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Abstract

An extensive adoption of isolated microgrids is crucial to reach universal access to electricity
by 2030, complying with the Sustainable Development Goals set by the United Nations.
Effective rural electrification programs require the use of comprehensive computer tools,
able to capture the complexity and the dynamics involved in such projects.

Standard microgrid planning optimization algorithms identify the least-cost solution
and its corresponding optimal design and operation of the plant. These tools are extremely
important in supporting decision makers and in overcoming traditional sizing methods,
which fail to provide accurate and efficient indications. However, the state of the art does
not fulfil the need of a thorough and exhaustive analysis and often neglects crucial aspects
that significantly impact the outcome of the project in the long run.

This thesis develops a holistic MILP microgrid planning tool that allows decision makers
to accurately evaluate the different options and to select the most suitable and long-lasting
solution for the specific application.

In particular, the multi-year characteristics of the system are modelled, namely assets
degradation and demand growth. An iterative procedure is adopted to effectively describe
the non-linear phenomenon of storage capacity reduction, related to the hourly scheduling
of resources, within the MILP framework.

The outcome of a project is closely linked to the socio-economic dynamics that are
triggered after the first installation; these can lead to very different overall behaviours and
considerably impact the effectiveness of the system. This long-term uncertainty is tackled
by means of a stochastic optimization evaluating different load scenarios and identifying
the best compromise solution, ensuring feasibility and reliability of the service under any
realization of the inputs. In order to reduce risks and adapt the configuration of the
microgrid to the actual load trends in time, the installation of components is not limited
to the outset of the project: it can be integrated through subsequent capacity expansions,
tailored on the pertaining scenario.

Rural electrification studies are often focused on the identification of the least-cost
solution; hence, cost is usually the only decision criterion adopted. Recent attention
to environmental issues and sustainability has pushed some researchers to also include
environmental indicators. Social impacts are rarely assessed, although they strongly con-
tribute to determining the effectiveness of rural electrification actions. In this work, a
multi-objective optimization is used to extend the decision-making process and evaluate
the trade-offs between economic, environmental and social objective functions. A novel
algorithm is proposed to reduce the computational burden and significantly improve tra-
ditional multi-objective methods.
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Therefore, this work presents a comprehensive model for rural microgrid planning,
whose performances are tested on the case study of an isolated community in Uganda. In
order to include all the aforementioned features without hindering the tractability of the
problem, novel computationally-efficient algorithms are developed; they allow to dramati-
cally reduce the simulation time while preserving the quality of the results. The proposed
methods have general value and they can therefore contribute transversally to any sector
that uses mathematical programming and optimization to solve complex problems.



Contents

List of Figures viii

List of Tables x

Acronyms xiii

I Background and motivation 1

1 Access to electricity in the Global South 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 SDG7 as enabler of development . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Electrification strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 The role of microgrids in reaching universal access . . . . . . . . . . . . . . 11

2 State of the art and contributions 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Overview on rural microgrid planning . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Traditional microgrid sizing approaches . . . . . . . . . . . . . . . . 16
2.2.2 Multi-year characteristics . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Analysing the three dimensions of sustainability . . . . . . . . . . . 19
2.2.4 Long-term uncertainty in rural electrification projects . . . . . . . . 20

2.3 Literature gaps and research objectives . . . . . . . . . . . . . . . . . . . . . 21
2.4 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II Modelling framework for microgrid planning 27

3 Deterministic multi-year planning 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



3.3.1 MILP sizing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 The iterative procedure . . . . . . . . . . . . . . . . . . . . . . . . . 35
Updating parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Location and input data . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 The advantages of the iterative approach . . . . . . . . . . . . . . . 40
3.5.2 Impact of BESS degradation on planning and operation . . . . . . . 41
3.5.3 Stability and computational efficiency of the results . . . . . . . . . 43
3.5.4 Validation of the procedure . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.5 Sensitivity analysis on BESS degradation parameters . . . . . . . . . 45

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Holistic multi-objective optimization 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Multi-objective approaches and AUGMECON2 . . . . . . . . . . . . . . . . 48
4.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 ε-constraint method . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Classic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
AUGMECON2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 The novel methodology: A-AUGMECON2 . . . . . . . . . . . . . . . . . . . 52
4.5.1 Payoff table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2 Building the Pareto frontier . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.1 Economic impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Net Present Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.2 Environmental impact . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.3 Social impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Jobs creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Public lighting coverage . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 MILP sizing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8.2 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8.3 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9.1 Validation of the online Pareto pruning . . . . . . . . . . . . . . . . 61
4.9.2 Discussion on numerical results . . . . . . . . . . . . . . . . . . . . . 61



4.9.3 Narrowing down possible solutions . . . . . . . . . . . . . . . . . . . 65
4.9.4 Decision making process . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Dealing with long-term uncertainty 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Selecting an uncertainty modelling technique . . . . . . . . . . . . . . . . . 70

5.3.1 Common frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Suitability for rural microgrid planning . . . . . . . . . . . . . . . . 71

5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Reducing the computational complexity . . . . . . . . . . . . . . . . . . . . 72

5.5.1 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.2 Solving a stochastic problem . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.2 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.3 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7.1 Impact of capacity expansions . . . . . . . . . . . . . . . . . . . . . . 77
5.7.2 Computational efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7.3 Pareto frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7.4 Sizing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

III Discussion 83

6 Key takeaways and impact 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Impact of using optimization tools . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Computational performances . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Holistic decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 Long-term perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Scope of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Conclusions and future work 93
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1.1 Wrapping up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1.2 Contribution to SDG7 . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Limitations and future developments . . . . . . . . . . . . . . . . . . . . . . 95
7.2.1 Accessibility of the tool . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.2 Synergy with other electrification models . . . . . . . . . . . . . . . 95
7.2.3 Numerical assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2.4 Relevance of decision criteria . . . . . . . . . . . . . . . . . . . . . . 96



IV Appendices 99

A Nomenclature 101

B Soroti load 103

C IMY validation 109
C.1 Case study 1: Lacor Hospital . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.2 Case study 2: Ngarenanyuki secondary school . . . . . . . . . . . . . . . . . 110
C.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D A-AUGMECON2 source code 113

E Electrification planning through shadow cost analysis 123
E.1 Selecting the electrification strategy . . . . . . . . . . . . . . . . . . . . . . 123
E.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
E.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
E.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



List of Figures

1.1 Proportion of population with access to electricity, 2019. . . . . . . . . . . . 4
1.2 IEA estimates on population without access to electricity by main countries

and regions, 2019-2030. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Gains in electricity access in urban and rural areas. . . . . . . . . . . . . . . 5
1.4 Relation between HDI and per capita energy consumption. . . . . . . . . . 6
1.5 The ESMAP Multi-tier Framework for Electricity Access. . . . . . . . . . . 8
1.6 Least cost electrification mix for different target Tiers of electricity access. . 9
1.7 Connections by type to reach universal access to electricity with different

grid reliability levels in a region of Rwanda. . . . . . . . . . . . . . . . . . . 10
1.8 Technology use 2020-2030, assuming all minigrids are solar hybrid systems. 10
1.9 Electrification strategy for universal access by 2030 in Angola and Ethiopia. 11
1.10 Competitiveness of microgrids/minigrids compared to alternatives. . . . . . 12
1.11 Architecture of isolated microgrid systems. . . . . . . . . . . . . . . . . . . 13

2.1 Block diagram of microgrid planning algorithms. . . . . . . . . . . . . . . . 16
2.2 Algorithm structure of single-year (top) and multi-year (bottom) approaches. 18
2.3 Example of tree structure to consider stochastic load growth and components

upgrades. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The optimization algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Microgrid architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Estimated load profiles (a) and total yearly demand (b) . . . . . . . . . . . 38
3.4 Dispatching of resources in IMYwoB (a) and IMY (b) . . . . . . . . . . . . 42
3.5 Storage capacity degradation in IMY . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Fuel consumption in IMYwoB and IMY . . . . . . . . . . . . . . . . . . . . 44
3.7 Evolution along the procedure’s iterations of the convergence criteria and of

the objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Flowchart of the proposed methodology. . . . . . . . . . . . . . . . . . . . . 54
4.2 Procedure to skip redundant optimizations in case p=3. . . . . . . . . . . . 56
4.3 Comparison of the Pareto curves. . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Payoff table points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Yearly dispatching of resources. . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Reduced Pareto curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Technical and economical performances of the selected Pareto points. . . . . 67

ix



5.1 Approaches to stochastic sizing. . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Long-term demand scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Views of the Pareto curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Assets installed in payoff points. . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Methods proposed in Part II. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.1 Measured load profile of St. Mary’s Lacor hospital. . . . . . . . . . . . . . . 109
C.2 Measured load profile of Ngarenanyuki secondary school. . . . . . . . . . . . 110

E.1 Municipality of Omereque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
E.2 Optimal electrification strategy with shadow costs accounting. . . . . . . . . 127



List of Tables

2.1 Main features of the most significant works on microgrid planning. . . . . . 23

3.1 Components costs and lifetimes. . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 BESS specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 BESS characteristics depending on PQh,b. . . . . . . . . . . . . . . . . . . . 39
3.4 Optimization outputs (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Optimization outputs (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Priority order in lexicographic optimization for p=3, in AUGMECON2 and
A-AUGMECON2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Components LCA emissions and land use. . . . . . . . . . . . . . . . . . . . 60
4.3 Components job creation per phase. . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Computational performances with and without online Pareto pruning. . . . 61
4.5 Sizing of payoff table points. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Comparing Aggregated-Rule-based Stochastic Optimization (ARSO) and
stochastic optimization (SO) performances. . . . . . . . . . . . . . . . . . . 75

5.2 Load scenarios growth factor and probability of occurrence. . . . . . . . . . 76
5.3 Payoff tables obtained in case of single-step and multi-step investment. . . . 78

6.1 Sizing initial investment (IC) using traditional approach and IMY procedure. 86
6.2 Least-cost solutions at high public lighting (PL) coverage in case of multi-

objective (MO) optimization, multi-objective with stochastic long-term load
scenarios (MOS) and multi-objective with stochastic long-term load scena-
rios and multi-step sizing (MOSMS). . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Definition of indexes, parameters and variables for the microgrid planning
model presented in Chapter 3 and 4. . . . . . . . . . . . . . . . . . . . . . 101

B.1 Load input data for Soroti community. . . . . . . . . . . . . . . . . . . . . 104

C.1 Optimization outputs (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
C.2 Optimization outputs (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

E.1 Costs and lifetimes of components. . . . . . . . . . . . . . . . . . . . . . . . 125

xi





Acronyms

A-AUGMECON2 Advanced AUGMECON2

AUGMECON2 Improved Augmented ε-constraint Method

BESS Battery Energy Storage System

CAPEX Capital Expenditure

CO2 CO2 emissions

CON Converter

DG Diesel Generator

ENS Energy Not Served

GA Genetic Algorithm

HDI Human Development Index

IMY Iterative Multi-Year

IMYrd Iterative Multi-Year using representative days

JC Job Creation

LCA Life Cycle Assessment

LCOE Levelized Cost of Electricity

LU Land Use

MCDA Multi-Criteria Decision Analysis

MILP Mixed Integer Linear Programming

xiii



NPC Net Present Cost

O&M Operation and Maintenance

OPEX Operating Expense

OSMY One-Shot Multi-Year

OSMYrd One-Shot Multi-Year using representative days

PL Public Lighting

PV Photovoltaic

RES Renewable Energy Source

SDG Sustainable Development Goal

SHS Solar Home System

SOC State Of Charge

SSA Sub-Saharan Africa

WT Wind Turbine



Part I

Background and motivation

1





Chapter 1

Access to electricity in the
Global South

1.1 Introduction

This first chapter introduces the scope of the problem investigated in this research, provi-
ding a general overview of on the topic of access to electricity and rural electrification. In
particular, Section 1.2 summarizes the main trends on access to electricity worldwide; Sec-
tion 1.3 discusses the role of energy as an essential driver for socio-economic development
and the complexity of measuring access levels; Section 1.4 reviews the main electrification
strategies, identifying microgrids as an indispensable technology in the struggle towards
universal access to electricity; finally, details about this electrification approach are pro-
vided in Section 1.5.

1.2 Problem statement

The 2030 Agenda for Sustainable Development was ratified in 2015 by all the United
Nations Member States, with the aim of pursuing peace and prosperity for all humankind.
It is composed of 17 Sustainable Development Goals (SDGs) targeting specific scopes;
in particular, SDG7 is devoted to ”ensure access to affordable, reliable, sustainable and
modern energy for all” by 2030 [1].

Since the adoption of the Agenda, many efforts have been made by public institutions
and third sector, with the growing support of private companies, to reach such target
by 2030, with a particular attention to access to electricity. In recent years, a dramatic
improvement was seen in Latin America and the Caribbean and Eastern and South-Eastern
Asia, where the access rates exceed 98%, while in Sub-Saharan Africa (SSA) about 53%
of the people does not benefit from this service [3]. Figure 1.1 shows the access rates
worldwide in 2019, highlighting the serious lag of SSA with respect to the rest of the
world.

The COVID 19 pandemic is leading to a significant setback of the recent progress, as
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Figure 1.1: Proportion of population with access to electricity, 2019 [2].

governments redirect funds and delay programs that are not considered strategic for the
post-COVID recovery. The first evaluations of the International Energy Agency estimate
2% more people lacking access to electricity in 2020 with respect to 2019: it would be the
first time in recent years that the growth of access to electricity is slower than the growth
of population. Without any further boost in national electrification plans, the goal of the
Agenda 2030 would not be reached and around 660 million people would be lacking access
to electricity in 2030, 50% of which would be concentrated in only 7 countries, namely
Democratic Republic of the Congo (Congo DRC), Nigeria, Uganda, Pakistan, Tanzania,
Niger and Sudan (see Figure 1.2) [2].

The unserved population is not evenly distributed in the areas of interest: a wide
majority is concentrated in rural areas, where the access rate hardly reaches 80%, in
contrast with 97% of the urban population accessing electricity. Still, Figure 1.3 shows that
this is the result of a strong imbalance of electrification actions in favour of rural areas,
that witnessed a significant increase in population accessing the service, far outpacing the
population growth, while the access rates of urban areas remained quite steady [4].

1.3 SDG7 as enabler of development

Numerous analyses from international organizations confirmed the strict relationship bet-
ween energy consumption and Human Development Index (HDI), as shown in Figure 1.4.
On one hand, increased electricity consumption does not seem to have a significant influence
on well-being if the HDI is above 0.8. On the other hand, electricity is an essential driver
for a sharp improvement in living conditions in the early stages of human development.

Access to energy can impact on several pivotal aspects for the empowerment of disad-
vantaged communities. In particular, the Inter-American Development Bank examined 50
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Figure 1.2: IEA estimates on population without access to electricity by main countries
and regions, 2019-2030 [2].

Figure 1.3: Gains in electricity access in urban and rural areas [4].

impact evaluation studies, to assess the effect of electrification on education, labour, and
income: on average, the brief found a 7% increase in school enrolment, 25% in employment
and 30% in incomes with respect to pre-electrification levels. Moreover, women and small
enterprises benefited the most from access to power, suggesting that electrification may
also contribute to reduce the gender gap. However, some of the studies under analysis
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could not find any link between energy and economic development of the community [5].
In [6], the results of on-field surveys are described, highlighting that, thanks to access to
electricity, the villagers could benefit from more security, better health, more resilience
to climate change and better-quality leisure time. Also in this case, these considerations
prevailed but they were not shared by the whole community, as different villagers had
different means to exploit the new opportunities given by electrification.

Figure 1.4: Relation between HDI and per capita energy consumption [7].

Therefore, practitioners have become more and more aware that electricity alone may
not trigger the desired positive impact on the community, and that electrification plans
should not look at access to electricity as a binary issue (connected/not connected): there
are manifold access levels that would have completely different repercussions on the benefi-
ciaries. Moreover, policy and business decision makers should not limit their evaluations to
the technological perspective alone, but they should entail a holistic analysis [8, 9], solidly
grounded on local social and political structures, gender roles and labour absorptive ca-
pacity [10].

For these reasons, the World Bank’s Energy Sector Management Assistance Program
(ESMAP) developed the Multi-tier Framework for electricity access, which defines six tiers
of access, each one characterized by a progressively better service. Its aim is to highlight
that access to electricity is multifaceted and could be described by several indicators, whose
combination determines a wide variety of development potentials. As shown in Figure 1.5,
seven attributes are used to distinguish the different access levels (some of which are only
defined for high tiers, because hardly measurable in case of limited access):

(i) Peak capacity. The available capacity determines the limit in terms of usable ap-
pliances and can be measured in watts for grid connection and generators and in
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watt-hours for rechargeable batteries, solar lanterns, and solar home systems. Alter-
natively, it can be assessed according to the available services.

(ii) Availability. Some electricity needs (e.g. lighting, refrigeration) require appliances
to be active for a consistent amount of time. The number of hours of availability
measures the ability of the system to support such requisite. Moreover, a separate
indicator on availability during the evening verifies that the supply is able to cope
with the evening peak.

(iii) Reliability. Frequent unscheduled interruptions prevent an effective provision of elec-
tricity services and represent a barrier to socio-economic development. They may
be caused by breakdowns or by curtailments to comply with technical constraints.
Reliability is assessed measuring number of interruptions and their duration.

(iv) Quality. Voltage levels are evaluated because very low voltages prevent some appli-
ances to be used and may damage equipment. Poor quality of service can be caused
by an overload of the system or by long-distance cables.

(v) Affordability. If the price is too high, the new service would intensify inequalities
among villagers, enabling the richest with a new set of opportunities to increase
their income, while the poorest would suffer increased marginalization. Hence, the
expenditure should not overcome a certain portion of the household income.

(vi) Legality. Illegal connections may lead to a system overload, worsening the reliability
and quality of supply, and put at risk the economic viability of the service. Moreover,
they usually do not comply with safety standards. The number of illegal connections
may be estimated by information related to bill payments.

(vii) Health and Safety. Installations should follow national standards and households
should be aware of basic electrocution risks. This attribute is evaluated by verifying
the presence of accidents related to electrical risks.

In general, to pave the way for successful access to electricity programs, practitioners
could design composite projects to stimulate the demand by supporting the technological
aspect with actions to facilitate access to credit, to train on the productive uses of energy
and raising awareness on the positive repercussions, to increase the availability and afford-
ability of energy-efficient appliances [4]. Moreover, complex and comprehensive planning,
accurate demand estimation and good governance are needed to foster the achievement
of SDG7 [8]. The more the goal of universal access to electricity gets close, the more the
people left behind become difficult to reach, because living in extremely isolated lands or
in areas of conflict. This is the so-called ”last-mile” electrification process, which calls for
public intervention to make the investment viable [4].

1.4 Electrification strategies

As highlighted in Figure 1.5, access to electricity can be characterized by very different
features, mainly determined by the technologies adopted to provide the service. Electri-
fication planning tools usually evaluate three main strategies: grid extension, microgrids,
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Figure 1.5: The ESMAP Multi-tier Framework for Electricity Access [11].

stand-alone systems [12–14]. The most suitable option for a specific area may be selected
according to a wide range of criteria.

The first significant discriminating factors are the distance from the bulk power system
and the density of population. Expanding the main network is usually feasible in case the
unserved area is adjacent to already existing infrastructure; this comes with a significant
upfront investment that utilities are often wary of facing, due to the risk of not recovering
costs in a reasonable time horizon. With the increasing efforts in rural electrification, the
areas where the least-cost option is the connection to the bulk power system are slowly being
exhausted. If the economic and geographic conditions do not justify the expansion of the
main grid, but density of population and demand level are still adequate for a centralized
source of power, loads are aggregated through microgrids, which are usually hybrid energy
systems. In particular, microgrids based on Renewable Energy Sources (RESs) allow to
reduce the carbon footprint of the power generation, in accordance with the national energy
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plans setting objectives of decarbonization of the sector. These systems may be identified
either as microgrids or as minigrids: the two words are used interchangeably because there
is no clear indication about the size that determines the boundary between one category and
the other. Finally, in case of scattered population and low demand, stand-alone systems
are adopted, which power each user individually. The most common devices employed for
this electrification approach are Solar Home Systems (SHSs), composed by a Photovoltaic
(PV) panel and a Battery Energy Storage System (BESS), usually powering lighting and
few additional basic needs, e.g., phone charging.

The latent demand and the target Tier of electrification influence the cost of each solu-
tion and may push towards one option or the other. In particular, in case the implementing
entity aims at Tier 1 or Tier 2, stand-alone solutions would almost certainly be the least
expensive, regardless the distance from the grid and the density of the community. As the
desired quality of service and the latent demand to be fulfilled increase, shared infrastruc-
ture becomes more and more viable. The trade-off between the different options moves in
favour of microgrids and grid extension at growing sizes and densities of the settlements
to be electrified, with the tendency to lean toward the connection to the national grid in
conditions of proximity to pre-existing lines. These trends are confirmed in Figure 1.6,
showing the application of the OnSSET electrification planning tool on SSA evaluating
different scenarios of target Tier of electricity access [12]. When aiming at supplying only
basic appliances with limited availability along the day (Tier 1), the stand-alone option is
predominant. Improving the target quality of service forces a much higher reliance on mini-
grids or grid extension. Nonetheless, similar demographic conditions may be associated
to different electrification strategies due to different unit cost of grid transmitted power:
a lower cost of grid electricity increases the competitiveness of grid connection, making it
viable for more combinations of population density and distance from the grid [15].

Figure 1.6: Least cost electrification mix for different target Tiers of electricity access [12].

Connection to good quality bulk power systems can enable access levels up to Tier
5 [16], as they easily accommodate demand growth and allow scalability. However, grid
reliability is often an issue in SSA; in several countries, houses and small businesses register
several hours of outage per day [17,18]. The International Energy Agency analysed in [19]
the impacts of reliability on the shares of grid connections and decentralized solutions in
reaching universal access to electricity, using the Reference Electrification Model (REM)
[13]. The results obtained for a region in Rwanda are shown in Figure 1.7. At lower
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grid reliability levels, microgrids and stand-alone systems result more attractive. On the
other hand, investments in additional centralized generation to cover load peaks result in
reduced specific cost of fulfilling the demand from the bulk power system, increasing the
competitiveness of grid extension. Nonetheless, decentralized solution would still cover
about one third of the connections at 100% grid reliability, remaining relevant in the
achievement of universal access.

Figure 1.7: Connections by type to reach universal access to electricity with different grid
reliability levels in a region of Rwanda [19].

Figure 1.8 compares the shares of the three electrification strategies to 2030 in the
Business As Usual (BAU) scenario, i.e., projections based on historical trends, and in
case stronger efforts are made to reach universal access to electricity, that would require
the electrification of 110 million more homes. In this desired condition, SHSs play a more
marginal role while microgrids are estimated to account for about half of the total household
connections.

Figure 1.8: Technology use 2020-2030, assuming all minigrids are solar hybrid systems [16].

Given the numerous aspects influencing decision making for access to electricity, these
shares are not evenly distributed in unelectrified areas and significant differences emerge
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in the optimal electrification plans to be adopted in different countries. As an example,
Figure 1.9 shows the energy access solutions to be adopted in Angola and Ethiopia to
reach universal access by 2030 [19]. In Angola, the electricity grid supplies only the main
settlements in the eastern part of the country; hence, grid extension would power only 38%
of the population, while microgrids will likely cover 46% of the projected needs, supported
by stand-alone systems in the most remote areas. On the contrary, Ethiopia is expected
to advance from a current access rate of 45% up to 100% by relying largely (80%) on
network densification and extension for new connections, as most of the population lives in
proximity to the network. In conclusion, the potential of the different technologies varies
widely across SSA, depending on the peculiarities of the area.

Figure 1.9: Electrification strategy for universal access by 2030 in Angola and Ethiopia [19].

1.5 The role of microgrids in reaching universal access

As highlighted in the previous section, a significant boost in microgrid installation is ne-
cessary to reach universal access by 2030. Figure 1.10 highlights the conditions in which
microgrids would be the most suitable electrification option, according to a wide range of
indicators, including but not limited to size and density of the settlement, socio-economic
development of the community, distance from the national grid [20,21]. Geographical and
cultural peculiarities of the target area play a role in electrification plans, too, e.g., in
case of decentralized solution, stand-alone systems are preferable in case the terrain is not
flat [21,22].

Hence, the potential for microgrid installations is particularly high in densely populated
areas characterized by a significant distance from the bulk power system. The presence
of energy-intensive productive activities, e.g., mining, helps reducing the specific cost of
energy also for residential users, making the investment more robust [15]. In case the
implementing entity intends to provide electricity access levels of Tier 3 or beyond, micro-
grids are very promising in the rural areas where decentralized solutions are preferred, as

11



CHAPTER 1. ACCESS TO ELECTRICITY IN THE GLOBAL SOUTH

Figure 1.10: Competitiveness of microgrids/minigrids compared to alternatives [21].

stand-alone systems are usually able to cover only basic needs, limiting the opportunities
of development and self-determination.

The practical implementation of the different strategies is also strictly linked to the local
regulatory framework and electrification plans. In particular, robust and safe investments
in microgrid installation require clear rules on tariff schemes, subsidies, interaction with
the grid, etc. The absence of such clear regulations may hinder the path to universal access
to electricity. On the contrary, advanced regulatory frameworks favour the flourishing of
microgrid projects, as proven by the experience of several Sub-Saharan countries (Tanzania,
Kenya, Rwanda, Nigeria) [19].

As the current average electrification pace is not sufficient to reach SDG7 by 2030,
microgrids can represent a significant support for speeding up the process, providing reliable
energy also to communities that would be reached by the grid in a few years. This is
plausible only if the system is designed to interact effectively with the grid at the time of
connection and if the tariff scheme allows to make the investment sustainable in the long
term. Hence, regional planning tools may support multi-step electrification plans. Such
approach is proposed in [14], which recommends a stepwise electrification strategy that
rapidly reaches the whole population with a mix of decentralized and centralized solutions,
to be partially and gradually integrated in the long run. This approach is particularly
suitable for countries characterized by low grid reliability, as it also allows to improve the
service provided to the new connections. Moreover, microgrids can support governments
in meeting environmental objectives through the decarbonization of the energy sector.

Therefore, microgrids are a precious tool in the race towards the achievement of SDG7
and, according to local conditions, may have a variable but always relevant weight in
pursuing the objective.

There are currently 47 million people connected to 19,000 microgrids, mostly hydro and
diesel-powered and predominantly in Asia [17]. With the significant decrease in costs of
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storage and RES generators (excluding hydro, which is a well-established technology with
steady price trends) and with the advancements in control systems [16], hybrid energy
systems are the most common configuration for newly installed microgrids. A typical
layout is shown in Figure 1.11, where a diesel generator is combined with PV panels and
storage to supply households and income-generating activities.

Figure 1.11: Architecture of isolated microgrid systems [16].

The costs of modern microgrid components are expected to keep on decreasing and
ESMAP estimates that, in case actions to reduce the upfront investment and the operation
costs, e.g., smart meters and remote-controlled management system, are implemented, the
Levelized Cost of Electricity (LCOE) would fall down to 0.20$/kWh in 2030 [17], which
would make these systems economically comparable with national grids [15]. In particular,
PV-battery-based systems are undergoing the most dramatic cost reductions and have the
additional advantage of being less constrained to the characteristics of the area with respect
to other renewable sources like wind and hydro. This could trigger a vast implementation
of microgrid projects, reaching extremely isolated communities at affordable cost.

Recent projections foresee that universal access to electricity could be achieved by 2030
reaching 490 million people with 210,000 microgrids, mostly solar-hybrid in SSA [17].

Hence, microgrids will play a crucial role in guaranteeing equal opportunities to elec-
tricity access in the next years, and it is of pivotal importance to plan such systems in a
comprehensive and accurate way, to favour the effectiveness and durability of projects. Ad-
vanced computer tools are very powerful means to support decision makers in successfully
planning rural electrification projects [23] and have been widely employed to guide policies
and practical implementations. The next chapter summarizes the state of the art on mi-
crogrid planning algorithms, identifying the main literature gaps in effectively modelling
these systems and their direct impact on the local community.
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Chapter 2

State of the art and
contributions

2.1 Introduction

Isolated microgrids are taking on great importance in pursuing universal access to elec-
tricity [17]; hence, an effective and accurate modelling to size and operate these systems
is essential to enable their dissemination in rural areas and to efficiently allocate invest-
ments and funds from private and public donors. This chapter discusses the state of the
art to identify the main literature gaps and define the objectives of the research. First, a
detailed review on rural microgrid planning tools is provided in Section 2.2; this allows to
thoroughly acknowledge in Section 2.3 the features missing in the current literature but
necessary for designing an effective and comprehensive tool and thus to derive the main
goals of the work, whose main contributions are resumed in Section 2.4. The structure of
the thesis is presented in Section 2.5 and publications are listed in Section 2.6.

2.2 Overview on rural microgrid planning

The typical framework of a microgrid planning algorithm is shown in Figure 2.1: data on
load profile, RES availability and techno-economic characteristics of components are the
main inputs, while the microgrid architecture, its expected operation and the values of the
objective functions are the most significant outputs.

The mathematical formulation fully representing the technical aspects and the decision-
making process typically involves a large number of binary, integer and continuous vari-
ables and requires the use of complex and computationally-intensive algorithms. Hence,
a compromise between accuracy and complexity should be sought for; this often leads to
significant simplifications of the problem under analysis and to overlooking characteristics
that play a pivotal role in determining the most suitable option.
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Figure 2.1: Block diagram of microgrid planning algorithms.

2.2.1 Traditional microgrid sizing approaches

Many approaches have been developed for microgrid planning, and there are increasing
efforts on this topic, given its urgency. In particular, the approach in [24] involves a
Genetic Algorithm (GA) to identify a population of possible generation portfolios, on
which different rule-based operating strategies are tested over one typical year, with the
objective of minimizing costs, fuel use and pollutant emissions. Heuristic methods are
popular when aiming to quickly find an approximate sizing, but the search space needs to be
limited, often to two technologies only, to avoid incurring combinatorial explosion [25–27].
Priority rules are identified for the employment of the available units, whose operation is
analysed on the whole project lifetime in [25] and on one year in [26,27]. A non-dominated
sorting GA (NSGA-II) is used in [28] for sizing purposes, minimizing the total cost and the
load curtailment probability. Similarly, [29] implements a multi-objective NSGA-II for the
design, entrusting the optimal dispatching to a 24-hour Mixed Integer Linear Programming
(MILP) problem. The work presented in [30] couples a GA-based sizing with a MILP
optimized operation performed on 8 typical days that represent weekdays and weekends
of the four seasons. A further evolutionary approach recently presented to solve the sub-
problem of selecting valid-size scenarios is Particle Swarm Optimization, also in this case
followed by a MILP procedure employed to solve the downstream sub-problem of optimizing
the scheduling of system components; this approach can be performed either on a 1-week
interval to be averaged on the whole month, as in [31], or run on a complete year with a
Rolling Horizon (RH) technique, as in [32]. A GA is used in [33] to identify suitable sizing
scenarios, while a MILP procedure optimizes the unit commitment from weekly averaged
data; then, an RH technique with a 1-hour resolution verifies the validity of the results and
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adjusts the sizing values if needed. Finally, the approach proposed in [34–36] adopts a one-
shot MILP, i.e., optimizing sizing and operation all at once: the time-frame under analysis
is the first year of the project, represented by one typical day per month in [34] and by three
typical days (week, weekend and peak) per month in [35]. In addition, [36] uses the same
typical days as in [35] but employs a multi-year approach in which the number of years to
be optimized is flexible and adjusted to the user’s knowledge of the input data and their
forecast. An approach similar to one-shot MILP is proposed in [37], where the optimal
size and operation of a rural microgrid are identified by means of a Linear Programming
(LP) problem, which drastically reduces the computational complexity of the problem at
the expense of limited precision in describing the behaviour of fuel-fired generators and
storage assets.

One of the main issues faced in these works is the trade-off between accuracy and
tractability: the size of the problem is so large that, in order to guarantee the convergence
of the routine, several simplifying assumptions usually need to be implemented. According
to the literature review, the following three approaches are the most popular:

(i) heuristic sizing of generating and storage units coupled with rule-based dispatching
of resources [24–28];

(ii) heuristic sizing coupled with MILP-based dispatching criteria [29–33];

(iii) one-shot MILP performing both sizing and operation phases [34–36].

The first two methodologies split the formulation into two sub-problems; this usually
guarantees fast computations, with the main drawback being that the optimality of the
solution cannot be assured. In contrast, optimality is not an issue in the case of the one-
shot MILP. Nonetheless, the computational burden increases dramatically with the number
of integer variables and time steps. For this reason, the time-frame of the simulation is
usually reduced to a few representative days and strong simplifying assumptions are made
to avoid non-linearities, reducing the number of non-continuous variables, and to legitimize
the compression of the time interval.

2.2.2 Multi-year characteristics

A significant research gap in traditional microgrid planning is the simulation and assess-
ment of projects expected to last a considerable number of years by means of a few repre-
sentative days, or at most one year, with the exception of [25,31,36] and of the commercial
softwares HOMER [38] and iHoga [39] that use heuristic methods to size microgrids and
have recently incorporated a multi-year feature. Figure 2.2 compares the architecture of
single-year (top) and multi-year (bottom) approaches, highlighting that the traditional
single-year method forces the modellers to assume that the simulated time interval is per-
fectly replicable along the project lifetime and to overlook any evolution over the years,
thus most likely resulting in inaccurate designs. Contrarily, multi-year approaches allow
to explicitly represent lost-lasting phenomena and improve the accuracy of the outputs, as
long-term variations are proven to have a greater impact on the cost and configuration of
the system with respect to short-term variations, e.g., daily fluctuations [40].
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In particular, when access to energy is provided for the first time to a rural community,
it is sensible to include load growth in the model. A common approach consists in assuming
a plausible constant growth factor [36,41–43]. Furthermore, asset degradation significantly
affects the microgrid operational strategy during its lifetime, thus influencing the optimal
design of the system and vice versa. In particular, the degradation of RES generators can
be easily modelled by means of a linear decrease in productivity over time [44, 45], but
this aspect is seldom included when planning isolated hybrid energy systems [43, 46, 47].
For what concerns BESS, the pace at which they degrade strictly depends on how they
are used, and usually the replacement of the component is implemented when the capacity
falls below 80% of its initial value [48, 49]. An accurate description of this phenomenon,
together with other battery dynamic characteristics, e.g., variable efficiency, is pivotal for
a consistent design of the microgrid.

Y1 Y2 YN

xN

Installation
of components

System
operation

Y0

Y1

Installation
of components

System
operation

Y0

Figure 2.2: Algorithm structure of single-year (top) and multi-year (bottom) approaches.

Few works have managed to accurately model BESS behaviour within the scope of
a MILP optimization, given the numerous non-linearities. The works [50, 51] adopt the
concept of Coulomb efficiency explained in [52] to model the capacity degradation: this
efficiency varies with the way the bank is operated in [50], while [51] identifies an appro-
ximation valid for any possible operating condition, which is used to compute the weekly
storage degradation and update the available capacity accordingly. The battery life loss
is a non-linear function of the State Of Charge (SOC); this curve is split into linear seg-
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ments in [53] to include it into a MILP scheduling. The approach presented in [54] sets the
working conditions of the storage system (C-rate, temperature) and the maximum num-
ber of cycles allowed is consequently defined, while [55] limits the number of changes of
state of the batteries to reduce degradation. Finally, a common approach is to model the
capacity reduction as a function of the total throughput, regardless of how the batteries
are operated [31, 36, 46]. The available storage capacity is an input parameter in most of
these works, while in the case of microgrid sizing, it constitutes a variable to be optimized;
this poses further linearization problems. Furthermore, none of the papers mentioned in
Section 2.2.1 dealing with microgrid design and, consequently, with storage sizing, adopts
a capacity reduction model that considers the way the battery is managed. In conclusion,
currently, there are no papers that address a MILP planning problem accounting for a
detailed battery model and its effects on the system operation on the entire lifespan of the
project.

2.2.3 Analysing the three dimensions of sustainability

Standard microgrid sizing tools usually reduce the complexity of the problem by means
of a twofold approach: limiting the time frame under analysis adopting single-year ap-
proaches, as per Section 2.2.1, and focusing on economics-only optimizations. Therefore,
cost is usually considered as the only determining factor in the effectiveness of the rural
electrification process [26, 32, 33]. This assumption hardly matches the complex circum-
stances of off-grid microgrids in the Global South, given the multiplicity of impacts on the
community involved, the intrinsic long-lasting nature of the system, the significant load
growth and the assets degradation over the years.

A growing interest in environmental protection issues has led various scholars to also
include an assessment of carbon emissions in their analyses, as a limit not to be exceeded
[34, 38], or as monetary cost to be minimized [30, 36], or as additional objective function
[24, 35, 39, 56–59]; however, Life Cycle Assessment (LCA), which quantifies the emissions
along the whole life cycle of an asset, is rarely adopted [34, 39, 56], and generally only
direct emissions are taken into account [24,30,35,36,38,57–59], resulting in incomplete and
sometimes misleading evaluations.

In addition to this, the importance of considering the social impact of rural electrifi-
cation projects is increasingly recognized and demanded as an indispensable element of
system planning tools [60]. Nonetheless, very few multi-objective algorithms have been
developed including social assessments, mostly through the evaluation of employment gen-
eration [39,58,59]. The maximization of the Human Development Index (HDI) in relation
to energy consumption is rarely adopted [39], and although the relationship between HDI
and energy use is widely recognized nowadays, as discussed in Section 1.3, it can hardly
describe the local impact on the electrified community, while job creation is an under-
standable and measurable criterion; this is why the latter is used more extensively in
multi-objective optimization.

A popular and consolidated approach for holistic analysis of rural electrification projects
is to use Multi-Criteria Decision Analysis (MCDA) [61–64], which is more prone to includ-
ing social and qualitative decision criteria. However, the purpose of MCDA is limited to
prioritizing the preferred technologies according to scores assigned to the different options,
weighted on the decision marker’s preferences, so it cannot size generation mix and pro-
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vide the scheduling strategy and is not able to efficiently manage different configurations
of hybrid systems. Hence, these aspects must be analysed separately and MCDA is used
for ex-ante [63] or ex-post [64] assessments, but planning tools are still needed.

Therefore, the literature lacks a holistic multi-objective optimization that addresses all
the aforementioned shortcomings.

2.2.4 Long-term uncertainty in rural electrification projects

The outcome of rural electrification projects is extremely uncertain, because the design of
the power system is based on specific assumptions in terms of electricity demand projections
over time that may turn out to be very far from their actual realization. The evolution of
the load depends on two main aspects, i.e., the increase in the number of users and the
adoption of more energy-intensive appliances, and they are both subject to high uncertainty
because related to complex socio-economic and environmental dynamics (closeness to other
electrified areas, demand stimulation programs, access to financial capital, resilience to
climate change, etc.) [65].

The formulation of realistic demand forecasts is key to robust microgrid planning. Some
methodologies have been developed, but there is no standard yet: the most common ap-
proaches to estimate the demand are econometric (top-down) and end-use (bottom-up).
The former is based on macroeconomic data which are easily accessible but cannot effec-
tively represent the peculiarities of a community, while the latter provides more realistic
appliances-based projections but data are hardly available [66]. In this regard, efforts
have recently been made to gather and classify load profiles of existing remote microgrid
projects, to derive replicable patterns and guide developers [67].

For what concerns forecasts of load evolution in the long term, they are often based on
arbitrary trends; some works adopt a deterministic scenario based on a constant growth
factor [36,41,42,44], while the uncertainty of such pivotal input has prompted many scholars
to use scenarios to evaluate different possible realizations of the load. In particular, different
projections have been derived from historical data on similar projects [47] or according to
different assumptions either in terms of appliances penetration [68,69], or of macroeconomic
trends (GDP, population,etc.) [70], or from a combination of these elements [40].

Given the significant impact of long-term uncertainties on the optimal configuration of
an isolated hybrid power system, a few studies approaching the problem through multi-step
sizing have recently been published; in these works, the installation of assets is not limited
to the beginning of the project, but may be integrated in the following years, allowing
to plan deferred investments linked to the increase in demand over time and components
degradation.

The problem may be decomposed into subsequent deterministic single-year optimiza-
tions [36], or through a two-stage process that first determines the asset capacities of each
year separately and then evaluates the total life cycle cost [42]. Similarly, [71] describes a
capacity expansion planning problem of a remote power system, broken down into stochas-
tic yearly optimizations. A capacity expansion problem is also presented in [72], in which
a system dynamics model and the DER-CAM software [35] are iteratively solved until
convergence, to accurately estimate the socio-economic phenomena stimulating the load
growth and plan the investments accordingly.
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As the difficulty of making accurate predictions is a pivotal issue in evaluating the hardly
predictable evolution of rural electrification projects, stochastic methods are well suited
for the optimization of such long-lasting systems subject to a high degree of uncertainty.
Figure 2.3 shows an illustrative example of the framework adopted: the demand scenarios
correspond to the different branches, all departing from the common starting point of
the initial load curve, and the nodes correspond to the moments when the installation
of components is allowed. The developer may set multiple capacity expansion windows,
which are common to all scenarios; then, the optimizer will define for each scenario and
for each capacity expansion window whether to upgrade the system and how.

Figure 2.3: Example of tree structure to consider stochastic load growth and components
upgrades [47].

Such methods have recently gained attention in the scope of multi-step sizing of rural
microgrids [47,69]; in particular, [47] uses Particle Swarm Optimization to assess the least-
cost option according to three demand growth scenarios and two installation windows; a
Linear Programming (LP) problem is formulated in [69] to evaluate the best investment
plan, given four capacity expansion steps and four load scenarios. However, these few
stochastic multi-step sizing tools available in the literature use optimization methods that
favour the speed of execution over the accuracy of the results. In particular, [47] adopts
a heuristic method that may provide a local optimum as output configuration; the LP
approach [69] efficiently reaches the global optimum but the strict linearity hinders the
accurate technical description of the components, as, for example, it is not possible to
set a minimum power threshold for fuel-fired generators. There are still no examples
of multi-step sizings using MILP techniques, that do not pose optimality issues and can
thoroughly describe the behaviour of the components but are usually associated to a heavy
computational burden.

2.3 Literature gaps and research objectives

The previous sections presented the state of the art in microgrid planning algorithms,
highlighting the gaps that reduce the effectiveness of such tools. Table 2.1 summarizes the
characteristics of the most significant works on the topic, grouping the modelling aspects
under analysis into four main categories:
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(i) Optimization method. Defines whether the article adopts a one-shot MILP approach,
i.e., component sizing and resource scheduling optimized jointly within one algorithm.

(ii) Multi-year characteristics. Identifies the presence of a long-term perspective, in con-
trast with single-year approaches. In particular, the presence of load growth, of
degradation of RES generators and of BESS capacity reduction depending on its
operation are detected.

(iii) Multi-objective optimization. Highlights the presence of multiple decision criteria,
grouped into economic, environmental and social objective functions.

(iv) Long-term uncertainty. Points out the evaluation of long-term uncertainty in terms
of multiple demand scenarios and of presence of capacity expansion opportunities
along the project lifetime.

The table highlights that the only common feature among all the papers under analysis
is the presence of an economic objective function, typically considered as the most signi-
ficant - if not the only - information driving the selection of the generation and storage
assets and their operation.

The prominence of traditional single-year least-cost approaches is gradually decreasing
to make room for a twofold advancement: multi-year methods, enabling a long-term per-
spective on the evolution of the system, and multi-objective optimization, widening the
decision-making process to a comprehensive and considerate approach. However, these
two features are rarely combined because of the considerable impact on the computational
burden. The only example available in literature is the commercial software iHoga [39],
whose algorithm is not publicly available. This tool adopts a genetic algorithm and allows
to expand with a multi-year module the basic single-year version minimizing the total Net
Present Cost (NPC) or maximizing the Net Present Value (NPV), but without being able
to evaluate different scenarios of demand growth and possible system upgrades. Moreover,
the user may choose among several decision criteria to integrate the objective function:
carbon emission, unmet load, HDI and job creation.

One-shot MILP algorithms have the advantage of optimizing sizing and operation phase
in a simultaneous and effective way, guaranteeing the identification of the global optimum,
but they usually employ a significant simulation time, compared to heuristic methods; for
this reason the works adopting this technique are provided with only few of the important
aforementioned features (see Table 2.1). Therefore, advancements in the formulation of
MILP problems are required in order to extend their application to more complex models.

This research aims at filling the gaps identified in the literature, which concern both
the way the microgrid planning problem is described and the mathematical programming
tools adopted to identify the optimal solution. Hence, two main research objectives are
pursued by this work:

Objective 1. To formulate a holistic MILP microgrid planning model, describing the
full project lifetime and enabling an informed and comprehensive decision-making process,
accounting for long-term uncertainty.

Objective 2. To develop novel algorithms enabling the use of MILP methods for complex
and computationally-intensive applications.
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Table 2.1: Main features of the most significant works on microgrid planning.

Method Multi-year characteristics Multi-objective optimization Long-term uncertainty
One-shot
MILP

Load
growth

RES
degradation

BESS variable
degradation

Economic Environmental Social
Demand
scenarios

Multi-step
sizing

[24] ✓ ✓
[25] ✓ ✓ ✓
[26] ✓
[27] ✓
[28] ✓
[29] ✓
[30] ✓
[31] ✓
[32] ✓
[33] ✓
[34] ✓ ✓
[35] ✓ ✓ ✓
[36] ✓ ✓ ✓ ✓
[37] ✓
[38] ✓ ✓ ✓ ✓
[39] ✓ ✓ ✓ ✓ ✓ ✓
[41] ✓ ✓ ✓ ✓
[42] ✓ ✓ ✓
[46] ✓ ✓ ✓
[47] ✓ ✓ ✓ ✓ ✓
[54] ✓ ✓
[56] ✓ ✓
[57] ✓ ✓
[58] ✓ ✓ ✓
[59] ✓ ✓ ✓
[72] ✓ ✓ ✓ ✓
[69] ✓ ✓ ✓ ✓
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2.4 Main contributions

The main contributions of the thesis can be summarized as follows:

� Comprehensive description of a rural microgrid planning problem, including long-
term uncertain phenomena and the evaluation of the economic, environmental and
social impacts of the project. The methodology is tested on a real case study of a
community in Soroti, Uganda.

� Formulation of a novel iterative algorithm to account for complex non-linear phe-
nomena, e.g. power-dependent BESS degradation, in one-shot MILP problems with
an efficient and reliable approach.

� Development of A-AUGMECON2, which represents an advancement of the well-
established AUGMECON2 method, for solving multi-objective MILP optimizations.
It introduces an online Pareto filter that skips redundant iterations and dramatically
reduces the computational burden, while improving the readibility of the results.

2.5 Thesis outline

The rest of the thesis gradually addresses the features and gaps discussed in Sections 2.2
and 2.3, while concurrently pursuing the two research objectives. Part II fully explores the
modelling approach proposed to effectively tackle the rural microgrid planning problem, by
dealing with one aspect at a time and building on the findings of the previous chapters to
finally present the complete approach. Each chapter introduces the features under study,
thoroughly describes the methodology and its application on a real case study, analyses the
results. Part III concludes the thesis with a summary and a discussion on the contributions
of the work, with reference to possible future developments. In detail, the thesis is organized
as follows:

Chapter 3. An iterative procedure to reduce the computational burden of multi-year MILP
planning problems is presented, including load growth, RES degradation and BESS power-
dependent capacity reduction. The accuracy over single-year methodologies is highlighted.

Chapter 4. The model presented in Chapter 3 is adopted as the core problem to be
optimized within the framework of a novel multi-objective method with online Pareto
pruning. The significant advancement with respect to the traditional approach is discussed.
Net Present Cost (NPC), life cycle carbon emissions, land use, job creation and public
lighting coverage are evaluated to build the set of non-dominated solutions.

Chapter 5. The findings of the two previous chapters are capitalized to further expand
the features of the model, including a stochastic approach for a sound evaluation of the
possible long-term load growth scenarios and the possibility to upgrade accordingly the
generation and storage assets along the project lifetime.

Chapter 6. The main results are summarized and discussed, highlighting the main advan-
tages of the approach and its versatility.
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� M. Petrelli, P. V. A. Melià, “A literature review of the integration of optimization
algorithms and LCA for microgrid design: a replicable model for off-grid systems in
developing countries”, XIII Convegno della Rete Italiana LCA, Roma, June 13-14,
2019.

� M. Petrelli, D. Fioriti, A. Berizzi and D. Poli, ”Multi-Year Planning of a Rural
Microgrid Considering Storage Degradation,” IEEE Transactions on Power Systems,
vol. 36, no. 2, pp. 1459-1469, March 2021.

� M. Petrelli, D. Fioriti, A. Berizzi, C. Bovo, D. Poli, ”A novel multi-objective method
with online Pareto pruning for multi-year optimization of rural microgrids”, Applied
Energy, Volume 299, 2021, 117283.

� N. Stevanato, S. Corigliano, M. Petrelli, F. Tonini, M. Merlo, E. Colombo, “Rural
Areas Electrification Strategies Through Shadow Costs Analysis - Bolivian Highlands
Case Study”, Energy for Sustainable Development, Volume 65, Pages 162-174, 2021.

25





Part II

Modelling framework for
microgrid planning

27





Chapter 3

Deterministic multi-year
planning

3.1 Introduction

This chapter paves the way to overcoming the literature gaps identified in Chapter 2. In
particular, it describes a methodology able to find out the optimal sizing of the plant,
taking into account optimal scheduling during operation, pursuing the least-cost objec-
tive, while capturing the complexity of such a system in terms of multi-year features,
namely load growth, linear degradation of the RES generators and variable BESS capacity
decrease. The Iterative Multi-Year (IMY) methodology here proposed is based on an itera-
tive approach updating specific constants of the MILP planning core and accounting for a
detailed description of the battery efficiency and power-dependent degradation, while pre-
serving convergence quality. By doing so, the burden of each MILP problem is significantly
reduced, thus making the overall approach able to simultaneously take into account both
the operational planning and the degradation of the asset performances over time, which
in turn depend on the hourly scheduling. The approach makes it possible to solve this
very complex problem in a both accurate and computationally efficient way, overcoming
traditional single-year methodologies [26,32]. The MILP optimization is not directly used
in a single shot, as in the literature (see Section 2.2.1), but it is embedded in an iterative
scheme for the purpose of accuracy, while preserving tractability.

The chapter is structured as follows: the main contributions of the novel methodology
are summarized in Section 3.2 and described in detail in Section 3.3, that presents the
objective function and constraints of the optimization algorithm and the iterative procedure
adopted to accurately account for the non-linear BESS degradation; Section 3.4 introduces
the case study that will be used throughout the whole thesis and lists the tests performed
to validate the methodology; Section 3.5 discusses the results, highlighting the reliability
and computational efficiency of the procedure in comparison with standard approaches and
it shows the significant influence of a detailed battery model on the optimal design; finally,
Section 3.2 concludes the chapter with a summary of the most relevant considerations.
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3.2 Contributions

The main contributions of this chapter include (1) a novel iterative algorithm for multi-
year planning of isolated microgrids in developing countries that (2) accurately models
the variable charging-discharging efficiency of the battery and its capacity degradation
as a function of the hourly power-to-energy ratio, (3) considering detailed multi-year si-
mulations spanning the entire lifetime of the project at an hourly time resolution. The
effectiveness of contribution (1) is validated by proving the infeasibility of taking into ac-
count degradation and variable efficiency of batteries in a traditional one-shot MILP. The
impact of contributions (2) and (3) on the total cost of an isolated microgrid in Uganda is
shown, highlighting the importance of the results for real applications.

3.3 Methodology

In the IMY approach, a typical planning problem is integrated with the battery power-
dependent efficiency and degradation, and the long-term simulations are decomposed in
the iterative algorithm depicted in Figure 3.1. The main steps of the procedure are as
follows:

1. Initialize the parameters describing the degradation of the battery and its power-
dependent efficiency.

2. The MILP planning problem is run over the project lifetime, including the optimiza-
tion of the hourly scheduling of the storage battery bank, using the most updated
parameters modelling the battery. These parameters are constants for the MILP
problem.

3. The parameters associated with capacity degradation and efficiency variation related
to the optimized scheduling are updated.

4. If the convergence criterion on the variation of the parameters is met, the procedure
stops; otherwise, the parameters are updated and a new MILP is run (go to 2).

In contrast to the standard MILP formulation that would require a large number of
continuous and binary variables to be optimized inside the MILP framework, the non-
linearities of the battery are modelled in the IMY method through constants updated in
each iteration. This reduces the computational burden of each MILP without significantly
compromising the optimality of the solution. The iterative procedure runs until the varia-
tion of the parameters in two consecutive iterations falls below a threshold. The following
subsections present the details of the IMY approach.

3.3.1 MILP sizing algorithm

The IMY approach is very general and can be applied to any system architecture. However,
for the sake of simplicity and with no loss of generality, the mathematical formulation of the
method is described referring to the typical microgrid shown in Figure 3.2, composed by
Diesel Generators (DGs), Photovoltaic plants (PVs), Wind Turbines (WTs), and Battery
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START

Initialize loop

Solve MILP planning problem

Compute battery parameters

YES

NO

END

Figure 3.1: The optimization algorithm.

Energy Storage Systems (BESSs). Every technology is connected to an alternate current
(AC) busbar; hence, the sizing of Converters (CONs) is embedded into the design of the
direct current (DC) units, namely, PV and BESS. An hourly time interval is considered
and time-variant quantities are assumed to be constant during each interval.

The IMY model of the system aims at capturing the most significant phenomena that
should be considered in the optimal design of the microgrid. Moreover, given the MILP
formulation aimed at minimizing the Net Present Cost (NPC) of the system, the model
automatically tends to reduce the operating costs, hence maximizing the use of renewable
energy sources, when available, or providing time-shifting to reduce reliance on fuel-fired
generators when economically profitable.

The following subsections describe the model in detail and the full nomenclature is
resumed in Appendix A.

Objective function

The function to be minimized is the NPC, formulated as in (3.1), where ICi is the initial
investment, O&Mi represents the operation and maintenance expenses, RCi denotes the
replacement cost and finally, RVi is the residual value.

NPC =
∑
i

(ICi +O&Mi +RCi −RVi) (3.1)

where i ∈ {g, p, w, b} is the set of indexes of the available technologies, namely, DG, PV,WT
and BESS, respectively; each element represents the set of available types of components
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Figure 3.2: Microgrid architecture.

for each technology.
The initial investment cost of each technology type is defined as in (3.2), where ci is

the capital cost of a single unit and Ni is the number of installed units.

ICi = Ni · ci (3.2)

The O&M costs are defined in (3.3a) for PV, WT and BESS as a fixed amount per year
y, supposed to be encountered at the last hour of the year. On the other hand, the O&M
costs of DG, detailed in (3.3b), depend upon their operation hours and on fuel expenses.
mi is the yearly O&M cost of one unit of i, Y is the project lifetime in years, H is the
number of hours in one year, H is the project lifetime in hours, dh is the discount factor
in hour h, Uh,g is the integer variable stating the number of active DG of type g in hour
h, f is the cost of fuel and FCh,g is the hourly fuel consumption of g.

O&Mi\{g} = Ni ·mi ·
Y∑

y=1

dH·y (3.3a)

O&Mg =

H∑
h=1

dh · (mg · Uh,g + f · FCh,g) (3.3b)

Given the usual time horizon of microgrid projects, the only components with a lifetime
possibly shorter than the project duration are DG and BESS, and their replacement costs
must be taken into account, unlike the other technologies. The life of DG is expressed
in (3.4a) assuming H life

g total working hours before replacement. The related cost is
distributed along the corresponding lifetime, instead of being concentrated at the time of
the actual replacement. This is a conservative approach that tends to overestimate the
cost of DG, pushing towards a configuration based on renewables.
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On the other hand, the presence of a replacement counter kh,b for BESS, increasing
every time the relative residual capacity falls below the minimum threshold αb, enables
allocating the whole replacement cost when needed, as detailed in (3.4b).

RCg =
cg

H life
g

·
H∑

h=1

dh · Uh,g (3.4a)

RCb = Nb · cb ·
H∑

h=1

dh · (kh,b − kh−1,b) (3.4b)

Finally, the residual value of the components whose lifetime Y life
i is assumed longer

than the project lifetime Y , namely, PV and WT, is computed in (3.5a). Since the DG
replacement cost is addressed as a distributed cost, there is no need to consider its residual
value, which is instead evaluated for BESS in (3.5b) based on the residual capacity available.
αh,b is the per-unit BESS residual capacity, bounded in between a maximum (αb) and a
minimum (αb) threshold. Factor ρh,i is the degradation rate of component i.

RVi\{g,b} = dH · ρh,i ·Ni · ci
Y life
i − Y

Y life
i

(3.5a)

RVb = dH ·Nb · cb ·
αH,b − αb

αb − αb
(3.5b)

Constraints

The power balance constraint at the AC busbar is reported in (3.6), where P dch
h,b is the

discharging power from BESS of type b, ηb is the maximum BESS efficiency of b, βh,b is
the per-unit BESS efficiency of hour h, P ch

h,b is the BESS charging power of BESS of type

b, P ren
h is the renewable power injected into the system, P dg

h,g is the power produced by the
DG units of type g, Du

h is the unmet demand and Dh is the demand.

∑
b

(
P dch
h,b · ηb · βh,b −

P ch
h,b

ηb · βh,b

)
+ P ren

h +
∑
g

P dg
h,g +Du

h = Dh (3.6)

To avoid the oversizing of the system, load shedding is typically admitted in these
contexts. In particular, in the IMY formulation, the constraint is enforced to be below a
given threshold of the yearly demand (see (3.7)), so that significant mismatches of unmet
demand along the project lifetime are avoided. In the literature, sometimes the same
problem is modelled by using economic penalties in the objective function for every unit
of Energy Not Served (ENS) [73], while other studies have proposed the formulation by
hard constraints [25,74], as developed in this work. Both models involve considerations on
continuity of supply and provide similar results, but the former is more computationally
demanding, as highlighted in [73]. Moreover, given the scope of application of the model,
it may be difficult to identify a suitable numerical value to be used as penalty in such
contexts. Lastly, public calls for tender may often have requirements in terms of a cap on
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ENS rather than estimating its equivalent economic cost. Therefore, the second approach
is selected: load curtailment is admitted and capped in (3.7) through the ENS factor.

H∑
h=1

Du
(y−1)·H+h

≤
H∑

h=1

D(y−1)·H+h · ENS (3.7)

The renewable production injected into the system computed in (3.8) is at most equal
to its availability, where P pv

h,p is the generation available from the PV generator of type p,

and Pwt
h,w is the generation available from the WT generator of type w, ρpvh,p and ρwt

h,w are
the linear degradation rates of PV and WT technologies respectively.

P ren
h ≤

∑
p

ρpvh,p ·Np · P pv
h,p +

∑
w

ρwt
h,w ·Nw · Pwt

h,w (3.8)

The next block of constraints is devoted to defining the behaviour of DG. In particular,
(3.9a) describes a linear fuel consumption curve according to coefficients A and B, suitable
for small size DG; (3.9b) and (3.9c) limit the working area of the units within Pg and

Pg and consider the reserve Rdg
h,g to be provided; (3.9d) limits the total number of active

generators.

FCh,g = A · Uh,g +B · P dg
h,g (3.9a)

P dg
h,g +Rdg

h,g ≤ Pg · Uh,g (3.9b)

P dg
h,g ≥ Pg · Uh,g (3.9c)

Uh,g ≤ Ng (3.9d)

The behaviour of BESS is ruled by (3.10a)-(3.10g), where (3.10a) defines the energy
level Qh,b, limited by (3.10b) and (3.10c); the discharging and charging power are capped
in (3.10d) and (3.10e) by the maximum power-to-energy ratio PQb; and (3.10f) and (3.10g)
aim at avoiding that the batteries discharge and charge during the same time interval. ∆h
is the selected time interval, Cb is the maximum capacity of one unit of b, DODb is the
depth of discharge, Rsb

h,b is the reserve to be provided by BESS of type b, wdch
h,b is a binary

variable equal to 1 in the discharging mode and 0 in the charging mode, and M is a large
constant.

Qh,b = Qh−1,b + (P ch
h,b − P dch

h,b ) ·∆h (3.10a)

Qh,b ≥ Nb · Cb · (1−DODb) +Rsb
h,b ·∆h (3.10b)

Qh,b ≤ αh,b ·Nb · Cb (3.10c)

P dch
h,b ≤ Nb · Cb · PQb (3.10d)

P ch
h,b ≤ Nb · Cb · PQb (3.10e)

P dch
h,b ≤ wdch

h,b ·M (3.10f)

P ch
h,b ≤ (1− wdch

h,b ) ·M (3.10g)

To account for the unpredictability related to real-time dispatching of the system, a re-
serve requirement Rh to be provided by DG and BESS is established in (3.11), proportional
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to the unpredictability of load (γd) and of renewable sources (γpv and γwt). The literature
is rich with multiple methods to deal with short-term variations and they differ in terms
of data and computational requirements; however, the use of reserves is generally compu-
tationally efficient [26,30], and the approach was regarded as a good compromise between
tractability and representation of the problem, especially with respect to stochastic [25,73]
or robust [75] optimization. In stochastic optimization, uncertainties are modelled by
means of scenarios, which proportionally increase the size of the problem with often more
than a linear increase of computational requirements. Moreover, the formulation of scena-
rios and of their probability distribution requires an amount of data that is hardly available
for developing countries. On the other hand, robust optimization provides a configuration
able to completely fulfil the demand for any realization of the inputs [75]. The method is
computationally efficient, but it tends to oversize the generating units, leading to a higher
overall cost [76, 77]. Hence, it is likewise unsuitable for the purpose of this work, because
affordability is often a priority over reliability of service in cases of first access provided
to rural communities. For these reasons, the approach involving reserve requirements is
preferred.

Rh = γd ·Dh + γpv ·
∑
p

ρpvh,p ·Np · P pv
h,p + γwt ·

∑
w

ρwt
h,w ·Nw · Pwt

h,w (3.11a)

Rh ≤
∑
g

Rdg
h,g +

∑
b

Rsb
h,b · ηb · βh,b (3.11b)

3.3.2 The iterative procedure

Updating parameters

As shown in the previous subsection, the dynamic behaviour of BESS in terms of capacity
degradation and variable efficiency is accounted for in the MILP optimization by means
of the parameters αh,b and βh,b, respectively. The former quantifies the relative residual
capacity at hour h, depending on the total throughput Qthr

h,b and on the working power-
to-energy ratio PQh,b. The latter indicates the relative charging or discharging efficiency,
and it varies according to the working PQh,b, which is computed as in (3.12) after each
MILP problem is solved:

PQh,b =
P ch
h,b + P dch

h,b

Nb · Cb

(3.12)

The value of PQh,b has to comply with the maximum power rate of the component
(PQh,b ∈ [0;PQb]), and it is discretized in subintervals, each characterized by a constant
maximum number of cycles n(PQh,b) (i.e., the BESS cycle lifetime if always operated at
that PQh,b) and charging and discharging efficiencies η(PQh,b). At each hour h, n(PQh,b)
and η(PQh,b) are assigned according to the relevant interval of PQh,b. The computation
of the parameter βh,b in (3.13) is now straightforward.

βh,b =
η(PQh,b)

ηb
(3.13)

To calculate αh,b, first, the total throughput is computed according to (3.14).
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Qthr
h,b = Qthr

h−1,b + (P ch
h,b + P dch

h,b ) ·∆h (3.14)

The BESS residual capacity Cres
h,b is modelled as a sawtooth function: in (3.15a), it

degrades linearly as Qthr
h,b increases, with a growing slope for increasing PQh,b, i.e., de-

creasing n(PQh,b), and no replacement is needed; conversely, in (3.15b), it returns to its
initial value when αh,b falls below αb, i.e., a replacement is put in place.

if αh−1,b ≥ αb

Cres
h,b =Cres

h−1,b −
1− αb

2 · n(PQh,b) ·DODb
· (Qthr

h,b −Qthr
h−1,b)

kh,b =kh−1,b

(3.15a)

if αh−1,b < αb

{
Cres

h,b =Nb · Cb

kh,b =kh−1,b + 1
(3.15b)

Finally, the parameter αh,b is computed as detailed in (3.16).

αh,b =
Cres

h,b

Nb · Cb

(3.16)

Convergence criteria

Convergence of the algorithm is achieved when the following criteria are met. First, the
NPC is compared with the value obtained in the previous iteration NPC∗, and the relative
change ∆NPC, calculated as in (3.17), shall fall below a given threshold.

∆NPC =
|NPC −NPC∗|

NPC
(3.17)

Furthermore, in order to stress the convergence of the algorithm and improve the NPC,
convergence criteria on the power-dependent behaviour of BESS, modelled by the param-
eters αh,b and βh,b were introduced. In two consecutive MILP optimizations, only the
degradation parameters (αh,b and βh,b) are modified; therefore, when limited changes oc-
cur on these parameters, limited differences in the optimal design of the master MILP
problem are expected; hence, this strengthened convergence criterion is supposed to pro-
vide more reliable solutions.

The relative change in the parameters αh,b and βh,b is detailed in (3.18a)-(3.18c), de-
scribing the additional convergence criteria.

∆α =

∑
h,b

∣∣∣αh,b − α∗
h,b

∣∣∣∑
h,b αh,b

(3.18a)

∆β =

∑
h,b

∣∣∣βh,b − β∗
h,b

∣∣∣∑
h,b βh,b

(3.18b)

∆αH =

∣∣∣αH,b − α∗
H,b

∣∣∣
αH,b

(3.18c)
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∆α and ∆β focus on the average absolute variation of the parameters, while ∆αH

evaluates the relative change in the battery energy degradation occurring at the end of the
project. The rationale behind using the average criterion of ∆α and ∆β instead of the
maximum deviation is justified by the fact that stability issues may arise when a relative
mipgap (tolerance on best integer objective) [78] higher than zero is adopted, which is
extremely common when dealing with complex and computationally expensive problems.
Indeed, it may happen that, in two consecutive iterations, the algorithm may replace the
battery in the same day, but not exactly in the same hour, which may lead ∆α up to
(αb - αb) in the replacement hour, preventing the convergence of the procedure but with
no significant effect in terms of optimality of the solution. By using the average absolute
criterion, the above numerical instability is mitigated. Nevertheless, (3.18c) guarantees
congruity in terms of residual capacity at the end of the project and, consequently, of time
of replacement. In fact, even if the time of replacement slightly changes at convergence, the
variation in the residual capacity would be negligible; therefore, equation (3.18c) increases
the stability of the approach with respect to convergence criteria on the maximum difference
at any hour.

3.4 Case study

3.4.1 Location and input data

The IMY methodology described in the previous section has been tested on a rural com-
munity based in Soroti, in central-east of Uganda (1.72N 33.6E), where a load assessment
data collection campaign was performed and documented in [79] and detailed in Appendix
B. Data on local availability of solar and wind power production have been acquired by
means of the Renewable.ninja web platform [80,81].

To represent the multi-year behaviour of the proposed community and its hourly un-
certainties, the load profile, shown in Figure 3.3, has been estimated by accounting for the
dynamics of the social behaviour of the community over the considered time horizon (10
years), based on the results of the study on social dynamics following access to electric-
ity in similar contexts developed in [72]. The LoadProGen tool [82], adopted in [79] to
estimate the profile resulting from the data collected on field, has been run with different
input data for each year, in order to reproduce the relative load growth estimated in [72],
due to the growth in the users and the higher penetration of appliances; the latter was
estimated by using the income percentiles for the community [83]. Users were grouped in
17 different classes (6 residential, 11 business activities and local services), whose size and
number of appliances per customer grow over time; in particular, given the wide variety of
appliances used by the community, the demand estimated in [79] is assumed to be referred
to the last year of the project, then the profiles of the previous years are estimated by
reproducing ”backwards” the growth trends analysed in [72]. By using LoadProGen [82],
20 load profiles were calculated for every year of the simulation to assess the hourly uncer-
tainties of the typical profile, which was calculated by averaging the 20 profiles. A Monte
Carlo technique was used to draw the daily profiles of the entire year: a Gaussian noise
was added to the daily average load, whose standard deviation equals the one calculated
for the 20 different profiles of the corresponding year. The granularity of both renewable
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generation and demand profiles is 1 hour.

The capital and maintenance costs of the different units are shown in Table 3.1 together
with their maximum lifetime. A DG fuel cost of 0.75 AC/l is considered. Table 3.2 shows
the features of the selected Li-ion battery model. The parameters in Tables 3.1 and 3.2
were derived from a literature review and the author’s experience. Realistic ranges of the
power-to-energy ratio dependent characteristics were derived from the literature [84–86]
and are provided in Table 3.3. Renewable asset degradation was included in the analysis
by considering a 1% annual decay of PV panel [44], a 0.53% annual deterioration of wind
turbines [45].

(a)

(b)

Figure 3.3: Estimated load profiles (a) and total yearly demand (b)
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Table 3.1: Components costs and lifetimes [26,28,31,32]

Unit size ci mi Lifetime

Photovoltaic panel 1 kW 1.1 kAC 10 AC/y 20 y

Wind turbine 10 kW 27 kAC 810 AC/y 20 y

Diesel generator 16 kW 11 kAC 0.208 AC/h 15,000 h

Battery 1 kWh 0.4 kAC 10 AC/y 15 y

Converter 1 kW 0.3 kAC 0 AC 20 y

Table 3.2: BESS specifications [25,26,86]

Nominal capacity of one BESS unit Cb 1 kWh

Maximum power-to-energy ratio PQb 1 kW/kWh

Depth of Discharge DODb 90 %

Initial State-of-Charge SOCinit
b 100 %

Minimum residual capacity before replacement αb 80 %

Table 3.3: BESS characteristics depending on PQh,b [84–86]

PQh,b ≤ 0.2 0.2 < PQh,b ≤ 0.6 PQh,b > 0.6

η(PQh,b) 99% 98% 95%

n(PQh,b) 3500 3200 3000

3.4.2 Simulation parameters

When dealing with electrification projects in the Global South, it is advisable to consider
a limited project duration with respect to the expected lifetime of the components to limit
risks, given that many changes can arise in a newly electrified community. For this reason,
a project lifetime of 10 years is considered. Moreover, as in these contexts a limited loss
of continuity of service comes with almost null social cost, a yearly loss of load of 5% is
admitted [25]. The discount factor dh is computed based on an 8% nominal interest rate
and a 2% expected inflation rate.

3.4.3 Test procedure

To prove the effectiveness of the method, the following models have been developed, tested
and compared:

1. Iterative Multi-Year (IMY): the IMY iterative procedure, depicted in Figure 3.1,
accounting for battery degradation and variable efficiency in a multi-year environment
at an hourly time resolution.

2. One-Shot Multi-Year (OSMY): a standard literature-based methodology equivalent
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to IMY but developed in a full MILP environment with no iterative algorithm.

3. IMY without battery details (IMYwoB): the IMY iterative method (IMY) without
accounting for the battery degradation and variable efficiency. This simulation aims
at highlighting the importance of considering the battery degradation since the plan-
ning phase.

4. IMY and OSMY with representative days (IMYrd/OSMYrd): in order to facilitate
OSMYrd to converge and to be able to validate the results of IMY and OSMY, both
IMY and OSMY are developed using 20 representative days (1 per season, with each
year characterized by a rainy and a dry season in the area of interest).

5. Sensitivity on battery lifetime (IMY±25%): in order to evaluate the effects of the bat-
tery lifetime on the optimal design, a sensitivity analysis is performed by increasing
and decreasing the lifetime of the battery (ncyc

h,b ) by ±25%.

The convergence of the MILP optimization has been ruled by a maximum gap [78] of
3%, the tolerances of the external loop related to BESS behaviour (see (3.18)) have been
all set to 1%, and the convergence criterion on the stability of the objective function (see
(3.17)) has been fixed at 3%, coherently with the mipgap. A limit of 5 days has been
set for the duration of the simulations. These values have been tailored according to the
literature and experience of the author. It is worth noticing that information regarding the
optimality gap is rarely disclosed, even if it plays a pivotal role in the tractability/accuracy
trade-off. The optimal microgrid sizing is found in [73] and [87] by setting a 5% mipgap
for a similar formulation; both the algorithms are run on one year with hourly time steps
but no long-term phenomenon is taken into account. Nevertheless, the time employed
by the two algorithms to converge is in the range of a few hours, comparable with the
computational burden of the work presented here, which is characterized by a much larger
size (1.66 million constraints and 1.31 million variables) and a lower mipgap.

The algorithm has been modelled in GAMS 24.0.2 and solved with CPLEX. The simu-
lations have been run on a 6-core 3.20 GHz Intel Core i7 computer with 16 GB RAM.

3.5 Results

The main results of all the IMY tests are discussed in the following subsections. The main
outcomes in terms of computational burden, objective function, cost components, sizing,
BESS replacement year Y repl

b and residual capacity at the end of the project αH,b have
been summarized in Tables 3.4 and 3.5.

3.5.1 The advantages of the iterative approach

The first noticeable result is that OSMY has not converged within the time limit of 5
days: CPLEX was still branching to find a first integer-feasible solution for the IMY
problem; hence, no mipgap [78] was available. This underlines the complexity for standard
MILP formulations to handle full multi-year planning problems, while the IMY approach
discussed in this chapter successfully converged in 6.9 hours, reaching the target tolerances
in 3 iterations. Therefore, the gain in terms of tractability of the algorithm is impressive,
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Table 3.4: Optimization outputs (I)

Time NPC IC O&M RC RV

[h] [kAC] [kAC] [kAC] [kAC] [kAC]

IMY 6.9 323 235 112 18 42

IMYwoB 4.4 278 271 86 14 93

OSMY* >120 / / / /

IMYrd 7.5 10−4 306 225 104 16 39

OSMYrd 29.7 303 226 101 14 38

IMY-25% 16.2 341 146 181 51 37

IMY+25% 7.2 314 230 113 18 47

* No feasible solution found in the given time limit.

Table 3.5: Optimization outputs (II)

PV WT DG BESS Y repl
b αH,b

[kW] [kW] [kW] [kWh] [y] [%]

IMY 91 / 16 215 / 83

IMYwoB 101 / 16 263 / 100

OSMY* / / / / / /

IMYrd 88 / 16 203 / 82

OSMYrd 86 / 16 214 / 82

IMY-25% 62 / 32 80 9 96

IMY+25% 89 / 16 209 / 86

* No feasible solution found in the given time limit.

and this confirms that the IMY iterative algorithm can easily contend with multi-year
planning problems with power-dependent battery degradation and variable efficiency with
low requirements in contrast to other standard techniques such as OSMY. Finally, the
optimization IMYwoB, which neglects battery degradation and variable efficiency (αh,b = 1
and βh,b = 1 in every time step), converged in 4.4 hours, which strengthens the robustness
of IMY in reducing the requirements of one-shot methodologies.

Given that the results are characterized by a 3% mipgap, the comparison underlines
the computational efficiency of the IMY method with respect to the literature [73,87].

3.5.2 Impact of BESS degradation on planning and operation

To evaluate the effects of the battery degradation and variable efficiency, the IMY me-
thodology (IMY) is compared to IMYwoB, which neglects the above. The results show
that NPC with IMY is approximately 16% higher than IMYwoB, which suggests that ne-
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glecting such phenomena may lead to a suboptimal design of the system. As a matter
of fact, in IMYwoB, the load is largely powered by renewable sources, especially during
the first three years, due to a larger PV plant supported by higher storage capacity; as
the load grows, the diesel production takes over, but its share never exceeds 34% of the
total demand (see Figure 3.4a). With respect to IMY, this configuration comes with higher
investment costs but limited O&M costs; moreover, as no battery degradation is accounted
for, the components have high residual value at the end of the project and the replacement
costs are only related to the DG working hours, as described by equation (4.5e). However,
in real operation the battery degradation would reduce the capability of the system to
defer the use of renewable production in compliance with the load needs; hence, increased
reliance on the fuel generator or higher ENS are likely to occur.

(a)

(b)

Figure 3.4: Dispatching of resources in IMYwoB (a) and IMY (b)

If the operation of the system resulting from IMYwoB is optimized considering BESS
degradation and variable efficiency, the total investment rises from 278kACto 327kAC. There-
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Figure 3.5: Storage capacity degradation in IMY

fore, if a developer neglects this aspects would end up with 18% more costs than expected,
which may jeopardize the success of the project. By considering battery degradation and
variable efficiency since the planning phase as in IMY, the result will be tailored to the
actual system’s behaviour; in fact, the optimizer tends to employ more DG and to leave a
less prominent role to PV and BESS, whose size is reduced by 10% and 18%, respectively,
and which are able to cover autonomously only the load of year 1 (see Figure 3.4b). In
the last year of the project, PV panels are only providing energy to 53% of the demand,
compared to the 61% of IMYwoB. Now, the NPC is 16% higher, characterized by a more
consistent portion of O&M costs, approximately 30% higher than the O&M in IMYwoB
and mainly related to fuel consumption, while the initial investment is reduced by 13%.

The results show that the model tends to avoid the replacement of the battery: the net
capacity level at the end of the optimization period (83%) is very close to the replacement
threshold (80%), as shown in Figure 3.5. Hence, the accurate modelling of the storage
behaviour has a strong impact on the optimization results, as the system gradually ends
up working with a way smaller BESS availability.

The trend of fuel consumption along the years in the two tests is compared in Figure
3.6: in both cases, the growing utilization of diesel generators follows the increase in the
demand, but the degradation of BESS in IMY makes the use of DG necessary two years
in advance. Furthermore, the use of discounted cash flows for NPC evaluation induces the
optimizer to favour outflows in the late years, leaning towards a more frequent utilization
of diesel units, rather than oversizing the renewable plant and the storage capacity, which
explains the delay in the employment of DG in both cases. The local wind availability is
not sufficient to induce the optimizer to consider the installation of wind turbines, neither
in IMY nor IMYwoB.

3.5.3 Stability and computational efficiency of the results

To highlight the good convergence performances of the IMY algorithm, IMY has been run
for 5 additional iterations after the convergence criteria were met, and the corresponding
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Figure 3.6: Fuel consumption in IMYwoB and IMY

behaviour of the convergence parameters and of the objective function are shown in Figure
3.7. It is worth noticing that the value of the objective function is stable after 3 iterations as
well as parameters αh,b and βh,b. This is the reason why the corresponding relative changes,
namely, ∆NPC, ∆α and ∆αH , fall below the convergence threshold in few iterations and
the procedure stops. The large NPC error of the first iteration occurs because the first
MILP is initialized with no battery degradation; hence, the sizing corresponds to the output
of IMYwoB. Starting from the second iteration, the effects of battery degradation and
variable efficiency commence and PV and BESS are downsized, and the reliance on diesel
increases. Along the iterative procedure, the available DG power remains constant and
the number of PV and BESS units installed undergoes slight oscillations. The convergence
is reached not only when the final sizing is attained, but also when the algorithm selects
the optimal operation of the installed components. The IMY convergence criteria meet
both: ∆NPC accounts for the total project costs, considering both the investment and
operating costs, while ∆α and ∆β focus on the operating effects. In the IMY simulations,
battery degradation has a more significant impact than variable efficiency. ∆α parameters
experience a larger dynamic than ∆β, as shown in Figure 3.7, which can be explained by
the fact that the hourly power-to-energy ratio PQh,b usually stays below the 0.2 threshold
since it is profitable to install a large battery to be operated at low power levels to perform
time-shifting of the energy produced by the PV source.

3.5.4 Validation of the procedure

As OSMY could not find a feasible solution, the quality of the results obtained with the
IMY methodology are validated using typical days, to reduce the total computational bur-
den and to be able to compare the outputs of the two procedures. The results reported in
Tables 3.4 and 3.5 highlight that when representative days are used, the IMY methodology
(IMYrd) and the one-shot one (OSMYrd) converge towards similar designs and values of
the objective function; small differences are justified by the 3% mipgap. It is worth noticing
that the error in terms of NPC is below 1% and the difference in terms of installed com-
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Figure 3.7: Evolution along the procedure’s iterations of the convergence criteria and of
the objective function

ponents is very limited. Despite the low number of representative days, the computational
requirement of OSMYrd is still very high (more than 1 day), while IMYrd requires a few
seconds to converge, which emphasizes the advantages and benefits of the IMY approach,
as already discussed. Furthermore, the results obtained with IMYrd and OSMYrd are also
similar to the values of IMY and OSMY, which strengthens the quality of the approach, but
IMY is still preferable to OSMYrd, given its faster convergence and its higher capability
of describing the real dynamics of the system; in fact, NPC with IMY is 6.7% higher than
that with OSMYrd. However, methodologies with representative days, such as IMYrd, can
be useful tools for preliminary designs and for initializing the full model, given their low
computational requirements.

In order to generalize the validity of the approach, further simulations comparing IMYrd
and OSMYrd on different test cases are presented in Appendix C, confirming the advantages
of the proposed algorithm over traditional methods. In particular, the procedure is applied
to St. Mary’s Lacor hospital, Uganda, and Ngarenanyuki secondary school, Tanzania. The
two load profiles derive from on-site measurement campaigns and have completely different
shapes and peaks with respect to the master case study of Soroti, as they refer to peculiar
services rather than a traditional mix of residential and income-generating activities. As
the three case studies are located in different areas, the availability of renewable resources
changes. Hence, this further validation increases the robustness of the analysis, as it
confirms the reliability and the computational efficiency of the IMY approach, regardless
of the input profiles.

3.5.5 Sensitivity analysis on BESS degradation parameters

Since battery lifetime is a critical element in planning phases, subject to significant uncer-
tainties, a sensitivity analysis on the BESS lifetime parameters has been performed, and
the results are shown in Tables 3.4 and 3.5. As expected, the higher the battery lifetime,
the lower the total NPC, as in the test IMY+25% (lifetime 25% higher than IMY), the
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NPC is 2.8% lower than IMY, while it increases by 5.6% in IMY-25%. The IMY-25%
configuration is the only scenario in which the battery capacity drops below 80% and is
replaced at year 9. Its more intense utilization is given by the fact that a much smaller
storage bank is installed, together with a reduced PV capacity, compensated by the adop-
tion of two diesel generators (only one is installed in all the other test cases). Therefore,
the battery lifetime reduction has a significant impact on both the initial design and the
dispatch of resources, leaning much more heavily on fuel use.

These results suggest how the cost of using batteries with a lower lifetime is higher
than the benefit of increasing the lifetime by the same amount, and it underlines the
great importance and urgency of developing a planning methodology able to cope with
battery degradation in real applications. The above achievement is also enforced by the
low computational requirements of the approaches, as shown in Table 3.4.

3.6 Conclusion

The novel IMY procedure proposed in this study, based on an iterative approach with an
internal MILP core, successfully addresses the planning of a rural off-grid microgrid with a
detailed multi-year horizon at an hourly time resolution. This approach enables analysing
the dynamics of load growth, RES degradation and storage capacity reduction with its
power-dependent efficiency throughout the entire project lifetime, with significant benefits
for developers.

The IMY approach has been compared to traditional methods, validation tests have
been performed by using representative days and alternative input profiles, and a sensitivity
analysis over the battery lifetime has also been discussed. The results highlight significant
improvements with respect to the equivalent literature-based one-shot MILP. The great
advantage of the new method derives from outsourcing the calculations related to battery
behaviour to an external loop, which reduces the computational requirements without
affecting the quality of the results, as discussed in the IMY validation. Representative days
can be used in preliminary analyses for rough evaluations, but the full methodology IMY
in this chapter is recommended for the advanced design, given the higher accuracy of the
results. Dedicated simulations highlight that neglecting the effects of battery degradation
and power-dependent efficiency can lead to underestimating the cost of the system even
by 16%, which may lead to sub-optimal allocation of resources and, most likely, energy
shortages and financial issues. Similarly, the sensitivity over the battery lifetime has proven
the battery to be a critical component, which can be accurately taken into account by the
IMY approach.

This methodology is expected to significantly enhance the current state of the art in
planning algorithms, including the non-linear constraints of the dynamics of the battery.
In particular, it can be implemented in real case studies and sizing tools so that developers
can benefit from more accurate simulations of the system behaviour, thus having a more
appropriate understanding of the financial and technical requirements of their investments.
The approach can be easily adapted to different system configurations and typologies.
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Chapter 4

Holistic multi-objective
optimization

4.1 Introduction

This chapter focuses on improving the decision making process, extending the algorithm
presented in Chapter 3 into a multi-objective optimization evaluating economic, environ-
mental and social decision criteria.

Multi-objective optimization has proven to enable assessing the trade-offs between dif-
ferent decision criteria in the energy sector, in particular for rural electrification projects
[57,58], where different types of stakeholders with different priorities may be involved (com-
panies, public institutions, NGOs) and a thorough analysis of the relationships between
the economic, environmental and social impacts on the community is required [60]. The
corresponding output, typically being a Pareto frontier, provides the decision maker with a
more comprehensive view of the outcomes of their choices so that more informed decisions
can be taken, also based on cultural and site-specific characteristics which could hardly
be described within the algorithm. Moreover, when dealing with rural areas, scarcity of
information is often an issue hindering the effective calibration of a single-objective opti-
mization including several decision criteria, which entails the identification of weights or
bounds, heavily influencing the final solution [88,89].

Only few microgrid planning tools extended the traditional techno-economic optimiza-
tion including a wider decision-making process (see Table 2.1). Hence, it is timely and
useful to develop a multi-objective planning methodology able to address economic, social,
and environmental objectives, besides accounting for the multi-year characteristics of the
project and including the degradation model of the assets. On the other side, in order to
tackle the increased complexity in planning methodologies, it is also important to develop
novel techniques to more efficiently address multi-objective optimization, especially within
the scope of MILP algorithms, that guarantee very good quality of the results but may
incur prohibitive computational burdens in case of particularly complex problems.

This chapter summarizes in Section 4.2 the state of the art concerning multi-objective
MILP optimizations and describes in Section 4.3 the main advancements provided by
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this work in terms of multi-objective methodologies and applications to energy systems.
Section 4.4 recalls the main basic concepts on multi-objective optimization, ε-constraint
method and AUGMECON2, while Section 4.5 presents the novel Advanced AUGMECON2
(A-AUGMECON2) developed in this work. The application of A-AUGMECON2 to a
rural microgrid planning problem is introduced in Section 4.6, that describes the objective
functions adopted as decision criteria and pertaining the scope of economic, environmental
and social sustainability of the project. Section 4.8 discusses the data employed for the
numerical simulations. The results of the procedure are presented in Section 4.9, where the
resulting Pareto frontier is compared to the one deriving from the standard AUGMECON2,
highlighting the significant savings of computational time and density of the frontier. The
trade-offs between the different objectives and the decision making process are discussed.
Final considerations are reported in Section 4.10.

4.2 Multi-objective approaches and AUGMECON2

In the scope of Mixed Integer Linear Programming (MILP) optimization, which is the
formulation adopted in this study, the most common approaches to solve multi-objective
problems are the weighted sum method [90, 91] and the ε-constraint method [92–94]. The
latter has the advantage of being able to represent the entire Pareto frontier independently
of its shape; moreover, its results are not influenced by normalization issues and it generally
has better computational performances [88, 89]. In particular, the Improved Augmented
ε-constraint Method (AUGMECON2) has been developed as an advancement of the tradi-
tional ε-constraint method [95,96] and, currently, it is a well consolidated approach, widely
adopted to solve a diverse portfolio of problems in the energy sector [93,94,97,98].

However, AUGMECON2 presents two interrelated drawbacks: (1) when complex algo-
rithms with more than two objective functions are optimized, the computational burden
may become extremely large because of the presence of redundant iterations; (2) the higher
the desired resolution of the Pareto frontier, the more the redundant points. The former
issue needs an enhancement of the methodology, while the latter, which is related to the
readability of the results and the choice of the final point, could be faced by one of the
post-Pareto selection methods available. These can be grouped into three major categories:
offline pruning algorithms to reduce the number of Pareto points [99, 100]; clustering al-
gorithms to identify and group similar solutions [101]; mathematical methods to select a
single final point [102,103]. This additional step requires further computational resources,
thus exacerbating the first issue.

Most of the recent literature still considers AUGMECON2 as the most up-to-date and
efficient development of the ε-constraint method, as proven by its recent use in a wide
variety of scientific literature also beyond the energy sector [104,105]. The very first efforts
in advancing the methodology have been proposed in [106], partially addressing the issue
of redundant optimizations. Nonetheless, the scope of [106] is limited to a theoretical
approach applied on a test knapsack problem to highlight the efficiency of the algorithm,
yet the performances of AUGMECON2 could be further improved.

Hence, the AUGMECON2 method is selected as the best option available in the liter-
ature to solve the MILP multi-objective multi-year optimization under study, and its two
main shortcomings are faced by developing a novel methodology, aimed at providing better
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computational performances and improved readability of the Pareto frontier by means of
an online filter of redundant optimizations.

4.3 Contributions

The proposed modified version of AUGMECON2, here denoted as A-AUGMECON2, goes
beyond the state of the art both in terms of advancements of the mathematical properties
of the algorithm, fully addressing the issue of redundant simulations, and in terms of prac-
tical application of such novel approach, being it its first application to energy systems.
Moreover, this is the first study providing such a comprehensive evaluation of rural micro-
grid projects, discussing both the multi-objective and multi-year features of the problem.
In short, the main novelties presented in this chapter are listed below.

1. Development of a multi-objective multi-year planning methodology able to efficiently
optimize and simulate the operation of the entire lifetime of a project, using economic
(Net Present Cost), social (Job Creation and Public Lighting), and environmental
(Life cycle emissions and Land use) objective functions.

2. Development of the A-AUGMECON2 methodology that reduces the computational
requirements of the standard AUGMECON2, using a novel pruning algorithm that
avoids the simulation of redundant iterations and enables the introduction of the first
novelty while keeping a good tractability of the algorithm.

4.4 Multi-objective optimization

A generic multi-objective optimization can be expressed as follows:

max f(x) = [f1(x), f2(x), ..., fp(x)]
T

s.t. yi(x) ≤ 0 i ∈ 1...m

hl(x) = 0 l ∈ 1...q

x = [x1, x2, ..., xn]
T

(4.1)

where f(x) is the p-dimensional vector of objective functions, defined by the n-dimensional
vector of decision variables x. The problem is subject to m inequality constraints and q
equality constraints. For the sake of simplicity, a problem where all objective functions are
maximized is described, but the same considerations stand also for minimization or mixed
maximization/minimization problems.

The goal of multi-objective optimizations is to find the solutions of the Pareto frontier,
which is composed by the set of so-called non-dominated points, i.e. solutions in which the
performance of one objective function cannot be improved without worsening at least one
other objective function [89,107].
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4.4.1 ε-constraint method

Classic formulation

One of the most common and efficient techniques for solving multi-objective problems is
the ε-constraint method [89], where the multi-objective problem is transformed into several
single-objective optimization problems, as shown in (4.2), by using an iterative approach.
In particular, only the first objective function is optimized, while the others are constrained
to be higher than a constant value eitk , which is modified in every iteration it. By varying eitk
between the maximum (ek) and minimum (ek) values of each objective function, calculated
beforehand, the procedure is able to calculate the Pareto frontier [89, 107]. It is worth
noticing that the maximum and minimum values of eitk are calculated before solving (4.2),
by performing p preliminary optimization problems corresponding to the maximization of
each fk(x) one at a time, disregarding the other fj ̸=k(x). The results are stored in the
payoff table and upper and lower bounds for each objective function are identified.

max f1(x)

s.t. f2(x) ≥ eit2

f3(x) ≥ eit3

...

fp(x) ≥ eitp

yi(x) ≤ 0 i ∈ 1...m

hl(x) = 0 l ∈ 1...q

x = [x1, x2, ..., xn]
T

(4.2)

As typically done, the parameters eitk span between ek and ek with a uniform distribu-
tion divided into gk intervals and (gk + 1) points, with a resolution of stepk = rk

gk
, where

rk = ek − ek represents the range of variation of the objective function k. With this for-
mulation, each optimization (4.2) is carried out on a specific subspace of the search space,
which can be described as a p-dimensional matrix of points. For every iteration it, the
values of parameters eitk can be calculated as ek = ek + iitk · stepk, where iitk ∈ {1, ..., gk +1}
is the integer value representing the current position in the grid.

The total number of points in the grid is (g2+1) ·(g3+1) · ... ·(gp+1), which leads to an
exponential behaviour. Therefore, the computational complexity can be very challenging
as the number of objective functions increases.

When the optimization of a grid point leads to a better performance with respect to
the thresholds forced by the vector e, all the optimizations with intermediate positions of e
will be characterized by very similar results (exactly the same Pareto point in case of null
optimality gap [78]). Moreover, the information from initial optimizations used to identify
the limits of the eitk parameters (ek and ek) is not used in the main iterative algorithm (4.2).
This means that the standard ε-constraint method can lead to a large number of redundant
optimizations that significantly increases the computational requirements, without adding
any insight.
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AUGMECON2

The augmented ε-constraint method, a significant improvement of the ε-constraint method,
was proposed by Mavrotas and named AUGMECON2 in its most recent development
[95, 96]. Conversely to the classic approach in which the extreme values (ek and ek) of
the objective functions are calculated by simply optimizing one objective function at a
time, AUGMECON2 makes use of lexicographic optimization for every objective function:
problem (4.3), with J initially empty, is sequentially solved over the set of p objective

functions by adding at the end of every iteration the constraint (fj(x) ≥ f̂j) updating J ,

with f̂j objective function value resulting from the previous iteration. This guarantees that
the forthcoming optimization does not deteriorate the optimality of the previous objective
functions, as f̂j represents the best value of objective function j. This limits the search
space only to Pareto optimal solutions. The procedure is solved p times, covering the entire
set of objective functions, for a total of p2 optimization problems to solve.

f̂k =max fk(x)

s.t. fj(x) ≥ f̂j j ∈ J

yi(x) ≤ 0 i ∈ 1...m

hl(x) = 0 l ∈ 1...q

x = [x1, x2, ..., xn]
T

(4.3)

Moreover, problem (4.2) is modified as follows, where s = [s2, s3, ...sp]
T is the vector of

slack variables introducing a penalty when objective functions do not correspond to their
desired values eitk ; eps is an adequately small number:

max (f1(x) + eps · (s2/r2 + 10−1 · s3/r3+
+ ...+ 10−(p−2) · sp/rp))

s.t. f2(x)− s2 = eit2

f3(x)− s3 = eit3

...

fp(x)− sp = eitp

yi(x) ≤ 0 i ∈ 1...m

hl(x) = 0 l ∈ 1...q

x = [x1, x2, ..., xn]
T

(4.4)

This configuration of the objective function allows avoiding weakly efficient points.
Moreover, to partially reduce the above stated problem of the presence of redundant points,
the ratio s2/step2 is exploited to bypass the redundant iterations of the innermost loop
only, i.e., the loop on e2. This is a significant limitation that would lead to a considerable
increase in computational requirements when more than two objective functions are used.
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4.5 The novel methodology: A-AUGMECON2

Even if AUGMECON2 is one of the most efficient multi-objective methodologies, the com-
putational burden is still a big issue, especially for computationally intensive algorithms
like multi-year microgrid planning problems; hence inefficiencies, such as redundant simu-
lations, shall be preemptively removed.

In AUGMECON2, the number of grid points to be analysed grows exponentially with
the number of objective functions and with the desired density of solutions on the Pareto
curve. Moreover, the curve tends to present conglomerates of almost identical points, not
of interest for the decision maker. This is due to the fact that the very valuable information
contained in the slack variables is only used by AUGMECON2 to bypass redundant points
on the innermost loop.

A-AUGMECON2, whose source code is publicly available (see Appendix D), tackles the
problem by limiting the calculation of points only to those whose embedded information
is worth to be included in the curve, thus reducing the computational time.

Two main actions allow limiting the number of points computed:

1. Redundant simulations are preemptively recognized and not performed for all objec-
tive functions: slack variables s are used to identify the redundant grid points.

2. Redundant simulations corresponding to the points obtained to draw the extreme
points (ek and ek) of the search space are not repeated.

4.5.1 Payoff table

The priority order adopted in AUGMECON2 for the lexicographic optimization of the
payoff table, does not reflect the optimization order used in the iterative algorithm for
the creation of the Pareto frontier; hence, payoff table points cannot be used to remove
simulations in the following step. Conversely, the priority among the objective functions
is designed in A-AUGMECON2 to reflect the procedure of the iterative loop and avoid
redundant optimizations.

To achieve this, the priority order of the objective functions in the lexicographic opti-
mization needs to be modified in such a way that, instead of simply following the order
in which the objective functions are listed in the set as in AUGMECON2, once the k-th
objective function with the highest priority has been optimized, the second highest priority
is attributed to f1(x); after these two rounds, the rest of the objective functions can be
sequentially optimized following the order in which they are listed in the set. As in AUG-
MECON2, constraints are added at the end of every iteration to prevent the optimizer
from worsening the optimality of the previous solutions. The mathematical description is
detailed in Algorithm 1.

For the sake of clarity, Table 4.1 compares the order followed in the lexicographic opti-
mization for the computation of the payoff table in AUGMECON2 and A-AUGMECON2,
in the case of p=3 objective functions. While the former simply follows the order in which
the objective functions are listed in the pertaining set, the latter employs Algorithm 1 to
always have f1 as second highest priority (apart from the first optimization, in which it is
optimized as first). The A-AUGMECON2 approach allows obtaining a payoff table that
contains points belonging to the Pareto curve; those points can be automatically included
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Algorithm 1 Defining the bounds with the new priority order for lexicographic optimiza-
tion.

1: for k ∈ {1, 2, ..., p} do
2: for kk ∈ {1, 2, ..., p} do
3: if kk = 1 then
4: Solve (4.3) with fj=k(x) obj. function; store solution f̂k,k
5: else if kk ≤ k then
6: Solve (4.3) with fj=kk−1(x) obj. function; store solution f̂k,kk−1

7: else
8: Solve (4.3) with fj=kk obj. function; store solution f̂k,kk

9: Add constraint fj(x) ≥ f̂j

10: Save final solution into payoff table

11: Calculate bounds: ek = min
k̂∈{1..p}

f̂k̂,k and ek = max
k̂∈{1..p}

f̂k̂,k

Table 4.1: Priority order in lexicographic optimization for p=3, in AUGMECON2 and
A-AUGMECON2.

AUGMECON2 A-AUGMECON2

it=1 f1 → f2 → f3 f1 → f2 → f3

it=2 f2 → f3 → f1 f2 → f1 → f3

it=3 f3 → f1 → f2 f3 → f1 → f2

in the final results, thus avoiding their re-optimization in the iterative procedure to build
the Pareto frontier.

Moreover, the hard constraints on the objective functions introduced by the sequential
optimizations (see line 9 of Algorithm 1) are turned into soft constraints, i.e., penalties

are associated to the differences from the desired values f̂j , in order to avoid infeasibilities
that may occur in case of non-null optimality gap [78].

4.5.2 Building the Pareto frontier

The procedure to find the efficient solutions is shown in Figure 4.1 and described in this
section.

First, the payoff table is completed and the ranges of variation rk of objective functions
f2(x), ..., fp(x) are divided into gk intervals to identify the grid of (g2+1)·(g3+1)·...·(gp+1)
points, corresponding to the maximum number of iterations to be performed, as detailed
in the previous section. Then, after the initialization of given indices, the main iterative
loop starts.

In order to improve the computational performances and the readability of the results,
an online filter skipping the redundant points is implemented in every iteration. Each point
is associated with a parameter vi, where i = [i2, ..., ip]

T is the position vector of the point
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START

Create payoff table (lexmax fk(x),k=1,..p)

Set lower bounds lbk for k=2,...p

Calculate ranges rk for k=2,...p

Divide rk into gk intervals 
(set number of gridpoints = gk+1)

Initialize counters:
ik=0 for k=2,...p, np=0, vi=1 

ip=ip+1

ip-1=ip-1+1

i2=i2+1

vi=0?

Payoff point?

NO

Solve problem P

NO

Feasible?

np=np+1

YES

i2=g2

Calculate bk=floor(sk/stepk)+1
for k=2,...,p

Find redundant points and set
vi=0 for each of them

NO i2<g2?

YES

i2=0

NO

ip-1<gp-1?

YES

ip-1=0

NO

ip<gp?

YES

END

NO

YES

YES

Problem P
max(f1(X)+ eps ∙ (s2/r2+10-1 ∙s3/r3+...+10-(p-2)∙sp/rp) 
st
X ϵ F
fk(X)-sk=ek   k=2,...,p

where
fk(X): objective functions to be maximized
ek=lbk+ik∙stepk 
lbk: lower bound for objective function k
stepk=rk/gk: step for the objective function k
rk: range of the objective function k
gk: number of intervals for objective function k
sk: surplus variable for objective function k
F: feasible region
eps: a very small number
np: number of Pareto optimal solutions
bk=floor(sk/stepk): bypass coefficient for the objective function k
vi: parameter equal to 0 for redundant points, 1 otherwise

Figure 4.1: Flowchart of the proposed methodology.
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in the grid. The parameter has value 1 if the point shall be analysed, 0 if it shall be
skipped. At the beginning of the procedure, the vector v of all vi is initialized to analyse
all points (vector of ones).

The optimization of a given iteration is performed only if the corresponding vi equals
1 and if the position of the point in the grid does not correspond to a point already
calculated in the payoff table. If this last condition occurs, the results obtained from
the lexicographic optimization to form the payoff table, as per Section 4.5.1, are directly
included in the Pareto frontier, thus avoiding the repetition of its calculation.

When the current iteration corresponds to a non-redundant solution, then the optimiza-
tion is performed and the outcome is collected; when a non-feasible solution is returned,
points characterized by more stringent thresholds are skipped, as they are expected to
provide non-feasible solutions, too.

When a feasible solution is obtained, it is stored in the repository of the Pareto curve and
the result is analysed to evaluate whether some redundant simulations shall be removed by
setting the corresponding vi = 0. To do so, the bypass coefficient bk = floor(sk/stepk)+1
is computed for k = 2, ..., p, where floor(·) returns the integer part of the number. Then,
Algorithm 2 is adopted to determine all the Ncomb combinations of i2, ..., ip identifying the
points of the grid that would produce a similar result, where comb and ∆ik are parameters
and mod(·) is a function that returns the remainder of the division. The parameter vi of
the Ncomb redundant points is set to zero.

Algorithm 2 Defining the positions of redundant points.

1: bk = floor(sk/stepk) + 1, k ∈ 1, 2, ..., p
2: Ncomb =

∏p
k=2 bk

3: for comb ∈ 0, ..., Ncomb − 1 do
4: for k ∈ 2, ..., p do
5: ∆ik = mod(comb/bk)
6: comb = floor(comb/bk)
7: ik = ik +∆ik
8: vi = 0

Finally, the parameters i2, ..., ip are updated to move forward in the grid. The procedure
stops when the condition ik = gk + 1 holds for k = 2, ..., p.

For the sake of clarity, Figure 4.2 illustrates the procedure in presence of redundant
optimizations for the case of p=3 objective functions, where f1(x) is optimized, while f2(x)
and f3(x), both varying in the range 1÷4, are turned into constraints. Point Uit, identified
by the green square, is the grid element to be analysed. It lies in position iU = [2, 1], i.e.,
problem (4.4) is subject to the constraints (f2(x)−s2 = 2) and (f3(x)−s3 = 1). As viU = 1,
the optimization is not redundant and must be carried out. The problem corresponding to
the grid point Uit is solved; the results, shown in Figure 4.2, are characterized by s2 = 1 and
s3 = 2. Applying Algorithm 2, vi is set to zero for Ncomb = 6 points, including the current
grid point and 5 redundant iterations, represented as red dots in Figure 4.2. Then, the
grid is crossed in the direction of the blue arrow, according to the order in which objective
functions are listed in the related set, i.e. along f2 first, then along f3. Therefore, the next
point to be analysed is Uit+1.
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Figure 4.2: Procedure to skip redundant optimizations in case p=3.

4.6 Objective functions

The following set of objective functions is a valid representative of a holistic decision-making
process, as it evaluates indicators pertaining to all the three dimensions of sustainability,
namely economic, environmental and social, but it is not the only one possible. Depending
on the type of stakeholders involved, there should be a preliminary discussion identifying
the most pressing needs, in order to define the appropriate set of objective functions which
reflect such necessities.

The algorithm has been tested on an unelectrified area in Soroti, Uganda, and the fol-
lowing objective functions have been considered relevant for a generic consortium involving
public bodies: minimization of the net present cost, providing insights on the economic
sustainability of the investment; minimization of CO2 lifecycle emissions to account for
global environmental impact and compliance with national targets on decarbonization of
the power sector; minimization of land occupation to account for local environmental im-
pact in an area with limited space availability; maximization of local job creation, providing
insights on direct socio-economic development opportunities; maximization of street light-
ing to account for improvement in safety and social life.

4.6.1 Economic impact

Net Present Cost

As for microgrid investments, the Net Present Cost is typically considered as economic
objective function to be minimized [25,32]. It is adopted in Chapter 3 and its formulation
is here reported in equations (4.5a)-(4.5h) for the sake of simplicity. It takes into account
the investment costs ICi, the operation and maintenance charges O&Mi, the replacement
costs RCi of batteries and diesel generators (the other components are assumed to have
service life longer than project duration), and the residual values RVi of the assets at the
end of the project lifetime. Given the cumulative modelling of DG replacement charges as
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in (4.5e), there is no need to consider DG residual value.

minNPC =
∑
i

(ICi +O&Mi +RCi −RVi) (4.5a)

ICi = Ni · ci (4.5b)

O&Mi\{g} = Ni ·mi ·
Y∑

y=1

dH·y (4.5c)

O&Mg =

H∑
h=1

dh · (mg · Uh,g + f · FCh,g) (4.5d)

RCg =
cg

H life
g

·
H∑

h=1

dh · Uh,g (4.5e)

RCb = Nb · cb ·
H∑

h=1

dh · (kh,b − kh−1,b) (4.5f)

RVi\{g,b} = dH · ρh,i ·Ni · ci
Y life
i − Y

Y life
i

(4.5g)

RVb = dH ·Nb · cb ·
αH,b − αb

αb − αb
(4.5h)

4.6.2 Environmental impact

Emissions

Environmental objectives have been increasingly included in energy projects planning, due
to climate change concerns. To perform an accurate evaluation of the microgrid global im-
pact, emissions have been considered in the proposed methodology in terms of Life Cycle
Assessment (LCA), i.e., accounting for construction, installation, operation and disposal
of the assets. The minimization of total emission allows to evaluate solutions in line with
the increasing pressure of governments for high shares of renewables. The mathematical
formulation of CO2 emissions is reported in (4.6a), where CCO2i represents the emissions
for the installation and replacement of the asset i and OCO2i corresponds to the carbon
emissions due to the operation phase, which is non-null only for fuel-fired generators, as
detailed in (4.6e); ei is the specific emission for each installed component and eopg rep-
resents the specific emission per unit of fuel consumption. CCO2i of renewable assets is
detailed in (4.6b), while its formulation for the battery and the generator, (4.6c) and (4.6d)
respectively, also accounts for their replacement.

minCO2 =
∑
i

CCO2i +OCO2i (4.6a)

CCO2i\{g,b} = Ni · ei (4.6b)

CCO2b =

[
1 +

∑
h

(kh,b − kh−1,b)

]
Nb · eb (4.6c)
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CCO2g = Ng · eg +
∑
h

Uh,g

H life
g

· eg (4.6d)

OCO2g = FCh,g · eopg (4.6e)

Land use

The local environmental impact of the microgrid is taken into account by including in
the analysis the minimization of the space required for the installation of the different
assets [58]. The importance of this variable for decision makers is strictly related to the
specific conditions of the area where the system needs to be installed; for example, land
occupation may become a sensitive issue when the community is based in a protected area;
on the contrary, it may not be relevant for PV-base systems in presence of large rooftops.
The minimization of the land use variable (LU) is here considered and its model (4.7) is
proportional to the number of installed units and their land occupation loi.

minLU =
∑
i

Ni · loi (4.7)

4.6.3 Social impact

Jobs creation

Energy planning can promote local jobs, as a consequence of the assets installation and
operation, which are incorporated in the proposed multi-objective method by means of
a maximization problem [58, 59, 108]. The mathematical formulation of the job creation
variable (JC), detailed in (4.8a), is a function of the jobs generated throughout the value
chain of each asset (CJCi). Moreover, the contribution related to fuel consumption for
fuel-fired generators is accounted by means of a separate variable (OJCg). The parameter
ji represents the specific job creation per installation and operation of each asset, while jfg
is the per-unit job creation related to fuel consumption.

max JC =
∑
i

CJCi +OJCg (4.8a)

CJCi\{g} = Ni · ji (4.8b)

CJCg = Ng · jg +
∑
h

Udg
h · jg

H life
g

(4.8c)

OJCg =
∑
h

P dg
h,g · j

f
g (4.8d)

Public lighting coverage

Finally, public lighting is considered and included in the optimization by means of the PL
variable, as it is an important enabler of better living conditions, including but not limited
to improved security, recreational and educational activities. For this reason, street lights
are considered as priority loads and they are not subject to curtailments: once a street
light is installed, it must be supplied during the dark hours. The total need of street lights
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to cover the whole area and the related power profile Ltot
h are assessed. Equation (4.9)

maximizes the coverage of the service, expressed as the share (%) of the total requirement
which is actually fulfilled.

maxPL =
Lh

Ltot
h

· 100 (4.9)

4.7 MILP sizing algorithm

Besides the extension of the decision criteria, the MILP planning problem is the same as
that presented in the previous chapter. Hence, the IMY methodology is used: a multi-
year formulation is adopted and an iterative procedure allows to accurately describe the
degradation of BESS.

The only constraint of the problem subject to a slight modification with respect to the
formulation described in Section 3.3.1 is the power balance constraints (3.6), which now
separately accounts for the public lighting portion of the load Lh:

∑
b

(
P dch
h,b · ηb · βh,b −

P ch
h,b

ηb · βh,b

)
+ P ren

h +
∑
g

P dg
h,g +Du

h = Dh + Lh (4.10)

The rest of the formulation remains unaltered and includes constraints (3.7)-(3.11).
The full nomenclature is listed in Appendix A.

4.8 Case study

4.8.1 Description

The proposed methodology has been tested on the case study of the rural community of
Soroti, Uganda, presented in Chapter 3 and characterized by the load shown in Figure
3.3. The hybrid energy system in Figure 3.2 is considered, evaluating photovoltaic and
wind energy, diesel generators and electrical storage. The specific solar and wind power
production per unit of asset has been estimated using the Renewable.ninja platform [80,81].

4.8.2 Input parameters

According to the proposed multi-objective approach in line with the SDGs, the three
sustainability dimensions, economic, environmental and social, are taken into account.
The main economic parameters of the optimization are summarized in Table 3.1 and in
Section 3.4.1; the data related to the environmental impact (global CO2 emissions and
land use) are reported in Table 4.2; the information related to job creation is shown in
Table 4.3, and the need for public lighting has been estimated based on the on-field data
collection [79] (details are provided in Appendix B).

It is worth noticing that, in order to investigate the global environmental impact of the
proposed systems, the emissions have been evaluated by an LCA approach that allows a
more in-depth and accurate impact analysis with respect to an evaluation limited to direct

59



CHAPTER 4. HOLISTIC MULTI-OBJECTIVE OPTIMIZATION

emissions alone. The assessment of the local environmental impact of the electrification
project has been accounted for in terms of land use of the different components. As for
batteries, their space requirements are considered negligible, as racks can present a very
compact layout.

Table 4.2: Components LCA emissions and land use [62,109,110].

Emissions Land use

Photovoltaic panel 2472.07 kgCO2/kW 7.1 m2/kW

Wind turbine 935.57 kgCO2/kW 267.7 m2/kW

Diesel generator 192.17 kgCO2/kW 2.35 m2/unit

Fuel 3.15 kgCO2/L -

Battery 56.45 kgCO2/kWh -

Many studies have analysed the impact of different energy technologies on the job
market in industrialized countries [111, 112], but little has been done to investigate this
topic for rural communities in the Global South. A methodology has been developed in
order to estimate multiplicative factors that allow the data of industrialized countries to be
applied to different contexts [113]. Given the interest of this work in evaluating the local
impacts in terms of job creation, only construction and installation (C&I) and operation
and maintenance (O&M) are included and shown in Table 4.3, as the manufacturing of
components for rural electrification projects is very likely to be performed abroad, not
contributing to local development.

4.8.3 Test procedure

The multi-objective problem has been modelled in GAMS 24.0.2 and solved with CPLEX,
using A-AUGMECON2 method described in Section 4.5. The comparison with the stan-
dard AUGMECON2 algorithm is also proposed.

The simulations have been run on a 6-core 3.20GHz Intel Core i7 computer with 16GB
RAM. A tolerance of 0.5% has been set on thresholds e and gk = 6 for k ∈ {2, ..., p}; hence,
a grid of

∏p
k=2(gk + 1) = 2401 points is analysed. Each optimization is bound by a time

limit of 3 hours and the time frame under study is 10 years, described by means of one
representative day per month.

The use of a comprehensive multi-objective optimization is suitable for a first evaluation
of the planning options, as it provides a full picture of the problem and allows to evaluate
the trade-offs between different decision criteria. Hence, the adoption of representative
days is advisable because it reduces dramatically the computational burden without com-
promising significantly the results (see Tables 3.4 and 3.5 and Section 3.5.4). Furthermore,
for the purposes of evaluating the mutual differences between the different points of the
Pareto frontier, the results are perfectly valid since the same simplification is applied in
the study of all points. If needed, an hourly simulation can be performed as subsequent
step, only for the points of interest.
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Table 4.3: Components job creation per phase [114].

C&I O&M Fuel

[jobs/MW] [jobs/MW] [jobs/GWh]

Photovoltaic panel 13.46 7.34 -

Wind turbine 3.06 4.90 -

Diesel generator 2.08 1.96 2.94

4.9 Results

4.9.1 Validation of the online Pareto pruning

Table 4.4 confirms that the novel methodology described in Section 4.5 allows a considerable
reduction of the computational burden by skipping many redundant computations, while
keeping the same quality of information about the Pareto curve. In particular, the total
number of points in the curve is reduced by 75% with respect to the AUGMECON2 method,
and the total time employed by A-AUGMECON2 is 63% lower. Hence, the tractability of
the problem is highly improved.

Table 4.4: Computational performances with and without online Pareto pruning.

Points Computation time

AUGMECON2 362 262 h

A-AUGMECON2 89 96 h

In terms of Pareto frontier, Figure 4.3 highlights the quality of the results as the
two curves show negligible differences (caused by a non-null mipgap), even though A-
AUGMECON2 presents 75% fewer points. This means that the adoption of the proposed
approach leads to better computational performances, tractability of the results and effec-
tiveness of visualization, thus favouring a more efficient decision making process.

4.9.2 Discussion on numerical results

The algorithm deals with conflicting objectives and the search space is delimited by the
points identified in the payoff table, in which the best performance of each objective func-
tion is evaluated as per Section 4.5.1. Figure 4.4 shows the value of the different objective
functions in the payoff table points, highlighting the main trade-offs between these quan-
tities, while Table 4.5 presents the units installed for each of these points.

The most relevant takeaway is the significant similarity of the points at minimum NPC
(purple) and minimum emissions (green). The least-cost solution is characterized by 25%
more emissions at a 22% lower overall cost. This suggests that the economic objective
does not collide with the purpose of emissions reduction, but it automatically approaches
decent environmental targets, given the technology and cost improvements of the recent
years. In both cases, the public lighting service is not provided at all, as a reduced load
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(a) AUGMECON2

(b) A-AUGMECON2

Figure 4.3: Comparison of the Pareto curves.

allows to decrease the size of the system and consequently costs and emissions. The curve
at maximum public lighting coverage (yellow), besides satisfying completely the security
target, presents limited impact on the overall cost (NPC about 20% higher than in the least-
cost solution), which means that it may be considered as an affordable service, depending
on priorities and budget constraints, and thus it may be recommended for new microgrid
installations. However, these three solutions have a significant impact in terms of land use
(in the range 835÷1055m2) and a reduced employment generation (3.3÷3.8).

On the other hand, the minimization of land use (blue) manages to reduce the space
requirement down to 7m2 by heavily relying on diesel production, thus significantly in-
creasing both NPC and emissions, although more local jobs (5.5) are created due to local
maintenance and fuel procurement of the generators. Finally, the curve related to job
creation (red) refers to the maximum employment of local human capital, associated to a
surge in economic and environmental costs, because of a large oversizing and a complete
reliance on DG during operation.

These results highlight the similarities and differences between the extremes of the
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Figure 4.4: Payoff table points.

solutions to be investigated by local developers and governments, underlining the need for
properly developing multi-objective methodologies that assist policy and business decision
making.

Table 4.5 details the optimal design corresponding to the solutions of the payoff table,
whose objectives are shown in Figure 4.4. It is worth noticing that the solutions focusing
on the minimization of NPC and CO2 emissions and the maximization of public lighting
are comparable also in terms of optimal generation portfolio: a diesel generator is foreseen
in all the three cases and the use of PV systems in the minNPC and maxPL cases is about
20% and 10% lower than in the CO2 case respectively. In these three points, an increasing
PV capacity is associated to a more significant presence of storage to effectively support the
utilization of renewable energy and relegate DG to a more sporadic use. Moreover, the only
solution where no PV devices are installed corresponds to the minimization of land use,
and this result justifies the sharp increase in CO2 emissions with respect to the least-cost
option shown in Figure 4.4. Finally, the maximization of job creation pushes the solution
towards the installation of all the available units, including wind turbines (which result to
be unsuitable for any other solution analysed), while the operation relies entirely on diesel
units. This generates the isolated point visible in Figure 4.3b at the extremes of the Pareto
frontier (yellow point): the WT installation determines a much greater land occupation
with respect to the other solutions and the oversizing leads to high costs, emissions and
employment generation.

The information in Table 4.5 shall further guide policy makers and developers in fos-
tering renewable sources and support public lighting, in areas where a relatively large land
use is acceptable; yet, the Pareto frontier will be needed to identify the specific trade-off.

The renewable penetration of the solutions of the payoff table spans between 0% (minLU
and maxJC cases) till about 97% in the least CO2 emission case, reaching 84% in the least-
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Table 4.5: Sizing of payoff table points.

DG* PV WT BESS

[kW] [kW] [kW] [kWh]

min NPC 16 (1) 117 0 248

min CO2 16 (1) 148 0 472

min LU 48 (3) 0 0 79

max JC 80 (5) 200 1 446

max PL 16 (1) 133 0 327

*: in brackets the number of installed units

cost option. Interestingly, the LCA approach for emissions accounting leads to a generating
portfolio of the point at minimum emissions that is not entirely based on renewable sources:
the diesel generator is occasionally employed at the end of the project, when the load is
higher and the performances of PV panels are poorer. This is because the installation of an
additional quantity of panels sufficient to cover the increasing load for the entire duration
of the project, net of the degradation phenomena, would cause a greater quantity of life-
cycle emissions than those associated with the installation and occasional use of a diesel
generator, providing about 3% of the total energy. This result highlights the importance of
an LCA impact assessment (from cradle to grave), because limiting the analysis to direct
emissions could lead to distorted and incorrect considerations, driving sub-optimal business
and policy outcomes.

Furthermore, Figure 4.5 compares the different use of resources in the configurations
of the payoff table, in order to highlight the energy shares and the impact of multi-year
characteristics, namely demand growth and asset degradation. The point at maximum jobs
is not included in the analysis, as it corresponds to the installation of all the available units
and the employment of the technologies that contribute the most to jobs creation in O&M
phase, namely fuel-fired generators; hence, the full demand (including public lighting) is
easily fulfilled by DG units. On the other side, the yearly cap on the Energy Not Served
(ENS) is always hit in all the other points (see Figure 4.5), as it enables a reduction of
costs, emissions and land use.

In the least-cost solution in Figure 4.5a, the demand of households and productive
activities is entirely met by PV panels up to year 4. Then, as the load increases and the
equipment degrades, the need to dispatch DG units gradually increases, up to about 32%
of the total demand in year 10. The trends related to the solution maximizing the public
lighting coverage (Figure 4.5d) show very similar behaviour to the least-cost solution(Figure
4.5a), confirming that public lighting needs can be met without significantly increasing the
generation costs. In the minimimum CO2 emissions case (Figure 4.5b), DG units start to
be used in year 7, with a maximum contribution in the last year accounting for about 13%.
On the contrary, when land use is minimized (Figure 4.5c), the demand is fully met by the
fuel-fired generators or curtailed; no renewable sources are employed.
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(a) Minimum cost (b) Minimum emissions

(c) Minimum land use (d) Maximum public lighting coverage

Figure 4.5: Yearly dispatching of resources.

4.9.3 Narrowing down possible solutions

Despite the filter, which removes redundancies and improves the readability of the results,
some considerations can be made to further reduce the portfolio of available options and
ease the decision making process, starting from the analysis of Figures 4.3b and 4.4 and
from the considerations in Section 4.9.2. In particular, the points of the grid with high
thresholds on jobs creation (> 7) can be excluded from the analysis, as they correspond
to oversized microgrids. Moreover, given the limited influence of public lighting on the
total cost of the system, it is sensible to guarantee a high share of the service, in light of
the extremely positive impact it has on the well-being of the community. Therefore, only
points with PL > 90% are taken into consideration. This allows narrowing the options
down to the 9 points shown in Figure 4.6. Such reduced selection of points supports
the decision maker in a more straightforward visualization of the trade-off between the
objective functions, while preserving a rich portfolio of solutions.

Figure 4.6a highlights that higher emissions are associated with higher costs and more
people employed. The top-right area of the graph corresponds to the points with the lowest
renewable fraction: the higher the reliance on diesel generators, the greater the emissions
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(a) Jobs variation

(b) Land use variation

Figure 4.6: Reduced Pareto curve.

and the workforce needed to manage maintenance and fuel procurement. Moreover, these
points are also characterized by very limited land use, as shown in Figure 4.6b, as diesel
generators cover very limited space, unlike PV panels. It is worth noticing that comparable
levels of land use, which, as a matter of fact, means similar PV capacity, correspond to
wide ranges of emissions and costs (see Figure 4.6b), as the effectiveness in exploiting solar
energy is strongly related to the capacity of the storage system. This, in turn, determines
the need for diesel generators, whose operation significantly affects NPC and emissions.

A closer look at the selected points is provided in Figure 4.7, where the technical design
and costs breakdown of the points in Figure 4.6 are shown in relation to LCA emissions.
In particular, Figure 4.7a further underlines the impact of storage on the effective exploita-
tion of renewable resources: BESS capacity is needed along with the renewable assets (PV
panels) to further decrease CO2 emissions. If a limited storage capacity is available, RES
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(a) System design

(b) Costs breakdown

Figure 4.7: Technical and economical performances of the selected Pareto points.

generators need to be oversized and/or be supported by higher DG power. On the other
hand, the higher the reliance on fuel-fired generators, the lower the CAPEX, thus the
implementing entity can defer costs, reducing the initial investment at the cost of higher
expenses along the project lifetime and larger CO2 emissions (see Figure 4.7b). This ele-
ment could have a decisive weight during the decision process, depending on the availability
of funds, local regulation and company goals.

4.9.4 Decision making process

The peculiarity of the Pareto curve obtained from multi-objective optimization is that it
preserves the complexity of the problem under analysis and allows the decision maker to
have a full picture of the possible solutions and of their outcomes in different scopes.

Several works adopt procedures that lead to the selection of one single point of the
curve by means of mathematical methods [102,103]. In the author’s opinion, the selection
of the optimal microgrid for the purpose of rural electrification has so many impacts on
the community, that it is preferable for the decision maker to be able to evaluate among a
reasonable number of options and to select the most appropriate according to site-specific
characteristics.

Among the various qualitative criteria that can facilitate the final evaluation based
on the specificities of the community are: the willingness to pay for energy; the social
acceptability of the different technologies; the compatibility with future expansion of the
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plant; the resilience of the system, related to the local availability of components and spare
parts and to the ease of maintenance and training of specialized personnel [61,62,64].

4.10 Conclusion

This chapter proposes a multi-objective planning method for off-grid microgrids able to
optimize socio-economic, security and environmental concerns in a long-term perspective,
accounting for detailed multi-year simulations of the system operation and assets degrada-
tion. In order to efficiently solve the corresponding non-linear multi-objective problem, the
novel A-AUGMECON2 algorithm has been developed and its results proved to improve
the convergence characteristics of the standard AUGMECON2, thanks to the novel Pareto
pruning method that avoids repeating redundant optimizations. Each A-AUGMECON2
optimization is integrated with an iterative approach (presented in Chapter 3) that allows
to efficiently deal with the non-linear problem by solving a number of MILP subproblems,
where parameters are updated till convergence.

The results, obtained on a case study of a typical microgrid in Uganda, highlight that
the reduction of life cycle emissions is compatible with cost-effective designs; hence, eco-
nomic and environmental targets can be jointly met. Moreover, meeting the security goal,
expressed by the public lighting penetration, increases costs by less than 20%, with consid-
erable social benefits, thus recommending to institutional decision makers to include this
service when planning rural electrification projects. On the other hand, maximizing local
jobs and minimizing land use bring about a surge in costs, implying that when these needs
are relevant, policy and business decision makers shall carefully select the optimal design
and find the best compromise on the Pareto frontier, according to the specific needs of the
community. These results, efficiently obtained by the proposed methodology, highlight the
need for multi-objective multi-year optimization tools for optimizing rural microgrids in
the Global South.

Moreover, the proposed methodology based on the novel A-AUGMECON2 has con-
firmed to reach the same optimal Pareto frontier than standard approaches (AUGME-
CON2) but with less than half of the computational requirements of the latter. This
proves the approach discussed in this chapter to be an adequate tool to foster the practical
use of multi-objective multi-year methodologies by developers and policy makers, given
their constant need for fast optimization tools with far-reaching long-term perspective.

Furthermore, the proposed methodology can be applied to a large variety of energy
systems, thus benefiting both policy/business decision makers and the research community,
who may infer more accurate results and better tailor their projects, thus enabling cost
savings, environmental benefits and improved social well-being.
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Chapter 5

Dealing with long-term
uncertainty

5.1 Introduction

Rural electrification projects are characterized by a significant long-term uncertainty, as
their outcome is influenced by socio-economic and environmental factors which are hardly
predictable during the initial design process. This chapter introduces the analysis of this
further element in the microgrid planning problem described in Chapters 3 and 4. In order
to comply with this requirement, a stochastic approach is adopted to account for different
demand growth scenarios and the possibility of deferring installation costs according to the
demand realization is introduced. These new features of the model contribute to a further
increase of the complexity of the algorithm and simplifications are needed to preserve its
tractability.

The chapter is structured as follows: Section 5.2 describes the novelties introduced in
the following sections; Section 5.3 recalls the two main approaches to deal with uncer-
tainty in optimization problems, namely robust and stochastic methods, and highlights
their characteristics, identifying stochastic techniques as the most suitable for the problem
under study; Section 5.4 describes how the new features for evaluating a long-term un-
certain horizon are included in the model presented in the previous chapters; Section 5.5
discusses the manifold considerations that may be done to reduce the complexity of the
model, ranging from the simplification of the decision process to the identification of the
most efficient mathematical representation of the long-term stochasticity of the microgrid
planning problem; Section 5.6 presents the input data adopted in the simulations; Section
5.7 shows the obtained results, highlighting the advantages of a multi-step investment ap-
proach over traditional single-step investments and discussing the Pareto frontier; finally,
Section 5.8 draws some conclusions.
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5.2 Contributions

A relevant contributions of this chapter stands in the analysis of the most appropriate
method and practical implementation for the evaluation of long-term uncertainty for mi-
crogrid planning. Moreover, it includes for the first time a stochastic multi-step investment
feature in a multi-objective problem, while keeping a good tractability of the algorithm.
Hence, this chapter is the final step in building a comprehensive, integrated and accurate
model of the planning problem of isolated microgrids.

5.3 Selecting an uncertainty modelling technique

5.3.1 Common frameworks

Two well-established approaches are available in literature to cope with the unpredictability
of the inputs: robust and stochastic optimization, both adopted also within the framework
of multi-objective optimization of energy systems [97,115]. The former adopts a reformula-
tion of the original problem to identify the optimal solution, given the worst possible reali-
zation of the inputs, of which only the width of the uncertainty interval needs to be known;
the conservativeness of the solutions may be regulated by means of a user-defined parame-
ter [76,97]. The latter includes the formulation of multiple scenarios, each associated with
a probability of occurrence; the method returns the optimal value of the expected objective
function, given the input scenarios and their estimated occurrence probability [115, 116].
Depending on the characteristics of the problem, on the type of uncertainty to be analy-
sed and on the computational requirements, the developer may tend to one or the other
approach.

In particular, robust optimization is suited to conditions of data scarcity, interest of
the user in a cautious and conservative approach, need of limited computational burden.
However, this method tends to oversize components for the sake of prudence against any
possible realization of the inputs, negatively impacting on the objective function to a degree
which is not always acceptable [76]; this is particularly true when dealing with investments
in the Global South. Moreover, this issue is exacerbated in case of long-term uncertainty,
usually characterized by uncertainty interval limits expanding over time (see Figure 2.3),
in contrast to bands usually describing short-term fluctuations: the wider the uncertainty
on the final realization of the time-series, the greater the impact on the objective function
derived from tailoring the solution to the worst case.

Differently from robust methods, stochastic optimization requires a minimum know-
ledge of the probability distribution within the uncertainty interval and increases the com-
plexity of the problem because of the explicit analysis of the different scenarios. Nonethe-
less, the formulation allows to take into account the various possible realizations of the
inputs and attribute them a weight when selecting the optimal solution and computing
the objective function; this usually leads to more efficient options and limits the risk of
oversizing [76].
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5.3.2 Suitability for rural microgrid planning

As mentioned in Section 2.2, the optimal planning of rural electrification projects is mainly
affected by long-term trends, subject to high degree of uncertainty, rather than short-
term fluctuations, i.e., hourly demand and RES variability [40], which can be efficiently
handled by means of reserve constraints (see equation (3.11)). It is instead extremely
difficult to forecast the evolution of the demand over the years and to cope with it within
a deterministic optimization; hence, an uncertainty modelling technique shall be used.

Given that the trade-off between conservativeness and economic efficiency for the pro-
blem under analysis is usually in favour of an affordable service, robust optimization is
not suitable to cope with long-term time series affected by growing uncertainty, as demand
projections may foresee consistent growth rates but it is not realistic to plan the system
according to the most extreme scenario. Hence, stochastic approaches are preferable in
order to consider different possible long-term scenarios, assessing their probability and
identifying the optimal solution accordingly. As mentioned above, this method comes with
additional computational complexity, but this is not particularly relevant when analysing
rural microgrids. Given the reduced data availability, it is not reasonable to formulate a
very high number of scenarios and attribute them a probability of occurrence; it is usually
sufficient to identify the most probable trends according to socio-economic and/or historic
data. Different assumptions on appliances penetration and development of community
services are used in [68] and [69] to describe three and four scenarios respectively. A com-
bination of bottom-up and macro-economic indicators is adopted in [40] to derive nine
demand scenarios. Three linear growth rates and the related probabilities are calibrated
in [47] according to a database on 23 Kenyan microgrids. Long-term projections are formu-
lated in [25] using six different arbitrary trends, while [41] considers all the combinations of
six yearly growth factors, reduced to 15 final scenarios. In conclusion, the characteristics
of the problem allow to adopt stochastic optimization defining a limited number of long-
term demand projections, avoiding a prohibitive impact on the tractability of the model.
Moreover, this method easily accommodates the presence of capacity expansion windows,
referred to the pertaining scenario.

5.4 Methodology

The adoption of a stochastic framework for a multi-step investment planning problem
implies little modifications on the algorithms presented in the previous chapters. Two
additional sets are needed, namely the set of demand scenarios s and the set of capacity
expansion windows c, expressed as the hours of the time series when additional investments
are allowed.

As illustrative example, equation (5.1) shows the modifications undergone by the eco-
nomic objective function to accommodate the features added to the algorithm. The only
element of the total NPC which is not affected by the stochasticity of the problem is
the initial investment ICi, taking place before the system starts operating and common
to every scenario. All the other cost components are now scenario-dependent and their
contribution to the NPC is weighted on the occurrence probability of the scenario prs.
Moreover, the cost of installing additional assets N ce

s,c,i during the capacity expansion win-
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dow c is modelled by CEs,i. The costs of operation and maintenance O&Ms,i, the costs of
replacement RCs,i and the residual values RVs,i are updated to account for the deferred
investments, with U ce

s,c,h,g integer variable on active DG units installed as capacity expan-
sions, kces,c,h,b counter on replacement of capacity expansion BESS, Y ce

c year of capacity
expansion c, αce

s,c,h,b relative residual capacity of capacity expansion BESS. The rest of the
nomenclature is listed in Appendix A and it refers to the models presented in Chapters 3
and 4; hence, the reference to the different scenarios by means of the index s is missing.

minNPC =
∑
i

ICi +
∑
s,i

prs · (CEs,i +O&Ms,i +RCs,i −RVs,i) (5.1a)

ICi = Ni · ci (5.1b)

CEs,i = ci ·
∑
c

dc ·N ce
s,c,i (5.1c)

O&Ms,i\{g} = mi ·
Y∑

y=1

dH·y · (Ni +
∑

c≥H·y

N ce
s,c,i) (5.1d)

O&Ms,g =

H∑
h=1

dh ·

mg · (Us,h,g +
∑
c≥h

U ce
s,c,h,g) + f · FCs,h,g

 (5.1e)

RCs,g =
cg

H life
g

·
H∑

h=1

dh · (Us,h,g +
∑
c≥h

U ce
s,c,h,g) (5.1f)

RCs,b = cb ·
H∑

h=1

dh ·

Nb · (ks,h,b − ks,h−1,b) +
∑
c≥h

N ce
s,c,b · (kces,c,h,b − kces,c,h−1,b)

 (5.1g)

RVs,i\{g,b} = dH · ρh,i · ci ·

(
Ni ·

Y life
i − Y

Y life
i

+
∑
c

N ce
s,c,i ·

Y life
i + Y ce

c − Y

Y life
i

)
(5.1h)

RVs,b = dH · cb ·

(
Nb ·

αs,H,b − αb

αb − αb
+
∑
c

N ce
s,c,i ·

αce
s,c,H,b

− αb

αb − αb

)
(5.1i)

Similarly, the rest of the objective functions (4.6)-(4.9) and the constraints (3.7)-
(3.11),(4.10) are reformulated to account for the multi-step investment approach. The
Iterative Multi-Year (IMY) procedure to evaluate BESS variable efficiency and capacity
reduction remains unaltered.

5.5 Reducing the computational complexity

The multi-step stochastic version of the model presented in this chapter brings about
additional complexity; in particular, the increase in number of variables and constraints is
basically proportional to the number of scenarios and the computational burden usually
increases more than linearly with the size of the problem. Moreover, the presence of
capacity expansion windows contributes to a further increase of number of variables and
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constraints. The inclusion of the complete model within a multi-objective framework would
likely make the routine very difficult to solve or even intractable. Hence, simplifying the
problem while keeping the overall thoroughness and the pivotal features is essential.

5.5.1 Practical considerations

Some suitable simplifications may be inferred by discussing the scope of application of the
problem and building on the results of Chapters 3 and 4 of the numerical application of
the algorithms on the Soroti case study.

As discussed in Section 4.8.3, a comprehensive multi-objective optimization aims at
providing the decision maker with information about the relationships between the dif-
ferent indicators and the related impact on the generating portfolio and on the operating
strategy. Given the purpose of the algorithm, the use of representative days is suitable for
an adequate description of the problem and is very effective to reduce the size of the MILP
core, as already done in Chapter 4.

The description of ε-constraint methods to solve multi-objective optimizations provided
in Section 4.4.1 highlighted that the number of grid points to be analysed grows exponen-
tially with the number of objective functions. The novel A-AUGMECON2 presented in
Section 4.5 dramatically improves the tractability of complex multi-objective problems by
skipping redundant simulations, but the reduction of the size of the grid is certainly a fun-
damental aspect in simplifying the analysis. Given the discussion on the numerical results
of A-AUGMECON2 obtained on the test case (see Section 4.9), two objective functions
may be removed to diminish the points to be examined:

(i) Public lighting. This is a pivotal service to foster the improvement of the well-being of
a community and it has a moderate impact on the total economic and environmental
costs. Hence, guaranteeing a good level of the service is an advisable and considerate
choice. For this reason, the objective function may be turned into a constraint
imposing a fixed minimum service coverage.

(ii) Job creation. The maximization of jobs creation forces the installation of all the
available units. This allows to limit the search space identifying one of the extremes of
the Pareto frontier. In practice, the final working point is very likely to be within the
search space defined by the other objective functions (total cost, life-cycle emissions
and land use), avoiding an oversizing of the system. Therefore, the objective function
can be removed, computing the jobs associated to each Pareto point as parameter to
be evaluated in the decision process, but not adding a dimension to the size of the
grid.

Moreover, from the output generation portfolios discussed in Chapters 3 and 4 it
emerges that the wind resource in the studied area is not sufficient to justify a profitable
investment in WTs; PV panels result to be more efficient also from the environmental per-
spective. WTs are removed from the possible generation assets, simplifying the microgrid
architecture and reducing the number of parameters and variables. Hence, an initial assess-
ment of the available resources through preliminary analyses is desirable because it allows
to reduce the possible configurations of the system and fasten the optimization process.
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Finally, choosing an adequate number of scenarios and capacity expansion windows
helps to keep simulation times reasonable. Section 5.3.2 debated the suitability of a limited
number of long-term demand projections for the analysis of rural electrification projects,
thus avoiding a prohibitive impact on the tractability of the model. For what concerns the
number of investment steps, several works suppose yearly capacity expansions [36, 42, 71].
However, it is not reasonable to imagine yearly installations in rural microgrids, where the
remoteness of the area is often the reason why such electrification strategy is chosen. A
modelling strategy resembling a possible practical approach consists in periodically assess-
ing the evolution of the system and the potential need of additional assets. This option is
adopted in [47], identifying one possible capacity expansion window at the fifth year of a 10
year project. Similarly, [69] allows four investments steps (including the initial installation)
in 20 years. Therefore, few investment steps are adequate for the scope of application of
the algorithm and have limited influence on the computational burden.

5.5.2 Solving a stochastic problem

The traditional solution of a stochastic optimization is a large scale monolithic MILP eva-
luating all the N realizations at once and identifying the optimal solution. When this
option is too burdensome, decomposition techniques may be adopted to speed up com-
putations. In particular, Aggregated-Rule-based Stochastic Optimization (ARSO) is a
popular method that reduces the formulation to N deterministic subproblems and selects
the final configuration according to an aggregation rule [117–119]. Figure 5.1 illustrates
the framework of the two approaches.

Figure 5.1: Approaches to stochastic sizing [119].
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Both methods are tested on the stochastic reformulation of the algorithm presented in
Chapter 3, specifically on the Iterative Multi-Year (IMY) model using representative days,
to evaluate their performances and verify whether an ARSO appoach may contribute to
reducing the complexity of the problem under analysis. The ARSO procedure using a
cost-based aggregating rule is composed of the following steps:

(i) Deterministic optimization of the N scenarios.

(ii) For each solution of step (i), the sizing variables are fixed and the optimal dispatching
for every possible realization of the input is computed (N2 simulations in total).

(iii) The expected NPC is calculated according to the probability of occurrence of the
scenarios.

(iv) Among the N solutions of step (i), the one associated to the lowest expected NPC is
selected.

The two approaches are compared for an increasing number of scenarios, namely 3, 5 and
10, to assess the benefits and drawbacks of the methodologies in different configurations.
The results are summarized in Table 5.1.

Table 5.1: Comparing Aggregated-Rule-based Stochastic Optimization (ARSO) and
stochastic optimization (SO) performances.

ARSO SO ARSO SO ARSO SO

3 scenarios 5 scenarios 10 scenarios

Time [s] 144 146 406 550 4477 2625

NPC [kAC] 341 339 341 339 364 360

DG [kW] 32 32 32 32 32 32

Sizing PV [kW] 86 86 86 86 86 94

BESS [kWh] 174 172 174 175 175 184

These simulations confirm the quality of results provided by ARSO: very limited dif-
ferences with the corresponding stochastic version in terms of costs and assets installed
are present. However, the main outcome is that the there is no evident gain of practical
interest in adopting ARSO techniques on the selected test cases; on the contrary, stochastic
optimization may consistently outperform ARSO, as in the 10 scenarios case. Moreover,
traditional stochastic approaches provide better objective function values. For these rea-
sons, the rigorous and consolidated stochastic method is adopted in the following sections.
It is worth noticing that considerations on the computational time are case-dependent,
as other works found significant benefit in adopting ARSO techniques over traditional
stochastic optimization [119]; the gain may diminish as the number of scenarios decreases
(limited impact on number of variables and constraints) and the complexity of the core
MILP problem increases.
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5.6 Case study

5.6.1 Description

The proposed methodology has been tested on the case study of the rural community of
Soroti, Uganda, presented in Chapter 3. A hybrid energy system evaluating photovoltaic,
diesel generators and electrical storage is considered. The specific solar power production
per unit of asset has been estimated using the Renewable.ninja platform [80].

5.6.2 Input parameters

The main parameters of the optimization are summarized in Sections 3.4 and 4.8.
According to the considerations in Section 5.5, an accurate analysis of a rural elec-

trification project can include a limited number of scenarios and few capacity expansion
windows, for a comprehensive study that preserves also good tractability.

In particular, the use of 5 scenarios results to be a reasonable choice based on data
availability and computational time (see Table 5.1). The long-term demand projections
are formulated based on the literature review of growth trends in similar contexts [25,47,72].
The central scenario corresponds to the load profile adopted in Chapters 3 and 4 and shown
in Figure 3.3, reproducing the social dynamics observed in [72].

Table 5.2: Load scenarios growth factor and probability of occurrence.

Scenario 1 2 3 4 5

Yearly growth factor 0% 10% 20% 30% 40%

Probability 5% 20% 50% 20% 5%

Table 5.2 presents the growth factors and the probability of occurrence of the scenarios
and Figure 5.2 shows the trend of the profiles over time. The extreme scenarios (no
growth and 40% yearly increase) capture the tails of the probability distribution and are
associated to a low probability (5%). The central scenario responds to the social trends
observed in [72] and is considered to be the most probable realization (50% probability) of
the demand. Scenarios 2 and 4 are characterized by intermediate values.

In order to allow an update of the assets installed, two capacity expansion windows are
identified on a 10-year project, namely at the end of year 3 and 6.

5.6.3 Test procedure

The problem has been modelled in GAMS 24.0.2 and solved with CPLEX, using the A-
AUGMECON2 approach described in Section 4.5 as multi-objective method and the itera-
tive procedure presented in Section 3.3 to efficiently describe the multi-year characteristics
of the system.

The simulations have been run on a 6-core 3.20GHz Intel Core i7 computer with 16GB
RAM. The problem has 3 objective functions and in its ε-constraint formulation the NPC
is kept as objective function, while the life-cycle emissions and the total land use are
reformulated as constraints and their range of variation is split into gk = 9 intervals for
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Figure 5.2: Long-term demand scenarios.

k ∈ {2, ..., p}, with p number of objective functions; hence, a grid of
∏p

k=2(gk + 1) = 100
points is analysed. The time frame under study is 10 years, described by means of one
representative day per month. A minimum coverage of 90% of the public lighting needs is
desired.

5.7 Results

5.7.1 Impact of capacity expansions

Accounting for different realizations of the inputs leads to more cautious solutions, that
identify the best microgrid generation and storage portfolio allowing to operate the system
in any evaluated condition. If the possibility of integrating such portfolio over the years is
taken into consideration, the first installation is a starting point to satisfy the initial needs
of the community and the following investments are tailored on the actual realization of
the demand in time, reducing risks and improving the efficiency of the objective functions.
On the contrary, in the single-step investment case, the installation at the outset of the
project is the result of a long-term perspective accounting for all the scenarios in that
initial evaluation.

Table 5.3 shows the payoff tables delimiting the search space of the routine run in
single-step and the multi-step investment cases and highlights that the presence of capacity
expansions improves the quality of the results, reducing the total cost by a significant
amount, ranging from 10% in the least-cost solution up to 23% in case of minimum land
use.

Given the reduced upfront cost associated to the installation of DG units and the
presence of a discount factor that leads the optimizer to favour deferred expenses, the
single-step version of the algorithm is characterized by higher reliance on the use of fuel.
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Table 5.3: Payoff tables obtained in case of single-step and multi-step investment.

single-step multi-step

NPC CO2 LU NPC CO2 LU

[kAC] [kgCO2] [m2] [kAC] [kgCO2] [m2]

min NPC 382 640 932 344 497 1112

min CO2 444 554 1189 365 494 1143

min LU 617 2006 7 478 1987 5

Moreover, satisfying the total demand with the initial installation implies that more units
are needed, as their degradation will reduce their capability of powering the load in the
last years of operation, and that the residual value of the assets at the end of the project
will be lower if compared to the multi-step case.

In light of these observations, the multi-step version of the model is adopted for the
full evaluation of the system in a long-term perspective and its results are analysed in the
following subsections.

5.7.2 Computational efficiency

The measures discussed in Section 5.5 allowed to significantly reduce the size of the multi-
step stochastic problem. In particular, the most effective action was the removal of two
decision criteria from the set of objective functions, namely jobs creation and public lighting
coverage. Thus, while increasing the density of gk points analysed for the single objective
functions, the total size of the grid (100 points) is drastically reduced compared to Chapter
4 (2401 points). The payoff table and the full Pareto frontier, composed by 14 non-
redundant points, are computed in about 52 hours. The number of available solutions
enables a good readability of the results and the possibility to make an informed decision
without further reducing the portfolio of available options.

5.7.3 Pareto frontier

The whole range of solutions is shown in Figure 5.3, where different views of the frontier
are displayed. As in the Pareto points of Chapter 4, the main trend emerging from Figure
5.3 is the increase of emissions at reduced land occupations, associated to a prevalent
reliance of DG units and a high total cost (see Figure 5.3a). On the contrary, the points
associated with a consistent renewable fraction and low LCA emissions (< 1000kgCO2)
are also cost-effective options (NPC < 365kAC). This confirms the finding of Chapter 4,
which supported a substantial alignment of cost and emission reduction objectives.

However, as shown in Figure 5.3b, low-emissions solutions entail a high initial invest-
ment, which is not always suitable for the implementing entity, depending on funds avai-
lability. This is because renewable and storage assets are characterized by a considerable
upfront cost and almost null operation expenses. On the contrary, DG units entail a li-
mited initial investment but O&M costs represent a substantial share of the total; hence,
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(a) NPC

(b) CAPEX

(c) Jobs

Figure 5.3: Views of the Pareto curve.
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costs may be deferred and distributed along the project lifetime, which may be a significant
advantage for the developer.

A further drawback of mostly RES-based options is that renewable assets have poor
maintenance requirements, differently from fuel-fired generators that foster more employ-
ment opportunities because of more frequent maintenance and fuel procurement operations.
Indeed, Figure 5.3c shows that the number of full-time jobs fostered by the microgrid
project may vary from 3.5 in the least-cost solution up to 6.2 in the case of minimum land
use, entirely based on the energy produced by DG units.

5.7.4 Sizing variables

Focusing on the three payoff table points for a more in depth analysis of the solutions
delimiting the search space, Figure 5.4 shows the units installed before the coming in
operation of the plant (Y0) and during the first (CE1) and second (CE2) capacity expansion
window. The installation at Y0 is common to every scenario, while the different evolutions
of the demand may lead to distinct sizing options in CE1 and CE2. The bars represent the
ranges given by the different scenarios, the marker points out the solution of the central
scenario, characterized by 50% probability of occurrence.

Only one DG unit is installed in Y0 in the minNPC and minCO2 case, then the system
entirely relies on renewable energy and batteries for further installations (see Figure 5.4a).
In case land use is a priority, two fuel-fired generators are necessary in Y0 to power the total
load, to be integrated by an additional DG unit in CE1 in the highest growth scenarios.

As in the numerical results of Chapter 4, the minLU case is characterized by a null
renewable fraction and PV panels are never installed. On the contrary, Figure 5.4b high-
lights that about 100kW of PV are installed in Y0 in the least-cost and minimum emission
options. Then, further panels are needed as the demand grows over time. Hence, no in-
tegration of the solar assets is foreseen in the first scenario, associated with a flat load
behaviour.

The need for BESS in the payoff points is shown in Figure 5.4c. The minimization
of emissions requires almost 400kWh of BESS in Y0, in order to optimally exploit the
renewable energy provided by PV panels. As the degradation of the assets kicks in and
the load increases, additional batteries may be needed in the following years. Only 40kWh
are installed in Y0 in case of minLU, to support the operation of the DG units. In this
solution, the load increase does not determine the installation of further generation assets,
except in the case of the two most extreme growth factors, but there is a growing need for
storage systems to improve the load shifting capability of the system and fully satisfy the
demand with the generators installed in Y0.

5.8 Conclusion

Long-term uncertainty may play a pivotal role in determining the outcome of a project
in the long run. For this reason, this chapter treats its evaluation at planning level. In
particular, the model presented in the previous chapters has been enriched with two inter-
related features: stochasticity to evaluate different demand growth scenarios and capacity
expansion windows to defer investments according to the actual realization of the inputs
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(a) Diesel generators

(b) PV panels

(c) Batteries

Figure 5.4: Assets installed in payoff points.
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over time.
Five load scenarios and two additional investment steps allow to improve the repre-

sentation of the system, abandoning the assumption of perfect knowledge which typically
characterizes the deterministic approaches, and adopting a well-established uncertainty
modelling technique, guaranteeing a feasible system operation in any realization of the
inputs.

The inclusion of these features increases the size of the problem and preserving its
tractability is essential to provide an efficient tool to developers and researchers. Hence,
several measures are adopted to reduce the computational complexity of the model: the
microgrid architecture, i.e., the available assets, is simplified; representative days are used;
the points under analysis are reduced by a condensed decision making process.

The numerical results show that a stochastic approach leads to more prudent solutions,
without leading to significant oversizings. This characteristic is mitigated by the presence
of capacity expansion windows. Indeed, if two additional investment steps are considered,
the NPC of the payoff points is reduced by 10÷23%. The multi-step investment approach
allows to defer expenses and, consequently, to rely more intensely on renewable and storage
components, characterized by a high upfront cost and thus less efficient with respect to
fuel-fired generators in a single-step investment configuration.

Moreover, the results confirm the main trends identified in the previous chapter, i.e. the
growth of the LCA emissions and total costs at decreasing land occupation and increasing
jobs, the substantial alignment of economic and emission objectives.

This final configuration of the model represents a novel integrated approach to evaluate
rural microgrid planning problems with a far-reaching perspective and a comprehensive
analysis of sustainable options to foster the development of the target community.
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Chapter 6

Key takeaways and impact

6.1 Introduction

Two main objectives were declared for this work in Section 2.3, namely the formulation of
a holistic MILP microgrid planning problem and the development of novel algorithms to
preserve its tractability. Every chapter of Part II contributes to both objectives, improving
the description of the problem and providing resolution approaches that drastically reduce
the computational burden with respect to the state of the art.

The main features of the model are here discussed, pointing out the key findings. In
particular, Section 6.2 compares the results of the procedure discussed in Chapter 3 with a
traditional sizing method, highlighting the effectiveness of optimization tools over standard
computations. Section 6.3 describes the measures adopted in the chapters of Part II to
reduce the complexity of the problem under study and facilitate the analysis of the results.
Section 6.4 summarises the main findings of Chapter 4, where a holistic multi-objective
optimization is presented, and underlines the importance of a wide perspective in decision
making processes for rural electrification. Section 6.5 compares the solutions of different
configurations of the model to prove the impact of stochastic approaches and multi-step
sizings on the objective functions. Section 6.6 describes the versatility of the proposed
model, whose features can be easily adjusted to the specific application and to the needs
and interests of the implementing entity. Finally, Section 6.7 resumes the key takeaways
of this chapter.

6.2 Impact of using optimization tools

Advanced computer tools for microgrid planning have become a standard approach in
research, but their use for practical applications is still limited: NGOs, firms and local
institutions often adopt traditional sizing criteria which cannot account for the techni-
cal constraints of the different components and correctly plan the operational strategy.
Moreover, traditional methods cannot efficiently size hybrid systems, accounting for the
contribution of different resources and the impact on the needed BESS size.

In order to highlight the importance of adopting optimization tools for real projects,

85



CHAPTER 6. KEY TAKEAWAYS AND IMPACT

a traditional sizing procedure [120] is applied in this section on the Soroti case study
and compared with the results of Chapter 3, where a least-cost algorithm accounting
for the multi-year characteristics of the system (load growth and assets degradation) is
presented. As mentioned above, the traditional method does not allow to effectively plan
hybrid microgrids; hence, as a high renewable fraction is a common requirement in recent
projects, a solar-battery system is designed.

The size of the solar PV plant Ppv is given in (6.1) by the ratio between the monthly
cumulative demand Dmonth and the minimum monthly solar energy produced per kW of
PV. It is worth noticing that Dmonth refers to the last year of the project, to account for
load growth and avoid energy shortages.

Ppv =
Dmonth

min {Epv
month}

= 172.42 kW (6.1)

The needed BESS capacity Cb is computed in (6.2) and depends on the days of auton-
omy Aut required in case of cloudy days. The Depth of Discharge of the battery needs to
be taken into account to correctly size the storage bank. In (6.2) a two days autonomy is
supposed. Analogously to (6.1), Dday is the maximum daily cumulative demand in Soroti,
i.e., the load at the end of the project.

Cb =
Aut ·Dday

DOD
= 1471.22 kWh (6.2)

This configuration of the system is compared in Table 6.1 to the solution of the Iterative
Multi-Year (IMY) procedure obtained in Chapter 3. The traditional sizing is characterized
by a complete reliance of renewable energy, which comes with almost double PV power
and a 7 times higher BESS capacity. The initial economic effort is quadrupled. Even
without explicitly accounting for asset degradation, the traditional sizing method leads
to a significant oversizing of the generation and storage portfolio. The installation of a
back-up diesel generator would allow to reduce the autonomy required to BESS and to
decrease the PV power installed, but no clear indications are usually provided to correctly
coordinate the usage of different resources, without moving excessively towards a strongly
fuel-based solution.

Table 6.1: Sizing initial investment (IC) using traditional approach and IMY procedure.

PV DG BESS IC

[kW] [kW] [kWh] [kAC]

Traditional sizing 172 / 1471 830

IMY 91 16 215 235

The numerical results in Table 6.1 confirm the importance of adopting optimization
tools for an accurate planning of resources. The algorithm evaluates all the possible con-
figurations that would satisfy the load and selects the one at the lowest overall cost, pro-
viding detailed information on the assets to be installed, on their operation over time and
on pivotal economic indicators. This approach improves the reliability of the initial design
and gives accurate information about the economics of the system, enabling more informed
decisions and long-term plans and increasing the chances of a successful project.
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6.3 Computational performances

As mentioned in Section 2.3 and recalled in Section 6.1, the first objective of the work,
namely an effective and accurate modelling of microgrid planning for rural electrification,
could not be separated from the second, which is a commitment to advance the state of
the art in terms of optimization techniques. In particular, Chapters 3 and 4 present two
novel approaches that contribute to a drastic reduction of the computational burden, while
preserving excellent quality of the results.

The IMY procedure proposed in Chapter 3 adopts an iterative procedure to describe
complex non-linear phenomena within a MILP optimization by means of constant param-
eters to be updated at each iteration. This method converges in few hours, while the
corresponding traditional One-Shot Multi-Year (OSMY) could not even find a feasible so-
lution in 5 days. Adopting representative days to push OSMY towards the optimal point
allows to validate the results of IMY, which are essentially the same of the full MILP, with
an impressive gain in optimization time (see Section 3.5 and Appendix C).

This method represents the core model of the multi-objective optimization performed
in Chapters 4 and 5, as shown in Figure 6.1. The extension of the decision process beyond
techno-economic evaluations is of pivotal importance when dealing with energy access in the
Global South. However, depending on the number of objective functions and on the desired
density of the Pareto frontier, i.e., set of efficient solutions, the computational burden may
become prohibitive and hinder the resolution of such a complex problem. For this reason,
Chapter 4 has a strong focus on facing the limitations of current multi-objective methods; it
proposes the novel Advanced AUGMECON2 (A-AUGMECON2) procedure, provided with
an online Pareto filter that skips all the redundant optimizations and drastically reduces
the computational burden, being almost 3 times faster than AUGMECON2. Results in
Section 4.9 show that the density of the Pareto curve is the same as in the standard
AUGMECON2; hence, there is no loss of information and the decision making process is
facilitated by a reduced number of options and the removal of recurrent solutions.

Figure 6.1: Methods proposed in Part II.

Dealing with long-term uncertainty accounting for the stochasticity of load scenarios
and enabling capacity expansions along the project lifetime increases the complexity of
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the problem. Hence, some practical considerations are made in Section 5.5 to improve
the tractability of the full stochastic model presented in Chapter 5. A ”lighter” version
of A-AUGMECON2 and IMY is adopted, reducing the number of decision criteria, the
available technologies, and selecting a reasonable number of demand growth scenarios and
capacity expansion windows.

Both mathematical procedures and practical experience of the developer can contribute
to improve the tractability of a model, identifying the features that is worth investigating
in detail and those that can be neglected or simplified to ease the analysis.

It is worth noticing that the novel IMY and A-AUGMECON2 procedures are not limited
to the specific application of rural microgrid planning. On the contrary, they have general
validity and can be applied to any complex problem. In particular, the method proposed
by IMY to represent non-linear phenomena within a MILP framework is easily replicable
in any model. The algorithm of A-AUGMECON2 is an efficient resolution method for any
multi-objective optimization; its advantages over traditional methods increase with the
complexity of the problem under study. Its source code is publicly available (see Appendix
D) and can be adopted by researchers and developers of any sector.

6.4 Holistic decision making

A comprehensive evaluation of a rural electrification project is necessary to its effectiveness
and durability. A multi-disciplinary analysis allows to evaluate trade-offs between different
needs and impacts and strengthen the role of the action of fostering development in the
community while being economically efficient and environmentally sustainable.

It is possible to include social and environmental considerations in least-cost studies
by bringing all the impacts into the form of cost: as an example, Appendix E proposes
a methodology to evaluate the different development opportunities offered by different
electrification technologies by means of a shadow cost analysis. A more explicit and detailed
analysis of the manifold impacts related to energy access projects can be provided by multi-
objective optimizations, whose output preserves the complexity of the problem and leaves
room for site-specific evaluations of the decision maker.

The results of Chapter 4 highlight the value of multi-disciplinary approaches and dis-
cusses the relationships between the different indicators. In particular, it is worth noticing
that the decrease in costs of RES generators and storage has led least-cost solutions to be
characterized by high renewable fractions (> 80%) and limited carbon emissions. More-
over, CO2 accounting with a Life Cycle Assessment (LCA) approach, instead of limiting
the analysis to direct emissions, has led to interesting conclusions, namely that the solu-
tion with minimum emissions for the analysed case study was not that entirely powered
by renewable sources. On the contrary, the sporadic use of diesel in the last years of the
project (higher load and worse component performances) has less impact than oversizing
the PV panels at the beginning of the project.

A complete coverage of the public lighting needs brings about 20% increase in the
total cost. Illuminated streets in the evening allow improving the safety conditions of the
community and the quality of recreational activities, with a significant impact on general
well-being. At least partial coverage of the service would therefore be recommended, based
on budget availability.
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If budget restrictions limit the initial investment of the implementing entity, a higher
reliance on DG generators allows reducing installation costs and spreading expenses more
evenly between CAPEX and OPEX. Fuel-based options are also characterized by limited
land use and high employment opportunities, because of consistent O&M needs and fuel
procurement operations.

The use of multi-objective optimizations introduces the added complexity of the avai-
lability of a portfolio of solutions instead of a single option. This is, however, necessary
to enable the decision maker to have a holistic view of the possible configurations of the
system and of their impacts on the different decision criteria. The choice of the final mi-
crogrid architecture and operation will derive from the experience of the decision maker,
who may lean towards one solution or another based on specific characteristics of the site,
which can be decisive in the success of a project and which are often difficult to model in
an optimization.

6.5 Long-term perspective

One of the biggest challenges in planning rural microgrids is the formulation of realistic
long-term scenarios. Wrong assumptions may hinder the durability of the project and leave
the community without a reliable service.

First steps in the direction of careful multi-year planning were taken in Chapters 3
and 4, where the load trend was estimated according to the results of a system dynamic
study in a similar context, accounting for increasing appliances penetration and number
of customers in relation to socio-economic development of the community thanks to the
presence of electricity [72].

Even though the long-term trend was derived from an accurate multi-disciplinary study,
it is worth highlighting that a wide variety of environmental and socio-economic factors may
intervene and determine an unforeseen load behaviour. Therefore, dealing with uncertainty
in planning models is necessary to strengthen the reliability of the results.

Chapter 5 adopts a stochastic approach to evaluate different realizations of the demand
over time. The trend in [72] represents the central scenario and is associated to a 50% prob-
ability of occurrence, while 4 additional scenarios are identified as less likely realizations.
The resulting microgrid is able to cope with any realization of the input and represents the
optimal compromise solution, given the probability of occurrence of the different scenarios.

The impact of adopting a long-term perspective and accounting for demand uncertainty
is shown in Table 6.2, where the results of the deterministic multi-objective optimization
using the growth trend from [72] is compared to the configuration that includes a stochastic
analysis of the load in case of single-step and multi-step investment.

A stochastic approach provides more cautious solutions, whose feasibility is guaranteed
in any scenario. Therefore, energy shortages are prevented and a reliable service to the
community can be provided independently of the actual realization in time. This comes
at the cost of higher expenses. Indeed, Table 6.2 shows that the stochastic least-cost op-
tion with a 90% coverage of the street lighting service has an NPC of 4% higher than the
deterministic solution with full public lighting coverage. However, this effect is mitigated
and even counterbalanced by the inclusion of capacity expansion windows: the possibility
to defer investments allows to tailor subsequent installations on the actual realization of
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Table 6.2: Least-cost solutions at high public lighting (PL) coverage in case of multi-
objective (MO) optimization, multi-objective with stochastic long-term load scenarios
(MOS) and multi-objective with stochastic long-term load scenarios and multi-step si-
zing (MOSMS).

NPC CO2 LU

[kAC] [kgCO2] [m2]

MO - 100% PL 367 660 946

MOS - 90% PL 382 640 932

MOSMS - 90% PL 344 497 1112

the load and reduce risks and total costs. Moreover, multi-steps investment configurations
favour higher RES penetration and, consequently, lower carbon emissions and higher land
use. RES generators are characterized by relevant upfront costs and almost null O&M ex-
penses and this leads the optimizer to penalise such assets in the first years; the investment
reduction associated to discounted cash flows in later years reduces this economic downside
of renewable assets with respect to fuel-fired generators.

6.6 Scope of application

A wide variety of stakeholders, including public institutions, NGOs, academia and com-
panies, is involved in projects for access to electricity; therefore, the priorities and the
objectives may vary depending on the funding sources and on the implementing entity.
Moreover, microgrid planning studies may be part of wider analyses on regional and na-
tional plans or concern the electrification of specific communities.

These elements significantly impact on the type of tool to be used in planning phase,
on the level of detail and on the criteria to be considered for the decision making process.

The work in Part II provides a number of features that can be easily included or
excluded from the analysis, depending on the specific needs. In particular, Chapter 3
provided the least-cost solution derived from a detailed hourly simulation of the project
lifetime including multi-year characteristics, namely load growth and asset degradation,
with a focus on power-dependent capacity reduction of batteries. This type of study is
particularly suitable for private companies focusing on a specific system to be installed
and willing to estimate costs with very high accuracy in the implementation phase.

In pre-feasibility and feasibility studies, less details are needed to assess the viability of
the project and condensed time series using representative days can be adopted to dras-
tically reduce the computational burden and obtain rapidly good-quality results. Tables
3.4 and 3.5 in Section 3.5 highlight that the use of typical days has limited influence on
the objective function and can provide good preliminary estimates of costs and optimal
microgrid architecture. The further advantage of reducing the time frame analysed is that
fast computational times enable the use of open-source solvers and extends the possibility
of using advanced tools to stakeholders that traditionally do not have access to commer-
cial solvers. Moreover, fast versions of the model could be integrated into more complex
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frameworks, e.g. in rural electrification planning tools aimed at defining the most suita-
ble electrification strategy for a region, defining whether to connect communities to the
national network or to adopt isolated systems [121].

Representative days are also adopted in Chapters 4 and 5, where the multi-objective
optimization significantly increases the computational burden. As discussed in Section
4.8.3, the use of a comprehensive multi-objective optimization is suitable for a first eva-
luation of the planning options, as it provides a full picture of the problem and allows to
evaluate the trade-offs between different decision criteria. It could be followed by a more
detailed simulation of the most suitable options. Holistic analyses are of particular interest
for public and third sector actors, as they usually focus not only on the techno-economic
feasibility of the system, but also on its effectiveness in stimulating development. Aware-
ness is also increasing in the private sector on the importance of careful and comprehensive
planning for the success of a project; complex and holistic decision-making processes are
therefore essential regardless of the implementing entity and, if possible, given the available
resources, they are always preferable to purely techno-economic studies.

6.7 Conclusion

The modelling framework proposed in this work aims at providing decision makers with
an effective, accurate and comprehensive planning tool, whose available features could
be easily adapted to the needs of the specific application. This objective is reached by
also developing novel algorithms aimed at reducing the computational burden of complex
problems.

The stakeholders active in the rural electrification sector can take advantage of the
proposed approach, adapting it to their own budget and computational resource constraints
and to the desired degree of detail in terms of component modelling and impact assessment.

The tool provides significant advantages with respect to traditional sizing methods,
which tend to oversize assets and cannot effectively manage hybrid system design. On
the contrary, the proposed approach can easily identify the least-cost solution, accounting
for long-term phenomena, and evaluating the trade-offs between various decision crite-
ria relating to the different scopes of sustainability, namely economic, environmental and
social.
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Conclusions and future work

7.1 Conclusions

7.1.1 Wrapping up

This doctoral thesis analyses the energy access problem, focusing on isolated microgrids,
which are playing a crucial role in fostering rural electrification. In particular, this work
provides a holistic modelling framework to enable decision makers to make informed de-
cisions, accounting for long term phenomena and for techno-economic, environmental and
social aspects.

The general framework on access to electricity in the Global South is provided in
Chapter 1, where the main global figures and the role of energy in unleashing development
are discussed. Then, the main electrification strategies are presented and the attention
of this work on microgrids is motivated by the current projections on the urgent need of
isolated systems to accelerate the achievement of universal access to electricity.

Advanced optimization tools enable more accurate and efficient designs with respect to
traditional methods. Hence, their adoption can support practitioners in effectively plan-
ning rural electrification projects. Chapter 2 reviews the available literature on microgrid
planning, identifying the most common approaches, the gaps in the state of the art and the
obstacles to formulate a comprehensive model. From these, the two main objectives of the
doctoral work are derived, namely the development of a holistic MILP microgrid planning
model and the improvement of current traditional algorithms to reduce the computational
burden and enable accurate and detailed analyses.

The most common approach to optimize the design and operation of rural microgrids
is to adopt single-year methods, assuming the perfect replication of the first year along the
project lifetime. This methodology fails to consider the multi-year characteristics of the
system, which may significantly impact the results. The model proposed in Chapter 3 de-
scribes a microgrid planning problem accounting for demand growth and asset degradation.
In particular, it considers linear degradation of the RES generators and a BESS capacity
reduction depending on its hourly operation. This last phenomenon is modelled by means
of constant parameters to be updated in an iterative procedure. The results highlight
that single-year methods lead to suboptimal solutions and may cause energy shortages and
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underestimation of costs.
A crucial element in planning tools is the indicator chosen as objective function. Ba-

sically all the works in literature adopt an economic objective function, to ensure the
efficiency of the investment. An increasing interest in environmental issues and the politi-
cal pressure on the exploitation of renewable sources has encouraged some researchers to
include also carbon emissions among the decision criteria defining the optimal configuration
of the system. Social impacts are usually overlooked, despite being decisive in rural con-
texts in determining the success of the project and, consequently, its economic efficiency.
The issue of a holistic decision-making process is tackled in Chapter 4, where a multi-
objective optimization is solved minimizing costs, life-cycle emissions and land use, and
maximizing job creation and public lighting coverage. Moreover, a novel methodology to
skip redundant simulations is developed. It allows to drastically reduce the computational
burden and it is a general algorithm which can be applied to any sector; hence, it repre-
sents a relevant advancement in the analysis of complex problems through multi-objective
optimization.

Finally, the algorithm is extended in Chapter 5 with the analysis of long-term un-
certainty by including stochastic load scenarios characterized by different linear growth
factors. Moreover, capacity expansions windows are implemented to permit deferred in-
vestments and adapt the microgrid architecture to the actual realization of the demand
over time. Multi-step investments allow significant savings and are robust solutions against
highly uncertain inputs.

A wrap-up and critical discussion on the features of the model is provided in Chapter 6.
A numerical example underlines the importance of adopting optimization tools rather than
traditional sizing methods, that are based on strong simplifying assumptions and cannot
efficiently handle hybrid systems. The main advancements introduced by the work are
discussed, highlighting the flexibility of the model, whose functions can be easily adapted
to the specific needs of the user in terms of computational resources, degree of detail,
decision criteria.

7.1.2 Contribution to SDG7

Given the relevance of the topic investigated and of the results obtained, this work provides
a significant contribution in facilitating rural electrification through microgrids and thus
the achievement of SDG7, as it guides policy and business decision makers in effectively
planning isolated systems.

In particular, the findings discussed in Part II confirm the economic efficiency of RES-
based plants, to be supported by storage system, that also address the climate concerns by
exploiting local resources and limiting the use of fuel. Moreover, when the stochastic feature
and a comprehensive set of indicators are included, stakeholders are provided with robust
options that reduce financial risks because of the thorough evaluation of uncertainty and of
the trade-offs between different relevant decision criteria. Planning a stepwise installation
of components, to be tailored on the long-term trends of the demand, in contrast with a
full installation at the outset of the project, allows to defer costs, thus encouraging rapid
and safe investments.

In conclusion, this doctoral thesis provides a sound methodology and valuable insights
on the practical characteristics of isolated microgrid projects, fostering the realization of
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universal access to electricity.

Computer tools provide a decisive support to the stakeholders in the sector for de-
veloping efficient and effective electrification plans. The synergy between different tools
contributing to different aspects of the electricity access process is essential to foster the
connection of unelectrified communities by 2030.

In particular, the algorithm presented in this thesis benefits from the interaction with
bottom-up load estimation tools [82,122] to accurately formulate the daily demand curves.
Moreover, a simplified version of the deterministic least-cost formulation of the algorithm
is adopted to size and estimate the cost of microgrids in GISEle [123], an open-source
regional electrification planning tool aimed at defining the best electrification solution
(grid extension or microgrid) to connect all people living in the target area.

7.2 Limitations and future developments

7.2.1 Accessibility of the tool

Although the procedure represents a significant advancement of the state of the art, the
computational burden is still prone to improvements, as MILP optimizations are extremely
sensitive to input data and number of variable and constraints. Currently, the size of the
problem and the need of commercial solvers do not allow the extensive use of the tool by
non-technical users, e.g. policy makers and NGOs. Hence, additional work is needed to
enable the formulation of an efficient version to be made available to the stakeholders in
the sector of energy access.

At the present status, the tool is currently usable by academic stakeholders, but it is
hardly accessible to other entities. Hence, its use is plausible in the context of electrification
projects developed in consortia that include researchers in the sector who have at their
disposal the instruments necessary for the use of the routine.

However, this limitation does not constitute a barrier to the effective practical use
of the tool, since very often national or regional plans and large electrification projects
are implemented following the Quadruple Helix approach [124], where representatives of
private players, civil society organisations, academia and public institutions are engaged
and cooperate to identify the solutions that best meet the needs of communities.

7.2.2 Synergy with other electrification models

A comprehensive analysis of the electricity access problem would entail the synergy bet-
ween different routines tackling different aspects, phases and/or scales of the electrifica-
tion process. Even though the methodology here presented exploits tools and findings
available in literature to make realistic assumptions on demand estimation and long-term
trends [47, 72, 79], the heavy computational burden does not allow the interaction of the
full routine with complex and large-scale models. At the moment, an extremely simplified
version is included in the GISEle [123] regional electrification planning tool.

Further efforts in the development of efficient algorithms for computationally-intensive
problems would enable the effective connection of the model here presented with others in
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the literature, thus making available to stakeholders complete tools for planning electrifi-
cation projects.

In particular, the formulation of long-term demand scenarios could be directly derived
from system dynamic models [65,125], accounting for specific socio-economic characteristics
and development opportunities unleashed by access to electricity. The system dynamic
model could iteratively interact with the microgrid planning tool to correctly account for
long-term evolutions, as proposed in [72].

Furthermore, the tool could exploit georeferenced data to design the system also in
terms of optimal placement of the units, and plan the least-cost distribution system. This
would also allow to increase the scale of the analysis and consider the aggregation, through
a network of electrical connections, of several microgrids in the same area.

7.2.3 Numerical assumptions

When developing a model, assumptions are made in order to decide on what to emphasize,
what to overlook and how to describe the phenomena involved. This concerns every aspect
of the tool, including but not limited to input data, objective functions and constraints,
and affects the numerical results, how they are presented and the derived insights.

As for the assumptions of the modelling of components, future versions of the algo-
rithm may include considerations on fuel procurement, transport and storage for diesel
generators. This would negatively impact on the economic convenience of such technolo-
gical option. However, this is not supposed to significantly affect the results, as fuel-based
options already play a marginal role in cost and emissions efficient solutions.

The choice on the reduced time frame to be represented and explicitly modelled using
typical days has been defined following a thorough literature review and internal simula-
tions. However, this process could be formalized: a sensitivity analysis could be performed
to determine the most appropriate number of typical days and thus identify the optimal
trade-off between computational burden and accuracy of the results.

The long-term evolution of the load is certainly the most challenging assumption a
modeller must face when dealing with first access to electricity. This work tackles this issue
by capitalizing on previous works available in the literature and real case studies [47, 72]
to estimate a reasonable number of growth scenarios, each characterized by a probability
of occurrence. Such stochastic method allows to provide the user with robust and reliable
options, that cover against any realization of the input load and avoid shortages of energy
related to deterministic incorrect forecasts at planning stage. This approach could be
extended to other uncertain parameters; for example, cost trends could be characterized
by stochastic behaviour, strengthening the quality of the results against significant prices
variations over time.

7.2.4 Relevance of decision criteria

Finally, multi-objective optimization requires a preliminary selection of the relevant indi-
cators to be evaluated, because each additional objective function produces a significant
increase of the computational burden. This drawback would play in favour of Multi-Criteria
Decision Analysis (MCDA), that is extremely efficient and is not significantly affected by
the inclusion of additional indicators. However, MCDA entails the assignment of weights
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to the decision criteria, influencing the final solution. In contrast, multi-objective opti-
mization allows a full evaluation of the trade-offs between the different objective functions.
Therefore, the decision maker may tend towards multi-objective optimization when he/she
wishes to fully analyse the reciprocal impacts of a limited number of aspects; MCDA is
preferable when a wide variety of indicators needs to be included and when their priority
is already known.

The objective functions selected in this work, namely net present cost, life-cycle emis-
sion, land use, local jobs creation and coverage of public lighting service, represent a valid
selection of criteria which are usually relevant for the stakeholders. Nonetheless, there may
be conditions in which such group of functions does not reflect the interests of the decision
maker. For example, land use may not be a relevant issue if wide rooftop areas are available
for PV installations. In that case, the objective function can be easily excluded from the
analysis and, if desired, substituted by other indicators, for example the reliability of the
different technologies or the social LCA of the available components.

If the model is effectively integrated in large-scale analysis, e.g. electrification planning
at country level, as wished for future developments of the work, the current trade-offs bet-
ween the objective functions may change and modify the resulting solutions. For example,
the analysis of the potential for rural microgrids on a wide area and the evaluation of the
related jobs generation at national level may even reveal compound effects on the total
number of people employed in the sector, providing a more complete vision of the impacts
of such systems. Hence, the scale up of the proposed model is desirable and would be bene-
ficial to support decision makers in acquiring a thorough and comprehensive understanding
of access to electricity.
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Appendix A

Nomenclature

Table A.1: Definition of indexes, parameters and variables for the microgrid planning
model presented in Chapter 3 and 4.

Indexes
h Hours y Years
g Diesel generators (DG) p Photovoltaic panels (PV)
w Wind turbines (WT) b Batteries (BESS)
i Components, i ∈ {g, p, w, b}
Parameters
M Big constant H Number of hours per year
H Project lifetime in hours Y Project lifetime in years

Y life
i Component lifetime ci Unit capital cost

mi Unit maintenance cost ei Unit installation emissions
eopi Unit operation emissions loi Unit land occupation
ji Unit jobs from value chain jfg Unit jobs form fuel use
δ Demand growth rate Ltot

h Total lighting demand
dh Discount factor ENS Max energy not served
γz Forecast error of z P pv

h,p Available PV power

Pwt
h,w Available WT power ρpvh,p Linear PV degradation rate

ρwt
h,p Linear WT degradation rate A,B Fuel consumption coefficients

f Cost of fuel H life
g Total DG working hours

P g Max DG power P g Min DG power
DODb Depth of Discharge Cres

h,b Residual BESS capacity

η(PQh,b) Power-dependent efficiency ηb Max BESS efficiency
βh,b Relative BESS efficiency Cb Max BESS capacity
αb Max relative BESS capacity αb Min relative BESS capacity
αh,b Relative residual BESS capacity kh,b BESS replacement counter
PQb Max power-to-energy ratio PQh,b Power-to-energy ratio
Qthr

h,b Cumulative throughput n(PQh,b) Power-dependent max cycles
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Table A.1: Definition of indexes, parameters and variables for the microgrid planning
model presented in Chapter 3 and 4 (continued).

Variables
NPC Net present cost ICi Initial investment cost
O&Mi O&M cost RCi Replacement cost
RVi Residual value CO2 Total LCA emissions
CCO2i Emissions from installation OCO2i Emissions from O&M
LU Total land use JC Total job creation
CJCi Jobs from whole value chain OJCg Jobs from fuel use
PL Public lighting coverage (%) Ni Number of units installed
Dh Load demand Du

h Unmet demand
Lh Fulfilled lighting demand P ren

h Renewable power injected
Rh Total reserve requirement FCh,g Fuel consumption

P dg
h,g Power produced by DG Rdg

h,g Reserve provided by DG

Uh,g Active DG units (integer) wdch
h,b Binary variable on BESS state

P dch
h,b Discharging power of BESS P ch

h,b Charging power of BESS

Rsb
h,b Reserve provided by BESS Qh,b Energy level of BESS
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Appendix B

Soroti load

The case study adopted to test the approaches proposed in Part II refers to the community
of Soroti, where few households and business activities are reached by the electrical grid in
the city centre, while the rest of the community uses small diesel generators or traditional
energy sources to satisfy their needs. Mandelli performed surveys locally [79], investigating
the typical conditions of the peripheral area and considering a hypothetical microgrid
composed by 100 households and common businesses and services.

The information collected on field is elaborated in the LoadProGen tool [82] to build
the total load profile of the community (shown in Figure 3.3a). The input data necessary
to formulate the profile are contained in Table B.1 and their meaning is listed below:

(i) Class type. Type of user class, associated to a portfolio of appliances and a typical
load profile.

(ii) NUS. Number of users within the class.

(iii) App name. Type of appliance.

(iv) P [W]. Nominal power of the appliance.

(v) NApp. Number of appliances within a user class.

(vi) hfunct. Daily functioning time of the appliance.

(vii) Wf. Possible functioning windows of the appliance during the day (may exceed
hfunct).
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Table B.1: Load input data for Soroti community.

Class type NUS App name P [W] NApp hfunct Wf1 Wf2 Wf3 TotW
hstart hstop hstart hstop hstart hstop

Family 1 50 Lights 3 4 6 0 2 17 24 - - 9
Phone Charger 5 2 3 0 9 13 15 17 24 18
Security Light 5 1 12 0 7 17 24 - - 14

Family 2 15 Lights 3 4 6 0 2 17 24 - - 9
Phone Charger 5 2 3 0 9 13 15 17 24 18
Security Light 5 1 12 0 7 17 24 - - 14
Radio 5 1 4 6 9 17 24 - - 10
AC-TV(small) 100 1 5 11 15 17 24 - - 11

Family 3 15 Lights 3 8 6 0 2 17 24 - - 9
Phone Charger 5 2 3 0 9 13 15 17 24 18
Security Light 5 2 12 0 7 17 24 - - 14
Radio 5 1 4 6 9 17 24 - - 10
AC-TV(small) 100 1 5 11 15 17 24 - - 11
Fridge (small) 250 1 5 0 24 - - - - 24

Family 4 10 Lights 3 12 6 0 2 17 24 - - 9
Phone Charger 5 4 3 0 9 13 15 17 24 18
Security Light 5 4 12 0 7 17 24 - - 14
Radio 5 1 4 6 9 17 24 - - 10
AC-TV(small) 100 1 5 11 15 17 24 - - 11
Fridge (small) 250 1 5 0 24 - - - - 24
Standing Fan 55 1 6 8 24 - - - - 16
Decoder 15 1 5 11 15 17 24 - - 11
Internet Router 20 1 6 0 24 - - - - 24
Laptop (small) 55 1 6 0 2 11 15 17 24 13

Family 5 5 Lights 3 16 6 0 2 17 24 - - 9
Phone Charger 5 4 3 0 9 13 15 17 24 18
Security Light 5 6 12 0 7 17 24 - - 14
Radio 5 2 4 6 9 17 24 - - 10
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Table B.1: Load input data for Soroti community (continued).

Class type NUS App name P [W] NApp hfunct Wf1 Wf2 Wf3 TotW
hstart hstop hstart hstop hstart hstop

AC-TV(big) 200 1 6 11 15 17 24 - - 11
Fridge (big) 400 1 5 0 24 - - - - 24
Standing Fan 55 2 6 8 24 - - - - 16
Decoder 15 1 6 11 15 17 24 - - 11
Internet Router 20 1 8 0 24 - - - - 24
Laptop (big) 80 2 8 0 2 11 15 17 24 13

Family 6 5 Lights 3 16 6 0 2 17 24 - - 9
Phone Charger 5 4 3 0 9 13 15 17 24 18
Security Light 5 6 12 0 7 17 24 - - 14
Radio 5 2 4 6 9 17 24 - - 10
AC-TV(big) 200 1 6 11 15 17 24 - - 11
Fridge (big) 400 1 5 0 24 - - - - 24
Standing Fan 55 2 6 8 24 - - - - 16
Decoder 15 1 6 11 15 17 24 - - 11
Internet Router 20 1 8 0 24 - - - - 24
Laptop (big) 80 2 8 0 2 11 15 17 24 13
Hair Dryer 1000 1 0.5 17 24 - - - - 7
Printer 50 1 0.5 17 24 - - - - 7
Stereo 100 1 3 17 24 - - - - 7
Water Heater 660 1 2 0 2 18 24 - - 8

Enterprise 1 15 Fluor. Tube (small) 36 10 6 7 11 16 20 - - 8
Phone Charger 5 4 3 7 13 15 20 - - 11
Security Light 5 4 12 0 7 17 24 - - 14
Internet Router 20 1 10 7 20 - - - - 13
Laptop (big) 80 1 8 7 13 15 20 - - 11
Laptop (small) 55 5 8 7 13 15 20 - - 11
Printer 50 2 2 7 13 15 20 - - 11
Standing Fan 55 2 8 7 13 15 20 - - 11
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Table B.1: Load input data for Soroti community (continued).

Class type NUS App name P [W] NApp hfunct Wf1 Wf2 Wf3 TotW
hstart hstop hstart hstop hstart hstop

Enterprise 2 5 Fluor. Tube (big) 47 20 6 7 11 16 20 - - 8
Phone Charger 5 15 3 7 13 15 20 - - 11
Security Light 5 10 12 0 7 17 24 - - 13
Internet Router 20 1 10 7 20 - - - - 13
Laptop (big) 80 5 8 7 13 15 20 - - 11
Laptop (small) 55 10 8 7 13 15 20 - - 11
Standing Fan 55 5 8 7 13 15 20 - - 11
Water Dispenser 550 1 3 7 13 15 20 - - 11
Photocopier 750 1 1 7 13 15 20 - - 11
Ceiling Fan 75 5 8 7 13 15 20 - - 11
PC 400 1 10 7 20 - - - - 13

Mobile Money 5 Lights 3 2 3 8 11 16 20 - - 7
Phone Carger 5 3 3 8 18 - - - - 10
Standing Fan 55 1 6 10 18 - - - - 8

Kiosk 10 Lights 3 2 3 8 11 16 20 - - 7
Phone Carger 5 1 3 8 18 - - - - 10
Standing Fan 55 1 6 10 18 - - - - 8
Fridge (small) 300 1 8 0 24 - - - - 24
Fridge (big) 500 1 8 0 24 - - - - 24

Barber 2 Lights 3 5 8 8 13 15 20 - - 10
12V Shaver 10 5 6 8 13 15 20 - - 10
Ceiling Fan 75 3 8 8 13 15 20 - - 10
UV Sterylizer 50 1 2 8 13 15 20 - - 10

Tailor 3 Lights 5 3 8 8 13 15 20 - - 10
Sewing Machine 50 1 3 8 13 15 20 - - 10
Ceiling Fan 75 1 8 8 13 15 20 - - 10

Market Place 1 Lights 3 25 3 8 11 16 20 - - 7
Security Light 5 25 12 0 7 17 24 - - 14
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Table B.1: Load input data for Soroti community (continued).

Class type NUS App name P [W] NApp hfunct Wf1 Wf2 Wf3 TotW
hstart hstop hstart hstop hstart hstop

Fridge (small) 300 3 8 0 24 - - - - 24
Fridge (big) 500 3 8 0 24 - - - - 24
Standing Fan 55 10 8 8 13 15 20 - - 10
Radio 5 10 4 10 13 15 18 - - 6

Club 3 Fluor. Tube (small) 36 10 8 0 4 17 24 - - 11
Fluor. Tube (big) 47 5 8 0 4 17 24 - - 11
Security Light 5 5 12 0 7 17 24 - - 14
Phone Charger 5 10 8 15 24 - - - - 9
AC-TV (small) 130 2 9 0 4 15 24 - - 13
AC-TV (big) 200 1 9 0 4 15 24 - - 13
PC 400 1 9 0 4 15 24 - - 13
Laptop (big) 80 10 6 15 24 - - - - 9
Printer 50 1 1 15 20 - - - - 5
PicoProjector 18 1 4 0 2 20 24 - - 6
Amplyfier 6 1 4 0 2 20 24 - - 6
Ceiling Fan 75 3 8 0 4 15 24 - - 13
Music System 178 1 8 0 4 15 24 - - 13
Internet Router 20 1 9 0 4 15 24 - - 13
Fridge (small) 300 2 8 0 24 - - - - 24
Fridge (big) 500 1 8 0 24 - - - - 24

Street Lights 1 Lights (Street) 50 100 12 0 7 17 24 - - 14
Led Strips 8 100 12 0 7 17 24 - - 14

Primary School 1 Fluor. Tube (small) 36 10 4 8 17 - - - - 9
Phone Charger 5 7 3 8 17 - - - - 9
Security Light 5 4 12 0 7 17 24 - - 14

Pharmacy 1 Lights 3 10 3 8 11 16 20 - - 7
Security Light 5 4 12 0 7 17 24 - - 14
Fridge (small) 300 3 8 0 24 - - - - 24
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Table B.1: Load input data for Soroti community (continued).

Class type NUS App name P [W] NApp hfunct Wf1 Wf2 Wf3 TotW
hstart hstop hstart hstop hstart hstop

Fridge (big) 500 2 8 0 24 - - - - 24
Standing Fan 55 3 8 8 13 15 20 - - 10
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Appendix C

IMY validation

The Iterative Multi-Year (IMY) procedure presented in Chapter 3 has been validated
in Section 3.5 by discussing the numerical application on an isolated system in Uganda.
This section aims at strengthening the validity of the results by testing the model on two
further case studies. To guarantee the convergence of the traditional approach and provide
a comparison of the computational burden of the two methodologies, representative days
are used.

C.1 Case study 1: Lacor Hospital

St. Mary’s Lacor hospital is sited near the city of Gulu, in Northern Uganda, and it is
one of the largest private and non-profit hospitals in Equatorial Africa. A measured daily
profile in shown in Figure C.1.

Figure C.1: Measured load profile of St. Mary’s Lacor hospital.

The possible assets to be installed are DG units, PV panels and BESS. The techno-
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economic specifications of the components are described in Section 3.4. The demand is
supposed to be growing by 20% every year.

C.2 Case study 2: Ngarenanyuki secondary school

The school is located in a rural area in the Arusha region, Tanzania, and hosts around 500
students. A measured daily profile in shown in Figure C.2.

Figure C.2: Measured load profile of Ngarenanyuki secondary school.

The possible assets to be installed are PV panels and BESS. The techno-economic
specifications of the components are described in Section 3.4. The demand is supposed to
be growing by 20% every year.

C.3 Numerical results

The results obtained by testing IMYrd and OSMYrd on the two case studies are presented
in Tables C.1 and C.2.

Table C.1: Optimization outputs (I)

Time NPC IC O&M RC RV

[s] [kAC] [kAC] [kAC] [kAC] [kAC]

Lacor
IMYrd 2 2910 1915 1175 182 362

OSMYrd 55140 2894 2011 1112 166 395

Ngarenanyuki
IMYrd 3 69 78 8 / 17

OSMYrd 249 68 78 8 / 18
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Table C.2: Optimization outputs (II)

PV DG BESS Y repl
b αH,b

[kW] [kW] [kW] [y] [%]

Lacor
IMYrd 883 176 1258 / 83

OSMYrd 905 176 1411 / 84

Ngarenanyuki
IMYrd 30 / 84 / 87

OSMYrd 30 / 83 / 88

It is worth noticing that also in these instances the IMY procedure enables a significant
reduction of the computational burden. In particular, the Lacor case sees a dramatic
decrease from more than 15 hours down to 2 seconds. The architecture considered for
Ngarenanyuki only admits the installation of solar panels and batteries, facilitating the
definition of the optimal operating strategy, which involves more complex dynamics when
fuel-fired generators are present; hence, OSMYrd only takes about 4 minutes to converge,
but IMYrd still allows to significantly reduce the total time, which reaches 3 seconds.

The NPC difference does not exceed 1.5%, which is even below the expectations, given
the 3% mipgap [78]. Limited variations on the assets installed can be identified, with an
almost equal final relative BESS capacity αH,b.

These results confirm the findings of Chapter 3, conferring universal value upon the
proposed approach, highlighting the quality of the results and the relevant advantages in
terms of computational times.

Moreover, since the approach presented in Chapter 3 constitutes the core of the op-
timizations carried out in subsequent developments (Chapters 4 and 5), the presence of
Appendix C guarantees the robustness of the results of the whole work with respect to the
variation of the case study and input profiles.
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Appendix D

A-AUGMECON2 source code

For the sake of clarity, the GAMS source code of A-AUGMECON2 is here applied to a
test knapsack problem and it is publicly available on the GitHub platform at the following
link: https://github.com/marinapet/multi-objective.

1 $title A-AUGMECON2:Advanced version of AUGMECON2 for Multiobjective

Optimization

2 $ontext

3 The advanced version of AUGMECON2 , denoted as A-AUGMECON2 , is provided

with

4 a novel pruning algorithm that avoids solving redundant optimizations ,

5 leading to a significant reduction of the computational burden.

6
7 The algorithm has been developed starting from the AUGMECON2 code

8 available in GAMS Model Library at the following link:

9 https :// www.gams.com/latest/gamslib_ml/libhtml/gamslib_epscmmip.html

10
11 For the sake of simplicity , A-AUGMECON2 is here applied to a trivial

12 Multi -Objective Integer Programming problem(specifically a Multi -Objective

13 Multi -Dimensional Knapsack Problem) with 50 binary variables X, 2

objective

14 functions and 2 constraints. The higher the complexity of the problem to

be

15 optimized in terms of number of objective functions and density of the

Pareto

16 frontier , the more the novel A-AUGMECON2 outperforms the standard

AUGMECON2.

17
18
19 Additional information can be found at:

20 https :// doi.org /10.1016/j.apenergy .2021.117283

21
22 Marina Petrelli , Davide Fioriti , Alberto Berizzi , Cristian Bovo , Davide

Poli ,

23 "A novel multi -objective method with online Pareto pruning for multi -year

24 optimization of rural microgrids", Applied Energy , Volume 299, 2021,

117283.

25
26
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27 The paper compares the results of the novel A-AUGMECON2 with AUGMECON2

applied

28 to a rural microgrid planning problem , evaluating costs , emissions , land

29 use , job creation and public lighting coverage. A-AUGMECON2 allows to

reduce

30 the computational burden by 48% and the number of points in the Pareto

frontier

31 by 42%, removing redundant simulations and improving the quality and

readibility

32 of the results.

33
34
35 INSTRUCTIONS FOR REPLICATION:

36 In order to apply A-AUGMECON2 to a different model , it is enough to

substitute

37 the Knapsack Problem (whose description finishes at line 98) with the

desired

38 optimization problem. It is necessary to specify the set of objective

functions

39 K, the related variable z(K) and direction of optimization dir(K). The

desired

40 density of the Pareto curve should be set at line 198.

41 $offtext

42
43
44 $eolcom //

45 $STitle Example model definitions

46
47 Sets

48 I constraints / i1* i2 /

49 J decision variables / j1*j50 /

50 K objective functions / k1* k2 /

51
52 $set min -1

53 $set max +1

54 Parameter

55 dir(K) direction of the objective functions / k1 %max%, k2 %max% /

56 b(I) RHS of the constraints / i1 1445, i2 1502.5 /

57
58 Table c(K,J) matrix of objective function coefficients C

59 j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17

60 k1 21 69 26 92 77 30 96 80 60 61 52 92 19 10 63 34 100

61 k2 24 92 53 25 10 31 83 34 64 69 95 40 59 87 13 94 53

62 +

63 j18 j19 j20 j21 j22 j23 j24 j25 j26 j27 j28 j29 j30 j31 j32 j33 j34

64 k1 60 11 12 37 100 74 17 60 69 49 69 49 59 17 21 74 85

65 k2 52 61 53 78 34 89 32 28 56 52 40 41 59 35 96 72 55

66 +

67 j35 j36 j37 j38 j39 j40 j41 j42 j43 j44 j45 j46 j47 j48 j49 j50

68 k1 83 41 29 63 56 38 66 92 25 84 89 21 46 94 96 92

69 k2 100 44 90 66 59 22 72 25 36 16 56 91 61 56 66 53

70 ;

71
72 Table a(I,J) matrix of technological coefficients A

73 j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17

74 i1 84 49 68 20 97 74 60 30 13 95 19 41 17 95 73 12 66

75 i2 19 96 93 64 72 91 32 96 44 76 69 82 51 38 52 22 83
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76 +

77 j18 j19 j20 j21 j22 j23 j24 j25 j26 j27 j28 j29 j30 j31 j32 j33 j34

78 i1 55 75 20 56 80 59 66 25 70 95 96 62 74 31 59 21 85

79 i2 27 70 56 29 89 86 48 13 95 66 94 16 44 67 90 48 29

80 +

81 j35 j36 j37 j38 j39 j40 j41 j42 j43 j44 j45 j46 j47 j48 j49 j50

82 i1 45 97 23 53 51 95 58 68 62 45 83 82 47 15 52 72

83 i2 90 54 77 28 100 86 51 62 40 54 21 55 50 62 51 77

84 ;

85
86 Variables

87 Z(K) objective function variables

88 X(J) decision variables

89 Binary Variables X;

90
91 Equations

92 objfun(K) objective functions

93 con(I) constraints;

94
95 objfun(K).. sum(J, c(K,J)*X(J)) =e= Z(K);

96 con(I).. sum(J, a(I,J)*X(J)) =l= b(I);

97
98 Model example / all /;

99
100 $STitle eps -constraint method

101
102 Set k1(k) the first element of k

103 km1(k) all but the first elements of k

104 kk(k) active objective function in constraint allobj;

105
106 k1(k)$(ord(k)=1) = yes; km1(k)=yes; km1(k1) = no;

107
108 Parameter

109 rhs(k) right hand side of the constrained obj functions in eps -

constraint

110 maxobj(k) maximum value from the payoff table

111 minobj(k) minimum value from the payoff table

112 numk(k) ordinal value of k starting with 1

113 val(k) desired value of objective function in payoff table

114 price(k) penalty for difference from desired value in payoff table;

115
116 val(k)=0; price(k)=0;

117
118 Scalar

119 iter total number of iterations

120 elapsed_time elapsed time for eps -constraint

121 start start time

122 finish finish time

123
124 Variables

125 a_objval auxiliary variable for the objective function

126 obj auxiliary variable during the construction of the payoff table

127
128 Positive Variables

129 s(k) slack or surplus variables for the eps -constraints

130 s1(k) slack or surplus variables for the payoff table

131 s2(k) slack or surplus variables for the payoff table
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132
133 Equations

134 allobj all the objective functions in one expression

135 con_payoff(k) constraint on desired value of objective function in payoff

table

136 con_obj(k) constrained objective functions

137 augm_obj augmented objective function to avoid weakly efficient

solutions;

138
139 con_obj(km1).. z(km1) - dir(km1)*s(km1) =e= rhs(km1);

140
141 * We optimize the first objective function and put the others as

constraints

142 * the second term is for avoiding weakly efficient points

143
144 augm_obj .. a_objval =e= sum(k1,dir(k1)*z(k1)/( maxobj(k1)-minobj(k1)))

145 + 1e-3*sum(km1 ,power(10,-(numk(km1) -1))*s(km1)/( maxobj(km1)-minobj(km1)));

146
147 allobj .. sum(kk , dir(kk) * z(kk)) - sum(k, price(k) * (s1(k) + s2(k))) =e=

obj ;

148
149 con_payoff(k).. z(k) + s1(k) - s2(k) =E= val(k) ;

150
151 Model mod_payoff / example , allobj , con_payoff / ;

152 Model mod_epsmethod / example , con_obj , augm_obj / ;

153
154 Parameter

155 payoff(k,k) payoff tables entries;

156 Alias(k,kp);

157 Alias(k,k2);

158
159 option optcr=0, limrow=0, limcol=0, solprint=off , solvelink =% Solvelink.

LoadLibrary %;

160
161 * Generate payoff table applying lexicographic optimization

162 loop(kp ,

163 * Modify the priority order to exploit these results as Pareto points ,

removing redundant simulations

164 loop(k2 ,

165 if (ord(k2) = 1,

166 kk(kp) = yes;

167 elseif ord(k2) <= ord(kp),

168 kk(k2 -1) = yes;

169 else

170 kk(k2) = yes;

171 );

172 solve mod_payoff using mip maximizing obj;

173 val(kk) = z.l(kk); // desired value of the objective function

174 price(kk) = 1e5 ; // big constant to penalize distance from desired value

175 kk(k) = no;

176 );

177 payoff(kp,k) = z.l(k);

178 kk(k) = no;

179 * release the desired values of the objective functions for the new

iteration

180 val(k) = 0; price(k) = 0;

181 );
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182
183
184 if (mod_payoff.modelstat <>%ModelStat.Optimal% and

185 mod_payoff.modelstat <>%ModelStat.Integer Solution%,

186 abort ’no optimal solution for mod_payoff ’);

187
188 file fx / 2kp50_augmecon2_results.txt /;

189 put fx ’ PAYOFF TABLE ’/ ;

190 loop (kp,

191 loop(k, put payoff(kp,k):12:2);

192 put /);

193
194 minobj(k)=smin(kp ,payoff(kp ,k));

195 maxobj(k)=smax(kp ,payoff(kp ,k));

196
197
198 $if not set gridpoints $set gridpoints 491

199 *$if not set gridpointsred $set gridpointsred 200

200 * gridpointsred coould be used to set reduced densities for some

objectives

201 Set g grid points /g0*g%gridpoints %/

202 * gr_red(gr) reduced grid points /gr0*gr%gridpointsred %/

203 grid(k,g) grid

204 Parameter

205 gridrhs(k,g) rhs of eps -constraint at grid point

206 maxg(k) maximum point in grid for objective

207 posg(k) grid position of objective

208 firstOffMax , lastZero , payoffSol some counters

209 numg(g) ordinal value of g starting with 0

210 step(k) step of grid points in objective functions

211 jump(k) jumps in the grid points traversing;

212
213 lastZero =1; loop(km1 , numk(km1)=lastZero; lastZero=lastZero +1); numg(g) =

ord(g) -1;

214
215 * Here we could define different grid intervals for different objectives

216 * using set gr_red

217 grid(km1 ,g) = yes;

218 maxg(km1) = smax(grid(km1 ,g), numg(g));

219 step(km1) = (maxobj(km1)- minobj(km1))/maxg(km1);

220 gridrhs(grid(km1 ,g))$(dir(km1)=-1) = maxobj(km1) - numg(g)/maxg(km1)*(

maxobj(km1)- minobj(km1));

221 gridrhs(grid(km1 ,g))$(dir(km1)= 1) = minobj(km1) + numg(g)/maxg(km1)*(

maxobj(km1)- minobj(km1));

222
223 put / ’ Grid points ’ /;

224 loop (g,

225 loop(km1 , put gridrhs(km1 ,g):12:2);

226 put /);

227 put / ’Efficient solutions ’ /;

228
229 * Walk the grid points and take shortcuts if the model becomes infeasible

or

230 * if the calculated slack variables are greater than the step size

231
232 $eval vNTOT power(% gridpoints% + 1, card(K) -1)

233
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234 set num /1*% vNTOT%/

235 n(num) ;

236 parameter numn(num) ordinal value of num starting with 1

237 numord ordinal number of the gridpoint examined

238 v(num) vector of points to be examined; //v(n)=1 if point to be solved

, v(n)=0 if point to be skipped

239 parameter Nc number of combinations to be excluded from

examination because redundant

240 comb counter of combinations

241 combb scalar for computing combinations

242 deltav(k) identifier of solutions to be excluded

243 posg_v(k) position to be excluded

244 numordp(k) ordinal number of payoff table points

245 posgp(k) grid positions of payoff table points

246 numordPre

247 numordPost;

248
249 alias(km1 ,kmm1); alias (km1 ,kkm1);

250
251 n(num) = yes;

252 lastZero =1; loop(n, numn(n)=lastZero; lastZero=lastZero +1);

253 v(n)=1; // initialize all as 1

254
255 * this loop computes gridpoints corresponding to payoff table points

256 loop(km1 , posg(km1)=maxg(km1); posg(kmm1)$(numk(kmm1) NE numk(km1))=0;

257 numordp(km1)= sum(kkm1$(numk(kkm1) >1), posg(kkm1)* prod(kmm1$(numk(kmm1)

LE numk(kkm1) -1), maxg(kmm1)+1 ))

258 + sum(kkm1$(numk(kkm1)=1), posg(kkm1)) + 1;

259 );

260
261 posg(km1) = 0; iter =0; start=jnow;

262
263 repeat

264
265 numord = sum(km1$(numk(km1) >1), posg(km1)* prod(kmm1$(numk(kmm1) LE numk(

km1) -1), maxg(kmm1)+1 ))

266 + sum(km1$(numk(km1)=1), posg(km1)) + 1;

267
268 payoffSol =0;

269
270 if(sum(n$(numn(n)=numord), v(n)) = 1,

271
272 * the following two loops verify if the current gridpoint corresponds to a

point of the payofftable

273 * if so, the optimization is skipped and the solution of the payofftable

is directly included

274 loop(k1$(sum(km1 , posg(km1)) = 0),

275 z.l(k) = payoff(k1,k);

276 payoffSol =1;

277 iter=iter +1;

278 put iter :5:0;

279 loop(k, put z.l(k):12:2);

280 put /;

281 jump(km1)$(%min%=dir(km1))=1+ floor( (maxobj(km1) - z.l(km1)) / step(km1) )

; // posg(km1)=0

282 jump(km1)$(%max%=dir(km1))=1+ floor( (z.l(km1) - minobj(km1)) / step(km1) )

;
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283 );

284
285 loop(km1$(posg(km1)=maxg(km1) and sum(kmm1$(numk(kmm1) NE numk(km1)), posg

(kmm1))=0),

286 z.l(k) = payoff(km1 ,k);

287 payoffSol =1;

288 iter=iter +1;

289 put iter :5:0;

290 loop(k, put z.l(k):12:2);

291 put /;

292 jump(km1)$(%min%=dir(km1))=1+ floor( (minobj(km1) - z.l(km1)) / step(km1) )

; // posg(km1)=maxg(km1)

293 jump(km1)$(%max%=dir(km1))=1+ floor( (z.l(km1) - maxobj(km1)) / step(km1) )

;

294 jump(kmm1)$(%min%=dir(kmm1) and (numk(kmm1) NE numk(km1)))=1+ floor( (

maxobj(kmm1) - z.l(kmm1)) / step(kmm1) ); // posg(kmm1)=0

295 jump(kmm1)$(%max%=dir(kmm1) and (numk(kmm1) NE numk(km1)))=1+ floor( (z.l(

kmm1) - minobj(kmm1)) / step(kmm1) );

296 );

297
298 if(payoffSol =1,

299 Nc = prod(km1 , jump(km1));

300 for( comb = 0 to Nc -1 by 1, // find the positions of the points to be

skipped

301 combb = comb ;

302 loop(km1 , deltav(km1) = mod(combb ,jump(km1));

303 combb = floor(combb/jump(km1));

304 posg_v(km1) = posg(km1) + deltav(km1);

305 );

306 numord = sum(km1$(numk(km1) >1), posg_v(km1)* prod(kmm1$(numk(kmm1) LE numk

(km1) -1), maxg(kmm1)+1 ))

307 + sum(km1$(numk(km1)=1), posg_v(km1)) + 1;

308 v(n)$(numn(n)=numord) = 0 ;

309 );

310 else

311 rhs(km1) = sum(grid(km1 ,g)$(numg(g)=posg(km1)), gridrhs(km1 ,g));

312 solve mod_epsmethod maximizing a_objval using mip;

313 if (mod_epsmethod.modelstat <>% ModelStat.Optimal% and

314 mod_epsmethod.modelstat <>% ModelStat.Integer Solution%,

315 lastZero = 0; loop(km1$(posg(km1)>0 and lastZero =0), lastZero=numk(km1));

316 numordPre = sum(km1$(numk(km1) >1), posg(km1)* prod(kmm1$(numk(kmm1) LE

numk(km1) -1), maxg(kmm1)+1 ))

317 + sum(km1$(numk(km1)=1), posg(km1)) + 1;

318 posg(km1)$(numk(km1)<=lastZero) = maxg(km1); // skip all solves for more

demanding values of rhs(km1)

319 numordPost = sum(km1$(numk(km1) >1), posg(km1)* prod(kmm1$(numk(kmm1) LE

numk(km1) -1), maxg(kmm1)+1 ))

320 + sum(km1$(numk(km1)=1), posg(km1)) + 1;

321 loop(km1$((numordPre <numordp(km1))and (numordPost >= numordp(km1))), //

include points of the payofftable even if the counter would go beyond

322 z.l(k) = payoff(km1 ,k);

323 payoffSol =1;

324 iter=iter +1;

325 put iter :5:0 ,’;’;

326 loop(k, put z.l(k):18:5 ,’;’);

327 put /;
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328 jump(km1)$(%min%=dir(km1))=1+ floor( (minobj(km1) - z.l(km1)) / step(km1) )

; // posg(km1)=maxg(km1)

329 jump(km1)$(%max%=dir(km1))=1+ floor( (z.l(km1) - maxobj(km1)) / step(km1) )

;

330 jump(kmm1)$(%min%=dir(kmm1) and (numk(kmm1) NE numk(km1)))=1+ floor( (

maxobj(kmm1) - z.l(kmm1)) / step(kmm1) ); // posg(kmm1)=0

331 jump(kmm1)$(%max%=dir(kmm1) and (numk(kmm1) NE numk(km1)))=1+ floor( (z.l(

kmm1) - minobj(kmm1)) / step(kmm1) );

332 );

333 if(payoffSol =1,

334 Nc = prod(km1 , jump(km1)); display jump , Nc;

335 for( comb = 0 to Nc -1 by 1, // find the positions of the points to be

skipped

336 combb = comb ;

337 loop(km1 , deltav(km1) = mod(combb ,jump(km1));

338 combb = floor(combb/jump(km1));

339 posg_v(km1) = posg(km1) + deltav(km1);

340 );

341 numord = sum(km1$(numk(km1) >1), posg_v(km1)* prod(kmm1$(numk(kmm1) LE numk

(km1) -1), maxg(kmm1)+1 ))

342 + sum(km1$(numk(km1)=1), posg_v(km1)) + 1;

343 v(n)$(numn(n)=numord) = 0 ;

344 );

345 );

346 else

347 iter=iter +1;

348 put iter :5:0;

349 loop(k, put z.l(k):12:2);

350 put /;

351 jump(km1)=1+ floor(s.L(km1)/step(km1));

352 Nc = prod(km1 , jump(km1));

353 for ( comb = 0 to Nc -1 by 1, // find the positions of the points to be

skipped

354 combb = comb ;

355 loop(km1 , deltav(km1) = mod(combb ,jump(km1));

356 combb = floor(combb/jump(km1));

357 posg_v(km1) = posg(km1) + deltav(km1);

358 );

359 numord = sum(km1$(numk(km1) >1), posg_v(km1)* prod(kmm1$(numk(kmm1) LE numk

(km1) -1), maxg(kmm1)+1 ))

360 + sum(km1$(numk(km1)=1), posg_v(km1)) + 1;

361 v(n)$(numn(n)=numord) = 0 ;

362 );

363 ); // end of if on modelstat

364
365 ); // end of if on payoffSol

366
367 ); // end of if on v(n)

368
369
370 * Proceed forward in the grid

371 firstOffMax = 0;

372 loop(km1$(posg(km1)<maxg(km1) and firstOffMax =0),

373 posg(km1)=posg(km1)+1; firstOffMax=numk(km1));

374 posg(km1)$(numk(km1)<firstOffMax) = 0;

375 until sum(km1$(posg(km1)=maxg(km1)) ,1)= card(km1) and firstOffMax =0;

376
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377
378 finish=jnow; elapsed_time =(finish -start)*60*60*24;

379
380 put /;

381 put ’Elapsed time: ’,elapsed_time :10:2, ’ seconds ’ / ;

382
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Appendix E

Electrification planning through
shadow cost analysis

E.1 Selecting the electrification strategy

Among the technologies adopted for rural electrification [126], stand-alone home-based
systems, usually in the form of a diesel generator or a Solar Home System (SHS), are
widely adopted, particularly in contexts with low population density and low expected
electricity demand, as these two factors do not justify the expense for a more complex
off-grid system, such as a microgrid, or the extension of the national grid [15]. The SHS
technology consists of a PV panel, usually well below 1kW of power, and an associated
battery, to allow energy shifting and use of electricity during the evening hours. However,
those systems present several limits, and in particular they have a minimal capability of
guaranteeing development possibilities to the beneficiaries, since the technology is usually
sufficient to power very small appliances such as lightbulbs and phone chargers for a single
household, completely leaving out the possibility for more complex appliances or productive
uses of electricity, fundamental for unleashing development in rural areas [65].

When regional electrification planning tools are adopted to define which communities
of the analysed area to be connected to the national grid and which to be powered with
off-grid systems, the ideal mix of technologies for granting access to energy services is
provided [13, 14, 23]. However, given the different opportunities for development provided
by the technologies, the comparison is not always straightforward. Some works do not
consider SHS systems in the optimization, defining a priori some outlier points, too sparse
to be electrified with the national grid and hence suitable to be provided with home-based
technologies [14, 121, 127], others tend to have solutions biased towards SHS, given their
much lower cost when compared to grid extension and microgrids [12].

A novel method to account for the different development opportunities provided by
the different electrification strategies is here proposed. This approach aims at overcoming,
within a techno-economic model, the vision of access to energy as a binary variable, as if
any availability of electricity was equivalent. As discussed in Section 1.3, access levels are
defined by a wide variety of attributes and a mere traditional cost minimization is not able
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to capture such characteristics. According to this rationale, the approach makes the grid
connection and off-grid technologies comparable in a least-cost framework by associating
a penalty to the installation of standalone systems, aimed at taking into account the
different opportunities of socio-economic growth provided by the national grid, considered
as potential supplier of infinite power, and SHS, suitable for covering only basic household
needs and limiting the development of productive activities. Such penalty, in order to be
translated into economic form, is designed as a shadow cost based on two parameters: the
amount of electricity demand unmet by the standalone system and the different lifetime
of the two technologies, that entails more frequent replacements of the SHS with respect
to the grid infrastructure.

E.2 Methodology

The method aims at providing decision makers with a fair electrification strategy, ensuring
equitable energy access to all households involved. The procedure is composed by the
following steps:

(i) Formulating long-term demand curves using RAMP [122], a stochastic bottom-up
open-source tool.

(ii) Sizing a ”grid equivalent” standalone system, i.e. an SHS able to completely satisfy
the demand of the user over the project lifetime. The size of the PV and storage
components is designed in MicroGridsPy [37,128], an open-source linear programming
tool for microgrid sizing.

(iii) Computing the shadow cost CSC associated to standalone systems. This cost is re-
lated to two phenomena, firstly the unmet load which the actual SHS cannot satisfy,
secondly the limited lifetime of such device with respect to the grid connection. It
is computed as the difference between the cost of the ”grid-equivalent” SHS CgeSHS

(accounting for actualized replacement costs) and the cost of SHS CSHS . The num-
ber of replacements n corresponds to the number of times the user is supposed to
substitute the SHS in order to make up for a time equivalent to the grid lifetime.

CSC =

(
CgeSHS +

n∑
rep=1

CgeSHS

(1 + i)rep·lifetimeSHS )

)
− CSHS (E.1a)

n =

[
ceiling

(
lifetimegrid
lifetimeSHS

)]
− 1 (E.1b)

(iv) Identifying the optimal electrification strategy by including the shadow costs in the
economic objective function, i.e., updating the cost of the standalone system with
the cost of the “grid-equivalent” SHS, so as to account the poorer performances of
the SHS in terms of availability and durability of the service in comparison to the
national grid. A MILP algorithm selects which grid connection to keep and which
to drop in favour of standalone systems, in compliance with power balances and
technical constraints.
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The output of the procedure is a detailed plan to provide fair and equitable energy
access to the area under study, with georeferenced information on the grid infrastructure
to be extended and on the households to be powered by standalone systems.

E.3 Case study

The method was tested on the case study of the municipality of Omereque, Bolivia, dis-
tributed over an area of 800 km2, consisting of 11 scattered communities without access
to electricity, 137 households in total. The area is crossed by a MV transmission line (see
Figure E.1).

Figure E.1: Municipality of Omereque.

The SHS considered for the analysis is composed by a standalone PV (50 W) and Li-Ion
Battery (10 A, 12 V) resulting into a 50W-120Wh system, produced by local providers.
Cost and lifetime parameters are resumed in Table E.1.

Table E.1: Costs and lifetimes of components.

Component Cost Lifetime

MV feeder 10 k$/km 30 y

LV feeder 6 k$/km 30 y

MV/LV transformer 3500 $ 30 y

SHS 500 ÷ 800 $ 10 y
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E.4 Results and discussion

Following the novel modelling approach, the optimization has been run minimizing the
total investment cost, with the cost of the SHS increased by the defined penalty. The
benchmark to assess the impact of shadow costs accounting is a mere techno-economic
optimization. As the two electrification options are not economically comparable, a tradi-
tional cost evaluation would lead to a full electrification of the area by means of standalone
systems. Hence, this approach, well-established among practitioners, requires either a pri-
ori evaluations, or the use of more complex tools, i.e., multi-objective optimization, or
preliminary knowledge, hardly available, to establish a minimum grid connection rate or
maximum budget.

Figure E.2 shows the resulting grid extensions and the households powered by stan-
dalone devices. The inclusion of the shadow cost makes the different technologies compa-
rable within a simple least-cost framework and guides the solution towards a higher grid
connection rate, ranging from 13% (see Figure E.2a) up to 37% (see Figure E.2b), according
to the SHS cost range declared in Table E.1. These results suggest how the inclusion of the
development constraints in the process influences the optimal strategy selection towards
different shares of technologies.

Having the same budget resources at disposal, traditional methods would lead to much
higher connection rates, at the price of an uneven distribution of development opportuni-
ties, which may bring about inequalities and conflicts. Hence, given a predefined budget,
two alternatives are available to the decision maker. In the case of traditional optimization
using actual components costs, a larger amount of population can get access to the grid with
the development opportunities thereby associated, at the price of leaving the remaining
population with limited chances to improve their living conditions. In case a penalty is
applied to standalone systems, indeed, a smaller portion of the population is granted the
connection to the grid, but the total shadow cost accounting for all the connections by
SHS can be devoted to a variety of possible complementary activities aimed at improving
community conditions, by either providing the off-grid users with standalone systems that
can cover the full forecasted load, or considering interventions like cooperatives for food
processing, community solar kiosks with refrigerators, solar pumps for agriculture, leading
to a more equitable solution for all.

The key takeaway to practitioners is that the standard least-cost approach based on
technology costs may suggest electrification strategies that provide inhabitants of the same
area with very different means. The evaluation of the shadow cost allows identifying the
budget portion to be invested in actions aimed at empowering the beneficiaries with equal
development opportunities.

Therefore, the proposed approach can be used by decision makers to evaluate a fair and
thorough electrification strategy. Such results should be a flag for stakeholders involved in
the process of electrification strategy development, on the relevance that should be given to
the needs of the population, over the technical aspect alone, and how this leads to different
outputs in the optimization phase.

Moreover, this novel approach allows, through the evaluation of shadow costs, to make
the two electrification strategies economically comparable by means of a general procedure
which may be applied to any other technological option. Hence, the proposed methodology
broadens the use of powerful and straightforward cost-minimization tools to applications
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evaluating any set of electrification alternatives and where no preliminary information is
available.

(a) CSHS=500$

(b) CSHS=800$

Figure E.2: Optimal electrification strategy with shadow costs accounting.
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[39] R. Dufo-López, “iHOGA 3.0 User’s Manual,” 2021.

[40] F. Riva, F. Gardumi, A. Tognollo, and E. Colombo, “Soft-linking energy demand
and optimisation models for local long-term electricity planning: An application to
rural India,” Energy, vol. 166, pp. 32–46, 2019.

[41] N. Nguyen-Hong, H. Nguyen-Duc, and Y. Nakanishi, “Optimal Sizing of Energy
Storage Devices in Isolated Wind-Diesel Systems Considering Load Growth Uncer-
tainty,” IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 1983–1991,
2018.

[42] Y. Zhang, J. Wang, A. Berizzi, and X. Cao, “Life cycle planning of battery energy
storage system in off-grid wind-solar-diesel microgrid,” IET Generation, Transmis-
sion and Distribution, vol. 12, no. 20, pp. 4451–4461, 2018.

[43] A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, A. Azmi, and M. A. Ramli, “Op-
timization and sensitivity analysis of standalone hybrid energy systems for rural
electrification: A case study of Iraq,” Renewable Energy, vol. 138, pp. 775–792, 2019.

[44] A. Azizi, P. O. Logerais, A. Omeiri, A. Amiar, A. Charki, O. Riou, F. Delaleux, and
J. F. Durastanti, “Impact of the aging of a photovoltaic module on the performance
of a grid-connected system,” Solar Energy, vol. 174, no. August, pp. 445–454, 2018.

[45] S. D. Hamilton, D. Millstein, M. Bolinger, R. Wiser, and S. Jeong, “How Does
Wind Project Performance Change with Age in the United States?” Joule, vol. 4,
no. 5, pp. 1004–1020, 2020.

[46] R. Guerrero and M. A. Pedrasa, “Component degradation and battery replacement
in energy resource sizing for autonomous systems,” 2018 IEEE Asia-Pacific Power
and Energy Engineering Conference, APPEEC, pp. 106–111, 2018.

[47] D. Fioriti, D. Poli, P. Duenas-Martinez, and I. Perez-Arriaga, “Multi-year stochastic
planning of off-grid microgrids subject to significant load growth uncertainty:
overcoming single-year methodologies,” Electric Power Systems Research, vol. 194,
no. February, p. 107053, 2021.

132

https://www.homerenergy.com/products/pro/docs/latest/index.html
https://www.homerenergy.com/products/pro/docs/latest/index.html


BIBLIOGRAPHY

[48] H. Bindner, T. Cronin, P. Lundsager, J. F. Manwell, U. Abdulwahid,
and I. Baring-gould, Lifetime Modelling of Lead Acid Batteries, 2005, vol.
1515, no. April. [Online]. Available: https://www.researchgate.net/publication/
246687286 Lifetime Modelling of Lead Acid Batteries

[49] N. Diorio, A. Dobos, S. Janzou, A. Nelson, and B. Lundstrom, “Technoeconomic
Modeling of Battery Energy Storage in SAM,” NREL Technical Report NREL/TP-
6A20-64641, no. September, 2015.

[50] A. Perez, R. Moreno, R. Moreira, M. Orchard, and G. Strbac, “Effect of Battery
Degradation on Multi-Service Portfolios of Energy Storage,” IEEE Transactions on
Sustainable Energy, vol. 7, no. 4, pp. 1718–1729, 2016.

[51] D. Jimenez, D. Ortiz-Villalba, A. Perez, and M. E. Orchard, “Lithium-ion battery
degradation assessment in microgrids,” 2018 IEEE International Autumn Meeting
on Power, Electronics and Computing, ROPEC 2018, 2019.
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