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Abstract

The comprehension of the link between the topological properties and the electronic

properties of materials is of primary interest. In this Thesis, the investigation regarded

the HOMO-LUMO gap of benzenoid hydrocarbons, which are a class of organic molecules

made of fused benzene rings.

The energy gap is an electronic property of molecules relevant to the determination

of their reactivity and their optical characteristics. In the case of benzenoid hydrocar-

bons, properties such as aromaticity are in�uenced by the topological arrangement of the

rings [1]. Therefore, for these compounds, it holds signi�cance investigating the energy

gap through topological descriptors within the framework of chemical graph theory.

Ciosªowski attempted to describe through topological descriptors the energy gap com-

puted by Hückel theory for a set of benzenoid hydrocarbons with a number of rings

between one and eight [2]. In the initial chapter, I adopt the same topological parame-

ters introduced by Ciosªowski to predict the energy gap calculated by Density Functional

Theory (DFT) for selected benzenoid hydrocarbons with a number of rings between one

and six rings. Here, I give particular attention to non-planar molecules. Subsequently, I

extend this approach to benzenoid hydrocarbons with more than eight rings, considering

additional topological descriptors, to enhance the accuracy of HOMO-LUMO gap predic-

tions for molecules with more than twenty rings. The correlation between the energy gap

calculated using Hückel theory and the one estimated through DFT calculations is exam-

ined through the analysis of average carbon-carbon bond lengths. A robust correlation

between the energy gap estimated with Hückel theory and the one calculated with DFT

is demonstrated across all the analyzed classes of benzenoid hydrocarbons. Lastly, I bring

back the concept of isoarithmicity observed by Balaban [3] for a subset of benzenoid

hydrocarbons and I apply it to the HOMO-LUMO gap calculated with the Hückel theory.

I also veri�ed its validity for the HOMO-LUMO gap calculated with the DFT.

The results presented in this Thesis showcase the utility of concepts from chemical

graph theory in predicting DFT-calculated properties with reduced computational e�ort.

Keywords: Benzenoid hydrocarbons, DFT, Hückel theory, energy gap, HOMO-

LUMO gap.





Sommario

La comprensione del legame tra le caratteristiche topologiche e le proprietà elettron-

iche dei materiali è di primaria importanza. In questa Tesi, l'analisi è focalizzata sul

gap HOMO-LUMO di idrocarburi benzenoidi aromatici, che sono una classe di composti

organici costituiti da anelli di benzene condensati.

Il gap energetico è una proprietà elettronica delle molecole rilevante per lo studio della

loro reattività e delle loro proprietà ottiche. Nel caso di idrocarburi benzenoidi, proprietà

come l'aromaticità sono in�uenzate dalla disposizione degli anelli nella catena [1]. Quindi,

nell'ambito della teoria chimica dei gra�, è pertinente investigare il gap energetico in

termini di descrittori topologici.

Ciosªowski ha espresso tramite descrittori topologici il gap energetico calcolato con la

teoria di Hückel per una serie di idrocarburi benzenoidi con un numero di anelli compreso

tra uno e otto [2]. Nel capitolo iniziale, gli stessi descrittori topologici sono usati per

predire l'HOMO-LUMO gap calcolato con la teoria del funzionale della densità (Density

Functional Theory, DFT) per una selezione di idrocarburi benzenoidi con un numero di

anelli compreso tra uno e sei, con particolare attenzione alle molecole non planari. Quindi,

questo approccio è stato esteso alle molecole con più di otto anelli, considerando ulteriori

descrittori topologici per migliorare l'accuratezza delle previsioni del gap HOMO-LUMO

per molecole con più di venti anelli.

La correlazione tra il gap calcolato con la teoria di Hückel e quello calcolato con la DFT

è esaminata tramite l'analisi della lunghezza media del legame carbonio-carbonio. Per

tutte le classi di idrocarburi benzenoidi analizzate, è dimostrata una robusta correlazione

tra il gap energetico stimato con la teoria di Hückel e quello calcolato con la DFT. In�ne,

riprendiamo il concetto di isoaritmicità, osservato da Balaban [3] per un sottoinsieme di

idrocarburi benzenoidi e precedentemente applicato per il gap HOMO-LUMO calcolato

con la teoria di Hückel e ne veri�chiamo la validità anche per il gap HOMO-LUMO

calcolato con la DFT.

I risultati presentati nella Tesi mostrano l'utilità dei concetti di teoria chimica dei gra�

nello studio di proprietà calcolate tramite DFT, al �ne di ridurre lo sforzo computazionale.

Keywords: idrocarburi benzenoidi, DFT, teoria di Hückel , gap HOMO-LUMO, gap

energetico.





Contents

Abstract ii

Sommario iii

List of Figures viii

List of Tables xiii

1 Introduction 1

1.1 Polycyclic aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Chemical graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Methods 8

2.1 Computational methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Born-Oppenheimer approximation . . . . . . . . . . . . . . . . 9

2.1.2 Mean �eld approximation . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Notions of graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Computation of the number of Kekulé structures . . . . . . . . . . 17

2.3 Hückel theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Computational tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Energy gap of BHs 24

3.1 Ciosªowski formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Comparison between Hückel theory and DFT . . . . . . . . . . . . . . . . 38

4 Isoarithmicity 52

5 Conclusion 58

References 61

A Appendix 75





viii

List of Figures

1.1 Layers and the corresponding energy level diagrams in OSCs and OLEDs . 2

1.2 Three representative structures of di�erent PAHs. . . . . . . . . . . . . . . 2

1.3 Number of papers that contain the word �DFT� in their keyword list, title,

or abstract from 2004 to 2022. Data from Web of Science. . . . . . . . . . 4

2.1 Equivalent representations of pyrene . . . . . . . . . . . . . . . . . . . . . 12

2.2 The molecular graph and the dual graph of naphthalene. Grey circles

represent the vertices of the molecular graph, black segments the edges of

the molecular graph, purple circles are the vertices of the dual graph and

purple segments are the edges of the dual graph. . . . . . . . . . . . . . . . 13

2.3 Particular perimeter con�gurations in BHs. In Panel (a), (b), (c), the

bay, cove, and fjord conformation are represented. In each panel, the thick

red segments highlight the illustrated perimeter conformation, Grey circles

represent the vertices of the molecular graph, black segments are the edges

of the molecular graph, purple circles are the vertices of the dual graph and

purple segments are the edges of the dual graph. . . . . . . . . . . . . . . . 14

2.4 On the left, the molecular graph of a catacondensed BH associated to

a tetrahex. On the right, the molecular graph of a pericondensed BH

associated to a tetrahex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Particular types of ring and their notation. In the �rst row, from left to

right, L1 and L2 types of ring and their adjacent rings. On the second row,

from left to right, A2 and A3 rings and their adjacent rings. Grey circles

represent the vertices of the molecular graph, black segments are the edges

of the molecular graph, and purple segments are the edges of the dual graph. 15

2.6 The three perfect matches of the only possible dihex. . . . . . . . . . . . . 16

2.7 The three Kekulé structures of naphtalene. . . . . . . . . . . . . . . . . . . 17

2.8 Example of David-Gordon algorithm . . . . . . . . . . . . . . . . . . . . . 18

2.9 The molecular graph of a BH equivalent to a prolate rectangle P (p, q).

Grey circles represent the vertices of the molecular graph, black segments

are the edges of the molecular graph. . . . . . . . . . . . . . . . . . . . . . 18



ix List of Figures

2.10 The molecular graph of a BH equivalent to a parallelogram L(p, q). Grey

circles represent the vertices of the molecular graph, black segments are the

edges of the molecular graph. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 The molecular graph of a BH equivalent to an oblate rectangle O(p, q).

Grey circles represent the vertices of the molecular graph, black segments

are the edges of the molecular graph. . . . . . . . . . . . . . . . . . . . . . 20

2.12 The molecular graph of a BH equivalent to a hexagon H(p, q, r). Grey

circles represent the vertices of the molecular graph, black segments are

the edges of the molecular graph. . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap

estimated by the Ciosªowski formula χHL in equation 3.1 for BHs associated

to n-hexes with 1 ≤ n ≤ 6. The red line is the bisector of the �rst and

third quadrants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the DFT theory and the HOMO-LUMO gap

estimated by the Ciosªowski formula χHL in equation 3.2 for BHs associated

to n-hexes with 1 ≤ n ≤ 6. The red line is the bisector of the �rst and

third quadrants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Planar and non-planar molecules with their relative error. . . . . . . . . . . 27

3.4 In the �rst row, isodensity surface plot at the value 0.0223a
−3/2
0 (a0:Bohr

radius) of the HOMO on the left and of the LUMO on the right of the

molecule equivalent to parallelogram L(2, 3). In the second row, isodensity

surface plot at the value 0.0116a
−3/2
0 of the HOMO on the left and of the

LUMO on the right of the molecule equivalent to parallelogram L(7, 7). . . 29

3.5 In the �rst row, isodensity surface plot at the value 0.0115a
−3/2
0 (a0:Bohr

radius) of the HOMO on the left and of the LUMO on the right of the

molecule equivalent to oblate rectangles O(3, 2). In the second row, iso-

density surface plot at the value 0.0179a−3/2
0 of the HOMO on the left and

of the LUMO on the right of the molecule equivalent oblate rectangles O(6, 5). 30



List of Figures x

3.6 In the �rst row, isodensity surface plot at the value 0.0177a
−3/2
0 (a0:Bohr

radius) of the HOMO on the left and of the LUMO on the right of the

molecule equivalent to prolate rectangles P (3, 3). In the second row, iso-

density surface plot at the value 0.0129a−3/2
0 of the HOMO on the left and

of the LUMO on the right of the molecule equivalent to prolate rectangles

P (5, 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 In the �rst row, isodensity surface plot at the value 0.0164a
−3/2
0 (a0:Bohr

radius) of the HOMO on the left and of the LUMO on the right of the

molecule equivalent of hexagon H(2, 3, 3). In the second row, isodensity

surface plot at the value 0.0112a
−3/2
0 of the HOMO on the left and of the

LUMO on the right of the molecule equivalent of hexagon H(5, 5, 5). . . . . 32

3.8 In Panel (a), the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with DFT and the HOMO-LUMO gap estimated by

the Ciosªowski formula χHL in equation 3.3 for BHs associated to parallel-

ograms in green diamonds, hexagons in green asterisks, prolate rectangles

in blue circles and oblate rectangles in blue asterisks. The red line is the

bisector of the �rst and third quadrants. In Panel (b), the relative error

related to BHs associated to parallelograms in green diamonds, hexagons

in green asterisks, prolate rectangles in blue circles and oblate rectangles

in blue asterisks estimated by equation 3.3. . . . . . . . . . . . . . . . . . . 34

3.9 In blue circles, K2/N over p for parallelogram L(p, p), with p going from 2

to 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 At the top, molecular graphs of BHs associated to oblate rectangle O(2, 2)

on the left and oblate rectangle O(6, 4) on the right are displayed. The in-

vestigated outer path is highlighted in blue, while the inner path is marked

in green. At the bottom, the C-C bond alternation plot along the outer

path and the inner path of the molecule is illustrated. . . . . . . . . . . . . 46

3.11 At the top, molecular graphs of BHs of BHs associated to parallelogram

L(2, 3) on the left and parallelogram L(6, 7) on the right are displayed.

The investigated outer path is highlighted in blue, while the inner path is

marked in green. At the bottom, the C-C bond alternation plot along the

outer path and the inner path of the molecule is illustrated. . . . . . . . . 47



xi List of Figures

3.12 At the top, molecular graphs of BHs associated to prolate P (3, 2) on the

left and parallelogram P (6, 4) on the right are displayed. The investigated

outer path is highlighted in blue, while the inner path is marked in green.

At the bottom, the C-C bond alternation plot along the outer path and

the inner path of the molecule is illustrated. . . . . . . . . . . . . . . . . . 48

3.13 In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap

calculated with DFT for molecules associated to parallelograms. . . . . . . 49

3.14 In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap

calculated with DFT for molecules associated to oblate rectangles. The

optimized linear �tting coe�cient is 5.1093. . . . . . . . . . . . . . . . . . 49

3.15 In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap

calculated with DFT for molecules associated to prolate rectangles. The

optimized linear �tting coe�cient is 4.822. . . . . . . . . . . . . . . . . . . 50

3.16 In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap

calculated with DFT for molecules associated to hexagon. The optimized

linear �tting coe�cient is 4.903. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 The molecular graphs of two isoarithmic molecules. The two unbranched

catacondensed BHs are associated to the same dual graphs and the same

"LA" sequences but their dualist graphs are di�erent (see in Appendix A

4.03 and 4.04). Grey circles represent the vertices of the molecular graph,

black segments the edges of the molecular graph, purple circles are the

vertices of the dual graph and purple segments are the edges of the dual

graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52





xiii

List of Tables

3.1 Comparison between the correlation coe�cients of the Ciosªowski formula

χHL in equation 3.1 and HOMO-LUMO gap calculated with Hückel theory

and the correlation coe�cients of the modi�ed formula χHL in equation 3.2

and HOMO-LUMO gap calculated with DFT theory. . . . . . . . . . . . . 26

3.2 Correlation coe�cients of the HOMO-LUMO gap calculated with DFT for

all the analyzed molecules equivalent to prolate rectangles, oblate rectan-

gles, parallelograms, and hexagons with the inverse of the perimeter, the

inverse of the number of carbon atoms, the ratio between perimeter and

the number of internal edges, and the ratio between the perimeter and the

number of carbon atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Correlation coe�cients of the HOMO-LUMO gap calculated with DFT for

molecules with more than 20 rings equivalent to prolate rectangles, oblate

rectangles, parallelograms, and hexagons with the inverse of the perimeter,

the inverse of the number of carbon atoms, the ratio between perimeter

and the number of internal edges, and the ratio between the perimeter and

the number of carbon atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 In the second column, the average mean value of the bond length for each

molecule associated to a parallelogram. In the third column, the maximum

di�erence in absolute value between the average value of the bond lengths

and the bond lengths themselves. . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 In the second column, the average mean value of the bond length for each

molecule associated to a oblate rectangle. In the third column, the max-

imum di�erence in absolute value between the average value of the bond

length and the bond lengths themselves. . . . . . . . . . . . . . . . . . . . 42

3.6 In the second column, the average mean value of the bond length for each

molecule associated to a prolate rectangle. In the third column, the max-

imum di�erence in absolute value between the average value of the bond

lengths and the bond lengths themselves. . . . . . . . . . . . . . . . . . . . 43



List of Tables xiv

3.7 In the second column, the average mean value of the bond length for each

molecule associated to a hexagon. In the third column, the maximum

di�erence in absolute value between the average value of the bond lengths

and the bond lengths themselves. . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 HOMO-LUMO gap evaluated at the Hückel theory level of unbranched

catacondensed BHs of four, �ve, and six rings. We group them by "LA"

sequences, reported in the �rst column. The fourth column contains the

mean value of the HOMO-LUMO gap of each isoarithmic BH. The last

column shows the di�erence in absolute value between the HOMO-LUMO

gap of each group of isoarithmic BH. . . . . . . . . . . . . . . . . . . . . . 54

4.2 HOMO-LUMO gap evaluated at the DFT level of unbranched catacon-

densed BHs of four, �ve, and six rings. We group them by "LA" sequences,

reported in the �rst column. The fourth column contains the mean value

of the HOMO-LUMO gap of each isoarithmic BH. The last column shows

the di�erence in absolute value between the HOMO-LUMO gap of each

group of isoarithmic BH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1 For each polyhex, in the �rst row he molecular graphs associate to the

monohex [1.01], dihex [2.01], trihexes [3.01-3.03], tetrahexes [4.01-4.05],

pentahexes [5.01-5.12] and hexahexes [6.01-6.36] are reported. Grey cir-

cles represent the vertices of the molecular graph, black segments the edges

of the molecular graph, purple circles the vertices of the dual graph, and

purple segments the edges of the dual graph. For each polyhex, an ID is

assigned in the second row as outlined in Section 2.2. For each polyhex, the

third row features the chain sequence for unbranched catacondensed BHs

by recognizing the connectivity of each ring using the notation introduced

in Section 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79





1

1| Introduction

1.1. Polycyclic aromatic hydrocarbons

According to Goals for Sustainable Developtment, global warming must not exceed

1.5 °C above pre-industrial levels, thus emission of carbon dioxide needs to be reduced

by 45% by 2030 and reach net zero by 2050 [4]. Research in the latest decades has fo-

cused on organic semiconductors to cut emissions. These materials lead to new �exible

[5�8], stretchable [9�12], low-weight [8, 13, 14], and low-cost fabrication over large-areas

devices [8, 13�15], such as organic solar cells (OSCs) [16�21], organic �eld e�ect tran-

sistors (OFETs) [15, 22�27], and organic light emitting diodes (OLEDs) [16, 28�31]. In

every type of device, the pairing between the highest occupied molecular orbital (HOMO)

and the lowest unoccupied molecular orbital (LUMO) is of primary importance. Their

di�erence is de�ned as the HOMO-LUMO gap.

OSCs are third-generation solar cells characterized by a donor and an acceptor [32], re-

sponsible for harvesting light and generating excitons, sandwiched between two transport

layers and two electrodes. The good pairing between the LUMO of the donor and the

HOMO of the acceptor, as illustrated in Figure 1.1, allows to accomplish higher absorp-

tion, lower voltage losses, and lower molecular instability when exposed to humidity, light,

or higher temperatures [33].

OFETs are three-terminal (source, drain, and gate) devices made of an organic active

layer and a substrate devoted to the switch of current or signal. The compatibility of

the Fermi energy level of the metal of the electrode with the HOMO level of the organic

active layer in p-type OFETs (or with the LUMO level for n-type OFETs) enables the

transport of the electron [34].

OLEDs are a mainstream light source made of a multilayer structure of organic thin �lm

sandwiched between transparent conductive oxides and metallic cathodes, as shown in

Figure 1.1. The injection of charges from the electrodes to the organic semiconductors

permits radiative recombination, for example �uorescence [35] or phosphorescence [36],

and so light emission. The alignment of the HOMO of emitting layer and the LUMO of

the electron bu�ering layer leads to high e�ciencies [36].
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Figure 1.1: On the left side, a scheme of the layers in OSCs and OLEDs. On the right

side, the corresponding energy level diagram, underlining the importance of HOMO and

LUMO. Reproduced from [37].

Polycyclic aromatic hydrocarbons (PAHs) and nanographenes (NGs) are ideal can-

didates for organic devices. PAHs and NGs are molecules whose de�ning feature is the

systematic escalation of benzene rings along one, two, or three dimensions [38]. Three

representative examples are shown in Figure 1.2.

Figure 1.2: Three representative structures of di�erent PAHs. From left to right, a one

dimensional acene, a two dimensional NG and a three dimensional [n]helicene. Repro-

duced from [39].
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They are synthesized through organic chemistry methods [40], starting from precur-

sors, and obtaining the �nal compound through ring-closing, Diels-Alder polymerization

and cycloaddition, and transition-metal catalyzed polycondensation [38].

PAHs and NGs are characterized by a π-conjugated structure resulting in strong inter-

molecular interaction and favorable solid stacking [41]. These molecules are chemically

and thermally stable due to their high carbon content [42].

The HOMO-LUMO gap of PAHs and NGs is tuneable because they are easily function-

alizable by replacing hydrogen atoms with heteroatoms or benzene rings with thiophene

ones [43]. The gap also depends on their size and warping in non planar structures. For

example, increasing the size of NGs results in a variation in the HOMO-LUMO gap, which

in turn leads to a change in the position of the absorption bands [38]. For NGs, deviating

from planarity allows the control of the band gap and the increase of processability [44].

The addition of a functional group by itself leads to a control of the curvature with a

consequent decrease of the energy gap, as it happens for substituted ovalene [45], and

better hole/electron transport material with high drift mobility for practical applications,

as in contorted PAHs imides [46].

PAHs show a wide absorption spectrum with strong absorption in the visible light region

due to their large π-conjugated structure, resulting in high performance in OSCs [41]. For

instance, antranthrene derivatives as p-type material show a power conversion e�ciency

of 3.04% when coupled with a functionalized fullerene as an acceptor. Large PAHs have

been tested in OSCs in combination with fullerene-based molecules and a power conver-

sion e�ciency value of 2.9% has been obtained. Their problems are solubility, the absence

of chemical handles for further functionalization, and a missing marked donor or acceptor

character [42].

Planar PAHs, such as pentacene and rubrene, show excellent p-type OFET behavior, with

charge mobility greater than 10 cm2 V−1 s−1, but also non planar molecules as contorted

hexabenzocoronene can be further functionalized to achieve hole mobility up to 0.49 cm2

V−1 s−1 [47]. Molecules based on coronene, properly functionalized with chlorine, �uorine,

or tetraalkoxy substitution, show increased mobility, and in the last case, in the presence

of carbon nanotubes as point contacts, e�cient charge transport was realized and Ion/Io�
current was detected [41].

In optoelectronics, large PAHs of dimensions comprised between 1 nm and 10 nm can

be seen as quasi-zero-dimensional graphene quantum dots [40]. Some materials such as

functionalized ovalene in polystyrene matrix [45] or PAHs doped with nitrogen are char-

acterized by spontaneous emission. The latter shows a photoluminescence quantum yield
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of up to 86%, while the best-performing compound possessing an electron-withdrawing

CF3 group [48] shows an e�ciency of 12% so they are suitable candidates for OLEDs or

lasers. Also, PAH derivatives could constitute an ideal electron transport material [49].

1.2. Density functional theory

Density functional theory (DFT) is used to investigate the electronic properties of

molecular and condensed systems. It relies on Hohenberg-Kohn theorems, which demon-

strate that the electron density ρ(x, y, z) is a key quantity to evaluate the ground state

energy of a many-body system [50]. Subsequently, calculations are greatly simpli�ed since

the electron density depends just on three spatial variables, so it is a theory especially

suitable for computer calculation. As reported in Figure 1.3, the amount of research re-

lated to DFT steadily increased over the years. Indeed, the seminal articles by Hohenberg,

Sham, and Kohn are among the most cited papers of all time [51].
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or abstract from 2004 to 2022. Data from Web of Science.
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DFT is a widely used method in material science because it can accurately estimate

the energies and the geometries of many quantum systems of practical interest [52]. We

will now analyze some classes of materials studied through DFT, such as transition metals

and conjugated polymers.

Transition metals are decisive for technological and medical applications. Studying their

peculiar structural, optical, and magnetic properties with computational techniques is

compelling to compare them with experimental evidences or to understand their work-

ing mechanisms. DFT methods can help in understanding the adsorption mechanism of

molecules on transition metal particles [53].They can be used in nanomedicine as a con-

trasting agent, if they bind a ligand,. In that case, it is relevant to model metal-ligand

interactions [54]. The variety of DFT methods that properly consider spin e�ects and

evaluate excited state energies allows us to do that [53]. Furthermore, machine learning

algorithms combined with the DFT-calculated energy band gap of functionalized transi-

tion metals help the design process of novel hybrid perovskite solar cells [55].

Moving to conjugated polymers, we recognize their importance in the �eld of organic

electronics and, as seen before, a crucial parameter to consider is the energy band gap.

The comparison of experimental and DFT results allows us to study the in�uence of the

presence of donors or acceptors [56]. Furthermore, through computational techniques, it

is possible to calculate the energy gaps of polyyne, polyacetylene, and polythiophene up

to a certain length of the chain [57, 58]. However, polymers are also characterized by

intramolecular interactions and intermolecular non-covalent bonds and one of the main

DFT limitations is modeling such interactions. Improved functionals and methods are

addressing this issue [59, 60].

DFT is also extensively applied to study properties of PAHs of di�erent dimensionality,

given their importance as functional materials. DFT simulation can help study their en-

ergy levels, which are relevant in determining their charge transport properties, useful in

OFETs [61], and their behavior as materials for OSCs [62]. DFT serves to assess also

other chemical properties, such as the electronic a�nity, which �nds con�rmation in ex-

perimental data for linear PAHs [63], and isomerization energy, which regards reactions

that lead one isomer to another and is estimated through more sophisticated DFT meth-

ods [64]. Moreover, DFT is e�cient in the evaluation of Clar's aromaticity [65], a key

property of PAHs, related to the shared π-electrons among the rings. Various aromaticity

indices, accurately computed through DFT, provide insights into this phenomenon [66],

especially in the presence of long-term interactions [67�69].
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1.3. Chemical graph theory

Chemical graph theory is the application of graph theory to chemistry [3]. Di�erent

types of graphs can be obtained. For example, if these descriptors illustrate molecular

topology we speak of molecular or constitutional graphs. Instead, when they are used to

show the intermediate steps of a reaction, we can call them reaction graphs [3]. Here, we

discuss some possible applications of graph theory, speci�cally those related to constitu-

tional graphs, for di�erent classes of molecules, to show the validity of this approach.

For instance, chemical graph theory is decisive in determining quantitative structural-

property correlation. A possible technological application of this type of study is the

discovery of new molecules and this is especially helpful in the design of new drugs [70].

Furthermore, it may lead to the discovery of novel chemical and physical properties of

materials and to the prediction of already known material properties given the topological

characteristics of the molecule itself [71].

One of the most important historical applications of chemical graph theory dates back

to 1947 when Wiener studied the boiling point of di�erent alkane chains using a linear

formula containing two indices. These indices can be interpreted as physical quantities,

respectively as the compactness of the molecule and the measurement of intramolecu-

lar attraction forces, so they are connected to the constitutional graph of the analyzed

molecules. Indeed, these parameters consider the variation of the boiling temperature

when in the presence of isomers. The error estimated between the experimental analy-

sis and the theoretical prediction is less than 1°C [72]. A widely investigated property

of polymers is the glass transition temperature, given its in�uence on processability and

technological application [73]. A linear �tting considering some topological indices, such

as Randi¢-Kier-Hall connectivity indices [74�76] and the Wiener index [72], leads to a

coe�cient of determination of the glass transition temperature with respect to the molec-

ular mass of the polymers higher than 0.9, with a maximum residual error in the order

of 15% compared to experimental results. The equivalence between chemical and graph

theoretical descriptors has also been shown. This approach extended also to optical prop-

erties such as the refractive index [77].

Chemical graph theory provides information for a better understanding of drugs' mecha-

nisms and also allows the description of the complex interaction between proteins [78]. In

the case of viruses, it can furnish predictive methods for the interaction between the host

and the virus [79]. For example, SARS-CoV-2 protein-protein interaction was studied
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with this method, helping the development of drugs [80]. Additionally, host-virus inter-

action was modeled in the same way, also considering the presence of the vaccine [81].

PAHs are studied through graph theory and the �rst e�orts were devolved to the assess-

ment of aromaticity [82]. A graph theory-based aromaticity index related to the number

of Kekulé structures is de�ned [83]. The bond length, which is correlated strictly to aro-

maticity, was also predicted with no signi�cant error compared with experimental data

thanks to topological indices such as carbon atoms in the surroundings of the bond and

the total number of hexagons [84]. Furthermore, the rationalization of PAHs through

graph theory facilitates the enumeration of isomers and so the comparison of properties

as the HOMO-LUMO gap of nano�akes [85].

A topological descriptor that accounts for the delocalization of electrons in the structure

can estimate the electronic a�nity, the ionization potential, and the excitation energy with

a level of accuracy of 0.1 eV [86]. This evaluation allows at �rst instance to avoid heavy

calculations associated with DFT methods. However, if quantum-chemical calculations

are performed, the descriptor can be extended also to thiophenes [86, 87]. Nevertheless,

this approach requires the determination of four parameters that need to be assigned

by hand or through an automatized system [88] to increasingly large PAH structures,

considering each time their molecular graph.
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2.1. Computational methods

In this Thesis, electronic properties of molecules are analyzed through computational

methods, in particular DFT calculations. A brief introduction to quantum mechanics and

molecular mechanics, considering the main approximations, is provided by Jensen [89].

Schrödinger time-independent equation describes stationary states of a quantum system.

H Ψ = E Ψ whereH =
p̂2

2m
+ V (r) = − ℏ

2m
∇2 + V (r) (2.1)

The equation 2.1 is an eigenvalue equation, where the Hamiltonian operator H is the

sum of the kinetic operator and potential operator V and is dependent on coordinates

r and the momentum p of a single non-relativistic particle of mass m, and E is the

total energy of the quantum particle described by the wave function Ψ. The energy of

the particle E is the eigenvalue of the Hamiltonian operator H, and the wave function

Ψ is the corresponding eigenfunction. In the context of molecules and atoms, there are

di�erent stationary states. We considered only the lowest one in energy, which is the

ground state.

For a molecule with N electrons of mass mi associated to a set of coordinates r and M

nuclei of massMI , atomic mass ZI associated to a set of coordinates R, the kinetic energy

operator T is the sum of all the kinetic terms of each particle.

H = Te + Tn + Vee + Ven + Vnn

Te =
N∑
i=1

− ℏ
2mi

∇2
i

Tn =
M∑
i=1

− ℏ
2MI

∇2
I

The potential energy component V is the Coulomb interaction between each pair of

charged entities, and these are nuclei-electron attraction Ven, electron-electron repulsion
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Vee, and nuclei-nuclei repulsion Vnn.

Vee =
e2

4πϵ0

∑
i<j

1

|ri − rj|
(2.3a)

Ven = − e2

4πϵ0

∑
i,I

ZI

|ri −RI |
(2.3b)

Vnn =
e2

4πϵ0

∑
I<J

ZIZJ

|Ri −Rj|
(2.3c)

(2.3d)

2.1.1. The Born-Oppenheimer approximation

The Schrödinger equation for stationary states has an exact solution for hydrogenoid

systems, however, it is unfeasible to solve analytically the Schrödinger equation for many-

electron problems. Hence, a numerical solution is proposed, introducing some approxi-

mations. The Born-Oppenheimer approximation assumes that the nuclei are thousands

of times heavier than electrons (mn/me ≫ 2000). As a result, the velocity of electrons

is much higher compared to the velocity of the nuclei. Therefore, nuclei are considered

�xed bodies for electrons. So, for more than two particles, it is possible to simplify the

molecular model by separating nuclear and electronic motions. For a given quantum state

described by the wave function Ψ(r), we consider a nuclear wave function that describes

the quantum state of nuclei and an electronic wave function expressed as a parametric

function of the degree of freedom of the nuclei (R).

Ψ(r,R) = ψe(ri|R) ϕn(R)

So the total Hamiltonian is made of purely nuclear terms, which are the nuclei-nuclei

interaction and the kinetic energy term of nuclei, and the electronic Hamiltonian. The

electronic Hamiltonian describes the motion of electrons considering the wave function

and the energy parametric to R.

He(R) ψe(r1, . . . , rN |R) = εe(R) ψe(r1, . . . , rN |R) (2.2a)

He = Te + Vee + Ven (2.2b)

Solving this equation for the electronic wave function will produce the electronic energy

that together with Vnn gives the e�ective nuclear Hamiltonian.

Hn = Tn + Vnn + εe

This Hamiltonian is used in the Schrödinger equation for nuclear motion, which provides

the vibrational, rotational, and translational modes of nuclei.
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2.1.2. Mean �eld approximation

The expression of the electronic Hamiltonian in equation 2.2a still contains the electron-

electron repulsion term that is not written as a single-body operator as we see in equation

2.3a. So, we introduce another approximation, which is the mean �eld approximation.

Each electron i interacts with the mean �eld given by the interaction of all the other

electrons i,j.

Vee =
∑
i<j

vee(i, j) →
∑
i

ve�(i)

The Hartree-Fock approach is an example of mean �eld approximation [90].

2.1.3. Density functional theory

The Hohenberg-Kohn theorems [50] were the foundation of the Kohn-Sham approach [91],

which helped to approximate the solution of the electronic many-body problem more

e�ectively. The �rst Hohenberg-Kohn theorem states that there is a unique functional of

the density that describes the external potential and the second Hohenberg-Kohn theorem

proves that the functional of the ground state density determines the ground state energy

of the system. The density functional is not univocally determined. In the Kohn-Sham

approach, the approximated density functional writes:

ρ(r) =
N∑
i=0

|ϕi(r)|2

so it is expressed in terms of Kohn-Sham orbitals. The new expression of the Hamiltonian

is (
− ℏ
2m

∇2 + ve�(r)

)
ϕi(r) = ϵi ϕi(r)

ve�(r) = v(r) +

[∫
ρ(r′)

|r′ − r|
dx

]
+ vXC(r)

vXC(r) =
∂EXC[ρ]

∂ρ

where the e�ective potential contains all the electronic terms in terms of electron density

except the exchange-correlation functional. This energy term does not have a classical

equivalent, since it arises from the antisymmetry of the quantum wave function and the

correlation between electrons. Di�erent functionals approximate this expression in terms

of the integral of spin density and their gradients. One of them is the hybrid B3LYP

functional [92, 93]. Basis sets are sets of functions used to describe the wave function

of electrons in molecules or atoms. Basis sets are larger and more accurate depending
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on the number of primitive Gaussians used to approximate the core and valence orbitals.

Polarization functions account for the electron density distribution around the molecule,

while di�use functions describe the distribution of the wave function, especially in regions

away from the atomic nuclei. The basis sets adopted are 6-31G(d,p), 6-311G(d,p), and

def2TVZP, in order of increasing accuracy.

2.2. Notions of graph theory

PAHs are a class of aromatic compounds made of fused aromatic rings possibly host-

ing heteroatoms in the ring or carrying atoms as substituents. Benzenoid hydrocarbons

(BHs) are de�ned as condensed polycyclic unsaturated fully conjugated hydrocarbons

composed exclusively of six-membered rings [94]. Graph theory is a convenient tool for

the examination of BHs. We start introducing some mathematical de�nitions [94].

De�nition 2.1. A graph G = G(V,E) is a couple of sets such that V = {vi} is a set of

vertices or nodes, and E = {{vi, vj}} is a set of pairs of vertices called edges.

Two vertices connected by an edge are said to be adjacent to each other. Conversely,

two non-adjacent vertices are connected by a sequence of edges, forming a path denoted

as P . When an edge connects a vertex, the vertex is de�ned as covered. The degree of

a node is the number of edges connected to a node. A graph can be classi�ed depending

on the connectivity between edges and nodes.

� A graph is simple if there are no edges starting and ending in the same node and

with a single edge between a pair of connected vertices.

� A graph is connected if there is a path between whatever vertices v1 and vn.

� A graph is planar if edges intercept only at nodes. The portion of plane enclosed

by edge and vertices in a planar graph is de�ned as face F .

Graph enumeration is the problem of counting all the obtainable graphs given a set of

constraints.

We will use the graph enumeration of polyhexes. However, polyhexes are plane �gures

constructed by joining together hexagons. So, they are polygons with a precise shape,

di�erent from graphs that are characterized only by the connectivity between their ver-

tices. We can still de�ne polyhexes in terms of graph theory. For a given polyhex, we can
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choose an equivalence class of graphs with sets of E and V that are the same up to re-

enumeration and represent the connectivity of the polyhex. This chosen equivalence class

encapsulates all possible graphical representations of graphs that can be transformed into

the shape of the designated polyhex. Thus, we de�ne polyhex as a graph because we build

a one-to-one connection between some graphs that can be drawn as a particular polyhex

and that particular polyhex. So, in graph theory, polyhexes are a class of simple, planar,

connected graphs where subunits of edge and vertices forming regular hexagon faces are

joined together. We call trihexes the polyhexes with three hexagonal rings, tetrahexes

the ones with four hexagonal rings and so on. In this thesis, trihexes are indicated as

3.01,3.02, . . . ,3.n. Similarly, we refer to tetrahexes are indicated as 4.01,4.02, . . . ,4.n,

and so on. Polyhexes have been enumerated and are tabulated [95].

A molecular graph represents a molecular structure in terms of graph theory, meaning

each atom is a vertex and each bond is an edge. In a hydrogen-depleted molecular graph,

hydrogen atoms and the related bonds are deleted from the original molecular structure.

The molecular graph of BHs corresponds to a graph where C atoms are nodes and the

C-C σ bonds are the edges. An example is shown in Figure 2.1.

We de�ne polyhexes as the discrete mathematical equivalent of the hydrogen-depleted

molecular graph of BHs to simplify the enumeration of all the BHs with a prescribed

number of rings. From now on, we will use the terms 'graph', 'molecular graph', or

'polyhex' interchangeably to refer to both polyhexes and the hydrogen-depleted molecu-

lar graph of BHs. In BH graphs, the degree of a node is always two or three.

(a) Molecular formula of

pyrene

(b) Molecular graph of

pyrene

(c) Polyhex associated

to pyrene

Figure 2.1: Equivalent representations of pyrene

We introduce here also the concept of adjacency for two hexagons. Hexagons are adjacent

if they have two common vertices, so they share an edge that we call internal edge. In

BH graphs, we de�ne the perimeter as the shortest closed path connecting nodes without
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considering the internal edges. The edges composing the perimeter are referred to as

external edges. Since the representation of all the polyhexes of a given number of rings

can be expensive, dual graphs are now introduced.

De�nition 2.2. The dual graph D(r, u) of a BH is a graph where a node u is placed at

the center of the face F of each hexagon and an edge r connects the node u to the node

t of an adjacent hexagon.

An example is shown in Figure 2.2.

Figure 2.2: The molecular graph and the dual graph of naphthalene. Grey circles

represent the vertices of the molecular graph, black segments the edges of the molecular

graph, purple circles are the vertices of the dual graph and purple segments are the edges

of the dual graph.

However, the dual graph does not identify univocally a BH [3].

De�nition 2.3. The dualist graph is a dual graph where the angle between each pair of

edges is conserved, so that the real connectivity of the molecule is respected.

There are particular perimeter con�gurations that can be highlighted through the

dualist graph, represented in Figure 2.3

� The bay is a path of external edges whose corresponding dualist graph is a connection

of three nodes with an angle of 120°.

� The cove is a path of external edges whose corresponding dualist graph is a connec-

tion of four nodes with two angles of 120°.

� The fjord is a path of external edges whose corresponding dualist graph is a con-

nection of �ve nodes with three angles of 120°.

Coves and fjords may lead to distortion from planarity due to steric hindrance of hydro-

gens [96].
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(a) Bay (b) Cove (c) Fjord

Figure 2.3: Particular perimeter con�gurations in BHs. In Panel (a), (b), (c), the

bay, cove, and fjord conformation are represented. In each panel, the thick red segments

highlight the illustrated perimeter conformation, Grey circles represent the vertices of the

molecular graph, black segments are the edges of the molecular graph, purple circles are

the vertices of the dual graph and purple segments are the edges of the dual graph.

Furthermore, we distinguish between catacondensed and pericondensed BHs. Pericon-

densed BHs have at least one vertex of degree three. Catacondensed BHs have only

vertices of degree two. An example is shown in Figure 2.4.

Figure 2.4: On the left, the molecular graph of a catacondensed BH associated to

a tetrahex. On the right, the molecular graph of a pericondensed BH associated to a

tetrahex.

Each BH is characterized by a particular pattern of connections between its hexagonal

rings. It is worthwhile to introduce a notation to identify it. In the "LA" sequence, for

each ring, the capital letter speci�es the connection between that ring and the adjacent

ones. Indeed, L and A specify the angle formed by the edges departing from the corre-

sponding vertex of that ring in the dual graph. The number at the subscript speci�es

the number of rings adjacent to that one. For catacondensed BHs we give the following

de�nitions:
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� L1 are extremal rings, connected only to another ring.

� L2 are rings connected to two other rings. The edges connected to their dual graph

form an angle of 180°.

� A2 are rings connected to two other rings. The edges connected to their dual graph

form an angle of 120°.

� A3 are rings connected to three other rings. The edges connected to their dual graph

form an angle of 60°.

An example is shown in Figure 2.5.

We distinguish branched and unbranched catacondensed BHs. Branched catacondensed

L1 L2

A2 A3

Figure 2.5: Particular types of ring and their notation. In the �rst row, from left to

right, L1 and L2 types of ring and their adjacent rings. On the second row, from left

to right, A2 and A3 rings and their adjacent rings. Grey circles represent the vertices of

the molecular graph, black segments are the edges of the molecular graph, and purple

segments are the edges of the dual graph.

BHs have at least one A3 ring. Regarding unbranched catacondensed BHs, we will simplify

the previous notation as L and A since the extremal rings are all L1 and only L2 and

A2 rings are possible. We will use the sequence of L and A to classify BHs, particularly

the small ones [94]. All the branched and unbranched catacondensed BHs associated to

n-hexes with 1 ≤ n ≤ 6 are listed

Additionally, matrices can also be employed to represent the connectivity of a graph. The

adjacency matrix A of a graph is a square matrix where the rows and the columns of the

matrix are the nodes of the graph and the entries of the table indicate the presence of an
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edge connecting two vertices. For simple graphs, the entries in the adjacency matrix are

1 when there is an edge and 0 in its absence.

Matches (see below) are related to the connectivity of the graph.

De�nition 2.4. A match is a set of mutually independent edges, so they are all non-

adjacent and share no vertices. A perfect match is a set of matches where all the vertices

are covered.

An example is shown in Figure 2.6. Up to now, we have analyzed the connectivity

Figure 2.6: The three perfect matches of the only possible dihex.

of a graph, but it is feasible to identify properties that are not related to the abstract

representation of the graph.

De�nition 2.5. A graph invariant is a property independent on the structure of the

graph itself.

The β index is the ratio between the number of edges over the number of vertices of

a graph and is an example of graph invariant.

Coming back to the molecular graph of BHs, it is possible to introduce chemical de�nitions

that have also a meaning in graph theory. We investigate Kekulé structures. A Kekulé

structure is a simpli�ed representation of the distribution of π electrons in a π-conjugated

molecule, highlighting the alternation between single and double bonds. More precisely,

it is one of the possible Lewis structures that contribute to the resonance e�ect in the

valence bond theory. An example is provided in Figure 2.7.

The perfect matching is the mathematical equivalent of Kekulé structures, that means

that any Kekulé structure of a BH corresponds to a perfect matching of its molecular

graph. Consequently, the number of Kekulé structures is the number of perfect match-

ings of its molecular graph [97]. It is also a graph invariant.

Not all BHs possess a Kekulé structure, for example, triangulene [98, 99]. A graph theory

tool serviceable to determine whether the BH has a Kekulé structure is graph coloring.
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Figure 2.7: The three Kekulé structures of naphtalene.

The coloring of nodes consists of the di�erent identi�cation of adjacent vertices by assign-

ing them di�erent colors, for example, black and white. We de�ne the excess of color ∆

as the di�erence between the black and white vertices.

∆ = |nblack − nwhite|

It is demonstrated that molecular graphs with at least one Kekulé structures always have

∆ = 0. BHs graph with a color excess di�erent from zero are non-Kekuléan, so they do

not possess a Kekulé structures. These molecules are less stable and di�cult to synthesize.

However, the existence of triangulane and other diradicals was demonstrated [100, 101].

Non-Kekuléan molecules are tabulated [97].

2.2.1. Computation of the number of Kekulé structures

The number of Kekulé structures may be calculated with a pen-and-paper approach but

for some classes it is computed with algorithms.

Catacondensed BHs. The number of Kekulé structures for these BHs is determined

through the Davidson-Gordon algorithm [102], which is built upon three rules.

� Starting from the �rst hexagon with the number 2 (benzene has two Kekulé struc-

tures), we add one to the following hexagon until the �rst kink.

� On the hexagon immediately following the kink, we report the sum of the numbers

of the last two hexagons.

� For any other linear hexagon, we continue adding the number of the hexagon before

the latest kink.

The last number is the number of Kekulé structures of that BHs.

An example is shown in Figure 2.8. For pericondensed BHs with a number of rings from

one to six, the number of Kekulé structures is tabulated [97].
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2 3 4 5

9

13 22

5735 79

Figure 2.8: The molecular graph of an unbranched catacondensed BH whose number of

Kekulé structure is calculated with the David-Gordon algorithm. Grey circles represent

the vertices of the molecular graph, black segments are the edges of the molecular graph.

Starting from left to right, inside each ring, we label the number of Kekulé structures up

to that ring. In the rightmost ring, we read the total number of Kekulé structures for the

molecule. Reproduced from [102].

Some classes of polyhexes are de�ned by repetition along a direction in the plane of a

speci�c sequence of hexagons. Here we list four of them to which molecules are associated.

Prolate rectangle. Prolate rectangles P (p, q) are polyhexes characterized by a pro�le

of size p with zig-zag edges and the other of size q with armchair edges, as shown in

Figure 2.9. They are associated to BHs named peri-Acenes [103, 104].

1

2

· · ·

q

· · · p

Figure 2.9: The molecular graph of a BH equivalent to a prolate rectangle P (p, q). Grey

circles represent the vertices of the molecular graph, black segments are the edges of the

molecular graph.
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For prolate rectangles P (p, q), the number of Kekulé structures is determined through

the formula [97]:

K{P (p, q)} = (p + 1)q (2.4)

Parallelograms. Parallelograms L(p, q) are polyhexes characterized by zig-zag edges.

Their size is expressed in terms of p and q, where p and q are the number of rings on each

side of the parallelogram, as we see in Figure 2.10. They are associated to BHs named

peri-Acenoacenes [105�107].

1 · · · p

2

· · ·

q

Figure 2.10: The molecular graph of a BH equivalent to a parallelogram L(p, q). Grey

circles represent the vertices of the molecular graph, black segments are the edges of the

molecular graph.

For parallelograms L(p, q), the number of Kekulé structures is determined through the

formula [97]:

K{L(p, q)} =

(
p+ q

q

)
(2.5)

Oblates. Oblate rectangles O(p, q) are characterized by a pro�le of size p with zig-zag

edges and the other of size q with armchair edges, as shown in Figure 2.11.



2| Methods 20

1 · · · p

2

· · ·

q

Figure 2.11: The molecular graph of a BH equivalent to an oblate rectangle O(p, q).

Grey circles represent the vertices of the molecular graph, black segments are the edges

of the molecular graph.

For oblate rectangles O(p, q), the number of Kekulé structures is not determined in

terms of an explicit expression in p and q [97].

K{O(1, q)} = q + 1

K{O(2, q)} =
1

12
(q + 1)(q + 2)2(q + 3)

K{O(3, q)} =
1

120
(q + 1)(q + 2)3(q + 3)(q2 + 4q + 5)

K{O(4, q)} =
1

20160
(q + 1)(q + 2)4(q + 3)(17q4 + 136q3 + 439q2 + 668q + 420)

K{O(5, q)} =
1

362880
(q + 1)(q + 2)5(q + 3)(31q6 + 372q5 + 1942q4 + 5616q3 + 9511q2

+ 8988q + 3780)

K{O(6, q)} =
1

79833600
(q + 1)(q + 2)6(q + 3)(691q8 + 11056q7 + 79788q6 + 338320q5

+ 921759q4 + 1654264q3 + 1915562q2 + 1315560q + 415800)
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Hexagons. Hexagons H(p, q, r) are characterized by a pro�le of size p, q and r with

zig-zag edges, as shown in Figure 2.12.

1 2 · · · p

1

1

· · ·

r

· · ·

2

q

Figure 2.12: The molecular graph of a BH equivalent to a hexagon H(p, q, r). Grey

circles represent the vertices of the molecular graph, black segments are the edges of the

molecular graph.

For hexagons H(p, q, r), the number of Kekulé structures is determined through the

formula [97]:

K{H(p, q, r)} =

q−1∏
i=0

(
p+r+i

r

)(
r+i
r

) (2.6)

2.3. Hückel theory

The Hückel molecular orbital theory, which from now on we will call Hückel theory, is

another example of mean �eld approximation, �rstly applied by Hückel on the small π-

conjugated hydrocarbons [108�111] and then extended to larger molecules as polymers and

carbon nanotubes [112, 113]. The main approximation introduced by Hückel is that the

Hamiltonian related to the π molecular orbitals in conjugated molecules can be separated

from the Hamiltonian related to the σ molecular orbital due to symmetry reasons. Indeed,

we know that planar π-conjugated molecules have a horizontal plane of symmetry and

that the π orbitals are odd with respect to re�ection about that plane, while σ orbitals

are even. This is equivalent to stating that the matrix elements of the Hamiltonian where

there is the product of antisymmetric orbitals are null and that it is possible to simplify

the Hückel matrix into two distinct blocks. These symmetry conditions are not valid for

non-planar molecules, thus the extended Hückel theory is used [114]. The kth π orbital is
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the linear combination of the N pz atomic orbitals:

πk =
N∑

µ=1

ckµ p
µ
z

So, we rewrite the electronic Schrödinger equation into a matrix form:

H ck = ϵk S ck

where:

Hij =

∫
piz H pjz dτ

Sij =

∫
piz p

j
z dτ

S is the overlap matrix. We now simplify this expression introducing two hypotheses:

� the pz orbitals are orthonormal;

Sij =

1 if i = j

0 if i ̸= j

� the only interaction is between �rst neighbors, meaning i and j are bonded atoms,

so all the other Hamiltonian terms are null.

Hii =

∫
piz H pjz dτ = α

Hij =

∫
piz H pjz dτ = β

α is the parameter that describes the energy of an electron on a single orbital, meanwhile,

β is the interaction term between two pz orbitals. It is di�erent from the β introduced in

Section 2.2, that is related to graph theory. Considering this approximation, the Hückel

matrix can be rewritten in terms of the adjacency matrix A of the graph of the molecule:

H = α I+ β A

The molecular orbitals are determined by solving the following equation:

det|(−ϵk + α) I+ β A| = 0

so the HOMO-LUMO gap is the di�erence between the central eigenvalues of the adja-

cency matrix (without the hydrogen atoms) in units of β.
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2.4. Computational tools

In this Thesis, molecular graphs were built through Matlab (version 2019b) and the

molecules were visualized with Avogadro (an open-source molecular builder and visual-

ization tool, Version 1.0.2 [115]) and Vesta (Version 3 [116]).

All quantum chemical calculations have been carried out with Gaussian09, a computa-

tional chemistry software initially released in 1970 by John Pople and his research group

[117].

AConsidering DFT calculations, geometry optimization was performed through B3LYP/6-

311G(d,p) [118�120] and all the molecules have reached their minimum. Considering pre-

vious literature, the basis set chosen for BHs associated to n-hexes with 1 ≤ n ≤ 6 is

6-311G(d,p) [118�120]. The basis sets chosen for molecules associated to prolate rectan-

gles are 6-311G(d,p) [121, 122], 6-31G(d,p) [123, 124], def2TVZP [125�127]. The HOMO-

LUMO gap related to the analyzed molecules calculated with various basis sets exhibits

minimal variation.

For simplicity, we opt to analyze all other molecules, including molecules associated to

oblate rectangles, parallelograms, and hexagons, using the 6-311G(d,p) basis set.

The analyzed BHs are all the Kekuléan singlet-ground states associated to:

� n-hexes 1 ≤ n ≤ 6;

� prolate rectangle P (p, q) with 2 ≤ p, q ≤ 6 ;

� oblate rectangle O(p, q) with 1 ≤ p, q ≤ 6;

� parallelograms L(p, q) with 2 ≤ p, q ≤ 7;

� hexagons H(3, 3, r) with 2 ≤ r ≤ 7, H(4, q, r) with 3 ≤ q ≤ 4 and 3 ≤ r ≤ 6,

H(5, 5, r) with 5 ≤ r ≤ 6.
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3.1. Ciosªowski formula

In the `80s, Ciosªowski wrote a formula to describe the HOMO-LUMO gap χHL calcu-

lated with the Hückel theory of BHs from one to eight rings through topological descriptors

[2]. We want to prove the validity of the formula also for the HOMO-LUMO gap calcu-

lated at the DFT level. Before examining the calculations, we recall here the Ciosªowski

formula:

χHL = 2
(
− 2.90611 (2M/N)1/2 + 3.91744 K2/N

)
(3.1)

The formula contains the number of carbon-carbon bonds, referred to as M , the number

of carbon atoms, de�ned as N , and the number of Kekulé structures, named K. The �rst

term containing (2M/N)1/2 can be rewritten as 2β1/2. The β term allows the formula

to distinguish between pericondensed BHs and catacondensed BHs since pericondensed

BHs with the same number of hexagonal rings as catacondensed BHs are characterized

by higher connectivity, given their higher M . Instead, all the unbranched catacondensed

BHs with the same number of benzenoid rings are featured by the same M and N . The

second term of the expression contains K2/N , which is recognized as a stability index. The

correlation coe�cient of this formula for the dataset analyzed by Ciosªowski is r = 0.927

with a root mean square error of 0.06 [2].

Here we replicate the Ciosªowski work for a limited set of BHs molecules going from one

to six rings. We show the �tting of the formula in equation 3.1 in Figure 3.1. We observe

the correlation coe�cient r is 0.9391, higher than the one reported in the original paper

because the coe�cients are optimized for all BHs up to 8 rings while our dataset includes

BHs up to six rings.

We now apply a modi�ed Ciosªowski formula, with the coe�cients adjusted to predict the

DFT-calculated energy gap of BHs associated to n-hexes with 1 ≤ n ≤ 6. The coe�cients

are optimized using the least square curve �t.

χHL = − 18.13518 (2M/N)1/2 + 25.27383 K2/N (3.2)

We observe the correlation coe�cient is r = 0.9540. From Figure 3.2, the maximum

relative error in absolute value is 0.25, where the error is the ratio of the di�erence
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Figure 3.1: In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap estimated by

the Ciosªowski formula χHL in equation 3.1 for BHs associated to n-hexes with 1 ≤ n ≤ 6.

The red line is the bisector of the �rst and third quadrants.
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Figure 3.2: In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the DFT theory and the HOMO-LUMO gap estimated by the

Ciosªowski formula χHL in equation 3.2 for BHs associated to n-hexes with 1 ≤ n ≤ 6.

The red line is the bisector of the �rst and third quadrants.
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n-hexes with 1 ≤ n ≤ 6

χHL(eq 3.1)
Hückel theory

HOMO-LUMO gap
r = 0.9391

χHL(eq 3.2) DFT HOMO-LUMO gap r = 0.9540

Table 3.1: Comparison between the correlation coe�cients of the Ciosªowski formula χHL
in equation 3.1 and HOMO-LUMO gap calculated with Hückel theory and the correlation

coe�cients of the modi�ed formula χHL in equation 3.2 and HOMO-LUMO gap calculated

with DFT theory.

between the DFT-calculated HOMO-LUMO gap and the estimated HOMO-LUMO gap

χHL over the DFT-calculated HOMO-LUMO gap.

So, the modi�ed Ciosªowski formula can predict the HOMO-LUMO gap of the considered

set of BHs calculated at the DFT level.

In Table 3.1, we report the correlation coe�cients of the computed HOMO-LUMO gap

and the predicted HOMO-lUMO for molecules associated to n-hexes with a number of

rings between one and six.

E�ect of planarity. As mentioned in Section 2.2, coves and fjords result in non-planarity

in BHs. We want to investigate whether the distortion from the planarity of the molecules

leads to a sensible mis�t of the formula.
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Figure 3.3: In Panel (a), the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the DFT theory and the HOMO-LUMO gap estimated by the

Ciosªowski formula χHL in equation 3.2 of planar (blue circles) and non planar (red stars)

of BHs with a number of rings between one to six rings. The grey line is the bisector of the

�rst and third quadrants. In Panel (b), the relative error related to planar (blue circles)

and non planar (red stars) BHs over the HOMO-LUMO gap estimated by equation 3.2.

In Figure 3.3, we observe that the maximum relative error in absolute value for the non-

planar molecules is 0.15 and it is comparable to the maximum relative error in absolute
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value for planar molecules.

The HOMO-LUMO gap does not depend on the planarity of the BHs, but only on the

topology of the molecule, namely the number of Kekulé structures.

Thus, the adjusted parameters of the Ciosªowski formula predict the electronic properties

of BHs with a number of rings between one and six also considering the HOMO-LUMO

gap estimated by DFT, which is more accurate than Hückel theory as it accounts for the

actual geometry of the molecule and not just its graph.

Extending the Ciosªowski formula. We cease the enumeration of all the possible

structures given a certain number of rings because the algorithm to determine all the

n-hexes is nontrivial and their number increases exponentially. Indeed, for seven rings

the number of polyhexes that is possible to enumerate is 333, but for nine or ten rings

they become respectively 6572 and 30490 [95]. So, more than analyzing a big dataset of

small molecules, we want to test the applicability of the Ciosªowski formula to molecules

with more than ten rings. With that goal in mind, it is more feasible to consider classes

of highly symmetric BHs rather than n-hexes. So, we choose classes of planar molecules

that are easier to build by increasing their topological parameters, and for which a simple

expression to evaluate the number of Kekulé structures is recognized, as underlined in

Section 2.2.1.

We consider molecules corresponding to prolate rectangles, oblate rectangles, parallelo-

grams, and hexagons.

Before going on with the calculation, we want to study the frontier orbitals of the so-

chosen BHs. By observing the molecular orbitals in Figures 3.4, 3.5, 3.6, 3.7 we see that

for compact molecules, characterized by a small p/q ratio, the HOMO and LUMO orbitals

distribute themselves around the carbon atoms in all the molecules. For larger molecules

featuring both longer armchairs and zig-zag pro�les, the HOMO and LUMO orbital are

more localized at the edge states of their zig-zag edges. Up to the molecule associated to

the hexagon H(5, 5, 5), the frontier orbitals calculated at the DFT level are not localized

at the edges.

Looking at the frontier orbitals, we hypothesize that the HOMO-LUMO gap can be pre-

dicted by parameters related to the topology of the entire molecules, such as β and K2/N ,

for BHs of limited dimension. So, we extend the Ciosªowski formula to estimate the DFT-

calculated HOMO-LUMO gap of the BHs of the mentioned classes with a number of rings

≥ 8 but we limit ourselves to molecules with ≤ 20 rings.

The modi�ed expression of the Ciosªowski formula, with coe�cients optimized to predict

the DFT calculated HOMO-LUMO gap of the molecules associated to prolate rectangles,
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Figure 3.4: In the �rst row, isodensity surface plot at the value 0.0223a−3/2
0 (a0:Bohr ra-

dius) of the HOMO on the left and of the LUMO on the right of the molecule equivalent to

parallelogram L(2, 3). In the second row, isodensity surface plot at the value 0.0116a−3/2
0

of the HOMO on the left and of the LUMO on the right of the molecule equivalent to

parallelogram L(7, 7).
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Figure 3.5: In the �rst row, isodensity surface plot at the value 0.0115a
−3/2
0 (a0:Bohr

radius) of the HOMO on the left and of the LUMO on the right of the molecule equivalent

to oblate rectangles O(3, 2). In the second row, isodensity surface plot at the value

0.0179a
−3/2
0 of the HOMO on the left and of the LUMO on the right of the molecule

equivalent oblate rectangles O(6, 5).
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Figure 3.6: In the �rst row, isodensity surface plot at the value 0.0177a
−3/2
0 (a0:Bohr

radius) of the HOMO on the left and of the LUMO on the right of the molecule equivalent

to prolate rectangles P (3, 3). In the second row, isodensity surface plot at the value

0.0129a
−3/2
0 of the HOMO on the left and of the LUMO on the right of the molecule

equivalent to prolate rectangles P (5, 5).
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Figure 3.7: In the �rst row, isodensity surface plot at the value 0.0164a
−3/2
0 (a0:Bohr

radius) of the HOMO on the left and of the LUMO on the right of the molecule equivalent

of hexagon H(2, 3, 3). In the second row, isodensity surface plot at the value 0.0112a−3/2
0

of the HOMO on the left and of the LUMO on the right of the molecule equivalent of

hexagon H(5, 5, 5).
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oblate rectangles, parallelograms, and hexagons with less than 20 rings is:

χHL = − 11.72999 (2M/N)1/2 + 16.75529 K2/N (3.3)

The correlation coe�cient r is 0.8794. Furthermore, we notice that the stability term

K2/N is not a valid topological indicator for molecules associated to prolate rectangles

since if we express N in terms of p and q, we obtain:

N = q (2(p− 2) + 12) = 2 (pq + 4q) (3.4)

Substituting in the equation 2.4, we get:

K2/N = (p+ 1)
2q

2 (pq+4q) = (p+ 1)
1

(p+4) (3.5)

We will now assess the correlation of the newly modi�ed χHL in equation 3.3 with the

DFT calculated energy gap by examining its performance within each class, as depicted

in Figure 3.8.

For molecules associated to prolate rectangles, in Figure 3.8b, the plotted relative error

increases for molecules with smaller HOMO-LUMO gap, so associated to prolate rectan-

gles with higher q. This was predicted by equation 3.5.

For molecules associated to parallelograms, in Figure 3.8a, we observe that χHL is consis-

tently underestimated compared to the DFT data, with a relative error around 0.20, as

shown in Figure 3.8b.

For molecules associated to oblate rectangles, in Figure 3.8b, the maximum relative error

in absolute value is 0.25.

For molecules associated to hexagons, in Figure 3.8b, the maximum relative error in ab-

solute value is 0.12.

Thus, the parameters in the Ciosªowski formula can describe the HOMO-LUMO gap cal-

culated by DFT for molecules with a limited number of rings, optimizing its coe�cients.

So, we write an ultimate modi�ed version to account for molecules associated to n-hexes

with 1 ≤ n ≤ 6 and oblate rectangles, parallelograms, and hexagons with less than 20

rings.

χHL = −16.87575 (2M/N)1/2 + 23.67559 K2/N (3.6)

The correlation coe�cient r is 0.9531. However, as we have seen for molecules associated

to prolate rectangles in equation 3.5, K2/N is not an e�ective index. As we have deducted

from the images of the frontier orbitals in Figures 3.4, 3.5, 3.6, 3.7, the topological pa-

rameters in the Ciosªowski formula do not properly describe the energy gap for bigger

molecules. So, new topological parameters should be analyzed.
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Figure 3.8: In Panel (a), the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with DFT and the HOMO-LUMO gap estimated by the Ciosªowski

formula χHL in equation 3.3 for BHs associated to parallelograms in green diamonds,

hexagons in green asterisks, prolate rectangles in blue circles and oblate rectangles in

blue asterisks. The red line is the bisector of the �rst and third quadrants. In Panel (b),

the relative error related to BHs associated to parallelograms in green diamonds, hexagons

in green asterisks, prolate rectangles in blue circles and oblate rectangles in blue asterisks

estimated by equation 3.3.
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Limit for the graphene. We started from molecules with a number of rings between

one and six. Then we extended our research to larger molecules. Thus, it appears natural

to investigate whether the Ciosªowski formula is applicable at in�nity. So graphene, which

is an in�nite two-dimensional layer, is our limit case.

We start analyzing the terms of the Ciosªowski formula. We begin from (2M/N)1/2.

The ratio between C-C bond and C carbon atoms M/N is constant in graphene. So we

can study it from the graphene unit cell. In the graphene unit cell, the number of carbon

atoms is 2 and the number of carbon-carbon bonds is 3. We can substitute the determined

values in the expression:

χHL = A (2M/N)1/2 + B K2/N = 0 (3.7)

So, the connectivity term becomes a constant and a general condition on the coe�cients

of the Ciosªowski formula can be derived.

K2/N = −A
B

√
3 (3.8)

We now look at the stability term. K goes to in�nity for graphene, as N , so we have an

indeterminate form for K2/N .

We study the case of the parallelogram L(p, p). Looking at the molecule, we derive the

number of carbon atoms N as a function of p.

N(L(p, q)) = 2(pq + p+ q) (3.9)

N(L(p, p)) = 2(p2 + 2p) (3.10)

Then, we evaluate the limit for molecules associated to a parallelogram P (p, p) of the

expression of the number of Kekulé structure as shown in equation 2.5, deriving:

lim
p→∞

K{L(p, p)} = lim
p→∞

[
2p!

p!p!

] 1
p2+2p

(3.11)

Using Stirling's approximation[128], we get:

lim
p→∞

K{L(p, p)}2/N = lim
p→∞

[ √
2π2p

(
2p
e

)2p
√
2πp

(
p
e

)p √
2πp

(
p
e

)p
] 1

p2+2p

lim
p→∞

K{L(p, p)}2/N = lim
p→∞

[ √
2
(
2p
e

)2p
√
2πp

(
p
e

)2p
] 1

p2+2p

= lim
p→∞

[
22p
√
πp

] 1
p2+2p
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Exploiting the properties of limits, we get at the numerator

lim
p→∞

2
2p

p2+2p = lim
p→∞

2
2

p+2 = 1

While at the denominator

lim
p→∞

π
1

2(p2+2p)p
1

2(p2+2p) = lim
p→∞

p
1

2(p2+2p)

Using the formula αβ = eβ lnα and applying L'Hopitals rule [128], we get:

lim
p→∞

1

e
ln(p)

2p2+4p

= 1

The behaviour of the function is shown in Figure 3.9.
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Figure 3.9: In blue circles, K2/N over p for parallelogram L(p, p), with p going from 2

to 38.

As a result, the Ciosªowski formula predicts the behavior of the natural limit of BH and

GNs that is the two-dimensional in�nite layer of graphene. Indeed, extending molecules

associated to parallelograms L(p, p) to the in�nite, we determine

K2/N = −A
B

√
3 = 1

So, in the end we get a relation between the two coe�cient A and B that can take into

account the zero gap of graphene.

A

B
= − 1√

3
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However, to con�rm this result, the derivation should be extended to other classes of BHs.

But, as stated in Section 2.2.1, not all BHs are characterized by an expression of K in

terms of p and q.

Other topological parameters. Given the limited applicability of the Ciosªowski for-

mula for classes of BHs associated to polyhexes such as prolate rectangles, we look for

new indices that are easier to calculate than the number of Kekulé structures but still

have a su�ciently high correlation coe�cient. The investigated coe�cients are:

� the inverse of the perimeter P , namely the inverse of the number of external edges

� the inverse of the number of carbon atoms N

� the ratio between P and the number of internal edges Mint

� the ratio between P and N .

We can consider the 1/P and 1/N topological descriptor as strictly dependent on the

dimension of the molecule, while P/Mint and P/N can be seen as a ratio between the

perimeter of the molecule and its area, so they look more like of a ratio between the

peripherical region and the connectivity of the entire molecule.

1/P 1/N P/Mint P/N

prolate rectangles 0.9210 0.8264 0.9720 0.8779

oblate rectangles 0.7881 0.7766 0.5972 0.7170

parallelograms 0.9951 0.9979 0.9544 0.9044

hexagons 0.7249 0.7491 0.6821 0.6628

Table 3.2: Correlation coe�cients of the HOMO-LUMO gap calculated with DFT for all

the analyzed molecules equivalent to prolate rectangles, oblate rectangles, parallelograms,

and hexagons with the inverse of the perimeter, the inverse of the number of carbon atoms,

the ratio between perimeter and the number of internal edges, and the ratio between the

perimeter and the number of carbon atoms.

From Table 3.2, we observe that the P/Mint has a correlation coe�cient smaller than

0.7 for molecules associated to oblate rectangles and hexagons. 1/P and 1/N instead

are more reliable indices, since their value is close to 1 both for molecules associated to

parallelograms and prolate rectangles and higher than the other topological parameters

analyzed for the remaining two classes.
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1/P 1/N P/Mint P/N

prolate rectangles 0.9310 0.9246 0.8844 0.8283

oblate rectangles 0.7942 0.6936 0.6574 0.5510

parallelograms 0.9938 0.9964 0.9890 0.9673

hexagons 0.6426 0.7531 0.5005 0.4862

Table 3.3: Correlation coe�cients of the HOMO-LUMO gap calculated with DFT for

molecules with more than 20 rings equivalent to prolate rectangles, oblate rectangles,

parallelograms, and hexagons with the inverse of the perimeter, the inverse of the number

of carbon atoms, the ratio between perimeter and the number of internal edges, and the

ratio between the perimeter and the number of carbon atoms.

As we observe in Table 3.3, for molecules associated to prolate or oblate rectangles,

we see that 1/P performs the best as a topological parameter in terms of correlation co-

e�cients. This is not true for molecules related to parallelograms and hexagons. In those

cases, it is 1/N that gives the higher correlation coe�cient especially for hexagons. For

all the molecules, parameters involving the ratio between the perimeter and an indicator

regarding the composition of the entire molecules, such as Mint or N , do not correlate

as well as the others. So, we can infer that for molecules with more than 20 rings, the

topological descriptors which strictly increase with the dimension of the molecule corre-

late with th DFT calculated HOMO-LUMO gap better than descriptors that express the

ratio between the characteristics of the peripherical region over the connectivity of the

entire molecule.

3.2. Comparison between Hückel theory and DFT

Analysis of bond lengths. Our goal is to investigate the correlation between the

Hückel theory and DFT for various classes of BHs. The Hückel theory is an accurate

approximation when the C-C bond lengths among �rst neighbors are nearly equal. That

means the variation of C-C bond length in the molecule must be minimal, with limited

di�erences between single and double bonds. So, we analyze the bond length alterna-

tion for molecules associated to parallelograms, prolate rectangles, oblate rectangles, and

hexagon. We observe from Tables 3.4, 3.5, 3.6, 3.7 that the maximum deviation in the ab-

solute value of the bond lengths from their average is 0.0741 and is reported for molecule

associated to hexagon H(4, 3, 2). We compare this deviation to the bond length alter-
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nation of the polyacetylene, which is known to have single and double bonds alternating

in the structure and for which the Hückel theory does not e�ectively predict the energy

levels. In that case, the bond length alternation is 0.0600 Å [129]. So, the Hückel theory

may not accurately predict the HOMO-LUMO gap of the analyzed molecules, since the

bond length alternation is not negligible. However, for simplicity, we do not adoperate

the extended Hückel theory but we expect the Hückel theory to embed this error. We

continue by analyzing the variation of the average bond lengths within each class.



3| Energy gap of BHs 40

Parallelograms

(p, q)
Average bond lengths

[Å]

Maximum di�erence from

average [Å]

(2, 2) 1.4087 0.0503

(2, 3) 1.4115 0.0568

(2, 4) 1.4129 0.0593

(2, 5) 1.4140 0.0608

(2, 6) 1.4146 0.0616

(2, 7) 1.4151 0.0621

(3, 3) 1.4136 0.0609

(3, 4) 1.4149 0.0629

(3, 5) 1.4157 0.0638

(3, 6) 1.4163 0.0646

(3, 7) 1.4167 0.0651

(4, 4) 1.4159 0.0641

(4, 5) 1.4167 0.0650

(4, 6) 1.4171 0.0658

(4, 7) 1.4175 0.0660

(5, 5) 1.4173 0.0656

(5, 6) 1.4178 0.0659

(5, 7) 1.4181 0.0666

(6, 6) 1.4182 0.0664

(6, 7) 1.4185 0.0667

Table 3.4: In the second column, the average mean value of the bond length for each

molecule associated to a parallelogram. In the third column, the maximum di�erence

in absolute value between the average value of the bond lengths and the bond lengths

themselves.
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Oblate rectangles

(p, q) Average bond length [Å]
Maximum di�erence from

average [Å]

(1, 2) 1.4087 0.0503

(1, 3) 1.4123 0.0539

(1, 4) 1.4137 0.0547

(1, 5) 1.4145 0.0551

(1, 6) 1.4150 0.0555

(2, 2) 1.4118 0.0425

(2, 3) 1.4145 0.0477

(2, 4) 1.4157 0.0512

(2, 5) 1.4163 0.0519

(2, 6) 1.4168 0.0525

(3, 2) 1.4136 0.0518

(3, 3) 1.4159 0.0564

(3, 4) 1.4169 0.0576

(3, 5) 1.4175 0.0581

(3, 6) 1.4178 0.0584

(4, 2) 1.4148 0.0559

(4, 3) 1.4168 0.0597

(4, 4) 1.4177 0.0608

(4, 5) 1.4182 0.0613

(4, 6) 1.4185 0.0613

(5, 2) 1.4156 0.0580

(5, 3) 1.4174 0.0608

(5, 4) 1.4182 0.0614

(5, 5) 1.4186 0.0616

(5, 6) 1.4189 0.0615

Table 3.5: Continued on next page
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Table 3.5: Continued from previous page

Oblate rectangles

(p, q)
Average bond lengths

[Å]

Maximum di�erence from

average [Å]

(6, 2) 1.4161 0.0590

(6, 3) 1.4178 0.0611

(6, 4) 1.4185 0.0612

(6, 5) 1.4189 0.0613

(6, 6) 1.4192 0.0610

Table 3.5: In the second column, the average mean value of the bond length for each

molecule associated to a oblate rectangle. In the third column, the maximum di�erence

in absolute value between the average value of the bond length and the bond lengths

themselves.

Prolate rectangles

(p, q)
Average bond lengths

[Å]

Maximum di�erence from

average [Å]

(2, 2) 1.4113 0.0644

(2, 3) 1.4135 0.0573

(2, 4) 1.4146 0.0547

(2, 5) 1.4151 0.0537

(2, 6) 1.4154 0.0530

(3, 2) 1.4141 0.0572

(3, 3) 1.4159 0.0456

(3, 4) 1.4166 0.0419

(3, 5) 1.4170 0.0480

(3, 6) 1.4173 0.0507

(4, 2) 1.4154 0.0557

(4, 3) 1.4168 0.0428

(4, 4) 1.4175 0.0445

(4, 5) 1.4179 0.0479

Table 3.6: Continued on next page
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Table 3.6: Continued from previous page

Prolate rectangles

ID of the molecule Average bond length [Å]
Maximum di�erence from

average [Å]

(4, 6) 1.4182 0.0486

(5, 2) 1.4161 0.0554

(5, 3) 1.4174 0.0438

(5, 4) 1.4181 0.0424

(5, 5) 1.4185 0.0457

(5, 6) 1.4188 0.0468

(6, 2) 1.4163 0.0524

(6, 3) 1.4179 0.0445

(6, 4) 1.4185 0.0421

(6, 5) 1.4189 0.0461

(6, 6) 1.4191 0.0484

(7, 2) 1.4167 0.0534

(7, 3) 1.4182 0.0445

(7, 4) 1.4188 0.0424

(7, 5) 1.4192 0.0473

(7, 6) 1.4192 0.0596

Table 3.6: In the second column, the average mean value of the bond length for each

molecule associated to a prolate rectangle. In the third column, the maximum di�erence

in absolute value between the average value of the bond lengths and the bond lengths

themselves.

Hexagons

ID of the molecule
Average bond lengths

[Å]

Maximum di�erence from

average [Å]

(3, 3, 2) 1.4150 0.0587

(3, 3, 3) 1.4161 0.0562

(3, 3, 4) 1.4173 0.0620

Table 3.7: Continued on next page
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Table 3.7: Continued from previous page

Hexagons

(p, q, r) Average bond length [Å]
Maximum di�erence from

average [Å]

(3, 3, 5) 1.4177 0.0629

(4, 3, 2) 1.4160 0.0617

(4, 3, 3) 1.4168 0.0601

(4, 3, 4) 1.4174 0.0631

(4, 3, 5) 1.4179 0.0644

(4, 3, 6) 1.4178 0.0741

(4, 4, 2) 1.4167 0.0637

(4, 4, 3) 1.4174 0.0631

(4, 4, 4) 1.4179 0.0621

(4, 4, 5) 1.4183 0.0640

(4, 4, 6) 1.4186 0.0648

(5, 5, 5) 1.4189 0.0651

Table 3.7: In the second column, the average mean value of the bond length for each

molecule associated to a hexagon. In the third column, the maximum di�erence in abso-

lute value between the average value of the bond lengths and the bond lengths themselves.

We now analyze the variation of the average bond lengths within each class. We ob-

serve for all the molecules analyzed within the class of parallelograms, oblate rectangles,

prolate rectangles, and hexagons that the average bond length increases with p, q, and

r parameters. Indeed, the average bond length increases going from the average carbon-

carbon length of the benzene (1.400 Å) toward the average carbon-carbon bond length of

graphene (1.425 Å) [130].

Notably, when we hold the parameter p constant, we observe that the maximum di�erence

between the average bond lengths and individual bond lengths tends to increase with the

parameter q for all molecules, except those linked to prolate rectangles. This deviation

is attributed to the fact that molecules associated to prolate rectangles have fewer atoms

in the core region compared to the other classes of molecules of analogous dimensional-

ity. Consequently, for molecules associated to prolate rectangles, the average bond length

shows less consistent growth, resulting in a decrease in the measured di�erence between
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the average bond length and the bond lengths observed in the peripheral region [130].

We now compare the bond length alternation in smaller and bigger molecules for each

class considering a speci�c path to see whether the bond length alternation is localized in

particular regions. In the examined molecules in Figures 3.10, 3.11, 3.12, the bond length

alternation is more pronounced in the peripheral region than in the inner core. Conse-

quently, the distortion of the molecule is more localized in the extremal regions compared

to the inner core for both smaller and larger molecules, as observed in the past for selected

large PAHs [131]. Shifting the focus to the outer paths of larger molecules, di�erences in

bond length alternation are noted, particularly in prolate and oblate rectangles featuring

both zig-zag and armchair edges. We observe a more evident increase in bond length

alternation in the armchair region compared to the zig-zag region.
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Figure 3.10: At the top, molecular graphs of BHs associated to oblate rectangle O(2, 2)

on the left and oblate rectangle O(6, 4) on the right are displayed. The investigated outer

path is highlighted in blue, while the inner path is marked in green. At the bottom, the

C-C bond alternation plot along the outer path and the inner path of the molecule is

illustrated.
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Figure 3.11: At the top, molecular graphs of BHs of BHs associated to parallelogram

L(2, 3) on the left and parallelogram L(6, 7) on the right are displayed. The investigated

outer path is highlighted in blue, while the inner path is marked in green. At the bottom,

the C-C bond alternation plot along the outer path and the inner path of the molecule is

illustrated.
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Figure 3.12: At the top, molecular graphs of BHs associated to prolate P (3, 2) on the

left and parallelogram P (6, 4) on the right are displayed. The investigated outer path is

highlighted in blue, while the inner path is marked in green. At the bottom, the C-C bond

alternation plot along the outer path and the inner path of the molecule is illustrated.

For molecules related to parallelograms, characterized only by zig-zag edges we see the

bond length alternation is still localized along speci�c edges.

A comparison of bond length alternation shown in Figure 3.10, 3.11, 3.12, with the isoden-

sity surfaces in Figures 3.4, 3.5, 3.6 reveals that the localization of the HOMO and LUMO

orbitals aligns with regions exhibiting smaller bond length alternation. This alignment

is evident in the zig-zag pro�les of molecules associated to oblate rectangles and prolate

rectangles, as well as in the edges with less marked bond length alternation in molecules

associated to parallelogram.

Correlation between the energy gap calculated with DFT and with Hückel

theory. We want to investigate the presence of a linear correlation between the HOMO-

LUMO gap calculated with the DFT method and the energy gaps calculated with Hückel

theory by investigating the presence of a linear correlation between the so-calculated
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HOMO�LUMO gap for all the di�erent classes.
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Figure 3.13: In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap calculated with

DFT for molecules associated to parallelograms.
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Figure 3.14: In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap calculated with

DFT for molecules associated to oblate rectangles. The optimized linear �tting coe�cient

is 5.1093.



3| Energy gap of BHs 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

r = 0.9965

Hückel theory HOMO-LUMO gap(β)

D
F
T
H
O
M
O
-L
U
M
O

ga
p
[e
V
]

Figure 3.15: In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap calculated with

DFT for molecules associated to prolate rectangles. The optimized linear �tting coe�cient

is 4.822.
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Figure 3.16: In blue circles, the scatter plot showing the relation between the HOMO-

LUMO gap evaluated with the Hückel theory and the HOMO-LUMO gap calculated with

DFT for molecules associated to hexagon. The optimized linear �tting coe�cient is 4.903.

We observe in Figure 3.13 that for molecules associated to parallelogram the HOMO-

LUMO gap calculated with Hückel theory is underestimated compared to the HOMO-

LUMO gap calculated with DFT and the trend is not linear. This di�erence is due to the

instability of the parallelogram associated with the exclusive presence of zig-zag edges,

that lead to an open shell con�guration, characterized by unpaired electrons [132]. For

molecules associated to oblate rectangles, prolate rectangles, and hexagons, as we see in

Figures 3.14, 3.15, 3.16 instead, the linear trend of the plot is more marked, so choosing
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the right β in the Hückel theory leads to an estimation of the HOMO-LUMO gap close

to DFT results. From the data collected in the previous Section, we also associate the

deviation from the linear correlation of the HOMO-LUMO gap calculated with Hückel

theory and the HOMO-LUMO gap calculated with DFT to the bond length alternation,

which is not negligible.
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4| Isoarithmicity

Unbranched catacondensed BHs characterized by the same "LA" sequence, as dis-

cussed in Section 2.2, are referred to as isoarithmic, as we see in Figure 4.1 [3].

We now look closer at unbranched catacondensed BHs and study their HOMO-LUMO

gap calculated at the DFT level. Considering Hückel theory, the energy gap of each

Figure 4.1: The molecular graphs of two isoarithmic molecules. The two unbranched

catacondensed BHs are associated to the same dual graphs and the same "LA" sequences

but their dualist graphs are di�erent (see in Appendix A 4.03 and 4.04). Grey circles

represent the vertices of the molecular graph, black segments the edges of the molecular

graph, purple circles are the vertices of the dual graph and purple segments are the edges

of the dual graph.

isoarithmic group of molecules is comparable [133]. We want to validate the accuracy of

this assertion also for the HOMO-LUMO gap calculated at the DFT level.

Sequence
ID of the

molecule

Hückel

HOMO-

LUMO gap (β

units)

Mean value of

the HOMO-

LUMO gap (β

units)

Di�erence

from the

mean value (β

units)

LLLL 4.01 0.5899 0.5899 0.0000

LALL 4.02 0.9046 0.9046 0.0000

LAAL
4.03 1.1352

1.0878 0.0475
4.04 1.0403

LLLLL 5.01 0.4394 0.4394 0.0000

LALLL 5.02 0.6541 0.6541 0.0000

Table 4.1: Continued on next page
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Table 4.1: Continued from previous page

Sequence
ID of the

molecule

Hückel

HOMO-

LUMO gap (β

units)

Mean value of

the HOMO-

LUMO gap (β

units)

Di�erence

from the

mean value (β

units)

LAALL
5.04 0.8096

0.8234 0.0138
5.08 0.8372

LLALL 5.03 0.8743 0.8743 0.0000

LALAL
5.07 0.9470

0.9653 0.0183
5.05 0.9835

LAAAL

5.10 1.0038

1.0518

0.0543

5.09 1.0997 0.0416

5.11 1.0709 0.0128

LLLLLL 6.01 0.3387 0.3387 0.0000

LALLLL 6.02 0.4872 0.4872 0.0000

LAALLL
6.03 0.6066

0.6104 0.0038
6.05 0.6142

LLALLL 6.04 0.6715 0.6715 0.0000

LLAALL
6.10 0.6953

0.7078 0.0125
6.12 0.7203

LALLAL
6.07 0.7168

0.7191 0.0023
6.06 0.7213

LAAALL

6.14 0.8258

0.8422

0.0164

6.13 0.8387 0.0035

6.16 0.8400 0.0022

6.15 0.8643 0.0221

LAALAL

6.18 0.8571

0.8838

0.0267

6.19 0.8755 0.0083

6.20 0.9011 0.0174

6.17 0.9013 0.0176

LALALL
6.08 0.8575

0.8772 0.0197
6.11 0.8969

Table 4.1: Continued on next page
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Table 4.1: Continued from previous page

Sequence
ID of the

molecule

Hückel

HOMO-

LUMO gap (β

units)

Mean value of

the HOMO-

LUMO gap (β

units)

Di�erence

from the

mean value (β

units)

LAAAAL

6.21 0.9428

1.0072

0.0644

6.24 0.9969 0.0103

6.22 1.0130 0.0058

6.09 1.0790 0.0718

6.09 1.0790 0.0028

Table 4.1: HOMO-LUMO gap evaluated at the Hückel theory level of unbranched cata-

condensed BHs of four, �ve, and six rings. We group them by "LA" sequences, reported

in the �rst column. The fourth column contains the mean value of the HOMO-LUMO gap

of each isoarithmic BH. The last column shows the di�erence in absolute value between

the HOMO-LUMO gap of each group of isoarithmic BH.

Sequence
ID of the

molecule

DFT HOMO-

LUMO gap

(eV)

Mean value of

the HOMO-

LUMO gap

(eV)

Di�erence

from the

mean value

(eV)

LLLL 4.01 2.7693 2.7693 0.0000

LALL 4.02 3.7530 3.7530 0.0000

LAAL
4.03 4.2052

4.2240 0.01878
4.04 4.2428

LLLLL 5.01 2.7693 2.7693 0.0000

LALLL 5.02 2.9413 2.9413 0.0000

LAALL
5.08 3.4392

3.4669 0.0276
5.04 3.4945

LLALL 5.10 3.7835 3.7835 0.0000

LALAL
5.07 3.8787

3.8998 0.0211
5.05 3.9209

Table 4.2: Continued on next page
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Table 4.2: Continued from previous page

Sequence
ID of the

molecule

DFT HOMO-

LUMO gap

(eV)

Mean value of

the HOMO-

LUMO gap

(eV)

Di�erence

from the

mean value

(eV)

LAAAL

5.06 4.1579

4.2078

0.0499

5.10 4.2276 0.0198

5.09 4.2379 0.0301

LLLLLL 6.01 1.7881 1.7881 0.0000

LALLLL 6.02 2.3492 2.3492 0.0000

LAALLL
6.05 2.7745

2.7873 0.0128
6.03 2.7745

LLALLL 6.04 3.0191 3.0191 0.0000

LLAALL
6.12 3.0518

3.0938 0.0420
6.10 3.1358

LALLAL
6.07 3.1043

3.1077 0.0034
6.06 3.1111

LAAALL

6.16 3.4488

3.5007

0.0331

6.13 3.4950 0.0239

6.15 3.5105 0.0218

6.14 3.5105 0.0352

LAALAL

6.20 3.5761

3.6093

0.0331

6.17 3.5854 0.0239

6.18 3.6311 0.0218

6.19 3.6444 0.0352

LALALL
6.08 3.6507

3.6738
0.0231

6.11 3.6969 0.0231

Table 4.2: Continued on next page
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Table 4.2: Continued from previous page

Sequence
ID of the

molecule

DFT HOMO-

LUMO gap

(eV)

Mean value of

the HOMO-

LUMO gap

(eV)

Di�erence

from the

mean value

(eV)

LAAAAL

6.09 3.9108

3.9734

0.0625

6.24 3.9334 0.040

6.23 3.9854 0.0120

6.22 4.0012 0.0278

6.21 4.0360 0.0626

Table 4.2: HOMO-LUMO gap evaluated at the DFT level of unbranched catacondensed

BHs of four, �ve, and six rings. We group them by "LA" sequences, reported in the

�rst column. The fourth column contains the mean value of the HOMO-LUMO gap of

each isoarithmic BH. The last column shows the di�erence in absolute value between the

HOMO-LUMO gap of each group of isoarithmic BH.

Results. Both in Tables 4.1 and 4.2, molecules with the smallest HOMO-LUMO gap

are the ones characterized by the sequence L . . . L, with zig-zag edges. Molecules with the

largest HOMO-LUMO gap are the ones characterized by the sequence LA . . . AL, charac-

terized by armchair edges [1]. Between these two extreme values, the HOMO-LUMO gap

does not simply increase depending on the number of A rings, but it also depends on the

concatenation in every single chain.

In Table 4.1 we see that the maximum di�erence between the energy gap and the mean

value of the corresponding isoarithmic group is 0.0711|β| for molecule 6.09. In Table

4.2 we notice that the maximum deviation of the energy gap from the mean value of

the corresponding isoarithmic group is 0.0626 eV for molecule 6.09. So, generally, the

mean value of each isoarithmic group correctly approximates the HOMO-LUMO gap of

the single molecule both at the Hückel level and at the DFT level.

Discussion. Unbranched catacondensed BHs with the same chain sequence have al-

most the same HOMO-LUMO gap calculated at the DFT level. So, we can infer that

the HOMO-LUMO gap can be described just by looking at the chain sequence of the

molecules without considering the characteristics of its external edges. More precisely,

fjords and coves which lead to non-planar structures do not a�ect the HOMO-LUMO
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gap calculated at the DFT level. Also, at the DFT level, the HOMO-LUMO gap of an

unbranched catacondensed BH can be correctly described by considering a graph invari-

ant that distinguishes between L and A rings and accounts for their connectivity. The

number of Kekulé structures K serves the scope. Isoarithmic BHs have the same num-

ber of Kekulé structures [3]. Furthermore, from the Davidson-Gordon algorithm exposed

in Section 2.2.1, the counting of the number of Kekulé structure changes in a polyhex

depending on the position of the kinks along the chain. Thus, the number of Kekulé

structures correctly embodies the concept of isoarithmicity and allows us to distinguish

between di�erent isoarithmic groups. Also for the HOMO-LUMO gap calculated at the

DFT value, in the Ciosªowski formula, the K2/N stability index accounts for all these

aspects.
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5| Conclusion

The study of electronic properties through topological descriptors can lead to massive

simpli�cation in calculation. Focusing on the HOMO-LUMO gap of benzenoid hydrocar-

bons, we �nd in the �rst Chapter that the two topological parameters used by Ciosªowski

to estimate the Hückel theory HOMO-LUMO gap of molecules associated to n-hexes with

1 ≤ n ≤ 8 allow to estimate also DFT-calculated HOMO-LUMO gap of molecules asso-

ciated to n-hexes with 1 ≤ n ≤ 6.

An adjusted version of the formula correctly predicts the DFT HOMO-LUMO gap both

for planar and non-planar molecules.

By looking at the molecular orbital of BHs associated to di�erent types of polyhexes

of representative dimension, we hypothesize that the already mentioned parameters can

estimate the DFT HOMO-LUMO gap of molecules associated to polyhexes with a num-

ber of rings between eight and twenty rings (bondaries included). The coe�cients of the

Ciosªowski formula are adjusted to do so, and a new modi�ed version of the Ciosªowski

formula is derived.

The main limitations of the parameters considered by Ciosªowski is that the DFT cal-

culated HOMO-LUMO gap of molecules associated to speci�c classes, namely prolate

rectangles, and the DFT calculated HOMO-LUMO gap of bigger molecules are not well

approximated. So, we look for other topological parameters. For molecules with more than

twenty rings characterized both by armchairs and zig-zag edges, the topological parameter

showing the highest correlation coe�cient is the inverse of the number of carbon-carbon

bonds in the peripherical region, 1/P . For molecules associated to parallelograms and

hexagons characterized only by zig-zag edges, the inverse of the number of carbon atoms

(1/N) works the best.

Studying the bond length alternation of the molecules, we �nd that the average bond

length for molecules associated to polyhexes of all the classes grows with the increasing

of the parameters p, q, r. Furthermore, the deviation from the average bond length is

localized in correspondence of the zig-zag edges for molecules associated to prolate and

oblate rectangles and in correspondence of speci�c edges for molecules associated to par-

allelograms. Moreover, in polyhexes the localization of the HOMO and LUMO orbital is

in correspondence with the region showing smaller bond length alternation.

In Chapter 2, we observe that the HOMO-LUMO gap calculated with the DFT is almost
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the same for each subclass of isoarithmic molecules, namely unbranched catacondensed

molecules characterized by the same ring concatenation. So, the HOMO-LUMO gap does

not depend much on the planarity of the molecule or its external edge, but more on its

topology.

Perspectives for future work

It would be interesting to estimate the HOMO-LUMO gap through a simpler parameter

connected just to the topology of the molecule rather than a more complex parameter

such as the number of Kekulé structures. The main limitation of this parameter is that

combinatorial formulas are not extendable to a generic BH, while a topological parameter

associated to the structure will do the job.

Exploring PAHs could provide insights into how substituents or the presence of non-

hexagonal rings impact the count of Kekulé structures, and whether the Ciosªowski pa-

rameters remain e�ective in predicting the HOMO-LUMO gap. Additionally, examining

other topological parameters in this modi�ed context would be worthwhile.

Investigating the applicability of the Ciosªowski formula to highly non-planar geometries

would be of interest to determine potential limitations in that direction. In a broader

sense, new computational and data analysis tools, such as machine learning algorithms,

will lead for sure to a more e�cient application of chemical graph theory to the study

of materials properties other than the HOMO-LUMO gap, since now it will be possible

to increase the dataset of molecule analyzed and to use an approach which is not just

pen-and-paper.





61

References

[1] Yosadara Ruiz-Morales. Homo- lumo gap as an index of molecular size and structure

for polycyclic aromatic hydrocarbons (pahs) and asphaltenes: A theoretical study.

i. The Journal of Physical Chemistry A, 106(46):11283�11308, 2002.

[2] J Cioslowski. A uni�ed theory of the stability of benzenoid hydrocarbons. Interna-

tional journal of quantum chemistry, 31(4):581�590, 1987.

[3] Alexandru T Balaban. Applications of graph theory in chemistry. Journal of chem-

ical information and computer sciences, 25(3):334�343, 1985.

[4] United Nations. Sustainable developtment goals, 2023.

[5] Gregor Schwartz, Benjamin C.-K. Tee, Jianguo Mei, Anthony L. Appleton, Do Hwan

Kim, Huiliang Wang, and Zhenan Bao. Flexible polymer transistors with high

pressure sensitivity for application in electronic skin and health monitoring. Nature

Communications, 4(1), May 2013.

[6] Jiajun Song, Hong Liu, Zeyu Zhao, Peng Lin, and Feng Yan. Flexible organic

transistors for biosensing: Devices and applications. Advanced Materials, July 2023.

[7] Rui-Peng Xu, Yan-Qing Li, and Jian-Xin Tang. Recent advances in �exible organic

light-emitting diodes. Journal of Materials Chemistry C, 4(39):9116�9142, 2016.

[8] Kenjiro Fukuda, Kilho Yu, and Takao Someya. The future of �exible organic solar

cells. Advanced Energy Materials, 10(25), May 2020.

[9] Darren J. Lipomi, Benjamin C.-K. Tee, Michael Vosgueritchian, and Zhenan Bao.

Stretchable organic solar cells. Advanced Materials, 23(15):1771�1775, February

2011.

[10] Zhi Hong Chen, Rui Fang, Wei Li, and Jianguo Guan. Stretchable transparent con-

ductors: from micro/macromechanics to applications. Advanced Materials, 31(35),

June 2019.



References 62

[11] Yan Qian, Xinwen Zhang, Linghai Xie, Dianpeng Qi, Bevita K. Chandran, Xiaodong

Chen, and Wei Huang. Stretchable organic semiconductor devices. Advanced Ma-

terials, 28(42):9243�9265, August 2016.

[12] Xi Fan, Wanyi Nie, Hsinhan Tsai, Naixiang Wang, Huihui Huang, Yajun Cheng,

Rongjiang Wen, Liujia Ma, Feng Yan, and Yonggao Xia. PEDOT:PSS for �exible

and stretchable electronics: Modi�cations, strategies, and applications. Advanced

Science, 6(19), July 2019.

[13] Martin Kaltenbrunner, Matthew S. White, Eric D. Gªowacki, Tsuyoshi Sekitani,

Takao Someya, Niyazi Serdar Sariciftci, and Siegfried Bauer. Ultrathin and

lightweight organic solar cells with high �exibility. Nature Communications, 3(1),

April 2012.

[14] Xiaheng Huang, Yue Qu, Dejiu Fan, Jongchan Kim, and Stephen R. Forrest. Ul-

trathin, lightweight and �exible organic light-emitting devices with a high light

outcoupling e�ciency. Organic Electronics, 69:297�300, June 2019.

[15] C.D. Dimitrakopoulos and P.R.L. Malenfant. Organic thin �lm transistors for large

area electronics. Advanced Materials, 14(2):99�117, January 2002.

[16] C. W. Tang. Two-layer organic photovoltaic cell. Applied Physics Letters, 48(2):183�

185, January 1986.

[17] C. W. Tang and S. A. VanSlyke. Organic electroluminescent diodes. Applied Physics

Letters, 51(12):913�915, September 1987.

[18] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl. Photoinduced

electron transfer from a conducting polymer to buckminsterfullerene. Science,

258(5087):1474�1476, November 1992.

[19] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger. Polymer photovoltaic

cells: Enhanced e�ciencies via a network of internal donor-acceptor heterojunctions.

Science, 270(5243):1789�1791, December 1995.

[20] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen. Plastic solar cells. Advanced

Functional Materials, 11(1):15�26, February 2001.

[21] Lin X. Chen. Organic solar cells: Recent progress and challenges. ACS Energy

Letters, 4(10):2537�2539, October 2019.



63 References

[22] A. Tsumura, H. Koezuka, and T. Ando. Macromolecular electronic device:

Field-e�ect transistor with a polythiophene thin �lm. Applied Physics Letters,

49(18):1210�1212, November 1986.

[23] John A. Rogers, Zhenan Bao, Kirk Baldwin, Ananth Dodabalapur, Brian Crone,

V. R. Raju, Valerie Kuck, Howard Katz, Karl Amundson, Jay Ewing, and Paul

Drzaic. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of

electronics and microencapsulated electrophoretic inks. Proceedings of the National

Academy of Sciences, 98(9):4835�4840, April 2001.

[24] H. E. Katz. Organic molecular solids as thin �lm transistor semiconductors. Journal

of Materials Chemistry, 7(3):369�376, 1997.

[25] Sheng-Yi Yang, Yang-Kun Qu, Liang-Sheng Liao, Zuo-Quan Jiang, and Shuit-Tong

Lee. Research progress of intramolecular π-stacked small molecules for device ap-

plications. Advanced Materials, 34(22):2104125, 2022.

[26] Henning Sirringhaus. 25th anniversary article: Organic �eld-e�ect transistors: The

path beyond amorphous silicon. Advanced Materials, 26(9):1319�1335, January

2014.

[27] Francis Garnier. Organic-based electronics a la carte. Accounts of chemical research,

32(3):209�215, 1999.

[28] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.

Friend, P. L. Burns, and A. B. Holmes. Light-emitting diodes based on conjugated

polymers. Nature, 347(6293):539�541, October 1990.

[29] Arno Kraft, Andrew C. Grimsdale, and Andrew B. Holmes. Electroluminescent

conjugated polymers - seeing polymers in a new light. Angewandte Chemie Inter-

national Edition, 37(4):402�428, March 1998.

[30] Ullrich Mitschke and Peter Bäuerle. The electroluminescence of organic materials.

Journal of Materials Chemistry, 10(7):1471�1507, 2000.

[31] Kwon-Hyeon Kim and Jang-Joo Kim. Origin and control of orientation of phos-

phorescent and TADF dyes for high-e�ciency OLEDs. Advanced Materials, 30(42),

April 2018.



References 64

[32] Luyao Lu, Tianyue Zheng, Qinghe Wu, Alexander M Schneider, Donglin Zhao, and

Luping Yu. Recent advances in bulk heterojunction polymer solar cells. Chemical

reviews, 115(23):12666�12731, 2015.

[33] Dou Luo, Woongsik Jang, Dickson D Babu, Min Soo Kim, Dong Hwan Wang, and

Aung Ko Ko Kyaw. Recent progress in organic solar cells based on non-fullerene

acceptors: materials to devices. Journal of Materials Chemistry A, 10(7):3255�3295,

2022.

[34] Hongliang Chen, Weining Zhang, Mingliang Li, Gen He, and Xuefeng Guo. In-

terface engineering in organic �eld-e�ect transistors: principles, applications, and

perspectives. Chemical reviews, 120(5):2879�2949, 2020.

[35] Jinouk Song, Hyeonwoo Lee, Eun Gyo Jeong, Kyung Cheol Choi, and Seunghyup

Yoo. Organic light-emitting diodes: pushing toward the limits and beyond. Ad-

vanced Materials, 32(35):1907539, 2020.

[36] Martin Pfei�er, Stephen R Forrest, Karl Leo, and Mark E Thompson. Electrophos-

phorescent p�i�n organic light-emitting devices for very-high-e�ciency �at-panel

displays. Advanced Materials, 14(22):1633�1636, 2002.

[37] Mats Fahlman, Simone Fabiano, Viktor Gueskine, Daniel Simon, Magnus Berggren,

and Xavier Crispin. Interfaces in organic electronics. Nature Reviews Materials,

4(10):627�650, 2019.

[38] Yanwei Gu, Zijie Qiu, and Klaus Müllen. Nanographenes and graphene nanoribbons

as multitalents of present and future materials science. Journal of the American

Chemical Society, 144(26):11499�11524, 2022.

[39] Prince Ravat. Carbo [n] helicenes restricted to enantiomerize: an insight into the

design process of con�gurationally stable functional chiral pahs. Chemistry�A Eu-

ropean Journal, 27(12):3957�3967, 2021.

[40] Giuseppe Maria Paternò, Goudappagouda, Qiang Chen, Guglielmo Lanzani,

Francesco Scotognella, and Akimitsu Narita. Large polycyclic aromatic hydrocar-

bons as graphene quantum dots: from synthesis to spectroscopy and photonics.

Advanced Optical Materials, 9(23):2100508, 2021.



65 References

[41] Qingbin Li, Yihan Zhang, Ziyi Xie, Yonggang Zhen, Wenping Hu, and Huanli Dong.

Polycyclic aromatic hydrocarbon-based organic semiconductors: ring-closing syn-

thesis and optoelectronic properties. Journal of Materials Chemistry C, 10(7):2411�

2430, 2022.

[42] Cyril Aumaitre and Jean-François Morin. Polycyclic aromatic hydrocarbons as

potential building blocks for organic solar cells. The Chemical Record, 19(6):1142�

1154, 2019.

[43] Chin-Ti Chen. Evolution of red organic light-emitting diodes: materials and devices.

Chemistry of Materials, 16(23):4389�4400, 2004.

[44] Yunbin Hu, Peng Xie, Marzio De Corato, Alice Ruini, Shen Zhao, Felix Meggen-

dorfer, Lasse Arnt Straasø, Loic Rondin, Patrick Simon, Juan Li, et al. Bandgap

engineering of graphene nanoribbons by control over structural distortion. Journal

of the American Chemical Society, 140(25):7803�7809, 2018.

[45] Giuseppe M Paternò, Qiang Chen, Xiao-YeWang, Junzhi Liu, Silvia GMotti, Anna-

maria Petrozza, Xinliang Feng, Guglielmo Lanzani, Klaus Müllen, Akimitsu Narita,

et al. Synthesis of dibenzo [hi, st] ovalene and its ampli�ed spontaneous emission in

a polystyrene matrix. Angewandte Chemie International Edition, 56(24):6753�6757,

2017.

[46] Jingyun Tan, Guanghui Zhang, Congwu Ge, Jun Liu, Long Zhou, Chao Liu, Xike

Gao, Akimitsu Narita, Yingping Zou, and Yunbin Hu. Electron-de�cient contorted

polycyclic aromatic hydrocarbon via one-pot annulative π-extension of perylene

diimide. Organic Letters, 24(12):2414�2419, 2022.

[47] Kalishankar Bhattacharyya, Titas Kumar Mukhopadhyay, and Ayan Datta. Con-

trolling electronic e�ects and intermolecular packing in contorted polyaromatic hy-

drocarbons (c-pahs): towards high mobility �eld e�ect transistors. Physical Chem-

istry Chemical Physics, 18(22):14886�14893, 2016.

[48] Jakub Wagner, Paola Zimmermann Crocomo, Michaª Andrzej Kochman, Adam

Kubas, Przemysªaw Data, and Marcin Lindner. Modular nitrogen-doped

concave polycyclic aromatic hydrocarbons for high-performance organic light-

emitting diodes with tunable emission mechanisms. Angewandte Chemie,

134(27):e202202232, 2022.



References 66

[49] Dongdong Zhang and Lian Duan. Polycyclic aromatic hydrocarbon derivatives to-

ward ideal electron-transporting materials for organic light-emitting diodes. The

Journal of Physical Chemistry Letters, 10(10):2528�2537, 2019.

[50] Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review,

136(3B):B864, 1964.

[51] Richard Van Noorden, Brendan Maher, and Regina Nuzzo. The top 100 papers.

Nature News, 514(7524):550, 2014.

[52] Sharon Hammes-Schi�er. A conundrum for density functional theory. Science,

355(6320):28�29, 2017.

[53] Christopher J Cramer and Donald G Truhlar. Density functional theory for transi-

tion metals and transition metal chemistry. Physical Chemistry Chemical Physics,

11(46):10757�10816, 2009.

[54] Laura Riccardi, Vito Genna, and Marco De Vivo. Metal�ligand interactions in drug

design. Nature Reviews Chemistry, 2(7):100�112, 2018.

[55] Shuaihua Lu, Qionghua Zhou, Yixin Ouyang, Yilv Guo, Qiang Li, and Jinlan Wang.

Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via

machine learning. Nature communications, 9(1):3405, 2018.

[56] Bong-Gi Kim, Xiao Ma, Chelsea Chen, Yutaka Ie, Elizabeth W Coir, Hossein

Hashemi, Yoshio Aso, Peter F Green, John Kie�er, and Jinsang Kim. Energy

level modulation of homo, lumo, and band-gap in conjugated polymers for organic

photovoltaic applications. Advanced Functional Materials, 23(4):439�445, 2013.

[57] Shujiang Yang, Pavel Olishevski, and Miklos Kertesz. Bandgap calculations for

conjugated polymers. Synthetic Metals, 141(1-2):171�177, 2004.

[58] Shujiang Yang and Miklos Kertesz. Bond length alternation and energy band gap

of polyyne. The Journal of Physical Chemistry A, 110(31):9771�9774, 2006.

[59] Ahmed Dkhissi, Jean Marie Ducéré, Ralf Blossey, and Claude Pouchan. Can the

hybrid meta gga and dft-d methods describe the stacking interactions in conjugated

polymers? Journal of computational chemistry, 30(8):1179�1184, 2009.



67 References

[60] Bin Liu, Dario Rocca, He Yan, and Ding Pan. Beyond conformational control:

e�ects of noncovalent interactions on molecular electronic properties of conjugated

polymers. JACS Au, 1(12):2182�2187, 2021.

[61] Thao P Nguyen, Ji Hoon Shim, and Jin Yong Lee. Density functional theory studies

of hole mobility in picene and pentacene crystals. The Journal of Physical Chemistry

C, 119(21):11301�11310, 2015.

[62] Marcel Kastler, Jochen Schmidt, Wojciech Pisula, Daniel Sebastiani, and Klaus

Müllen. From armchair to zigzag peripheries in nanographenes. Journal of the

American Chemical Society, 128(29):9526�9534, 2006.

[63] Jonathan C Rienstra-Kiracofe, Christopher J Barden, Shawn T Brown, and Henry F

Schaefer. Electron a�nities of polycyclic aromatic hydrocarbons. The Journal of

Physical Chemistry A, 105(3):524�528, 2001.

[64] Amir Karton. How reliable is dft in predicting relative energies of polycyclic aro-

matic hydrocarbon isomers? comparison of functionals from di�erent rungs of ja-

cob's ladder. Journal of Computational Chemistry, 38(6):370�382, 2017.

[65] Eric Clar. The aromatic sextet. In Mobile source emissions including policyclic

organic species, pages 49�58. Springer, 1983.

[66] Miquel Solà. Forty years of clar's aromatic π-sextet rule. Frontiers in chemistry,

page 22, 2013.

[67] Frank De Proft and Paul Geerlings. Conceptual and computational dft in the study

of aromaticity. Chemical reviews, 101(5):1451�1464, 2001.

[68] Robert Kalescky, El� Kraka, and Dieter Cremer. Description of aromaticity with

the help of vibrational spectroscopy: Anthracene and phenanthrene. The Journal

of Physical Chemistry A, 118(1):223�237, 2014.

[69] Dariusz W Szczepanik, Miquel Sola, Tadeusz M Krygowski, Halina Szatylowicz,

Marcin Andrzejak, Barbara Paweªek, Justyna Dominikowska, Mercedes Kukuªka,

and Karol Dyduch. Aromaticity of acenes: the model of migrating π-circuits. Phys-

ical Chemistry Chemical Physics, 20(19):13430�13436, 2018.

[70] Ramón García-Domenech, Jorge Gálvez, Jesus V de Julián-Ortiz, and Lionello

Pogliani. Some new trends in chemical graph theory. Chemical Reviews,

108(3):1127�1169, 2008.



References 68

[71] Alan R Katritzky, Minati Kuanar, Svetoslav Slavov, C Dennis Hall, Mati Karelson,

Iiris Kahn, and Dimitar A Dobchev. Quantitative correlation of physical and chem-

ical properties with chemical structure: utility for prediction. Chemical reviews,

110(10):5714�5789, 2010.

[72] Harry Wiener. Structural determination of para�n boiling points. Journal of the

American chemical society, 69(1):17�20, 1947.

[73] Tu Le, V Chandana Epa, Frank R Burden, and David A Winkler. Quantitative

structure�property relationship modeling of diverse materials properties. Chemical

reviews, 112(5):2889�2919, 2012.

[74] Lemont Burwell Kier and Lowell H Hall. Molecular connectivity in structure-activity

analysis. 1986.

[75] Lemont Burwell Kier and Lowell H Hall. Molecular structure description: the

electrotopological state. 1999.

[76] Lowell H Hall, Brian Mohney, and Lemont B Kier. The electrotopological state:

structure information at the atomic level for molecular graphs. Journal of chemical

information and computer sciences, 31(1):76�82, 1991.

[77] R García-Domenech and JV de Julián-Ortiz. Prediction of indices of refraction and

glass transition temperatures of linear polymers by using graph theoretical indices.

The Journal of Physical Chemistry B, 106(6):1501�1507, 2002.

[78] Kaifu Gao, Rui Wang, Jiahui Chen, Limei Cheng, Jaclyn Frishcosy, Yuta Huzumi,

Yuchi Qiu, Tom Schluckbier, Xiaoqi Wei, and Guo-Wei Wei. Methodology-centered

review of molecular modeling, simulation, and prediction of sars-cov-2. Chemical

Reviews, 122(13):11287�11368, 2022.

[79] Gregory F Albery, Daniel J Becker, Liam Brierley, Cara E Brook, Rebecca C

Christo�erson, Lily E Cohen, Tad A Dallas, Evan A Eskew, Anna Fagre, Maxwell J

Farrell, et al. The science of the host�virus network. Nature microbiology,

6(12):1483�1492, 2021.

[80] Hakimeh Khojasteh, Alireza Khanteymoori, and Mohammad Hossein Olyaee. Com-

paring protein�protein interaction networks of sars-cov-2 and (h1n1) in�uenza using

topological features. Scienti�c reports, 12(1):5867, 2022.



69 References

[81] Felipe Torres, Miguel Kiwi, and Ivan K Schuller. The impact of the suppression

of highly connected protein interactions on the corona virus infection. Scienti�c

Reports, 12(1):9188, 2022.

[82] Milan Randi¢. Aromaticity of polycyclic conjugated hydrocarbons. Chemical Re-

views, 103(9):3449�3606, 2003.

[83] Marcos Mandado, María J González-Moa, and Ricardo A Mosquera. Chemical

graph theory and n-center electron delocalization indices: A study on polycyclic

aromatic hydrocarbons. Journal of Computational Chemistry, 28(10):1625�1633,

2007.

[84] Rudolf Kiralj and Márcia MC Ferreira. Predicting bond lengths in planar benzenoid

polycyclic aromatic hydrocarbons: a chemometric approach. Journal of chemical

information and computer sciences, 42(3):508�523, 2002.

[85] A Kuc, T Heine, and G Seifert. Structural and electronic properties of graphene

nano�akes. Physical Review B, 81(8):085430, 2010.

[86] Lam H Nguyen and Thanh N Truong. Quantitative structure�property relation-

ships for the electronic properties of polycyclic aromatic hydrocarbons. ACS omega,

3(8):8913�8922, 2018.

[87] Lam H Nguyen, Tuan H Nguyen, and Thanh N Truong. Quantum mechanical-based

quantitative structure�property relationships for electronic properties of two large

classes of organic semiconductor materials: Polycyclic aromatic hydrocarbons and

thienoacenes. ACS omega, 4(4):7516�7523, 2019.

[88] Tuan H Nguyen, Lam H Nguyen, and Thanh N Truong. Application of machine

learning in developing quantitative structure�property relationship for electronic

properties of polyaromatic compounds. ACS omega, 7(26):22879�22888, 2022.

[89] Frank Jensen. Introduction to computational chemistry. John wiley & sons, 2017.

[90] John C Slater. A simpli�cation of the hartree-fock method. Physical review,

81(3):385, 1951.

[91] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and

correlation e�ects. Physical review, 140(4A):A1133, 1965.



References 70

[92] Axel D Becke. Density-functional exchange-energy approximation with correct

asymptotic behavior. Physical review A, 38(6):3098, 1988.

[93] Chengteh Lee, Weitao Yang, and Robert G Parr. Development of the colle-salvetti

correlation-energy formula into a functional of the electron density. Physical review

B, 37(2):785, 1988.

[94] Ivan Gutman and Sven J Cyvin. Introduction to the theory of benzenoid hydrocar-

bons. Springer Science & Business Media, 2012.

[95] The on-line encyclopedia of integer sequences. A000228: Number of hexagonal

polyominoes (or hexagonal polyforms, or planar polyhexes) with n cells., 2023.

[96] R Rieger and Klaus Müllen. Forever young: polycyclic aromatic hydrocarbons as

model cases for structural and optical studies. Journal of Physical Organic Chem-

istry, 23(4):315�325, 2010.

[97] Sven J Cyvin and Ivan Gutman. Kekulé structures in benzenoid hydrocarbons, vol-

ume 46. Springer Science & Business Media, 2013.

[98] E Clar and DG Stewart. Aromatic hydrocarbons. lxv. triangulene derivatives. Jour-

nal of the American Chemical Society, 75(11):2667�2672, 1953.

[99] E Clar and DG Stewart. Aromatic hydrocarbons. lxviii. triangulene derivatives.

part ii. Journal of the American Chemical Society, 76(13):3504�3507, 1954.

[100] NC Yang and AJ Castro. Synthesis of a stable biradical. Journal of the American

Chemical Society, 82(23):6208�6208, 1960.

[101] Niko Pavli£ek, Anish Mistry, Zsolt Majzik, Nikolaj Moll, Gerhard Meyer, David J

Fox, and Leo Gross. Synthesis and characterization of triangulene. Nature Nan-

otechnology, 12(4):308�311, 2017.

[102] M Gordon and WHT Davison. Theory of resonance topology of fully aromatic

hydrocarbons. i. The Journal of Chemical Physics, 20(3):428�435, 1952.

[103] Jun-Jian Shen, Yi Han, Shaoqiang Dong, Hoa Phan, Tun Seng Herng, Tingting

Xu, Jun Ding, and Chunyan Chi. A stable [4, 3] peri-acene diradicaloid: Synthesis,

structure, and electronic properties. Angewandte Chemie International Edition,

60(9):4464�4469, 2021.



71 References

[104] MR Ajayakumar, Ji Ma, and Xinliang Feng. π-extended peri-acenes: Recent

progress in synthesis and characterization. European Journal of Organic Chemistry,

2022(13):e202101428, 2022.

[105] Yanwei Gu, Y Gopalakrishna Tullimilli, Jiaqi Feng, Hoa Phan, Wangdong Zeng,

and Jishan Wu. peri-acenoacenes. Chemical Communications, 55(39):5567�5570,

2019.

[106] Marco Franceschini, Martina Crosta, Ruben R Ferreira, Daniele Poletto, Nicola

Demitri, J Patrick Zobel, Leticia González, and Davide Bonifazi. peri-acenoacene

ribbons with zigzag bn-doped peripheries. Journal of the American Chemical Soci-

ety, 144(47):21470�21484, 2022.

[107] Alicia Omist, Gaetano Ricci, Amel Derradji, AJ Pérez-Jiménez, Emilio San-Fabián,

Yoann Olivier, and Juan-Carlos Sancho-Garcia. peri-acenoacene molecules: tuning

of the singlet and triplet excitation energies by modifying their radical character.

Physical Chemistry Chemical Physics, 23(41):24016�24028, 2021.

[108] Erich Hückel. Quantum-theoretical contributions to the benzene problem. i. the

electron con�guration of benzene and related compounds. Z. physik, 70(3-4):204�

286, 1931.

[109] Erich Hückel. Quanstentheoretische beiträge zum benzolproblem: Ii. quantentheorie

der induzierten polaritäten. Zeitschrift für Physik, 72(5-6):310�337, 1931.

[110] Erich Hückel. Quantentheoretische beiträge zum problem der aromatischen und

ungesättigten verbindungen. iii. Zeitschrift für Physik, 76:628�648, 1932.

[111] Erich Hückel. Die freien radikale der organischen chemie: Quantentheoretis-

che beiträge zum problem der aromatischen und ungesättigten verbindungen. iv.

Zeitschrift für Physik, 83:632�668, 1933.

[112] Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus, and Mildred S Dresselhaus.

Edge state in graphene ribbons: Nanometer size e�ect and edge shape dependence.

Physical Review B, 54(24):17954, 1996.

[113] Eugenio Di Donato, Matteo Tommasini, Chiara Castiglioni, and Giuseppe Zerbi.

Assignment of the g+ and g- raman bands of metallic and semiconducting carbon

nanotubes based on a common valence force �eld. Physical Review B, 74(18):184306,

2006.



References 72

[114] Roald Ho�mann. An extended hückel theory. i. hydrocarbons. The Journal of

Chemical Physics, 39(6):1397�1412, 1963.

[115] Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, Eva

Zurek, and Geo�rey R Hutchison. Avogadro: an advanced semantic chemical editor,

visualization, and analysis platform. Journal of cheminformatics, 4(1):1�17, 2012.

[116] Koichi Momma and Fujio Izumi. Vesta: a three-dimensional visualization system

for electronic and structural analysis. Journal of Applied crystallography, 41(3):653�

658, 2008.

[117] Micheal J. et. al Frisch. Gaussian09.

[118] Frank De Proft and Paul Geerlings. Relative hardness as a measure of aromaticity.

Physical Chemistry Chemical Physics, 6(2):242�248, 2004.

[119] Alberto Modelli, Laura Mussoni, and Daniele Fabbri. Electron a�nities of polycyclic

aromatic hydrocarbons by means of b3lyp/6-31+ g* calculations. The Journal of

Physical Chemistry A, 110(20):6482�6486, 2006.

[120] Angiras Menon, Jochen AH Dreyer, Jacob W Martin, Jethro Akroyd, John Robert-

son, and Markus Kraft. Optical band gap of cross-linked, curved, and radical

polyaromatic hydrocarbons. Physical Chemistry Chemical Physics, 21(29):16240�

16251, 2019.

[121] Xiao-Ye Wang, Xuelin Yao, Akimitsu Narita, and Klaus Müllen. Heteroatom-

doped nanographenes with structural precision. Accounts of Chemical Research,

52(9):2491�2505, 2019.

[122] Shane J Goettl, Lotefa B Tuli, Andrew M Turner, Yahaira Reyes, A Hasan

Howlader, Stanislaw F Wnuk, Patrick Hemberger, Alexander M Mebel, and Ralf I

Kaiser. Gas-phase synthesis of coronene through stepwise directed ring annulation.

Journal of the American Chemical Society, 145(28):15443�15455, 2023.

[123] Yanwei Gu, Victor Vega-Mayoral, Saül Garcia-Orrit, Dieter Schollmeyer, Akimitsu

Narita, Juan Cabanillas-González, Zijie Qiu, and Klaus Müllen. Cove-edged hexa-

peri-hexabenzo-bis-peri-octacene: Molecular conformations and ampli�ed sponta-

neous emission. Angewandte Chemie International Edition, 61(18):e202201088,

2022.



73 References

[124] Yanwei Gu, Xiaojin Wu, Tullimilli Y Gopalakrishna, Hoa Phan, and Jishan Wu.

Graphene-like molecules with four zigzag edges. Angewandte Chemie International

Edition, 57(22):6541�6545, 2018.

[125] Sabine Seifert, Kazutaka Shoyama, David Schmidt, and Frank Würthner. An

electron-poor c64 nanographene by palladium-catalyzed cascade c- c bond forma-

tion: One-pot synthesis and single-crystal structure analysis. Angewandte Chemie,

128(22):6500�6505, 2016.

[126] Prabhleen Kaur and Md Ehesan Ali. The in�uence of the radicaloid character of

polyaromatic hydrocarbon couplers on magnetic exchange interactions. Physical

Chemistry Chemical Physics, 24(21):13094�13101, 2022.

[127] Iago Pozo, Zsolt Majzik, Niko Pavli£ek, Manuel Melle-Franco, Enrique Guitián,

Diego Peña, Leo Gross, and Dolores Pérez. Revisiting kekulene: synthesis and single-

molecule imaging. Journal of the American Chemical Society, 141(39):15488�15493,

2019.

[128] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with

formulas, graphs, and mathematical tables, volume 55. US Government printing

o�ce, 1968.

[129] JC Sancho-García and AJ Pérez-Jiménez. Improved accuracy with medium cost

computational methods for the evaluation of bond length alternation of increasingly

long oligoacetylenes. Physical Chemistry Chemical Physics, 9(44):5874�5879, 2007.

[130] Erin M Adkins and J Houston Miller. Towards a taxonomy of topology for polynu-

clear aromatic hydrocarbons: linking electronic and molecular structure. Physical

Chemistry Chemical Physics, 19(41):28458�28469, 2017.

[131] Fabrizia Negri, Chiara Castiglioni, Matteo Tommasini, and Giuseppe Zerbi. A com-

putational study of the raman spectra of large polycyclic aromatic hydrocarbons:

Toward molecularly de�ned subunits of graphite. The Journal of Physical Chemistry

A, 106(14):3306�3317, 2002.

[132] Zhe Sun, Qun Ye, Chunyan Chi, and Jishan Wu. Low band gap polycyclic hy-

drocarbons: from closed-shell near infrared dyes and semiconductors to open-shell

radicals. Chemical Society Reviews, 41(23):7857�7889, 2012.



References 74

[133] Alexandru T Balaban. Chemical graph xxviii. a new topological index for cata-

fusenes: L-transform of their three-digit codes. Revue Roumaine de Chimie, 22(45),

1977.



75

A| Appendix

In this Appendix, we list all the branched and unbranched catacondensed molecular

graphs of BHs or polyhexes from one to six rings.

1.01 2.01 3.01 3.02 4.01

- LL LLL LAL LLLL

4.02 4.03 4.04 4.05 5.01

LALL LAAL LAAL - LLLLL

5.02 5.03 5.04 5.05 5.06

LALLL LLALL LAALL LALAL LAAAL

Table A.1: Continued on next page
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Table A.1: Continued from previous page

5.07 5.08 5.09 5.10

LALAL LAALL LAAAL LAAAL

5.11 5.12 6.01 6.02

- - LLLLLL LALLLL

6.03 6.04 6.05 6.06

LAALLL LLALLL LAALLL LALLAL

Table A.1: Continued on next page
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Table A.1: Continued from previous page

6.07 6.08 6.09 6.10

LALLAL LALALL LAAAAL LLAALL

6.11 6.12 6.13 6.14

LALALL LLAALL LAAALL LAAALL

6.15 6.16 6.17 6.18

LAAALL LAAALL LAALAL LAALAL

Table A.1: Continued on next page
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Table A.1: Continued from previous page

6.19 6.20 6.21 6.22

LAALAL LALAAL LAAAAL LAAAAL

6.23 6.24 6.25 6.26

LAAAAL LAAAAL - -

6.27 6.28 6.29 6.30

- - - -

Table A.1: Continued on next page
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Table A.1: Continued from previous page

6.31 6.32 6.33 6.34

- - - -

6.35 6.36

- -

Table A.1: For each polyhex, in the �rst row he molecular graphs associate to the

monohex [1.01], dihex [2.01], trihexes [3.01-3.03], tetrahexes [4.01-4.05], pentahexes

[5.01-5.12] and hexahexes [6.01-6.36] are reported. Grey circles represent the vertices

of the molecular graph, black segments the edges of the molecular graph, purple circles

the vertices of the dual graph, and purple segments the edges of the dual graph. For

each polyhex, an ID is assigned in the second row as outlined in Section 2.2. For each

polyhex, the third row features the chain sequence for unbranched catacondensed BHs by

recognizing the connectivity of each ring using the notation introduced in Section 2.2.
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