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Abstract

Deep Learning-based Reduced Order Models (DL-ROMs) are a recently developed frame-
work for the efficient approximation of the parameter-to-solution map associated to para-
metric Partial Differential Equations (PDEs) exploiting Machine Learning techniques.
Taking advantage of a set of PDEs snapshots and deep neural networks, after an of-
fline training DL-ROMs enable the inexpensive online evaluation of the PDE solution
for any new parameter instance. Thanks to a rigorous theoretical setting, approximation
capabilities of DL-ROMs and network architecture complexity have been recently inves-
tigated. This thesis extends these results to the case of PDE parameterized by infinite
dimensional objects like random fields, confirming the error estimates with numerical ex-
periments. Moreover, this work presents several strategies, all based on the concept of
Transfer Learning, to alleviate the computational burden of the DL-ROM offline stage. In
particular, we designed a multi-level training algorithm, that takes advantage of snapshots
at lower resolution, and a Hybrid DL-ROM, that inherits the internal representation of the
solution manifold from a simpler DL-ROM and enhances it with further details through a
suitable re-training. Both these strategies have been assessed on a set of model problems
involving linear elliptic PDEs. Finally, Hybrid DL-ROMs have been exploited to solve a
Bayesian inverse problem for parameter estimation by means of a revisited Monte-Carlo
Markov-Chain algorithm in the framework of Uncertainty Quantification of PDEs.

Keywords: Partial Differential Equations, Reduced Order Models, Machine Learning,
Artificial Neural Networks, Transfer Learning, Multi-Fidelity models





Abstract in lingua italiana

I modelli di ordine ridotto basati su tecniche di Deep Learning (Deep Learning-based
Reduced Order Models, DL-ROM) sono metodi che sfruttano tecniche di Machine Learn-
ing per approssimare in maniera efficiente la mappa parametro-soluzione associata a
Equazioni a Derivate Parziali (EDP) parametriche. Attraverso l’impiego di Deep Neu-
ral Networks e di un insieme di snapshots della EDP, dopo una fase di allenamento
offline i DL-ROM permettono una valutazione online computazionalmente efficiente della
soluzione della EDP per ogni nuovo valore dei parametri. Grazie ad un rigoroso setting
teorico, le capacità di approssimazione dei DL-ROM e la complessità, in termini di ar-
chitettura, delle reti che li compongono sono state di recente investigate. Questa tesi
estende tali risulti al caso di EDP parametrizzate da un oggetto infinito dimensionale
come un campo stocastico, confermando la stima ottenuta attraverso esperimenti nu-
merici. Inoltre, questo lavoro sviluppa diverse strategie, tutte basate sul concetto di
Transfer Learning, per ridurre l’onere computazionale della fase di costruzione offline
dei DL-ROM. Specificatamente, presentiamo un algoritmo di allenamento multi-livello,
che sfrutta l’utilizzo di soluzioni a bassa risoluzione come snapshots, e DL-ROM Ibridi,
che possono acquisire da altri DL-ROM più semplici una rappresentazione interna della
varietà delle soluzioni per poi arricchirla di ulteriori dettagli attraverso un opportuno
ri-allenamento. Entrambe le strategie proposte sono corredate di un’analisi dei costi com-
putazionali che permette di valutarne l’efficacia su dei problemi modello associati a EDP
ellittiche. Infine, i DL-ROM Ibridi sono stati impiegati nella soluzione di un problema di
stima di parametri in ambito Bayesiano, attraverso la versione rivisitata di un algoritmo
Markov-Chain Monte-Carlo, nel contesto della Uncertainty Quantification per le EDP.

Parole chiave: Equazioni a Derivate Parziali, Modelli di Ordine Ridotto, Machine Learn-
ing, Reti Neurali Artificiali, Transfer Learning, modelli Multi-Fedeltà
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1

Introduction

Parametrized Partial Differential Equations (PDEs) are fundamental tools for modeling
the behaviour of physical, biological and mechanical systems. Supposing the problem is
well-posed for any value of the input parameters within a suitable parameter space, PDEs
are generally solved by means of high-fidelity Full-Order Models (FOMs), such as the
Finite Element Method (FEM) [26]. FOMs guarantee an accurate numerical solution but
might entail a non-negligible computational cost. The latter may become easily unbear-
able when dealing with many-queries applications, such as optimal control problems or
Bayesian inversion and uncertainty quantification. In these contexts we are interested in
exploring a possibly wide portion of the discrete solution manifold, by solving the PDE
for a potentially large ensemble of parameter instances. One possible strategy consists in
replacing the FOMs with Reduced Order Models (ROMs) that approximate in a highly
efficient way the parameter-to-solution map, while maintaining adequate levels of accu-
racy.

In this thesis, we focus on a particular class of ROMs, namely Deep Learning-based
Reduced Order Models (DL-ROMs), recently introduced in [7, 9, 10]. DL-ROMs are a
Machine Learning (ML) framework that exploits extensively Artificial Neural Network
(NN) to learn the parameter-to-solution map starting from a dataset of solution snap-
shots. These latter are generated using the FOM in an expensive off-line stage, that also
includes the NN model training. The high popularity of this kind of surrogates is due to
the completely effortless evaluation of PDE queries for new input parameters during the
following on-line stage. Indeed, DL-ROMs are non-intrusive methods, which do not in-
volve the assembling and the resolution of any linear system associated to a reduced order
differential problem. What distinguishes DL-ROM from others ML-based approximation
algorithms (e.g. [14, 21]) is that, first, a low dimensional representation of the solution
manifold is determined through a deep auto-encoder (AE). This allows to compress the
information associated to the solution manifold in a so-called latent space. Afterward,
the learning problem is rephrased into the much more manageable approximation of the
low dimensional relation between parameter instances and the latent representation of
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the PDE solution. Furthermore, DL-ROMs were developed on a deep theoretical basis
that plays an essential role in designing the NN architecture. In particular, recent results
[7] prescribe, depending on properties of the parameter-to-solution map, the minimal di-
mension of the latent space to ensure that the error entailed by compressing the solution
manifold can be made arbitrarily small. This information is in turn used to fix the width of
the deep auto-encoder bottleneck, with a huge impact on the number of degrees of freedom
(dof) of the NN and, as a consequence, on the computational time required by its training.

Starting from this background the work follows two main paths. The first one regards
the extension of DL-ROMs theoretical basis to the case of stochastic PDEs. Indeed, the
available results holds for the case of PDE parametrized by a finite number of coefficients
belonging to a compact subset of Rn . We instead proof an analogous error estimate for
PDEs depending on a random field and, thus, on an infinite number of random inputs.
This task was accomplished through two steps. The first one allows to remove the hy-
pothesis of compactness of the parameter space by exploiting classical inequalities from
Real Analysis. The second steps follows immediately thanks to a dimensionality reduc-
tion approach based on the Karhunen-Loeve expansion of the random field. Moreover,
the theoretical result is provided with rigorous numerical experiments that confirm its
validity for three different test-cases within the class of elliptic stochastic PDEs.

The second path is instead related to more practical issues. Indeed, we design several
strategies to alleviate the burden of the expensive DL-ROM off-line stage, all based on
the concept of Transfer Learning. With this term we indicate the possibility of storing
the information gained while solving a problem, and applying it to a different but related
one. From the Deep-Learning perspective, this implies the reuse of an already trained
NN within possibly more expressive learning framework to accomplish new approximation
tasks. In particular:

• first, we deal with the reduction of the computational effort for the dataset genera-
tion. Indeed, the possibility to rely on a large training set is of crucial importance
to make the DL-ROM able to generalize well, but this entails the extensive use of
the FOM. We therefore propose a Multi-level training algorithm, suitable for any
kind of parametrized PDE, that leverages snapshots at different level of resolution.

• Then, we develop a class of Hybrid DL-ROMs for stochastic PDEs. This new
approach allows to reduce the training time, thanks to its ability of inheriting, from
simpler DL-ROMs, an internal representation of the solution manifold and enhance
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it with further details thanks to a suitable re-training procedure.

The capabilities of Hybrid DL-ROMs are further investigated by employing them for the
efficient solution of a Bayesian inverse problem for a stochastic PDE. Specifically, we com-
bine the flexibility provided by the Hybrid DL-ROM implementation with a multi-stage
Metropolis algorithm, with the double goal of increasing the surrogate model accuracy
during the simulation and of tackling the dimensionality curse that affects the inference
on random fields.

The thesis is structured as follows. In Chapter 1 we first recall some basic notions about
the NNs structure and their learning process. Then, we focus on the DL-ROMs by de-
scribing their implementation and reporting the most important theoretical results. In
Chapter 2 we propose the Multi-level training algorithm, evaluating its performances on
the case of linear elliptic PDEs including however highly nonlinear parameter dependen-
cies. The theoretical results are developed in Chapter 3 together with the supportive
numerical experiments. Chapter 4 is devoted to the design of Hybrid DL-ROMs, from the
implementation issues, to the setting optimization and the performance analysis. Finally,
Chapter 5 focuses on the solution of Bayesian inverse problems through Monte Carlo
Markov Chain algorithms, reporting numerical results obtained on two test-cases through
the use of Hybrid DL-ROMs. The work then is concluded by a brief summary of the
achieved results and of possible further steps in several directions.
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1| From Neural Networks to

DL-ROMs

This chapter briefly recalls how Deep Learning-based Reduced Order Models (DL-ROMs)
work, by presenting the main theoretical results that describe their approximation proper-
ties. In order to provide a complete presentation on the subject, we first devote a section
to what a neural networks is and in what the learning process consists. In particular, we
analyze the various types of errors that the use of a NN entails. This, together with the
description of some specific tool used throughout this work, is fundamental to clarify the
reason behind the design choices made in the following.

1.1. Artificial Neural Networks

An Artificial Neural Network (NN) is a mathematical model inspired by biological nervous
system in which the fundamental unit is the perceptron [28, 33]. A NN receives infor-
mation from multiple sources, that might be external to the network or be the output of
another perceptron, elaborates it and then transmits it. More specifically it applies to the
input vector an affine transformation x → w · x+ b, where w is the weight vector and b

is an additive degree of freedom called bias. Then, the result is possibly mapped through
a nonlinear activation function ρ, which is usually continuous and monotone. Among the
most common used, there are the sigmoid function ρ(x) = 1/(1+exp(−x)), the hyperbolic
tangent ρ(x) = tanh(x) and the ReLu activation function ρ(x) = max(0, x). The most ap-
propriate choice strongly depends on the specific application. A schematic representation
of the perceptron is depicted in figure 1.1.

The architecture of a Neural Network is determined by the number of perceptron and by
the way they are linked among themselves. When dealing with function approximation
the most natural choice consists in using Multilayer Feedforward Perceptrons (MFP). In
this particular kind of NN, perceptrons with the same activation functions are collected
in layers; every layer receives information from the previous one and transmits it to the
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Figure 1.1: A schematic representation of the Perceptron which is the fundamental unit
of a Neural Network. The Perceptron makes the weighted sum of the inputs, adds the
bias b and transmits the result, after the application of a nonlinear function ρ.

following, except for the first one, the input layer, which take the information from the
outside, and the last one, which provides the output of the computation. By collecting
weights and biases of the k-layer respectively in the matrix Wk and in the vector bk,
the layer output can be computed as xk = ρk(Wkxk−1 + bk), where the application of
the function ρk is intended componentwise. Therefore, the neural network output can be
obtained by the composition of linear maps and scalar nonlinear activation function, so
that the evaluation of an input vector is extremely fast independently from the neural
network dimensions. This fact clearly explains why NNs gained an extreme popularity as
surrogate models, together with their capability in learning efficiently any kind of relation.
Figure 1.2 represents a three layer MFP, showing through the colors how the different NN
components play a role in producing the output. The absence of the activation function in
the output layer is common [17] and due to the fact that, generally speaking, the output
components take values in R.

1.1.1. Approximation Properties and Learning Procedure

A large variety of theoretical results (for instance [17, 32, 35]) describes the capabilities
of this networks in approximating with arbitrary accuracy any kind of function, if the
architecture is sufficiently expressive, namely if the NN posses an appropriate number of
layers and neurons. This kind of results, available for functions belonging to different
functional spaces and stated in different norms, often prescribe the minimum number of
layers and dof that are needed to create a correct internal representation of the function
to approximate. Anyway, their use is often impractical and the architecture is fixed using
empirical or semi-empirical approaches, like the ensemble training procedure [22].
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Figure 1.2: A three layer MFP mapping 2D inputs into 2D outputs. The layers are
connected by linked weights, whose values are collected in the corresponding matrices
Wi, whereas the biases (represented through squares) are collected in the vectors bi. The
relation below shows how the NN functioning is based on the composition of each layer
transformation, with the last one which is usually linear.

In order to explain the reason behind this fact, it is necessary to understand in what the
learning process consists and how it is performed. With this aim, let us introduce some
notation. Let λ be a probability measure on X ⊂ Rn, L : X ⊂ Rn → Rm be the map
to approximate, Ξ be the set of all the possible configuration of the NN inner parameters
(i.e. weights and biases) and Lθ : X ⊂ Rn → Rm be the NN for a specific choice of θ ∈ Ξ.
The aforementioned theoretical results state, generally speaking, that, for any ϵ > 0, there
exists a a NN architecture Ξ and a dof setting θ∗ ∈ Ξ such that

LF (θ∗) = Eλ||L − Lθ∗ || < ϵ (1.1)

where we indicate by Eλ the expected value with respect to the measure λ, and by || · ||
the norm through which measuring the discrepancy, whereas LF is the so-called Loss
Function, and ϵ is sometimes referred to approximation error [12]. However, finding
this minimum is an unreachable goal from the numerical point of view, because of the
strong non-convexity and the high dimensionality of the loss surface associated to the
simultaneous optimization of thousands degrees of freedom.
Then, in the context of supervised learning, the standard way [19] to proceed consists
in leveraging data, in the form of input-output couples generated by the function to
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approximate, in order to perform a regression. More specifically, the values of the NN
weights and biases are optimized during an iterative process called training in which,
through gradient-descent like algorithms, an empirical version of the Loss Function is
minimized. Being S = {(xi,L(xi))}, with i = 0, ..., Ntr , the set of the training data, we
can define the Empirical Loss Function L̂F as

L̂F (θ) =
1

Ntr

Ntr∑
i=1

||L(xi)− Lθ(xi)||. (1.2)

The training continues for a number of epochs (that is the unit time in which the whole set
of data is "examined" by the NN) sufficient to reach a sub-optimal solution, represented
by a local minimum θ# on the loss surface, which guarantees an adequate level of accuracy.
Coming back to the initial issue, theoretical estimates are not frequently used because it
is easier and less expensive, in terms of computational cost, to find a good local minimum
using networks that are way more complex than the ones prescribed by the theory, even
if this has an impact.

Indeed, the training process introduces two further sources of error. First, the fact that
we are able to find only a sub-optimal minimum, gives raise to the so-called training
error. As is customary, since from the user point of view they are not distinguishable,
the approximation error is incorporated in the training error. In this way it possible to
quantify it through

Etr = L̂F (θ#)

and it can be reduced by augmenting the NN expressiveness or improving the learning
process. The second issue is related to the finite amount of data available for the training.
In particular, this is a consequence of the replacement of the Loss Function by its empirical
version during the optimization. For this reason, in addition to the training error, the
generalization gap G has to be considered. The latter can be roughly estimated through
the central limit theorem as

G ∼ var(||L − Lθ# ||)√
Ntr

.

As observed in [25] in fact, if the sample {xi}i=Ntr
i=1 are independently drawn from λ,

then the comparison between ((1.1)) and ((1.2)) makes it evident that L̂F is the Monte
Carlo approximation of LF . Despite being of impractical use, this fact sheds light on the
(usual) very slow decay with respect to the training sample size which becomes highly
problematic in small data regime or, as in our contest, when the dataset is generated
with high computational costs. Moreover, it allows a better understanding of what is
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over-fitting, from a mathematical perspective. If the NN architecture is decisively more
complex than necessary and the data used for the training are too few, the training process
might generate an unusable NN surrogate that perfectly interpolates the function being
approximated at the training points, but is not able to make accurate predictions on new
samples, or in other words, to generalize properly. For this reason, the more important
indicator of a NN based surrogate is not the training error, but the test error which is
defined through

Ete = Etr +G

and can be estimated by evaluating the Empirical Loss Function on a different set of
points, the test set, from the ones used in the training.

1.1.2. Back-propagation and L-BFGS optimizer

The implementation of the gradient descent algorithm in the context of the deep learning
translates into the back-propagation algorithm [30]. In its basic version, during every
epoch k, the Empirical Loss Function is evaluated with the current configuration of the
NN on all the training set and the values of the dof are updated according to

θk+1 = θk − α
∂L̂F

∂θ

∣∣∣
θ=θk

; (1.3)

α is the hyper-parameter that regulates the step length on the error surface and is usually
called learning rate. Here the main issue is clearly the computation of the partial deriva-
tive, that in this context is commonly called sensitivity, in particular for the nodes that
are not immediately adjacent to the output layer. The solution provided by the back-
propagation algorithm consists in updating before the weights and biases of the output
layer and then proceeding backwards, layer by layer. By exploiting the chain rule of dif-
ferential calculus, sensitivities can be expressed through linear combination of first order
derivatives of linear functions, activation functions and already computed sensitivities.

Despite the numerical efficiency of the described procedure, many variants of the updating
rule ((1.3)) have been proposed in order to overcome some performance issues of the
optimizer. Among them, slow convergence and stability issues might arise, due to the
choice of the learning rate, as well as the risk of remaining trapped in a bad local minimum
during the early stages of the training process. Despite the vast majority of the literature
employs first order optimizer [29], at the most combined with "mini-batch" approaches
like for ADAM [15], in the context of this work great effectiveness has been shown by
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the quasi-Newton second order optimizer Limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm (L-BFGS). In this version only the most recent part of the descent
history is used to produce an approximation of the hessian matrix inverse, but this was
enough to make a big difference in terms of accuracy and time implied by the training.
For further details, see e.g. [4].

1.2. DL-ROMs

As already stated in the Introduction, this work deals with much more complex relations
than just low dimensional vectorial functions. Indeed, the goal is to approximate the
map µ → uµ, where µ is a vector of coefficients parameterizing a PDE, while uµ is the
corresponding solution belonging to some Hilbert space (V , || · ||). Deep Learning based
Reduced Order Models are an original Machine Learning framework, recently developed
in [7, 9, 10] with the aim to efficiently accomplish this task. The innovative idea consists in
splitting the approximation process in two phases. First, a low dimensional representation
of the solution manifold is determined through a deep auto-encoder: this operation allows
to compress the massive amount of information coming from a functional space, which
is theoretically infinite-dimensional, into a much smaller latent space. Afterward, the
learning problem can be rephrased into the approximation of the low dimensional relation
between the parameter vector and the latent representation of the solution. The latter
can be therefore tackled with classical Machine Learning techniques.

1.2.1. Theoretical foundations

Before entering into the implementation details, we report the main theoretical results
that support this approach, which were developed by Franco N.R., Manzoni A., Zunino P.
in [7], with minor modifications. In particular, the Theorems are presented in a simplified
and less general version, tailored for the specific problems tackled in this work. These
results play an essential role when it comes to designing the NN architecture, as they
prescribe the minimal dimension of the latent space at which one may carry out an
arbitrarely accurate compression of the solution manifold. This information is in turn
used to fix the width of the deep auto-encoder bottle-neck, with a huge impact on the
NN number of dof and, as a consequence, on the computational time requested by its
training.

We temporarily leave the Machine Learning context to set up some notation, useful to the
development of the theory. We define an auto-encoder as the composition of two maps,
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Ψ′ and Ψ. The former is the so called encoder Ψ
′
: V → Rn which receives as an input

a solution instance and maps it into the latent space, operating the compression. The
latter is the decoder Ψ : Rn → V , which does the opposite work reconstructing the entire
solution from the compressed version.
With the only requirement of being continuous, encoder and decoder are chosen in order
to minimize the error committed in the auto-encoding process. The latter is quantified
by using the continuous version of the Nonlinear Kolmogorov n-width, as defined in [5],
namely

δn(S) = inf
Ψ

′∈ C(S, Rn)
Ψ∈ C(Rn, V)

sup
u∈ S

||u−Ψ ◦Ψ′
(u)|| ,

where we denote by S the solution manifold. δn(S) is clearly nonincreasing in n, and
better results may be obtained by increasing the dimension of the latent space, from now
on called latent dimension. However, as anticipated, from a computational point of view
it is extremely important to keep the latent dimension as low as possible. For this reason
the authors were interested in determine the minimal latent dimension, namely

nmin(S) = min{n ∈ N | δn(S) = 0},

for which the existence of a couple (Ψ,Ψ
′
) allowing a nearly perfect auto-encoding of the

solution manifold is guaranteed. With this premise, we may now report one of the results
in [? ] that will be our starting point in Chapter 3.

Theorem 1.1. Let µ → uµ be a map from a compact set Θ ⊂ Rp, with nonempty interior,
to some Hilbert space (V , || · ||). Define the sets S = {uµ}µ∈Θ. We have the following:

(i) if the map µ → uµ is Lipschitz continuous, then nmin(S) ≤ 2p+ 1;

(ii) if the map µ → uµ is continuous and injective, then nmin(S) = p.

Furthermore, in both cases the infimum is attained, meaning that there exists a pair
(Ψ′,Ψ), with latent dimension respectively 2p+1 and p, such that u = Ψ ◦ Ψ′(u) for
all u ∈ S.

This result, which holds for every kind of map satisfying the hypotheses without referring
solely to the PDEs context, serves as a base for the second one, which is specifically de-
signed for the kind of problems faced in this work: diffusion-advection equations. In order
to state it, we need to provide some notation. We denote by D a bounded domain in Rd.
We then define the sets of all admissible conductivity tensor-fields Σ(D) ⊂ L∞(D,Rd×d),
such that σ ∈ Σ(D) if and only if it is uniformly elliptic, and the sets of all the admissible



12 1| From Neural Networks to DL-ROMs

transport fields B(D) ⊂ L∞(D,Rd×d), such that b ∈ B(D) if and only if it is differentiable
and divergence free. Finally, we denote by H1(D) the Sobolev space of those L2(D) func-
tions whose partial derivatives are in L2(D), by H1/2(∂D) the associate space of traces
and by H−1(D) the dual space of H1

0 (D) = {v ∈ H1
0 (D) such that v|∂D = 0}. Now we

are ready to state the following:

Theorem 1.2. Let D ⊂ Rd be a bounded domain with Lipschitz boundary, and let Θ ⊂ Rp

be a compact subset with nonempty interior. Moreover, let µ → σµ ∈ Σ(D), µ → bµ ∈
B(D), µ → fµ ∈ H−1(D) be parameter dependent coefficients and µ → gµ ∈ H1/2(∂D)

be the boundary data. For each µ ∈ Θ, we define uµ ∈ H1(D) as the unique solution to
the following second order elliptic PDE

u ∈ H1(D) :

u|∂D = gµ and
∫
D

σµ∇u · ∇w +

∫
D

(bµ · ∇u)w =

∫
D

fµw ∀w ∈ H1
0 (D).

Consider the solution manifold S = {uµ}µ∈Θ as a subset of V = L2(D). The following
hold true:

(i) if the dependence of σµ, bµ, fµ, gµ on µ is Lipschitz continuous, then nmin(S) ≤
2p+ 1.

(ii) if σµ, bµ, fµ, gµ depend continuously on µ and the solution map µ → uµ is injective,
then nmin(S) = p.

Obviously, the results above still hold when dealing with the discretized solution manifold
Sh =

{
uh
µ

}
µ∈Θ, where uh

µ is the solution of PDE by means of an high fidelity FOM, which
lives in some finite dimensional subspace (Vh, || · ||). As a consequence, by fixing n = nmin

and exploiting the aforementioned approximation results for the MFP, the authors proved
the following: for any ϵ > 0, there exist two NN, Ψ′

NN : Vh → Rn and ΨNN : Rn → Vh,
playing respectively the role of the encoder and of the decoder, such that

sup
µ∈ Θ

||uh
µ −ΨNN ◦Ψ′

NN(u
h
µ)|| < ϵ .

1.2.2. Training the model

Coming to the actual implementation, the first issue is the definition of the three NNs
involved: not only for the encoder and the decoder but also for the NN ϕNN : Θ ⊂
Rp → Rn, which approximates the relation between the parameter vector and the reduced
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order solution. Concerning the auto-encoder, apart from the bottle-neck width, which is
surely the most thorny design choice, the rest was determined through a semi empirical
approach, based upon some authors’ recommendations. These included the importance of
using sparse convolutional layers to deal with high dimensional objects like FOM solutions
and the fact that, in order to maximize the accuracy, the decoder should be richer than
the encoder. A performing architecture for ϕNN is instead easy to find by using few dense
layers, since p, n ≪ Nh = dim(Vh). For what concerns the training set {(µi, u

h
µi
)}Ntr

i=1 (and
the test set), as it is common when dealing with dimensionality reduction techniques, it is
synthetically generated by sampling the parameter space and by invoking the FOM. The
latter is used to compute, for every instance of the parameter vector, the corresponding
snapshot. For the two-steps training phase we can finally refer to Figure 1.3, which
depicts how a two dimensional solution depending on p parameters is elaborated. In the
first phase, the auto-encoder is fed with the instances of the discretized solution manifold
until a sufficiently accurate internal representation of the reduced solution manifold is
formed. Good results have been obtained by considering, as a measure of discrepancy,
the relative error. As a consequence, the Empirical Loss Function for the auto-encoder
can be written as

L̂F (ΨNN ,Ψ
′

NN) =
1

Ntr

Ntr∑
i=1

||uh
µi

−ΨNN ◦Ψ′
NN(u

h
µi
)||

||uh
µi
||

. (1.4)

In the second one, decoder and encoder are separated and the latter is used to generate
the reduced order version of the dataset, {(µi,Ψ

′
(uh

µi
))}Ntr

i=1. This is used to train and test
ϕNN , whose dof are optimized by minimizing the following loss function

L̂F (ϕNN) =
1

Ntr

Ntr∑
i=1

||Ψ′
(uh

µi
)− ϕNN(µi)|| . (1.5)

The relative error cannot be chosen as discrepancy measure anymore, since the encoder
may represent an instance of the solution manifold as the null vector in the latent space.
Finally the decoder is connected to ϕNN , so that the resulting network maps a vector
of parameters into the corresponding PDE solution and the DL-ROM is full operative.
As already mentioned, both the minimization were run using L-BFGS optimizer for a
number of epochs which depended on the problem complexity and on the desired accuracy.
However, we can already anticipate that the training of the auto-encoder was considerably
more demanding than the one of ϕNN . This is the reason why in Chapter 3, Chapter 4 and
Chapter 5 the analysis is concentrated on the properties and the computational efficiency
of the auto-encoder without paying the same attention at the role of ϕNN .
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We conclude by highlighting some of the reasons that make worth adopting the DL-
ROM approach. The first one is clearly related to the underlying theoretical basement
that guarantees a good interpretability of what is happening inside the Neural Network,
partially opening the black-box. The second reason is associated to computational costs:
when the output space is so highly dimensional, being able to split the work in two different
stages is certainly useful to lower the computational power and the memory needed to
complete the training. Finally, as showed by the authors, through DL-ROM, we can
exploit intrinsic regularities of the solution manifold, even if the parameter-to-solution
map is just Lipschitz-continuous, as for the case of diffusion problems.

(a) The auto-encoder is trained to learn the identity map between
the solution manifold and itself. This allows to operate a dimen-
sionality reduction of the solution manifold.

(b) The encoder is used to compress the so-
lution instances. These latter are then im-
plied in the training of ϕNN .

(c) The surrogate model is finally formed by connecting
ϕNN and Ψ.

Figure 1.3: The three-step process of the DL-ROM building.

1.3. Technical setup

All the numerical experiments ran throughout this work were implemented in Python 3
and run over GPUs. In particular, the high-fidelity snapshots used to train and test the
NNs were generated through the FEniCS library [1], whereas the construction and the
training of the DL-ROM exploited Pytorch [2].
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2| Mesh independence and

multilevel training

After introducing a first model problem useful as a testbed for DL-ROMs design and
training, this Chapter faces two key related issues. First, we concentrate on the surrogate
flexibility with respect to the choice of the mesh in the FOM discretization and, then, on
the high computational cost of generating the training set during the DL-ROM off-line
stage. We address the former thanks to a recently developed type of layer and design a
strategy to overcome the latter by drawing inspiration from one of the most commonly
used approaches in the field of statistical learning, namely a multi-fidelity approach.

2.1. A first model problem

As already mentioned, this work focus on parametrized elliptic PDEs an, specifically,
on advection-diffusion equations. In particular, in this Chapter the parameter-to-solution
map is determined through the following PDE, set on the unit square domain D = (0, 1)2,
with Dirichlet boundary conditions:−∇ · (σµ∇u) + βµ · ∇u = 100(xy − y2) in D

u = 0.01 on ∂D
(2.1)

It depends on four input parameters µ = [µ1, ..., µ4] which belong to Θ = [0, 1]4 in
a highly nonlinear way that was chosen in order to make the approximation problem
particularly challenging. More specifically, three parameters play a role in the expression
of the diffusion field, by determining the shape of a curve that crosses the domain and
divides it in two areas with very different but homogeneous diffusivity properties. The
latter parameter tunes instead the direction of the transport term.
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The formal expression of σµ and βµ is given, respectively, byσµ = 6 + 5 tanh (20(y + 10µ1x(x− 1)(x− µ2)(x− µ3)− 0.5))

βµ = 10(cos(2πµ4), sin(2πµ4))
T ,

whereas some instances of the diffusion field, together with the corresponding solutions,
are depicted in Figure 2.1.

Figure 2.1: Some diffusion field instances (top) and the associated solutions (botton).

2.1.1. DL-ROM performances

We obviously started by generating the dataset, obtained by sampling uniformly the
parameter space Θ since we do not assume any prior knowledge about the parameter
distribution. We then solved the PDE for each sampled value of the parameter vector,
exploiting the Galerkin - FE method. We used, as basis functions, first order polynomials
on a structured triangular mesh, with mesh size h = 0.01; in this case, the output space has
dimension Nh = 10201. We fixed the training set dimension at 1200 elements, whereas the
test set was composed by 5000 instances. Having a test set which is considerably greater
than the training set ensures indeed a much more reliable estimate of the test error. For
this reason, the same proportion has been maintained for every experiment in this work.
Concerning the three NNs design, once fixed the parametric architectures reported in
Table 2.1, we ran various test to determine the best value for m and k. Good results in
terms of training error have been reached using m = 16 and k = 4, resulting in ≈ 3.5×106

dof for the auto-encoder and ≈ 5× 105 for ϕ. All the layers, except for the last one, are
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equipped with the 0.1-leaky ReLu activation function, namely

ρ(x) = 0.1x1{x<0} + x1{x>0} .

Layer Input Output Kernel Stride Dof

Ψ
′ Dense 10201 4 - - 51005

Ψ Dense 4 100m - - 400(m+ 1)

Deconv. 5× 5× 4m 19× 19× 2m 11 2 968m2 + 4m

Deconv. 19× 19× 2m 46× 46×m 10 2 200m2 + 2m

Deconv. 47× 47×m 101× 101 11 2 121m+ 1

ϕ Dense 4 50k - - 200k

Dense 50k 50k - - 2500k2

Dense 50k 4 - - 200k

Table 2.1: The parametric architecture used for these experiments. By choosing m = 16

and k = 4, the model has more than 4× 106 dof, 75% of them belonging to the decoder.

Both the auto-encoder and ϕNN were trained for 200 epochs, but for the auto-encoder the
training took three time because of its more complex architecture. Figure 2.2 reports the
error paths, followed by the auto-encoder and by ϕNN during the training, obtained using
different seed for the random initialization of the dofs value. Highlighted through a wider
line, there is the mean path. In order to obtain more interpretable results, we depicted
in the same Figure the AE mean relative error and also the Eϕ,TOT, defined through

Eϕ,TOT = E

[
||uh

µ −ΨNN ◦ ϕNN(µ)||
||uh

µ||

]
.

The latter indeed, on the contrary to the error minimized during the ϕNN training (see eq.
(1.5)), allows to monitor how accurately we are approximating the parameter-to-solution
map. Despite the fact that the model problem is scalar, solved in a two-dimensional
domain and not even dominated by the transport term, the learning problem is still
difficult to tackle. In particular the training error is above the 2% threshold, even though
the implemented architecture is quite complex and we are using a powerful optimizer such
as L-BFGS. The real issue is, however, the generalization gap: the test error is just barely
below 5% despite the high number of snapshots used for the training.

We take finally advantage of this picture to highlight the great variability in the error



18 2| Mesh independence and multilevel training

Figure 2.2: Model problem error paths

paths due to the random initialization of weights and biases. In order to make the results
of the numerical experiments more reliable every training process has been repeated from
5 to 10 times. The analyses were then carried out on the averaged error values. We
adopted this methodology for the whole work.

2.2. Mesh independence

The identification of an architecture that is sufficiently expressive to learn the map cor-
rectly, but without too many degrees of freedom (in order to avoid over-fitting), is a
difficult task carried out with semi-empirical approaches. Once the latter has been ac-
complished, the DL-ROM must be trained with a non negligible computational effort.
These facts motivate the development of a strategy to make the DL-ROM independent
of the specific mesh on which it was trained. Strictly speaking, this is not feasible with-
out substantially modifying the learning framework: the auto-encoder has indeed to be
defined for a specific choice of the mesh, typically the same one used to generate the snap-
shots with the FEM. However, for two different discretization steps h1 and h2, uh1

µ and
uh2
µ are the Galerkin projections of the same PDE solution on two different FE spaces. As

a consequence, a DL-ROM trained over snapshots generated with a coarse mesh should
contain useful information also about the parameter-to-solution map obtained with a
more refined mesh. In particular, let us assume that the involved meshes are suitable
to solve the problem without giving rise to stability issues and qualitatively catching all
the solution features. The Lipschitz-continuity (and possibly the injectivity) of the PDE
solution holds independently of the mesh choice. Then, by applying Theorem 1.2, we
can determine the same minimal latent dimension for both the Galerkin-FE problems.
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This suggests that the low dimensional representation of the solution manifold should
be compatible with both the choices of the mesh. This means that the auto-encoding
procedure shall be actually done once and for all, possibly for the coarser mesh and, as
a consequence, with a smaller architecture. The same kind of reasoning applies to the
neural network ϕNN , mapping the values of the parameters to the latent space: the choice
of its architecture should not be affected by the mesh resolution, therefore, once trained
on the coarser mesh, it can be used also for the finer one.

We can take advantage of these comments to design a strategy to adapt DL-ROMs to
more refined meshes and by relying on the possibility to freeze the layers. This operation
consists in fixing the values of weights and biases of a layer, preventing further modification
during subsequent trainings. In conclusion, in order to obtain the desired architecture
starting from the DL-ROM with the courser mesh, it is sufficient to freeze the whole NN
made by the composition of ϕNN and the decoder ΨNN and compose the latter with a
third NN χNN , initialized as usual, that interpolates the DL-ROM approximation on the
finer mesh. Finally, ΨNN ◦ ϕNN ◦ χNN has to be fed with some snapshots generated on
the finer mesh to optimize the additional weights and biases. This process is depicted in
Figure 2.3 as an ideal continuation of the standard DL-ROM implementation in Figure
1.3.

Figure 2.3: DL-ROM mesh adaptation

2.2.1. Technical aspects

Although following the presented strategy might seem straightforward, numerical tests
have actually shown that choosing in a proper way χNN is a difficult task. In particular,
dense and convolutional layers, namely the two principal blocks of DL-ROMS, are not
suitable tools in this context, due to different reasons.
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Regarding dense layers, they add too many degrees of freedom, making the resulting NN
hardly trainable. For instance, we can consider the elliptic PDE (2.1) of the previous
section, solved on (0, 1)2 using two structured triangular meshes, with mesh size h =

0.02 and h/2 = 0.01 respectively. The associated finite element spaces have dimensions
dim(Vh) ≃ 2.5 × 103 and dim(Vh/2) ≃ 104. For the approximation of this problem with
the finer mesh, an architecture with 4× 106 dofs (see Table 2.1) guarantees an acceptable
level of accuracy. However, a single dense layer χNN for this case contains ≃ 2.5 × 107

parameters to be trained.
For what concerns convolutional layers, the problem is instead the opposite: they are
characterized by a very limited number of dofs. The only way to overcome the subsequent
lack of expressiveness is to greatly increase the number of channels. Furthermore, a large
number of layers is needed in order to pass from a certain degree of resolution of the
"solution-image" to another arbitrarily detailed, with particular choices for the shape of
the windows and for the stride. The resulting very deep NN is once again hard to train
and might potentially show bad performances.
Very good results, in terms of accuracy and trainability of the model, have been achieved
using Mesh Informed layers, recently introduced in [8]. In these layers, neurons are
represented as nodes in the mesh: then, when passing from a layer to another one, only
nearby nodes are allowed to communicate. This introduces a certain level of sparsity
in the weights matrix which can be regulated through a support hyper-parameter, that
quantifies the nodes vicinity. The resulting layer is much more expressive and elastic
than a convolutional one. On the other hand, the weights matrix sparsity allow to reduce
the training time and the generalization gap with respect to dense networks, by letting
the spatial correlation play a role. A graphical representation of a mesh informed NN in
comparison with a dense one is depicted in Figure 2.4.

Instead of showing the result of any numerical experiment at this stage, we postpone
to the next section the validation of the proposed strategy efficacy. Indeed, the mesh-
independent strategy, once supplied with the mesh-informed layer for the implementation
of the NN χNN , performed so well that we were able to develop a multi-level training
approach based on it.

2.3. Multilevel training

As emerged clearly from the first section of this Chapter, the NN architecture involved in
the approximation of the parameter-to-solution map by means of a DL-ROM approach
are quite big. The high number of dofs allows to reach adequate level of training error
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Figure 2.4: Comparison between a Mesh Informed NN (right) and a dense one (left),
taken from [8]. The continuous lines represent the links between the NN nodes, while the
dashed ones identify two (oversimplified) meshes on the domain.

but also increases the risk of overfitting. We then need a large amount of training samples
to lower the generalization gap, since its decay rate satisfies a Monte Carlo-like bound,
decreasing as 1/

√
Ntr, with Ntr being the dimension of the training set. However, we

recall that in the ROM context, data (namely, snapshots) are generated through high-
fidelity FOMs. Therefore, the computational cost for the construction of a sufficiently
large training set may easily became unaffordable.
Various attempts to regularize the learning process can be found in the literature for the
classical deep feed-forward neural networks, following several different paths. First of all,
the commonly used Lp-penalization, in which the Loss Functions takes into account also
the total number of active weights. Other more recent examples, in the field of Scientific
Machine Learning, are provided by the PINNs [3], which leverage the problem physics,
the use of low discrepancy sequences for the sampling of the parameter space [25] and also
of a multi-fidelity framework [20]. The latter work, in particular, implements a series of
NN based approximators where the first one operates in the standard way, the next one
learns the map between the input and the error committed by the network and so on.

Here we develop and test another kind of multi-fidelity strategy, that we call Multi-level
Training, since it exploits multiple discretization levels to generate training data with
various fidelity and, as a consequence, different costs. The main idea is then not to lower
the number of required training data demanded but to reduce the computational time
needed for each snapshot generation, by exploiting a "low-fidelity" FOM. This strategy
is entirely based on the learning framework presented in the previous section. However,
in this case, we initially aim to build a DL-ROM working on a high-fidelity mesh and,
for this reason, we implement an auxiliary DL-ROM for a coarser mesh. The algorithmic
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procedure can be summarized as follows:

1. use the FOM to generate a big dataset with a coarse mesh and a small dataset with
the refined one;

2. design and train in the standard way a small DL-ROM working on the former;

3. freeze the obtained NN and connect to the latter a further network χNN that maps
the solution of the coarser mesh to a more refined one;

4. re-train the multi-fidelity model ϕNN ◦ ΨNN ◦ χNN on a few solution instances for
the refined mesh.

Thanks to its simpler architecture and the great amount of data available, the "low-
fidelity" DL-ROM is able to generalize extremely well. As a consequence, the success of
the whole strategy clearly depends on whether or not this property is inherited by the
multi-fidelity model. We assessed this fact by a series of numerical experiments.

2.3.1. Numerical experiments

The numerical experiments were carried out on Problem (2.1), using a 100×100- elements
high-fidelity mesh and a 50× 50-elements coarse mesh. By using our technical setup, the
time required for solving the PDE for a fixed value of the parameters is approximately
0.18 s on the fine mesh and 0.05 on the coarse mesh. The experiments were run comparing
the performances of the proposed Multi-Level Training strategy with the ones obtained
in the standard way. This was done by varying the cardinalities of both the low and the
high-fidelity training sets. For what concerns the implied architecture, the high-fidelity
DL-ROM against which we compare the new Multi-level strategy is the same of the first
section, described in Table 2.1. The low-fidelity DL-ROM has been designed with the
same ϕNN and a much more lighter auto-encoder with just one third of the dofs of the
high-fidelity one. The fairness of the experiment is guaranteed by the fact that the DL-
ROMs share the same expressiveness, having reached similar levels of training error. After
the first training, we connected the low-fidelity DL-ROM to a shallow Mesh-Informed NN
χNN , mapping the coarse mesh onto the fine one.

Before analysing the strategy efficiency, we shall answer a preliminary question. It is
indeed unclear what the best way to sample the parameter space is when generating the
training set for the re-training. The are two obvious possibilities: to sample new parameter
instances with the aim of further increase the generalization capabilities or to use a high
fidelity version of the snapshots already involved in the first training phase, obtained for
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the same parameter values. Note that there is no difference in the computational cost
entailed by the two strategies. However, according to our numerical experiments, the first
choice does not necessarily entail improvements in the performances. Figure 2.5 depicts
the training error (on the top) and the test error (on the bottom) when varying the number
of high-fidelity training samples with the two possible strategies. We used continuous lines
for the case of same parameters instances and dashed lines for the different ones. The
experiment was repeated for three sizes of the low fidelity training set.

(a) Mean relative train error

(b) Mean relative test error

Figure 2.5: Multi-level training errors obtained by using the same parameter instances
and new ones, on varying the dimension of the high-fidelity training set, for different
cardinialites of the low-fidelity training set.
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The dots represent the single training result (every training is repeated five times), while
the lines are obtained through regression and the rate refers to the decay in the number
of high-fidelity snapshots ∝ N−R

tr . As we can clearly see from the plot on the right, the
use of a different set of parameters for the re-training allows the generalization gap to
decrease further. Anyway, the simultaneous increase in the training error gives rise to a
trade-off. This can be heuristically explained by the fact that the DL-ROM more easily
adapts to a refined mesh if we feed it with already encountered instances of the solution.
From the figure on the bottom emerges that when the number of high-fidelity training
points is lower than the one generated through the coarse mesh the test error is lower if
we use the same parameter instances. As a consequence, the latter is the strategy that
we adopted, since this is the data regime for every Multi-level approach.
Finally, we can compare the test error obtained with the Multi-Level Training with the
standard one, exploiting a dataset containing only high fidelity snapshots. As showed
in Figure 2.6, the latter decays precisely as predicted by the Monte-Carlo like estimate,
decreasing from 20% with 75 samples to below 3% with 2400 samples. The performance of
the Multi-Level Training is instead not affected by the amount of high-fidelity data used
for the re-training, as demonstrated by a decay rate equal to 0. The accuracy depends
solely on the amount of row data involved in the first training phase. This fact confirms
that the Multi-Fidelity DL-ROM is actually able to inherit the generalization capabilities
of the low-fidelity DL-ROM and just a few high-fidelity solution instances are needed in
order to calibrate the added dof.

Figure 2.6: Comparison between the decay in the test error obtained with a standard
training strategy and with the Multi-level approach, on varying the cardinality of the
training set.
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We summarize the obtained results in Table 2.2 by showing, besides the test error, the off-
line computational time implied for three different combinations of coarse and high-fidelity
samples, respectively denoted by (C) and (H). The time is divided in total training time,
accounting the duration of the whole learning procedure, and total dataset generation
time. This latter is drastically reduced up to 65%. Furthermore, since we are splitting
the optimization of a very large number of dofs in two steps, the strategy makes also
the training time decrease, at least for large training sets. The only drawback is a slight
decrease in the accuracy levels.

Model Test err Samples N° Tot. training T. Data. Gen. T.

High-F. 8.61% C:0/H:300 4m 58s 57s

Multi-F. 8.24% C:300/H:75 5m 37s (+13%) 30s (-47%)

High-F. 6.19% C:0/H:600 5m 56s 1m 52s

Multi-F. 6.41% C:600/H:75 5m 50s (-1.7%) 46s (-59%)

High-F. 4.51% C:0/H:1200 7m 50s 3m 46s

Multi-F. 4.76% C:1200/H:75 6m 23s (-18%) 1m 18s (-64%)

High-F. 3.65% C:0/H:2400 11m 38s 7m 32s

Multi-F. 3.90% C:2400/H:150 7m 35s (-35%) 2m 36s (-65%)

Table 2.2: Performances of the 2-Level Training vs the standard high-fidelity one on
varying the cardinality of the training sets.

We conclude this chapter by reporting similar results obtained by adding a third dis-
cretization level through a 25×25-elements mesh. As showed by Table 2.3, the Multi-level
training strategy still performs quite well even if the highest levels of accuracy are hardly
achievable. The introduction of a third learning phase fixes the training time at an almost
constant (but quite high) level. These considerations make the 2-Level Training preferable
for this specific problem. However, the chance to take advantage of even coarser mesh
might be of key importance when dealing with more realistic three-dimensional problems
for which the cost of the snapshots generation is higher.
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Model Test err Samples N° Tot. training T. Data. Gen. T.

High-F. 8.61% CC:0/C:0/H:300 4m 58s 57s

Multi-F. 8.05% CC:600/C:75/H:75 7m 13s (+45%) 30s (-47%)

High-F. 6.19% CC:0/C:0/H:600 5m 56s 1m 52s

Multi-F. 6.46% CC:1200/C:75/H:75 7m 20s (+24%) 46s (-70%)

High-F. 4.51% CC:0/C:0/H:1200 7m 50s 3m 46s

Multi-F. 4.96% CC:2400/C:150/H:75 7m 35s (-3%) 1m 18s (-70%)

Table 2.3: Performances of the 3-Level Training vs the standard high-fidelity one on
varying the cardinality of the training sets. CC denotes the snapshots for the coarsest
mesh.
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3| DL-ROMs for stochastic PDEs

This chapter aims to extend the use of DL-ROMs to a larger class of problems, in particular
stochastic PDEs, in which the parametrization involves a countable number of random
inputs that generate a stochastic field. A classical example in this context is the Darcy
problem to describe the fluid motion in a porous media, in which the ground permeability
is modeled by means of a random field with a certain level of regularity, prescribed through
the choice of a suitable covariance kernel. The extension is first of all theoretical and
involves the proof of two Theorems regarding the DL-ROMs approximation capabilities
in the aformentioned context. Finally, the result of numerical experiments are reported
to confirm the validity of the theoretical estimates in different scenarios.

3.1. Theoretical aspects

The theoretical result on the approximation properties of the auto-encoder for the case of
stochastic PDEs is developed starting from Theorem 1.1 in two steps. The first one allows
to remove the hypothesis of compactness on the parameter space by introducing a suitable
probability measure on it, and changing accordingly the norm in which the approximation
property holds. The second step follows immediately through dimensionality reduction
techniques, under very common technical assumptions on the covariance kernel of the
random field.

Theorem 3.1. Let µ ∼ Pµ be a random variable which takes values in Θ ⊂ Rp and such
that E [|µ|2] is finite. Moreover, let u : Θ → V be a Lipschitz-continuous function, with
(V , || · ||) Hilbert space, and let S ⊂ V be the manifold obtained by mapping Θ through u.
Then,

(i) if n ≥ 2p+ 1, or

(ii) if n ≥ p and u is injective,

it holds that
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inf
Ψ

′∈ C(S,Rn)
Ψ∈ C(Rn,V)

E ||uµ −Ψ ◦Ψ′
(uµ)|| = 0 .

Proof. First of all, without loss of generality, we assume that 0 ∈ Θ. Then, for any R > 0,
we define the closed ball of radius R, BR = {µ ∈ Θ| |µ| ≤ R}, so that we can rewrite the
expectation as

E ||uµ −Ψ ◦Ψ′
(uµ)|| = E

[
1BR

||uµ −Ψ ◦Ψ′
(uµ)||

]
+ E

[
1BC

R
||uµ −Ψ ◦Ψ′

(uµ)||
]
.

Furthermore, taking advantage of the triangular inequality, we obtain

E ||uµ −Ψ ◦Ψ′
(uµ)|| ≤ E

[
1BR

||uµ −Ψ ◦Ψ′
(uµ)||

]
+ E

[
1BC

R
||uµ||

]
+

+ E
[
1BC

R
||Ψ ◦Ψ′

(uµ)||
]
.

We can bound each integral separately, using trivial inequalities and the Lipschitz-continuity
of the map u:

E
[
1BR

||uµ −Ψ ◦Ψ′
(uµ)||

]
≤ sup

µ∈BR

||uµ −Ψ ◦Ψ′
(uµ)||Pµ(BR)

≤ sup
µ∈BR

||uµ −Ψ ◦Ψ′
(uµ)|| ;

E
[
1BC

R
||uµ||

]
≤ E

[
1BC

R
||uµ − u0||

]
+ E

[
1BC

R
||u0||

]
≤ P1/2

µ (BC
R) E1/2

[
||uµ − u0||2

]
+ Pµ(B

C
R) ||u0||

≤ L P1/2
µ (BC

R) E1/2
[
|µ|2

]
+ Pµ(B

C
R) ||u0|| ;

E
[
1BC

R
||Ψ ◦Ψ′

(uµ)||
]

≤ Pµ(B
C
R) sup

µ∈BR

||Ψ ◦Ψ′
(uµ)|| ≤ Pµ(B

C
R) sup

x∈Rn

||Ψ(x)|| ,

where Pµ(A), for a generic measurable set A ⊂ Rp, is by definition the probability of
the event (µ ∈ A). Let us now recall that if u : E → V is Lipschitz-continuous with
E compact and n ≥ 2p + 1, or equivalently, n ≥ p and u is injective,then Theorem 1.2
applies so that

inf
Ψ

′∈ C(S,Rn),
Ψ∈ C(Rn,V)

sup
µ∈E

||uµ −Ψ ◦Ψ′
(uµ)|| = 0 ,

and the infimum id attained. We then denote by (ΨR,Ψ
′
R) the couple of functions for
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which the minimum is attained in the case E = u(BR), that is a compact set, since BR is
compact and u is Lipschitz-continuous. Therefore in our proof we can choose Ψ∗ and Ψ∗′

such that

• they are equal to ΨR and Ψ
′
R on Ψ

′
R(u(BR)) and u(BR), respectively;

• they are the continuous extensions of ΨR and Ψ
′
R on u(Θ) and Rn, respectively.

The existence of such extensions is ensured by Theorem 4.1 of [6], which furthermore
states that the image of the extensions is contained in the convex hull of the original
function image. Thanks to this property and to the perfect reconstruction of uµ by the
composition Ψ∗ ◦Ψ∗′ in BR, we can observe that

Ψ∗(Rn) ⊆ conv
[
Ψ∗ ◦Ψ∗′(u(BR)))

]
⊆ conv [u(BR)] ⊆ B(u0, diam(u(BR)))

where B(u0, diam(u(BR))) is the ball centered in u0 with radius given by diam(u(BR)).
Exploiting once more the Lipschitz-continuity it follows immediately that

sup
x∈Rn

||Ψ∗(x)|| ≤ ||u0||+ diam(u(BR)) ≤ ||u0||+ 2LR .

In order to conclude the proof, we now estimate P(BC
R) thanks to the Markov’s inequality:

Pµ(B
C
R) = Pµ(|µ| > R) = Pµ(|µ|2 > R2) ≤ E [|µ|2]

R2
.

Finally, collecting all the previous results, we can obtain

inf
Ψ

′∈C(S,Rn),
Ψ∈C(Rn,V)

E||uµ −Ψ ◦Ψ′
(uµ)|| ≤ E||uµ −Ψ∗ ◦Ψ∗′(uµ)||

≤ sup
µ∈BR

||uµ −Ψ∗ ◦Ψ∗′(uµ)||+ L P1/2
µ (BC

R) E1/2
[
|µ|2

]
+ Pµ(B

C
R) ||u0||+

+ P(BC
R) sup

x∈Rn

||Ψ∗(x)|| ≤ E [|µ|2]
R

(
2||u0||
R

+ 3L

)
where the last term can be made arbitrarily small with a proper choice of R.

Remark 1. The hypothesis of global Lipschitz-continuity on the map µ 7→ uµ is certainly
strong. It is possible to weaken it by assuming instead that:

(i) ∀R > 0, sup
|µ1|,|µ2|≤R

||uµ1 − uµ2||
|µ1 − µ2|

< ∞ ;
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(ii) lim
R→+∞

Pµ(B
C
R) sup

|µ|≤R

||uµ|| = 0 .

These two hypotheses may be more easily satisfied. For example, let us consider the case
where uµ is the solution of an elliptic problem in a bounded Lipschitz domain, with a
permeability field described in term of the linear combination of n random parameters:∇ · (σµ∇u) = f in D,

u = 0 on ∂D

where σµ = exp{
∑N

i=1 bi(x)µi}, {bi(x)}Ni=1 are uniformly bounded in D by γ and {µi}Ni=1

independent random variable with standard Gaussian distribution. If the source belongs
to the dual space H−1 and µ ∈ BR (so that the bilinear form of the associated weak
formulation is coercive), then we can ensure the existence of a unique weak solution
uµ ∈ (H1

0 , || · ||), by the Lax-Milgram theorem [31]. Furthermore, the following estimate
holds

||uµ|| ≤
1

minx∈D σµ

||f ||∗.

Thanks to the latter, it is now possible to prove that the problem satisfies the second
assumption. First of all, by the monotonicity of the exponential function we have

sup
|µ|≤R

||uµ|| ≤ exp

{
max
x∈D

sup
µ≤R

N∑
i=1

bi(x)µi

}
||f ||∗ ≤ exp{γNR}||f ||∗.

Furthermore, because of the assumption on the distribution of the random parameters,
we have that |µ|2 ∼ X 2(N). Then, denoted by F|µ|2(x;N) its cumulative distribution
function, we can exploit the Chernoff bound for the case x > N (condition that is clearly
satisfied since since R is arbitrarily large) in order to obtain

Pµ(B
C
R) = Pµ(|µ| > R) = Pµ(|µ|2 > R2) = 1− F|µ|2(R

2;N) ≤
(
R2

N

)N/2

exp

{
1− R2

N

}
.

Finally, we can observe that

Pµ(B
C
R) sup

|µ|≤R

||uµ|| ≤
(
R2

N

)N/2

exp

{
1− R2

N
+ γNR

}
→ 0 if R → ∞.

For what concerns the first hypothesis, under the condition of uniqueness and existence
of the solution uµ for every µ ∈ BR and because of the smoothness of the map µ 7→ σµ,
we can apply Lemma C.2 of [7] to ensure the Lipschiz-continuity of the map µ 7→ uµ in
BR for any R > 0.
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Theorem 3.2. Let µ : D × Ω → R be a mean square integrable random field, where D

is a compact subset of Rd and Ω is the sample space. Let Covµ : D × D → R be its
symmetric, non-negative definite and continuous covariance kernel. Moreover let {λi}∞i=1

be the countable non increasing sequence of eigenvalues associated to the Karhunen-Loeve
(KL) expansion of µ and let µ(p) be the random field obtained by truncating the expansion
at order p. Let Θ be the space containing all the possible realizations of the random field.
Finally let u : Θ → V(D) be a Lipschiz-continuous function (with Lipschiz constant L),
with V and S defined as in the previous theorem. Then, if n ≥ 2p + 1 or n ≥ p but u is
injective, it holds

inf
Ψ

′∈ C(S,Rn),
Ψ∈ C(Rn,V)

E ||uµ −Ψ ◦Ψ′
(uµ(p))|| ≤ L

∞∑
i=p+1

√
λi. (3.1)

Proof. Thanks to the hypothesis made on the covariance kernel of the random field,
Mercer’s theorem [11] applies and we are able to express it in terms of its KL expansion,
namely

µ(x, ω) = E [µ] (x) +
∞∑
i=1

√
λi bi(x) µi(ω)

where x ∈ D, ω ∈ Ω, {bi}∞i=1 are the orthonormal eigenfunctions of the covariance kernel
belonging to L2(D) and {µi}∞i=1 are uncorrelated random variables with zero mean and
unit variance. Then the result follows directly from the application of the triangular
inequality and of Theorem 3.1, indeed

inf
Ψ

′∈ C(S,Rn),
Ψ∈ C(Rn,V)

E ||uµ −Ψ ◦Ψ′
(uµ(p))||

≤ E ||uµ − uµ(p) ||+ inf
Ψ

′∈ C(S,Rn),
Ψ∈ C(Rn,V)

E ||uµ(p) −Ψ ◦Ψ′
(uµ(p))||.

For what concerns the first term, we can exploit the Lipschitz-continuity of the map
u, moreover, thanks to the Cauchy-Schwarz inequality and to the properties of the KL
expansion terms, we obtain

E ||uµ − uµ(p)|| ≤ L E ||µ− µ(p)|| ≤ L E ||
∞∑

i=p+1

√
λi bi(x) µi(ω)||

≤ L

∞∑
i=p+1

√
λi E [|µi|] ||bi|| ≤ L

∞∑
i=p+1

√
λi E1/2

[
|µi|2

]
≤ L

∞∑
i=p+1

√
λi.
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Regarding the second term, we can introduce the p− dimensional vector of the random
coefficients in the KL expansion V

(p)
µ and the linear function ϕ : V

(p)
µ 7→ µ(p) which maps

the random vector to the associated truncated random field, so that uµ(p) = (u ◦ ϕ)
V

(p)
µ

.
Then, the composition of u with ϕ is in turn Lipschitz-continuous and, as a consequence,
we are under the hypothesis of Theorem 3.1. It follows that, if n ≥ 2p+1, or equivalently
n ≥ p and u is injective, we have

inf
Ψ

′∈C(S,Rn)
Ψ ∈C(Rn,V)

E|| (u ◦ ϕ)
V

(p)
µ

−Ψ ◦Ψ′
((u ◦ ϕ)

V
(p)
µ

)|| = 0.

Remark 2. The effectiveness of the result above is due to the fast decay of the eigenvalues,
which depends on the smoothness of the covariance kernel and on the correlation length
of the random field. Nevertheless, for a standard choice like the Gaussian one, the expo-
nential decay leads to a very good approximation with just a small order of truncation
and consequently a small minimal latent dimension. For theoretical results applicable to
the kind of problems this work deals with, with compact and multidimensional domain
we can refer to [16]. Furthermore, estimate (3.1) highlights an advantage in modeling
efficiently the parameter-to-solution map using DL-ROMs, instead of linear projections
methods relying on POD. With these latter indeed, the error depends on the decay of
the spectrum elements of the covariance kernel push-forward measure. This decay rate
may be much slower, as demonstrated in Lemma 3.15 of [18] for the case of a Gaussian
measure on the parameter space, even if the map µ → uµ is Lipschitz-continuous. On
the contrary, for the cases in which the decay of the manifold eigenvalues is faster, we are
not harmed by the use of DL-ROMs. It is indeed sufficient to seek the encoder-decoder
couple in a linear space to recover a POD-like error estimate.

3.2. Numerical experiments

3.2.1. Problem definition

In order to empirically validate the previous results, we now present the outcome of
a numerical analysis obtained by using the DL-ROM approach on a stochastic Poisson
equation, namely an elliptic PDE parameterized by a random field, equipped with Robin’s
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boundary conditions and solved on the spatial domain D = (0, 1)2:−∇ · (eµ∇u) = 1 in D

∇u = u on ∂D
(3.2)

Here µ denotes a centered Gaussian random field, meaning that all its finite distributions
are Gaussian i.e for any x1, ...,xn ∈ D, the random vector Vµ = (µ(x1), ..., µ(xn) has a
multivariate Gaussian distribution. For what concernes the choice of the kernel, the same
experiment has been repeated for a Gaussian (or squared exponential) kernel

Covµ(||x− y||) = exp

(
−||x− y||2

2l2

)
,

which generates an analytic almost surely field (with two different choices for the corre-
lation length l) and for an exponential kernel

Covµ(||x− y||) = exp

(
−||x− y||

l

)
,

for which the field is α-Holder continuous almost surely, with α < 1/2. Both kernels clearly
satisfy the hypothesis of Mercer’s theorem. Moreover, their isotropy makes the PDE
easily solvable and the solution manifold learning relatively feasible: these are desirable
conditions when running a significant number of tests. Nevertheless, this choice allow to
confirm the theoretical result for different decay rates of the eigenvalues. For the purpose
of showing the predicted trends, we used five order of truncation: p=5,10,20,40,100. The
last one approximates the whole, not truncated, field playing the role of the benchmark.

The snapshots are generated using as high fidelity FOM the Galerkin F-E Method, with
first order polynomial basis functions, on a structured triangular mesh with Nh = 10201

degrees of freedom. Some instances of the snapshots for the Gaussian kernel case, with
the associated random field realization, are depicted in Figure 3.1, whereas the decay of
the eigenvalues of its K-L decomposition is reported in Figure 3.2.
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Figure 3.1: Some instances of the random field and associated PDE solution for the case
of Gaussian kernel with l2 = 1/10. The smoothing effect of the diffusion problem is clearly
visible.

Figure 3.2: If the kernel is highly regular, as for the Gaussian case, or the correlation
length is high, the decay of the eigenvalues in its K-L decomposition is fast and the
approximation problem can be solved in a particularly efficient way through the use of
DL-ROM, according to Theorem 3.2

.
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3.2.2. Experimental design

Despite the fact that Theorem 3.1, combined with classical NN approximation theorems,
ensures the existence of an auto-encoder that can learn the solution manifold at any
level of accuracy, when dealing with numerical experiments the presence of the test error
must be taken into account. This is due to the high dimensionality and non-convexity
of the error surface (training error) and to the finite amount of data used in the NN
training (generalization gap), as already mentioned in chapter 1. Consequently, in order
to make the results of the analysis more robust, we considered three groups of AEs, with
different levels of accuracy. The latter was determined by choosing different values of a
structural parameter m, which fixes the number of channels of the convolutional layers.
This is indeed an efficient way to increase the AE expressiveness. Furthermore, four auto-
encoders fall in each group, one for every truncation order, p = 5, 10, 20, 40, of the random
field. They only differ in the latent dimension, which was chosen depending on p, in such
way to satisfy the hypothesis of Theorem 3.2, that is n = 2p+ 1.
The parametric architecture is described in Table 3.1, without considering the NN ϕ, since
the analysis concerns the auto-encoding process only.

Layer Input Output Kernel Stride Dof

Ψ
′ Dense 10201 n - - 10201(n+ 1)

Ψ Dense n 144m - - 144(m+ 1)n

Convol. 6× 6× 4m 20× 20× 2m 10 2 800m2 + 4m

Convol. 20× 20× 2m 47× 47×m 9 2 162m2 + 2m

Convol. 47× 47×m 101× 101 9 2 81m+ 1

Table 3.1: The parametric architecture used for experiments related to Problem (3.2).
The parameter m fixes the number of channels of the convolutional layer, whereas n is
the latent dimension. All the layers have the 0.1-leaky ReLu activation function, except
the last one, which is equipped with the linear one.

In order not to introduce a bias in the error decay estimate, the test error must be
homogeneous within each group. The simplest way to satisfy this requirement is to modify
properly the training duration: the auto-encoders with greater latent dimension need more
epochs to reach the same level of accuracy on their respective test set. This is due to the
higher complexity of the solution manifold that has to be learned and to the higher number
of dof that increases the number of optimization steps that are needed. More precisely,
the experiments showed that it was sufficient to double the number of epochs from one
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order to the following, passing from 50 to 400 epochs. Figure 3.3 shows the mean relative
error of every auto-encoder (for the case of Gaussian kernel with l2 = 1/10) by indicating
with different color the belonging to a certain group. The horizontal lines indicate the
mean error associated to the group and the low level of dispersion around them guarantees
the aforementioned homogeneity. The training of every NN was independently repeated
ten times and the results were averaged, with the aim to reduce the influence of the NN
parameters initialization on the analysis.

Figure 3.3: Mean relative error on the test set of the 12 AEs involved in the experiments,
subdivided in 3 different groups, according to their number of channels. Within every
group there are 4 AEs, one for every random field truncation order. They share a similar
accuracy in order not to introduce a bias in the experiment.

In this part of the work we are not interested in analysing the computational cost of the
training phases; however, it varied approximately from one up to ten minutes, depending
both on the number of epochs and on the total number of degrees of freedom of the auto-
encoder, and so on the parameter m.

A crucial issue in designing the experiment was the construction and the subdivision of
the data sets implied in the training and in the evaluation of the auto-encoders. This task
was accomplished through the following steps:
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• the first one hundred eigenvalues and eigenfunctions of the covariance kernel were
numerically determined;

• 104 one hundred-dimensional vectors of random coefficients were sampled from the
Normal distribution, since we chose to work with a Gaussian random field;

• depending on the desired order of truncation of the random field, only the first p

K-L bases were linearly combined to generate the random field;

• the latter was then passed to the FE solver and the resulting PDE solution stored
according to the truncation order;

• the data sets were subdivided reserving 1000 solutions instances for the training,
5000 for the test and 4000 for comparing the performances of different auto-encoders
on new samples.

(a) p=5, MRE = 4.69% . (b) p=10, MRE = 2.63%.

(c) p=20, MRE = 1.17%. (d) p=40, MRE = 0.30%.

(e) p=100.

Figure 3.4: A particular instance of the Gaussian field (with squared exponential kernel
and l2 = 1/10) and associated numerical PDE solutions for various orders of truncation.
The mean relative error between the truncated solution and the benchmark one (e) is
besides reported.
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In this manner, we can have perfect matching among the various datasets for auto-
encoders with different latent dimensions: the solutions sharing the same index in the
two datasets are generated from the same instance of the diffusion field, which is just
truncated at different orders. This allows us to run the experiments without introducing
a bias due to a particular choice of the solution manifold points used to evaluate the
expected value in Theorem 3.2. Figure 3.4 shows an instance of the random field and of
the associated solution for different order or truncation, together with the mean relative
error between the "truncated" solution and the benchmark one, with p = 100.

3.2.3. Results

Figure 3.5 summarizes the results obtained through the aforementioned experiment for
the case of Gaussian kernel and correlation length l = 1/

√
10. The plotted data (coloured

circles) show the performances of the three groups of auto-encoders in terms of the mean
L2 error between the benchmark solution and the auto-encoded "truncated" one, namely:

MLE = E ||uµ −ΨNN ◦Ψ′

NN(uµ(p))||.

The black dots correspond to the values of the function

f(p) = L
∞∑

i=p+1

√
λi

with L = 1/100 and p = 5, 10, 20, 40. The regression lines and the associated decay rates
are obtained assuming an exponential trend ∝ eαp (which is guaranteed by the theory, for
this case).
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Figure 3.5: The results of the experiment, showing the validity of the theoretical estimate
when improving the AEs expressiveness.

As we can clearly see, the error decay rate increases with the parameter m, finally ob-
taining for m = 16 an almost perfect match with the theoretical estimate. This is due to
the fact that the approximation by means of NN of the encoder-decoder couple, whose
existence is ensured in 3.1, generates a not negligible error, as described in Section 1.1.1.
By increasing m and improving the overall accuracy of the approximation, we were then
able to recover the predicted decay.

Figure 3.6: Mean test error of the AEs used in these experiments, divided in two groups
according to their accuracy. The absence of a trend appearing while varying the order of
truncation ensures the fairness of the experiment.

The same experiment was carried out also in two other scenarios: for a Gaussian kernel
with a different correlation length l = 1/5 and for an Exponential kernel. For these
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Figure 3.7: Eigenvalue decay for the other kernels

cases only two levels of accuracy were taken into account so that eight auto-encoders were
involved in the experiment. The homogeneity of their test error is again confirmed through
the plots in Figure 3.6. As shown by the graphics in Figure 3.7, both the decreasing in
correlation length of the random field and of the level of regularity of the kernel slow
down the eigenvalue decay in the K-L decomposition. As a consequence, the number of
modes playing an important role in the K-L decomposition increases and the random field
instances have a more complex shape. This can be verified through a comparison between
the random fields in Figure 3.1 and in Figure 3.8.

(a) Gaussian kernel, l = 1/5

(b) Exponential kernel

Figure 3.8: Random field and solution instance for the other kernels
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Finally, Figure 3.9 shows how the theoretical estimate is confirmed in both cases already
for m = 4, despite having a level of accuracy comparable to the one of the previous
experiment. This fact might be due to the intrinsic regularity that the smoothing effect
of the Laplace operator confers to the solution manifold. The latter is apparent from
the solutions in Figure 3.8 and from the rapid decay of the eigenvalues associated to the
solution manifold, for which we refer to [7]. The exploitation of the manifold regularity
during the learning process is indeed one of the main advantages in using a reduced order
model based on auto-encoders, as already mentioned in Section 1.2.

Figure 3.9: Error decay for the other kernels
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4| Transfer learning

In this chapter we present a Transfer learning strategy involving DL-ROMs, specifically
for the case of PDEs parametrized by random fields. The goal consists in designing a
DL-ROM able to inherit the information contained in another one, already trained for
a simpler problem in terms of random field modes involved and, as a consequence, with
a smaller latent dimension. We start this chapter by explaining why this idea might
be successful and beneficial also from a computational perspective. Then, we introduce
the original technical tool developed for its realization, namely the hybrid dense layers.
Finally, after a section devoted to the experimental tuning of the hyper-parameters char-
acterizing the proposed strategy, we report the results obtained on Problem (3.2) with a
Gaussian kernel.

4.1. Idea development

While carrying out the experiments in the previous chapter, we wondered how an al-
ready trained auto-encoder would respond when receiving as input the PDE solution
corresponding to a random field which is more complex with respect to those considered
during training. For a fixed order of truncation, it is possible to interpret the additional
modes of the random field as noise that propagates through the parameter-to-solution
map. In this perspective, it appears reasonable that the auto-encoder performs poorly
or, in the best case scenario, that it filters the noise out without exploiting the additional
information provided. Figure 4.1 shows that this is not what happens. The picture dis-
plays a comparison between the mean relative error committed by the 12 AEs (subject of
the previous experiments) in approximating the solutions for the full random field when
the input is the solution associated respectively to the full (circle) or truncated (trian-
gle) random field. The error is always smaller in the first case, independently of the NN
expressiveness, and the gap reduces gradually with the growth of the truncation order.
This means that the auto-encoder is able to process richer solutions than the ones it is
considered during training and it can take advantage of the additional details. The same
occurred for each of the covariance kernels tested.
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Figure 4.1: Auto-encoders errors in processing the truncated and the whole solution
manifold.

This result suggests that a DL-ROM implemented and trained for the manifold associated
to a certain truncation order, may be used as a basis for a richer DL-ROM, built for a more
complex approximation problem, in terms of involved modes. The purpose of this chapter
is then to understand if it is possible to reach an arbitrarily low approximation error
starting from a fixed internal representation of the solution manifold and by increasing,
a posteriori, the latent dimension. The term "fixed" here highlights the fact that the
value of weights and biases of the smaller auto-encoder remain frozen, therefore do not
serve solely as an educated initial guess where to start a new training.∗ A graphical
representation of the proposed Transfer learning strategy is depicted in Figure 4.2.

There would be also a practical impact of this great flexibility: the training of a very large
NN could indeed be divided in more steps. This would allow to deal with only a portion
of the degrees of freedom at each step, making the optimization feasible even when fixing
all the NN parameters at once would be impossible, because of the lack of computational
resources.

∗The aforementioned strategy was initially tested but it did not show any efficacy: the initial guess
was actually quite accurate (initial MRE ≈ 5% passing from truncation order 5 to 10), but the value of
the NN parameters was not preserved at all after the re-train. In particular it changed only the 25% less
than with the usual initialization strategy. This is not sufficient to claim that the internal representation
obtained by training the smaller auto-encoder is maintained. Moreover, there was no gain in terms of
computational efficiency: L-BFGS, despite being a second order optimizer, did not show the necessity of
a good initial guess in order to easily converge.
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Figure 4.2: The process of freezing an already trained auto-encoder and growing it, by
adding new degrees of freedom and in particular by increasing the latent dimension, before
learning a more complex solution manifold.

4.2. Hybrid layers

Practically speaking, a possible strategy could consist in copying the values of weights and
biases of an already trained auto-encoder in another one, with a greater latent dimension
and eventually more degrees of freedom also in other layers. These parameters are then
frozen, meaning that they cannot be optimized during further training with a decisive
impact on the cost of each epoch. The remaining part of the NN is finally initialized and
trained. The starting point was the creation of a Hybrid dense layer, with a frozen part
and another one with a normal functioning, without any loss in terms of efficiency during
the training. Since the available implementations only allow to freeze the whole layer,
the Hybrid layer is built as a collection of three of them: one is the starting point layer,
which is frozen; the second one generates the new outputs; the third one, with no biases,
contains the weights to deal with the new inputs. In order to ensure that the different
layers work together to produce the desired outcome, great attention should be paid in
the implementation of the forward function: this maps the inputs onto the outputs and,
as a consequence, is involved in the back-propagation. Figure 4.3 provides a sketch of how
a Hybrid dense layer is structured, showing the effect of increasing the number of inputs
and outputs of a layer on the weight matrix and on the bias vector.

It is not clear how to extend the proposed strategy also to convolutional layers, both from
a theoretical and a technical point of view. For this reason, the remaining part of the
work was developed using NNs which are composed uniquely of dense layers. This did
not have a major impact on our experiments, mainly because of the problems and meshes
considered, except for a slight increase in the gap error and in the computational time.
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Figure 4.3: Diagram of a Hybrid layer, relating its architecture to the weight matrix and
the bias vector.

Both issues are due to the larger amount of dofs characterizing dense layer with respect
to sparse ones. The parametric architecture used in this chapter is reported in Table 4.1:
the total number of dofs increased by an order of magnitude, even if 1 ≤ k ≤ 4.

Layer Input Output Dofs

Ψ
′ Dense 10201 n 10201(n+ 1)

Ψ Dense n 100k 100(k + 1)n

Dense 100k 200k 2× 104k(k + 1)

Dense 200k 10201 ≈ 2× 106k

Table 4.1: Parametric NN architecture used for the experiment on Transfer learning.

4.3. Setting choices

Before analyzing the performances of the proposed learning strategy, we must clarify the
role of some design choices, like the distribution of the additional degrees of freedom, and
the importance of some hyper-parameters, such as the choice of a scaling factor for the
weight initialization. An answer to all these questions can be given through numerical
experiments, comparing the NN error trends during the training phase. In order to make
the results more robust with respect to the weight random initialization, the error lines
depicted in this chapter are the results of the average between five different trainings.
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In addition to the training error and the test error, it might be useful to look at some
performance indicator which not depend on the specific order of truncation of the random
field. For this reason, we define the true error as

Etrue = E ||uµ −ΨNN ◦Ψ′

NN(uµ)||

which measures the accuracy in the reconstruction of the benchmark solution manifold. A
note on terminology: in the following, the original DL-ROM with a latent space of dimen-
sion 2p + 1 will be denoted as "Base-p", whereas the one which inherits the information
and it is then retrained will be referred to as "Hybrid-p".

4.3.1. Architecture

The first practical issue consists in understanding how to augment the dofs from the Base-
p1 to a Hybrid-p2 DL-ROM, with p2 ≥ p1. A partial answer is given through Figure 4.4,
depicting the re-training of three different Hybrid-10 DL-ROMs with k = 1, 2, 3, starting
from the same Base-5 with k = 1. The latter was trained for 200 epochs on 200 snapshots,
generated with a truncation order 5 on the KL expansion of the input random field. The
Hybrid DL-ROMs were then trained with the correspondent snapshots in the dataset with
truncation order equal to 10.

Figure 4.4: Error monitoring of three different Hybrid-10 DL-ROMs, with an increasing
number of additional dofs, starting from the same Base-5 DL-ROM. The error lines are
obtained by averaging between 5 instances, reported in transparency.
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As we can clearly see from the flat error lines, corresponding to the case k = 1, it
is not sufficient to increase only the latent dimension in order to recover the full NN
expressiveness: the other layers must also be given some additional dofs. On the other
hand, also adding too many degrees of freedom does not guarantee any advantage. Besides
requiring higher computational resources, the Hybrid-10 DL-ROM with k = 3 performs
worse in all the accuracy indicators, with respect to the one with k = 2. If a greater
generalization gap was expected (this is related to the NN complexity, see Section 1.1.1),
a lower training error is instead surprising and supportive of the chapter driving idea: the
Hybrid DL-ROM is able to enhance its internal representation of the solution manifold
with further details, starting from a fixed simpler structure and adding minor corrections
thanks to a limited number of additional dofs.

4.3.2. Weight initialization

The second issue is related to the initialization of the additional degrees of freedom. At
the extremes of the solution range there are:

• the usual He initialization: this is the most obvious choice, since it guarantees the
correct exploration of the configuration space and the training stability.

• the initialization at 0 of the weights value: this is optimal from the point of view
of the initial guess (since on the contrary the internal manifold representation is
compromised by random noise) but impracticable because the weights value would
remain at zero, being their sensitivities null.

In order to find the balance point between these two alternatives we looked for the optimal
order of magnitude of a scaling factor ϵ, by which the weights, after the He initialization,
are multiplied. The goal was achieved by running an experiment similar to the previous
one; average results are depicted in Figure 4.5.

The three types of error are not highly sensitive to the value of ϵ, in contrast to the initial
condition. Anyway, the existence of the aforementioned trade-off seems to confirmed:
among the three, the intermediate value ϵ = 10−1 outperforms the other choices and was
chosen for the following of the work.

4.3.3. Choice of the training set

The last design choice regards the opportunity, during the training of the Hybrid DL-
ROM, of using a new dataset. In particular, we wonder if it is beneficial to use solutions
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Figure 4.5: Error monitoring of three Hybrid-10 DL-ROMs, with different scaling of the
weights initial value, starting from the same Base-5 DL-ROM.

associated to other instances of the random field in place of the same ones moreover
characterized by a higher order of truncation. In Figure 4.6, obtained by training a Base-
10 DL-ROM with k = 2 whose dofs are then inherited by a Hybrid-20 DL-ROM with
k = 4, emerges a trend similar to the one already encountered when dealing with the
Multi-level training in Chapter 2. Indeed, the use of the same solution instances allows
to reach a lower training error: the Hybrid DL-ROM is able to take full advantage of the
inherited information on the solution manifold. On the contrary, changing the dataset
improves the performances in terms of generalization gap.

What the best strategy in term of test and true error is, it might depend on the problem,
however, we can draw a general conclusion: if the Transfer learning process has to be
repeated many times, changing the dataset every time is a successful strategy to maximize
the accuracy.

4.4. Final results

The first goal of the numerical experiments is to verify whether this strategy allows to
reach an arbitrarily high accuracy level. The answer is given by comparing the errors
committed by the auto-encoders built and trained in the standard way. Figure 4.7 collects
the results in three different scenarios: from a Base-5 DL-ROM to a Hybrid-10 DL-ROM,
from a Base-10 DL-ROM to a Hybrid-20 DL-ROM and from a Base-20 DL-ROM to a
Hybrid-40 DL-ROM. Concerning the architectures, independently of the fact that the



50 4| Transfer learning

Figure 4.6: Error monitoring of two Hybrid-20, trained with the same solution instances
or other ones, starting from the same Base-10.

auto-encoder was of Hybrid or Base type, we fixed k = 1/2/3/4 for p = 5/10/20/40.†

Finally, the dimension of the training set was fixed at 200 samples and the number of
epochs was varied between 200 and 800, depending on the complexity of the solution
manifold. The results show that the Transfer learning strategy outperforms the standard
training in terms of training error. This guarantees lower values also for test and true
errors even though the generalization gap is higher. Note that it would be sufficient to
increase the dimension of the training set to reach a level of accuracy that was unavailable
with the standard training, especially when high orders of truncation are involved.

†This choice guarantees the fairness of the comparison, since it optimizes the Base auto-encoders
performances, according to various experiment in which smaller and bigger architecture were considered,
once all the other hyper-parameter were fixed. The Hybrid performances might be even better for another
choice of k.
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(a) (b)

(c)

Figure 4.7: Comparison between the mean error path obtained through the standard
training and the one obtained through the Transfer learning strategy. The latter outper-
forms independently of the random field truncation order.

Figure 4.8: Error lines obtained exploiting for three times the Transfer learning procedure,
using the Hybrid DL-ROMs as Base DL-ROMs.
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Secondly, we wonder if the Transfer learning strategy can be used more than once, namely
if we can use a Hybrid DL-ROM as a Base DL-ROM. Figure 4.8 shows the error lines
obtained starting from a Base-5 DL-ROM, training a Hybrid-10 DL-ROM and then using
it as a base for a Hybrid-20 DL-ROM, and finally exploiting the latter in turn for a Hybrid-
40 DL-ROM. The architecture and training specifications are the same used before. The
comparison with the Base-20 DL-ROM and the Base-40 DL-ROM shows that a further
subdivision of the training is possible and guarantees adequate performances.

Finally, we analysed the advantage in terms of computational burden of the preoposed
strategy. As already mentioned, the possibility to split the train in two steps allows to
lower the requirements in terms of memory storage: this has a great advantage since we
are dealing with millions of dofs and we are using a second-order optimizer that exploits
also their values in the previous epochs. Beyond this, we wonder whether there is a gain
also in terms of training times. As reported in Table 4.2, splitting the training in two
stages allows to save approximately 30% of time, simultaneously increasing the accuracy.
The use of further intermediate Hybrid DL-ROMs guarantees even higher improvements,
keeping constant the time per epoch, entailing just a slight worsening of the test error.

AE type Test err Epochs Time T/e Gain

B5+H10 0.75% 200× 2 3m 15s 0.49 s/e 30%

B10 0.91% 400 4m 39s 0.70 s/e

B10+H20 0.88% 300× 2 6m 29s 0.65 s/e 29%

B5+B10+H20 1.06% 200× 3 5m 5s 0.50 s/e 45%

B20 0.98% 600 9m 12s 0.92 s/e

B20+H40 0.80% 400× 2 10m 2s 0.76 s/e 34%

B5+H10+H20+H40 1.19% 200× 4 7m 2s 0.52 s/e 56%

B40 0.87% 800 15m 45s 1.18 s/e

Table 4.2: Computational time saved using the Transfer learning strategy with two or
more hybridations.

It might be argued that the need of generating new synthetic data for the simplified
version of the random field might cancel off any computational gain. This issue can
be easily overcome since we can use the training set associated to the richer solution
manifold also for the training of the Base DL-ROM, without any impact on the final
Hybrid performances. This fact is proved by the results in Figure 4.9. Here, we compare
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the error lines obtained by training a Base-5 DL-ROM on a 5-truncation order dataset
with the ones associated to the same architecture trained on a 10-truncation order dataset.
Furthermore, we also analyse the behaviour of the Hybrid-10 DL-ROM, built upon those
Base-5 DL-ROMs.

Figure 4.9: Error monitoring of two Base-5 DL-ROMs (and of the Hybrid-10 DL-ROMs
built upon them), trained respectively with a dataset generated truncating at order 5 of
the random field and directly with the one generated for order 10.

As expected, test and train errors are lower using the 5-dataset, for which the Base-5
DL-ROM is specifically designed, whereas the true error is higher, since clearly the 10-
dataset gives more information about the manifold associated to the whole random field.
These clear differences in the various performance indicators disappear when observing
the Hybrid DL-ROMs during the last 200 epochs.

In conclusion, the presented results show that transferring information from a DL-ROM
to another is not only possible without undermining the expressiveness of the latter, but
it might be used as a strategy when dealing with complex random fields. Besides reducing
the requirements in terms of memory, the Transfer learning strategy could be used to lower
drastically the time implied by the training or even to reach higher accuracy, depending
on the number of implemented steps and on the availability of synthetic data.
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5| An Inverse UQ application

This Chapter is devoted to the development of an original method for the solution of
Bayesian inverse problems when the parametrization involves complex random fields.
More specifically, we propose a revisited version of the Metropolis algorithm (MA) for
the exploration of the posterior probability distribution, which we build entirely upon the
use of Hybrid DL-ROMs introduced in the previous Chapter. Before passing to the ac-
tual implementation and to the presentation of the experimental results, we devoted some
sections to introducing the concept of inverse problem, its solution within the Bayesian
framework and the standard version of the Metropolis algorithms, highlighting its main
issues.

5.1. The solution of a Bayesian inverse problem

5.1.1. Definition of the inverse problem

In order to formalize the concept of inverse problem, we start by introducing the forward
problem and the associated terminology, limiting ourselves to the contest of elliptic PDEs.
Given a generic system, whose state is compliant to a parametric PDE, the forward
problem consists in predicting the value of a certain Quantity of Interest (QoI) associated
to the state of the system for a particular value of the parameters. These latter may play
a role in the definition of the differential operator, or influence other components of the
problem, such as the source, the boundary conditions or the domain geometry. However,
in this work we only deal with the former case. The QoI is defined as a functional
(often linear and continuous) of the solution, but may as well explicitly depend on the
parameters. As always, we denote by Θ the parameters space, by µ a particular parameter
instance, by uµ the corresponding state of the system, which is modeled as the solution
to a PDE defined over a domain D. Furthermore, we denote by L a generic differential
operator, by f the source and by q the QoI. Then, we can write the generic forward
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problem as follows: 
L(uµ;µ) = f in D

+BCs

q(µ) = Q(uµ;µ)

where BCs stands for boundary conditions. We work under the assumption that for all
µ ∈ Θ the forward problem is well-posed. Typical examples of quantities of interest are the
solution itself q(µ) = uµ, its mean over the domain q(µ) =

∫
D
uµ(x)dx/|D| and, above all,

a collection of solution values at selected points of the domain q(µ) = [uµ(x1), ..., uµ(xn)].
The solution of the forward problem requires, generally speaking, the evaluation of the
parameter-to-solution map and the successive computation of the associated QoI. The
inverse problem, instead, consists in determining the value of the parameter µ given
a measurement q∗ of the QoI. This kind of problems commonly suffers of an intrinsic
ill-posedness caused by the fact that the parameter-to-QoI map is non-injective. For
this reason, deterministic approaches, that seek the parameter values by minimizing the
discrepancy between predicted and observed QoI, always need regularization strategies.
The latter consists in including some prior information about the parameter in a rather
"artificial" way, by introducing further constraints. A much more natural approach, that
allows to exploit the prior information and to take into account experimental errors in
the QoI measurement, within a rigorous theoretical framework, is the Bayesian one.

5.1.2. The Bayesian framework

Compared to the frequentist perspective, within the Bayesian paradigm parameters are
considered to be random variables with an associated probability density. The key idea is
that our prior knowledge, which is fundamental for the inverse problem well-posedness, is
condensed into a prior distribution π0(µ). The prior distribution is then updated on the
basis of observed values of the QoI q∗, which we here assume to be a vector. The final
result of this operation, which is actually the solution of the inverse problem according
to the Bayesian paradigm, is the posterior distribution π(µ|q∗). Accordingly to Bayes’
formula, the latter can be expressed as

π(µ|q∗) =
π(q∗|µ)π0(µ)

πq(q∗)
. (5.1)

As already mentioned, π0(µ) reflects our prior knowledge on the parameters, which may
come from the existing literature, other models or physical constraints. If none of this
sources is available also uninformative uniform prior may be used. π(q∗|µ) is the so
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called likelihood function, that quantifies the probability of observing q∗ for a specific
instance of the parameters. In the context of Bayesian inverse problems the likelihood
is determined by modelling the measurement error. The latter is assumed to take into
account both the experimental noise and the discrepancy between the real phenomenon
and the mathematical representation through the PDE. Since this Chapter has the first
aim to develop a new strategy, we adopt the simplest possible error model (which is,
nevertheless, a quite widespread choice in the literature), namely the additive Gaussian
model. With this choice, the measurement of a (vectorial) QoI can be expressed as

q∗ = Q(uµ;µ) + ε = q(µ) + ε (5.2)

where ε is random Gaussian vector with 0 mean and a (symmetric and positive definite)
covariance matrix C. Usually, one assumes that the errors affect the components of
the QoI independently, and C is chosen to be diagonal. Let πε be the corresponding
probability density function: by taking advantage of the error model in (5.2), we can
express the likelihood as

π(q∗|µ) = πε(q
∗ − q(µ)) , (5.3)

so that q∗|µ ∼ N (0, C) for the Gaussian case.
By representing the marginal densisty πq(q

∗) as the integral over possible joint densities
and using again the Bayes formula, we obtain

πq(q
∗) =

∫
Θ

π(µ, q∗)dµ =

∫
Θ

π(q∗|µ)π0(µ)dµ .

so that we are finally able, exploiting the error model, to rewrite expression (5.1) in terms
of all known probability densities

π(µ|q∗) =
π(q∗|µ)π0(µ)∫

Θ
π(q∗|µ)π0(µ)dµ

=
πε(q

∗ − q(µ))π0(µ)∫
Θ
πε(q∗ − q(µ))π0(µ)dµ

However, the latter formula does not generally allow to determine the posterior density
in a closed form. Indeed, the normalizing integral at the denominator can be analytically
computed only under very specific hypothesis (e.g. prior and likelihood both Gaussian and
QoI linear in the parameters) and numerically integrated with classical quadrature rule
only when the number of parameters is limited. Most of the applications regard instead
large-scale Bayesian inversion problems and high-dimensional posterior distribution, that
are hardly visualizable. As a consequence, it is often preferable to investigate the posterior



58 5| An Inverse UQ application

by estimating some quantities related to its distribution, such as the conditional mean

µCM =

∫
Θ

µ π(µ|q∗)dµ (5.4)

or the conditional covariance

CC = Cov(µ|q∗) =

∫
Θ

(µ− µCM)⊗ (µ− µCM) π(µ|q∗)dµ. (5.5)

In order to estimate these latter, it is not necessary to have a complete knowledge of the
posterior distribution, but just to be able to sample from it. This is why we devote the
next subsection to the Metropolis algorithm, a simulation technique that allows to explore
the posterior while avoiding the evaluation of the marginal density. For further details on
the Bayesian framework for the solution of inverse problems we refer to [13].

5.1.3. Metropolis algorithm

The Metropolis algorithm (MA) belongs to a large class of methods, the Monte Carlo
Markov Chain (MCMC) methods, all based on the same common idea: given a target
distribution they aim to generate a Markov chain (an homogeneous and discrete stochastic
process, in which the probability of being in a certain state at step t depends only on the
state at step t−1) whose ergodic distribution is the target distribution [27]. In our case, the
target distribution is the posterior, so that the sequence of random samples generated by
the method (µ1, ...,µn, ...) approaches the posterior when as n becomes sufficiently large,
regardless of the initial guess and under minimal assumption on the target distribution.
We chose the Metropolis algorithm because it is a very simple example of MCMC, and
thus a good starting point for our generalization to stochastic PDEs. The main idea of
the MA is to generate a random walk in which every step is sampled from a proposal
symmetrical distribution. The latter might be accepted or not according to a simple rule,
based on what we know about the target distribution. The detailed procedure can be
found in Algorithm 5.1 The key point is that the target distribution only appears in the
form of a ratio within the algorithm. As a consequence, we do not need anymore to
determine the normalizing constant at the denominator of our posterior target, indeed

πT (µ#)

πT (µi−1)
=

π(µ#|q∗)

π(µi−1|q∗)
=

π(q∗|µ#)π0(µ#)

π(q∗|µi−1)π0(µi−1)
.

It is easy to observe that the new candidate µ# is always accepted if the chain is moving
towards a region in the parameter space where the density is higher. The fact that it
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might be accepted anyway (through the coin tossing in line 7) makes the Markov chain
reversible and, thus, ergodic.

Algorithm 5.1 Metropolis algorithm
1: INPUT: the target πT , a proposal σ, a initial guess µ0, the chain length N

2: for i = 1 : N do
3: Draw a step ∆µ ∼ σ

4: Define a new candidate µ# = µi−1 +∆µ

5: Compute α = min (1, πT (µ#)/πT (µi−1))

6: Draw from ρ ∼ Be(α)

7: if ρ == 1 then
8: Assign µi = µ#

9: else
Assign µi = µi−1

10: end if
11: end for
12: OUTPUT: the chain (µ0, ...,µN)

Despite its effectiveness, the MA presents several critical points. First of all, the incidence
of the initial guess can bias the simulation. For this reason, it is common to eliminate
the first part of the chain through the called burn-in. Second, the choice of the proposal:
if it is too wide too narrow, then it does not allows the chain to explore the posterior.
Moreover, if its shape is too different from the target one the acceptance rate might be
very low, slowing down the convergence. Finally, the latter is also hampered by the curse
of dimensionality : when the number of parameters grows, the number of samples needed
to accurately simulate the posterior increases exponentially. All the described issues
contribute to exacerbate the biggest problem affecting not only the Metropolis algorithm
but every MCMC method, namely the computational cost. Indeed, at every step of the
random walk, specifically at line 5 of Algortithm 5.1, we need to evaluate the likelihood for
a new instance of the parameters and this implicates the evaluation of the forward map,
as emerges from expression (5.3). Practical applications require the generation of tens of
thousands of samples, with an unsustainable computational cost if the state equation is
a PDE to be solved numerically by means of high-fidelity FOMs.
To face this issue, developing every sort of surrogate model able to make the simulation
feasible is therefore essential. After the training offline stage, the surrogate ability in
providing fast evaluations for every new parameter candidate, allows to reach convergence
in a reasonable amount of time even though, depending on the model accuracy, this
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might introduce a bias in the simulation. A lot of works go further this objective by
design strategies in which the interplay between the surrogate and the MCMC method
guarantees even better performances. Just to make some examples, we can consider
the use of the Reduced Basis method to approximate the PDE solution combined with
reduction error models [24], of an adaptive Polynomial Chaos Expansion informed by the
posterior to surrogate the parameters-to-QoI map [34], and finally, of a deep NN to do the
same, enhancing a Delayed Rejection Metropolis algorithm [23]. The algorithm proposed
in this Chapter follows the same path.

5.2. An adaptive algorithm for stochastic PDEs

We develop an adaptive version of the Metropolis algorithm with the goal of reconstructing
complex random fields from a noisy measurement of the associate stochastic PDE solution.
The proposed strategy not only makes an extensive use of DL-ROMs as a surrogate
to speed-up the simulation, but takes advantage of the Hybrid DL-ROMs presented in
Chapter 4 to deal with the curse of dimensionality. The latter is a particularly critic issue
in this context, since the random field might be characterized by tens of input parameters
for which determine a posterior distribution.

5.2.1. Our meta-algorithm

We design a way to tackle the curse of dimensionality by a "divide and conquer" strategy
that infers the posterior distribution of some random coefficients at a time, starting from
the most influential ones and enriching the picture during successive steps. This allows
to improve our surrogate model between two successive runs of the Metropolis algorithm
by exploiting the information resulting from the partial exploration of the posterior.

Let µ(x) =
∑p

i=1 bi(x) µi be a random field truncated at order p, where bi are the spatial
modes and µi the random coefficients characterizing its expansion. Finally, let π0 be the
prior distribution that we assume for the vector of the random coefficients µp = [µ1, ..., µp].
We first select a group of p1 relevant parameters and we generate a dataset ST1 using the
FOM and sampling the parameter space according to the prior distribution π0(µ

p1) where
µp1 = [µ1, ..., µp1 , 0, ..., 0].
Then, we train a Base-p1 DL-ROM to use online as a surrogate for a first run of the MA,
with standards choices for what concerns the initial guess and the proposal distribution.
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In particular, we have

µp1
0 = Eπ0 [µ

p1 ] and σ1 ∼ N (0, s2σI) (5.6)

where sσ is a scaling factor that ensure the correct exploration of the parameter space. At
the end of the simulation, once the first k samples are eliminated in the burn-in procedure,
we obtain the sample (

µp1
k+1, ...,µ

p1
N

)
∼ π(µp1 |q∗).

At this point, we augment the number of parameters in the estimation process, passing
from p1 to p2. Thanks to the transfer learning strategy developed in the Chapter 4, there
is no need to devise another surrogate from scratch. We can indeed use an Hybrid-p2
DL-ROM to inherit the information about the rough knowledge of the solution mani-
fold associated to the state equation from the Base-p1, used previously. The goal of the
following MA run is then to simulate the "higher-dimensional version" of the posterior
distribution, namely π(µp2|q∗). This whole strategy can obviously be repeated more than
one time, until the posterior distribution of all the random coefficient has been inferred.

The idea behind this strategy is the following: the surrogate model needs not to be
accurate in an homogeneous way over the whole parameter space, but it should be more
precise in evaluating the PDE solution where the posterior is concentrated. We achieve
this goal through the generation of a new dataset ST2 for the Hybrid-p2 training, obtained
by sampling from the updated prior distribution that π′

0(µ
p2) can be expressed as follows

π′
0(µ

p2) = π(µp1|q∗) ·
∫
Rp1

π0(µ
p2)dµ1...dµp1 .

The above definition is given by the product of the simulated "partial" posterior and of
the marginal prior for the remaining block of parameters. Training the Hybrid-p2 over
input parameter instances sampled in this way allow to create a model tailored for the
specific inverse problem, with both low training and test error, despite the use of a limited
number of new data. The main risk of this strategy consists in the fact that the first
parameter estimation might be biased and a consequence the Hybrid DL-ROM might be
inaccurate where the posterior is actually concentrated. This would entail an even bigger
bias leading to the non-convergence of the Bayesian inversion procedure. For this reason
we introduced a spreading factor KSp that enhances the covariance of π(µp1|q∗) allowing,
during the generation of ST2, the sampling of a wider portion of the parameter space,
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included the correct region (as depicted in Figure 5.1).

Figure 5.1: The biased inferred posterior is spread in order to sample also from the correct
portion of the parameter space.

With a proper tuning of KSp we were able to increase considerably the algorithm robust-
ness, without distorting the key idea. The proposed strategy in its two-stage basic version
is formalized in Algorithm 5.2, but it can be easily generalized to an arbitrary number
of stages. For what concerns the second MA run, as well as the the potential next ones,
we can further exploit the information coming from the first simulation, making also the
random walk adaptive.
In particular, we can exploit in the definition of the starting value µp2

0 and of the covariance
matrix of the proposal σ2 the simulated chain and the estimation of C̃1

C ≈ Cov(µp1|q∗)

by eq. (5.5). Therefore, we have

µp2
0 = Eπ′

0
[µp2 ] and σ2 ∼ N (0, Cσ2) with Cσ2 = sσ

[
C̃1

C 0

0 I

]
. (5.7)
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Algorithm 5.2 2-stage adaptive meta-algorithm
1: INPUT: Truncation orders p1, p2, the FOM, the spreading factor KSp

2: BEGIN STAGE 1: SIMULATION OF π(µp1|q∗)

3: Sample from π0(µ
p1) the input parameter instances

4: Generate ST1, by exploiting the FOM for the PDE solution
5: Implement and train on ST1 a Base-p1 DL-ROM
6: Use it as surrogate in Alg 5.1 with µp1

0 and σ1 as in (5.6)
7: END STAGE 1
8: BEGIN STAGE 2: SIMULATION OF π(µp2|q∗)

9: Sample from the KSp-spread updated posterior π′
0(µ

p2) parameters instances
10: Generate ST2, by exploiting the FOM for the PDE solution
11: Implement and train on ST2 an Hybrid-p2 DL-ROM inheriting from the Base-p1
12: Use it as surrogate in Alg 5.1 with µp2

0 and σ2 as in (5.7)
13: END STAGE 2

5.2.2. Numerical experiments

In order to evaluate the performances of the proposed strategy, we present the results
obtained for two test-cases. The class of PDEs, used to prescribe the state equation for
both of them, is the same of the previous Chapters, namely−∇ · (eµ∇u) = 1 in D

∇u = u on ∂D ,

with D = (0, 1)2. Our objective is to identify the random field µ given some pointwise
measurements of the PDE solution across the domain, Q(uµ;µ) = [uµ(x1), ..., uµ(xs)].
These values, which define the QoI according to our notation, are measured at some fixed
sensor locations (see e.g. Figure 5.2).

Figure 5.2: Setting of the sensors location implied for the test-cases.
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Within the Bayesian framework, we assume that µ is a centered Gaussian random field
truncated at a certain order p. In particular, µ can be expressed in terms of its Karhunen–
Loeve decomposition as

µ(x) =

p∑
i=1

√
λi bi(x) µi

where λi are the decreasing eigenvalues of the random field covariance kernel, already
plotted in Figures 3.2 and 3.7, while bi are the spatial modes of the field, characterized
by an increasing complexity clearly visible from Figure 5.3, and µi are the random coeffi-
cients. We assume a priori that the latters are independent and have a standard Gaussian
distribution, therefore denoted by µp = [µ1, ..., µp] we have that

µp ∼ N (0, I) and π0(µ
p) =

1

(2π)p/2
exp

(
−|µp|2

2

)
.

Figure 5.3: Spatial modes of increasing complexity in the KL decomposition of the random
field.

Concerning the likelihood we adopt the error model (5.2) with the error distributed Nor-
mally and the further simplifying assumption of known covariance matrix. In particular,
we assume that the experimental measurements of the solution at the sensors location are
uncorrelated (and thus independent) with the noise variance given by 1% of the L1-norm
of the PDE solution. Considered the large number of sensors Ns = 100 involved in the
experiment and the shape of the domain, we can approximate the latter with the average
of the QoI measurements. In conclusion, we have that

ε ∼ N (0, C) with Cij = 10−2

(
1

Ns

Ns∑
k=1

|u(xk)|

)
δij ,

where δij denotes the Kronecker delta. We can summarize our goal with the aid of Figure
5.4. We aim to infer the random field (on the left) generating the PDE solution (at
the center) by finding the posterior distribution of the random coefficients in the KL
decomposition. This is performed by starting from a Gaussian prior distribution and
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leveraging the experimental noisy measurement of the solution on a grid of sensors (on
the right).

Figure 5.4: Setting of the Bayesian inverse problem.

We now report the results obtained for two test-cases with our adaptive meta-algorithm.
For both of them we adopted a 3-stage strategy. We quantify the improvement in the
performances by estimating through the simulated posterior the conditional mean and
computing the relative L2-error (RE) between the inferred and the benchmark random
field. We compute the same quantity also between the PDE solution and the one corre-
sponding to the inferred field. We observed that our strategy performs particularly well
when we are able to determine groups of random coefficients having a comparable influ-
ence on the stochastic PDE solution. This could be quantified through the eigenvalues
associated at the random coefficient. Therefore, for the first case we manually fixed them
according to Figure 5.5a.

(a) Test-case 1 (b) Test-case 2

Figure 5.5: Eigenvalues for the test-cases.

The corresponding results are reported in Figure 5.6, where we compare the random fields
and the associated solutions obtained after every stage of the process. We can clearly see
the improvements from one stage to the next one, until reaching a quite accurate result,
in particular, considering that the error between the solution has the same magnitude of
the error in the QoI experimental measurement.
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(a) RE sol = 37.4 %,
RE field = 45.7 %

(b) RE sol = 2.8 %,
RE field = 19.8 %

(c) RE sol = 1.1 %,
RE field = 7.1 %

(d) Benchmark

Figure 5.6: Inferred random field and associate solution for test-case 1.

The same holds also for the more realistic second test-case, whose results are depicted
in Figure 5.7. The eigenvalues here, see Fig. 5.5b, are indeed associated to a Gaussian
covariance kernel.

(a) RE sol = 5.6 %,
RE field = 87.15 %

(b) RE sol = 2.6 %,
RE field = 50.1 %

(c) RE sol = 1.06 %,
RE field = 24.8 %

(d) Benchmark

Figure 5.7: Inferred random field and associate solution for test-case 2.

The estimate of the random field is qualitatively valid since it catches all the benchmark
important features. However, it is affected by a still quite high relative error that can be
attributed to the smoothing properties of the stochastic PDE: the relative error in terms
of the PDE solution is extremely low and of the same magnitude of the experimental noise.
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Concerning the computational cost of the method, we have to consider that we generated
1000 snapshots for the first training set and 500 for each of the following ones and we
performed N = 50000 steps for every run of the MA. The total time needed by the whole
process for both the case was approximately 1200s that are allocated in the following way:
training time 50%, MA simulations 30%, FOM time 20%. Just to make a comparison,
assuming to be able to obtain the same posterior simulation using the FOM instead of the
Hybrid DL-ROM with just one fifth of the steps, considering 0.2 s per steps, the implied
time would have been more than ten times higher.
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Conclusions

This work concerned Deep Learning-based Reduced Order Models, their theoretical prop-
erties and the development of strategies to improve their performances. In particular, we
accomplished the extension of a theoretical result that bounds the error committed by an
auto-encoder, with a prescribed latent dimension, for the case of stochastic PDEs. We
then confirmed the validity of the estimate by carrying out several experiments in the
case of elliptic PDEs parametrized by random fields.

We furthermore proposed two different strategies for the reduction of the computational
cost entailed by the offline stage, a Multi-level training algorithm and a Hybrid DL-ROM.
The 2-levels training algorithm allowed to reduce the cost of the dataset generation up to
65%, without compromising the accuracy and also lowering the training cost. This was
shown empirically in the case of an elliptic PDE whose parameter dependence was highly
nonlinear. Conversely, the introduction of Hybrid DL-ROM allowed us to cut down by
30% the computational time needed for the training phase of the ROM. This happened
for the case of random field parametrization, for which we also demonstrated that a DL-
ROM inheriting a fixed internal representation of the solution manifold, can enhance this
latter with further details during a re-train, improving the performances obtained with
the standard training procedure.

We finally employed Hybrid DL-ROMs in designing an adaptive Metropolis algorithm
for the efficient and accurate solution of a Bayesian inverse problem. In particular, we
were able to estimate with adequate levels of accuracy the structure of complex random
fields despite the highly regularizing nature of the forward problem and the large number
of random parameters. This goal was achieved through the use of a limited amount of
computational resources (speed-up ×10 with respect to the use of a FOM), showing the
capabilities of DL-ROMs as accurate model surrogates.
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This work touched many different aspects related to the design, the use, and the analysis
of DL-ROMs and, as a consequence, further steps can be made in several directions.
From a theoretical perspective, it would be interesting to proof an approximation result
specifically tailored for the case of time-dependent problems, that were not considered in
this work. Indeed, while time may be considered as an additional parameter, as it was done
in [10], better strategies may be available. Concerning the Multi-level training, a deeper
exploration of the interplay between model accuracy and the number of discretization
levels could also yield significant improvements - this is still an open issue, indeed, of
an otherwise very promising learning strategy. For the case of Hybrid DL-ROMs, further
developments primarily regard some technical aspects: for instance, it would be of interest
to design a strategy for partially freezing not only dense layers, but also convolutional
and mesh-informed ones. The use of sparse layers is indeed fundamental for larger-scale
problems. Finally, all the aforementioned steps might be useful for further enhancing
the performances of our adaptive Metropolis algorithm. The final goal in this direction
would be the development of a black-box application that is able to automatically tune its
hyper-parameters, such as the number of stages and the spread factor, through prescribed
criteria, in order to further enhance the accuracy of the parameter estimation.
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