
POLITECNICO DI MILANO

SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

DEPARTMENT OF AEROSPACE SCIENCE AND TECHNOLOGY

Master of Science in

SPACE ENGINEERING

Enhancing smallsats lifecycle management

by Model-Based Systems Engineering and

Decision-Making techniques merging

Supervisor:

Prof. Michèle Lavagna

Author :

Paolo Minacapilli

914961

ACADEMIC YEAR 2020-2021

Abstract

Traditional Systems Engineering approaches highlight some bottlenecks whenever dealing

with information exchange among stakeholders, typically producing a large number of

documents, difficult to trace and to keep harmonized. This is particularly true for space

projects, which entail very complex systems conceivement, design, integration and oper-

ation by a number of different players who grow with mission complexity. Model-Based

System Engineering (MBSE) is intended to facilitate these activities, providing a common

source of truth to the system engineering ecosystem, improving its efficiency and quality

by developing a model that evolves along the entire product lifecycle.

This thesis applies an MBSE methodology to the Phase A of the European Space

Agency e.Inspector CubeSat mission for all Systems Engineering practices: from the

high-level mission objectives definition, through an articulated internal system functional

analysis, down to physical architecture and interface engineering, up to mission phases

and system modes modeling and concept of operations. Every step is harmonized with re-

quirements definition within the model and their traceability. The approach also proposes

the AIV/AIT plan modeling, to be exploited during the operative system development

activities. The study is conducted according to the ARCADIA method and adopting the

Capella tool, being very effective in mastering different engineering levels with coherence

and with an iterative information refinement.

MBSE lacks intelligent support that could strongly help in addressing the most suit-

able system architecture in line with the high-level mission requirements, speeding up the

alternatives selection process. This would be particularly useful during the preliminary

design phases, in which the almost infinite design choices are skimmed by the only sys-

tems engineers knowledge, who may miss some solutions. A newly approach conceived to

make up for this lack is also presented in this thesis, in the form of a decision-making tool

prototype, which implements a tailored algorithm that correlates a set of functionalities

with a set of available technologies, proposing one or more architectures that are coher-

ent with what the engineers expect from the system behaviour. Such tool is interfaced

with the previous MBSE environment, providing as output the modeled elements of the

proposed architecture too and a first grid requirements.

Keywords: MBSE, Model-Based Systems Engineering, Small Satellites, Systems En-

gineering, Decision-Making Methods, CubeSats.

iii

Sommario

Gli approcci tradizionali di ingegneria dei sistemi evidenziano delle difficoltà nello scam-

bio di informazioni tra le parti interessate, con una tipica produzione di una grande quan-

tità di documenti difficili da tracciare e tenere armonizzati. Ciò si verifica in particolare

nei progetti spaziali, in cui sistemi molto complessi vengono concepiti, progettati, inte-

grati ed operati da un numero di figure coinvolte che aumentano con la complessità della

missione. Per facilitare queste attività si può fare riferimento agli approcci Model-Based

Systems Engineering (MBSE), che aumentano l’efficienza e la qualità dello scambio di

informazioni, all’interno dell’ecosistema di ingegneria dei sistemi, sviluppando un modello

che si evolve lungo l’intero corso di vita del sistema da realizzare.

Questa tesi applica una metodologia MBSE alla Fase A della missione CubeSat e.Inspector

dell’Agenzia Spaziale Europea, per tutte le pratiche di ingegneria dei sistemi: dalla

definizione degli obiettivi principali di missione, passando attraverso una articolata analisi

funzionale interna di sistema, fino alla architettura fisica ed alla ingegneria delle interfacce,

concludendo con la modellazione delle fasi di missione, i modi di sistema e la sequenza di

operazioni del satellite. Ogni passo è armonizzato tramite la definizione, all’interno del

modello, dei requisiti e dalla loro tracciabilità. L’approccio propone anche la modellazione

del piano di AIV/AIT, da utilizzare durante le attività operative di sviluppo del sistema.

Lo studio è condotto utilizzando il metodo ARCADIA ed il software Capella, che risulta

essere molto efficace nel padroneggiare i diversi livelli di ingegneria in modo coerente e

con un raffinamento iterativo delle informazioni.

MBSE manca di un supporto decisionale intelligente che potrebbe aiutare fortemente

nell’identificare l’architettura di sistema che più si addice ai requisiti principali di missione,

con una conseguente accelerazione nel processo di selezione delle alternative. Ciò sarebbe

particolarmente utile durante le fasi preliminari di progettazione, in cui le scelte pro-

gettuali pressoché infinite vengono scremate dalle sole conoscenze dei sistemisti, ai quali

possono sfuggire alcune soluzioni. In questa tesi viene anche presentato un nuovo approc-

cio concepito per sopperire a questa mancanza, proponendo un prototipo di strumento

decisionale che implementa un algoritmo su misura per la correlazione di un insieme di

funzionalità con un insieme di tecnologie disponibili, proponendo una o più architetture

coerenti con ciò che gli ingegneri si aspettano dal sistema. Tale strumento si interfac-

cia con il precedente ambiente MBSE, fornendo in output anche gli elementi modellati

dell’architettura proposta ed una prima griglia di requisiti.

Keywords: MBSE, Model-Based Systems Engineering, Piccoli Satelliti, Ingegneria dei

Sistemi, Metodi Decisionali, CubeSats.

v

Acknowledgements

It is worldwide recognized that the most difficult task in any research work is the ac-

knowledgements writing, due to the so numerous feelings and the so little space available

to express them all. I will try to do my best.

First, I would like to declare my immense gratitude to my supervisor, Prof. Michèle

Lavagna, for letting me find my professional interests thanks to the passion, the enthusi-

asm and the immense knowledge she transmitted me during any (unfortunately virtual)

meeting. I am also grateful for the numerous valuable experiences she offered me, start-

ing from the involvement in the e.Inspector mission, actively joining several reviews with

the European Space Agency, up to the technical conferences to which she allowed me to

contribute with my work, such as the 5th ESA CubeSat Industry Days and the next 72nd

International Astronautical Congress. On this trail, I would also like to thank the whole

ASTRA team research group for having welcomed me and for the availability in the last

months.

Everything I have done during the master has had the constant presence of my colleague

and friend Giacomo, to whom I am grateful for the mutual charge we gave each other

during exam sessions. I also thank the Moscova guys for the long conversations had dur-

ing lunch breaks at university and around Milan.

The last year of master has been full of new people that I (virtually) met and that I will

surely remember in the future when thinking about university years. I want to thank

Stefano, Lorenzo and the whole CRETULA Team. I also thank PoliSpace, the space

association I joined at Politecnico di Milano, and the whole team I am working with. An

implicit thanks goes to all the people I got to know inside and outside university.

A few lines are not enough to express the importance and the centrality my parents have

had during my study path. During moments like this, in which I force myself trying to

find the right words to describe a too complex baggage of feelings, I retrace all the positive

and negative experiences of the last years, and the first images or sounds that come to my

mind are linked to my mom and dad, always there to encourage me. For this and much

more, thank you. I also wish to dedicate spacial thanks to my sister Giuliana and to my

grandmothers, grazie Nonne.

I cannot conclude without mentioning my historical friends, the Artisti Uniti, for having

lightened my mind whenever needed with funny moments and a lot of sport. You are a

certainty in my life. Thank you Giorgio for having always been interested about my work

and for your LaTeX skills, this is for you.

I want to thank the person with whom I shared every little moment in the last years,

Alice, who provided an immense support to me and considerable advice. I do not know

what the future foresees, in the meanwhile thank you for having been stand next to me

in any occasion.

Lastly, I recognize how different I am with respect to the young freshman of few years ago.

For having prepared me to new adventures with polytechnic values, thank you PoliMi.

vii

Contents

List of Figures . xiv

List of Tables . xv

List of Acronyms . xvii

1 Introduction 1

1.1 Space Systems Engineering Background . 1

1.2 Towards MBSE for Small Satellites Design 6

1.2.1 Small Satellites Design Context . 6

1.2.2 Literature Review of MBSE Applied to Space Missions 7

1.3 Thesis Motivation and Objectives . 9

1.4 Thesis Outline . 11

2 Model-Based Systems Engineering Concepts 13

2.1 What is MBSE? . 13

2.2 MBSE Ingredients . 16

2.3 MBSE State of the Art . 17

2.4 The ARCADIA Method in a Nutshell . 20

2.4.1 Users Needs Understanding . 20

2.4.2 Solution Architectural Design . 23

2.4.3 ARCADIA Diagrams . 25

2.4.4 The Capella Tool . 26

3 Case Study: e.Inspector 27

3.1 The e.Inspector Mission . 27

3.2 Model Implementation . 29

3.2.1 Requirements Management . 29

3.2.2 Operational Analysis . 33

3.2.3 System Analysis . 36

3.2.4 Logical Architecture . 42

3.2.5 Physical Architecture . 56

3.2.6 System and Subsystems Modes . 72

3.2.7 Concept of Operations using Scenario Diagrams 79

3.2.8 AIV/AIT Plan Definition with Capella 87

4 Decision Making Tool for Small Satellites Architectures Generation 93

ix

Contents

4.1 Statement of the Problem and Methodology 93

4.1.1 Inputs from the User . 94

4.1.2 Tool Embedded Decision Tree . 95

4.2 The Algorithm Explained . 97

4.2.1 Some Ingredients of the Algorithm: MCDM Methods 98

4.2.2 Level 1 Architectures Selection . 101

4.2.3 Level 2 Architectures Selection . 106

4.3 Simulations and Validation . 110

4.3.1 Subsystems Decision Tree . 110

4.3.2 Results and Discussion . 116

5 Conclusions and Future Work 123

5.1 Summary of the Results . 123

5.2 Limitations of the Study and Future Developments 124

5.3 Final Thoughts . 125

A Appendix - Capella Diagrams 127

A.1 Requirements Trees . 127

A.2 System Analysis Diagrams . 131

A.3 Logical Architecture Diagrams . 132

A.4 AIV/AIT Diagrams . 135

B Appendix - Decision-Making Tool 139

B.1 Functionalities and Alternatives Markers 139

B.2 Algorithms . 145

References 149

x

List of Figures

1.1 The systems engineering engine [36] . 3

1.2 ESA Project Lifecycle [66] . 4

1.3 V-Model [25] . 4

1.4 Life cycle costs against time [60] . 5

1.5 CubeSats launches trend in the last two decades [43] 6

1.6 Layout of the ESA/ESTEC Concurrent Design Facility [7] 10

2.1 The Input-Output iterative SE process [81] 14

2.2 MBSE factors related to investments and gains [45] 15

2.3 Document-based VS Model-Based information exchange. Credit: ESA . . . 16

2.4 The PMTE elements and interactions with technology and people [25] . . . 17

2.5 SysML Diagram Types [1] . 18

2.6 ARCADIA method phases [54] . 20

2.7 Concepts and relations concerning the Operational Analysis [75] 21

2.8 ARCADIA Flow Control Functions . 23

2.9 Concepts and relations concerning the System Analysis [75] 23

3.1 e.Inspector mission scheme . 28

3.2 e.Inspector 12U CubeSat deployed configuration [21] 29

3.3 Requirements - Capella Types Folder . 30

3.4 Requirements - Mass Editing View . 31

3.5 Requirements - Capella Module . 31

3.6 Requirement Example . 31

3.7 [OAB] Requirements - GLOBAL MISSION 32

3.8 [OAB] Requirements - TT&C . 32

3.9 [OCB] Operational Capabilities . 34

3.10 [OES] Mission Operations Commands Management 34

3.11 [OAB] e.Inspector GLOBAL . 35

3.12 [MCB] Mission & Capabilities . 37

3.13 [SDFB] Provide Power Supply . 38

3.14 [SDFB] Provide Communication Services 38

3.15 [SDFB] Provide On-board Data Handling 39

3.16 [SAB] e.Inspector GLOBAL . 40

3.17 [SFBD] Root System Functions . 41

xi

List of Figures

3.18 [LAB] EPS SS . 44

3.19 [LFCD] EPS Initialization and Solar Arrays Deployment 45

3.20 [LFCD] Battery Recharging from Solar Arrays Power 45

3.21 [LAB] OBDH SS . 47

3.22 [LAB] GNC SS . 49

3.23 [LAB] TT&C SS . 50

3.24 [LAB] PROPULSION SS . 51

3.25 [LAB] TCS SS . 52

3.26 [LAB] STRUCTURES & MECHANISMS SS 52

3.27 [LAB] e.Inspector GLOBAL . 54

3.28 [LFBD] Execute close-up visual inspection of a space debris 55

3.29 Physical Links Legend . 56

3.30 [PAB] EPS SS Internal Physical Links . 57

3.31 PDUs Replicas . 58

3.32 [PAB] EPS SS - Power Distribution Unit 1 59

3.33 [PAB] EPS SS - Power Distribution Unit 2 60

3.34 [PAB] OBDH SS Internal Physical Links 61

3.35 [PDFB] Execute Actuator Control . 61

3.36 [PAB] OBDH SS - GNC . 62

3.37 [PAB] OBDH SS - Telemetry Reading . 63

3.38 [PAB] OBDH SS - GNC Telemetry Reading 64

3.39 [PAB] OBDH SS - Telemetry and Data Downstream 64

3.40 [PAB] GNC SS Components . 65

3.41 [PAB] GNC SS - DOCK-GNC - Sensors 66

3.42 [PAB] GNC SS - DOCK-GNC - Actuators 66

3.43 [PAB] TT&C SS Components . 67

3.44 [PAB] PROPULSION SS . 68

3.45 [PAB] STRUCTURE&MECHANISM SS Components 69

3.46 [PAB] EPS SS Mass . 70

3.47 [PAB] ALL SUBSYSTEMS Mass . 70

3.48 [PCBD] e.Inspector Product Tree . 71

3.49 [M&S] GNC Modes . 74

3.50 Expanded view of GNC Detumbling Mode 75

3.51 [M&S] PROPULSION Modes . 75

3.52 [M&S] TT&C Modes . 76

3.53 [M&S] SYSTEM Modes - LEOP Phase (1) 77

3.54 Expanded view of SYSTEM Deployment Mode 77

3.55 [M&S] SYSTEM Modes - TRANSFER Phase (2) 77

3.56 [M&S] SYSTEM Modes - INSPECT Phase (3) 78

3.57 [M&S] SYSTEM Modes - DISPOSAL Phase (4) 78

3.58 [PES] ConOps - LEOP Phase (1) . 81

3.59 [PES] ConOps - TRANSFER Phase (2) . 82

xii

List of Figures

3.60 [PES] ConOps - Relative Operations . 83

3.61 [PES] ConOps - INSPECT Phase (3) . 84

3.62 [PES] ConOps - DISPOSAL Phase (4) . 85

3.63 [PES] Provide Communication Services . 85

3.64 [PES] Provide Power Supply . 86

3.65 [PAB] AIV/AIT EPS - Overall Plan . 89

3.66 Link to [PDFB] - Functional Tests of SA 89

3.67 [PDFB] AIV/AIT Procedures - Functional Tests of SA 90

3.68 AIV/AIT Functions - Progress Status Sheet 90

3.69 [PFCD] AIV/AIT - EPS testing activities 91

3.70 AIV/AIT EPS DOCK - ACUs Interface Tests Expanded View 92

4.1 Decision Tree Structure . 97

4.2 Flow chart of the decision-making algorithm. Light green is used for the

steps belonging to the first level, light orange for the second level ones. . . 99

4.3 Example of Components Modeling in Capella 109

4.4 Decision Tree of ADCS . 111

4.5 Decision Tree of Propulsion Subsystem . 111

4.6 Decision Tree of EPS . 115

4.7 Decision Tree of TT&C . 116

4.8 Simulation 1 - L1 Architectures . 118

4.9 Simulation 1 - L2 Architectures related to the 2-2-2-2 L1 Architecture . . . 119

4.10 Simulation 2 - L1 Architectures . 120

4.11 Simulation 2 - L2 Architectures related to the 1-1-2-1 L1 Architecture . . . 121

4.12 Reaction Wheel Node Component for Decision-Making Tool 122

5.1 INCOSE MBSE Roadmap [71] . 124

A.1 [OAB] Requirements - EPS . 127

A.2 [OAB] Requirements - TCS . 127

A.3 [OAB] Requirements - GS . 128

A.4 [OAB] Requirements - MOC . 128

A.5 [OAB] Requirements - OBDH . 128

A.6 [OAB] Requirements - PL . 129

A.7 [OAB] Requirements - PROP . 129

A.8 [OAB] Requirements - STR&MECH . 129

A.9 [OAB] Requirements - GNC . 130

A.10 [SDFB] Approach Target Debris . 131

A.11 [SDFB] Deorbit at EOL . 131

A.12 [SDFB] Provide Propulsion . 131

A.13 [SDFB] Provide Protection against Mechanical Loads 132

A.14 [SDFB] Provide Protection against Temperature 132

A.15 [LFCD] GNC SS - Close Proximity Relative Navigation during Eclipse . . 133

xiii

List of Figures

A.16 [LFCD] OBDH SS - Payload Data Acquisition, Storage and Transmission . 133

A.17 [LFCD] OBDH SS - System Initialization 133

A.18 [LFCD] OBDH SS - System Passivation . 133

A.19 [LFCD] PROP SS - Thrusting to Drifting Orbit Initialization 134

A.20 [LFCD] TT&C SS - Acquired Target Images Downlink Line 134

A.21 [LFCD] TT&C SS - Telecommands Uplink Line 134

A.22 [LFCD] TT&C SS - Telemetry Downlink Line 134

A.23 [PAB] AIV/AIT GNC - Overall Plan . 135

A.24 [PAB] AIV/AIT PROP - Overall Plan . 135

A.25 [PAB] AIV/AIT OBDH - Overall Plan . 136

A.26 [PAB] AIV/AIT TCS - Overall Plan . 136

A.27 [PAB] AIV/AIT STR&MECH - Overall Plan 137

A.28 [PAB] AIV/AIT TT&C - Overall Plan . 137

xiv

List of Tables

3.1 State Machine model elements . 73

3.2 Type of messages in Scenario Diagrams . 80

4.1 Indexes involved in the decision-making problem 97

4.2 Scale of relative importance in AHP . 100

4.3 Example of Pairwise Matrix in AHP . 100

4.4 Common actuators for small satellites [80] 112

4.5 Common sensors for small satellites [80] 112

4.6 Common chemical propulsion technologies for small satellites [80] 113

4.7 Common electric propulsion technologies for small satellites [80] 114

4.8 Common secondary batteries for small satellites [80] 114

4.9 Common high gain antennas for small satellites 115

4.10 Common low gain antennas for small satellites 116

4.11 Simulation 1 - Overall Architecture related to the 2-2-2-2 L1 Architecture 118

4.12 Simulation 2 - Overall Architecture related to the 1-1-2-1 L1 Architecture 121

B.1 Functionalities Markers of Simulation 1 . 139

B.2 Functionalities Markers of Simulation 2 . 140

B.3 ADCS L1 and L2 Alternatives Markers . 141

B.4 Propulsion Subsystem L1 and L2 Alternatives Markers 142

B.5 EPS L1 and L2 Alternatives Markers . 143

B.6 TT&C L1 and L2 Alternatives Markers . 144

xv

List of Acronyms

A1 Alternative 1

A2 Alternative 2

ACU Antenna Control Unit

ADCS Attitude Determination And Control System

ADN Ammonium dinitramide

ADR Active Debris Removal

AFM Alternatives Functionalities Matrix

AHP Analytic Hierarchy Process

AIT Assembly, Integration and Test

AIV Assembly, Integration and Verification

ALT Alternative

ARCADIA Architecture Analysis & Design Integrated Approach

ASTRA Advanced Space Technologies for Robotics and Astrodynamics

CAM Collision Avoidance Maneuver

CDF Concurrent Design Facility

COTS Components Off The Shelf

D1 Decision Level 1

D2 Decision Level 2

DSML Domain Specific Modelling Language

EOL End Of Life

EPS Electrical Power System

ESA European Space Agency

ESTEC European Space Research and Technology Centre

FPA Flat Panel Antenna

GNC Guidance, Navigation and Control

GNSS Global Navigation Satellite System

GS Ground Station

HAN Hydroxylammonium nitrate

HET Hall-Effect Thruster

HGA High-Gain Antenna

IBM International Business Machine

IEC International Electro-technical Commission

IFM Input Functionalities Matrix

IMU Inertial Measurement Unit

INCOSE International Council On Systems Engineering

xvii

ISO International Organization for Standardization

L1 Level 1

L2 Level 2

LA Logical Architecture

LAB Logical Architecture Blank

LEO Low Earth Orbit

LEOP Launch and Early Orbit Phase

LFBD Logical Functional Breakdown

LFCD Logical Functional Chain Description

LGA Low-Gain Antenna

M&S Mode & State

MarCO Mars Cube One

M-ARGO Miniaturised Asteroid Remote Geophysical Observers

MB4SE Model-Based For Systems Engineering

MBSE Model-Based Systems Engineering

MCB Mission Capabilities Blank

MCDM Multi-Criteria Decision Making

MMH Monomethylhydrazine

MOC Mission Operations Center

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

NB Non Beneficial

OA Operational Analysis

OAB Operational Architecture Blank

OBC On-Board Computer

OBDH On-Board Data Handling

OCB Operational Capabilities Blank

OES Operational Exchange Scenario

OFM Output Functionality Matrix

OFV Output Functionality Vector

OHB Orbitale Hochtechnologie Bremen

OMG Object Management Group

PA Physical Architecture

PAB Physical Architecture Blank

PCBD Physical Components Breakdown

PDFB Physical Data Flow Blank

PDU Power Distribution Unit

PES Physical Exchange Scenario

PFCD Physical Functional Chain Description

PFM Proto-Flight Model

PL Payload

PLATO PLAnetary Transits and Oscillations of stars

xviii

PMTE Process Method Tool Environment

POLIMI Politecnico di Milano

RAX Radio Aurora eXplorer

REC Replicable Elements Collection

ReqIF Requirements Interchange Format

RPL Replica

SA System Analysis

SAB System Architecture Blank

SDFB System Data Flow Blank

SE System Engineering

SFBD System Functional Breakdown

SP Solar Panels

SS Sun Sensor

SS Subsystem

SysML Systems Modelling Language

TCS Telecommunication System

TT&C Telemetry, Tracking and Command

UHF Ultra High Frequency

UML Unified Modeling Language

VHF Very High Frequency

xix

Chapter 1

Introduction

The whole is more than the sum of its parts.

Aristotle

The purpose of this chapter is to introduce the reader to the vast discipline of Systems

Engineering, with emphasis on space systems. The aim is not to provide a thoroughly

description of all systems engineering practices, as it would not be possible to do in a

few pages, but to highlight some key features of this broad field of knowledge, in order

to better catch the context of applicability of the thesis. A discussion on Model-Based

Systems Engineering follows, in order to define the open points found in literature to

which the thesis aims to provide an answer. Lastly, the work outline is introduced.

1.1 Space Systems Engineering Background

Space Industry is a very dynamic and challenging environment in which the most (appar-

ently) inhomogeneous companies concur and collaborate toward a shared objective, that

is to furnish a certain kind of product/service. The word inhomogeneous refers to the

great variety of disciplines that a space item asks for its realization, be it a satellite, a

launcher or whatever complex system intended as a combination of elements that provide

a capability not attainable by single parts alone. Dealing with such complexity has forced

organizations to formalize the concepts related to the design, testing and operation of

systems, leading to the definition of the Systems Engineering discipline.

The modern origins of Systems Engineering can be traced to the 1930’s [30] and the

roots of its formalization date back to 1962, when Arthur David Hall defined it in A

Methodology for Systems Engineering [29] as a process with five phases [33]:

1. Perform system studies (program planning);

2. Define the problem definition, select the objectives, perform systems analysis, select

the best system;

1

Chapter 1. Introduction

3. Repeat phase 2 in more detail (development planning);

4. Develop parts of the system, integrate and test them;

5. Operate the system (current engineering).

Such list is quite in line with current SE practices, which refer to the international

standard ISO/IEC 15288 introduced in 2002, when the systems engineering discipline

was officially recognized as the preferred mechanism to establish a collaborative environ-

ment between acquirers and suppliers in the realization of a product/service [30]. Many

definitions of SE followed that date, some of which are here provided with a focus on

those coming from space agencies:

• “Systems engineering is an interdisciplinary approach and means to enable the re-

alization of successful systems” - International Council on Systems Engineering

(INCOSE) [30].

• “Systems engineering is a methodical, multi-disciplinary approach for the design,

realization, technical management, operations, and retirement of a system” - NASA

Systems Engineering Handbook [36].

• “System engineering is an interdisciplinary approach governing the total technical

effort to transform requirements into a system solution” - ESA ECSS-E-ST-10C

Rev.1 [65].

In other words, systems engineering is the process which ensures that the customer’s

needs are satisfied throughout the entire product life cycle; to accomplish this task, sys-

tems engineers require an holistic knowledge of all the involved technical disciplines used

to define requirements, evaluate design tradeoffs, analyse technical risks and many oth-

ers, at the same time being able to manage the project, defined as a temporary endeavors

undertaken to create a unique product or service [35], providing programmatic, cost and

schedule inputs. The way SE supports the development and realization of end products

is summarized in Figure 1.1.

Concerning space projects, their life cycle is typically divided into 7 phases, here pre-

sented according to the ESA standards ECSS-E-ST-10C Rev.1 [65]:

• Phase 0 - Mission analysis/needs identification: understand customer needs, propose

possible mission/system concepts, draft system-level requirements.

• Phase A - Feasibility: finalize the expression of the needs, propose system solutions

to meet the customer expectations.

• Phase B - Preliminary Definition: preliminary define the system solution, demon-

strate that the solution meets the technical requirements according to the schedule,

the target cost and the customer requirements.

2

1.1. Space Systems Engineering Background

Figure 1.1: The systems engineering engine [36]

• Phase C - Detailed Definition: establish the system detailed definition.

• Phase D - Qualification and Production: finalizes the development of the system by

qualification and acceptance, finalize the preparation for operations and utilization.

• Phase E –Utilization: supports the launch campaign, supports the entity in charge

of the operations, provide documents in support to anomaly investigations and

resolutions.

• Phase F – Disposal: supports the entity in charge of the disposal to safely dispose

all products launched into space as well as ground segment.

Each phase includes end milestones in the form of project reviews, the outcome of which

determines readiness of the project to move forward to the successive phase, as shown in

Figure 1.2.

The need of an effective approach to manage SE practices across life cycle stages led to

the creation of different models in the last decades, mostly inherited from software devel-

opment procedures, which are applied depending on the kind of product to be realized.

A brief description of the most popular ones is here reported:

• Waterfall (1970) [56]: sequential process flowing downwards through all the required

stages. For projects in which requirements are well understood from the beginning

and not likely to change during the execution of a project.

3

Chapter 1. Introduction

(a) ESA Project Phases and Reviews (b) ESA V-Model

Figure 1.2: ESA Project Lifecycle [66]

• Spiral (1986) [9]: it is actually a class of incremental and iterative methods, useful

when requirements are unclear or uncertain at the start of a project. If the design

is acceptable, additional level of detail is developed; if not, the process iterates up

to the obtainment of a design that better matches stakeholder needs.

• V-model (1991) [26]: the design evolves over time from stakeholder requirements,

to the system concept and finally, the elements of design (left branch of the V, top-

down). The integration and testing activities follow in the right branch of the V

(bottom-up). This method is sequential, however it allows iteration and recursion

since the two branches of the V are linked by means of verification and validation

bridges (Figure 1.3).

Figure 1.3: V-Model [25]

The most widely accepted approach is the V-Model, as it embeds the transformation

of broad mission objectives into quantifiable design parameters constantly assessing the

4

1.1. Space Systems Engineering Background

user expectations. To this aim, requirements represent a key concept and pillars of SE,

as they allow to define formally, correctly and in a quantifiable way the expected needs of

the final users. A better characterization of requirements, with particular focus on space-

related ones, is reported in Section 3.2.1. Requirements must be continuously critically

assessed as they play the role of driving the engineering process and they are used to

verify and validate whether the designed system will meet the customer’s actual needs.

Verification is the determination that each element of the system meets the requirements

of a documented specification; it ensures you are building the system right. Validation is

the determination that the entire system meets the high level objectives; it ensures you

are building the right system.

As products are steadily growing in complexity, physical and functional connections

between components are becoming increasingly important, implying an overall increased

probability of committing errors. A direct consequence is the centrality of risk manage-

ment within projects in order to reduce the probability of late design changes. As the

project proceeds, costs to make corrective actions increase, therefore one of the primary

goals of systems engineers is to avoid late modifications which may drastically impact the

project in terms of costs, and consequently time. This concept is presented in Figure 1.4,

where the actual life cycle costs (green rectangles) are reported together with foreseen

costs (committed costs curve). The blue arrow indicates that errors are less expensive to

remove early in the life cycle [30].

Figure 1.4: Life cycle costs against time [60]

It is then fundamental to verify, even in early design phases, the adequacy of the so-

lution in relation to the needs and constraints, reducing the risk of re-evaluating the

architecture in advanced development phases. To do that, information should be ex-

changed in the easiest way among engineers and shared with stakeholders. This is often

not so trivial in large projects, as all the SE practices currently rely on a complex ex-

change of written documents, which are prone to inconsistencies and inherently suffer of

problems related to the timeliness of information [44]. In particular, space systems ex-

5

Chapter 1. Introduction

hibit a wide number of subsystems interactions, involving a lot of expertise coming from

different domains, therefore the enormous quantity of exchanged information and data

requires a method and a “place” where to orchestrate the systems engineering practices

and guarantee the traceability between the problem statement, the solution definition and

the system verification/validation. To cope with such aspects, Model-Based Systems En-

gineering approaches provide a better quality interactions among engineers and with the

involved stakeholders, facilitating the early recognition of errors and supporting complex

systems management, as discussed in the next section.

1.2 Towards MBSE for Small Satellites Design

1.2.1 Small Satellites Design Context

Over the last decades the space sector is experiencing a fast growing thanks to the ad-

vancements in miniaturization of electronics, that allow the development of smaller plat-

forms if compared to traditional ones. This fits into the space economy context, in which

small platforms such as CubeSats are acquiring a significant importance due to their re-

duced mass, volume and consequently cost, the latter being one of the largest barriers to

satellites development. Such revolutionary design philosophy is making small satellites a

success story, confirmed by the diagram in Figure 1.5 which shows the total number of

small satellites launched in the last two decades.

Figure 1.5: CubeSats launches trend in the last two decades [43]

Originally, the CubeSat standard was created by Stanford and California Polytechnic

State Universities in 1999, specifying that a standard 1U unit is a 10 cm cube [52] with

a mass of up to 2 kg [62]. Such standard is maintained whenever different form factors

are needed, with configurations that can be made of several units. The original intention

of CubeSats was to provide an educational experience to university students, allowing

them to develop a real space project with affordable costs. However, the low cost, low

development time, and the diffusion of commercial-off-the-shelf (COTS) components con-

6

1.2.2. Literature Review of MBSE Applied to Space Missions

tributed to a recent awareness spread among the space community, that is recognizing

the value of such miniaturized platforms for a wide variety of mission scenarios: Earth

remote sensing, telecommunications, astronomy, technology-demonstrator [13]. Nowdays,

most of CubeSats missions are directed toward low Earth orbits (LEO), however in the

last years a remarkable interest toward their exploitment for deep space exploration is

being born, as in the case of the NASA’s Mars Cube One (MarCO) mission launched on 5

May 2018 and headed for Mars [61]. Brand new missions are under development at ESA

too (Hera, LUCE, M-ARGO and others), which are all going to write a new chapter in

the solar system exploration using small platforms [77].

It is clear that the reduced costs and the miniaturization do not imply a reduced

complexity, therefore it is important to not underestimate the engineering effort required

in the design of small spacecrafts, particularly challenging due to their limited resources

which have to cope at the same time with the inherent complexity of a space system.

From the systems engineering methodology point of view, small satellites still rely on

document-based approaches inherited from the traditional space industry. Without an

alignment between emergent technologies and SE approaches, the risk is to postpone the

further advancement of small satellites. In this framework, the steadily increasing use of

Model-Based Systems Engineering in the space community perfectly matches the need

of having a more clear and consistent way of doing systems engineering, improving the

overall efficiency within organizations in order to better ride the wave of the incoming

space exploration challenges, which ask for shorter design cycles and above all the need

of an excellent understanding of customers’ aspirations and goals [75].

1.2.2 Literature Review of MBSE Applied to Space Missions

Several developments in the last decades have significantly pushed forward the adop-

tion and deployment of MBSE solutions in space programs [22], in order to streamline

their systems engineering process, which ask for an increased efficiency in the design,

development, deployment and verification. An example is the Model Based For System

Engineering (MB4SE) initiative [48], a platform promoted by ESA where technical discus-

sions about the deployment of MBSE in space projects take place. A literature research

has been conducted for this work to assess the level of advancement of MBSE practices

for space missions, not only CubeSat ones, with the aim of understanding lessons learned

and open works.

The benefits of MBSE is being demonstrated across programs, such as the NASA

Europa Clipper currently in Phase C, which demonstrated higher level thinking among

engineers, improved access to information for new team members, saved time, prevented

errors and minimized drudge work [8]. In ESA, an MBSE approach to the e.Deorbit

mission for its Phase A to Phase B1 [57] was tested to assess the benefits and the impli-

cations with respect to the work of three contractors (Airbus Defence and Space, OHB

7

Chapter 1. Introduction

and Thales Alenia Space), who adopted their own methodology and tools [24]. The work

was effective in maintaining the system complexity providing a holistic and collaborative

view of the project; the application of MBSE represented a significant increase in the

usage of SE practices with respect to previous ESA missions [23]. However the activity

showed a limited success in performing reviews using models due to the lack of knowledge

of non-practitioners who were not comfortable with the articulated diagrams [44]; the key

lesson learned was then to provide tailored views of the models for people who want to

judge the engineering work in specific domains.

The Euclid mission is the first ESA’s attempt to apply a complete MBSE concept for

a major project [4], as the sophisticated spacecraft to be launched in 2022 will study the

geometry of the Universe by measuring the dark matter and dark energy distribution.

Among the lessons learned there is a net benefit in terms of completeness of verification

by full coverage check of requirements and a successful exploitation of model for mission

reviews purposes, with a simpler identification of all interfaces and a coherent view of

functions and allocation [44]. However the group also highlighted a delayed return-on-

investment due to absence of a modeling background among engineers and managers,

who still often rejected the concept. This was actually something expected since the

Euclid mission started the adoption of MBSE during Phase B1, while it is important to

smoothly introduce the community to MBSE starting from early phases and at the same

time identifying the correct level of modeling details to avoid overload. The ESA PLAn-

etary Transit and Oscillations (PLATO) mission is also adopting a similar approach to

Euclid, using as guidelines the numerous lessons learned. The work done by Chhaniyara

et al. applied MBSE to space robotics systems [15], highlighting the need of MBSE for

such complex project but also the necessity of having some modeling guidelines for large

projects, not provided by the System Modeling Language (SysML).

Concerning CubeSats, the literature research performed for this thesis ran into a con-

siderable work conducted by the Space Systems Working Group (SSWG) lead by David

Kaslow and established by the INCOSE, with the purpose of promoting systems engi-

neering principles and techniques, in particular model-based ones [34]. One of the main

outputs obtained between 2012 and 2018 is the CubeSat Reference Model [38], a set of

more than fifteen papers with the scope of proving the applicability of MBSE practices

for designing CubeSats. The first phase of the project consisted in the application of

an MBSE approach to a 3U CubeSat mission called RAX (Radio Aurora Explorer) [67,

68], demonstrating the applicability of MBSE for space missions. An integrated modeling

approach was also proved in the second phase of the project bridging the MBSE model

with ModelCenter, allowing to perform engineering analysis and simulations [39]. In the

third and last phase the working group developed a CubeSat Enterprise model to capture

cost and product life cycle aspects [5, 37].

Another MBSE study in support of nano-satellites development can be consulted in

8

1.3. Thesis Motivation and Objectives

[28], where the DelFFi mission of the Delft University of Technology has been used as

case study. The study focused on requirements development in an MBSE environment,

which revealed to be very effective for their traceability, and in the development of a

collaborative workspace with proper construction of Simulink models to verify the design

and to link MBSE with the onboard software, increasing the quality of the product.

Lastly, it is worth mentioning the application of MBSE for the AeroCube-10 mission

developed by the Aerospace Corporation of El Segundo, composed by two 1.5U CubeSats

to demonstrate satellite-to-satellite pointing operations and other technologies [17]. The

whole life cycle has been explored using MBSE in order to cope with the mission com-

plexity: requirements, concept of operations, verification activities, physical architecture

and system-level analyses were modeled to provide the team a single source of truth. The

team assessed that modeling forces conversations among engineers helping to early de-

tect design errors; re-usability of model elements allowed to save time in future projects;

the interfaces description was at a different level with respect to static document-centric

approach; sudden changes of mission requirements were quickly captured [16].

1.3 Thesis Motivation and Objectives

Downstream the presented literature research it is possible to state that almost all projects

benefit from model-based approaches. However, there is still a sort of repulsion by engi-

neers who feel comfortable with text-based procedures, successful over the years. Also, the

apparent complexity of models and languages discourages the community. As it is recog-

nized the need of collecting more demonstrative applications of MBSE to small satellites

design, given their fast growing in the space sector, this thesis work provides a complete

modeling of a complex CubeSat mission in order to investigate which are the benefits in

implementing MBSE for the whole life cycle of space systems and to address key engineer-

ing issues related to the approach. In order to demonstrate MBSE potential and gaps, the

study passes through all the design phases, from high-level mission objectives definition

and requirements modeling to functional analysis, physical architecture and interface en-

gineering, concept of operations and modes definition, ending up with a newly approach

for embedding AIV/AIT plan into the model. A real CubeSat development scenario is

engaged to build the approach, namely the ESA e.Inspector mission, for which the study

will serve as basis in future mission phases.

It is recalled that MBSE does not automate the design of a system, but represents a

support to systems engineering practices which still have to be practiced by engineers.

When a space mission is conceived, a large number of variables have to be faced by

systems engineers who have to perform accurate subsystems sizing and consequent device

selection in order to accomplish the mission objectives. In Phase 0/A, an elevated number

of feasible architectures has to be reduced to no more than two consistent solutions. To

do that, ESA performs such assessment studies in the Concurrent Design Facility (Figure

9

Chapter 1. Introduction

1.6), a place where a group of experts from several disciplines work together using a

variety of sophisticated tools to assess new missions feasibility ensuring consistent and

high-quality results in a much shorter time with respect to a sequential or centralised

approach (before CDF a pre-phase A lasted 6-9 months and up to few weeks nowdays

[7]).

Figure 1.6: Layout of the ESA/ESTEC Concurrent Design Facility [7]

Concurrent engineering therefore deals with an important branch of SE, that is Decision

Analysis, comprehensively described in [36] and defined as the “framework within which

analyses of diverse types are applied to the formulation and characterization of decision

alternatives that best implement the decision-maker’s priorities”. It is not so straight-

forward to skim the almost infinite design choices and decisions just relying on systems

engineers knowledge, since such human brain-based method can miss innovative and still

feasible solutions. Therefore, this thesis work also presents a newly approach conceived

to extend the space engineers capabilities by developing a tailored decision-making tool

that correlates a set of functionalities with a set of available technologies, proposing one

or more architectures that are coherent with what the engineers expect from the system

behaviour. The purpose is to assess the feasibility and the functioning of the developed

algorithm in its preliminary prototype version, defining a virtual limited warehouse of

small satellites technologies/components, which need less customization with respect to

bigger spacecrafts, that can be automatically selected by the tool in order to obtain an ar-

chitecture compliant with users needs. If used as support for an MBSE methodology, such

as ARCADIA, the tool can overcome one of MBSE limits, that is the lack of intelligent

capabilities which can accompany the modeler, enhancing the overall solution.

10

1.4. Thesis Outline

1.4 Thesis Outline

The thesis is organized into 5 chapters. Chapter 1 introduces the systems engineering

discipline and small satellites design context, presents a literature review of MBSE applied

to space missions and defines the scope of the study. In Chapter 2 an overview of MBSE

languages, tools and methodologies is assessed, followed by a description of those adopted

for this work. In Chapter 3 an application of MBSE to a real CubeSat mission is

presented in details, responding to the first thesis objective. Chapter 4 illustrates the

method and the algorithms behind the decision-making tool, followed by some simulations

to validate it, responding to the second objective of the thesis. The conclusions to the

research work are presented in Chapter 5, together with limitations of the study and

future developments. Additionally, Appendix A adds some other diagrams related to

the MBSE case study and Appendix B reports the algorithms and some tables developed

for the decision-making tool.

11

Chapter 1. Introduction

12

Chapter 2

Model-Based Systems Engineering

Concepts

All models are wrong, but some are useful

George E. P. Box

In Section 1.2, some key principles of model-based systems engineering have been in-

troduced. The purpose of this chapter is to define what MBSE is, its benefits and limits,

and to present a state of the art review of the ingredients needed to formally apply it,

selecting some of them to conduct the case study of Chapter 3.

2.1 What is MBSE?

Model-based engineering has been a topic of discussion for over twenty years, when the

document-based SE approach disclosed its limits in terms of waste of time in writing

and in consulting them. The need of a more direct source of information was already

highlighted by the engineering community in late 1990s, however first MBSE approaches

started to become popular in 2007, when the INCOSE published the Systems Engineer-

ing Vision 2020 defining MBSE as “the formalized application of modeling to support

system requirements, design, analysis, verification and validation activities beginning in

the conceptual design phase and continuing throughout development and later life cycle

phases” [71], with the main goal of increasing the productivity by minimizing the unneces-

sary manual transcription of concepts and having a single “source of truth” in large teams.

As discussed in Section 1.1, systems engineering is matter of iterative process between

stakeholders and engineers until the design specification is matured. Figure 2.1 illustrates

the continuous looping between systems engineering activities, called SE process. When

all such activities are spread across written documents in a paper-based approach, the

following issues arise:

• Information Management : in a document-based approach the information is mostly

13

Chapter 2. Model-Based Systems Engineering Concepts

textual and an immediate drawback is the waste of time related to documents writ-

ing. As documents are written by a number of people that increase with the project

complexity, it often happens to have a repeated information in multiple documents

which are loosely coupled. Such an approach is prone to misinterpretation as it

depends on the “writer’s pen”, causing a further non-optimal use of time and team

effort. The organization of reviews with stakeholders involvement also relies on

lengthy procedures based of multiple documents exchange with an inherent diffi-

culty of information traceability.

• Requirements Traceability : the main cause of failure in projects stays on require-

ments unclearness. Textual requirements are often difficult to interpret since they

may appear as stand-alone sentences without a clear link to the system design

quantities and qualities, with the consequent risk of generating ambiguities both

internally to an organization and with respect to stakeholders.

• Design Changes : current practices foresee a consistent manual work to process a

change of the design, even during early design phases. It is indeed required to

span across multiple documents to ensure end-to-end traceability and consistency,

slowing down the project being such activities time-consuming.

Figure 2.1: The Input-Output iterative SE process [81]

All the listed difficulties, merged with the current wave of digitalization which asks

for an improved representation of systems development in order to optimize the overall

product life cycle, provide an interesting research thread that can be identified with the

14

2.1. What is MBSE?

diffusion of Model-Based Systems Engineering. The very first advantage of MBSE is that

the information is both visual and textual since it is contained in a model, defined in [27]

as “a representation of one or more concepts that may be realized in the physical world”

or “an abstraction of a system, aimed at understanding, communicating, explaining, or

designing aspects of interest of that system” in [18]. MBSE is then about elevating mod-

els in the engineering process to a central role, to ensure specification completeness and

consistency, traceability of requirements and design choices, reuse of design patterns and

specifications which positively impact successive projects, and a shared understanding of

the designs among users and designers [4].

Actually, all systems engineering has always been model-based; what changes with

MBSE is the shift of the models repository from the lead engineers minds, who try to

communicate it in order to align the team and ensure a shared understanding, to a

digital representation accessible by any member of the working group. As the model

becomes the single source of truth across multiple domains of an organization and with

stakeholders, the information becomes unambiguous, accessible and intuitive, with a direct

improved design team communication throughout the whole life cycle and a consequent

improved product quality. A change in the design can be managed more easily with

respect to a classical approach, due to the relationships across model elements such as

requirements, functionalities, components etc. which define traceability paths and also

allow early detection of errors. Figure 2.2 shows a comparison of system life cycle costs

between traditional SE and MBSE approaches, highlighting that the main investment

in MBSE is related to the infrastructure building and training of the personnel about

the modeling language, the method and the adopted tool. These are actually the main

cultural roadblocks that still prevent from a widespread awareness of how MBSE can

enhance the SE practices.

Figure 2.2: MBSE factors related to investments and gains [45]

15

Chapter 2. Model-Based Systems Engineering Concepts

2.2 MBSE Ingredients

Traditional systems engineering focuses on creating and managing documentation about

a system among the engineering teams and the stakeholders. In MBSE a central system

model is used to develop, manage and control relevant systems engineering information

(Figure 2.3).

Figure 2.3: Document-based VS Model-Based information exchange. Credit: ESA

MBSE is not just a matter of doing diagrams to represent results, but it represents a

support to systems engineering activities through modeling. Therefore, it requires a clear

methodology, which is a collection of related processes, methods, and tools [47], define as

follows:

• A Process is a logical sequence of tasks performed to achieve a particular objective.

A process defines “what” is to be done, without specifying how each task is per-

formed. The structure of a process provides several levels of aggregation to allow

analysis and definition to be done at various levels of detail to support different

decision-making needs [25].

• A Method consists of techniques for performing a task, in other words, it defines the

“how” of each task. At any level, process tasks are performed using methods. Each

method is also a process itself, with a sequence of tasks to be performed for it. The

“how” at one level of abstraction becomes the “what” at the next lower level [25].

• A Tool is an instrument that, when applied to a particular method, facilitate the

accomplishment of the tasks, provided it is applied properly and by somebody with

proper skills and training. Most tools used to support systems engineering are

computer- or software-based, which also known as Computer Aided Engineering

(CAE) tools [25].

Those listed are the key ingredients of any MBSE approach, surrounded by the En-

vironment, which consists in the external objects, conditions, or factors that influence

the actions of an object, individual person or group [47]. Figure 2.4 shows the presented

concepts and their relations.

16

2.3. MBSE State of the Art

Figure 2.4: The PMTE elements and interactions with technology and people [25]

The main purpose of an MBSE approach is then to be able to integrate all these

aspects, using a common terminology to clearly communicate what the model wants to

capture. Therefore, a modeling language must also be introduced, each one characterized

by its own syntax and semantics. Syntax refers to the structure of the language and can be

abstract or concrete; the first one is related to constructs and rules for building the model,

the second one is the set of symbols used to express the constructs. Semantics provide

meaning for the constructs, therefore are the meanings associated to the constructs of a

language.

2.3 MBSE State of the Art

Currently, one of the most common languages adopted in MBSE is the OMG Systems

Modelling Language (SysML), initially developed to close the communication gap between

systems engineers and software engineers [27]; its roots come from the Unified Modeling

Language (UML), adding some concepts and removing others. Since it is just a language

and not a methodology, it helps communicating amongst those trained with its notation

without imposing a specified method on the MBSE approach.

SysML offers nine diagrams types to model a system, reported in Figure 2.5. Four of

them are focused on behavior :

• The Activity Diagram is used to represent system behavior through a controlled

sequence of actions that transform inputs to outputs;

• The Sequence Diagram provides representations of message based behavior. For

example, interactions between parts and the flow of control, including the time

variable;

• The State Machine Diagram is used to represent the life cycle of a block in response

to event occurrences;

• The Use Case Diagram is adopted to describe basic system functionalities and the

actors that invoke them.

17

Chapter 2. Model-Based Systems Engineering Concepts

Other four SysML diagrams are devoted to the structure:

• The Block Definition Diagram displays the system hierarchy and relationships be-

tween blocks to outline the system architecture;

• The Internal Block Diagram specifies the internal structure of a single block;

• The Parametric Diagram supports engineering analysis as it expresses constraints

or equations that relate value properties;

• The Package Diagram displays how the model is organized.

Lastly, the Requirement Diagram is used to build text-based requirements trees and

their relationships with other system elements. Each of the nine representations actually

shows something different, therefore a critical task of systems engineer is to guarantee

connectivity and coherence between the views.

Figure 2.5: SysML Diagram Types [1]

SysML is just a language and in order to be adopted it needs a tool (some examples are

IBM Rhapsody [32], No Magic’s Cameo Systems Modeler [69], Enterprise Architect [70]

etc.) and, most important, a methodology behind. The most widespread MBSE method-

ologies which use SysML are the INCOSE Object-Oriented Systems Engineering Method

(OOSEM), the IBM Telelogic Harmony-SE and the IBM Rational Unified Process [25].

Among other most used modeling languages there is the Object Process Language

(OPL), particularly attractive since it also embeds a methodology, called Object Process

Methodology (OPM), and a dedicated tool, OPCAT [19]. The work in [14] adopts it for a

small satellite application. Other languages are Architecture Analysis & Design Language

(AADL) [74], Modelica [6] and others.

18

2.3. MBSE State of the Art

One of the lack of the above cited languages and methodologies resides in their object-

oriented nature, proved to be difficult to understand by non-software background engi-

neers, who require appropriate training with highly qualified personnel. Focusing just on

SysML, the work done in [3] furnishes some considerations about its applicability using

the OOSEM methodology. The author highlighted SysML inability to provide constructs

that support a tight integration of a system’s structural and behavioral aspects, moreover

functions have to be modeled using activities or blocks which result semantically confus-

ing and ineffective.

A newly emerging MBSE solution is the ARCADIA (ARChitecture Analysis & De-

sign Integrated Approach) methodology&language developed by Thales [72], a Domain

Specific Modeling Language (DSML) inspired by UML/SysML and NATO Architectural

Framework (NAF) standards [54]. One of the great power of ARCADIA is the tailored

open source tool, called Capella, which perfectly catches the method and the language.

With respect to SysML, ARCADIA and Capella focuses on the method, therefore sys-

tems engineers are not required to be modeling experts. Moreover, they support functional

analysis and functional flows in multiple diagrams; this is a great benefit in particular in

the context of a space mission design, where one of the pillar systems engineering practice

is the understanding of the system and subsystems from a functional viewpoint, which

then drive requirements definition. Dedicated model elements distinguish functions from

components in Capella, while SysML uses the same blocks leading to the loss of the con-

ceptual difference between structural element and functions [76].

A summary of the Capella benefits, in addition to those previously mentioned, is here

reported:

• it unifies the three basic ingredients of an MBSE approach: tool, language and

method;

• it has been successfully deployed in a wide variety of industrial contexts [54] and

developed by a big space company;

• it is open-source and equipped with a number of free add-ons, also customizable;

• it is intuitive and the website is plenty of material to become acquainted with the

method and the tool.

According to the mentioned advntages, ARCADIA and Capella are selected as MBSE

solution for this work; a better presentation of their key principles is furnished in the next

section.

19

Chapter 2. Model-Based Systems Engineering Concepts

2.4 The ARCADIA Method in a Nutshell

ARCADIA consists of iterative processes based on three mandatory interrelated activities

to be performed within a system design: need analysis and modeling, architecture building

and validation, requirements engineering [54]. Four different working levels are defined

for the architecture process, reported in Figure 2.6 and detailed in the following sections.

Each level is modeled in Capella using as starting point the outputs coming from the level

that precedes it, thanks to the automatic transition of elements. This way, coherence is

maintained since lower level elements are realizations of upper level ones.

Figure 2.6: ARCADIA method phases [54]

2.4.1 Users Needs Understanding

Operational Analysis

The OA defines the needs and objectives of future users of the system, far beyond sys-

tem requirements and independently of the future system to be realized. The concept

of system, indeed, does not appear in this level which instead focuses on the working

environment in which it will be designed, therefore on actors and their responsibilities.

This level can be treated as a model of the jobs of future users: what are their activities,

which roles must they fulfill and under which operational scenarios. The main concepts

encountered in this level are here listed; the definitions are took from [55]:

• Operational Capability : capability of an organization to provide a high level service

leading to an operational objective being reached;

• Operational Entity : entity belonging to the real world (organization, existing sys-

tem, etc.) whose role is to interact with the system being studied or with its users;

20

2.4.1. Users Needs Understanding

• Operational Actor : particular case of a (human) non-decomposable Operational

Entity;

• Operational Activity (orange colored): process step carried out in order to reach

a precise objective by an Operational Entity, which might need to use the future

system in order to do so;

• Operational Interaction: exchange of information or of unidirectional matter be-

tween Operational Activities;

• Operational Process : series of activities and of interactions that contribute toward

an Operational Capability;

• Operational Scenario: scenario that describes the behavior of Entities and and/or

Operational Activities in the context of an Operational Capability. It is commonly

represented as a sequence diagram, with the vertical axis representing time.

The most adopted operational diagrams within this work are the Operational Capabil-

ities Blank, Operational Activity Scenario and Operational Architecture Blank diagrams.

Figure 2.7 shows how OA concepts are interconnected.

Figure 2.7: Concepts and relations concerning the Operational Analysis [75]

System Analysis

Also called Functional & Non Functional Need analysis, this level introduces the concept

of system and defines how it can satisfy the former operational needs. This process helps

to determine the functions that are needed by the system, in terms of what it has to do and

21

Chapter 2. Model-Based Systems Engineering Concepts

not how, being compliant with non-functional properties asked for. A capability trade-

off analysis takes place here and system requirements are consolidated. First functional

interfaces with the Entities introduced in the OA are also modeled. The main concepts

encountered in this level are here listed [55]:

• System: organized group of elements that function as a unit (black box) and respond

to the needs of the users. The System owns Component Ports that allow it to interact

with the external Actors;

• Actor (light blue colored): any element that is external to the System (human or

nonhuman) that interacts with it;

• System Capability : capability of the System to provide a high-level service allowing

it to carry out an operational objective;

• Mission: high-level need/service which exploits System Capabilities.

• Function: behavior or service provided by the System or by an Actor. A Function

owns Function Ports that allow it to communicate with the other Functions. A

Function can be split into sub-functions and are green colored;

• Functional Exchange: unidirectional (green colored) exchange of information or of

matter between two Functions, linking two Function Ports (green for output ports,

red for input ports);

• Component Exchange: connection between the System and one of its external Ac-

tors, allowing circulation of Functional Exchanges allocated to it;

• Component Port : Component Exchanges link the System to Actors, via Component

Ports (white squares), which can be uni- or bidirectional;

• Functional Chain: element of the model that enables a specific path to be designated

among all possible paths (using certain Functions and Functional Exchanges).

ARCADIA also proposes a set of “path conditions”, modeled as predetermined func-

tions, which result to be very powerful in expressing data flows. They are present at any

level from SA on and here listed (Figure 2.8 shows their graphical representation):

• Duplicate Function transmits the same exchange to all recipients;

• to specify the combination of items of several exchanges issued from different sources,

a Gather Function to constitute a single Exchange fusing those received from dif-

ferent sources is used;

• to specify the selection of one among several potential recipients, a Route Function

is used;

• a Select Function is defined to specify the selection of one source among several;

22

2.4.2. Solution Architectural Design

• Split Function is used to specify the broadcasting of some exchanges to each recipient

selectively.

Figure 2.8: ARCADIA Flow Control Functions

Among SA diagrams, the following ones are the mostly used: Mission Capabilities

Blank, System Data Flow Blank, System Architecture Blank, System Functional Break-

down. Figure 2.9 illustrates the connections between SA concepts.

Figure 2.9: Concepts and relations concerning the System Analysis [75]

2.4.2 Solution Architectural Design

Logical Architecture

The basic functional analysis of the SA is here articulated through an internal functional

analysis in order to understand how the system will have to work to achieve the required

performance. First architectural solutions and engineering decisions are here introduced,

23

Chapter 2. Model-Based Systems Engineering Concepts

which are unlikely to be challenged later in the development process. Several decomposi-

tions of the system into logical components is performed and each function is allocated to

one component. The output of this level is a logical solution, that is the best compromise

architecture functionally described, that responds to the needs defined in the OA and SA.

ARCADIA proposes the following concepts [55]:

• Logical Component (blue colored): structural element within the System, with struc-

tural Ports to interact with the other Logical Components and the external Actors.

A Logical Component can have one or more Logical Functions. It can also be

subdivided into Logical subcomponents;

• Logical Actor : any element that is external to the System (human or non-human)

and that interacts with it;

• Logical Function: behavior or service provided by a Logical Component or by a

Logical Actor. A Logical Function has Function Ports that allow it to communicate

with the other Logical Functions. A Logical Function can be subdivided into Logical

subfunctions;

• Functional Exchange: a unidirectional exchange of information or matter between

two Logical Functions, linking two Function Ports;

• Component Exchange: connection between the Logical Components and/or the Log-

ical Actors, allowing circulation of the Functional Exchanges;

Some LA diagrams used in this thesis are: Logical Architecture Blank, Logical Ex-

change Scenario, Logical Functional Chain Diagram, Logical Functional Breakdown.

Physical Architecture

Real components that will constitute the system are formalized in the PA, each one

carrying its own sub-components and functions. This level defines the components to

be produced introducing, with respect to the LA, design decisions, rationalization and

architectural patterns. Physical interfaces are also defined. In this level, it is important

to distinguish between two types of components [55]:

• Behavior Physical Component (blue colored): Physical Component tasked with

Physical Functions and carrying out part of the behavior of the System;

• Node (or Implementation) Physical Component (yellow colored): Physical Com-

ponent that provides the material resources needed for one or several Behavior

Components. It represents a real component that will be integrated in the system.

All the concepts presented in the LA are also present here, therefore just the new ones

introduced in the PA are here reported:

24

2.4.3. ARCADIA Diagrams

• Physical Port (yellow squares): non-oriented port that belongs to an Implementation

Component (or Node). The Component Port, on the other hand, has to belong to

a Behavior Component;

• Physical Link (red colored by default): non-oriented material connection between

Implementation Components (or Nodes). The Component Exchange remains a

connection between Behavior Components. A Physical Link allows one or several

Component Exchanges to take place;

• Physical Path: organized succession of Physical Links enabling a Component Ex-

change to go through several Implementation Components (or Nodes).

An interesting feature of Capella, applicable at any level but mostly exploited in the

PA, consists in the creation of reusable model elements, such as complete physical compo-

nents with ports, functions, etc. A Replicable Elements Collection (REC) is a definition

of an element which can be reused in multiple contexts/models. A Replica (RPL) is an

instantiation of a REC. RECs can also be packaged in external libraries, which can be

shared among several projects [54].

The most adopted PA diagrams are the Physical Architecture Blank and Physical

Exchange Scenarios.

EPBS (End Product Breakdown Structure)

This level responds to the question “What is expected from the provider of each compo-

nent?”, deducing from the PA the conditions that each component must fulfill to satisfy

the architecture design constraints and limitations. As this level will not be treated for

this thesis, it is not further described here. Readers can refer to [54] for more details.

2.4.3 ARCADIA Diagrams

An overview of the main types of diagrams, also mentioned in the previous sections, with

focus on those adopted in this work, is here provided. All the definitions are took from

[55]:

• Data Flow diagrams : represent the information dependency network between Func-

tions. The Functional Chains can be represented as highlighted paths;

• Architecture Blank diagrams : their main goal is to show the allocation of Functions

to Components, as well as Functional Exchanges, Component Exchanges etc.;

• Scenario diagrams : they show the vertical sequence of the messages passed between

elements (lifelines), inspired by the UML/SysML sequence diagrams. A lifeline

(Instance Role, in Capella) is the representation of the existence of a model element

that participates in the scenario involved (i.e. Functions, Components, Actors,

25

Chapter 2. Model-Based Systems Engineering Concepts

System). It has a name that reflects the name of the model element referenced and

is represented graphically by a dotted vertical line. A Message is a unidirectional

communication item between lifelines that triggers a behavior in the receiver;

• Mode and State diagrams : they are graphical representations of state machines

inspired by UML/SysML. A state machine is a set of Mode/States linked together

by Transitions. A Transition describes the reaction of a structural item when an

event takes place. More details about this kind of diagrams are provided in Section

3.2.6;

• Breakdown diagrams : represent hierarchies of either Functions or Components at

all levels of engineering;

• Capability diagrams : particularly useful in Operational Analysis and System Anal-

ysis, they can highlight the relations between Missions, Capabilities and Actors in

order the catch the high level objectives of the mission/system.

Other diagrams are available in Capella, such as Class diagrams used to model data

structures and Exchange Items. As these concepts are not exploited for this thesis, the

reader can refer to [54] for more details about them.

2.4.4 The Capella Tool

Capella is an Eclipse application implementing the ARCADIA method and its method-

ological guidance through a browser which proposes all the previously mentioned diagrams

and model elements. As graphical representations of elements play a key role in commu-

nication, Capella relies on a consistent color scheme. In particular, all function-related

elements are green, and all component related elements are blue [54] (except Node Com-

ponents which are yellow colored). Customization is also admitted.

Among the most powerful and helpful capabilities of Capella, it is worth mentioning the

automatic computation of diagrams according to model elements defined in some other

diagrams, so that the integrity, traceability and coherence are maintained; this way, model

elements are uniquely defined and can have multiple graphical representations depending

of the diagram they appear. Furthemore, the presence of filters simplifies views in case

the user desires to visualize just a subset of elements. Many add-ons can be installed

and customized to extend the tool capabilities. These and many other properties make

Capella an ideal tool for team communication and single source of truth, reducing the

possibility of late changes by early detection of errors and anticipating problem solving.

For this work, the version 5.0 of Capella is adopted.

26

Chapter 3

Case Study: e.Inspector

I paint from the top down. From the sky, then the mountains, then

the hills, then the houses, then the cattle, and then the people.

Grandma Moses

This chapter presents the extended MBSE approach developed using the ARCADIA

method and the Capella tool for the Phase-A of the e.Inspector CubeSat. A summary of

the mission is provided at first, followed by the implementation of all systems engineering

practices in an MBSE environment. The way requirements are managed is presented

and the four ARCADIA levels are explored: Operational Analysis, System Analysis,

Logical Architecture and Physical Architecture. Then, the focus is shifted toward Modes

management, mission Phases definition and Concept of Operations. Lastly, an approach

for AIV/AIT plan development within the tool is proposed.

3.1 The e.Inspector Mission

An overview of the e.Inspector mission is given in this section to frame the context in

which the MBSE approach is developed and tested. A detailed description of the mission

can be found in the Mission Description Document [21]; just some important aspects,

functional to the work presented in the following, are here presented. The e.Inspector

high level mission goal is to carry out a close-up visual inspection of a European space

debris, with the scope of improving the understanding of its status at the time of flight,

validating GNC sensors to be used for a next capture of the debris and to reduce risks of

future Active Debris Removal (ADR) missions. e.Inspector is a European Space Agency

(ESA) mission led by Politecnico di Milano for the systems engineering part, mission

analysis and relative dynamics. Two main partners contribute: Leonardo furnishes the

payloads and Leaf Space provides the ground segment and so downlink/uplink support.

One of the first analysis conducted for the mission has been the target selection, which

had to face two main programmatic constraints: the requirements on the image acquisi-

tion phase to be completed by 2025 and on the re-enter in Earth atmosphere within 25

years from the mission start. According to them and other criteria, several targets were

27

Chapter 3. Case Study: e.Inspector

identified; the VESPA upper part, proposed as baseline by ESA, is one of them. Cur-

rently, the project is at the end of the Phase A studies, having concluded the Preliminary

Requirements Review and moving into the Phase B.

In order to better catch the following analysis about systems engineering aspects man-

aged in a MBSE environment, it is important to provide a focus on the mission timeline,

which is constrained by the maximum duration of 2 years because of the incoming ADR

mission, the ClearSpace-1. The scheme in Figure 3.1 provides a high level description

of mission phases and the main requirements driving the design. During the Launch

and Early Orbit Phase (LEOP), the 12U CubeSat is activated to detumble and deploy

appendages, after which the beacon telecommunication is established and the platform

commissioning performed. As the CubeSat will exploit a piggyback launch, it will not be

released in the exact orbit of the selected target. Therefore, a Transfer Phase is foreseen,

in which a natural drift is firstly exploited, followed by a low thrust propulsion unit to

finalize the arrival to the target orbit. Due to the high flexibility and robustness required

with respect to the range of targets, a study has been performed to prove the transfer

feasibility according to the available budget (of about 300 m/s) and the different identified

launches. The core of the mission is the Inspect Phase, in which the relative dynamics

with respect to the target is done to acquire scientific data and match the aforementioned

mission objectives. The inspection strategy, which begins at a distance of 20 km from

the target up to 100 m, alternates some so-called Holding Orbits, in which commissioning

is performed and data are downloaded, to ballistic Inspection Orbits, where data of the

target are acquired and nominal science is performed. After some trade-offs analysis, the

selected payloads on board are two cameras, one working in the visible band and the

other one in the infrared, in order to ensure science data acquisition even in eclipse con-

ditions. Lastly, in the Dispose Phase a disposal maneuver is performed and the CubeSat

is passivated after having moved in total safety away from the target. Figure 3.2 shows

the CubeSat configuration and some highlighted components, all presented within the

following MBSE approach developed for this mission.

Figure 3.1: e.Inspector mission scheme

28

3.2. Model Implementation

Figure 3.2: e.Inspector 12U CubeSat deployed configuration [21]

3.2 Model Implementation

3.2.1 Requirements Management

Current systems engineering practices, especially space related ones, reckon on require-

ments as communication means among engineers and as the main vector to ensure correct

design of the system, providing at the same time a description of the product architecture.

A requirement can be defined as a statement that captures system functional and perfor-

mance aspects or sets constraints. Any space system is typically described by hundreds

of requirements, therefore a method to organize and easily check them shall be identified.

The most widespread requirement-based engineering approach adopts textual require-

ments, which are traced within system functionalities. It is often difficult to conduct such

traceability study using a document-centric approach, since jumping from a document to

another increases the possibility of generating misinterpretation events, particularly true

as the number of requirements increase due to the system complexity; it is well known that

the main cause of risk in projects is due to unclear requirements writing. The work done

in the paper by Bonnet et al. [10] proposes the concept of model requirements, which are

basically model elements such as Functions, Functional Exchanges, Components, Compo-

nent Exchanges, etc. encountered in all MBSE approaches. They are conceived as “smart”

requirements which provide a well defined information with a strict syntax and precise

semantics. However, the authors of the cited paper also recognize that textual require-

ments are still needed within a project since they better catch some aspects, sometimes in

a easier and more complete way. Therefore, the work presented in the following will also

include textual requirements, which can be linked to the mentioned model requirements

to ease their traceability, completing each other. This section presents the way require-

ments are organized and modeled to ease the establishment of links with other model

elements. The Requirements Viewpoint add-on is adopted since it allows to deal with

requirements in a very effective way using Capella, as here presented. It is pointed out

that for this work a set of requirements was already available from an in-house MBSE tool

developed by the e.Inspector working group at Politecnico di Milano, the ASTRA team,

therefore they were manually imported in Capella. However, the add-on not only allows

to create new requirements in the model, but also to automatically import them from a

29

Chapter 3. Case Study: e.Inspector

Requirement Interchange Format (ReqIF), Object Management Group (OMG) Standard,

whenever available.

Each requirement is defined by an unique identification code, reporting the category, the

subsystem acronym and a four-digit number, and a text which explicitly states its content.

Then, a number of properties further characterize it as a model element. Figure 3.3 reports

the list of properties, defined for this project, as they appear in the Capella Types Folder.

They include some Enumeration Data Types such as Importance (Mandatory/Nice to

have) and Progress Status (Rework Necessary, To Be Reviewed, etc.) and the Requirement

Types (Functional, Mission, Interface etc.); the categories description is not here reported

and can be consulted in ECSS-E-ST-10-06C [64], followed as guideline for the requirements

classification. Another critical aspect related to requirements is their verification, to check

that the system is compliant with what they state. Therefore the Data Type Verification

Method is introduced, having as items the verification methods defined in ECSS-E-ST-10-

02 [63]: Test, Analysis, Review of Design and Inspection. Lastly, the list also reports two

Relation Types : the satisfies one is an incoming link used to assert that a specific model

element related to the system architecture covers an aspect of the requirement, the refines

one is an outgoing link used to establish internal relationships between requirements,

basically decomposing parents into children, such that the trees can be generated. Any

Requirement Type has a number of Enumeration Data Types, called Attribute Definitions,

which items can be selected using the Capella Mass Editing View (Figure 3.4). To enrich

the requirements description, additional notes can be added to their property sheets.

Figure 3.3: Requirements - Capella Types Folder

Requirements are grouped into folders according to the subsystem they belong. Figure

3.5 shows this way of organizing them and Figure 3.6 presents an example of requirement.

The presented organization of requirements is a first important plus provided by the MBSE

approach, since they are not simple sentences as in a document-based organization but

actually represent concrete model elements.

Capella does not provide a dedicated requirements diagram to build trees; however,

30

3.2.1. Requirements Management

Figure 3.4: Requirements - Mass Editing View

Figure 3.5: Requirements - Capella Module

Figure 3.6: Requirement Example

since they can be reported in any diagram thanks to the Capella transverse modeling, for

this work some initially empty Operational Architecture Blank diagrams are exploited to

overcome this lack. Once the refines relations are defined, requirements can be added to

these empty diagrams and Capella automatically generates the trees, which results to be

very intuitive to trace backwards each low level requirement, ensuring their consistency

and completeness.

Concerning the e.Inspector mission, a sort of Level 0 of requirements is firstly defined,

called Global Mission, in which mostly high level ones are introduced. Figure 3.7 shows the

related tree, with one main parent refined by some daughters. Once the top-level require-

ments are defined, system and subsystems requirements are derived in order to accomplish

what the mission has to carry out, providing engineering specifications. Therefore, each

31

Chapter 3. Case Study: e.Inspector

branch of 3.7 is further refined by subsystems requirements, per which a tree like the one

in Figure 3.8 showing the TT&C subsystem is created for all subsystems. Since the aim

of this section is not to catch and describe the requirements themselves, but to present

the way they are managed within this project, the remaining requirement trees are not

presented here and can be found in Appendix A.1. It is just reminded that, as require-

ments can be traced by any model element at any level, they can be graphically found

in successive diagrams to highlight certain aspects or to make remarks. Of course, as the

design progresses, requirements will evolve and mature; managing their updates and revi-

sions through a MBSE approach, as experienced for this work, reveals to be very effective

with respect to other approaches since the traceability can be easily caught, drastically

reducing the time and the effort spent for such activity.

Figure 3.7: [OAB] Requirements - GLOBAL MISSION

Figure 3.8: [OAB] Requirements - TT&C

32

3.2.2. Operational Analysis

3.2.2 Operational Analysis

Whatever project and system design requires an initial definition of the high level ob-

jectives which are declined into drivers and constraints for the alternatives selection,

identifying at the same time the stakeholders and their responsibilities. The ARCADIA

method perfectly catches this concept throughout the Operational Analysis that focuses

on what the involved entities are looking to accomplish, despite the concept of system is

still not introduced. ARCADIA does not rigorously impose to follow all the design steps

in a dictated order, but puts the systems engineer in a position per which he/she can

decide whether to carry out certain methodological activities or not and in any order. It

is good practice to model the Operational Analysis in the context of a CubeSat design,

and so for the e.Inspector mission, due to the complexity of such space systems, which

are the result of a collaboration and information exchange among a multidisciplinary set

of entities, for the entire mission lifecycle.

The first step consists in fixing certain high level services, called Capabilities, at this

stage independent on the system that is going to be realized and further detailed in suc-

cessive design levels. The diagram devoted to this kind of description is called Operational

Capabilities Blank, reported in Figure 3.9, which simply highlights the involved Entities

and the related Capabilities, graphically represented respectively by gray rectangles and

bronze medallions. It is important to remember that each graphical elements is a manifes-

tation of a model element, the latter having multiple types of graphical representations.

All connections here depart from an Operational Capability and are directed toward an

Entity or an Actor (these concepts were presented in Section 2.4.1), purely representing

a relationship without any kind of temporal sequence. It can be noted that some Entities

share certain Capabilities, meaning that a collaboration between them is expected. As

an example, the Entity POLIMI shares most of its Capabilities, due to its centrality in

this project.

An Entity is not necessarily a company or an institution, but can also be something

abstract whose role is to interact with the system being studied. In this sense, the Envi-

ronment is modeled as an Entity due to its relevant role in providing constraints on the

future system. The Space Debris Expert, instead, is modeled as an Operational Actor,

as its icon suggests. For this diagram, a modeling choice consists in reporting only those

stakeholders that in some way interact with the system to be designed, excluding from

this analysis the full set of involved entities such as suppliers, sponsors, testers and others,

that are still unknown in the very first mission phases, so their modeling at this stage

would not add any value. It is here reminded that the Entities Payload Provider and

Ground Segment Provider are actually the two main contributors to the mission, respec-

tively Leonardo and Leaf Space, together with Politecnico di Milano.

Each Operational Capability is further described by a number of Operational Activities

33

Chapter 3. Case Study: e.Inspector

Figure 3.9: [OCB] Operational Capabilities

allocated to Entities and Actors. Here the simple Operational Entity Scenario diagrams

are adopted since they also introduce the time dimension. An example is shown in Figure

3.10 describing the Capability Mission Operations Commands Management, where three

Entities are involved and their high level Activities represented in orange exchange in-

formation by means of Interactions model elements. The activity Receive commands is

allocated to POLIMI, actually meaning that such Entity has to design a system able to

perform that Activity (it is recalled that the concept of system is still absent at this level).

Figure 3.10: [OES] Mission Operations Commands Management

34

3.2.2. Operational Analysis

The last and most significant diagram belonging to the Operational Analysis is called

Operational Architecture Blank (OAB) (Figure 3.11) here realized with the scope of show-

ing the full set of Operational Activities previously defined within Scenario Diagrams,

their allocations to respective entities and their interactions. For the e.Inspector mission,

the POLIMI carries out the most of activities since it has a central role it the system

development. The diagram also highlights a blue colored line, called Operational Process,

used to highlight a particular logical series of Activities which contribute toward an ob-

jective, here the entire Mission Lifecycle. The first constraints and mission objectives are

identified starting from the Operational Analysis, therefore some high-level requirements

are traced in the diagrams by the model elements to which they are related. It is noted

that the requirement M-0005 in the OAB is also reported in the OCB (Figure 3.9) even

though it is satisfied by a different model element. This is not an anomaly but represents

one of the advantages of dealing with requirements in a model-based environment, that

is the easiness and the consistency of their tracing. Despite it is still a very high level

representation, the OAB is useful to provide a global vision of what the main system-

interacting Entities have to realize for the project, regardless of any technical solution.

It is the main output of the Operational Analysis and the final deliverable for the next

modeling phase: the System Analysis.

Figure 3.11: [OAB] e.Inspector GLOBAL

35

Chapter 3. Case Study: e.Inspector

3.2.3 System Analysis

ARCADIA’s strength is to be an iterative method that, for each modeling level, exploits

the results obtained from the previous one. This is done in the System Analysis, where

the stakeholders needs previously examined are translated into ”what the system has to

accomplish for the users” [50]. The concept of system is here introduced and systems

engineers can start asking whether the Activities reported in the Operational Analysis,

now called System Functions and here transitioned thanks to the Capella Transition func-

tionality, will be realized by the system or left to the stakeholders. New Functions will

be introduced in order to cover the System Analysis aspects and to lead the way to a

complete description of the CubeSat, in full compliance with the mission requirements.

Despite the total flexibility and breadth of the method could distract from the real

objectives of the System Analysis, it is reminded that this level should not provide a deep

description of the system but to frame its essential functioning. In order to accomplish

this task, the Mission Capabilities Blank diagram is firstly exploited, with the scope of

accompanying the modeler toward system Functions definition. As Figure 3.12 shows,

four Missions are introduced, each one described by a number of System Capabilities by

means of the Capability Exploitation relation. Both Missions and Capabilities are linked

to System Actors, that from this level on incorporate both the meanings of Entities and

Actors met in Section 3.2.2. These relations are called respectively Mission Involvements

and Capability Involvements; for graphical reasons, the former are indicated by light blue

lines. It is highlighted that this diagram only presents those System Actors that directly

influence the behavior of the system.

The four system Missions are here briefly discussed. The idea is to categorize the Ca-

pabilities into four blocks, each one providing an essential high level service furnished by

the system, that is the CubeSat (or Space Segment) itself. The Keep Space Segment Safe

Mission refers to the fact that the system shall survive to the space environment; the

Provide Support one is related to the presence of subsystems and their tasks, despite the

concept of subsystem is still not present in the System Analysis but will be introduced

in the Logical Architecture, Section 3.2.4; the Execute Close-up Visual Inspection of the

Space Debris one is the core of the e.Inspector mission as the two daughter Capabilities

indicate. One can notice that not all subsystems are explicitly reported in the Provide

Support mission, such as the GNC one that instead is represented by the Approach Tar-

get Debris Capability, as discussed in the following. This modeling approach avoids the

creation of redundant Functions, since the main concern related to the GNC subsystem

at this stage is related that aforementioned Capability. Finally the Provide Passivation

EOL is introduced in order to highlight its belonging to a different phase of the mission.

The diagram of Figure 3.12 is very simple and, most important, can be replicated in a

future CubeSat project as long as some small changes are made.

36

3.2.3. System Analysis

Figure 3.12: [MCB] Mission & Capabilities

The last comment regarding Figure 3.12 concerns the little colored icon that appears

in the bottom-right of almost all system Capabilities. This is a recurrent icon in Capella,

indicating that the model element is further described in one or more other diagrams. It

is good practice to detail all Capabilities with proper Functions, however one can notice

that such icon is not present in some of them, mostly linked to the Keep Space Segment

Safe. This is another precise modeling choice, since these Capabilities are basically related

to the space-compliant components selection and it would be an unnecessary burden of

the model to describe them. All the others, on the other hand, hatch up into a set of

Functions reported in some dedicated System Data Flow Blank diagrams. An example

is given by the Provide Power Supply Capability, which conducts to the simple diagram

in Figure 3.13, where four Functions resume what the power subsystem has to do. Some

links, called Functional Exchanges, logically connect them; a green port indicates an

37

Chapter 3. Case Study: e.Inspector

outflow while the red one an inflow. The father functionality Provide Power Supply is also

reported, carrying the same name of the capability it describes. The coding appearing in

some functions should not cause concerns, since it is a legacy from an inherited functional

analysis performed by the working team at Politecnico di Milano.

Figure 3.13: [SDFB] Provide Power Supply

It would be too page-consuming without adding value to the discussion to show here

all System Data Flow Blank diagrams, reported in Appendix A.2, therefore just the Pro-

vide Communication Services and the Provide On-board Data Handling ones are here

presented in Figures 3.14 and 3.15 since they introduce something new with respect to

the previous one. In the former, the white color is used to indicate Functions that realize

certain Operational Activities, defined in the previous level. The diagram in Figure 3.15

instead better presents the concept of father functions and the important condition of

Capella consisting in the possibility to introduce Exchanges only between leaf Functions.

Figure 3.14: [SDFB] Provide Communication Services

Due to the not so high number of Functions, it is still possible to visualize all of them

in one single System Architecture Blank diagram, reported in Figure 3.16. This diagram

shows the allocation of leaf Functions to the system, in dark blue, and to the Actors that

interact with it, in light blue. Actors are transitioned from the Operational Analysis and

their Functions are realizations of the previous Operational Activities; whenever needed,

Functions were added to them in order to guarantee a satisfactory interface description

38

3.2.3. System Analysis

Figure 3.15: [SDFB] Provide On-board Data Handling

with the space segment. The SAB diagram also introduces the concept of Component

Exchange, which meaning and importance is explained in Section 2.4.1. Any Functional

Exchange that crosses the system or an Actor boundary shall be allocated to a Compo-

nent Exchange, according to the ARCADIA method. As already mentioned, the System

Analysis does not carry the concept of subsystems; however, a graphical organization of

the Functions that belong to each subsystem could be noticed. Moreover, to facilitate

the SAB diagram reading, it was decided to apply the yellow color to those Functional

Exchanges connecting Functions of different subsystems; the classical Capella green is

kept for the remaining ones.

Lastly, the concept of Functional Chains is here put in practice. Their aim is to pro-

vide the description of a certain behavior, making use of the available system and Actors

Functions. In example, the blue line connects Functions that describe the Data Collec-

tion and Download operation while the red one refers to the System Initialization one.

Regarding the latter, it may seems a too much generic description since it just mentions

that the power, generated or stored, somehow has to be used for the system initialization.

However, this level of detail is sufficient to provide a description of what the system has

to do, without technical solutions involvement, as the System Analysis foresees. Many

Functional Chains can be created if needed, useful to check the expected system behavior

in different contexts.

In order to visualize the complete set of system Functions, both leafs and parents, the

System Function Breakdown of Figure 3.17 can be consulted.

39

Chapter 3. Case Study: e.Inspector

Figure 3.16: [SAB] e.Inspector GLOBAL

40

3.2.3. System Analysis

Figure 3.17: [SFBD] Root System Functions

41

Chapter 3. Case Study: e.Inspector

3.2.4 Logical Architecture

Following the system design process adopted for the e.Inspector mission, the next step

consists in opening the System Analysis black-box in order to set up a new functional

analysis, whose foundations are inherited from the previous design level, that aims to

define how the system should work to meet the system requirements. This is a delicate

step forward in the design since the expected output is the final system logical architec-

ture, properly selected on the basis of a trade-off analysis among all the possible solutions

that satisfy the requirements. Big decisions driving the project and influencing the future

Physical Architecture are taken here, being careful to leave a certain degree of freedom

for the latter, otherwise construction choices would be too much constrained.

The Logical Architecture allows to introduce the concept of subsystems into the model,

fundamental in the context of a MBSE approach developed for a CubeSat mission.

They are here defined as Logical Components, which in turn have allocated other sub-

components carrying the Logical Functions. Once again, Capella permits to transition all

the model elements from the SA, which are here subject to a refinement procedure. It is

clarified that the Logical Architecture here focuses on the system, while Logical Actors

and their Functions coming from the SA are left unchanged since their detailed modeling

is out of this work scope. A complete modeling of each Actor would surely improve the

interface details with the CubeSat, however this is something that should be done by the

Actors themselves, otherwise the risk of bad modeling due to the lack of information is

high, with direct consequences on the overall model. Due to the numerous Logical Func-

tions that are going to be showed, it is no more possible (for graphical reasons) to realize a

single diagram including all of them. Therefore, each subsystem will be internally modeled

in the following subsections together with their main interactions with other subsystems

or external Actors.

An important remark is mandatory to clarify the philosophy behind the results that

are going to be presented. The Logical Architecture is the product of complex design

processes and decisions involving all subsystems. These aspects are not here exposed,

since the aim of this work is to present the way these decisions and design results, coming

from the subsystems engineers of the e.Inspector mission, can be managed in the context

of a MBSE approach. Moreover, the focus is here on the platform and on the mission

rather that on the payload, designed by Leonardo, therefore no dedicated diagram about

its functioning will be reported. The same applies to whatever product furnished by

stakeholders, such as the ground segment or the launcher; their modeling here is limited

to the few functions needed to describe the platform interfaces with them. The Mission

Description Document [21] can be consulted, with proper authorization, for the system

design sizing, payload and ground segment aspects.

42

3.2.4. Logical Architecture

Electric Power Subsystem (LA)

The first subsystem here analyzed is the Electric Power Subsystem, that generates, stores,

regulates and distributes electric power [79]. An interesting Capella add-on, called System

to Subsystem Transition, can be used to delegate the modeling of each subsystem to a

different team/personnel or to some subcontracting companies [55]. Despite the clear ad-

vantage of having multiple models realized with a very high precision by the subsystems

experts and then merged in total respect of the interfaces defined at system level, for this

work they are developed in one single model and conceived as Logical Components, as

previously discussed. This is done because of the absence of multiple contributors to the

model creation, that instead are typically present in a collaborative environment.

Figure 3.18 shows the Logical Architecture Blank diagram for the EPS, modeled as a

cyan-colored Logical Component to which other sub-components are allocated. Recalling

that in the LA the contents have to be defined in terms of how the system has to perform

the needs expressed in the SA, the first step here consists in identifying conceptual so-

lutions in line with requirements, and then expressing it in terms of Functions. Starting

from the system Function Generate Power (Section 3.2.3), the e.Inspector EPS engineer

identified the Solar Panels as the best primary power generation for this CubeSat. Despite

in the LA no solution in terms of which components and how they are made should be re-

ported, two main Functions describing how the power shall be produced can be identified:

Deploy Solar Panels and Solar Radiation to Electric Power Conversion. One can think

that the first one is actually a solution, since it suggests that the solar panels are also in a

deployed configuration and not just in a body-mounted one; this is something acceptable

whenever a design solution is frozen at the time the LA is conducted. Once the Func-

tions describing how the system will generate power are defined, a dedicated component

is created, here called Power Generation, and not for example Solar Panels, since it is

good practice not to attribute names containing references to a specific technology in the

LA, and to name the Logical and Physical Components differently [55]. The modeling

approach adopted for the Power Generation is extended to the remaining EPS Logical

Components: Electrical Energy Storage, EPS DOCK, Battery Protection, Arrays Power

Conditioning and Power Distribution.

Still on the internal EPS functioning, the various components communicate by means of

the Functional Exchanges, which are in turn allocated to proper Component Exchanges.

It is not worth commenting all of them, since the the diagram reading should provide

a self explanation. Only the modeling aspects are here explicitly discussed, such as the

adoption of some particular Control Functions used to define more precisely the path

conditions [55]. The five types of ARCADIA’s flow Control Functions are described in

Section 2.4.1; for the EPS modeling just the Split and the Route ones are used. To catch

the power of the Split one, it can be noted how effective it is in the description of the

power flow coming from the Distribute Solar Panels Power Function, that can be directed

43

Chapter 3. Case Study: e.Inspector

Figure 3.18: [LAB] EPS SS

toward batteries for their recharging or toward the power distribution line. The Route

one, instead, is employed to specify the selection of one among several power sources,

44

3.2.4. Logical Architecture

that are the batteries and the solar panels. This is a very intuitive way of modeling since

in one simple diagram a lot of information can be extracted with little effort, particu-

larly suitable to complex systems such as those belonging to the space industry; he only

required competence by team members is the modeling language knowledge and so the

semantics.

The diagram in Figure 3.18 also shows interactions of the EPS with Actors and sub-

systems. Two Functional Chains, respectively EPS Initialization and Solar Arrays De-

ployment in yellow and Battery Recharging From Solar Arrays Power in blue, highlight

the way the EPS communicates with such external blocks. The first one begins with the

spacecraft separation that activates the kill switching mechanism and so the power circu-

lation, leading to the overall system initialization guided by the OBC-MAIN component.

The solar panels are consequently deployed and the complete EPS becomes operative. The

second Functional Chain focuses on how the solar panels power is managed to recharge

the batteries. A malfunction in any of the involved Exchanges means that the system is

unable to deliver the overall service. Once created, Functional Chains can be represented

in a dedicated Functional Chain Description diagram, as Figure 3.19 and 3.20 show. It is

reminded that these logical successions of Functions do not include the temporal variable

here.

Figure 3.19: [LFCD] EPS Initialization and Solar Arrays Deployment

Figure 3.20: [LFCD] Battery Recharging from Solar Arrays Power

45

Chapter 3. Case Study: e.Inspector

On-Board Data Handling Subsystem (LA)

This section presents the Logical Architecture modeling of the subsystem that processes

and distributes commands, elaborates, stores and formats data [79]. The OBDH is a very

delicate subsystem due to the many interfaces it has with the rest of the platform and

the payload too. The here adopted MBSE approach is identical to the EPS one: a func-

tional analysis is conducted, sometimes appearing as a solution coming from the OBDH

subsystem engineer, leading to the definition of proper Components that can carry them.

The Logical Architecture Blank diagram in Figure 3.21 presents the overall OBDH

modeling; two main Components, coming from engineers design, are present: DOCK-

MAIN and DOCK-GNC boards. They provide interfaces to the allocated OBCs, which

in turn contains most of the Functions and the related Exchanges. Moving the attention

toward the middle-left portion of the diagram, the payload modeling can be noted. As

previously stated, it is described in a very synthetic but sufficient way, enough to allow

the description of its interfaces with the CubeSat. Three Functional Chains, System Ini-

tialization, Payload Data Acquisition, Storage and Transmission and System Passivation,

are highlighted respectively in blue, red and green. The black outline in the Perform

Test on All the Subsystems function indicates that it is part of more than one Functional

Chain. Their Logical Functional Chain Description diagrams are reported in Appendix

A.3

Guidance, Navigation and Control Subsystem (LA)

The GNC subsystem provides determination and control of attitude and orbit position,

plus pointing of the CubeSat [79]; it represents the most important subsystem for the

e.Inspector mission due to the delicate proximity operations near the target, better dis-

cussed in Section 3.2.7.

The Logical Architecture Blank diagram realized for the GNC subsystem reported in

Figure 3.22 shows four main Logical Components: Navigation Image Processing, GNC

Algorithms, Sensors and Actuators. It is clear that the first two listed should actually

be part of the OBDH subsystem, in particular carried by one (or both) of the OBCs.

However, this is a step further in the modeling process that would unnecessarily con-

straint the Physical Architecture. For this reason, it was decided to include them inside

the GNC subsystem. It is also highlighted that the Navigation Image Processing com-

ponent only contains those functions related to the image processing used for navigation

scopes, different from the image processing for science reported in the OBDH diagram

in Figure 3.21. Concerning the Sensors and Actuators blocks, they are voluntarily still

very generic to leave a certain degree of flexibility in case of future modifications of the

diagram. Moreover, a precise definition of the kind of sensors and actuators would imply

a consequent implementation decision that may result too precocious at this stage.

46

3.2.4. Logical Architecture

Figure 3.21: [LAB] OBDH SS

47

Chapter 3. Case Study: e.Inspector

The Close Proximity Relative Navigation during Eclipse Functional Chain is highlighted

in blue in Figure 3.22; the related Logical Functional Chain Description diagram can be

found in Appendix A.3. Starting from the infrared images acquisition, it describes the log-

ical sequence of functions that conduct toward the execution of attitude maneuvers aimed

at performing target tracking during the eclipse. The purpose of MBSE in this context

is not to explain how algorithms will work, but to consolidate the understanding and the

presentation of how the different Logical Components with their Functions collaborate

toward a unique scope. It is clear that the aforementioned Functional Chain cannot be

applied to all mission conditions since, for example, whenever the target is not in eclipse

the involved Functions would be different; also the distance from the target influences the

component functions selection (this aspect will be better investigated later on this work).

Many other Functional Chains can be created according to what the systems engineer

wants to analyse.

Telemetry, Tracking & Command Subsystem (LA)

It is here presented the LA model of the subsystem that provides the interface between

the CubeSat and ground systems [79], receiving commands and downloading telemetry

and scientific data. The VHF band is employed for the telemetry and telecommands links,

while the S-band is adopted for the payload data download [21]. The Logical Components

devoted to their functioning (VHF Antenna, VHF Transceiver, S-band Antenna and S-

band Transceiver), reported in Figure 3.23, may appear as implementation solutions, and

so in contrast with the LA modelling philosophy. This is actually not true, since their

description in terms of Function is voluntarily left wide-ranging. The good practice of

naming Logical Components differently from Physical Components is not here respected

because of the not so much detail increase that, as lately shown, takes place in the PA,

where Logical Components are recycled and simply converted to physical ones. It is not

excluded that in future new Functions aimed at better describing the internal functioning

of the TT&C subsystem could be introduced.

The modeling of the interfaces between the CubeSat and the ground segment forces to

increase the number of Functions of the latter with respect to the System Analysis. In

particular, the Ground Segment Provider Actor now has a new Function called Receive

Beacon Signal from Space Segment and two others that better describe its interaction with

the MOC. The involvement of the OBC-MAIN components in Figure 3.23 is mandatory

to show how the TT&C subsystem interfaces with the rest of the CubeSat throughout the

OBDH subsystem. Three Functional Chains are highlighted: Telecommands Transmission

Line, Telemetry Transmission Line and Acquired Target Images Transmission Line. Their

Logical Functional Chain Description diagrams can be found in Appendix A.3.

48

3.2.4. Logical Architecture

Figure 3.22: [LAB] GNC SS

49

Chapter 3. Case Study: e.Inspector

Figure 3.23: [LAB] TT&C SS

50

3.2.4. Logical Architecture

Propulsion Subsystem (LA)

The e.Inspector CubeSat is equipped with a Propulsion Subsystem which provides thrust

to execute orbital and relative maneuvers for the various mission phases described in

Section 3.1. The modeling of this subsystem is strictly related to the Concept of Oper-

ations, indeed the Logical Architecture Blank diagram in Figure 3.24 shows seven main

Functions which reflect the transfer strategies after commissioning, the imaging phase,

the CAM and the disposal phase as the engine has to provide the right level of thrust for

all of such different stages. Also, the internal functioning is reported together with the

main interfaces with other subsystems. As done for the GNC, just one Functional Chain

in blue is reported as example, called Thrusting to Drifting Orbit Initialization, describing

the activation of the Propulsion subsystem after having received the proper command.

Its Logical Functional Chain Description can be consulted in Appendix A.3.

Figure 3.24: [LAB] PROPULSION SS

Thermal Control Subsystem (LA)

The TCS maintains equipment within allowed temperature ranges [79]. An important

requirement for the e.Inspector mission states that “the thermal control shall be based

solely on passive control techniques”, therefore the absence of active components make the

diagram in Figure 3.25 very simple. The Thermocouples Component indicate that some of

them are needed to Monitor components temperature, as the contained Function suggests.

51

Chapter 3. Case Study: e.Inspector

A detailed definition of how thermocouples are distributed among physical components

is not here reported since it is out of the LA scope, therefore such vague description is

sufficient to understand how temperature measurements are done. Things may change

during late design phases, so this diagram may increase its complexity and is open to

future updates.

Figure 3.25: [LAB] TCS SS

Structures and Mechanisms Subsystem (LA)

This subsystem provides support structure and moving parts [79]. With respect to the

System Analysis two camera supports were added, describing how payloads are integrated

with the structure. No details on physical interfaces are reported here, since these as-

pects are mainly related to the Physical Architecture. Figure 3.26 resumes the Logical

Architecture of this subsystem in a synthetic Logical Architecture Blank diagram.

Figure 3.26: [LAB] STRUCTURES & MECHANISMS SS

52

3.2.4. Logical Architecture

e.Inspector Global View (LA)

All the previously described subsystems and actors are reported in Figure 3.27, where just

the Components are present without the allocated Functions. The Component Exchanges

provide a description of the information flows between subsystems, recalling that each of

them provides the “transport” to one or more Functional Exchanges. This diagram also

allows the model user to navigate through the previous diagrams using this global view

as reference. Indeed, the little icon in the bottom-right of Components indicates the

existence of one or more diagrams modeling them. Logical Actors are empty since they

were not broken down into Components, as previously discussed. For graphical reasons,

the Space Segment is colored in light grey while its subsystems in cyan. The remaining

Logical Components are represented in blue per default Capella color-coding.

It is here clarified that the LA, despite quite detailed due to the system complexity,

does not freeze the design. Indeed, the range of feasible alternative solutions can still be

explored and modifications can be introduced at this level. Attention must be paid in

case of a sudden change in the LA during late design phases, since the successive mod-

eling level, the Physical Architecture, is derived from it and therefore coherence must be

carefully guaranteed. The contrary is not true, so a modification done at LA level should

not have implications on the higher levels (OA and SA).

It is worth showing how Logical Functional Breakdown diagrams are automatically

generated by Capella, downstream to the definition of relationships between Functions.

Due to the high number of Logical Functions, it would be very difficult to represent all of

them in one single page, therefore just the breakdown of Execute close-up visual inspection

of a space debris is reported in Figure 3.28 as an example.

53

Chapter 3. Case Study: e.Inspector

Figure 3.27: [LAB] e.Inspector GLOBAL

54

3.2.4. Logical Architecture

Figure 3.28: [LFBD] Execute close-up visual inspection of a space debris

55

Chapter 3. Case Study: e.Inspector

3.2.5 Physical Architecture

The fourth level in the ARCADIA method is called Physical Architecture. Here the

technological choices are modeled and the focus moves toward Physical Components def-

inition that will constitute the real system. It is recommended to develop it once the

system alternatives have been narrowed down to a limited number (possibly one) and a

trade-off analysis already conducted, otherwise the effort of modeling a lot of architectures

becomes considerable. The usual transition of model elements from the LA is performed

once again, providing the starting point for a more detailed analysis. All components

here presented are not specific since the procurement aspects are not part of the PA; this

allows to have a modeling approach quite general and focused on the architecture, that

can be then declined into the components selection.

In order to well understand the diagrams that will be presented in the next pages,

it is suggested to carefully read the description of the PA in Section 2.4.2, focusing on

the difference between Behavior Physical Components (blue boxes as baseline) and Node

Physical Components (yellow boxes as baseline). In PA the concept of Physical Link has

a central role since it allows to model the real interfaces among components. The default

Capella color for these links is red, however a customized palette is adopted for this work

due to the different kind of interfaces present in a CubeSat. Figure 3.29 shows the color

code: the classical red is used for Data Interfaces (such as data exchanges between OBCs

and sensors or actuators, commands distribution, etc.), the orange represents Electrical

Interfaces (power lines) and the black color is adopted for Mechanical Interfaces (physical

interfaces, mechanical supports, etc.).

Figure 3.29: Physical Links Legend

As previously done, each subsystem will be analyzed in the following, fixing all the

design ambiguities left unsolved in the LA and leading to a much finer level of detail. It

is recalled that the trade-off analysis of the different possible system physical architec-

tures, together with the components selection and the overall system sizing, is part of the

Mission Description Document [21]; therefore, the following work does not intend to jus-

tify such kind of design decisions but aims at modeling the final architecture in a MBSE

context, in order to demonstrate the use of the ARCADIA method and the Capella tool

applied to a CubeSat design, here the e.Inspector mission.

The Physical Architecture Blank diagrams are the most recurrent for this work, there-

56

3.2.5. Physical Architecture

fore they are the baseline for each subsystem modeling unless differently specified. Since

it would be quite hard to show the steps involved in the diagrams building, they will be

presented in their final form and the rationale behind them will be discussed. For each

subsystem a first PAB diagram is presented, with the aim of introducing the internal

Physical Node Components and the internal Physical Links. Other diagrams are adopted

to show the Physical Behavior Components and their Exchanges with other subsystems.

Physical Functions are reported just occasionally, whenever the diagram complexity is

not so elevated or when a significant breakdown is introduced with respect to the logi-

cal Functions. However it shall be reminded that each Component actually contains a

number of Physical Functions which describe them, as well as each Component Exchange

contains one or more Functional Exchanges.

Electric Power Subsystem (PA)

Figure 3.30 shows the Physical Architecture Blank diagram in which EPS internal links

are highlighted. The important information extracted from this diagram is the physical

implementation, since each yellow block is a Node Component that will be part of the

Product Tree, and so of the system; the cyan is used again to distinguish the EPS com-

ponent from the others.

Figure 3.30: [PAB] EPS SS Internal Physical Links

The solar panels are differentiated into Wings and Body-mounted, two ACUs and two

PDUs are chosen as baseline for allowing redundancy of power lines and limiting the stress

on the component [21]. These are implementation choices, absent in the LA where just the

conceptual architecture aimed at the system functioning description was required. For the

modeling of redundant components, a powerful Capella functionality, called Replicable

Element Collection (REC), allows to replicate a set of model elements as a whole avoiding

to spend too much effort in modeling multiple times the same element. In example, since

the PDUs carry the same Behavior Components and Functions, once the first one is

modeled, the remaining one can be easily replicated, saving time and effort. Then, the

interfaces of each replica with the rest of the system can be specified according to the

57

Chapter 3. Case Study: e.Inspector

system architect needs. Figure 3.31 illustrates this concept applied to the PDUs. Each

Power Distribution Behavior Component has a Split function used to model the ON/OFF

switching of each power line.

Figure 3.31: PDUs Replicas

The main EPS function is to distribute power to all system components, therefore it is

worth to analyze the way it interfaces with the rest of the CubeSat through the Power

Distribution Units, which power lines are reported in diagrams of Figures 3.32 and 3.33.

At the time of this work, the e.Inspector mission is concluding the Phase A design, there-

fore a detailed interface engineering cannot be provided. Aspects such as the eventual

routing of power throughout the boards (such as the DOCK-GNC to sensors and actua-

tors) still have to be fixed, therefore all the lines are here modeled by means of a direct

feeding from the PDUs ; future updates in the architecture would not surely represent an

obstacle from the modeling point of view, due to the flexibility of the approach to sudden

changes. In order to differentiate the main power lines from the backup ones, the Compo-

nent Exchanges are called differently, using the words main and secondary. It is recalled

that Physical Links have Component Exchanges allocated, while the latter have in turn

Physical Functions allocated (not reported in these diagrams for seek of simplicity). Since

diagrams are by default Synchronized, whenever two Components appear in a diagram,

all the Exchanges between them are automatically shown. This is what happens in Figure

3.32, which results to be a messy diagram. Since the numerous connections may distract

from the purpose of the diagram, that is to present power distribution lines, Capella al-

lows to set diagrams in Unsynchronized state; this is done for the PDU 2 in Figure 3.33,

where also Behavior Components are hidden.

58

3.2.5. Physical Architecture

Figure 3.32: [PAB] EPS SS - Power Distribution Unit 1

59

Chapter 3. Case Study: e.Inspector

Figure 3.33: [PAB] EPS SS - Power Distribution Unit 2

60

3.2.5. Physical Architecture

On-Board Data Handling Subsystem (PA)

The OBDH components and their internal Physical Links are reported in Figure 3.34; the

DOCK-MAIN and the DOCK-GNC are two boards that mount the OBCs, all discussed

in the next paragraphs. The internal functioning modeling of OBDH is not here presented

since the focus is shifted toward the interfaces with the rest of the platform. A certain

number of diagrams are proposed to furnish a complete description of such interactions,

with particular focus on those with the GNC and the TT&C subsystems. Since some

Functions have been broken down into leaf ones in order to support the PA level of detail,

an example is reported in Physical Data Flow Blank diagram of Figure 3.35, showing the

Execute Actuator Control Function breakdown.

Figure 3.34: [PAB] OBDH SS Internal Physical Links

Figure 3.35: [PDFB] Execute Actuator Control

It is firstly presented the diagram in Figure 3.36 in which the two OBDH boards in-

terface with the GNC components. The interfaces design is much more mature here with

respect to the LA: the boards provide the routing of signals from sensors and to actuators

letting them interface with the OBCs, which contain the Component Exchanges related

61

Chapter 3. Case Study: e.Inspector

to the algorithms execution. It is recalled that in the LA these algorithms execution

blocks were allocated to the GNC subsystem in a quite generic way; here instead the

maturity of the design allows to directly allocate them to precise OBDH components.

The definition of these interfaces has been carefully designed by the OBDH engineers and

a brief justification of them is given here to better interpret the diagram. The OBC-

GNC is the baseline computer in charge of attitude and navigation algorithms, while

the OBC-MAIN is mostly devoted to image processing and system functioning. It also

provides redundancy for what concerns GNC algorithms, indeed secondary data routing

lines to all actuators and from some sensors are present. The IMU 1 and the GNSS 1

are connected to the OBC-GNC through the DOCK-GNC, the IMU 2 and the GNSSS 2

to the OBC-MAIN by means of the DOCK-MAIN. This way, the absolute determination

is not lost unless both computers stop working. Concerning the relative attitude, three

sensors provide their measures to the OBC-GNC, as on Figure 3.36. In case of its loss,

the camera can be used as horizon sensor by the OBC-MAIN guaranteeing the relative

attitude determination at any time together with the IMU 2 angular velocities measures.

Figure 3.36: [PAB] OBDH SS - GNC

Another important interface of the OBDH subsystem is the telemetry reading and its

transmission toward the radios, together with the scientific data. The diagram in Figure

3.37 shows both the OBC-MAIN and the OBC-GNC collecting telemetry data, being the

latter used as baseline (subscript main in diagrams) while the former as backup. In order

to not have one single messy diagram, the GNC telemetry is presented in a dedicated

diagram reported in Figure 3.38. These diagrams provide a synthetic but highly descrip-

tive view of the telemetry routing to the respective computers and allow to rapidly check

62

3.2.5. Physical Architecture

the presence of inconsistencies at architecture level. A dedicated diagram is reported in

Figure 3.39 showing the collected telemetry and scientific data transmission toward re-

spectively the VHF Transceiver and the S-band Transmitter, which will then route the

signals to ground through the dedicated antennas, as better shown in Section 3.2.5. The

main routing is distinguished from the secondary redundant one and the internal flow of

data inside the computers is also reported. Concerning internal commands distribution,

their detailed modeling allows systems engineers to rapidly check the distribution lines

and connections saving time in successive reviews of design, providing a simple reference

that is accessible and modifiable at any time. However, this is beyond the current level

of detail related to the e.Inspector mission that, again, is in conclusion of a Phase A de-

sign. Just some essential commands are modeled and can be found in successive diagrams.

Figure 3.37: [PAB] OBDH SS - Telemetry Reading

63

Chapter 3. Case Study: e.Inspector

Figure 3.38: [PAB] OBDH SS - GNC Telemetry Reading

Figure 3.39: [PAB] OBDH SS - Telemetry and Data Downstream

Guidance, Navigation and Control Subsystem (PA)

With respect to the LA, here architectural components are precisely defined after the

subsystem sizing. Since the algorithms execution blocks are in charge of the OBDH sub-

system, as discussed in the previous section, the description is here limited to sensors and

actuators modeling and their interfaces with the boards. Figure 3.40 presents them and

together with their Functions.

Interfaces of GNC sensors and actuators with the OBCs were already presented in

Section 3.2.5 in terms of Physical Links. Here a functional analysis is also conducted,

64

3.2.5. Physical Architecture

Figure 3.40: [PAB] GNC SS Components

with the aim of analyzing functional flows and data exchanges. Figures 3.41 and 3.42

respectively illustrate how sensors and actuators interface with the baseline computer in

charge of attitude algorithms execution, the OBC-GNC. It is recalled that the Component

Sun Sensors actually comprehends 12 sun sensors that are mounted on each of the 6 faces

of the CubeSat; however it was decided to model them as a single Physical Component

to avoid diagrams congestion. A future application of this model, especially from Phase

B on, would certainly benefit from the modeling of each single sun sensor in order to

precisely define their interfaces.

65

Chapter 3. Case Study: e.Inspector

Figure 3.41: [PAB] GNC SS - DOCK-GNC - Sensors

Figure 3.42: [PAB] GNC SS - DOCK-GNC - Actuators

66

3.2.5. Physical Architecture

Telemetry, Tracking & Command Subsystem (PA)

For the scopes of this work, the TT&C description does not go much further in the

PA with respect to the LA. The only modification consists in the introduction of a new

component, that is a second S-band Antenna used as backup in case of VHF Antenna

malfunction for uplink operations. Consequently, the S-band Transceiver will have two

new functionalities in order to deal with this component. Figure 3.43 shows these new

model elements. Another comment concerns the VHF Antenna Folding mechanism, here

modeled as Behavior Component inside the VHF Antenna since it is part of it and not

as Node one, unlike the Release Mechanisms Wings for the solar panels deployment. The

interfaces with ground systems can be recalled from the LA since they are unchanged,

while the interfaces with other subsystems (basically the OBDH) can be consulted in

Section 3.2.5.

Figure 3.43: [PAB] TT&C SS Components

Propulsion Subsystem (PA)

The PA related to the Propulsion subsystem provides a few more internal functional de-

tails with respect to the LA, as Figure 3.44 shows. One single Node Physical Component

is present, that is the Main Engine, which is composed by a number of sub-components

67

Chapter 3. Case Study: e.Inspector

modeled as Behavioral ones. Therefore, just the engine will appear in the Product Break-

down. Since the external interfaces of the engine were already encountered in previous

diagrams, this section only focuses on its internal functioning.

Figure 3.44: [PAB] PROPULSION SS

Thermal Control Subsystem (PA)

The LA modeling of the TCS is enough for the scopes of this work, also due to the absence

of active components. Therefore, no diagram is here reported since the only modification

is the introduction of Paint as a Node Physical Component, also present in the Product

Tree. Concerning Thermocouples, they are still modeled as a single component, like in

the LA, since their functioning is part of the components in which they are distributed

and therefore require a step further in their design and modeling that is out out this work

scopes. The reading of components temperatures is taken into account considering it as

part of the telemetry coming from components, presented in Section 3.2.5.

Structures and Mechanisms Subsystem (PA)

Lastly, the Structures and Mechanisms Subsystem is modeled. Recalling that not all the

physical interfaces are frozen at this level of design, some of them may be missing in the

diagram of Figure 3.45. Not only physical connections among components and primary

68

3.2.5. Physical Architecture

structure are reported, but also some supports that represent mounting points. This

diagram is useful for a Phase A since it provides a panoramic view of all the physical

connections that shall be accurately designed and can also be exploited as reference for

the integration plan development.

Figure 3.45: [PAB] STRUCTURE&MECHANISM SS Components

e.Inspector Global View (PA)

The presented Physical Architecture modeling demonstrated to be a very powerful sup-

port to systems engineering practices for a CubeSat design, in which multiple subsystems

carry a number of components that have to communicate among them. Clearly, the

precise data exchange modeling and communication protocols require a step further in

the design process, not presented in this work, but still feasible adopting the ARCADIA

method supported by the Capella tool.

Capella is supported by a number of Add-Ons that support system engineering activi-

ties and allow model refinement. One of them was already presented, called Requirements

Viewpoint. Another one, exploited for the e.Inspector mission, is called Basic Mass View-

point. Its functioning is very simple: an allowable maximum mass is defined at system and

subsystems level, then a mass is assigned to each component and the tool warns the user

whenever the sum of components masses exceeds the maximum overall one. Applying this

tool to each subsystem, and then at system level, the system engineer not only has a mass

database included in the model, but also the possibility to rapidly experiment changes in

69

Chapter 3. Case Study: e.Inspector

the design conducting trade-off analysis. An example is reported in Figure 3.46, showing

the tool usage for the EPS. The “Max” mass assigned to each Node Component is the

margined one. When a component, such as the EPS DOCK, contains sub-components,

its total mass is the sum of the sub-components and its mass. Since the tool has been

applied to each subsystem, the diagram in Figure 3.47 is realized, representing the mass

database at system level. A very similar Add-On is called Basic Price Viewpoint, having

the same functioning but focused on the cost of components.

Figure 3.46: [PAB] EPS SS Mass

Figure 3.47: [PAB] ALL SUBSYSTEMS Mass

To conclude with the Physical Architecture, one of the outputs is the Product Tree,

here automatically generated by the tool in the Physical Component Breakdown diagram,

Figure 3.48.

70

3.2.5. Physical Architecture

Figure 3.48: [PCBD] e.Inspector Product Tree

71

Chapter 3. Case Study: e.Inspector

3.2.6 System and Subsystems Modes

A space system is conceived and designed having in mind its operative life, punctuated

by a number of phases which define the whole mission. Particular attention must be

paid while defining which subsystem functionalities are needed in each phase, therefore

approaching a vast topic in system engineering that is the Modes and States definition.

Many attempts have been done in the last years, as discussed in the works by Olver and

Ryan [51] and by Wasson [78], with the aim of establishing a universal definition of states

and modes, however some conflicts can still be found in literature proving that the use of

one or the other is mostly a methodological choice in the context of a project.

Since the ARCADIA method distinguishes Modes and States, the two concepts cannot

be mixed together in the same diagram in the Capella environment. A common definition

among systems engineers states that a mode is the result of a design decision, allowing

to consciously switch the system from one to another, while a State is the consequence

of something that happens to the system, representing an unexpected or even undesired

event. Only the concept of Mode is considered for this work. The adopted definition

is taken from the work by Bonnet et al. [11], where each Mode is mainly characterized

by the intended functional nature of the system at that time under certain conditions.

The transition from one Mode to another is usually an explicit decision triggered by a

functional event, such as a change in the use of the system to respond to new needs or

situations. It is therefore conditioned by choices made by the system or by Actors through

the creation of a Functional Exchange or the activation of a particular Function within

the transition [75]. Modes are here described making use of Modes & States Machine

diagrams in Capella.

The e.Inspector mission is characterized by four Phases, already presented in Section

3.1, each one requiring a number of system Modes. In Capella, Modes are defined by one

or more Functions expected to be executed by the system. Recalling that all the Functions

are carried out by Behavior Components and, in turn, by Node Components, whenever

a Function is present in one Mode it means that the Component containing it is active.

In theory, each Component should be characterized by some Modes and the combination

of simultaneous Component Modes should identify a subsystem Mode, which then de-

fine system ones. This procedure can be very effective in late design phases, however it

may result precocious to define all Components Modes during a Phase A. Therefore, the

analysis will mostly focus on system Modes and some subsystem ones, those per which

it is possible to conduct this kind of analysis at this level. In particular, the studied

subsystems are the Propulsion, the TT&C and the GNC. In the following, their Modes

are firstly presented, opening the stage to a focus on system ones.

In order to better interpret the diagrams that are going to be presented, an overview

of the used model elements is reported in Table 3.1.

72

3.2.6. System and Subsystems Modes

Table 3.1: State Machine model elements

Initial Pseudo State Used to represent the initial state

when entering in a mode or state

machine.

Final Pseudo State Represents the end of a state ma-

chine.

Choice Pseudo State It allows splitting of compound

transitions into multiple alternative

paths.

Fork Pseudo State Serves to split an incoming tran-

sition into two or more transitions

terminating on different modes.

Terminate Pseudo State Implies that the execution of the

mode is terminated immediately.

Another important concept is the State Transition, that defines the condition govern-

ing the passage from a Mode to another one. Two concepts are related to it: the Guard

Condition, a Boolean expression written in squared brackets that must be true when the

event takes place for the transition to be triggered, and the Trigger, that defines the

condition for the transition activation, typically a Functional Exchange already present

in the model. A Trigger can also be a Time Event, modeled using the keywords “after”

and “at”, or a Change Event, modeled using the keyword “when” [55]; in these cases

the expression that follows the keywords is not necessarily an already existent Functional

Exchange.

All Functions and Functional Exchanges used to define the Modes contents and the

Transitions belongs to the Physical Architecture. It could also be possible to define

Modes using Logical Architecture or other levels elements, however for this work it was

decided to proceed with the PA since it allows to provide a more detailed description.

Subsystems Modes

The first subsystem here analyzed is the GNC, whose State Machine diagram is reported

in Figure 3.49. Each grey rectangle represents a subsystem mode. For graphical reasons

it was decided to not report the Functions that each mode carries out, however it shall

be remembered that all Modes are precisely described by the Functions they have allo-

cated. An example is provided in Figure 3.50 for the GNC Detumbling Mode; this kind of

expanded views is not be presented for the remaining Modes, in order to keep the focus

on State Machine diagrams rather that on Modes definition. However, the model can be

consulted in the Capella environment, navigating through these information too.

73

Chapter 3. Case Study: e.Inspector

Focusing again on the diagram in Figure 3.49, it is interesting to provide the rationale

that stays behind some of the Transitions. In particular, the Fork Pseudo State is adopted

to distinguish the Navigation Modes from the Attitude ones. GNC Absolute Navigation

and GNC Absolute Attitude are the baseline GNC Modes, active for the entire mission

duration until Change Events happen. Concerning the Navigation, the switch from Ab-

solute to Relative takes place once a well defined distance from the target debris is met;

in turn, the distance also governs the Relative Navigation Modes selection, since they in-

volve different GNC algorithms and techniques, therefore different subsystem Functions.

Similar considerations are applied to the Relative Attitude Mode activation, as the tran-

sition in the diagram suggests. No specific details on the design, reported in the Mission

Description Document [21], are intended to be given in this work.

Figure 3.49: [M&S] GNC Modes

The attention is now shifted toward the diagram of Figure 3.51, showing the Propul-

sion subsystem Modes. The Transitions from one Mode to another reflect the mission

phases, that will be better presented in the next section. The engine is firstly turned on

to initiate the drifting toward the operative orbit, then the Relative Orbit Transfer Mode

is used whenever needed during the Inspect Phase. Two other Modes characterize this

subsystem, respectively the Disposal Mode and the Collision Avoidance Mode, the lat-

ter followed by a Terminate Pseudo State that is activated once the maneuver is executed.

Lastly, the TT&C subsystem Modes are presented in Figure 3.52. All the Transitions

74

3.2.6. System and Subsystems Modes

Figure 3.50: Expanded view of GNC Detumbling Mode

Figure 3.51: [M&S] PROPULSION Modes

make use of Functional Exchanges already presented in the model, indicating that once

the expressed data is available, that Mode can be activated. This is a very simple way of

modeling, that actually ignores the more complicated internal switches from one mode to

the other. However from the modeling point of view this diagram is still very useful due

to recurrent involvement of TT&C Modes in almost all system ones, as showed in Section

3.2.6.

No Modes are created for the other subsystems such as the EPS or the OBDH, since

almost all their functionalities are activated during each system mode; therefore it was

decided to include them in a so-called System Base Mode which provides all the basic

Functions. The latter is actually a “ghost” Mode from the graphical point of view, indeed

it is not reported in the following system Modes diagrams. However, since the System

Base Mode provides vital system functionalities, it is always on from mission beginning

up to the system passivation.

75

Chapter 3. Case Study: e.Inspector

Figure 3.52: [M&S] TT&C Modes

System Modes

In the previous section, simple modes were adopted for subsystems, described by a number

of Functions and exempt of sub-Modes. The concept of composite modes is introduced.

These are Modes that contain one or more regions, each one having a set of subsystem

Modes, called sub-Modes, as well as other Functions. A region is a top-level part of a

State Machine intended as a container for the other Modes. This approach is very useful

in the context of a CubeSat design, since it allows to easily define the system Modes

starting from the subsystem ones that are active. It also drastically reduces the modeling

time since otherwise, in case of non availability of subsystem Modes, the modeler would

have to insert Functions one by one, with the risk of losing some of them. Each mission

phase with the associated modes will be analyzed in the following and the exploitment of

the work done at subsystem level will be discussed.

Following the chronological succession of mission phases, let’s start with the LEOP

one. Its State Machine diagram, showed in Figure 3.53, presents the Modes the system

undergo from the CubeSat separation up to the phase conclusion. Some system Modes

possess empty regions, because of the absence of proper subsystem Modes in the model.

This is actually a modeling choice, and not a gap, since for such system Modes it is easier

to directly define Functions at system level rather that creating non-recurrent subsystem

Modes. To better clarify this concept, an example is reported in Figure 3.54, where the

SYSTEM - DEPLOYMENT Mode contains tailored Functions for it.

The remaining phases with associated Modes are reported in Figures 3.55, 3.56 and

3.57. All of them share the SAFE and the COLLISION AVOIDANCE Modes, that

may be needed in whatever phase of the mission. The latter is directly activated after

telecommand reception, however the transition reported in diagrams does not exclude

the autonomous CAM activation. It is clearly visible the exploitation of some recurrent

subsystem Modes that fill the regions, enhancing an easier description of system Modes.

76

3.2.6. System and Subsystems Modes

Figure 3.53: [M&S] SYSTEM Modes - LEOP Phase (1)

Figure 3.54: Expanded view of SYSTEM Deployment Mode

Figure 3.55: [M&S] SYSTEM Modes - TRANSFER Phase (2)

77

Chapter 3. Case Study: e.Inspector

Figure 3.56: [M&S] SYSTEM Modes - INSPECT Phase (3)

Figure 3.57: [M&S] SYSTEM Modes - DISPOSAL Phase (4)

78

3.2.7. Concept of Operations using Scenario Diagrams

3.2.7 Concept of Operations using Scenario Diagrams

In this section, all the work previously done related to the system architecture and its

Modes is exploited in order to describe how the CubeSat will be operated during the dif-

ferent phases, with the goal of meeting the initial high level objectives. It is important to

conduct this kind of analysis since an operational perspective allows to think more deeply

about system needs, leading to a check out of the architecture. In a MBSE environment

such as Capella, this is much more than effective. Indeed the ConOps are created using

already modeled elements, such as Components, Functions and Functional Exchanges;

therefore, whenever the modeler cannot find one that is satisfactory for a particular op-

eration to be described, he/she is forced to go back and refine the model. This approach

leads the way to a consistency analysis of the system architecture, opening new discussion

points on the design. ConOps definition also stimulates requirements development since

it forces to think about how the system might be used, understanding whether it can or

cannot support the defined operations with the available requirements.

In Capella, the adopted diagrams to conduct such analysis are called Scenario Di-

agrams, inspired by the UML/SysML sequence diagrams. There are several types of

Scenario Diagrams, all showing the vertical sequence of exchanged messages between ele-

ments, called lifelines. The diagrams available in Capella are differentiated basing on the

lifelines, which can be Functions or Components/Actors (here called Objects), and the

messages, which can be Functional Exchanges, Component Exchanges or Exchange Items.

The ones adopted for this work are called Exchange Scenarios, in which the lifelines are

Components/Actors and the sequence messages are Functional Exchanges or Component

Exchanges. The elements that will appear in lifelines are mainly Functions and Modes.

In the following, a high-level timeline description of the activated Functions and Com-

ponents for each mission phase will be provided. Some examples will also be presented

focusing on certain mission aspects from the system functioning point of view, such as

end-to-end communications or inspection maneuvers strategies. All the elements here

used are taken from the Physical Architecture.

Before proceeding with the diagrams, a brief explanation of the adopted model elements

is here provided. Together with Components/Actors reported as vertical lines (also called

Instance Roles in Capella scenario diagrams, or Lifelines in UNL/SysML), Functions (here

called State Fragments) and Functional Exchanges (here called Sequence Messages), some

other concepts are involved, mostly inherited from UML/SysML. Since these diagrams

have the time dimension, the Duration constraint is introduced, that is the time frame

between two messages or Exchanges. Another concept encountered in Scenarios is the

Combined Fragment, represented by a grey rectangle that covers Instance Roles. Each

fragment contains a control structure called Interaction Operator that defines the type

of logical condition to apply to the elements the fragment contains, typically Functions

79

Chapter 3. Case Study: e.Inspector

and Functional Exchanges, and can be split into operands, separated by dashed horizon-

tal lines. Some operands are characterized by a Guard, which defines the condition to

“activate” the fragment, reported as text in brackets at the top left of the operand. The

adopted operators are here listed:

• LOOP: the fragment can be executed several times, and the guard condition states

the iteration frequency (e.g. every day);

• OPT: the fragment is only executed if the condition provided is true (very similar

to a “while” cycle);

• ALT: the fragment contains some alternative operands, only executing the one that

contains the true condition (very similar to an “if” cycle);

• PAR: the fragment contains a number of operands that are executed in parallel, no

Guard condition is present here

• STRICT: this interaction operator requires a strict sequencing (order) of the operands

within the combined fragment.

Great use of combined fragments is done for this work since they allow to describe logic

structures in a very compact and concise manner.

Some other important concepts concerning the type of messages involved for this work,

inherited from UML/SysML sequence diagrams, are the creation of self messages, mes-

sages with return and synchronous/asynchronous messages. Table 3.2 provides their

meaning and the correspondent graphical representations.

Table 3.2: Type of messages in Scenario Diagrams

Self Message A message an object sends to itself.

Synchronous Message A message that requires a response

before the interaction can continue.

Asynchronous Message A messages that do not need a reply

for interaction to continue.

Return Message Drawn with a dotted line pointing

back to the original lifeline.

Mission Phases ConOps

In Capella, a Scenario describes the behavior of the system in the context of a particular

Capability [55]. Therefore, a Capability should be present or created in order to attach

the desired diagram. Once the diagram is created, Components or Actors are added and

80

3.2.7. Concept of Operations using Scenario Diagrams

the tool proposes only Functions that are already allocated to them. Therefore, whenever

the modeler wants to include a Function that is allocated to a not present Component,

the latter shall be added to the diagram to proceed. New Components and new Functions

can clearly be created here too.

The first example reported in Figure 3.58 refers to the LEOP Phase and illustrates some

Functions associated to the correspondent Components. Clearly, not all the Components

actually working during this Phase are illustrated and a much more complicated diagram

would be needed to provide a complete description of the contributions provided by each

of them. Despite the instruments to do that are available since all system aspects have

been modeled in the previous analysis, the aim here is to provide a high level view of

the Phases in terms of operations, serving at the same time as demonstrative example of

how Scenario Diagrams are used. The adoption of the Duration constraint is recursive

in this diagram, not only to indicate the estimated duration of the whole phase, but also

to highlight some constraints coming from the Cal Poly CubeSat Design Specification

document [62], such as the minimum time after which all deployables shall wait to deploy

after separation from the launcher (30 minutes), or the constraint on the elapsed time

before the transmission of any signal (45 minutes).

Figure 3.58: [PES] ConOps - LEOP Phase (1)

Figure 3.59 shows the TRANSFER Phase, initiated after the command reception. Re-

quirements can be used to enrich Scenarios, such as the one here reported which refers

81

Chapter 3. Case Study: e.Inspector

to the orbit prediction frequency. The use of synchronous messages with return can be

noted in this diagram to ensure correct communication between the space and the ground

segment.

Figure 3.59: [PES] ConOps - TRANSFER Phase (2)

The INSPECT Phase is the most delicate and crucial for this mission, therefore it is

important to provide a clear description of it. Section 3.1 briefly introduced the prox-

imity operations as a succession of Inspection Orbits, where the images of the target are

acquired, and Hold Orbits, in which the system health status is checked and data are

downlinked. The Scenario Diagram in Figure 3.60 presents such high level description, al-

ternating the orbits in a strict sequence. It is voluntarily left incomplete since the purpose

here is not to deeply describe such operations, but to demonstrate the utility of Scenarios

in the context of a complicated space mission such as the e.Inspector one.

The previous diagram also serves to better interpret, from an external point of view,

the diagram in Figure 3.61 related to the INSPECT Phase. Great use of operators is

done here to describe the execution of Functions; a big LOOP operator encloses all the

lifelines since the contained Functions are repeated for each Inspection and Hold Orbits,

the latter indicated by the correspondent System Holding Mode. Recalling the State Ma-

chine in Figure 3.49, the activation of GNC Modes, here highlighted in cyan, depends on

the distance from the target. Absolute positioning and absolute attitude are the baseline

82

3.2.7. Concept of Operations using Scenario Diagrams

modes, the relative navigation begins when the distance is lower than 20 km, while the

relative attitude and pose estimation at a distance lower than 200 m.

Figure 3.60: [PES] ConOps - Relative Operations

Lastly, the DISPOSAL Phase ConOps are reported in Figure 3.62. Before the disposal

maneuver effectively can take place, the main engine shall move the CubeSat from the

nearest Hold Orbit to the target, after the completion of the previous phase, up the the

farther Holding Point. The OPT operator is used to indicate such condition, in which

a telecommand with return message declares the beginning of the disposal maneuver

followed by the system passivation.

Another use of Scenario Diagrams

Despite Scenario Diagrams are not actually intended to describe a very generic context,

the previous section still results to be very useful in order to show the mission in its

completeness and in a summarized way. However, they should be used to describe a

particular use of the system that foresee a logic succession of functions and the temporal

variable too, enclosing a lot of information that otherwise, in a document-centric approach,

would be subject to misinrpretation. Two examples are reported in Figure 3.63, presenting

some insights about the TT&C subsystem functioning together with some details such

as the frequency at which the telemetry has to be dowlinked and the inclusion of a

requirement concerning the time window for large data transmission, and in Figure 3.64,

about the EPS; the latter includes the time of eclipses and, more important, the way the

subsystem jumps from the solar panels power generation to the batteries exploitation.

During this work, it was noted how Scenarios development allowed the detection of some

83

Chapter 3. Case Study: e.Inspector

Figure 3.61: [PES] ConOps - INSPECT Phase (3)

“missing” functionalities in the model, forcing to think about solutions using the available

architecture and components, from a temporal and logical point of view.

84

3.2.7. Concept of Operations using Scenario Diagrams

Figure 3.62: [PES] ConOps - DISPOSAL Phase (4)

Figure 3.63: [PES] Provide Communication Services

85

Chapter 3. Case Study: e.Inspector

Figure 3.64: [PES] Provide Power Supply

86

3.2.8. AIV/AIT Plan Definition with Capella

3.2.8 AIV/AIT Plan Definition with Capella

This section proposes an MBSE approach for the Assembly, Integration, Verification and

Testing activities in the context of the e.Inspector mission. The plan definition is avail-

able in the e.Inspector AIT/AIV Plan [20] and has been exploited for this work. The

aim here is not to enter the details and the rationale behind the activities that will be

encountered in the following diagrams, but the focus is shifted toward the proposed non

document-centric approach using the Capella tool. With respect to the previous analyzed

systems engineering practices, the ARCADIA method and the Capella tool do not pro-

pose a precise way of dealing with the AIV/AIT plan development. The modeler is free to

build his/her own approach depending on the needs, therefore this is the way this section

should be interpreted.

Verification and testing activities are defined since the Phase A of a space mission and

continue to be refined during the entire product development. The classical approach

exploits traceability links between textual requirements and tests procedures. However,

relying just on them to derive test campaigns results in a lack of a detailed vision of the

needs, also reducing the possibility to identify problems. This is due to the inability of

textual requirements to cover all system aspects. As presented in the previous sections, an

articulated model has been created with the aim of defining any functional and physical

aspect of the system; the power of the here proposed framework, and in general of any

MBSE approach which deals with test campaigns, resides in the guidance provided by the

same model elements used as source of knowledge in the definition of the AIV/AIT plan.

An optimization of verification and validation strategy using Capella has been found

in the paper by Bonnet et al. [10]; here, Functional Chains built within the global ar-

chitecture are exploited to define some so-called Requested Versions, which represent test

increments. Some Developed Versions are iteratively introduced in order to understand

which tests previously defined can be performed according to the components availability

at the time of their definition. This approach results very effective in de-stressing the

test engineering since it allows to master the functional contributions of each component,

providing very precise basis for a test campaign definition. However, it exploits already

modeled elements without introducing the real test activities to be done and without

entering the test procedures; it mostly represents a reference for them, which should be

defined in a separate environment.

Instead of relying just on already modeled elements, the here proposed approach intro-

duces new Functions, Functional Exchanges and Behavior Components which explicitly

define the test activities. A practical example will be presented, in which tests conducted

for the EPS are exploited as demonstrator. It is reminded that the approach must be

intended as a prototype proposal, since it sometimes results to be in contrast with some of

the ARCADIA pillars. However, it is recalled that ARCADIA actually does not propose

87

Chapter 3. Case Study: e.Inspector

a method for managing test activities within the model, therefore the aforementioned

contrasts can be ignored while focusing on the gained benefits.

AIV/AIT plan: EPS case study

The approach is developed within the Physical Architecture, therefore any model element

in the context of the AIV/AIT plan is part of it and cannot be found in upper levels. This

is a decision that directly comes from the need of working with elements which represent

real physical Components that will constitute the system and that will be integrated and

tested, respectively exploiting Physical Links and Physical Functions which describe them

in the model.

The first step consists in defining a PAB diagram for the subsystem, here the EPS, such

as the one in Figure 3.65 (similar diagrams for the rest of the subsystems are reported in

Appendix A.4). The Actor in charge of executing the tests, in this case POLIMI, carries

some Behavior Components, each one called with the subsystem name, the type of model

used and the name of the Physical Component to be tested (e.g. EPS PFM – Solar

Arrays, where PFM stands for Proto Flight Model). These Components have allocated

a number of Physical Functions, expressly created, which explicitly state the activities to

be performed on that Component. For example, a Functional Test shall be performed

on the Proto Flight Model of Solar Arrays. These high level test blocks, in the form of

Physical Functions, provide a global view of the tests to be performed on the subsystem.

They are connected by Functional Exchanges which just indicate their logical sequencing;

in order to be coherent with the ARCADIA method, whenever exchanges are established

between functions belonging to different Components, Functional Exchanges are allocated

to proper Component Exchanges.

The first contradiction can be highlighted, that is the exploitation of model elements

which, according to the ARCADIA method, should be part of the system while here are

treated as if they are allocated to an external operator. This is the case of the Physical

Functions in Figure 3.65: since they are allocated to Behavior Components, Capella au-

tomatically assigns them to the system despite the Components are deployed inside the

Actor (this is why they have a green stamp and not a blue one). To solve this issue, Behav-

ior Components should be neglected leaving the Functions “fluctuating” inside the Actor;

however, at that point, a coding should be defined to distinguish the various Components,

weighting down the blocks and making their reading difficult. Therefore, it was decided to

ignore this issue, keeping the Functions inside Behavior Components and with the green

stamp. In the Functional Breakdown they will easily be distinguished from the remain-

ing system Physical Functions thanks to the creation of a dedicated test activities branch.

The previous diagram is a sort of navigation menu, a starting point linking to other dia-

grams which better detail the activities. Two links can be noted: the first one is related to

the Physical Function Functional Tests of SA as the icon in the bottom right of it suggests

88

3.2.8. AIV/AIT Plan Definition with Capella

Figure 3.65: [PAB] AIV/AIT EPS - Overall Plan

(the italics is automatically used by Capella whenever a Function hosts sub-Function), the

second one is a Functional Chain Description diagram associated to the highlighted chain.

Let’s focus on the first link. Right clicking of the Function, the tool proposes to open

an existing diagram allocated to that Function, as Figure 3.66 shows.

Figure 3.66: Link to [PDFB] - Functional Tests of SA

As the name suggests, it is a diagram showing the procedures that must be done to

accomplish the upper activity, reported in Figure 3.67. Having one or more diagrams like

that for each activity of the AIV/AIT plan allow systems engineers to have a complete

view of all the procedures to be performed, all embedded in the same workspace. The

Exchanges here indicate pure logical sequencing, however is is clearly possible to report

them in a Scenario Diagram to also catch the temporal dimension. Lastly, each Function

has a dedicated sheet in which the progress status can be set, as well as comments or

open discussions (Figure 3.68); in a team environment it allows to drastically reduce the

effort spent in communicating, using these diagrams as single source of truth. Eventually,

a graphical coding can be set in a team to distinguish among completed/in progress/not

89

Chapter 3. Case Study: e.Inspector

completed activities.

Figure 3.67: [PDFB] AIV/AIT Procedures - Functional Tests of SA

Figure 3.68: AIV/AIT Functions - Progress Status Sheet

Going back to the diagram in Figure 3.65, the second link previously mentioned is

analyzed. Right clicking on the blue stamp Functional Chain EPS testing activities, it

is possible to open a Physical Functional Chain Diagram, Figure 3.69, which reports

all the activities that are part of the chain. All Exchanges between Functions are kept

unchanged, however here the concept of Sequence Link is introduced. It is graphically

represented by a dotted line connecting two Functions and is used to introduce the tem-

poral dimension. Whenever a Sequence Link connects a function F1 (source) to a function

F2 (sink), it means that F2 starts after F1 does. Here all these links appear together with

a Functional Exchange, however it is also possible to have independent Sequence Links.

This is an alternative option of dealing with temporal sequences instead of using Scenarios.

Let’s focus now on two elements encountered for the first time in this work: the dark

green blocks with the Functional Chain icon on the top left and the yellow blocks with

the {c} icon. They are respectively Functional Chains expressed in a compact form, here

exploited to create a bridge between the test activities and PA elements, and Constraint

elements, discussed in the following. The proposed approach is very simple: some Func-

tional Chains are already defined within the model, highlighting certain functional aspects

90

3.2.8. AIV/AIT Plan Definition with Capella

Figure 3.69: [PFCD] AIV/AIT - EPS testing activities

of each subsystem or component. Since all test activities necessarily refer to the system

functional or interface analysis, whenever it is decided to conduct a certain test, systems

engineers can exploit the chains reported in dark green blocks which contain such func-

tional aspects of the system. Any Functional Chain can be added to this diagram and,

assuming that the desired component/subsystem functionalities have been properly mod-

eled and a clear description is present within the model, the probability of committing

errors during the test campaign can be drastically reduced. This is also very useful since

during the test activities problems typically arise and some changes have to be applied

to the system; in this case, engineers can go back to the model, refine the analysis and fi-

nally exploit the new Functional Chains for a further check. This is what the green blocks

show, a compact form of Functional Chains which serves as reference for each aspect of

the campaign; indeed they can be expanded in the same diagram whenever needed for

consulting, as reported in the example of Figure 3.70 for the chain Performance Tests of

EPS DOCK and ACUs Interface. More than one Functional Chain can clearly be asso-

ciated to a test activity, therefore the Constraint element is used to explicitly “allocate”

them to activities. Actually this is not a formal allocation, but more a graphical one used

within this approach.

The one presented is a simple way of dealing with AIV/AIT activities exploiting at

the same time the already modeled elements. To do that, another rule of Capella has

91

Chapter 3. Case Study: e.Inspector

Figure 3.70: AIV/AIT EPS DOCK - ACUs Interface Tests Expanded View

been violated. In the diagram of Figure 3.65, the Functional Chain results to be invalid.

This happens because in the diagram of Figure 3.69, the chains used as reference are not

connected to the Functions representing the test activities, resulting in a broken overall

chain. However, being totally aware of that, this aspect is ignored since the benefit of

having all these information in one single diagram is worth. Some upgrades can be of

course introduced in the future in order to deal with these contradictions, by creating a

dedicated “AIV/AIT Viewpoint”.

Summing up, three diagrams have been involved in this approach:

• a PAB diagram (Figure 3.65) for each subsystem to define the test activities related

to them;

• a PDFB diagram (Figure 3.67) for each test activity to define the procedures related

to them;

• one or more PFCD diagram (Figure 3.69) for each subsystem to have a direct

reference to model elements.

The advantage of dealing with testing and verification activities within the same en-

vironment in which the system was modeled resides in the possibility to exploit all the

knowledge and information embedded in the model. So, for example, in the context

of system integration, Physical Links can be consulted to check the correctness of the

integration plan serving also as base for its definition. The presented approach is demon-

strative and experimental and, as said, does not include the complete set of activities to

be conducted, which strongly depend on the next mission design phases.

92

Chapter 4

Decision Making Tool for Small

Satellites Architectures Generation

Nothing is more difficult, and therefore

more precious, than to be able to decide.

Napoleon Bonaparte

MBSE lacks intelligent support that could strongly help in addressing the most suitable

architecture in line with the system functionalities, speeding up the alternatives selection

process in a Phase 0 design. This would be particularly useful during the preliminary

design phases, in which the almost infinite design choices are skimmed by the only system

engineers knowledge, who may miss some solutions. A newly approach conceived to solve

this issue is described in this chapter in the form of a decision-making tool prototype in

support of the previously described MBSE approach. The problem and the method are

firstly presented in Section 4.1, followed by the algorithm explanation in Section 4.2 and

a practical demonstrative simulation in Section 4.3.

4.1 Statement of the Problem and Methodology

The approach starts from the definition of one or more high level functionalities, that can

be formalized in the Capella environment, describing some expected system behaviors and

characterized by a list of items or, as called from here on, markers. The tool embeds a

number of decisions at various levels, each one containing some alternatives which are also

described by the same aforementioned markers. Decisions are intended as a sort of “level

identifiers” or “alternatives containers” and do not have markers. The set of decisions at

different levels form a combination tree, where the alternatives selection is driven by their

ability to satisfy the functionalities throughout a sort of matching algorithm between the

markers, followed by a decision-making problem resolution for the architectures ranking.

93

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

4.1.1 Inputs from the User

The method is here formalized introducing m desired functionalities representing the main

user input to the tool. As said, each functionality is represented by a vector containing n

markers, called Input Functionality Vector. The Input Functionality Matrix in Equation

4.1.1 is then created placing the IFVs in its columns:

IFM =
[
IFV1, · · · , IFVj , · · · , IFVm

]
=


f11 · · · f1j · · · f1m
...

...
...

...
...

f21 · · · fij · · · f2m
...

...
...

...
...

fn1 · · · fnj · · · fnm

 (4.1)

Input markers values fij can have boolean values (1 if the functionality is characterized

by that marker, 0 if not), or can be assigned a number from 2 to 4 which indicates the

importance of that marker for the functionality. Higher the value, more important the i-th

marker for the j-th functionality. As presented in the following, the tool autonomously

maps these inputs providing as output a coherent architecture.

Another input is asked to the user, called Functionalities Temporal Concurrency Matrix.

It is an [m×m] matrix having value 1 if two functionalities are required at the same time, 0

if not. It will be used by the tool to exclude those alternatives which satisfy a functionality

but are completely unsuitable for a contemporary one, compromising it. As example, in

Equation 4.1.1 the functionalities #1 and #2 are contemporary.

F =


0 1 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · 0

 (4.2)

Lastly, as the relative weights assigned to the functionalities are computed using the

Analytic Hierarchy Process (Section 4.2.1), a pairwise matrix with the relative importance

between functionalities is required. Since it is not so straightforward to get consistent

matrices, in particular as the number of functionalities increases, an algorithm has been

developed for their automatic generation, allowing to save time in compiling the matrix

and at the same time ensuring its consistency. Therefore, the last input asked to the user

is not a user-built pairwise matrix, but the following quantities:

• vimp = Vector Importance: row vector [1 × m] where the m functionalities are

ordered from the most important to the least one. Value 0 if i-th and the (i+1)-

th functionalities are equally important, 1 if the i-th is more important than the

(i+1)-th. Value 0 shall be put in the last cell.

94

4.1.2. Tool Embedded Decision Tree

• s = Sparsity Factor, scalar (0 <s <1) typically equal to 1. Higher s higher differences

between the criteria (functionalities) will be obtained once the pairwise matrix is

given to the AHP. Lower s, lower differences.

The algorithm firstly computes a so-called jump value, defined as the minimum differ-

ence between two values in the pairwise matrix. Without the jump value, if the number

of functionalities given as input is higher than 9, in the pairwise matrix there would be

relative importance numbers exceeding the usual scale of the AHP, which goes from 1 to

9. Algorithm 1 shows the steps for the computation of the pairwise matrix. It is reminded

that the user is left free to opt for his/her own manually compiled matrix; on that case

attention shall be paid toward the Consistency Ratio, which must not exceed the value

0.1.

Algorithm 1: Automatic pairwise matrix building.

Input: vimp = Vector Importance, s = Sparsity Factor

Output: Pfun = Pairwise Matrix of Functionalities

// Begin

Nfun = Number of Functionalities

// Compute jump value

if Nfun ≤ 9 then
jump = s

else
jump = 8

Nfun−1
· s

end

// Compute Pairwise Matrix

for i = 1→ Nfun do

for j = 1→ Nfun do

if i = j then
Pfun(i, j) = 1

else if i < j then

Pfun(i, j) = 1 + (
∑j−1

k=i vimp(k)) · jump
Pfun(j, i) = 1

Pfun(i,j)

end

end

// End

4.1.2 Tool Embedded Decision Tree

A number of decisions have to be “installed” in the tool. Decisions can be hierarchically

divided into different levels; an example related to the space field is to consider as first

level decision the stabilization technique for the GNC subsystem, while as second level

95

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

nested into the upper one the sensors or actuators selection. It is recalled that each deci-

sion belonging to whatever level is characterized by a given set of alternatives.

Let consider l decisions belonging to the first level; each w-th decision contains pw

alternatives and each alternative is in turn described by a predetermined vector of n

elements. These vectors are embedded in the code (they are a predetermined setting) and

compiled according to the following rules:

• value 0 (boolean) if the i-th marker does not characterize the kw-th alternative;

• value 1 (boolean) if the i-th marker satisfies the kw-th alternative;

• value 2 (scale) if the i-ith marker weakly accomplishes the kw-th alternative;

• value 3 (scale) if the i-ith marker well accomplishes the kw-th alternative;

• value 4 (scale) if the i-ith marker greatly accomplishes the kw-th alternative.

The presented coding differentiates the boolean values from the scaled ones; the reason

behind this choice will be clarified in the Section 4.2.2. Each kw-th alternative belonging

to the w-th first level decision is characterized by the following vector of markers:

akw =


m1kw

...

mikw
...

mnkw

 (4.3)

and each of the l first level decision by the following array, in which the number of

columns pw (that is the number of alternatives for that decision) is variable as it depends

on the w-th decision:

D1w =


m11w · · · m1kw · · · m1pw

...
...

...
...

...

mi1w · · · mikw · · · mipw
...

...
...

...
...

mn1w · · · mnkw · · · mnpw

 (4.4)

The second level of decisions is nested into the first one, meaning that each alternative

of each kw-th first level alternative contains a set of dkw second level decisions, the latter

having in turn their own total number of alternatives that is different for each of them.

An array characterizes each second level decision:

D2hkw
=



s11hkw
· · · s1ghkw

· · · s1qhkw
...

...
...

...
...

si1hkw
· · · sighkw

· · · siqhkw
...

...
...

...
...

sn1hkw
· · · snghkw

· · · snqhkw


(4.5)

96

4.2. The Algorithm Explained

D1w

A11w
...

A1kw

D21kw

A211kw
A2g1kw

A2q1kw

...
D2hkw

A21hkw
A2ghkw

A2qhkw

...
D2dkw

A21dkw
A2gdkw

A2qdkw

...
A1pw

Figure 4.1: Decision Tree Structure

The notation burdening is due to the fact that the total number of first level alternatives

is different among the first level decisions, the total number of second level decisions is

different among the first level alternatives and the total number of second level alternatives

is different among the second level decisions, while the n number of markers is the same for

all of them. To better clarify the adopted indexes, Table 4.1 reports a legend of symbols

while Figure 4.1 illustrate the structure of the decision tree: gray bubbles are decisions,

each one containing a number of alternatives (yellow is used for first level alternatives,

blue for second level ones).

Table 4.1: Indexes involved in the decision-making problem

Index Total Number

Markers i n

Functionalities j m

First Level Decisions D1 w l

First Level Alternatives A1 kw pw

Second Level Decisions D2 hkw dkw

Second Level Alternatives A2 ghkw
qhkw

Having the IFM and the set of decisions with their alternatives, the tool has to identify

the most suitable architecture, composed by at least one alternative for each decision,

which satisfies the functionalities according to the markers mapping. The detailed proce-

dure and the algorithm are presented step by step in the following section.

4.2 The Algorithm Explained

Each alternative of the decision tree has a number of “enlightened” markers. The purpose

of the tool is to select the set of alternatives which guarantee the maximum coverage of the

97

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

markers asked by the functionalities. Firstly all the combinations of alternatives belonging

to the first level decisions are evaluated, leading to the ranking of a number of first level

architectures. For each of them, the second level architectures are computed and ranked

according to some rules presented in the following sections. A scheme of the algorithm is

provided in Figure 4.2. The algorithm is developed using MATLAB and great use of cell

arrays is done to agglomerate the alternatives within the different decisions, the latter

intended as a sort of “containers” which mark the level they belong.

4.2.1 Some Ingredients of the Algorithm: MCDM Methods

Several Multi-Criteria Decision Making methods are adopted within the tool algorithm,

therefore a review of them is furnished in the following. The Analytic Hierarchy Process

is exploited to compute the weights of the functionalities, as there can exist some more

important or delicate functionalities, typically with a central role in the mission, to which

the priority is given in the design context. Then, some other MCDM approaches have

been investigated to compute the Performance Scores from a decision matrix.

The Analytic Hierarchy Process

The Analytic Hierarchy Process is a widespread technique proposed in 1980 by Saaty [59]

based on decomposing complex MCDM problems into hierarchies which relates the alter-

natives. For this thesis work the AHP is engaged in the computation of functionalities

weights, which are the intended as decsion criteria for the alternatives selection.

Once the hierarchical structure is developed and the objectives to be ranked identified,

a so-called Pairwise Comparison Matrix is compiled attributing the relative importance

values to pairs of objectives. A scale from 1 to 9 is introduced to do that, reported in

Table 4.2. An example of pairwise matrix is presented in Table 4.3; according to the scale,

the attribute #1 is much more important with respect to the attribute #2. Reciprocal

values are adopted to indicate that the second attribute of the pair is more important with

respect to the first one, so the attribute #3 is very much more important with respect to

the attribute #1 in this case. Once compiled the pairwise matrix, the following steps are

followed:

1. The Normalized Pairwise Matrix is obtained dividing each cell per the sum of the

column values where the cell belongs;

2. The Criteria Weight is computed by averaging each row;

3. Multiply each value of not normalized matrix columns per the Criteria Weights of

the row they belong. They represents the ranking values of the attributes.

98

4.2.1. Some Ingredients of the Algorithm: MCDM Methods

STEP 1 - Mark-

ers clustering

between function-

alities and D1s

STEP 2 - Compu-

tation of the OFM

and CoverageAl-

ternatives matrices

for each D1, check

on contemporary

functionalities

STEP 3 - The pro-

posed L1 architectures

by each functionality

STEP 4 - Performance

scores computation of

A1s using the selected

MCDM method

STEP 5 - L1 ar-

chitectures ranking

STEP 6 - Exclusion

of L1 architectures

that do not satisfy all

functionalities markers

and Final Proposed

Architectures ranking

STEP 7 - Computa-

tion of the satisfaction

degree between A2s

and A1s of the se-

lected L1 architecture

STEP 8 - Evaluation

of the feasible L2

architectures for

each A1 of the

L1 architecture

STEP 9 - Ranking

of L2 architec-

tures and selection

STEP 10 - Back

to the Capella

MBSE tool

INPUTS FROM

THE USER: IFM, F

AHP

AUTOMATIC

PAIRWISE MATRIX

COMPUTATION

INPUTS FROM

THE USER: vimp, s

AFM

OFMs,CoverageAlternatives

PS

selected L1 architecture

SatisfactionTotal

feasible L2 architectures

IFM

F

vimp,s

Pfun

wfun

Figure 4.2: Flow chart of the decision-making algorithm. Light green is used for the

steps belonging to the first level, light orange for the second level ones.

99

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

Table 4.2: Scale of relative importance in AHP

Value Definition

1 Equal importance

3 Somewhat more important

5 Much more important

7 Very much more important

9 Absolutely more important

2,4,6,8 Intermediate values

Table 4.3: Example of Pairwise Matrix in AHP

A1 A2 A3

A1 1 5 1/7

A2 1/5 1 1/9

A3 7 9 1

In order to understand the consistency of the original Pairwise Matrix, the Consistency

Index is computed as in Equation 4.6:

CI =
λMAX − nattributes

nattributes − 1
(4.6)

where λMAX is the maximum eigenvalue of the matrix and nattributes is the total number

of attributes. Then the Consistency Ratio (CR) is computed as the fraction between CI

and the Random Index, the latter depending on the number of attributes in the problem

(see [58, 41]). If CR < 0.1 then the Pairwise Matrix is consistent so the previously

computed Criteria Weights can be took as valid, otherwise something has to be changed

in the matrix.

Other MCDM Methods for Decision Matrix Resolution

A number of MCDM methods have been investigated for this work, used to solve the

decision matrix of alternatives after having computed the criteria weights (function-

alities weights here) from the AHP. Namely, the Weighted Sum Method (WSM), the

Weighted Product Method (WPM), the Technique for Order of Preference by Similarity

to Ideal Solutions (TOPSIS), the Evaluation Based on Distance from Average Solution

(EDAS) and the Preference Ranking Organization Method for Enrichment Evaluation

II (PROMETHEE II). Their descirption is not here provided, however the reader can

consult the main references adopted [41, 73, 40, 46].

100

4.2.2. Level 1 Architectures Selection

4.2.2 Level 1 Architectures Selection

Step 1: the Clustering Technique

Recall the scope of the method: m functionalities with n markers have to be mapped

into a set of decisions and their alternatives, described by the same markers, in order to

extrapolate a quantity that tells how much each alternative is suitable for each function-

ality. In case of boolean markers values for both functionalities and alternatives, it would

be quite straightforward to establish a simple one-to-one correspondence between the set

of input markers and the set of code-embedded ones. However, this is not the case since

both input and code (alternatives) markers are also classified according to a linear scale

as previously discussed. A way to merge the information coming from the IFM and the

code-embedded information has to be formulated.

A matrix, called Alternatives-Functionalities Matrix, similar to those of Equations 4.4

and 4.5, is compiled by the tool for each functionality and for each decision. The elements

of these matrices are defined according to the rule in Equation 4.8:

AFMw
j =


x11w · · · xikw · · · x1pw

...
...

...
...

...

xi1w · · · xikw · · · xipw
...

...
...

...
...

xn1w · · · xnkw · · · xnpw

 (4.7)

xikw =

0 if fij = 0 ∨mikw = 0

1 if fij = 1 ∧mikw = 1
(4.8)

Equation 4.8 imposes a simple but very important condition; indeed, whenever the i-th

marker of the j-th functionality is null (a marker assumes null value whenever it is not

declared in the functionality list of characteristics), the considered marker has nothing in

common with that functionality, and so it would not make sense to evaluate an alternative

with respect to that functionality taking into account a wrong marker. Instead, if the

functionality and the alternative is described by a non-zero marker (equal to 1 in case of

boolean values), the value 1 is assigned in the AFM.

The one presented above is the case of boolean marker values. However, markers can

also be quantified. For example, one can states that a marker for a functionality has a

value according to a proper scale (higher the value, more important the marker for that

functionality) while the same marker may have a different value for other functionalities.

The mapping in this case is quite more complex with respect to the boolean case and a

way to correlate the functionalities and the alternatives markers has to be found. The

proposed approach consists in adopting a scale that takes values from 2 to 4, preserving

the boolean values that can still be assigned, according to the coding in Equation 4.9. If

101

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

an alternative marker is boolean, also the functionality one shall be boolean.

fij =



0 the i-th marker does not characterize the j-th functionality (boolean)

1 the i-th marker simply characterizes the j-th functionality (boolean)

2 the j-th functionality is weakly characterized by the i-th marker (scale)

3 the j-th functionality is well characterized by the i-th marker (scale)

4 the j-th functionality is greatly characterized by the i-th marker (scale)

(4.9)

Concerning the case of non boolean values, if the functionality marker has value 4 and

the same alternative marker has value 4, it means that the alternative perfectly satisfies

the functionality according to that marker. In case of non-boolean markers, the AFM

is compiled computing the difference between the i-th functionality marker value and the

i-th alternative marker value (as long as they are different from 0 or 1). If the computed

number is equal to 0, it means that what is required by the functionality (e.g. a value of 4

for a marker) is perfectly satisfied, according to that marker, by the kw-th alternative, and

so the highest value of 1 is assigned to the xikw element of the AFM. If the difference is 1,

a lower value is assigned, meaning that the alternative still well satisfies the functionality

according to that marker, but not perfectly. The maximum difference can be 2, on that

case a minimum value will be assigned. Actually a 10% increment is assigned when the

difference between the functionality and the alternative is lower than 0, meaning that the

alternative satisfies the functionality according to that marker more than needed (while

in the other case it is less satisfied). The value 0 is assigned only if the fij or the mikw are

0. It is recalled that a marker can have value 0 even if it is not classified as boolean. The

discussed rules are summarized in Equation 4.10:

xikw =



0 if fij = 0 ∨mikw = 0

1 if fij = 1 ∧mikw = 1

1 if fij −mikw = 0

1− |fij−mikw |
3

if fij −mikw > 0

(1− |fij−mikw |
3

) · 1.1 if fij −mikw < 0

(4.10)

Summing up, each decision w-th having pw alternatives will be characterized by a 3D

tensor containing m AFM matrices of dimension [n× pw], one for each functionality.

Another output comes from this step, called coverage. Each decision will be charac-

terized by m matrices of this kind, having n rows and number of columns equal to the

number alternatives of the decision, therefore forming a 3D tensor. It is similar to the

AFM, however it is compiled differently as the Algorithm 2 in Appendix B.2 shows. It

will be used to exclude those architectures which do not cover all the markers asked by

102

4.2.2. Level 1 Architectures Selection

the functionalities.

coveragew
j =


c11w · · · c1kw · · · c1pw

...
...

...
...

...

ci1w · · · cikw · · · cipw
...

...
...

...
...

cn1w · · · cnkw · · · cnpw

 (4.11)

Step 2: the Output Functionality Matrix and the CoverageAlternatives

Now, the j-th AFM has to be converted into a vector whose elements represent the degree

of satisfaction of the kw-th alternative with respect to the j-th functionality. To do that,

a simple average on the columns is done (and so on the “illuminated” markers of the

alternatives), obtaining the desired vector called Output Functionality Vector for each

functionality:

OFV w
j =

[
y1wj =

∑n
i=1 xi1w

n
, · · · , ykwj =

∑n
i=1 xikw

n
, · · · , ypwj =

∑n
i=1 xipw

n

]
(4.12)

The computed vectors are reported as columns into a matrix called Output Functionality

Matrix, one for each decision w having pw alternatives, that has the following expression:

OFMw =


y1w1 · · · y1wj · · · y1wm

...
...

...
...

...

ykw1 · · · ykwj · · · ykwm

...
...

...
...

...

ypw1 · · · ypwj · · · ypwm

 (4.13)

Its rows are single alternatives and its columns are functionalities. Higher the ykwj value,

better the kw-th alternative is in accomplishing the j-th functionality. This matrix is also

a decision matrix: the ranking of the alternatives is obtained from the resolution of a

decision-making problem that solves the OFM, as the next subsection shows.

Similarly, using the coverage matrices, for each alternative the so-called CoverageAl-

ternatives is computed (Equation 4.14) summing all the values in the coverage rows.

Each alternative will then have a [1 × m] vector indicating how much that alternative

satisfies each functionality in terms of markers coverage, and each decision will be char-

acterized by a matrix built as the OFM. The elements of the CoverageAlternatives

matrices are different from those obtained in the OFM because the degree of satisfaction

is not considered here. Indeed, it may happen that in the OFM an alternative has a

higher value with respect to a different one because of the higher values coming from

Equation 4.10 and at the same time covering a lower number of markers, therefore having

a lower value in the CoverageAlternatives matrix.

CoverageAlternativeswj =
[
ca1wj =

∑n
i=1 ci1w , · · · , capwj =

∑n
i=1 cipw

]
(4.14)

103

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

Before moving to the following step, an important condition involving the contemporary

functionalities is here applied. If an alternative it totally wrong for a functionality (value

0 in the OFM or in the CoverageAlternatives, a threshold value can also be selected

instead of 0), it means that the behaviour of such functionality is compromised. If another

functionality has to be done at the same time of the former, a condition is activated

to assign value 0 also to the cell of both the OFM and the CoverageAlternatives

corresponding to the second functionality. This way, that alternative is excluded from the

solution. Without such condition, an alternative may be selected by a functionality and

at the same time compromising the behaviour of a contemporary functionality per which

that alternative is totally unsuitable. The F matrix presented in 4.1 is here exploited to

tell the code whether functionalities are contemporary (Appendix B.2, Algorithm 3).

Step 3: the Proposed Architecture by Functionalities

This step consists in the extraction of the best alternative for each decision, according to

each single functionality, therefore leading to the preferred architecture from the single

functionalities. This is not properly a fundamental step of the tool, however it can be

useful later to compare the overall architecture with the functionalities “preferences”. To

do that, values in the OFM and in the CoverageAlternatives are simply sorted and

for each decision the best alternative is selected, leading to two architectures for each

functionality. The outputs are two vectors with the identification number of the best

alternative for each decision:

ArchiFunw
OFMj

=
[
altOFM1 , · · · , altOFMl

]
(4.15)

ArchiFunw
coveragej

=
[
altcov1 , · · · , altcovl

]
(4.16)

Step 4: Performance Scores of the Alternatives for each Decision

The pairwise matrix automatically computed, reported in Section 4.1.1, is furnished as

input to the AHP function which implements the Analytic Hierarchy Process to derive the

weights assigned to each functionality (see Section 4.2.1) and used in the here described

decision-making problem.

Once the user selects the MCDM method among those available, the previous OFM

and CoverageAlternatives matrices are solved as they are here treated as decision ma-

trices, where in the rows there are the alternatives values belonging to the w-th decision

and the columns are functionalities, which represent multiple decision criteria.

The output of this step are two vectors for each decision, containing the Performance

Scores of the alternatives computed applying the selected MCDM method respectively to

the OFM and the CoverageAlternatives:

PSw
OFM =

[
PSw

OFM(1w), · · · , PSw
OFM(kw), · · · , PSw

OFM(pw)
]

(4.17)

104

4.2.2. Level 1 Architectures Selection

PSw
coverage =

[
PSw

cov(1w), · · · , PSw
cov(kw), · · · , PSw

cov(pw)
]

(4.18)

To summarize, a 3D tensor for each decision (AFMw(i, kw, j)) was converted into a

matrix for each decision (OFMw(kw, j) and CoverageAlternativesw(kw, j)) and then into

two vectors (PSw
OFM(kw) and PSw

coverage(kw)).

Step 5: Architectures Ranking

At the end of the Step 4, each alternative of each decision is characterized by two Per-

formance Scores which tells how much that alternative is suitable for the whole set of

functionalities. Taking one alternative for each decision means building an architecture.

The aim of the Step 5 is to evaluate all the possible architectures and rank them.

To accomplish the presented task, an overall Performance Score is computed for each

architecture as the product between the Performance Scores of the alternatives that com-

pose it. Actually two Performances Scores are computed, one considers the OFM and

one the CoverageAlternatives, as in Equations 4.19 and 4.20:

PSarchiOFM(f) =
l∏

w=1

PSw
OFM(kw) (4.19)

PSarchicoverage(f) =
l∏

w=1

PSw
coverage(kw) (4.20)

In the previous equations f is is the identification number of the evaluated architec-

ture, which are in total equal to the product between the number of alternatives per each

decision; l is the total number of decisions; kw is the alternative under cycle of the w-th

decision. This way, all the combinations are evaluated.

Now an overall parameter which merges the previous two is introduced, so that each

architecture from now on is quantified by one single number. It is computed as in the

Equation 4.21, where wOFM and wcoverage are weights which summed must be equal to one

and can be set by the user (i.e. 0.5 each):

J(q) = PSarchiOFM(q) · wOFM + PSarchicoverage(q) · wcoverage (4.21)

Once J is computed for each architecture, the values are sorted decreasingly, preserving

the indexes of the alternatives which constitute each q-th architecture.

Step 6: the Final Proposed Architectures

At this point, all the architectures are distinguished by an identification number and a

ranking value J. However it is not ensured that each architecture actually covers all the

markers required by the functionalities, therefore a skimming takes place here in order

105

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

to exclude those architectures which do not satisfy all the functionalities, and so all the

markers.

A new matrix is introduced for each architecture, called CoveredMarkers, with di-

mensions equal to the IFM ([n × m]). It is filled assigning the value 1 to the (i,j) cell

whenever at least one alternative of the architecture has value different from 0 in cover-

age for the i-th marker and the j-th functionality, meaning that such marker is satisfied

for that functionality, otherwise the value 0 is assigned (Equation 4.22).

CoveredMarkersq(i, j) =

1 if (i,j) marker satisfied by at least one alternative

0 if (i,j) marker is not satisfied by at least one alternative

(4.22)

Now, if one architecture has at least one row in CoveredMarkers with only all null

values, it means that the i-th marker is not satisfied by any alternative. Therefore a value

0 is assigned to J of the q-th architecture. This way, only the architectures which cover

all the required markers by the functionalities are preserved.

The last passage of this step consists in verifying that the skimmed architectures effec-

tively satisfy all the functionalities with a further check involving the outcomes from the

Step 2 about the OFM. The previous skimming, indeed, does not ensure that all func-

tionalities are actually satisfied, because it was conducted using the coverage matrices

which do not consider the zeroing of some alternatives coming from the condition about

contemporary functionalities, performed in the Step 2. It is recalled that each decision

is characterized by one OFM, having pw lines (one for each alternative of the decision)

and m columns. If for each alternative of each decision of the architecture under cycle

the value in the OFM corresponding to the j-th column (or functionality) is 0, such ar-

chitecture is excluded assigning value 0 to J.

The Final Proposed Architectures are those with a J value different from 0; higher

the value, better the architecture for the desired functionalities. The FPA is a matrix

with number of rows equal to the total number of evaluated architectures and number of

columns equal to the number of decisions; each cell contains a number which identifies

the alternative of the decision it belongs (i.e. column 1 is the decision 1) for the q-th

architecture. The algorithm related to the Step 6 is presented in Appendix B.2, Algorithm

4.

4.2.3 Level 2 Architectures Selection

Step 7: Satisfaction Degree Computation of Second Level Alternatives

In Section 4.1.2 the second level decisions were presented: each first level alternative

contains a number of second level decisions, each one with its own set of second level

alternatives. The scope of this second part of the algorithm is to select, for each archi-

106

4.2.3. Level 2 Architectures Selection

tecture coming from the Level 1, a number of second level alternatives which ensure that

all the first level alternatives in the L1 architecture are accomplished, and therefore func-

tionalities too. In order to ease the readability of this section, from here on the following

nomenclature is adopted:

• D1 = first level decision;

• A1 = first level alternative (contained in a D1);

• D2 = second level decision (contained in a A1);

• A2 = second level alternative (contained in D2).

The first step of the algorithm consists in computing, for each A2, the degree of mark-

ers coverage asked by the A1. This is done for all the A1s belonging to the first level

architecture selected by the user, expressed as in Equation 4.23:

Archiq =
[
A1q(1), · · · , A1q(w), · · · , A1q(l)

]
(4.23)

A similar approach to the one applied for the first level clustering is here presented, in-

troducing the satisfaction matrices [n×qh], where qh is the total number of A2 contained

in the h-th D2. Each D2 will be characterized by a number of satisfaction matrices equal

to the number of functionalities, therefore obtaining a 3D tensor. Actually each decision

h and alternative gh should have the pedix kw, not reported in this section to ease the

readability. Equation 4.24 shows a generic matrix of the h-th decision and j-th functional-

ity, while the rules for the matrix filling are directly reported in Appendix B.2, Algorithm

5.

satisfactionj =


s11 · · · s1gh · · · s1qh
... · · · ...

...
...

si1 · · · sigh · · · siqh
... · · · ...

...
...

sn1 · · · sngh · · · snqh

 (4.24)

The sum on the markers (index i) and on the functionalities (index j) is done for each

gh-th A2 leading to a scalar called SatisfactionTotal, engaged in the next steps, that tells

the goodness of that alternative in satisfying the A1 markers it belongs:

SatisfactionTotalgh =
n∑

i=1

m∑
j=1

satisfaction(i, gh, j) (4.25)

Step 8: Feasible Second Level Architectures Evaluation

Now, for each A1 selected in the first level architecture, the purpose is to find the second

level architecture which guarantees the highest markers coverage. It is recalled that as

each A1 contains a number of D2, a second level architecture is here intended as a set

107

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

of A2 selected by the A1. Therefore there will be a number of second level architectures

equal to the number of D1 (or A1, as in the first level just one A1 is selected by a D1).

The overall architecture instead merges all of them.

The driving parameters are once again the markers, as the aim is to guarantee the

coverage of those “illuminated” by each selected A1. For each A1, all combinations of A2

are evaluated. As baseline, the code selects just one A2 for each D2; however it is not

ensured that all the markers required by the A1 they belongs will be satisfied. Therefore,

if none of the second level architectures related to an A1 covers all the markers selecting

just one A2 for each D2, new A2 are added until all the markers are covered.

The Step 8 passes through the definition of a newly matrix called CoverageTot, defined

for each D2 and with size [n×qh]. It is filled with values 1 whenever all the A1 markers are

covered, took from the AFM in order to ensure that functionalities too are satisfied. Their

coverage is verified looking at the sum of satisfaction values for the A2s contributing

to the second level architecture. This way, since the first level architecture ensure the

satisfaction of functionalities markers, if all markers of such first level architecture are

satisfied by the “assembly” of the second level ones, it means that the overall architecture

for sure will be suitable for the asked functionalities.

Step 9: Final Proposed Overall Architectures

As done for the first level, all the overall architectures that passed the previous skimming

algorithm are ranked. This time a different parameter is used to evaluate how much

an architecture is suitable for the input functionalities. It is called ValueArchi and it

is computed as the sum of the SatisfactionTotal values associated to each A2 of the

considered architecture:

V alueArchir =

nA2∑
t=1

SatisfactionTotal(t) (4.26)

where nA2 is the number of A2s belonging to the r-th architecture.

Step 10: Back to the Capella Environment

The last step consists in exploiting a library of modeled components, which represent all

the A2s (leafs of the decision tree), in an MBSE tool such as Capella. Once the user

selects the overall architecture, he/she can directly move to Capella and work with the

already modeled components in terms of basic functionalities as well as a first grid of

requirements, as in Figure 4.3. The user then can adds Functional Exchanges, Functions,

Physical Links, requirements and new components if needed. It is clarified that the

initially defined functionalities should be modeled within the System Analysis in Arcadia,

that is the level at which the user’s project should be in order to properly use the tool

(he/she should have a clear idea of what his/her system has to do); components are

108

4.2.3. Level 2 Architectures Selection

instead modeled at Physical Architecture. This way the user is forced to bridge SA and

PA passing through the Logical Architecture, in which further considerations about how

the system has to work will surely arise and eventually new needs and functionalities. The

components obtained by the tool, at that point, may not satisfy yet all the functionalities,

therefore it is advised to re-run the tool adding the new ones. In this sense, the tool can

also be used to evaluate if changes in the required behaviour of the system influence the

components selection and how, suggesting the best architecture which suits best to the

needs providing a good support to an MBSE solution.

Figure 4.3: Example of Components Modeling in Capella

109

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

4.3 Simulations and Validation

This section reports some simulations with the purpose of validating the tool, interpret

the results and evaluating the limits of the algorithm. A review of the technologies that

constitute the decision tree is firstly presented to provide the rationale behind the markers

assigned.

4.3.1 Subsystems Decision Tree

For the following simulations the ADCS, the EPS , the TT&C and the Propulsion subsys-

tems have been considered, each one characterized by a number of decisions and alterna-

tives, here briefly presented one by one. The main reference used to review small satellites

technologies is the NASA State-of-the-Art Small Spacecraft Technology 2020 edition [80].

At this preliminary design level it is important to choose the set of decisions and alterna-

tives that are limited in number but at the same time effective in describing the system

and providing an architecture.

ADCS

For the ADCS subsystem, three first level decisions are defined, related to the most com-

mon stabilization techniques adopted for small satellites: 3-axis, spin and passive. Two

second level decisions follows, as reported in Figure 4.4: sensors for absolute and relative

attitude determination and actuators to control the satellite. A review of their common

technologies is provided in Tables 4.4 and 4.5, which represent the second level alternatives

of the tree. Other classes can be added in future, such as the control algorithm selection,

the position determination techniques and/or the inertial measurements technologies.

Propulsion

Not all small satellites have a propulsion subsystem, here intended just for orbital ma-

neuvers and not for attitude scopes. However, an assumption is done for the following

simulations, that is the need of such subsystem for orbit changes. This way it is possible

to better understand how the tool works, and how it behaves with the selection of the

propulsion type too. The first level decision for this subsystem contains two A1s: chemical

and electric propulsion. They become in turn second level decisions, with the technologies

reported in Tables 4.6 and 4.7 which indicate the second level alternatives. The tree is

reported in Figure 4.5.

EPS

For the Electric Power Subsystem one first level decision is a sort of architecture type,

containing two first level alternatives: satellites with just solar panels and satellite with

both solar panels and secondary batteries. Primary non-rachargeable batteries are ex-

110

4.3.1. Subsystems Decision Tree

GNC (w = 1)

PASSIVE (k1=3)

SENS (h31=2)

MAGNETOMETERS (g231=3)

HORIZON SENSORS (g231=2)

SUN SENSORS (g231=1)

ACT (h31=1) MAGNETS/BOOMS (g131=1)

SPIN (k1=2)

SENS (h21=2)

HORIZON SENSORS (g221=3)

SUN SENSORS (g221=2)

STAR TRACKERS (g221=1)

ACT (h21=1) THRUSTERS (g121=1)

3-AXIS (k1=1)

SENS (h11=2)

MAGNETOMETERS (g211=4)

HORIZON SENSORS (g211=3)

SUN SENSORS (g211=2)

STAR TRACKERS (g211=1)

ACT (h11=1)

MAGNETORQUERS (g111=3)

REACTION WHEELS (g111=2)

THRUSTERS (g111=1)

Figure 4.4: Decision Tree of ADCS

PROP (w = 2)

ELEC (k2=2) ALT (h22=1)

HALL (g122=4)

ION ENGINE (g122=3)

ELECROSPRAY (g122=2)

ELECTROTHERMAL (g122=1)

CHEM (k2=1) ALT (h12=1)

SOLID (g112=4)

COLD GAS (g112=3)

GREEN PROPELLANT (g112=2)

MONOPROPELLANT (g112=1)

Figure 4.5: Decision Tree of Propulsion Subsystem

111

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

Table 4.4: Common actuators for small satellites [80]

Thrusters They are used for attitude control and desaturation operations

on small satellites generating a thrust displaced from the center

of mass of the platform. Their lifetime is limited by the amount

of propellant on-board.

Reaction Wheels Provide spacecrafts with a three-axis precision pointing capa-

bility generating a torque around the spin axis. A minimum of

3 wheels are required for full 3-axis control. Reaction wheels

need to be periodically desaturated once they reach their max-

imum speed rate using an actuator that provides an external

torque. The most accurate among the actuators, can be used

for fast slew maneuvers.

Magnetorquers They work only in presence of a local external magnetic field

(i.e. Earth’s one) generating a torque perpendicular to it. One

magnetic torquer cannot provide full 3-axis stabilization alone.

Less accurate with respect to other actuators.

Magnets/Booms Can be used for Passive Magnetic and/or Gravity Gradient

Stabilization techniques. They do not provide controllability.

Table 4.5: Common sensors for small satellites [80]

Star Trackers A star tracker can provide an accurate estimate of three-axis

attitude by capturing digital images and comparing them with

multiple starts in a catalog.

Sun Sensors Sun sensors are used to estimate the direction of the Sun in

the spacecraft body frame for attitude estimation. To obtain a

three-axis attitude estimate at least one additional independent

source of attitude information is required.

Horizon Sensors Horizon sensors can be simple infrared horizon crossing indica-

tors (HCI), or more advanced thermopile sensors that can be

used to detect temperature differences between the poles and

equator. They detect Earth edges to calculate the roll and the

pitch angle of the satellite.

Magnetometers They provide a measurement of the local magnetic field to

provide both attitude and orbital position.

cluded as they are used only for one-time short use [42], so very brief missions of up to

one-week typically; approximately 85% of all nano-satellites are equipped with solar pan-

els and rechargeable batteries [80]. However, it is clarified that the decision tree, reported

in Figure 4.6, is not frozen and new decisions and alternatives can be freely added.

112

4.3.1. Subsystems Decision Tree

Table 4.6: Common chemical propulsion technologies for small satellites [80]

Monopropellant

(i.e. Hydrazine-

based)

They use catalyst structures to decompose hydrazine or a

derivative such as monomethyl hydrazine (MMH) to produce

hot gases. Hydrazine specific impulses are achievable in the

200 – 235 second range for 1-N class or larger thrusters.

Green Propellant-

based

The so-called “green propellants” (i.e. HAN, ADN) have re-

duced toxicity due in large part to the lower danger of compo-

nent chemicals. Green propellants also provide higher specific

impulse performance than the current state-of-theart hydrazine

monopropellant and have lower minimum storage temperatures

which may be beneficial in power-limited spacecraft. However,

the technology is less mature.

Cold Gas Cold gas systems are relatively simple systems that provide

limited spacecraft propulsion and are one of the most mature

technologies for small spacecraft. Thrust is produced by the

expulsion of a propellant which can be stored as a pressurized

gas or a saturated liquid.

Solid Propellant Solid rocket technology is typically used for impulsive maneu-

vers such as orbit insertion or quick de-orbiting. Due to the

solid propellant, they achieve moderate specific impulses and

high thrust magnitudes that are compact and suitable for small

buses. Not restartable.

The first A1, only solar panels, becomes a D2 with three alternatives: only body

mounted panels, body mounted plus fixed wings and body mounted plus gimbaled wings.

Actually the last alternative may be constraining, as the selection of orientable solar pan-

els should be done after some iterations within the subsystems design, as it introduces

complexity. However it is kept in order to assess in which cases the tool opts for it.

For the second D1, besides the D2 about the solar panels architecture, another D2

is introduced: the secondary batteries type. The survey in [12] indicates the following

secondary batteries as the most adopted for small satellites: 66% Lithium-ion (Li-ion),

16% Nickel-Cadmium (Ni-Cd), 12% Lithium-polymer (Li-pol) and 4% Lithium-Chloride

(Li-Cl). The decision tree in Figure 4.6 reports the three most used, presented in Table

4.8.

TT&C

This subsystem is introduced just for what concern the downlink of telemtry and scientific

data, enough to evaluate the ability of the tool in the selection process. Two first level

decisions are defined: high gain antenna, typically engaged for high data download in a

113

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

Table 4.7: Common electric propulsion technologies for small satellites [80]

Electrothermal

(i.e. Resistojet,

Arcjet)

Electrothermal technologies use electrical energy to increase

the enthalpy of a propellant (chemical rely on exothermal

chemical reactions). Once heated, the propellant is acceler-

ated and expelled through a conventional converging-diverging

nozzle to convert the acquired energy into kinetic energy.

Electrosprays (i.e.

FEEP)

Electrospray propulsion systems generate thrust by electrostat-

ically extracting and accelerating ions or droplets from a low-

vaporpressure, electrically-conductive, liquid propellant.

Ion Engines Gridded-ion propulsion systems ionize gaseous propellant via a

plasma discharge, and the resultant ions are subsequently ac-

celerated via electrostatic grids. An external neutralizer cath-

ode is needed to maintain plume charge neutrality. High spe-

cific impulses can be achieved, but the thrust density is funda-

mentally limited by space-charge effects.

Hall The Hall-effect thruster (HET) is arguably the most success-

ful in-space EP technology by quantity of units flown. They

generate thrust by creating and accelerating ionized gas via

magnetic and electrostatic fields.

Table 4.8: Common secondary batteries for small satellites [80]

Nickel-Cadmium Conventional Ni-Cd batteries were widely used during the first

30 years in aerospace industry. They have high cycle life but a

low energy density. The cell voltage is approximately constant

until it is nearly fully discharged. The temperature is a critical

parameter that affects the battery life and must be maintained

in a narrow range. Repeated cycling to a deep depth of dis-

charge can cause cracking in the cell plate structure. [49]

Lithium-Ion Li-Ion is a high energy density technology, can accept deep

discharges, therefore more of the available energy can be used

and for a long number of cycles [49]. They are the most adopted

for space applications.

Lithium-Polimer Li-pol cells are traditionally having a high energy density and

pouch format. This provides them the benefit of flexible size,

slim profile, and generally reduced weight. However, due to the

mechanical attributes, they might be prone to damage in the

space environment (vacuum) if not carefully constructed [42]

restricted time interval, and low gain one, non directional and able to transmit a lower

amount of data in the same time interval with respect to the HGA. They become second

114

4.3.1. Subsystems Decision Tree

EPS (w = 3)

SOL PAN + BATT (k3=2)

BATT ALT (h23=2)

Li-Pol (g223=3)

Li-Ion (g223=2)

Ni-Cd (g223=1)

SP ALT (h23=1)

BODY MOUNTED + WINGS GIMBAL (g123=3)

BODY MOUNTED + WINGS FIXED (g123=2)

BODY MOUNTED (g123=1)

SOL PAN (k3=1) SP ALT (h13=1)

BODY MOUNTED + WINGS GIMBAL (g113=3)

BODY MOUNTED + WINGS FIXED (g113=2)

BODY MOUNTED (g113=1)

Figure 4.6: Decision Tree of EPS

level decisions in the tree; the associated second level alternatives are reported in Tables

4.9 and 4.10, and in the tree of Figure 4.7.

Table 4.9: Common high gain antennas for small satellites

Patch They have gained special attention for CubeSats, owing to their

low profile and relative ease of fabrication. A variety of patch

antenna designs have been investigated at the VHF, UHF, and

S bands [53].

Reflectarray They can provide high gain while easily integrating with the

CubeSat structure. Since their structure consists of flat panels,

it is possible for them to be folded and stowed on the CubeSat

[53]. They were mounted on MarCO mission CubeSats [31].

Reflector Reflectors offer the possibility of high gain and fine resolution,

but they come with increased mechanical complexity. One of

the first CubeSats to integrate a deployable reflector system

was the Aeneas mission [2], faturing an S-band umbrella reflec-

tor with a 0.5-m diameter [53]. This is an emergent technology

for small satellites.

115

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

Table 4.10: Common low gain antennas for small satellites

Wires (monopoles,

dipoles)

These antennas typically are placed on the external face of the

CubeSat chassis, allowing space for other electronics. During

flight, the wire antennas are often stowed within the satellite

volume and deployed once in orbit. Wire antennas are espe-

cially common for high frequency (HF), very HF (VHF), and

ultra HF (UHF) applications, where the wavelength is long

and achieving good radiation efficiency within a small volume

is challenging [53].

Helical They consist of one or more conducting wires wound in the

form of a helix. They typically occupy more volume with con-

sequent constraints on the configuration.

TT&C (w = 4)

LGA (k4=2) ALT (h24=1)

HELICAL (g124=2)

WIRES (g124=1)

HGA (k4=1) ALT (h14=1)

REFLECTOR (g114=3)

REFLECTARRAY (g114=2)

PATCH (g114=1)

Figure 4.7: Decision Tree of TT&C

4.3.2 Results and Discussion

This section aims to apply the implemented tool for some small satellites mission scenar-

ios, comparing the results with the architecture of similar missions. Two simulations are

presented, one to assess the goodness of the selected architectures ranking, and another

one in which the algorithm is stressed in order to check whether it effectively solves con-

flicting situations and how.

It is recalled that each alternative of the previously presented decision trees, be it an

A1 or an A2, is characterized by n markers. The values assigned to them are reported in

Appendix B.1, Tables B.3, B.4, B.5 and B.6. The following results are used to validate

the implemented algorithm checking the coherence of the output architectures and to

highlight its limits, being a preliminary prototype whose purpose is essentially to demon-

strate the feasibility of the approach. In particular, the limits are mostly related to the

substantial solutions changing with the tool-embedded tree parameters, therefore requir-

ing a refinement in terms of more precise meanings associated to the markers, as well as

training with a data set from previous missions in order to better compile them. It is also

stressed that, according to the way missions are defined and given as input to the tool,

the obtained output embrace a casuistry rather than a specific mission. However, as the

116

4.3.2. Results and Discussion

number of input functionalities is increased, the tool can converge to precise needs of a

particular scenario, getting a “tailored” output for it.

Simulation 1

Let consider three very simple functionalities:

• F1 = Execute transfer to operative orbit;

• F2 = Transmit telemetry;

• F3 = Point inertial target.

The markers describing them are reported in Appendix B.1, Table B.1. Whenever the

acronym NB (Non Beneficial) appears, it means that higher the marker value better it

is (the marker mass is NB, therefore if value 4 is assigned it means that a low mass is

desired). The above listed are non contemporary functionalities, therefore the F matrix

will have only zero values. Equal importance is assigned to them, consequently vimp is

a [1 × 3] vector with all zero elements. The Sparsity Factor is set to 1 and the MCDM

method used is the Weighted Sum.

Results related to the L1 architecture are shown in Figure 4.8. The horizontal axis

reports a four digit number indicating the architecture; the first digit is the alternative

of the first decision, the second digit is the alternative of the second decision and so on

up to the fourth first level decision. The top-left diagram reports the ranked J values of

each architecture, computed as the average between the two PS values, as explained in

Section 4.2.2. Changing the weights assigned to the PSOFM and PScoverage values, that for

this simulation are both set equal to 0.5, the J value moves in between the interval. It is

noted that most of the L1 architectures have PSOFM values lower than PScoverage, while for

the architectures 2-1-1-2 and 2-1-2-2 the opposite happens, highlighting the conceptual

distinction between OFM and CoverageAlternatives. The diagram in the top-right re-

ports the same ranking values sorted from the highest to the lowest, suggesting as best L1

architecture the one with indexes 2-2-2-2 composed by spin stabilization, electric propul-

sion, solar panels + batteries, low gain antenna (recall the decision trees for the indexes).

Diagrams in the bottom of the Figure 4.8 represent the tool output after the Step 6.

Eight Final Proposed Architectures are downselected, while the remaining ones have zero

values because of their inability to satisfy all the functionalities markers. It is noted that,

as the functionality F2 requires small amount of data to be downlinked, most of the se-

lected alternatives suggest the adoption of the low gain antenna (number 2 in the fourth

digit), however some solutions suggest the HGA one.

Once the L1 architectures are computed, the user can move to the selection of one or

more of them in order to derive the L2 architectures too. Selecting the L1 architecture with

117

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

Figure 4.8: Simulation 1 - L1 Architectures

the highest ranking (2-2-2-2), the output coming from the second part of the algorithm

is showed in Figure 4.9. For each D1, some architectures are computed, which are the

combination of all the A2 belonging to that D1. For example the EPS, that is the first

level decision #3, contains three A2 for the D2 #1 and three A2 for the D2 #2 (recall the

tree in Figure 4.6). Nine L2 architectures related to it will be then evaluated. It is recalled

that whenever the number of architectures exceed the total number of combinations (i.e.

in this case 9), it means that the tool is selecting more than one A2 for a D2, as discussed

in Section 4.2.3. Each red point in Figure 4.9 represents then a combination. Selecting the

best L2 architecture for each decision, the overall architecture in Table 4.11 is obtained.

Table 4.11: Simulation 1 - Overall Architecture related to the 2-2-2-2 L1 Architecture

L1 L2 D21 L2 D22

D11 2 = SPIN 1 = THR 2 = SS

D12 2 = ELEC 2 = ELTH -

D13 2 = SP + BATT 2 = BM + WF 1 = Ni-Cd

D14 2 = LGA 1 = WIRES -

The proposed best architecture is coherent with the requests, however it is noted that

this preliminary prototype of the tool does not include a method to evaluate the influence

of an alternative on the others. This is actually a decision, since the risk of introducing

such relations is to stiffen the solver imposing strong constraints. As example, in this

case, one may have inserted a condition telling that a spin stabilized satellite prohibits

wings solar panels, throwing all the solutions that select them together. Such statement is

118

4.3.2. Results and Discussion

Figure 4.9: Simulation 1 - L2 Architectures related to the 2-2-2-2 L1 Architecture

actually not true as low velocity spinners can still mount deployable solar panels, therefore

no conditions like it have been introduced in order to overconstrain the tool.

Simulation 2

For this simulation four functionalities are defined:

• F1 = Perform continuous imaging of the debris;

• F2 = Execute relative maneuvers;

• F3 = Transmit large data files to ground;

• F4 = Execute transfer to operative orbit.

They are more constraining with respect to those of the previous simulation, in partic-

ular the functionalities related to target pointing and relative maneuvers, as highlighted

also in markers filled in Appendix B.1, Table B.2. F1 and F2 are also contemporary,

therefore the F matrix is filled as in Equation 4.3.2; more importance is also assigned to

them with respect to F3 and F4, as the vimp in Equation 4.3.2 suggests. The Sparsity

Factor is set to 1 and the MCDM method used is the Weighted Sum.

Fsim1 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (4.27)

119

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

vimpsim1
=

[
0 1 0 0

]
(4.28)

The simulation is ran for the L1 architectures downselection and the results reported

in Figure 4.10 are obtained. The algorithm clearly prioritizes those solutions that admit

a 3-axis stabilization, as expected due to the multiple accurate pointing required.

Figure 4.10: Simulation 2 - L1 Architectures

The best L1 architecture is the 1-1-2-1, that is 3-axis stabilization, chemical propulsion,

solar panels + batteries and high gain antenna; the latter is preferred as the markers were

filled asking for a high amount of data to be downloaded. This L1 architecture is selected

to move to the L2 architectures selection, which outputs are furnished in Figure 4.11.

In this case, something happened for the L1 decision #1. The total number of A2

for the ADCS is 7 (3 coming from the actuators and 4 from the sensors), as illustrated

in the tree in Figure 4.4, therefore one would expect a total of 12 combinations if the

alternatives were selected in pairs. However 70 combinations are computed (p.n. some

repeated solutions may be reported in the diagram), meaning that more than 2 alterna-

tives are selected by the tool for what regard the ADCS. In fact, this is what happens

for this simulation as the multiple requests for attitude precision knowledge require more

than one kind of sensor, as the Table 4.12 reporting the best L2 architecture obtained

indicates. The RW is selected due to the consistent slewing maneuvers requirements ex-

pressed in the form of marker as input; another actuator is of course needed to desaturate

it, however the tool still does not implement a marker or a step that includes such kind of

120

4.3.2. Results and Discussion

Figure 4.11: Simulation 2 - L2 Architectures related to the 1-1-2-1 L1 Architecture

finer considerations, which can be a step further for a future enhancement of the algorithm.

As any alternative in the tree has been modeled in Capella, the user can move to

that library of components and check the grid of requirements proposed, also furnished

as output. An example of such kind of modeled elements is reported in Figure 4.12,

where the RW component with its functions alerts the presence of a requirement. The

tool proposed again the Ni-Cd batteries as best alternative even though Li-Ion ones are

typically engaged for small satellites; a further investigation on the markers assigned in

the trees is then needed and eventually a data mining approach may be implemented

using as data set previous small satellites mission, in order to optimally tune the overall

embedded tree building, that up to now is manually compiled.

Table 4.12: Simulation 2 - Overall Architecture related to the 1-1-2-1 L1 Architecture

L1 L2 D21 L2 D22 #1 L2 D22 #2

D11 1 = 3-AXIS 2 = RW 1 = ST 2 = SS

D12 1 = CHEM 1 = MONO 1 = Ni-Cd -

D13 2 = SP + BATT 2 = BM + WF 1 = Ni-Cd -

D14 1 = HGA 1 = PATCH - -

To conclude, the tool provides reliable results, even though the user should approaches

the solutions cautiously for the reasons expressed before. The best way to exploit such

preliminary version of the tool is to associate it to some quantitative analysis and architec-

ture design to assess the feasibility of the proposed architectures. The MBSE environment

121

Chapter 4. Decision Making Tool for Small Satellites Architectures Generation

Figure 4.12: Reaction Wheel Node Component for Decision-Making Tool

should also be targeted to exploit all the outputs, as in the case seen before about the

RW. Moreover, an MBSE solution such as Capella improves the system thinking providing

a natural terrain to experiment with functional analysis having a set of components, as

described in the Step 10 of Section 4.2.3, therefore an iterative approach which exploits

Capella and the developed decision-making tool can be thought.

122

Chapter 5

Conclusions and Future Work

This thesis investigated the adoption of an MBSE methodology applied to small satel-

lites mission, merged with a prototype version of a decision-making tool for preliminary

architectures automatic generation and downselection, to enhance the entire system life-

cycle. This final chapter provides a summary of the achieved results and proposes some

recommandations to extend the study for future developments.

5.1 Summary of the Results

The research conducted within this work set out to improve the small satellites design

lifecycle using an MBSE solution in order to assess whether it is worth applying such

approach to this kind of systems. Through a complete case study of the ESA e.Inspector

mission Phase A, it was demonstrated that implementing MBSE from the beginning of

a project and using a defined methodology to enable the capture of all system aspects,

results to be effective and suitable for a complex space system. The precise syntax and

semantics of the ARCADIA language, merged with the powerful Capella tool, allow to

express complex concepts and articulated architectures in a concise and intuitive way, co-

herently with the main systems engineering drivers which are requirements. The method-

ology accompanies systems engineers in their definition from the very high level mission

objectives up to the components definition, guaranteeing consistency among levels and

providing a clear vision of the entire system to any involved team member and/or stake-

holder. Additionally, the model is not a standalone product used just once in the system

lifecycle, but continuously evolves as the design proceeds. Concerning the small satellites

field of applicability, it also provides a strong basis for the on-board software development

thanks to its object-oriented nature. This study represents a step forward for the MBSE

community, not only space-related, as it reports a complete analysis of an MBSE solution

applied to a multidisciplinary complex system assessing its feasibility and highlighting

some lacks and open points, and is in line with the INCOSE MBSE roadmap reported in

Figure 5.1.

This thesis also extends the capabilities of usual systems engineering approaches intro-

123

Chapter 5. Conclusions and Future Work

Figure 5.1: INCOSE MBSE Roadmap [71]

ducing a decision-making algorithm for the selection of one or more preliminary architec-

tures, intended to be used in the feasibility study of small satellites when it is difficult

to reduce the number of design alternatives due to the highly qualitative domain. The

tool has been validated and results are promising, highlighting its ability to skim the

architectures basing on the inputs provided in the form of functionalities addressed to the

system to be developed. A way to merge the tool with the MBSE environment enhancing

the overall mission design has been presented too.

5.2 Limitations of the Study and Future Develop-

ments

The work related to the MBSE approach presents some limitations that actually can also

be interpreted as future works. Firstly, the study excluded the parameterization of the

whole architecture model and a consequent interface with an analytical and numerical

tool to run simulations, as ARCADIA/Capella do not provide this kind of interface. The

nearest ARCADIA concept to such parametrization is the adoption of Class diagrams to

precisely model quantities exchanged between functions and so components, and to have

a data repository within the model. Such diagrams were not investigated within this work

mainly due to early stage of the project, however a future development of the model for

the mission should include them too.

One of the aspects emerged from the MBSE case study is the absence of dedicated

requirements diagrams for the trees generation; actually for this work a solution to solve

this issue was found, that is the adoption of OAB diagrams. However, the model would

benefit from having a dedicated set of diagrams to enhance the requirements modeling,

124

5.3. Final Thoughts

therefore representing an open point for the future. The same considerations can be ap-

plied to the AIV/AIT plan development, with dedicated functions and model elements.

A possibility is to develop both of them in the form of Capella add-ons (or viewpoints).

Concerning the proposed decision-making tool, the presented prototype version opens

the road to many future developments. Firstly, a more formal interface with an MBSE

tool, such as Capella, can be developed. The embedded decision tree can be improved

increasing its details and revising the assigned markers using machine learning techniques

and data mining that exploit a statistical set of data built up from the literature infor-

mation on past concluded space missions, addressing a more precise matrices filling with

respect to the current manually compiled ones. Also, new blocks can be introduced to the

current algorithm such as a cross-relation block to evaluate how the selection of a partic-

ular component influences the others, being careful to not stiffen the tool introducing too

much constraining conditions. Other interesting developments concern the introduction

of sizing blocks which implement mission analysis and basic computations of subsystems

parameters, in order to get as output a preliminary quantitative sizing too. Such blocks

could be used to add some more decision-making conditions expanding the components

selection to an available catalog of COTS, also determining their number for each alter-

native, leading to a more complete preliminary architecture with relative sizing of the

system.

5.3 Final Thoughts

Although MBSE still has many social hurdles to overcome, the author expects a gradual

awareness from the space community about the benefits a system design lifecycle can

gain from it, as demonstrated in this work. Interfacing MBSE solutions with intelligent

tools such as the prototype one developed for this thesis represents a way to overcome the

stringent requirements asked by the new space systems and to face up the less relaxed

development times required by the incoming space economy.

125

Chapter 5. Conclusions and Future Work

126

Appendix A

Appendix - Capella Diagrams

A.1 Requirements Trees

Figure A.1: [OAB] Requirements - EPS

Figure A.2: [OAB] Requirements - TCS

127

Appendix A. Appendix - Capella Diagrams

Figure A.3: [OAB] Requirements - GS

Figure A.4: [OAB] Requirements - MOC

Figure A.5: [OAB] Requirements - OBDH

128

A.1. Requirements Trees

Figure A.6: [OAB] Requirements - PL

Figure A.7: [OAB] Requirements - PROP

Figure A.8: [OAB] Requirements - STR&MECH

129

Appendix A. Appendix - Capella Diagrams

Figure A.9: [OAB] Requirements - GNC

130

A.2. System Analysis Diagrams

A.2 System Analysis Diagrams

Figure A.10: [SDFB] Approach Target Debris

Figure A.11: [SDFB] Deorbit at EOL

Figure A.12: [SDFB] Provide Propulsion

131

Appendix A. Appendix - Capella Diagrams

Figure A.13: [SDFB] Provide Protection against Mechanical Loads

Figure A.14: [SDFB] Provide Protection against Temperature

A.3 Logical Architecture Diagrams

132

A.3. Logical Architecture Diagrams

Figure A.15: [LFCD] GNC SS - Close Proximity Relative Navigation during Eclipse

Figure A.16: [LFCD] OBDH SS - Payload Data Acquisition, Storage and Transmission

Figure A.17: [LFCD] OBDH SS - System Initialization

Figure A.18: [LFCD] OBDH SS - System Passivation

133

Appendix A. Appendix - Capella Diagrams

Figure A.19: [LFCD] PROP SS - Thrusting to Drifting Orbit Initialization

Figure A.20: [LFCD] TT&C SS - Acquired Target Images Downlink Line

Figure A.21: [LFCD] TT&C SS - Telecommands Uplink Line

Figure A.22: [LFCD] TT&C SS - Telemetry Downlink Line

134

A.4. AIV/AIT Diagrams

A.4 AIV/AIT Diagrams

Figure A.23: [PAB] AIV/AIT GNC - Overall Plan

Figure A.24: [PAB] AIV/AIT PROP - Overall Plan

135

Appendix A. Appendix - Capella Diagrams

Figure A.25: [PAB] AIV/AIT OBDH - Overall Plan

Figure A.26: [PAB] AIV/AIT TCS - Overall Plan

136

A.4. AIV/AIT Diagrams

Figure A.27: [PAB] AIV/AIT STR&MECH - Overall Plan

Figure A.28: [PAB] AIV/AIT TT&C - Overall Plan

137

Appendix A. Appendix - Capella Diagrams

138

Appendix B

Appendix - Decision-Making Tool

B.1 Functionalities and Alternatives Markers

Table B.1: Functionalities Markers of Simulation 1

F 1 F 2 F 3

Nadir Pointing (e.g. Earth) 0 1 0

Inertial Target (e.g. Star, Sun) 0 0 1

Relative Target Pointing (e.g. debris) 0 0 0

Multiple pointing required 0 0 0

Knowledge Accuracy > 5° 0 0 1

Knowledge Accuracy < 5° 0 0 0

Knowledge Accuracy < 1° 0 0 0

Pointing Accuracy (actuators) 2 2 3

Maneuverability (attitude slewing) 2 2 2

Controllable over 6000 km orbit (Earth) 0 0 0

Controllable over 1000 km orbit (Earth) 0 0 1

Mass (NB) 3 3 3

Power required (NB) 4 4 4

Complexity (NB) 4 4 4

Lifetime 2 2 2

Time to perform maneuvers (NB) 0 0 0

Thrust-to-weight ratio 3 0 0

Multiple starts 1 0 0

Eclipses present 1 1 1

Temperature sensitivity (NB) 3 3 3

Sensitivity to Sun Angle (NB) 3 3 3

Power produced 2 2 2

Volume (NB) 4 4 4

Amount of data 0 2 0

139

Appendix B. Appendix - Decision-Making Tool

Table B.2: Functionalities Markers of Simulation 2

F 1 F 2 F 3 F 4

Nadir Pointing (e.g. Earth) 0 0 1 0

Inertial Target (e.g. Star, Sun) 1 1 0 0

Relative Target Pointing (e.g. debris) 1 0 0 0

Multiple pointing required 0 1 1 1

Knowledge Accuracy > 5° 0 0 1 0

Knowledge Accuracy < 5° 0 1 1 1

Knowledge Accuracy < 1° 1 0 0 0

Pointing Accuracy (actuators) 4 4 3 3

Maneuverability (attitude slewing) 4 3 2 2

Controllable over 6000 km orbit (Earth) 0 0 0 0

Controllable over 1000 km orbit (Earth) 0 0 0 0

Mass (NB) 3 3 3 3

Power required (NB) 3 3 3 3

Complexity (NB) 2 2 2 2

Lifetime 2 2 2 2

Time to perform maneuvers (NB) 0 4 0 3

Thrust-to-weight ratio 0 4 0 3

Multiple starts 0 1 0 1

Eclipses present 0 0 0 0

Temperature sensitivity (NB) 3 3 3 3

Sensitivity to Sun Angle (NB) 2 2 2 2

Power produced 4 4 4 4

Volume (NB) 3 3 3 3

Amount of data 4 0 4 0

140

B.1. Functionalities and Alternatives Markers

T
a
b
le

B
.3

:
A

D
C

S
L

1
an

d
L

2
A

lt
er

n
at

iv
es

M
ar

ke
rs

L
E

V
1

-
A

D
C

S
L

E
V

2
-

A
D

C
S

-
A

C
T

U
A

T
O

R
S

L
E

V
2

-
A

D
C

S
-

S
E

N
S
O

R
S

3-
A

X
IS

S
P

IN
P

A
S
S
IV

E
T

H
R

R
W

M
G

T
O

R
M

A
G

/B
O

S
T

S
S

H
S

M
G

T
O

M

N
ad

ir
P

oi
n
ti

n
g

(e
.g

.
E

ar
th

)
1

1
1

1
1

1
1

1
1

1
1

In
er

ti
al

T
ar

ge
t

(e
.g

.
S
ta

r,
S
u
n
)

1
1

1
1

1
1

1
1

1
1

1

R
el

at
iv

e
T

ar
ge

t
P

oi
n
ti

n
g

(e
.g

.
d
eb

ri
s)

1
0

0
1

1
1

0
1

1
1

1

M
u
lt

ip
le

p
oi

n
ti

n
g

re
q
u
ir

ed
1

0
0

1
1

1
0

1
1

1
1

K
n
ow

le
d
ge

A
cc

u
ra

cy
>

5°
1

1
1

0
0

0
0

0
1

1
1

K
n
ow

le
d
ge

A
cc

u
ra

cy
<

5°
1

1
0

0
0

0
0

0
1

1
1

K
n
ow

le
d
ge

A
cc

u
ra

cy
<

1°
1

0
0

0
0

0
0

1
0

0
0

P
oi

n
ti

n
g

A
cc

u
ra

cy
(a

ct
u
at

or
s)

4
3

2
3

4
2

2
0

0
0

0

M
an

eu
ve

ra
b
il
it

y
(a

tt
it

u
d
e

sl
ew

in
g)

4
2

0
3

4
2

0
0

0
0

0

C
on

tr
ol

la
b
le

ov
er

60
00

k
m

or
b
it

(E
ar

th
)

1
1

0
1

1
1

0
1

1
1

0

C
on

tr
ol

la
b
le

ov
er

10
00

k
m

or
b
it

(E
ar

th
)

1
1

0
1

1
1

1
1

1
1

0

M
as

s
(N

B
)

2
3

4
3

2
4

4
2

3
3

4

P
ow

er
re

q
u
ir

ed
(N

B
)

2
3

4
3

2
4

4
2

3
3

4

C
om

p
le

x
it

y
(N

B
)

2
4

4
3

2
4

4
2

3
3

4

L
if

et
im

e
3

3
4

2
3

4
4

3
3

3
3

T
im

e
to

p
er

fo
rm

m
an

eu
ve

rs
(N

B
)

0
0

0
0

0
0

0
0

0
0

0

T
h
ru

st
-t

o-
w

ei
gh

t
ra

ti
o

0
0

0
0

0
0

0
0

0
0

0

M
u
lt

ip
le

st
ar

ts
0

0
0

0
0

0
0

0
0

0
0

E
cl

ip
se

s
p
re

se
n
t

0
0

0
0

0
0

0
0

0
0

0

T
em

p
er

at
u
re

se
n
si

ti
v
it

y
(N

B
)

0
0

0
0

0
0

0
0

0
0

0

S
en

si
ti

v
it

y
to

S
u
n

A
n
gl

e
(N

B
)

0
0

0
0

0
0

0
0

0
0

0

P
ow

er
p
ro

d
u
ce

d
0

0
0

0
0

0
0

0
0

0
0

V
ol

u
m

e
(N

B
)

0
0

0
0

0
0

0
0

0
0

0

A
m

ou
n
t

of
d
at

a
0

0
0

0
0

0
0

0
0

0
0

141

Appendix B. Appendix - Decision-Making Tool

T
a
b
le

B
.4

:
P

ro
p
u
ls

io
n

S
u
b
sy

st
em

L
1

an
d

L
2

A
lt

er
n
at

iv
es

M
ar

ke
rs

L
E

V
1

-
P

R
O

P
L

E
V

2
-

P
R

O
P

-
C

H
E

M
IC

A
L

L
E

V
2

-
P

R
O

P
-

E
L

E
C

T
R

IC

C
H

E
M

E
L

E
C

M
O

N
O

G
R

E
E

N
C

G
S
O

L
E

L
T

H
E

E
L

S
P

R
IO

N
H

A
L

L

N
ad

ir
P

oi
n
ti

n
g

(e
.g

.
E

ar
th

)
0

0
0

0
0

0
0

0
0

0

In
er

ti
al

T
ar

ge
t

(e
.g

.
S
ta

r,
S
u
n
)

0
0

0
0

0
0

0
0

0
0

R
el

at
iv

e
T

ar
ge

t
P

oi
n
ti

n
g

(e
.g

.
d
eb

ri
s)

0
0

0
0

0
0

0
0

0
0

M
u
lt

ip
le

p
oi

n
ti

n
g

re
q
u
ir

ed
0

0
0

0
0

0
0

0
0

0

K
n
ow

le
d
ge

A
cc

u
ra

cy
>

5°
0

0
0

0
0

0
0

0
0

0

K
n
ow

le
d
ge

A
cc

u
ra

cy
<

5°
0

0
0

0
0

0
0

0
0

0

K
n
ow

le
d
ge

A
cc

u
ra

cy
<

1°
0

0
0

0
0

0
0

0
0

0

P
oi

n
ti

n
g

A
cc

u
ra

cy
(a

ct
u
at

or
s)

0
0

0
0

0
0

0
0

0
0

M
an

eu
ve

ra
b
il
it

y
(a

tt
it

u
d
e

sl
ew

in
g)

0
0

0
0

0
0

0
0

0
0

C
on

tr
ol

la
b
le

ov
er

60
00

k
m

or
b
it

(E
ar

th
)

0
0

0
0

0
0

0
0

0
0

C
on

tr
ol

la
b
le

ov
er

10
00

k
m

or
b
it

(E
ar

th
)

0
0

0
0

0
0

0
0

0
0

M
as

s
(N

B
)

0
0

0
0

0
0

0
0

0
0

P
ow

er
re

q
u
ir

ed
(N

B
)

2
4

3
2

4
3

3
3

3
2

C
om

p
le

x
it

y
(N

B
)

3
2

3
2

4
3

4
3

2
2

L
if

et
im

e
2

3
2

4
3

2
2

3
3

4

T
im

e
to

p
er

fo
rm

m
an

eu
ve

rs
(N

B
)

4
2

3
3

2
4

4
2

2
3

T
h
ru

st
-t

o-
w

ei
gh

t
ra

ti
o

4
2

3
4

2
4

4
2

3
3

M
u
lt

ip
le

st
ar

ts
1

1
1

1
1

0
1

1
1

1

E
cl

ip
se

s
p
re

se
n
t

0
0

0
0

0
0

0
0

0
0

T
em

p
er

at
u
re

se
n
si

ti
v
it

y
(N

B
)

0
0

0
0

0
0

0
0

0
0

S
en

si
ti

v
it

y
to

S
u
n

A
n
gl

e
(N

B
)

0
0

0
0

0
0

0
0

0
0

P
ow

er
p
ro

d
u
ce

d
0

0
0

0
0

0
0

0
0

0

V
ol

u
m

e
(N

B
)

0
0

0
0

0
0

0
0

0
0

A
m

ou
n
t

of
d
at

a
0

0
0

0
0

0
0

0
0

0

142

B.1. Functionalities and Alternatives Markers

T
a
b
le

B
.5

:
E

P
S

L
1

an
d

L
2

A
lt

er
n
at

iv
es

M
ar

ke
rs

L
E

V
1

-
E

P
S

L
E

V
2

-
S
O

L
A

R
P

A
N

E
L

S
L

E
V

2
-

B
A

T
T

S
P

S
P

+
B

A
T

T
B

M
B

M
+

W
F

B
M

+
W

G
N

i-
C

d
L

i-
Io

n
L

i-
P

ol

N
ad

ir
P

oi
n
ti

n
g

(e
.g

.
E

ar
th

)
0

0
0

0
0

0
0

0

In
er

ti
al

T
ar

ge
t

(e
.g

.
S
ta

r,
S
u
n
)

0
0

0
0

0
0

0
0

R
el

at
iv

e
T

ar
ge

t
P

oi
n
ti

n
g

(e
.g

.
d
eb

ri
s)

0
0

0
0

0
0

0
0

M
u
lt

ip
le

p
oi

n
ti

n
g

re
q
u
ir

ed
0

0
0

0
0

0
0

0

K
n
ow

le
d
ge

A
cc

u
ra

cy
>

5°
0

0
0

0
0

0
0

0

K
n
ow

le
d
ge

A
cc

u
ra

cy
<

5°
0

0
0

0
0

0
0

0

K
n
ow

le
d
ge

A
cc

u
ra

cy
<

1°
0

0
0

0
0

0
0

0

P
oi

n
ti

n
g

A
cc

u
ra

cy
(a

ct
u
at

or
s)

0
0

0
0

0
0

0
0

M
an

eu
ve

ra
b
il
it

y
(a

tt
it

u
d
e

sl
ew

in
g)

0
0

0
0

0
0

0
0

C
on

tr
ol

la
b
le

ov
er

60
00

k
m

or
b
it

(E
ar

th
)

0
0

0
0

0
0

0
0

C
on

tr
ol

la
b
le

ov
er

10
00

k
m

or
b
it

(E
ar

th
)

0
0

0
0

0
0

0
0

M
as

s
(N

B
)

4
2

4
2

2
2

4
3

P
ow

er
re

q
u
ir

ed
(N

B
)

0
0

0
0

0
0

0
0

C
om

p
le

x
it

y
(N

B
)

4
2

4
3

2
3

3
4

L
if

et
im

e
0

3
0

0
0

3
4

4

T
im

e
to

p
er

fo
rm

m
an

eu
ve

rs
(N

B
)

0
0

0
0

0
0

0
0

T
h
ru

st
-t

o-
w

ei
gh

t
ra

ti
o

0
0

0
0

0
0

0
0

M
u
lt

ip
le

st
ar

ts
0

0
0

0
0

0
0

0

E
cl

ip
se

s
p
re

se
n
t

0
1

1
1

1
1

1
1

T
em

p
er

at
u
re

se
n
si

ti
v
it

y
(N

B
)

3
3

2
3

4
4

3
3

S
en

si
ti

v
it

y
to

S
u
n

A
n
gl

e
(N

B
)

3
3

2
3

4
0

0
0

P
ow

er
p
ro

d
u
ce

d
3

3
2

4
4

3
4

3

V
ol

u
m

e
(N

B
)

4
2

4
3

3
0

0
0

A
m

ou
n
t

of
d
at

a
0

0
0

0
0

0
0

0

143

Appendix B. Appendix - Decision-Making Tool

T
a
b
le

B
.6

:
T

T
&

C
L

1
an

d
L

2
A

lt
er

n
at

iv
es

M
ar

ke
rs

L
E

V
1

-
T

T
&

C
L

E
V

2
-

H
G

A
L

E
V

2
-

L
G

A

H
G

A
L

G
A

P
A

T
C

H
R

A
R

R
R

E
F

L
W

IR
E

S
H

E
L

N
ad

ir
P

oi
n
ti

n
g

(e
.g

.
E

ar
th

)
0

0
0

0
0

0
0

In
er

ti
al

T
ar

ge
t

(e
.g

.
S
ta

r,
S
u
n
)

0
0

0
0

0
0

0

R
el

at
iv

e
T

ar
ge

t
P

oi
n
ti

n
g

(e
.g

.
d
eb

ri
s)

0
0

0
0

0
0

0

M
u
lt

ip
le

p
oi

n
ti

n
g

re
q
u
ir

ed
0

0
0

0
0

0
0

K
n
ow

le
d
ge

A
cc

u
ra

cy
>

5°
0

0
0

0
0

0
0

K
n
ow

le
d
ge

A
cc

u
ra

cy
<

5°
0

0
0

0
0

0
0

K
n
ow

le
d
ge

A
cc

u
ra

cy
<

1°
0

0
0

0
0

0
0

P
oi

n
ti

n
g

A
cc

u
ra

cy
(a

ct
u
at

or
s)

0
0

0
0

0
0

0

M
an

eu
ve

ra
b
il
it

y
(a

tt
it

u
d
e

sl
ew

in
g)

0
0

0
0

0
0

0

C
on

tr
ol

la
b
le

ov
er

60
00

k
m

or
b
it

(E
ar

th
)

0
0

0
0

0
0

0

C
on

tr
ol

la
b
le

ov
er

10
00

k
m

or
b
it

(E
ar

th
)

0
0

0
0

0
0

0

M
as

s
(N

B
)

0
0

0
0

0
0

0

P
ow

er
re

q
u
ir

ed
(N

B
)

0
0

0
0

0
0

0

C
om

p
le

x
it

y
(N

B
)

2
4

4
3

2
4

3

L
if

et
im

e
0

0
0

0
0

0
0

T
im

e
to

p
er

fo
rm

m
an

eu
ve

rs
(N

B
)

0
0

0
0

0
0

0

T
h
ru

st
-t

o-
w

ei
gh

t
ra

ti
o

0
0

0
0

0
0

0

M
u
lt

ip
le

st
ar

ts
0

0
0

0
0

0
0

E
cl

ip
se

s
p
re

se
n
t

0
0

0
0

0
0

0

T
em

p
er

at
u
re

se
n
si

ti
v
it

y
(N

B
)

0
0

0
0

0
0

0

S
en

si
ti

v
it

y
to

S
u
n

A
n
gl

e
(N

B
)

0
0

0
0

0
0

0

P
ow

er
p
ro

d
u
ce

d
0

0
0

0
0

0
0

V
ol

u
m

e
(N

B
)

3
4

4
3

2
4

2

A
m

ou
n
t

of
d
at

a
4

2
3

3
4

3
4

144

B.2. Algorithms

B.2 Algorithms

Algorithm 2: STEP 1 - Markers clustering and AFM and coverage computation.

Input: IFM = Input Functionalities Matrix, D1 = Level 1 Decisions and

Alternatives Markers

Output: AFM, coverage

// Begin

n = Number of Markers

m = Number of Functionalities

l = Number of D1

for w = 1→ l do
pw = Number of Alternatives in the w-th D1

for k = 1→ pw do

for j = 1→ m do

for i = 1→ n do

if IFM(i, j) = 0 then
AFM{w}(i, k, j) = 0

coverage{w}(i, k, j) = 0

else if IFM(i, j) 6= 0 ∧D1{w}(i, k) = 0 then
AFM{w}(i,k,j) = 0

coverage{w}(i,k,j) = 0

else if IFM(i, j) = 1 ∧D1{w}(i, k) = 1 then
AFM{w}(i,k,j) = 1

coverage{w}(i,k,j) = 1

else

if IFM(i, j)−D1{w}(i, k) = 0 then
AFM{w}(i, k, j) = 1

coverage{w}(i, k, j) = 1

else if IFM(i, j)−D1{w}(i, k) > 0 then

AFM{w}(i, k, j) = 1− |IFM(i,j)−D1{w}(i,k)|
3

coverage{w}(i, k, j) = 0.5

else if IFM(i, j)−D1{w}(i, k) < 0 then

AFM{w}(i, k, j) = (1− |IFM(i,j)−D1{w}(i,k)|
3

) · 1.1
coverage{w}(i, k, j) = 1

end

end

end

end

end

// End

145

Appendix B. Appendix - Decision-Making Tool

Algorithm 3: STEP 2 - Computation of OFM and CoverageAlternatives, check

on contemporary functionalities.

Input: AFM, coverage, F

Output: OFM, CoverageAlternatives

// Begin

n = Number of Markers

m = Number of Functionalities

l = Number of D1

for w = 1→ l do
pw = Number of Alternatives in the w-th D1

for k = 1→ pw do

for j = 1→ m do

OFM{w}(k, j) =
∑n

i=1 AFM{w}(i,k,j)
n

coveragealternatives{w}(k, j) =
∑n

i=1 coverage{w}(i, k, j)
end

end

end

// Check on contemporary functionalities

for j1 = 1→ m do

for j2 = 1→ m do

if F (j1, j2) = 1 then

for w = 1→ l do
pw = Number of Alternatives in the w-th D1

for k = 1→ pw do

if OFM{w}(k, j1) = 0 ∧ coveragealternatives{w}(k, j1) = 0 then
OFM{w}(k, j1) = 0

coveragealternatives{w}(k, j1) = 0

OFM{w}(k, j2) = 0

coveragealternatives{w}(k, j2) = 0

if OFM{w}(k, j2) = 0 ∧ coveragealternatives{w}(k, j2) = 0 then
OFM{w}(k, j2) = 0

coveragealternatives{w}(k, j2) = 0

OFM{w}(k, j1) = 0

coveragealternatives{w}(k, j1) = 0

end

end

end

end

// End

146

B.2. Algorithms

Algorithm 4: STEP 6 - L1 Architectures Skimming and Final Proposed Archi-

tectures
Input: coverage, OFM, IFM, SortedIndexesARCHI = Sorted Indexes of

Alternatives of Each Architecture (i.e. [1 2 1 2])

Output: FPA

// Begin

n = Number of Markers

m = Number of Functionalities

l = Number of D1

narchi = Number of L1 Architectures

// Compute coveredmarkers

for f = 1→ narchi do

for w = 1→ l do

for j = 1→ m do

for i = 1→ n do

if coverage{w}(i, SortedIndexesARCHI(f, w), j) 6= 0 then
coveredmarkers{f}(i, j) = 1

else
coveredmarkers{f}(i, j) = 0

end

end

end

end

// Exclude non compliant architectures

for f = 1→ narchi do

for j = 1→ m do

for i = 1→ n do

if coveredmarkers{f}(i, :) = 0 ∨ IFM(i, j) 6= 0 then
J(f) = 0

SortedIndexesARCHI(f, :) = 0

end

end

end

Delete all architectures having at least one marker of an alternative not satisfied

by at least one alternative of the L1 architecture;

Rank the architectures according to the J values and provide the associated

indexes of the alternatives;

// The obtained architectures represent the FPA

// End

147

Appendix B. Appendix - Decision-Making Tool

Algorithm 5: STEP 7 - Satisfaction degree computation of second level alterna-

tives.
Input: AFM, D1, D2 = Level 1 Decisions and Alternatives Markers, architecture

Output: satisfaction, SatisfactionTotal

// Begin

n = Number of Markers

m = Number of Functionalities

l = Number of D1

for w = 1→ l do
alt1 = architecture(w)

alt2 = D2{w}{alt1}
dalt1 = Number of D2 belonging to the alt1 under cycle

for h = 1→ dalt1 do
qh = Number of A2 belonging to the D2 under cycle

for g = 1→ qh do

for j = 1→ m do

for i = 1→ n do

if AFM{w}(i, alt1, j) = 0 then
satisfaction{w}{alt1}(i, g, j) = 0

else if AFM{w}(i, alt1, j) 6= 0 ∨D2{w}{alt1}{h}(i, g) = 0 then
satisfaction{w}{alt1}(i, g, j) = 0

else if AFM{w}(i, alt1, j) 6= 0 ∨D2{w}{alt1}{h}(i, g) 6= 0 then

if D1{w}(i, alt1) = 1 ∨D2{w}{alt1}{h}(i, g) = 1 then
satisfaction{w}{alt1}(i, g, j) = 1

else if D1{w}(i, alt1) 6= 1 ∨D2{w}{alt1}{h}(i, g) 6= 1 then

if D1{w}(i, alt1)−D2{w}{alt1}{h}(i, g) = 0 then
satisfaction{w}{alt1}(i, g, j) = 1

else if D1{w}(i, alt1)−D2{w}{alt1}{h}(i, g) > 0 then
satisfaction{w}{alt1}(i, g, j) =

1− |D1{w}(i,alt1)−D2{w}{alt1}{h}(i,g)|
3

else if D1{w}(i, alt1)−D2{w}{alt1}{h}(i, g) < 0 then
satisfaction{w}{alt1}(i, g, j) =

(1− |D1{w}(i,alt1)−D2{w}{alt1}{h}(i,g)|
3

) · 1.5
end

end

SatisfactionTotal{w}{alt1}{h}(g) =∑n
i=1

∑m
j=1 satisfaction{w}{alt1}(i, g, j)

end

end

end

// End

148

References

[1] Object Management Group (OMG). OMG Systems Modeling Language. url: http:

//www.omgsysml.org/. (accessed: 26.06.2021).

[2] Michael Aherne et al. “Aeneas–Colony I meets three-axis pointing”. In: (2011).

[3] Shashank P Alai. “Evaluating arcadia/capella vs. oosem/sysml for system architec-

ture development”. PhD thesis. Purdue University Graduate School, 2019.

[4] Jose Lorenzo Alvarez et al. “Model-based system engineering approach for the Eu-

clid mission to manage scientific and technical complexity”. In: Modeling, Systems

Engineering, and Project Management for Astronomy VII. Vol. 9911. International

Society for Optics and Photonics. 2016, p. 99110C.

[5] Louise Anderson et al. “Enterprise modeling for CubeSats”. In: 2014 IEEE Aerospace

Conference. IEEE. 2014, pp. 1–16.

[6] Modelica Association. Modelica Language. url: https://modelica.org/modelicalanguage.

html. (accessed: 25.06.2021).

[7] M Bandecchi, B Melton, and F Ongaro. “Concurrent engineering applied to space

mission assessment and design”. In: ESA bulletin 99.Journal Article (1999).

[8] Todd Bayer. “Is MBSE helping? Measuring value on Europa Clipper”. In: 2018

IEEE Aerospace Conference. IEEE. 2018, pp. 1–13.

[9] Barry W Boehm. “A spiral model of software development and enhancement”. In:

Computer 21.5 (1988), pp. 61–72.

[10] Stephane Bonnet, Jean-Luc Voirin, and Juan Navas. “Augmenting requirements

with models to improve the articulation between system engineering levels and

optimize V&V practices”. In: 29.1 (2019), pp. 1018–1033.

[11] Stéphane Bonnet et al. “Modeling system modes, states, configurations with Arcadia

and Capella: method and tool perspectives”. In: 27.1 (2017), pp. 548–562.

[12] Jasper Bouwmeester and Jian Guo. “Survey of worldwide pico-and nanosatellite

missions, distributions and subsystem technology”. In: Acta Astronautica 67.7-8

(2010), pp. 854–862.

[13] S. Battistini C. Cappelletti and B. K. Malphrus. Cubesat Handbook: From Mission

Design to Operations. Elsevier, 2020.

149

http://www.omgsysml.org/
http://www.omgsysml.org/
https://modelica.org/modelicalanguage.html
https://modelica.org/modelicalanguage.html

References

[14] Miriam Calo. “Model Based System Engineering applied to Small Satellite Sys-

tems”. PhD thesis. Politecnico di Torino, 2020.

[15] S Chhaniyara et al. “Model based system engineering for space robotic systems”.

In: Proceedings of 11th Symposium on Advanced Space Technologies in Robotics and

Automation. 2011.

[16] Aerospace Corporation. First Aerocubes defined using MBSE now in orbit. url:

https://aerospace.org/story/first-aerocubes-defined-using-mbse-now-

orbit. (accessed: 27.06.2021).

[17] Aerospace Corporation. Going into action with Aerocube-10. url: https://aerospace.

org/article/going-action-aerocube-10. (accessed: 27.06.2021).

[18] Dov Dori. “Why significant UML change is unlikely”. In: Communications of the

ACM 45.11 (2002), pp. 82–85.

[19] Dov Dori et al. “OPCAT–An Object-Process CASE Tool for OPM-Based Concep-

tual Modelling”. In: 1st International Conference on Modelling and Management of

Engineering Processes. University of Cambridge Cambridge, UK. 2010, pp. 1–30.

[20] e.Inspector AIT/AIV Plan. 2021.

[21] e.INSPECTOR Mission Description Document. 2020.

[22] Harald Eisenmann. “MBSE has a good start; requires more work for sufficient sup-

port of systems engineering activities through models”. In: Insight 18.2 (2015),

pp. 14–18.

[23] ESA. Applying MBSE to a space mission. url: https://blogs.esa.int/cleanspace/

2017/08/28/applying-mbse-to-a-space-mission/. (accessed: 30.06.2021).

[24] Stéphane Estable et al. “Systems Modelling and Simulation of the ESA e. Deorbit

Space Debris Removal Mission”. In: NAFEMs. 2017.

[25] Jeff A Estefan et al. “Survey of model-based systems engineering (MBSE) method-

ologies”. In: Incose MBSE Focus Group 25.8 (2007), pp. 1–12.

[26] Kevin Forsberg and Harold Mooz. “The relationship of system engineering to the

project cycle”. In: INCOSE International Symposium. Vol. 1. 1. Wiley Online Li-

brary. 1991, pp. 57–65.

[27] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide to SysML: the

systems modeling language. Morgan Kaufmann, 2014.

[28] J Guo, EKA Gill, and S Figari. “Model Based Systems Engineering to support the

development of nano satellites”. In: IAC. IAF. 2014, pp. 1–10.

[29] Arthur David Hall. A methodology for systems engineering. Vol. 24. van Nostrand,

1962.

[30] Cecilia Haskins et al. “Systems engineering handbook”. In: INCOSE. Vol. 9. 2006,

pp. 13–16.

150

https://aerospace.org/story/first-aerocubes-defined-using-mbse-now-orbit
https://aerospace.org/story/first-aerocubes-defined-using-mbse-now-orbit
https://aerospace.org/article/going-action-aerocube-10
https://aerospace.org/article/going-action-aerocube-10
https://blogs.esa.int/cleanspace/2017/08/28/applying-mbse-to-a-space-mission/
https://blogs.esa.int/cleanspace/2017/08/28/applying-mbse-to-a-space-mission/

References

[31] Richard E Hodges et al. “A Deployable High-Gain Antenna Bound for Mars: De-

veloping a new folded-panel reflectarray for the first CubeSat mission to Mars.” In:

IEEE Antennas and Propagation Magazine 59.2 (2017), pp. 39–49.

[32] IBM. IBM Engineering Systems Design Rhapsody. url: https://www.ibm.com/

products/systems-design-rhapsody. (accessed: 25.06.2021).

[33] INCOSE. History of Systems Engineering. url: https : / / www . incose . org /

about- systems- engineering/history- of- systems- engineering. (accessed:

20.06.2021).

[34] INCOSE. Space Systems Working Group: Mission & Objectives. url: https://www.

incose.org/incose-member-resources/working-groups/Application/space-

systems. (accessed: 26.06.2021).

[35] Project Management Institute. A guide to the Project Management Body of Knowl-

edge (PMBOK guide). 6th ed. 2017. isbn: 9781628251845.

[36] Stephen J Kapurch. NASA systems engineering handbook. Diane Publishing, 2010.

[37] David Kaslow. “CubeSat Model Based System Engineering (MBSE) Reference Model-

Application in the Concept Lifecycle Phase”. In: AIAA SPACE 2015 Conference

and Exposition. 2015, p. 4474.

[38] David Kaslow et al. “Developing a cubesat model-based system engineering (mbse)

reference model-interim status”. In: 2015 IEEE Aerospace Conference. IEEE. 2015,

pp. 1–16.

[39] David Kaslow et al. “Integrated model-based systems engineering (MBSE) applied

to the Simulation of a CubeSat mission”. In: 2014 IEEE Aerospace Conference.

IEEE. 2014, pp. 1–14.

[40] Mehdi Keshavarz Ghorabaee et al. “Multi-criteria inventory classification using a

new method of evaluation based on distance from average solution (EDAS)”. In:

Informatica 26.3 (2015), pp. 435–451.

[41] Javeed Kittur et al. “Comparison of different MCDM techniques used to evaluate

optimal generation”. In: 2015 international conference on applied and theoretical

computing and communication technology (iCATccT). IEEE. 2015, pp. 172–177.

[42] Vaclav Knap, Lars Kjeldgaard Vestergaard, and Daniel-Ioan Stroe. “A review of

battery technology in cubesats and small satellite solutions”. In: Energies 13.16

(2020), p. 4097.

[43] E. Kulu. Nanosats Database. url: https://www.nanosats.eu/. (accessed: 26.06.2021).

[44] Jose Lorenzo Alvarez et al. “Best Practices for Model Based Systems Engineering

in ESA Projects”. In: 2018 AIAA SPACE and Astronautics Forum and Exposition.

2018, p. 5327.

[45] Azad M Madni and Shatad Purohit. “Economic analysis of model-based systems

engineering”. In: Systems 7.1 (2019), p. 12.

151

https://www.ibm.com/products/systems-design-rhapsody
https://www.ibm.com/products/systems-design-rhapsody
https://www.incose.org/about-systems-engineering/history-of-systems-engineering
https://www.incose.org/about-systems-engineering/history-of-systems-engineering
https://www.incose.org/incose-member-resources/working-groups/Application/space-systems
https://www.incose.org/incose-member-resources/working-groups/Application/space-systems
https://www.incose.org/incose-member-resources/working-groups/Application/space-systems
https://www.nanosats.eu/

References

[46] Saikat Ranjan Maity and Shankar Chakraborty. “Tool steel material selection using

PROMETHEE II method”. In: The International Journal of Advanced Manufac-

turing Technology 78.9-12 (2015), pp. 1537–1547.

[47] James N Martin. Systems engineering guidebook: A process for developing systems

and products. Vol. 10. CRC press, 1996.

[48] Model Based For System Engineering. url: https://essr.esa.int/project/

mb4se-model-based-for-system-engineering. (accessed: 27.06.2021).

[49] RA Nelson. “Spacecraft Battery Technology”. In: VIA SATELLITE-POTOMAC-

14 (1999), pp. 104–149.

[50] V Normand and D Exertier. “Model-driven systems engineering: SysML & the

MDSysE approach at Thales”. In: Ecole d’été CEA-ENSIETA, Brest, France (2004).

[51] Anthony M Olver and Michael J Ryan. “On a useful taxonomy of Phases, Modes,

and States in Systems Engineering”. In: (2014).

[52] Armen Poghosyan and Alessandro Golkar. “CubeSat evolution: Analyzing CubeSat

capabilities for conducting science missions”. In: Progress in Aerospace Sciences 88

(2017), pp. 59–83.

[53] Yahya Rahmat-Samii, Vignesh Manohar, and Joshua Michael Kovitz. “For Satel-

lites, Think Small, Dream Big: A review of recent antenna developments for Cube-

Sats.” In: IEEE Antennas and Propagation Magazine 59.2 (2017), pp. 22–30.

[54] Pascal Roques. “MBSE with the ARCADIA Method and the Capella Tool”. In: 8th

European Congress on Embedded Real Time Software and Systems (ERTS 2016).

2016.

[55] Pascal Roques. Systems Architecture Modeling with the Arcadia Method: A Practical

Guide to Capella. Elsevier, 2017.

[56] Winston W Royce. “Managing the development of large software systems: concepts

and techniques”. In: Proceedings of the 9th international conference on Software

Engineering. 1987, pp. 328–338.

[57] Wolahan A. Biesbroek. R. Innocenti L. Morales Serrano S. and de Koning H-P.

“Model Based Systems Engineering Applied to ESA’s e.Deorbit Mission”. In: 2017.

[58] Thomas L Saaty. “What is the analytic hierarchy process?” In: Mathematical models

for decision support. Springer, 1988, pp. 109–121.

[59] TL Saaty. “The analytic hierarchy process. mcgrawhill international”. In: New York

(1980).

[60] Albert Sanders and John Klein. “Systems engineering framework for integrated

product and industrial design including trade study optimization”. In: Procedia

Computer Science 8 (2012), pp. 413–419.

152

https://essr.esa.int/project/mb4se-model-based-for-system-engineering
https://essr.esa.int/project/mb4se-model-based-for-system-engineering

References

[61] Josh Schoolcraft, Andrew Klesh, and Thomas Werne. “MarCO: interplanetary mis-

sion development on a CubeSat scale”. In: Space Operations: Contributions from

the Global Community. Springer, 2017, pp. 221–231.

[62] Cal Poly SLO. “CubeSat Design Specification Rev. 14”. In: (2020).

[63] European Cooperation for Space Standardization. “ECSS-E-ST-10-02C Rev. 1 Space

engineering - Verification”. In: (2018).

[64] European Cooperation for Space Standardization. “ECSS-E-ST-10-06C Space engi-

neering - Technical requirements specification”. In: (2009).

[65] European Cooperation for Space Standardization. “ECSS-E-ST-10C Rev.1 – System

engineering general requirements”. In: (15 February 2017).

[66] European Cooperation for Space Standardization. “ECSS-M-ST-10C Rev. 1 – Space

project management: project planning and implementation”. In: (6 March 2009).

[67] Sara C Spangelo et al. “Applying model based systems engineering (MBSE) to a

standard CubeSat”. In: 2012 IEEE aerospace conference. IEEE. 2012, pp. 1–20.

[68] Sara C Spangelo et al. “Model based systems engineering (MBSE) applied to Radio

Aurora Explorer (RAX) CubeSat mission operational scenarios”. In: 2013 IEEE

Aerospace Conference. IEEE. 2013, pp. 1–18.

[69] Dassault Systems. Cameo Systems Modeler. url: https://www.3ds.com/products-

services/catia/products/no- magic/cameo- systems- modeler/. (accessed:

25.06.2021).

[70] Sparks Systems. Enterprise Architect. url: https://sparxsystems.com/products/

mdg/tech/sysml/index.html. (accessed: 25.06.2021).

[71] International Council on Systems Engineering. Systems Engineering Vision 2020.

INCOSE Technical Operations, Seattle, WA, 2007.

[72] Thales. Let yourself be guided with ARCADIA. url: https://www.eclipse.org/

capella/arcadia.html. (accessed: 25.06.2021).

[73] Evangelos Triantaphyllou et al. “Multi-criteria decision making: an operations re-

search approach”. In: Encyclopedia of electrical and electronics engineering 15.1998

(1998), pp. 175–186.

[74] Carnegie Mellon University. Architecture Analysis and Design Language. url: https:

//www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_

4050=191439&customel_datapageid_4050=191439. (accessed: 25.06.2021).

[75] Jean-Luc Voirin. Conception architecturale des systèmes basée sur les modèles avec

la méthode Arcadia. Vol. 3. ISTE Group, 2018.

[76] Jean-Luc Voirin et al. “Simplifying (and enriching) SysML to perform functional

analysis and model instances”. In: INCOSE International Symposium. Vol. 26. 1.

Wiley Online Library. 2016, pp. 253–268.

153

https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/
https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/
https://sparxsystems.com/products/mdg/tech/sysml/index.html
https://sparxsystems.com/products/mdg/tech/sysml/index.html
https://www.eclipse.org/capella/arcadia.html
https://www.eclipse.org/capella/arcadia.html
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439&customel_datapageid_4050=191439
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439&customel_datapageid_4050=191439
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439&customel_datapageid_4050=191439

References

[77] Roger Walker et al. “Deep-space CubeSats: thinking inside the box”. In: Astronomy

& Geophysics 59.5 (2018), pp. 5–24.

[78] Charles S Wasson. “System Phases, Modes, and States Solutions to Controversial

Issues”. In: Wasson Strategics, LLC. http://www. wassonstrategics. com (2010).

[79] James R Wertz and Wiley J Larson. “Space mission analysis and design, Micro-

cosm”. In: Inc., (1999), p. 497.

[80] Sasha Weston et al. “State of the art: Small spacecraft technology”. In: (2020).

[81] Sirous Yasseri. “Application of systems engineering to subsea development”. In:

Underwater Technology 32.2 (2014), pp. 93–109.

154

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Space Systems Engineering Background
	Towards MBSE for Small Satellites Design
	Small Satellites Design Context
	Literature Review of MBSE Applied to Space Missions

	Thesis Motivation and Objectives
	Thesis Outline

	Model-Based Systems Engineering Concepts
	What is MBSE?
	MBSE Ingredients
	MBSE State of the Art
	The ARCADIA Method in a Nutshell
	Users Needs Understanding
	Solution Architectural Design
	ARCADIA Diagrams
	The Capella Tool

	Case Study: e.Inspector
	The e.Inspector Mission
	Model Implementation
	Requirements Management
	Operational Analysis
	System Analysis
	Logical Architecture
	Physical Architecture
	System and Subsystems Modes
	Concept of Operations using Scenario Diagrams
	AIV/AIT Plan Definition with Capella

	Decision Making Tool for Small Satellites Architectures Generation
	Statement of the Problem and Methodology
	Inputs from the User
	Tool Embedded Decision Tree

	The Algorithm Explained
	Some Ingredients of the Algorithm: MCDM Methods
	Level 1 Architectures Selection
	Level 2 Architectures Selection

	Simulations and Validation
	Subsystems Decision Tree
	Results and Discussion

	Conclusions and Future Work
	Summary of the Results
	Limitations of the Study and Future Developments
	Final Thoughts

	Appendix - Capella Diagrams
	Requirements Trees
	System Analysis Diagrams
	Logical Architecture Diagrams
	AIV/AIT Diagrams

	Appendix - Decision-Making Tool
	Functionalities and Alternatives Markers
	Algorithms

	References

