high accuracy of the MLP to influence and boost the accu-

racy of the CNN on the images. We reached a peak of 85.2% in our training

session. The second-best performing model is the MLP, CNN, and LSTM

combined, which reached almost identical results as the CNN and MLP, thus

showing that the LSTM is not providing additional information; actually, it

slightly penalized the model. For reference check table 4.3. The model with

the least accuracy reached was the MLP and LSTM together. Even though

the MLP was the only single model to perform better, the LSTM did not add

any information. In fact, the accuracy remained the same as for the MLP

75.7%. By looking at the results, we can have a clear view on which images

have been the most impactful on our model. The first one is the GADF as it

has been chosen always as important. Then we have the PS and PSP which

have been chosen multiple times. The least important are GASF and RP. A

summary of the results from all the models used can be found in table 4.4.
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CWT GADF GASF MTF RP S PS PSP Accuracy
0 1 0 0 0 0 1 1 68.1%
1 1 1 1 1 0 1 1 67.7%
1 1 1 1 1 1 1 0 67.5%
0 1 0 0 0 0 0 1 67%
1 1 0 1 0 1 1 0 66.9%
1 1 1 1 1 0 1 0 66.4%
0 1 0 0 0 1 1 0 66.3%
0 1 0 0 0 1 0 1 66.3%
0 1 0 0 0 0 0 1 66.2%
1 1 0 1 0 1 0 1 65.9%

Table 4.1: Top 10 best performing combinations of images for the CNN

CWT GADF GASF MTF RP S PS PSP Accuracy
0 1 0 0 0 0 1 1 79.1%
1 1 1 1 1 0 1 1 78.6%
1 1 1 1 1 1 1 0 78.4%
0 1 0 0 0 0 0 1 78.4%
1 1 0 1 0 1 1 0 78.4%
1 1 1 1 1 0 1 0 78.3%
0 1 0 0 0 1 1 0 78.3%
0 1 0 0 0 1 0 1 77.9%
0 1 0 0 0 0 0 1 77.9%
1 1 0 1 0 1 0 1 77.8%

Table 4.2: Top 10 best performing combinations of images for the mixed
model (CNN+MLP)
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CWT GADF GASF MTF RP S PS PSP Accuracy
0 1 0 0 0 0 1 1 78.9%
1 1 1 1 1 0 1 1 78.6%
1 1 1 1 1 1 1 0 78.2%
0 1 0 0 0 0 0 1 78%
1 1 0 1 0 1 1 0 77.8%
1 1 1 1 1 0 1 0 77.8%
0 1 0 0 0 1 1 0 77.5%
0 1 0 0 0 1 0 1 77.1%
0 1 0 0 0 0 0 1 76.8%
1 1 0 1 0 1 0 1 76.6%

Table 4.3: Top 10 best performing combinations of images for the mixed
model (CNN+MLP+LSTM)

Model Accuracy

MLP 75.7%

CNN 68.1%

LSTM 55%

MLP+CNN 79.1%

MLP+LSTM 75.7%

MLP+CNN+LSTM 78.9%

Table 4.4: Best results of the models tested



Chapter 5

Conclusions

In this work, we presented a novel way to discriminate between pathological

pregnancies and not. We took advantage of Machine Learning approaches,

with a specific interest in Deep Learning. The Machine Learning approach

focused on analyzing numerical data of the mother and the CTG’s signal.

While the Deep Learning approach, thanks to its flexibility and versatility,

enabled us to perform wider tests including images, signals and raw data.

5.1 Machine Learning versus Deep Learning

We have seen how for Machine learning one of the best performing model

was the eXtreme Gradient Boosting (XGB). It was chosen four out of seven

times for each dataset selected by the features selection algorithms, as can

be seen in table 3.3. Although our highest R-Squared was only of 0.7.

On the other hand, neural networks, especially the hybrid approach of

MLP and CNN combined, reached an accuracy of 79.1% with a peak value of

79
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85.2%. NNs have proven to be better and more reliable for our problem, as

they tend to generalize better and understand intricate connections between

features in the dataset through a hierarchical learning process. We think this

results is especially due to the power of deep learning and the amount of data

provided. As can be seen in figure deep learning algorithms are known to

perform better compared to old machine learning algorithms when the the

amount of data provided is significant. [52]

Figure 5.1: Performance of Deep Learning and Machine Learning with re-
spect to the amount of data
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5.2 Limitations

While making our research we noticed some main limitations:

1. Kaggle environment and its memory usage: As stated in chapter

4, we were not able to train our model on images bigger than 64x64.

The limited resolution might reduce the ability of the model to learn

and improve.

2. FHR signal and LSTM training: Due to its stochastic nature we

think that the network finds it difficult to learn patterns in the signal.

Especially because some signals have been corrected, hence some points

were interpolated and there might be some noise that could impair the

ability of model.

3. Dataset and mother’s information: Our dataset did not contain

any data pertaining to the mother’s general status like: BMI, blood

pressure, smoking status and so on. We think that this type of infor-

mation will greatly improve our models.
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5.3 Future Work

We have multiple proposal to improve our work:

1. Image Resolution: Using images of size 128x128 or 256x256 would

be highly beneficial for our model.

2. LSTM training: Signal’s raw data might need to be associated with

other temporal aspect of the signal, like mean values of some particular

features from our dataset.

3. Different images transformation: Other images transformations

exist and they should be explored to understand their relevance for

model training.

4. Website and user interface: Implement a website where doctors

could upload their raw signals and patient’s data such that our algo-

rithms can extract all the features and evaluate the state of the preg-

nancy based on our pre-trained deep learning model.
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