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Abstract

Image deblurring is an image restoration technique that aims at recovering the sharp
image corresponding to an observation affected by blur. Removal of blur is key in many
applications, such as astronomy, microscopy, and digital photography. It has also been
shown that deblurring greatly improves the performance of other computer vision sys-
tems, such as image recognition, classification, and segmentation. Deep learning models
have proven effective in solving many image-to-image translation problems, meaning all
those problems where images are both the input and the output of the model. Since image
deblurring can be framed as such a problem, different studies in the literature have tried
to approach it by deep neural networks. One of the key elements in deep learning is the
dataset employed to train the neural network, as performance of the network are heavily
influenced by how well the dataset represents the problem. For this purpose, we consider,
for the first time in image restoration by deep learning models, a novel image-degradation
pipeline to simulate the blur and noise resulting from the camera movement during the
exposure process. Moreover, for the first time, we apply diffusion models to the problem
of image deblurring. This new class of generative models has shown impressive results
in various applications, and is becoming increasingly popular in the deep learning com-
munity. We train and test diffusion models on a state-of-the-art deblurring dataset and
on our own image-degradation pipeline, to show the potential of the approach on both
deblurring and noise suppression.

Keywords: image deblurring, diffusion models, image processing, image restoration,
deep learning, computer vision





Abstract in lingua italiana

Il deblurring è una tecnica di restauro delle immagini che mira a recuperare l’immagine ni-
tida da una osservazione affetta da sfocatura. La rimozione della sfocatura è fondamentale
in molte applicazioni, come l’astronomia, la microscopia e la fotografia digitale. È stato
inoltre dimostrato che il deblurring migliora notevolmente le prestazioni di altri sistemi
di computer vision, come il riconoscimento, la classificazione e la segmentazione delle im-
magini. Il deep learning si è dimostrato efficace nel risolvere molti problemi di traduzione
da immagine a immagine, ovvero tutti quei problemi in cui le immagini sono sia input
che output del modello. Poiché il deblurring può essere inquadrato come un problema
di questo tipo, diversi studi in letteratura hanno cercato di affrontarlo utilizzando reti
neurali. Uno degli elementi chiave del deep learning è il dataset utilizzato per addestrare
la rete neurale, poiché le prestazioni della rete sono fortemente influenzate dalla capacità
del dataset di rappresentare il problema. A questo scopo, per la prima volta nel campo
del deblurring di immagini mediante modelli di deep learning, consideriamo una nuova
pipeline di degradazione delle immagini per simulare la sfocatura e il rumore risultanti
dal movimento della fotocamera durante il processo di esposizione. Inoltre, per la prima
volta, introduciamo l’applicazione dei modelli diffusivi al problema del deblurring. Questa
nuova classe di modelli generativi ha dimostrato risultati notevoli in diverse applicazioni
ed è sempre più diffusa nella comunità del deep learning. Alleniamo e testiamo modelli
diffusivi su un dataset stato dell’arte per il deblurring, e su dataset generati dalla nostra
pipeline, per mostrare il potenziale di questo approccio sulla rimozione della sfocatura e
del rumore.

Parole chiave: deblurring di immagini, modelli diffusivi, elaborazione di immagini, ris-
torazione di immagini, deep learning, computer vision
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1| Introduction

Image restoration is the field of research that focuses on enhancing the visual quality of
degraded images. Degradation can occur due to various factors such as noise, distortion,
or compression artifacts during image acquisition, transmission, storage or downsampling,
to name a few. Image deblurring is a technique used in image restoration that aims to
recover the original sharpness of the picture from a blurry image. Many types of blur are
possible, depending on the causes of such blur, for example camera shake, out of focus
subject, or object motion.

The applications of deblurring are wide, such as astronomy, microscopy, and digital pho-
tography. Since the introduction of compact sensors in smartphones, and given the con-
tinuous increase in computational power of those devices, the focus has been shifting
from relying on the camera hardware to implementing sophisticated algorithms of image
restoration to improve the quality of pictures, and thus the interest in this field has been
increasing. Image restoration is a notoriously ill-posed problem: many non degraded im-
ages can generate the same degraded image, for example, different image could result in
the same downsampled half-resolution image. Moreover, in the deblurring scenario, the
interaction between pixels are much more complex then in downsampling.

The relatively recent introduction of deep learning has revolutionized the field of com-
puter vision. Neural networks have proven effective in many fields, such as classification,
segmentation, and image-to-image translation, meaning all those problems where images
are both the input and the output. Since image restoration can also be framed as an
image-to-image translation, some studies tried to approach it with deep learning, obtain-
ing sometimes better results than classic, non learning-based approaches.

One of the most important elements in deep learning is the dataset employed to train
the neural network. The performance of a neural network are directly correlated with
how well the dataset represents the problem. In other image restoration fields, dataset
building is trivial. For denoising, for example, it’s enough to synthesize an image by
artificially adding noise to the image. For super resolution, the dataset can be gener-
ated by downsampling images. Generating a dataset for image deblurring can be an
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intricate process. This is because various types of blurring effects can occur, and multi-
ple types can overlap in a single image. For some of those, mathematical models exist
and can be leveraged to generate a blurred image artificially. For other types, such a
model does not exist yet. A large part of this study will be focused on developing image
processing pipelines for degraded dataset generation, and another part will be instead
focused on using that pipeline for neural network training. We release publicly our tool
at github.com/lorenzoinnocenti/csb-dataset-generator.

Diffusion models are a relatively recent class of generative models. These models are based
on the concept of diffusion, where an initial random signal is iteratively transformed to
reach a target distribution, leveraging the power of denoising neural networks. Diffusion
models have shown impressive results in various applications, including image and audio
generation, and are becoming an increasingly popular research topic in the deep learning
community. The impressive results obtained from the application of diffusion models
in other traditional image restoration tasks, such as super-resolution, inpainting, and
colorization, served as a significant inspiration for this study.

This thesis investigates the performance of diffusion models in the field of image deblur-
ring. This study spawned from an article by Foi and Boracchi [1], which proposes an
algorithm to generate realistic images affected by blur and noise. The main contributions
of our work are:

• presentation of our synthetic blurring tool and its integration in neural network
training;

• showing that diffusion models are indeed a promising tool in image deblur, and
investigating which architecture is the most successful;

• employing our dataset generation tool to analyze the behaviour of our approach on
different magnitudes of blur and noise.

1.1. Structure of the thesis

The thesis is structured as follows. In Chapter 2, we give a mathematical base for the
problem, the basic rules, the assumptions, and the various subfields of image deblurring.
Chapter 3 reports the related work. We describe the article [1] and the algorithm that we
use for the dataset generation, and the most common deconvolution approach. Then, we
explore the various approaches others have tried to solve the image deblurring problem,
using deep learning. In Chapter 4, we illustrate the article that introduces diffusion models
in the field of image generation, and a few modifications to the architecture that has been
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proposed to improve generative performance. In Chapter 5 we present our contributions,
starting with an in detail description of our blurring pipeline, and the integration in deep
learning frameworks. We follow by describing the used model, the modification taken into
account, and a way to deblur images with large resolutions. In Chapter 6 we illustrate our
experiments, starting from the exploration of diffusion model architectures. Following, we
compare the performance of our approach with other blind, deep learning based deblurring
models. We then present our synthetic blurring pipeline, and we employ it analyze the
behaviour of our approach on different magnitudes of blur and noise. The final chapter
of this work, Chapter 7, offers concluding thoughts and insights.
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2| Problem formulation

We denote the degradation process attributable to blurring as a function of the sharp
image x:

y = Φ(x), (2.1)

where y is the blurred image, and Φ is the blurring process. If a model of the degradation
process is available, we can represent it as

y = Φ(x; θ), (2.2)

where θ is the vector of parameters that characterize the blur, given the degradation
model. For the whole study, unless otherwise specified, both x and y are objects in Rw×h

if grayscale images, and Rw×h×3 if RGB.

2.1. Blur types

We hinted to the existence of multiple blur types, and thus multiple blur models. Real-
life blur is usually a combination of these phenomena. In this section, we expand on this
concept.

2.1.1. Out of focus blur

Out-of-focus blur is the type of blur that happens when the camera lens fails to focus the
incoming light rays from a scene onto the image sensor. The magnitude of the effect is
proportional to the distance between the focal point of the image and the camera sensor.
Simulating out-of-focus blur can be achieved by convolving the image with a disk-shaped
Point Spread Function (PSF) kernel. When an object is out of focus, the light from each
point on the object creates a circular blur spot on the camera’s image sensor or film plane.
This circular blur spot is commonly known as the circle of confusion. By convolving the
image with a disk PSF, each pixel is spread to neighboring pixels in a manner similar to
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Figure 2.1: Example of out of focus picture. Notice how the small details, like the flowers,
are spread in a circular manner.

how light gets spread by the camera aperture. The blur model equations are

y = k ∗ x,

k(x, y) =

 1
πr2

, if(x− k)2 + (y − l)2 ≤ r2

0 , otherwise

(2.3)

(2.4)

where x is the sharp image, y is the blurred image, k is the PSF kernel, (k, l) is the
center of the PSF and r the radius of the blur. This formulation assumes that the whole
scene is at the same distance to the camera, and therefore the blur is spatially invariant,
meaning that the degradation is the same in every part of the image. For the whole study,
unless otherwise specified, k is an object in Rw×h. In the case of convolutional blur, the
parameters θ in 2.2 are the kernel k.
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Figure 2.2: Example of picture affected by camera shake blur. Notice how the small
details are spread in an horizontal manner. Also notice how both the subject and the
background are blurred in the same way.

2.1.2. Camera shake blur

Camera shake blur is a type of blur that occurs when a camera is moved during the
acquisition process. The severity of camera shake blur can vary, depending on the degree
and direction of camera movement, the speed of the shutter, and other factors. Given
the labeling of the camera axis in Figure 2.3, a common assumption that can be made
is that the camera rotation only occurs along the x and y axes, and not on the z axis.
Under this assumption, the blur effect can be considered spatially invariant, and therefore
modeled with a convolutional process using a PSF kernel. If we want to take into account
rotation along z, the model must include spatially variant blur, so a convolutional model
is no longer possible. The PSF kernel, in this scenario, represents the trajectory of the
movement of the camera during the sensor exposure period. This degradation process is
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Figure 2.3: Graphical representation of the camera axes.

based on the concept that, when an image is convolved with the PSF kernel, each pixel is
spread along the trajectory of the camera movement, simulating the way light is imprinted
on the sensor during the motion. In this case, the PSF kernel is not as trivial to synthesize
as the disk kernel of the out-of-focus blur, as it can take into account complex motion
patterns, depending on the desired realism of the blur. One common simplification is the
assumption of linear rotation of the camera, and therefore a kernel composed of a straight
line. Others have tried creating algorithms to generate more realistic and complex kernels.
Another approach is to record camera motion via external hardware, and use this data
to generate PSF kernels.

In this thesis, in contrast to what other deep learning deblurring studies do, additionally
to the camera shake blur degradation, we also include a Poisson and Gaussian noise
component in the degradation process, as proposed in [1]. Poisson noise is a model of the
photon acquisition of the sensor, and the noise associated with this kind of process, called
shot noise. It is is expressed as

u ∼ P(λ(k ∗ x)), (2.5)

where λ is a parameter that quantifies the quantum efficiency of the sensor and P is
the poisson distribution. Gaussian noise is a model of the noise caused by the electronic
amplification of the signal. It is added to the result of the application of poisson noise:

y = (u+ n)/T,

n ∼ N (0, σ2),

(2.6)

(2.7)

where σ is a parameter that quantifies the thermal noise of the sensor, N is the gaussian
distribution. In this degradation model, the parameter T represents the exposure time,
and controls the length of the trajectory of the blurring kernel. It is the same value as
the sum of the kernel pixels. The authors use this term to simulate the tradeoff between
blur and noise present in cameras: when T is small, the signal range is shrunk, increasing
the noise effect, and reducing the blur magnitude. The multiplication by 1/T in (2.6) is
an amplification factor that serves to restore the full dynamic range of the image. This
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Figure 2.4: Example of picture affected by object motion blur. Notice how only the
subject is blurred, while the background is sharp.

effect simulates the same tradeoff between blur and noise that we can find in cameras. A
more in-detail explanation of this process is in Section 3.1.

2.1.3. Object motion blur

Object motion blur is a type of blur that occurs when an object in the scene being pho-
tographed is in motion during the exposure period of the camera. The degree and direction
of the blur depend on several factors, including the speed and direction of the object’s
motion, the distance between the object and the camera, and the exposure time. This is
the most complex type of blur, as its effect is a composition of multiple differently moving
parts. It is typically spatially variant, meaning that the degradation varies in different
parts of the image. A simple mathematical model is not possible, so different methods
must be used to generate images with this characteristic.
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2.2. Deblurring approaches

Depending on whether we have a mathematical model that describes the degradation or
not, the inverse problem can be subdivided in two fields. When there is a model for the
blur, and the blurring parameters are known, it is possible to use non-blind approaches.
When the model is not known, or if it is known but the parameters are not, a blind
approach is necessary.

Non-blind approaches assume the blur as a known model, characterizable with a vector
of parameters θ, and assume those parameters to be known. It can be represented as

x̃ = Φ−1(y; θ), (2.8)

where x̃ is the estimated deblurred image, with same resolution as x and y. This category
encompasses not only deconvolution methods but also the inversion of non-convolution-
based models. Moreover, the performance of these methods are directly proportional on
how well the model and the parameters represents the degradation. If the accuracy is
high, they generally perform better than methods without model assumptions.

Blind approaches include all other deblurring methods that do not conform to the as-
sumptions outlined in the previous section, which can happen in two cases. In some
settings, the model is known but the parameters θ are not. When the model is known, a
possible approach is to use a parameter estimator to estimate θ, and then use a non-blind
approach to estimate x̃:

θ̃ = Ψ(y),

x̃ = Φ−1(y; θ̃),

(2.9)

(2.10)

where Ψ is the parameters estimator. The performance of these methods are strictly tied
to the accuracy of the considered model. In other settings, the blurring model is not
known, or is not possible to build one, for example if the blurring types are multiple in
the same image. In this case, the only method possible is to estimate the sharp image
directly from the blurred image:

x̃ = Φ−1(y). (2.11)

2.3. Metrics

Multiple metrics are available to assess the quality of restored images. We introduce
three of them in the next sections, and we use them to compare the methods in our work.
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The two most commonly used are Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM). In addition to those, we also introduce a more recent metric
that is more closely aligned with the field of deep learning, Learned Perceptual Image
Patch Similarity (LPIPS).

2.3.1. PSNR

The PSNR is the most popular metric used in the field of image reconstruction. It is
calculated as the ratio of the peak signal power to the mean squared error (MSE) between
the original and reconstructed signals. Due to the wide dynamic range of images, it is
usually expressed in dB. It is computed as

PSNR(x,y) = 10 · log10
(

MAX2(x)

MSE(x,y)

)
, (2.12)

where MAX(x) is the maximum pixel value of the sharp image, and MSE(x,y) is the
mean squared error between the original image and the degraded one. In the case of RGB
images, it is computed as

MSE(x,y) =
1

MN

M∑
i=1

N∑
j=1

3∑
k=1

(x(i, j, k)− y(i, j, k))2 (2.13)

where M and N are the image dimensions. This value is straightforward, easy to imple-
ment, and widespread in image processing, but has the downside that it only takes into
account per pixel differences. If, for example, the reconstruction is slightly shifted, the
PSNR can change greatly.

2.3.2. SSIM

The SSIM [2] is based on three main components: luminance, contrast, and structural
similarity. The luminance component measures the similarity in brightness between the
two images, the contrast component measures the similarity in contrast, and the structural
similarity component measures the similarity in texture and edges. These components are
computed as

l(x,y) =
2µxµy + c1
µ2
x + µ2

y + c1
,

c(x,y) =
2σxσy + c2
σ2
x + σ2

y + c2
,

s(x,y) =
σxy + c3
σxσy + c3

,

(2.14)

(2.15)

(2.16)



12 2| Problem formulation

Figure 2.5: Illustration of the LPIPS computation algorithm, from [3].

where x and y are two input images, µx and µy are the mean values of x and y, σ2
x and

σ2
y are their respective variances, and σxy is the covariance between x and y. Moreover,

c1 = (k1L)
2, c2 = (k2L)

2 and c3 = c2/2 are constants added to avoid division by zero.
The value of L is the dynamic range of the pixel values, typically 2b − 1, where b is the
number of bits per pixel. Finally, k1 = 0.01 and k2 = 0.03 unless otherwise specified.

The overall SSIM index is the product of these three components:

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y)

=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

(2.17)

The SSIM takes into account the more complex interactions between pixels, which is
important for assessing the quality of the restored image. This gives a different point of
view on reconstruction quality than PSNR, and therefore these two metrics are often used
in tandem.

2.3.3. LPIPS

In addition to the traditional metrics, we also introduce a more modern one, which is
more closely aligned with the field of deep learning, LPIPS [3]. Unlike conventional image
similarity metrics, LPIPS is designed to emulate the way humans perceive differences
between images by considering features or patterns within the image. The metric employs
a deep neural network that has been trained on a vast image dataset to extract these
features, and subsequently measures the similarity between the features of the two images.
In practice, LPIPS is computed as a scaled L2 distance between the activation values of
a vgg19 conv3.3 layer, trained for classification. The complete algorithm is illustrated in
Figure 2.5. It begins by preprocessing the two images, and extracting the features with
the pretrained neural network. From the feature representation, the distance is computed



2| Problem formulation 13

Figure 2.6: Samples of random image patches from the ImageNet dataset [4].

as

d(x̂, ŷ) =
∑
l

1

HW

∑
hw

∥wl ⊙ (x̂(h,w, l)− ŷ(h,w, l))∥2, (2.18)

where x̂ and ŷ are, respectively, the features extracted from x and y, in the form of 3D
matrices of sizes H ×W × L, and wl are a set of weights. The values of the weights are
trained though gradient descent, on a dataset made of image couples and human similarity
scores, which is the percentage of humans that considers the image as the same, despite
the distortions.

The authors of [3] demonstrate that LPIPS is a more accurate reflection of human per-
ception similarity when compared to non-deep learning based metrics. LPIPS is not as
widely used in other image restoration studies as PSNR and SSIM, so we utilize this
metric mainly for comparisons between our results. LPIPS is also used as partial loss in
some training settings, for example in [7], which is explained in Section 3.3.3.
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Figure 2.7: Samples of random image patches from the MS COCO dataset [5].

2.4. Datasets

2.4.1. ImageNet

The ImageNet dataset is introduced in [4]. It consists of a collection of images of objects,
animals and people, organized by semantic hierarchy, and labeled as one of the 80000
classes of the set. It is a dataset of images gathered for training of image recognition
neural networks. Since this dataset primarily consists of sharp images, it is suitable for
use when a synthetic degradation model is present. In such a scenario, the images from
ImageNet can be artificially blurred, and a neural network can be trained to reverse the
degradation. Since the images are scraped from various websites, the dataset has no bias
induced by the use of a single camera.

2.4.2. MS COCO

The MS COCO Dataset is introduced in [5]. It contains 328.000 images of complex
everyday scenes, segmented and labeled to aid the training of object localization an similar
problems. It also contains sharp images scraped from internet, and it can be used in a
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Figure 2.8: Samples of random image patches from the GoPro dataset [6].

same way as the ImageNet dataset.

2.4.3. GoPro

The GoPro dataset is introduced in [6]. The authors captured multiple videos with an
high framerate 240 fps camera, and averaged a number of frames between 13 and 7 to
get a blurred image. The middle frame is taken as the corresponding ground truth. The
blur in this dataset is a mix of camera motion and object motion. The main drawback
of this dataset is the bias introduced by the use of a single camera: all the images have
similar light, contrast and color balance. The dataset contains two subsets, depending on
the type of image averaging. We use the linear subset for this thesis.
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3| Related work

3.1. Camera shake blur image generation

In this section, we explain the image degradation algorithm proposed in [1]. This article
presents a first part about generating a realistic image degradation model, which is the
one that we introduced in 2.1.2, and a second part on testing reconstruction algorithms.

The article proposes an algorithm for the generation of images affected by camera shake
blur and noise. A trajectory is generated by simulating the motion of a particle in a 2D
domain. The particle has an initial velocity and, at each iteration of the generation algo-
rithm, is affected by a random perturbation and by a centripetal component. In addition,
with small probability, a random inversion of direction can happen. This trajectory is
then sampled in a 2D grid, generating the PSF kernel. The kernel is applied to the image
by convolution. Then, the image is further degraded by applying Poisson and Gaussian
noise, as in (2.6).

We describe the full degradation process in the three main steps: the trajectory generation,
the trajectory sampling and the synthetic image degradation, that simulates both noise
and blurring.

3.1.1. Trajectory generation

The trajectory generation algorithm is represented in Algorithm 3.1. It takes as inputs
the parameters that influence the behavior of the trajectory and outputs the trajectory,
represented as an array of complex numbers. The trajectory is later sampled in a 2D
matrix by the PSF kernel generation algorithm. It has, as inputs:

• h: kernel size, size in pixels of the canvas in which the trajectory is later be drawn,
i.e. the PSF matrix size.

• a ∈ [0, 1]: anxiety, scales the random vector that is added at each sample. Also
influences the probability of big shakes, a phenomenon that randomly inverts the
direction of the movement;
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Algorithm 3.1 trajectory generation
1: function traj_generation(h, a, ηt, L, c, g, fs)
2: θ ∼ U(0, 2π)
3: v = cos(θ) + i× sin(θ)
4: v = v × a
5: for t = 0 to ηt − 1 do
6: u ∼ U(0, 1)
7: if u < a× fs then
8: nd = 2× v × ei×(π+rand−1/2)

9: else
10: nd = 0
11: end if
12: a, b ∼ N(0, 1)
13: g = g × (a+ ib)
14: dv = nd + a× (g − c× xt)× L

ηt−1

15: v = v + dv
16: v = v

|v| ×
L

ηt−1

17: j[t+ 1] = j[t] + v
18: end for
19: c = h/2
20: dx = (Re(x))− c
21: dy = (Im(x))− c
22: j = j− dx
23: j = j− i× dy
24: return j
25: end function

• ηt: resolution of the trajectory curve, i.e. the number of samples of the curve;

• L: maximum length in pixels of the trajectory, computed as the sum of all the
distances between consecutive points;

• c ∈ [0, 1]: centripetal parameter, reoresents the strength of the pull towards the
previous point;

• g ∈ [0, 1]: gaussian parameter, determines the randomness of the movement in each
step;

• fs ∈ [0, 1]: frequency of big shakes.

The output is an array of complex numbers, j, that represent the samples of the curve.
The real part encodes the x coordinate, and the imaginary part encodes the y coordinate.

The algorithm is developed as follows. Firstly, on lines 2-4, a random initial direction
for the vector v is chosen. Then, a for loop is started on line 5 to iterate through the
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Algorithm 3.2 psf generation
1: function psf_generation(j, T )
2: k = 2D matrix of zeros
3: for t = 0 to ηt − 1 do
4: if T × ηt ⩾ t+ 1 then
5: tp = 1
6: else if T × ηt ⩾ t then
7: tp = (T × ηt)− t
8: else
9: tp = 0

10: end if
11: m1 = floor(Re(j[t]))
12: m2 = floor(Im(j[t]))
13: M1 = ceil(Re(j[t]))
14: M2 = ceil(Im(j[t]))
15: k[m1,m2] = k[m1,m2] + tp × tri_prod(Re(j[t])−m2, Im(j[t])−m1)
16: k[m1,M2] = k[m1,M2] + tp × tri_prod(Re(j[t])−m2, Im(j[t])−m1)
17: k[M1,m2] = k[M1,m2] + tp × tri_prod(Re(j[t])−m2, Im(j[t])−m1)
18: k[M1,M2] = k[M1,M2] + tp × tri_prod(Re(j[t])−m2, Im(j[t])−m1)
19: end for
20: return k
21: end function
22:
23: function tri_prod(d1, d2)
24: x1 = max(0, (1− |d1|))
25: x2 = max(0, (1− |d2|))
26: return x1 × x2

27: end function

values of t. Throughout each iteration, the algorithm has the chance to make a random
determination on whether to perform a big shake (lines 6-11). If so, it computes the
term nd that is used to invert the direction later. The new direction is picked randomly
in the range −v ± 1 in radians. The algorithm then proceeds to compute the g term,
which contains the random component of the direction update (lines 12-13). Next, it
updates the direction vector v with the gaussian component, the centripetal component,
a normalization term, and the potential direction inversion (lines 14-15). The algorithm
then normalizes v again and updates the vector j with the next value (lines 16-17). Finally,
after the computation of all the terms of j from 0 to ηt, the trajectory is centered to h/2

(lines 19-23).
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Algorithm 3.3 blur image and add noise
1: function blur_image(x,k, λ, σ)
2: x = x× λ
3: z = x ∗ k
4: n ∼ N (0, σ)
5: u ∼ P(z)
6: y = u+ n
7: return y
8: end function

3.1.2. PSF kernel generation

The PSF kernel generation algorithm is represented in Algorithm 3.2. It samples the
trajectory array in a 2D matrix, also called canvas, that will be use to compute the
convolution with an image to simulate camera shake blur. It takes, as inputs:

• j: trajectory generated by Algorithm 3.1, in a complex array form;

• T : [0,1] term that simulates the exposure time. It determines the percentage of the
trajectory that is sampled.

The output is the matrix of pixels of the PSF, k.

The algorithm proceeds as follows. First, the kernel matrix is initialized to zeros on line 2.
Then, a for loop is started on line 3 to iterate through the values of t. The purpose of this
loop is to compute the value of the tp term, which scales the intensity of the next sample.
This is done in lines 4-10, in such a way that the sum of all the values of k amounts to
T . After this step, the value of j[t] is used to compute the value of the four closest pixels
to the sample using linear interpolation. This is achieved in lines 11-18.

3.1.3. Synthetic blurring and degradation

The kernel generated in the previous two algorithms is used in the third algorithm, 3.3.
It has, as inputs:

• x: the image to be processed;

• k: the kernel generated with the previous algorithms;

• λ: parameter of the poisson distribution, that simulates one of the noise components
of the image degradation process;

• σ: parameter of the gaussian distribution, that simulates the other noise component.
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Figure 3.1: Examples of kernels generated by the official MATLAB implementation of [1].

The output is the degraded image.

The algorithm proceeds as follows. First, on line 2, the image is scaled with the λ

parameter. This scaling is be used for the Poisson noise, which is applied on line 6. Next,
on line 3, the image is convolved with the PSF matrix. The algorithm then generates
Gaussian noise on line 4. On line 5, Poisson noise is applied to the image. Finally, on line
6, Gaussian noise is added to the image.

The full algorithm is implemented by the authors in a MATLAB package. Some sample
PSF kernels are depicted in Figure 3.1. An example of the application of the blur process
is in Figure 3.2. In the image, the same trajectory is used to generate kernels with
various values of the exposure time T , meaning that a shorter portion of the trajectory is
sampled. A lower value of T means that the image gets diminished in value, so the noise
contribution is greater. A bigger value of T means a longer trajectory, so the image gets
blurred more. The images are depicted with the corresponding kernel, and are ordered
by ascending value of T .

3.1.4. The noise-blur tradeoff

The authors analyze the performance of the reconstruction of some non-blind, non deep
learning based deconvolution approaches. The aim is to study how the reconstruction
error developes with varying values of T . To do so, they degrade six the test images with
a set of six different trajectories, at a fixed noise level of λ = 3000 and σ = 0, with varying
T values. They use one linear trajectory and five trajectories created with the camera
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(a) T = 0.0625 (b) T = 0.25

(c) T = 0.5 (d) T = 1

Figure 3.2: Example of the application of the camera shake degradation implemented in
the algorithm from [1] to the Lenna test image.
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Figure 3.3: Results from [1] of the experiment reported in Section 3.1.4. In red the RMSE
of the reconstruction of images degraded with a linear trajectory, in green with camera
shake trajectory, restored using three different deconvolution algorithms. Lower is better.

shake blur kernel generation algorithm. They deconvolve the images using non deepl
learning based deconvolution algorithms and show the variation of RMSE as T varies.

What they find is that there are two distinct behaviors, depending on the PSF kernel. If
the blur trajectory is linear, the reconstruction presents an optimum value of T in witch
the reconstruction is the best. Otherwise, if the PSF trajectory is more complex, the
reconstruction levels off after a certain T value. Such behavior is reported in Figure 3.3.

3.2. Wiener deconvolution

Wiener deconvolution is the most famous non-blind, non machine learning based technique
used to restore a signal from a convolutional degradation. It is introduced by Norbert
Wiener in [8], and has since been widely used in signal deconvolution problems. It assumes,
as degradation model,

y = k ∗ x+ n, (3.1)

where x is the sharp image, y is the degraded image, k is the PSF kernel, and n is additive
noise. The Wiener deconvolution consists is a convolution operation with a filter that can
be computed as

k† = F−1

(
1

K
· |K|2

|K|2 + r

)
, (3.2)

where K = F(k), and F is the Fourier transform operator. The parameter r is a regu-
larization parameter, to be tuned to get the optimal reconstruction. If the noise power
spectral density is known, its value is r = |N |2

|Y |2 , where Y = F(y), N = F(n). The filter is
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(a) Sharp image (b) Blurred image (c) Reconstructed image

(d) Sharp image, zoom (e) Blurred image, zoom (f) Reconstructed image, zoom

Figure 3.4: Example of Wiener deconvolution. The second row is a zoom on the images
to highlight the ringing effects.

usually applied in the Fourier domain:

x̃ = F−1

(
1

K
· |K|2

|K|2 + r
· Y
)
. (3.3)

If we assume n ∼ N(0, σ2), then |N |2 = w × h × σ2. Images obtained using Wiener
deconvolution are usually affected by ringing artifacts, which are dark and light ripples
around bright features of the image. Such artifacts are depicted in Figure 3.4.

3.3. Deblur in deep learning

3.3.1. Non-blind deblurring

The assumption behind non-blind approaches is that the degradation process can be
modeled as a known mathematical operation, and that the degradation parameters are
also known. Most of these approaches feature convolutional blur, but other models are
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possible.

Deep Convolutional Neural Network for Image Deconvolution

In [9], Xu et al. propose the first deep convolutional neural network approach for image
deconvolution. In the article, the noise component is n ∼ N(0, σ2). The authors aim to
address the limitations of traditional methods such as the Wiener deconvolution, which
are either computationally expensive or produce reconstruction artifacts. The main idea
is to model a network that is initialized to compute the Wiener deconvolution, and fine
tune it on pairs of synthetically blurred and sharp images, to train it to avoid artifacts.

To keep the computational cost low, matrix k† is decomposed using SVD [10]:

k† = USVT ,

k† ∗ y =
∑
j

sj · uj

(
vT
j ∗ y

)
,

(3.4)

(3.5)

where uj and vj are the jth columns of U and U, and sj is the jth singular value. This
shows that a big 2D convolution can be expressed with a weighted sum of separable 1D
filters, and in practice some of those can be dropped due to a low value of sj.

Figure 3.5 reports the network architecture used in [9]. It consists of a convolutional layer
of size 121 × 1 and 38 filters, initialized with values from vj followed by an activation
layer. A second convolutional layer of size 1 × 121 and 38 filters, initialized with values
from uj, followed by an activation layer. A last convolutional layer of size 1 × 1 and 38
filters, initialized with values from sj.

The network is trained with as input synthetically blurred images, and as target the
sharp version. A denoising CNN composed by two 16 × 16, 512 filters layers, called
Outlier Rejection Sub-Network, is added in cascade after the deblurring network. The
last layer of the Deconvolution Sub-Network can be fused with the first from the Outlier
Rejection Sub-Network, obtaining the architecture shown in Figure 3.5. The two networks
are trained separately and then fine tuned together.

The results obtained with this model are better than the Wiener deconvolution, and
reduces greatly the Wiener ripple artifacts. The main drawback of this approach is that
a new model must be trained for each different kernel, effectively reducing the general
applicability.
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Figure 3.5: Graphical representation of the architecture of the network in [9].

Deep Image Prior

In [11], the authors introduce a new approach to image restoration and inpainting using
deep convolutional neural networks. The basic idea of the Deep Image Prior approach is
to use a deep convolutional neural network with randomly initialized weights as a prior for
natural images. In [11], deblurring is not addressed, but others have later adapted Deep
Image Prior in approaching that problem. The network is an encoder-decoder architecture
with, as input, a random 32-channel tensor of the same size as the desired output. At each
epoch, the network is trained via gradient descent, to produce the distorted image from
the noise tensor. What the authors notice is that, by stopping the training before the
complete convergence, the image produced as output has less distortions. The training is
represented as the minimization of a distance term E which depends on the problem

θ∗ = argmin
θ

E (fθ(z);y) , (3.6)

where fθ is the model transformation, z is the random input tensor, y is the distorted
image, θ are the model parameters, θ∗ are the parameters after training.

To adapt the method to image deconvolution, using the blur model as in Equation 3.1 as
an example for the formulation, the term E is defined as

E (fθ(z);y) = ∥fθ(z) ∗ k− y∥ . (3.7)

At the end of the training, the restored image is computed as

x̃ = fθ∗(z). (3.8)

By itself, this approach proves to be effective for various problems such as denoising,
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inpainting, JPEG artifacts restoration, but underperforming for deconvolution. Some
further studies succeed in achieving good results by adding a regularization term R (fθ(z))

to the loss function:

θ∗ = argmin
θ

[E (fθ(z);y) + λ ·R (fθ(z))] . (3.9)

A particularly well performing technique is DIP-TV [12], which uses total variation reg-
ularization, expressed as

RTV (x) =
∑
i,j

√
(xi,j − xi−1,j)2 + (xi,j − xi,j−1)2, (3.10)

where xi,j is the pixel in the ith row and jth column. Another well performing technique
is DeepRED [13], which uses regularization by denoising:

RDN(x) =
1

2
xT [x− d(x)] , (3.11)

where d(x) is a denoising function of choice. In the article, the authors use either non-local
means (NLM) or block-matching and 3D filtering (BM3D).

3.3.2. Blind parameters estimation

In this section, the degradation model is known but not the degradation parameters.
For example, a convolutional degradation model is assumed, but the PSF kernel is not
known. What this models attempt to do is to estimate the degradation parameters, and
then reverse it.

Learning to deblur

The first end to end blind deblurring model is introduced in [14]. The model is composed
of three stages. The first stage is a feature extractor, composed of convolutional layer,
activation, linear layer, activation, and another linear layer. The idea behind this stage
is that the outputs should be composed of features tuned to make the kernel estimation
easier. The outputs are two maps, x̃i and x̃i. The second stage is the kernel estimation
stage, which is performed by minimizing

∑
i

∥k̃ ∗ x̃i − ỹi∥+ βk∥k̃∥, (3.12)
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equivalent to solving

k̃ = FH

∑
i F x̃i ⊙ F ỹi∑
i |F x̃i|2 + βk

, (3.13)

where F is the DFT matrix, FH is the transpose conjugate of F , ⊙ is the Hadamard
product, and v is the complex conjugate of v. The division and absolute value are
performed element-wise. This operation is implemented in what the authors call quotient
layer. The third stage is the image estimation stage, performed by minimizing

∑
i

∥k̃ ∗ x̃− ỹ∥+ βx∥x̃∥, (3.14)

which is also solved with a quotient layer.

A multiscale approach is implemented, in which the base network is stacked multiple
times, each computing the deblurred image at a different resolution. The result of the
smallest resolution level is upscaled by using a deconvolution layer, and given as input to
the second level, concatenated with the distorted image at higher resolution, to help the
reconstruction. Same with the third one. For example, if the model operates on a 256p
image, the image is downscaled to 64p and fed to the lowest resolution pipeline, obtaining
a 64p reconstruction. This reconstruction is upscaled to 128p, and concatenated with a
128p downscaled version of the distorted image, obtaining a 128p reconstruction. The
same is done to get the full 256p reconstruction. The approach proves to be competitive
with the non machine learning based approaches of blind deconvolution.

A Neural Approach to Blind Motion Deblurring

In [15] another approach to deblur based on a convolutional model is presented. The
authors propose a model that is trained on image patches of 65 x 65 pixels, and outputs
the Fourier coefficients of a deconvolution filter. The deconvolution filter is applied to
the patch to compute the sharp version. The loss used to train the network is the L2
distance between the estimated sharp image via deconvolution, and the real sharp image.
The patches are converted in the Fourier domain and separated into frequency bands.
The bands are fed to a network that has the first two layers with a connectivity limited
to adjacent bands, to have a low computational cost. After these two layers, follows five
fully connected layers. The architecture is presented in Figure 3.6.

Multiple patches are processed, and then are merged into an initial estimation of the
sharp image. To merge the deblurred patches, the value of a pixel in the full merged
image is computed as the weighted average between the same pixel in the patches that
contain it, scaled by a Hann window value. The computed image is used to perform a
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Figure 3.6: Architecture described in [15]. L, B1, B2, H represent lowpass, low bandpass,
high bandpass, highpass filters.

better estimation of the kernel kλ, as

kλ = argmin
∑
i

∥(k ∗ (fi ∗ x))− (fi ∗ y)∥2 + λ
∑
n

|k[n]|, (3.15)

where fi are various derivative filters, x is the output of the averaging of the patches,
y is the blurred image, λ is a regularization weight. The resulting kernel is used to
deconvolve y using a state of the art non-blind algorithm, and the final estimation of the
reconstruction is obtained.

Non-convolutional synthetic blur

In this work we focused mainly on convolutional blur, due to the article by Boracchi and
Foi [1] being the main inspiration for the study, but other kinds of synthetic blur have
been proposed. In [16] the authors propose a technique to deblur an heterogeneously
blurred image, but restricting the blur only to linear kernels. What it means is that each
pixel is considered as individually blurred with a kernel consistent of a straight line, and
the kernel varies spatially. To do so, a CNN is trained to recognize the linear blur in
a small patch. This model is applied on overlapping patches, and a dense motion field
estimation is computed as average of the multiple kernels for each single pixel. From this
field, a non-uniform deconvolution algorithm is used to restore the sharp image. Another
article based on the estimation of a dense motion field is [17]. The authors take the idea a
step further and implement a U-net trained to directly translate an image to a 2 channel
representation of the motion field. This method proves to be more effective than the
patch-wise version. By using this better estimation of the degradation, the reconstruction
is more accurate.
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3.3.3. Blind image-to-image translation

In this chapter the analysis focuses on the approaches without assumptions about
parametrization of the image distortion. All these techniques are image-to-image transla-
tions, and the models have, as only input, the distorted image, and outputs the restored
image. We start by introducing Generative Adversarial Networks (GANs) [18], a network
architecture which has proven to be particularly effective in this problem.

GANs

GANs are generative models, meaning that their goal is to learn the probability distribu-
tion of a training set, so that we can use the model to generate new data with the desired
features. The structure of a GAN is composed by two competing networks. A generator
network takes as input a random seed, which usually is a random noise image of the same
size as the desired output, and generates an image. A discriminator networks takes as
input an image and outputs a [0,1] value that represents the confidence that the image is
natural or generated by the generator network.

The training is conducted in two alternating steps. The discriminator is fed a mixed
batch of real images, to be classified 1, and images generated by the generator, which
are composed of noise in the beginning of the training, to be classified 0, and iterated for
some epochs. Then, the generator is fed a random seed, and trained for some epochs to
generate an image that fools the discriminator.

The loss is defined as

LGAN = Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))], (3.16)

where D is the discriminator, G is the generator, x ∼ Pdata means that x is extracted from
the dataset of real images, and z ∼ Pz is extracted from the space of random seed values.
The generator is trained to minimize the function, and the discriminator to maximize it.
The two networks are trained for a fixed number of epochs each. After completing the
training the discriminator is no longer required, and the generator can be used to produce
images from random seeds.

Generative adversarial networks face two significant challenges, namely stability and mode
collapse. Stability issues emerge when the training oscillates without finding an equilib-
rium point between the generator and discriminator functions. On the other hand, mode
collapse occurs when the generator only learns to produce a limited set of outputs, lead-
ing to lack of variation in the generated samples. The original version of GANs lack a
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conditioning mechanism, so they are not suitable to the problem of image restoration.

Pix2pix

The first paper to use generative adversarial networks for image-to-image translation is
[19]. The conditioning mechanism is the concatenation of the input image to the seed.
The architecture is composed by a generator network, that takes as input a noise image
seed concatenated with the input image, and generates an image, and a discriminator
network, that takes as input a pair of images, and outputs a [0,1] value that represents
the confidence that the images are a input and a ground truth pair, or an input image
and a generated output.

The training is conducted in the same way as with non conditional GANs, but using as
loss:

LcGAN = Ex,y[logD(y,x)] + Ey,z[log(1−D(y, G(y, z))], (3.17)

where y is the input image, x is the target image and z is the noise seed image. For the
generator, the loss is also mixed with an L1 loss as shown in Equation 3.19

LL1 = Ex,y,z[||x−G(y, z)||1],

Ltot = LcGAN + λLL1,

(3.18)

(3.19)

while the discriminator is trained on LcGAN only. The findings suggest that the model
tends to disregard the noise seed during training. However, eliminating the seed results
in a model that can only match delta functions and produce deterministic outputs, which
limits its ability to learn input-to-output relationships. To inject stochasticity into the
model, the authors replace the seed with several dropout layers during both testing and
training. Other studies, like [6], instead completely remove the seed, without dropout.

The authors demonstrate the versatility of their image-to-image model by successfully
applying it to several different problems. While they did not use the model for the
deblurring task in this article, it serves as a meaningful example of the potential of image-
to-image GANs.

DeepDeblur

DeepDeblur is GAN-based deblurring model proposed in [6]. As generator, the authors
use a multi-scale architecture, like the one used in [14] and presented in Section 3.3.2,
consisting of three U-Net models with residual blocks pipelines, that compute the recon-
struction of the sharp image at three different resolutions. Each of the three models is
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Figure 3.7: Architecture presented in the article [6].

constituted of multiple cascaded residual blocks, made of a convolution layer, an activa-
tion layer, a convolution, and a skip connection from the input to the output. The the
result of the smallest resolution models is upscaled by using a deconvolution layer, and
given as input to the second models, concatenated with the distorted image at higher res-
olution, to help the reconstruction. The same happens to the third one. The architecture
is represented in Figure 3.7.

The discriminator takes as input either a sharp image or a deblurred image, and classifies
it as such. It is trained on the loss in (3.17). The generator is trained, together with the
adversarial loss, on an MSE component at each scale of the model. The total loss for the
generator is defined as

Ltot = LMSE + λ · Ladv (3.20)

where λ = 10−4 is constant. An important addition of this paper is the creation of the
first non-synthetically blurred dataset, the GoPro dataset, described in Section 2.4, which
is used in this article for both training and testing.

DeblurGAN

DeblurGAN is proposed by Kupyn et al. in [7]. It uses the same method as the Pix2pix
model, with the exception of the loss function, which is defined by two main contributions.
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The first contribution is the Wesserstein GAN loss, as in [20], expressed as

LGAN = −Ey (D(G(y))) , (3.21)

where y is the blurred image.

The second contribution is a perceptual loss term, which follows the same reasoning as the
LPIPS metric, described in Section 2.3.3, discarding the scaling of the features, defined
as

LX = Ey,x

(
(ϕ(G(y))− ϕ(x))2

)
, (3.22)

where ϕ is the output of the conv3.3 layer of a trained VGG-19. The two losses are
combined in:

L = λ · LX + LGAN (3.23)

Where λ = 100 is a constant weight. The architecture is a U-Net with ResBlocks.

Three models are trained, one with convolutional camera shake blur, like in [1] but dis-
carding the noise component, one trained with the Gopro dataset, and one with a mix of
both. What the authors show is that the model trained with the mixed dataset obtain
better performance than the others. An advanced version of this approach is developed in
[21]. In this article, the authors modify the architecture of DeblurGAN to incorporate a
multiscale approach, as seen in DeepDeblur [6], obtaining better results than the previous
DeblurGAN.

SRN

In [22], the authors introduce an architecture based on a multiscale U-Net with skip
connection, like the one in [6]. The difference is that, at the bottleneck layer, a ConvLSTM
cell [23] is present, that passes the state to the next level of the multiscale pyramid. This
allows grater receptive field and improves the performance of the system compared to the
[6]. The loss used in this article is only composed by a MSE term, without adversarial
loss. The authors show that the performance of the model is still better than [6], even
without adversarial component. The GoPro dataset is used. In the article, the authors
also test the performance of a single scale versus the full multiscale approach, to prove
that the latter actually improves the result.
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Diffusion models [24] are a recent alternative generative model to GANs. The fundamental
concept, which is drawn from thermodynamics, is to use an iterative process to gradually
corrupt information of a data distribution, until obtaining a random distribution. A neural
network model is trained to reverse the corruption process, and by doing so obtaining
a powerful and very flexible generative model. The original authors initially applied
the method to test distributions, such as synthetic toy datasets and simple sequences.
Additionally, they utilized the diffusion model to generate small images.

4.1. Denoising Diffusion Probabilistic Models

Ho et al. [25] demonstrated the successful application of diffusion models in high-
resolution image generation. The article presents the diffusion process as navigation on
a Markov chain, where the states represent an image with varying levels of noise, rang-
ing from pure Gaussian noise to an image without any noise. See the Figure 4.1 for a
graphical representation.

4.1.1. Training and inference algorithms

The process that starts from an image xo drawn from a real image distribution and
progressively adds small amounts of gaussian noise is called forward diffusion process, and
is represented as q. This process produces a sequence of noisy samples x1,..., xT for each
value of t, called timestep, where T is the number of diffusion steps. The diffusion process
is determined only by the noise schedule, controlled by the noise variance {βt ∈ (0, 1)}Tt=1.
For a large T , xT can be approximated as an isotropic Gaussian distribution.

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1)

(4.1)

(4.2)
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Figure 4.1: Graphical representation of the markov chain model considered in [25].

This notation is used by the authors to indicate that each sample xt has normal distribu-
tion with mean

√
1− βtxt−1 and variance βtI. By using the reparametrization αt = 1−βt

and ᾱt =
∏t

i=1 αi, the following property is derived:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (4.3)

What the diffusion model tries to accomplish is to learn the opposite process, called
reverse diffusion process, denoted as pθ, where θ indicates the array of learnt parameters.

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

(4.4)

(4.5)

where p(xT ) = N (xT ,0, I).

While q(xt−1|xt) is unknown, q(xt−1|xt,x0) is tractable.

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI) (4.6)

Using Bayes’ rule, the mean and variance of q(xt−1|xt,x0) can be parameterized as follows

β̃t =
1− ᾱt−1

1− ᾱt

βt

µ̃t(xt,x0) =

(√
αt(1− ᾱt−1)

1− ᾱt

xt +

√
ᾱt−1βt

1− ᾱt

x0

) (4.7)

(4.8)

The authors use variational bound on negative log likelihood to train the model:

− log pθ(x0) ≤ Eq

[
log

q(x1:T |x0)

pθ(x0:T )

]
(4.9)

The objective can be further modified to be a mixture of many KL-divergence and entropy
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terms to make each term in the equation analytically calculable.

LVLB = Eq

[
log

q(x1:T |x0)

pθ(x0:T )

]

= Eq

DKL(q(xT |x0) ∥ pθ(xT ))︸ ︷︷ ︸
LT

+
T∑
t=2

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0



(4.10)

(4.11)

The distribution pθ(xT ) has no learnable parameters, so LT is a constant and is ignored
during training. The last reverse step, the one to estimate x0, is computed using a separate
decoder. At the end of sampling, x0 = µθ(x1, 1).

The authors assume that Σθ(xt, t) = σ2
t I, assumption that will be lifted in some of the

following articles, so the objective of the article is to train µθ(xt, t) to predict µ̃t. The
authors also reparametrize the problem to use the model to predict the noise at each step,
instead of the mean value, and include the reparametrization xt =

√
ᾱtx0+

√
1− ᾱtϵ with

ϵ ∼ N (xT ,0, I):

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)

(4.12)

where ϵθ(xt, t) is the noise estimation on xt at the timestep t. Sampling xt−1 ∼ pθ(xt−1|xt)

means to compute:

xt−1 = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
, σ2

t I

)
(4.13)

By doing this, the loss at each timestep t is simplified to:

Lt = Ex0,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2] (4.14)

The authors also found that the training works better when the weighting term is ignored:

Lsimple
t = Et∼[1,T ],x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
= Et∼[1,T ],x0,ϵ

[∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2] (4.15)

(4.16)

When the model is completely trained, random gaussian noise can be fed as xT and the
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Algorithm 4.1 DDPM training algorithm
1: repeat
2: extract x0 from the target images dataset
3: t ∼ Uniform(1, ..., T )
4: ϵ ∼ N (0, I)
5: Take a gradient descent step on ∇θ∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)
∥2

6: until convergence

Algorithm 4.2 DDPM sampling algorithm
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 =
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

5: end for
6: return x0

Markov chain can be navigated backwards to generate a sample with the features learnt
from the dataset. The final algorithms proposed for training and sampling are described
in 4.1 and 4.2. For the complete mathematical discussion, see article [25].

The article employs a noise schedule that involves a linear interpolation between β1 = 10−4

and βT = 0.02. The authors suggest two options for σt used in the sampling process,
namely βt and β̃t, both of which produced similar results in experiments. While other
interpolation methods, such as quadratic or cosine-shaped, can be used between β1 and
βT , most studies, including the original article, tend to favor the linear interpolation for
its balance between simplicity and performance. The article also employs exponential
moving average regularization, with a with a decay factor of 0.9999.

4.1.2. Architecture

The backbone of the denoising neural network is a U-Net with skip connections, with a few
adjustment. The model include residual blocks and attention blocks as main computation
components. The parameters are shared along the Markov chain, and we effectively have
only one denoising model that works for every value of t. To inject in the network
knowledge about the timestep t, position embedding is used.

Position embedding

Position embedding is a technique described in the article that introduces the capabilities
of the transformer architecture [26], as a mean of encoding the position of a word in a
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Figure 4.2: Graphic depicting in blue the values used for normalization, in various nor-
malization layers, as described in [27].

phrase to be processed by a network. This layer takes as input the values of t for the
images in the batch, in a tensor of shape (b, 1), and outputs a tensor of embeddings of
shape (b, c), where c is the number of channels of each image in the tensor and b is the
batch size. The embeddings are computed as

p⃗t
(i) :=

sin(ωkt), if i = 2k

cos(ωkt), if i = 2k + 1
(4.17)

where:
ωk =

1

100002k/d
(4.18)

This process has no learnable parameters. In addition, the position embeddings are fed
to a position encoding block composed by a linear layer, an activation layer, and another
linear layer.

Group normalization

Group normalization is introduced in [27] as an alternative to batch normalization. In
batch normalization, as the batch size decreases, the error quickly rises due to poor
batch statistics estimation. This restricts the use of this mechanism for computer vision
applications, where often samples are large and batches must be reduced in size to allow
them to fit in the RAM of the machine.

Group normalization divides the channels into groups and calculates the mean and vari-
ance for each group. The comparison with other normalization mechanisms is depicted in
Figure 4.2. The computation is batch size independent, and its accuracy is steady over a
large range of batch sizes.
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Attention layer

The attention mechanism is another technique described in [26]. The idea is to compute,
from an input tensor, an attention map, which can be thought of as a vector of importance
weights, or as a vector that represents how strongly each value in the output correlates
with values from the input. Another advantage of this layer is that, contrarily to what
happens in convolutional layers, the output depends on each value in the input, and so
the receptive field is increased.

For each input tensor, three matrices of shape wh × d are computed, named Q, K and
V, where w and h are the dimensions of each input channel and d is the dimension of the
representation in the attention layer, an hyperparameter to be decided when designing
the model. Each one of the maps is computed via multiplication by a weight matrix. In
this context, each input channel is considered as a Rwh vector. The input matrix X is
thus a wh× c matrix, where c is the number of channels.

Q = X ·Wq

K = X ·Wk

V = X ·Wv

(4.19)

(4.20)

(4.21)

The weight matrices Wq, Wk and Wv are learnt with gradient descent, and are in Rc×d.
From the tensors, an attention map for each pixel is computed as:

Z = softmax
(
Q · (K)T√

d

)
·V (4.22)

where Q · (K)T ∈ Rwh×wh,Z ∈ Rwh×d. The softmax operation applied to the matrix is
so that the resulting matrix has all the rows that sum up to 1. In the case of [25], d = c

is chosen, so Z can be directly used as output. The tensors Wq, Wk and Wv are learnt
with gradient descent.

Residual block

The residual block used in this model differs from the classic one because in addition it has
to incorporate the information about the timestep. The structure comprises convolutional
blocks, each composed of a group normalization layer, an activation layer, and a 2D
convolutional layer. It also contains a block composed by a SiLU and a linear layer that
gets as input the output of the position encoding block and outputs a b × c tensor. A
graphical representation is the second block in Figure 4.5.
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Figure 4.3: Full architecture from [25], example used for 64 pixel images. Dashed lines
are the skip connections.

The full residual block is composed by a convolutional block, the result is added to the
output of the timestep block, and this is fed to another convolutional block. In addition,
there is a residual connection from before the first block to the output of the second, with
a 1× 1 convolutional layer on it.

Full architecture

The full architecture of the diffusion model in [25] is composed as follows:

• the input tensor is fed to a 2D convolutional input layer, and the position embeddings
are fed to the position encoding block;

• cascade of downsampling stages, composed by two residual blocks and a downsam-
pling convolution (except for the last stage, which has no downsampling);

• middle stage, composed by a residual block, an attention layer, another residual
block;

• cascade of upsampling stages, that take as input the concatenation of the output of
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the previous stage and the skip connections from the downsampling stage, composed
by two residual blocks and an upsampling convolution (except for the last stage,
which has no upsampling);

• an output stage, composed of a group normalization, an activation layer and a
convolutional layer, to restore the correct number of output channels.

In addition, at the 16× 16 resolution map, there is another attention block between the
residual blocks and the downsampling layer of both the downsampling and upsampling
stage.

4.1.3. Performance

The authors conclude stating that the model has samples quality comparable to state-
of-the-art GAN models, with the important advantage that diffusion models avoid model
collapse and the stability problems that GANs present. On the drawbacks, they admit
that the computational cost is greatly increased, because the model needs to be applied
to the sample T times, instead of the one-shot sample approach of GANs. Another big
drawback is the fact that, due to the group normalization and the global attention blocks,
the output resolution of the image is fixed at model creation. While sampling speed is
an aspect on which many studies has focused on, a non-fixed resolution diffusion model
is yet to be tested.

4.2. Further improvements

BigGAN residual blocks

In [28], the authors introduce a large GAN architecture to improve the generation power
of previous GANs for high resolution images. Among the other changes to the structure
of the model, an alternative to the classic convolutional upsampling and downsampling
layers is proposed, represented in Figure 4.4. This block can be used as alternative to the
upscale/downscale convolution in the diffusion model architecture. To be adapted to the
diffusion model, a position embedding mechanism is added between the two convolution
stages of the block, as shown in Figure 4.5.

SR3

In [25] no conditioning mechanism is proposed. To generate images belonging to a certain
class, the authors train the network using only the images belonging to the class. This
is not a very flexible implementation, as it needs the training of a different network for
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Figure 4.4: Standard residual block (left), upsampling residual block (center) and down-
sampling residual block (right) blocks, BigGAN style.

Figure 4.5: Standard residual block (left), upsampling residual block (center) and down-
sampling residual block (right) blocks, BigGAN style with time embedding, used in [29].
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Figure 4.6: Full architecture from [29]. Example used for 64 pixels images. MH stands
for multi-head, BG for BigGAN. Dashed lines are the skip connections.

Algorithm 4.3 SR3 training algorithm
1: repeat
2: extract x0 from the target images dataset
3: extract y from the low resolution images dataset
4: γ ∼ p(γ)
5: ϵ ∼ N (0, I)

6: Take a gradient descent step on ∇θ

∥∥ϵ− ϵθ
(
y,

√
γx0 +

√
1− γϵ, γ

)∥∥2
7: until convergence

each class. A naive yet effective way of conditioning image generation on input images is
proposed in [30], in witch the authors concatenate the conditioning image to the partially
denoised image at each diffusion step. This model is called conditional diffusion model.

In [31], a diffusion model architecture similar to the one proposed in [25] is trained in a
conditional manner to address the problem of super resolution, in a model called SR3. In
SR3, following the intuition of [32], the positional encoding on t is replaced by conditioning
on γ = ᾱ. This allows a more intuitive conditioning than the one on natural numbers, and
also to use different β schedules on training and inference, and thus use less timesteps
for inference, effectively reducing the sampling time. The model is trained to take as
input, in the first step of the diffusion process, the blurred image and the noise seed,
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Algorithm 4.4 SR3 sampling algorithm
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 =
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(y,xt, γt)

)
+ σtz

5: end for
6: return x0

concatenated in a 6 channel image, and the γ of the first step, and to output the next
step of the diffusion process. This output is concatenated with the blurred image, and
fed to the model together with the next γ value. The process is iterated until the end
of the Markov chain. The conditional version of the algorithms proposed by Ho et al. is
described in Algorithm 4.3 and 4.4. The architecture used is similar to the one found in
the original DDPM model, but using residual blocks in the style of BigGAN and increasing
the number of residual blocks per resolution.

The input fed to the model, as done in other super resolution models, is an upscaled
version of the low resolution image to the desired resolution, obtained using bilinear
interpolation. Super resolution is sometimes seen as a special case of deblurring: the
aim of super resolution neural networks is to remove the smoothing introduced by the
interpolation used for the upscaling. The good performance of this approach in the super
resolution problem is one of the facts that inspired our use of diffusion model in image
deblurring.

Multi-head attention layer

Multi-head attention is an alternative to the previously described attention layer, also
proposed in [26]. The difference is that instead of computing the three matrices Q, K
and V, it computes a series of n triplets matrices of shape wh × d, named Qj, Kj and
Vj, where n is the number of attention heads and d is the head dimension. Both are
hyperparameters to be decided when designing the model. Each one of the maps is
computed via multiplication by a weight matrix. Again, each input channel is considered
as a Rwh vector. The input matrix X is thus a Rwh×c matrix, where w and h are the
dimensions of each input channel, and c is the number of channels.

Qj = X ·Wqj,

Kj = X ·Wkj,

Vj = X ·Wvj,

(4.23)

(4.24)

(4.25)



46 4| Diffusion models

where j is the index that represents the head number, ranging from 1 to n. The weight
matrices are in Rc×d. From the tensors, an attention map for each pixel and for each head
is computed as:

Zj = softmax

(
Qj · (K)Tj√

d

)
·Vj, (4.26)

where Qj ·(K)Tj ∈ Rwh×wh,Zj ∈ Rwh×d. The softmax operation is applied to the matrices
so that the resulting matrix has all the rows that sum up to 1. The matrices Zj are
concatenated in a matrix Y ∈ Rwh×nd. To get an output of the layer with the same shape
as the input, Y is multiplied by another weight tensor Wo ∈ Rnd×c. The result is a tensor
in Rwh×c. The tensors Wq, Wk, Wv and Wo are learnt with gradient descent.

Usually, only one of the hyperparameters d and n is fixed, while the other is computed so
that n · d = c. By doing this, the number of network parameters is kept almost constant,
but the sample quality is potentially increased.

Guided diffusion

In [33] and [29], Nichols and Dhariwal propose a series of architectural and algorithmic
improvements to be applied to the method proposed by Ho et al., to enhance the quality
of the generated samples. The authors find that using fixed values for the matrix Σθ is
sub-optimal for sampling. What they observed is that σ2

t = βt and σ2
t = β̃t are the upper

and lower bounds for the reverse process variances. They propose to let the network learn
Σθ, but instead of letting it do so freely, they learn the matrix as interpolation between βt

and β̃t. The model specifically produces a vector with one component for each dimension,
and this vector is converted into variances as follows:

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t). (4.27)

They also observe that v usually does not learn values outside the [0, 1] range, suggesting
that the bounds are indeed expressive enough. Given that the objective Lsimple does not
depend on Σθ, the authors propose as alternative objective the one given by:

Lhybrid = Lsimple + λ · LVLB (4.28)

where λ = 0.001 is a constant weight value, and stop-gradient is applied to µθ in the
LVLB term, so that LVLB only guides the learning of Σθ. They also use γ conditioning as
in [32].
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As architectural modifications, they propose to change the diffusion model U-Net with:

• 256 base channels against 128 (i.e. the number of output channels of the first
convolutional layer);

• BigGAN residual blocks for upscale and downscale;

• Attention blocks at 32× 32, 16× 16 and 8× 8 resolutions, instead of only 16× 16;

• Attention blocks with residual connections from before the Q, K and V decompo-
sition to the output of the block;

• Multi-head attention with either the number of head fixed to 4 or the number of
channel per head fixed to 64.

The authors conclude that with this changes they are able to produce samples with quality
metrics comparable to GAN approaches. In the same articles, a mechanism to condition
image generation to a class, and an alternative approach to diffusion called DDIM, not
based on a Markov chains, are proposed. These techniques are not relevant in the scope
of this thesis, so they will not be treated.

Palette

The authors of [34] present an approach to extend the application of diffusion models to
image-to-image translation. Their approach involves modifying the architecture proposed
in [29] by removing class conditioning and integrating an image conditioning mechanism,
similar to the one described in [31]. The loss function used is Lsimple and there is no predic-
tion for Σθ, as they found no practical benefit in performance. The modified architecture
is utilized for various image processing tasks, including image inpainting, uncropping, col-
orization, and restoration of JPEG artifacts. The authors demonstrate that the diffusion
model can be adapted to serve as a general image-to-image translation method for various
classic problems in the field, where computational time is not the primary concern. The
authors find that diffusion model often outperforms GANs and CNNs in these tasks.
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5| Contributions

In this section we present the main contributions of this thesis. We present our novel
dataset generation pipeline for neural network training. Following, we present our inves-
tigation of the application of conditional diffusion models in image deblurring.

5.1. Camera shake dataset generators

We present an implementation of the generator classes for the blurring kernels presented
in Chapter 2: an Out Of Focus (OOF) kernel generator by following the formulation
in Section 2.1.1, and a Camera Shake Blur (CSB) kernel generator by following the
one presented in Section 2.1.2. The camera shake blur follows the kernel generation
algorithm from Section 3.1, and includes an algorithm to avoid pixel displacement during
the degradation.

We use the kernel generators in three other classes, used to degrade images by producing a
random degradation within user specified ranges of parameters: OOF random degradation
generator, CSB random degradation generator, and Noisy Camera Shake Blur (NCSB)
random degradation generator. We also present a tool to degrade images with a constant
trajectory, to be used to investicate the tradeoff between noise and blur, as shown in
3.1.4, the Constant Trajectory (CT) degradation generator. These functionalities are then
integrated in dataset generators, to train neural networks. The implementation is used
to train conditional diffusion models, and to show that they are an effective approach to
reverse such degradation.

We are among the first to propose a randomized camera shake blur pipeline for neural
network training, and the first to consider noise in the formulation. We think that this
contribution can be helpful to future research in the image deblurring field, and we publicly
release the code at github.com/lorenzoinnocenti/csb-dataset-generator.
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(a) Aliased version (b) Precision = 4 (c) Precision = 100

Figure 5.1: Example of disk with radius of 6 pixels, generated at different precisions.

5.1.1. OOF degradation pipeline

We present an implementation the OOF kernel generator. To achieve this, we develop a
class capable of generating a PSF kernel with customizable kernel size and disk radius.
We create a function that evaluates, for every pixel, whether:

r2 < (x− c)2 + (y − c)2, (5.1)

where r is the disk radius, c is the matrix center, equal to half the matrix size. If the
equation is true, the pixel is set to 1, otherwise is set to 0.

To avoid the creation of distorted kernels, due to the low pixel count, as shown in Figure
5.1a, we develop a function that can produce higher resolution kernels which are subse-
quently downsampled. This approach allows the PSF kernels to include values between
0 and 1 at the disk’s edge, resulting in a more realistic and smooth edge. We introduce
a precision parameter which determines the resolution of the larger kernel in terms of
multiples of the desired PSF size. The impact of different precision values on the PSF
kernel is illustrated in Figure 5.1. The described algorithm takes as inputs the size of the
kernel matrix, disk radius, and precision, and produces the corresponding kernel.

We use the implemented functionality in the OOF random degradation generator. To
achieve this, we develop a class which is initialized by providing a range of disk radius
values and a kernel size to the constructor. The instantiated object offers a process
image function, used to degrade an image. Specifically, when an image is passed to this
function, a disk radius value is randomly selected within the specified range, a PSF kernel
is created, and the image is blurred using the resultant kernel. This approach can be
seamlessly integrated into the training of neural networks, as we will discuss later.



5| Contributions 51

5.1.2. CSB degradation pipeline

We propose an implementation of the algorithm for camera shake blur as described in
Section 3.1, which we call the CSB kernel generator. Our implementation comprises two
classes, one for the creation of the trajectory and one for the sampling of the trajectory
in the 2D grid, producing the kernel. During the creation of an instance of the trajec-
tory creation class, the user can specify the parameters described in Section 3.1, which
are kernel size, trajectory length, and parameters that characterize the motion, including
anxiety, centripetal term, gaussian term, frequency of big shakes, resolution of the trajec-
tory curve, and the maximum length in pixels. Once the instance is created, a function
can be called to produce a trajectory with the specified parameters, in the form of a 1D
array of complex values. To create an instance of the CSB kernel generator class, the de-
sired trajectory and kernel size are passed as parameters. This class provides a generate
function, that requires an exposure value as input. When called, the function creates the
kernel by sampling the trajectory on a 2D grid of desired size, in a proportion according
to the provided exposure value. If no exposure value is defined, the function defaults to
using an exposure of 1.

We enhance the approach with a kernel recentering algorithm, to improve restoration
accuracy in blind deblurring. If the trajectory is not centered in the kernel, it causes pixel
displacements during the convolution process. This scenario happens frequently, as the
algorithm was not originally meant to be used in deep learning training, particularly when
the exposure value is different than 1. This is to be avoided, to ensure that the model does
not learn to restore misaligned images. To address this, we propose an algorithm that
calculates the barycenter of the kernel through a weighted pixel average, and subsequently
shifts it to align the barycenter as closely as possible with the center of the matrix. To
do so, we first crop the region of interest, which is the zone of the kernel with values
different than 0. We compute the barycenter of the region, as a weighted average of the
coordinates by the value of the pixel:

bx =
∑
i

∑
j

i× k[i, j],

by =
∑
i

∑
j

j × k[i, j]

(5.2)

(5.3)

where bx and by are the coordinates of the barycenter, and k is the kernel. Once the
barycenter coordinates are found, we approximate them to the nearest integer values. We
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compute the padding to be added to the region of interest, by computing:

px =
w

2
− bx,

py =
h

2
− by,

(5.4)

(5.5)

where px and px are the left and top padding, w and h are the width and height of the
PSF matrix. We then pad the region of interest with the computed paddings, and add
right and bottom paddings to reach the desired size.

The CSB kernel generation is used in the CSB random degradation generator. This class
is instantiated with ranges of motion parameters and of trajectory lengths in pixels. The
object exposes a process image function that works analogously as in the OOF random
degradation generator: each time an image is passed to the function, new motion param-
eters and trajectory length are randomly picked, a trajectory is created, and then it is
sampled to create a kernel. This kernel is used to degrade the image by convolution, and
the blurred image is returned. In this class, the exposure is fixed to 1, as we use the
trajectory length parameter in the trajectory creation class for the same function.

We present an implementation the full degradation algorithm from [1], which accounts
for both blur and noise, in a class called NCSB random degradation generator. The main
mechanism is the same as the CSB random degradation generator, but also features the
application of Poisson and Gaussian noise. In addition to the parameters that controls
motion, it has as input, during instantiation a lists of values for exposure, and the two
noise parameters λ and σ. Each time the process image function is called on an image, a
random value for the exposure is extracted from the lists and used for degrading the image,
in addition to the application of the blurring kernel. In this class we do not randomize the
choice of the trajectory length parameter for the trajectory class, as we want to control
it with the exposure value.

We also present a pipeline that resembles the NCSB random degradation generator, but
uses the same trajectory and noise levels for each image, and randomizes the exposure
time T . This class is called Constant Trajectory (CT) degradation generator, and can be
used to analyze the performance of deblurring on different values of T , in a similar way
to what is done in [1].

5.1.3. Dataset generators

We present a way to integrate the functionalities introduced in the previous section in
neural network training. The integrations are presented as dataset generators for both
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Tensorflow and Pytorch. The first dataset generator, named constant kernel dataset gen-
erator, is instantiated by providing a kernel created by either the CSB kernel generator
or the OOF kernel generator, previously described. The kernel is then stored as an at-
tribute of the object during instantiation. When a sample is required from the dataset,
the corresponding sharp image is retrieved from its designated path and convolved with
the stored kernel to produce the degraded image.

The second dataset generator, the generic degradation generator, is instantiated by pro-
viding a function that takes an image as input and produces another image as output.
In our approach, we utilize the previously implemented process image functions from the
random degradation classes, by passing it to this dataset generator during instantiation.
The function is stored as an attribute of the object. When a sample is retrieved from
this generator, the corresponding sharp image is loaded from its designated path and the
stored function is applied to the image, to produce the degraded version.

5.2. Conditional diffusion models for image deblur-

ring

In this study, we apply conditional diffusion models to the problem of image deblurring.
The application of diffusion models to solve the deblurring problem was a novel approach
when we started this research. A recently published work [35] uses a similar idea, but
employing a fully convolutional neural network as denoiser.

5.2.1. Diffusion model architecture exploration

We use the architecture proposed in Section 4.1.2, modified along with the training tools,
to work in a conditional manner, for image-to-image translation. We utilize the condi-
tioning mechanism outlined in Section 4.2, which consists in the concatenation of the
noise seed and partially denoised images with the blurred image, at each timestep of the
Markov chain.

We explore various architecture modifications, among the ones proposed in Section 4.2.
These modifications are:

• multi head attention mechanism, with heads of a fixed size of 64;

• additional attention blocks at resolutions of 32 × 32 and 8 × 8, in addition to the
ones at 16× 16, which we will refer to from now on as multi resolution attention;

• BigGAN-style downscale and upscale blocks;
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• increase of the latent representation, going from a channel count after the input
convolutional layer of 128 to 256.

We test each of these contributions individually to show their impact on performance. We
avoid training for the estimation of Σθ(xt, t), as other studies [34] have found no practical
benefit in doing so. We also avoid the use of γ embedding, as the focus of the study is
not on estimation speed.

We train and test our models with both the GoPro and our synthetic dataset, which we
present in the following section. We evaluate the performance of our models using PSNR,
SSIM, and LPIPS metrics. In the experiments, we show that conditional diffusion models
are an effective deblurring solution, with a comparable performance with other GAN-
based studies, and that the proposed modifications actually improve the performance.

5.2.2. Training and testing diffusion models on synthetic blur

We present the training of diffusion models for the removal of the camera shake blur as
presented in [1], one with the sole blurring and one with the addition of noise, by using the
dataset generators presented in the previous section. We show that the model presented is
effective in restoring images affected by camera shake blur and with noise components of
different magnitudes. We employ the CT degradation pipeline to investigate the presence
of an optimal value of T for the reconstruction, and we show that the findings of [1] also
apply to our method.

5.3. Arbitrary resolution image deblurring

As a mean to overcome the limitation of fixed resolution, imposed by some blocks in the
architecture, we employ an algorithm to deblur arbitrary sized images. The algorithm
decomposes the image in multiple patches, and builds a list with all of them. If the patch
would be bigger than the remaining part of the image, a mirrored version of the image is
used to fill the missing pixels. This list is transformed in multiple batches of the desired
batch size, and all the batches are processed with the diffusion model. The output batches
are transformed back in a list of patches, and those patches are merged back in an image,
which represents the full deblurred image.

To avoid color discrepancies in the final image, we implement a color correction algorithm,
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to restore the original brightness and color balance of the patches, by computing

x̂r = x̃r − x̃r + yr,

x̂g = x̃g − x̃g + yg,

x̂b = x̃b − x̃b + yb,

(5.6)

(5.7)

(5.8)

where x̂ is the color restored version of the image, x̃ is the output image of the network,
y is the blurred image, v is the average of the vector v, and the subscript indicates the
color channel.

We propose three ways to merge the patches together, beginning with the basic strategy
of dividing the image into non overlapping patches. We call this merging algorithm trivial
merging. We proceed to make a more sophisticated tool, that computes the estimation
of the image on multiple overlapping patches. To do so, it extract patches with a shift
s, computed as s = w/N , where w is the width of the patch, which is the same as the
height, and N is the number of overlapping patches. To combine them in a full image,
we set the value of each pixel to the average of its estimated values from all patches that
contain it. We call this overlapping merging. Lastly, we present a third patch merging
algorithm, which averages the patches in a way that gives a pixel more weight the closer it
is to the center of the patch, similarly to what is proposed in [15] and presented in Section
3.3.2. To implement this, we concatenate to the image a fourth channel, that contains the
values of the weights. The weights are computed as a 2D Hann window. The 1D Hann
window is defined as

v(n) =
1

2

(
1− cos

(
2π

n

N

))
, (5.9)

where N is the size of the window. The 2D version is defined as

w(x, y) =
√
v(x)v(y). (5.10)

To combine them in a full image, we set the value of each pixel to the average of its
estimated values from all patches that contain it, weighted by the value of the window.
We call this Hann merging.
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6| Experiments

In this section we implement, train and test the proposed solutions. We start by analyzing
the behaviour of our model at different training checkpoints, to set the number of epochs
to conduct our experiments. We follow by investigating the best architecture for image
deblurring on the GoPro dataset, with a comparison with other popular deep learning
based solutions. Then, we train and test on our proposed camera shake dataset, to show
the effectiveness of our method on both deblurring and noise suppression. Finally, we
implement a study on the noise-blur tradeoff, analogously to what is presented in Section
3.1.4.

6.1. Training and testing on the GoPro dataset

We start the experimentation phase by implementing all the tools necessary for the train-
ing and testing of conditional diffusion models. We proceed by implementing the architec-
ture from [25], and then modify it into a conditional version. We follow by implementing
some of the improvements presented in Section 4.2. Finally, we compare our results with
some competing studies in the same field.

6.1.1. Training of the base model

We use Pytorch as a framework for this study. We implement a Dataset class, which along
with the Dataloader class is what handles dynamic loading of the images in Pytorch. Our
implementation of dataset class also handles the necessary preprocessing steps for training.
Initially, both the blurred and sharp images are loaded. The images can then optionally
be resized by a scaling factor. Two cropping options are available, a random crop for the
training set and a center crop for the test set, which ensures the same patch is selected
every time. Finally, the images undergo normalization and are converted to tensors.

We implement the training and sampling functions to take a six-channel tensor per batch
sample, which is the concatenation of the noisy image xt and the blurred image y. Ad-
ditionally, we incorporated exponential moving average regularization into our approach,
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following [25]. To further facilitate our training and testing efforts, we create a package of
helpful tools, including model saving and loading capabilities, timed training functionality,
and periodic result sampling.

Architecture

We implement a model as close as possible to the original architecture outlined in [25].
We use an input resolution of 64 × 64, and a base channel count of 128. Since the
original article only uses resolutions of 32 × 32 and 256 × 256, we have no indication of
the appropriate channel multipliers, which determine how much the channel dimension is
increased at each stage. To address this, we follow the recommendations from [29] and
implement multipliers of 1, 2, 3, and 4. Each stage employs 2 residual blocks. For group
normalization, we employ a group size of 32, and we set the exponential moving average
regularization factor to 0.9999. We use 1000 diffusion steps for both training and testing.
We use a β schedule consisting of linear interpolation of values ranging from β1 = 0.0001

to β1000 = 0.02. We call this architecture base model.

Dataset

As previously mentioned, our trainings and tests are conducted on the GoPro dataset,
given the common use in image deblurring. The dataset test serves as a benchmark for
both the comparison of our architecture performance and for evaluating our study with
the others in the field. We use randomly extracted patches of a resolution of 64×64 pixels.
However, we observed that many patches are composed almost entirely of a constant value,
lacking sufficient detail for accurate reconstruction, while others were smaller than the
blur size, rendering them hard to restore. As a result, we opted to use a resize factor of
1/2, for this phase. We call the datasets that we use for this phase halved GoPro dataset.

We evaluate the performance of our models using PSNR, SSIM, and LPIPS metrics. We
always test on the central patch extracted from every image of the test set. To calculate
the evaluation metrics, we developed a tool that scans through the test set, divides it into
batches, and navigates the sampling Markov chain, starting from a randomly generated
noise image seed, until a fully denoised sample is obtained for each batch sample. Once all
the predictions are computed, we calculate the PSNR, SSIM, and LPIPS for each sample
and aggregate them through averaging.

Training settings

During training, we employ an L2 type of loss, which aligns with the general trend in the
field. We have also tested the use of L1 loss, but did not observe any significant difference
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Figure 6.1: Metric measured at various checkpoints, obtained on the halved GoPro
dataset, with the architecture from [25].

in performance. Therefore, we opt for L2 for the sake of simplicity and consistency with
the theory presented in Chapter 4. We use the Adam optimizer throughout the whole
study.

We fix the number of samples per epoch to 1024, randomly selected patches from the
available training samples. Due to hardware limitations, we use the maximum possible
batch sizes that fit in the RAM of our machines, which are smaller than the typical values
used in this field. For instance, while [29] uses a batch size of 2048 for a resolution of
64× 64, we use a batch size of 32. We experiment with various learning rates and found
that, at a batch size of 32, rates larger than 1 × 10−5 had convergence issues, so we use
that value.

Epochs analysis

To decide how many epochs to use to test our results, we obtain a validation set by
splitting the training set samples. The GoPro dataset is composed of 21 subsets, each
of them containing images from the same video. Among the 21 subsets in the Gopro
training set, we use 7 for validation and 14 for training. We test on the validation set
every 1000 epochs of 1024 samples, until 8000 epochs. The results are in Table 6.1. We
did not observe overfitting phenomena in this training range. As a compromise between
performance and training time, we decide to continue our analysis at 4000 training epochs
for all our next experiments, unless otherwise specified.
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PSNR ↑ SSIM ↑ LPIPS ↓
Base model 27.10 0.814 0.158
Base model + 256 base channels 28.66 0.860 0.116
Base model + multi head attention 27.61 0.829 0.146
Base model + multi res attention 27.54 0.825 0.147
Base model + BigGAN blocks 27.81 0.838 0.146
Improved model 29.58 0.880 0.102

Table 6.1: Performance of the base model, the structural changes, and the improved
model, at 4000 epochs. Trained on prandom patches from the halved GoPro train set,
and tested on the central patches from the halved GoPro test set.

6.1.2. Improvements

We train and test the base model, and all the modifications to the architecture proposed
in Section 5.2. We implement all the modification, and apply them individually to the
base model. We use the same training and testing settings as explained in the previous
section. The results for each modification are reported in Table 6.1.

The modification that has the most success is the increase of base channel count, with
the drawback of nearly doubling the training time. Both the addition of BigGAN blocks
and multi head attention brought increases in performance with non-noticeable training
time increase. Multi resolution attention also improved results, with little increase in
computation time. The performance of the model is further improved by combining all the
modifications, as shown in Table 6.1. We call the architecture with all the modifications
improved model, from the title of [33].

For the remainder of the study, we will use a final model that incorporates the improve-
ments. Specifically, the model has 256 base channels and employs 64 channels per head,
multi head attention. It includes attention layers at resolutions of 32, 16, and 8, as well as
BigGAN style blocks for both downsampling and upsampling, unless otherwise specified.

6.1.3. Comparison with other deep learning deblurring solutions

We compare our improved model against some deep learning based blind deblurring meth-
ods. As previously stated, the 64× 64 resolution model has convergence problems on the
full resolution GoPro dataset, due to the small size of the receptive field. Consequently,
we proceed to train a model with a resolution of 128 × 128, utilizing patches extracted
from the GoPro training set without resizing factors.
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PSNR ↑ SSIM ↑ LPIPS ↓
Improved model, on central patches 28.30 - -
Improved model, on full resolution images 28.00 0.870 0.183
Sun et al. [16] 24.64 0.842 -
DeblurGAN [7] 27.20 0.954 -
DeepDeblur [6] 28.30 0.917 0.182
SRN [22] 30.10 0.932 0.788
DeblurGAN v2 [21] 29.55 0.934 0.253

Table 6.2: Comparison with other blind deblurring, neural network based, baseline ap-
proaches, tested on the GoPro set. The missing values are due to the limited use of LPIPS
in literature.

In the state of art, the test on the GoPro datasets are conducted by measuring the average
performance on the full 1280× 720 resolution. However, our method is unable to achieve
this due to its inherent fixed resolution limitation. We test on a subset of the pixels,
composed of the central 128 × 128 patch of each image from the GoPro test set. The
PSNR value obtained in this test is presented in Table 6.2, labeled as Improved model,
on central patches, along those achieved by the alternatives presented in Chapter 3. We
only show PSNR because it is the only one normalized by number of pixels, while SSIM
and LPIPS are content-based. The reported results are obtained in the linear subset of
the GoPro dataset, which is the same that we used for training. We avoid reporting
performance metrics of methods that use different datasets, as we feel that using the
same dataset is the most fair way to compare the methods. The LPIPS metric is not as
widespread as the other two, and have never been reported in literature for some studies.
We show this value for some methods, as presented in [36].

Although the other methods are designed to process images of larger resolutions, and
thus they can recognize and reconstruct larger and more complex patterns, the results
achieved by our model on low-resolution patches are promising. We expect our method
to outperform the alternatives, if trained on higher resolution images, for more time, and
with proper data augmentation techniques.

6.1.4. Qualitative assessment

We present some image samples to showcase the potential of our method. The image
samples shown in Figures 6.2 and 6.3 illustrate the ability of our model ability to produce
sharp, clear images from blurry inputs.
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In the sample images, we can observe that the deblurred images appear realistic, despite
the occasional reconstruction mistakes. Nevertheless, we believe that these errors can be
deemed acceptable considering the fact that the blurring process obfuscates such intricate
details, resulting in a substantial loss of information. For example, we can see the branch
disappearing from Figure 6.2b and the white stick missing from Figure 6.2h. The model
seems to be effective when the image has distinct borders and less detailed textures, such
as in Figures 6.3h and 6.2e. When the image is composed of complex patterns, like in
Figure 6.3k, the network restores a realistic result, even if it is not exactly the same
pattern as in the original image.

6.2. Arbitrary resolution deblur

In this section, we evaluate the performance of the arbitrary resolution image deblurring
algorithms introduced in Section 5.3. To conduct the testing, we employ the 128 × 128

improved model trained in Section 6.1.3 on the GoPro training set. The images utilized
for testing are from the full resolution GoPro test set.

Figure 6.6 showcases an example of trivial merging output. The restored image exhibits
artifacts at the edges where the patches are stitched together. A closer examination
of these artifacts is displayed in Figure 6.4a. When overlapping merging is employed,
the artifacts persist, albeit with reduced magnitude, and their occurrence becomes more
frequent. This can be attributed to the multiplication of the number of edges that need
to be stitched together, by a factor corresponding to the number of overlapping patches.
Figure 6.7 serves as an illustration of such output, while a detailed view of the artifacts
can be seen in Figure 6.4b. When the Hann merging version of the algorithm is employed
the artifacts are completely eliminated. This is due to the fact that the edge of the
patch, which is the primary cause of these artifacts, has no influence on the final result.
Notable improvements in restoration quality can be observed in Figures 6.8, 6.12, 6.10, and
6.14, where the artifacts are entirely absent, resulting in noticeably superior restoration
outcomes compared to other versions ov the algorithm.

The Hann merging algorithm is tested on a subset of images from the GoPro test set.
The outcomes of the evaluation are presented in Table 6.2 under the label of Improved
model, on full resolution. Due to time limitations, we utilized only a subset of the train
set, as employing the entire set would have been time-consuming. We test on the first 10
images from each of the 11 subsets of the test set, for a total of 110 images. This test
allowed us to also compare the SSIM and LPIPS values with those obtained from other
methods. Although there is a minor decrease in PSNR when compared to the patch-based
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(a) Blurred image (b) Restored (ours) (c) Ground truth

(d) Blurred image (e) Restored (ours) (f) Ground truth

(g) Blurred image (h) Restored (ours) (i) Ground truth

(j) Blurred image (k) Restored (ours) (l) Ground truth

Figure 6.2: Example of patches from the GoPro dataset, processed with the improved
model, 128 pixels of resolution.
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(a) Blurred image (b) Restored (ours) (c) Ground truth

(d) Blurred image (e) Restored (ours) (f) Ground truth

(g) Blurred image (h) Restored (ours) (i) Ground truth

(j) Blurred image (k) Restored (ours) (l) Ground truth

Figure 6.3: Example of patches from the GoPro dataset, processed with the improved
model, 128 pixels of resolution.
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(a) Trivial merging (b) Overlapping merging (c) Hann merging

Figure 6.4: Zoomed in details of the full image deblur. Overlapping and Hann merging
computed using 4 layers of patches.

test, our approach yields competitive results in terms of LPIPS, indicating the production
of high-quality images. As we use a subset of the test set, we cannot directly compare
the metrics, but they nonetheless provide the suggestion that diffusion models are a valid
alternative to GANs for image deblurring.

6.3. Training and testing on the synthetic camera

shake blur dataset

Among the multiple implemented pipelines, we want to test the performance of the
restoration on the degradation proposed in [1]. In this section, use the functionalities
presented in Section 5.1 to train diffusion models with the most effective architecture
that was discovered in Section 6.1. For the whole section, use models with a resolution of
64× 64 pixels, and train for 4000 epochs of 1024 samples each.

6.3.1. CSB without noise

In this section, our aim is to examine the performance of our method across various ranges
of blur magnitudes. To achieve this, we utilize three different settings of the CSB dataset
generator, resulting in the generation of three datasets with distinct blur magnitudes of
varying intensities. We train and test on datasets without the application of noise. The
following settings apply to the three datasets. We use, as maximum trajectory length,
half of the resolution of the kernel, and 1 pixel as minimum. We maintain the motion
parameters as close as possible to the ones presented in [1]. The centripetal parameter
c is randomly picked in [0, 0.7], the gaussian parameter g in [0, 10], the frequency of big
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Figure 6.5: Blurred image.

Figure 6.6: Image processed with trivial merging of the patches.
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Figure 6.7: Image processed with the overlapping method. 4 layers of patches.

Figure 6.8: Image processed with Hann merging. 4 layers of patches.
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Figure 6.9: Blurred image.

Figure 6.10: Image processed with Hann merging. 4 layers of patches.
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Figure 6.11: Blurred image.

Figure 6.12: Image processed with Hann merging. 4 layers of patches.
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Figure 6.13: Blurred image.

Figure 6.14: Image processed with Hann merging. 4 layers of patches.
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PSNR ↑ SSIM ↑ LPIPS ↓

16p
Blurred 27.47 0.752 0.202
Wiener 29.52 0.870 0.144
Ours 32.83 0.917 0.058

32p
Blurred 27.47 0.752 0.202
Wiener 25.53 0.737 0.259
Ours 28.83 0.796 0.135

64p
Blurred 25.24 0.652 0.283
Wiener 22.64 0.586 0.406
Ours 25.76 0.702 0.176

Table 6.3: Results from the experiments in Section 6.3.1. PSF kernels resolutions are
reported in the first column.

shakes fs in [0, 0.2], the trajectory resolution ηt is set to 2000. We found that the anxiety
parameter a, which in the article is set to a maximum value of 0.1, generated very shaky
kernels. We reduce this value, and set it to be randomly chosen in [0, 0.01]. We generate
the three datasets using a PSF kernel resolution of 16 × 16 for the first, 32 × 32 for the
second, and 64× 64 pixels for the last.

The dataset generation pipelines are not usable in testing, as a fixed set of images without
randomness is required. Therefore, we process and store the first 1024 images from the
ImageNet test set using the same pipelines settings employed for the generation of the
training sets. We store, along the images, the kernels used to degrade them, to be used
for the Wiener deconvolution algorithm. We repeat the process to generate a test set for
the 16p kernel dataset, the 32p kernel dataset, and the 64p kernel dataset.

The Wiener deconvolution algorithm, which is detailed in Section 3.2, requires the PSF
kernel and a regularization parameter as inputs. To select the optimal regularization
parameter, we implemented a grid search algorithm that evaluates the average PSNR on
images from the training set in the range of values of [0.001, 10]. For each value, 3000
random images are picked from the ImageNet training set, degraded with the CSB random
degradation class, and restored using the Wiener deconvolution algorithm. The optimal
regularization values for the three datasets previously described are 0.0112 for the 16p
kernel degraded dataset, of 0.0483 for the 32p, 0.545 for the 64p. Those regularization
values are used to compute the metrics of the deblurring of the Wiener deconvolution
algorithms on the test sets. The performance metrics are reported in Table 6.3, along
with the same metrics computed on the blurred images. Some of the examples of the
outputs are in Figure 6.15.
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PSNR ↑ SSIM ↑ LPIPS ↓

no noise
In 27.47 0.752 0.202

Out 28.83 0.796 0.135
σ = 1,

λ = 768000
In 24.66 0.643 0.281

Out 25.67 0.710 0.184
σ = 2,

λ = 192000
In 22.40 0.481 0.336

Out 23.43 0.613 0.248
σ = 4,

λ = 48000
In 19.32 0.312 0.438

Out 22.69 0.572 0.309

Table 6.4: Results from the experiments in Section 6.3.2. We display in the In row the
metrics of the degraded images, and in the Out row the metrics of the images restored by
our solution.

It can be noted, on both the metrics and on the output samples, that the Wiener decon-
volution algorithm struggles when the blurring kernel is large in comparison with the size
of the blurred image, often leading to images worse than the blurred ones. This is due to
the ringing artifacts discussed in Section 3.2, a known problem of this method.

Three improved diffusion models are trained on the three training datasets, for 4000
epochs of 1024 samples each, and then tested on the same test sets. Their performance
metrics are reported in Table 6.3, and some of the examples of the output are in Figure
6.15. Our approach reaches both better values on each of the considered metrics and a
better visual quality.

6.3.2. CSB with noise

In this section, our objective is to demonstrate the behavior of our method under differ-
ent noise intensities. To accomplish this, we train three models using the NCSB dataset
generator at three distinct settings, each corresponding to increasing levels of noise inten-
sity. We employ the same motion parameters presented in the previous section. We use
a kernel size of 32p. We select three levels for λ among the ones presented in [37]. We
select values of γ so that the Gaussian noise contribution is visually similar to the Poisson
noise. We create a dataset with a low amount of noise, using σ = 1 and λ = 768000, a
medium one with σ = 2 and λ = 192000, and one with a strong noise component, with
σ = 4 and λ = 48000. The exposure value T is randomly picked between (0, 1]. For
testing, we process and store the first 1024 images from the ImageNet test set using the
same pipelines settings employed for the training sets.



6| Experiments 73

(a) Blurred image (b) Restored (ours) (c) Restored (wiener) (d) Ground truth

(e) Blurred image (f) Restored (ours) (g) Restored (wiener) (h) Ground truth

(i) Blurred image (j) Restored (ours) (k) Restored (wiener) (l) Ground truth

(m) Blurred image (n) Restored (ours) (o) Restored (wiener) (p) Ground truth

(q) Blurred image (r) Restored (ours) (s) Restored (wiener) (t) Ground truth

Figure 6.15: Samples of restored images using Wiener deconvolution and our method.
64p images, blurred with random 32p kernels.
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We train three models on the three datasets, for 4000 epochs of 1024 samples each, and
test them on the respective test sets. The results are reported in Table 6.4, along with the
results on a dataset without noise. We report both the metrics of the blurred images and
the restored ones. The table shows that our method demonstrates comparable success in
restoring degradation across all three noise levels, as well as in noise-free conditions.

6.3.3. Noise-blur tradeoff exploration

We replicate the experimental setup outlined in [1], aiming to explore the existence of an
optimal exposure value in which the reconstruction is the best. Our experiment consists
in training models on datasets composed of images extracted from the ImageNet training
set, degraded with a fixed trajectory and noise level, with T ranging from 0 to 1. To assess
the reconstruction performance after training, we employ six distinct test sets comprising
100 images from the ImageNet test set, subjected to the same degradation trajectory,
noise levels, and a different T value for each test set. The metrics that we display at each
exposure value are the average of the reconstruction metrics on che corresponding subset.

This process is repeated for four distinct trajectories, and two noise settings. One setting
is the same used in [1], of λ = 765000 and σ = 0, and the second is one with stronger noise
of λ = 48000 and σ = 4. The results are depicted in Figure 6.16. The findings validate the
observations made on the deconvolution algorithms discussed in [1]: when the trajectory
is linear, like in the case in Figure 6.16a, or semi linear, like in the case in Figure 6.16d,
there is a discernible optimal T . When the trajectory is more complex, like in the case of
Figures 6.16b and 6.16d, there is no clear optimum value and the performances levels off
after a threshold value.

A qualitative analysis of the tradeoff is displayed in Figures 6.17 to 6.20. In Figure 6.18
the optimal reconstruction is particularly clear, with the reconstructions with shortest
and longest exposure being visibly worse than the middle ones. On the other hand, in
Figure 6.19, the reconstruction quality is good along multiple exposure values.
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(a) Results with trajectory (e),
λ = 765000, σ = 0

(b) Results with trajectory (f),
λ = 765000, σ = 0

(c) Results with trajectory (g),
λ = 48000, σ = 4

(d) Results with trajectory (h),
λ = 48000, σ = 4

(e) (f) (g) (h)

Figure 6.16: Performance of the reconstruction on constant trajectory, as exposure time
changes.
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Figure 6.17: Images deblurred with a constant trajectory. Example with CSB kernel.
Images degraded at exposure values of 1/32, 1/16, 1/8, 1/4, 1/2, 1. PSF kernels on the
first row, degraded images on the second, reconstructions by our model on the third.

Figure 6.18: Images deblurred with a constant trajectory. Example with linear kernel.
Images degraded at exposure values of 1/32, 1/16, 1/8, 1/4, 1/2, 1. PSF kernels on the
first row, degraded images on the second, reconstructions by our model on the third.
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Figure 6.19: Images deblurred with a constant trajectory. Example with CSB kernel.
Images degraded at exposure values of 1/32, 1/16, 1/8, 1/4, 1/2, 1. PSF kernels on the
first row, degraded images on the second, reconstructions by our model on the third.

Figure 6.20: Images deblurred with a constant trajectory. Example with linear kernel.
Images degraded at exposure values of 1/32, 1/16, 1/8, 1/4, 1/2, 1. PSF kernels on the
first row, degraded images on the second, reconstructions by our model on the third.
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7| Conclusion

The objective of this study was to develop a set of tools for training neural networks,
and to use them to investigate the performance of conditional diffusion models as a blind
deblurring technique. To explore the effectiveness of the proposed method we utilized
the GoPro dataset, which consists of pairs of sharp and heterogeneously blurred images.
Due to hardware constraints we used low-resolution models, but we obtained promising
results that were competitive with baseline blind deblurring neural networks. We expect
that these findings might generalize well to higher resolutions, and to be able to surpass
other studies if given more trining time and proper augmentation techniques, but further
research is needed. Our dataset generators serve as effective tools for simulating blurred
and degraded images, providing a valuable training pipeline for neural networks. We
believe this resources to have the potential to contribute to future research in the field. The
dataset generators developed in this study were employed to train diffusion models, and
assess their performance in multiple different degradation conditions. We also explored
the noise-blur tradeoff, as in [1], and found that our method behaves similarly to the
deblurring algorithms analyzed in the paper.

Future development

We conducted extensive testing on the performance of conditional diffusion models in
image deblurring by using our pipeline. It would be worth exploring how other deep
learning solutions perform under similar test conditions, examining their adaptability to
various blurring sizes and noise levels. Additionally, it would be insightful to investigate
if these solutions demonstrate comparable noise-blur tradeoff reconstruction profiles. We
leave these tasks to future research.

One major limitation of our approach is the significant computation time required. Al-
though our focus was not on reducing it, several studies suggest strategies to address this
issue, by reducing the number of timesteps required and the size of the model. It would
be valuable to investigate the extent to which we can reduce the computation time while
maintaining effective deblurring performance.
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The field of diffusion models is relatively young, with the article that sparked general
interest [25] published in 2020. As a result, numerous new studies are conducted each
month proposing ways to enhance performance. While we chose to focus on what we
believed were the most significant studies at the start of our research, many more have
emerged since then. We are optimistic that incorporating these new enhancements could
further improve image deblurring using diffusion models.
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