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Abstract

WITH the beginning of the dark silicon era, application optimiza-
tion, even with the exploitation of heterogeneity, has become
an important topic of research. One methodology to obtain op-

timized applications for different architectures is application autotuning.
Indeed, applications can obtain the same result with different codes. How-
ever, different codes have different extra-functional properties, such as ex-
ecution time or energy consumption which may change across different
architectures. To obtain the best, application autotuning techniques have
been proposed in literature. It is very difficult for the original application
developer to select the best configuration that can enforce the constraints
across different machines, with unknown input and varying configurations.

Given this background, I envision future applications not as monolithic
code but as a sequence of modules that are capable of autotuning them-
selves and can exploit platform heterogeneity. This thesis consists of a
collection of methodologies that were developed during my Ph.D. which
aim at giving the programmers ways to create these self-tuning modules.

I divided my Ph.D. thesis into two sections, the first one is dedicated
to general application autotuning techniques, while the second will be fo-
cused on a single application, GeoDock, which has been an industrial use
case that I used to develop and validate the proposed techniques. In the first
half, we will see the benefit that can be introduced by run-time dynamic
autotuning focusing on the condition of the machine, constraints given to
the application, or characteristics of the input data. In the second half, we
will see the developement of GeoDock from a monolithic non tunable ap-
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plication to an heterogeneous and tunable one, and we will see how this has
dramatically improved its performances (from tens of ligands per second
processed on a single node to thousands).
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CHAPTER1
Introduction

With the end of Dennard scaling and the beginning of the Dark Silicon
era [1], power consumption has become the limit of modern systems. Mul-
ticore processors have been the first answer to the end of Dennard scaling,
however dark silicon limits even this approach. For this reason, in the latest
years, heterogeneous architectures have become always more widespread,
thanks to their lower cost of FLOPs per watt [2].

This shift of paradigm introduces a change in application development,
since writing code while targeting heterogeneity is more difficult. The pro-
grammer needs to consider more details when designing the application,
such as data movement between processor and co-processor. Moreover, it
has become fundamental to consider extra-functional properties (EFP) such
as energy efficiency or time-to-solution. In particular energy efficiency,
which was a property mainly related to embedded systems, is now con-
sidered fundamental in a wider range of contexts up to High-Performance
Computing (HPC).

Among all the possibilities, this thesis focuses on two software aspects.
The first aspect is Application Parameterization. When writing an appli-
cation, it is possible to obtain the same result with different EFPs. It is
good practice for programmers to expose some implementation parameters
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Chapter 1. Introduction

whenever they may alter EFP without altering the behavior of the code.
Examples of these parameters may be the number of worker threads, or the
algorithm used for a specific operation (e.g. the sorting algorithm). An-
other possible parameter is the hardware used for the execution of a func-
tion. These parameters in literature are called software knobs if they can be
modified only at compile time. If they can be modified at run-time, they are
called dynamic knobs.

The second aspect is Approximate Computing. In this approach, the
objective of an application is to compute a result that is good enough for
the user and not the exact one [3]. This allows avoiding some computation,
which means energy, to obtain the result. This approach is commonly used
to expose accuracy-throughput software knobs. It is common in multimedia
applications or where is possible to use techniques such as task skipping [4]
or loop perforation [5]. It has been shown in literature [6] that this technique
can exchange the accuracy of the result for throughput. For this reason,
approximate hardware has also been explored [7, 8].

Given all these aspects, optimizing applications across different systems
is becoming a complex task. Indeed, the tradeoffs exposed by approxi-
mate computing or by the software knobs make applications difficult to set
up for the end-user. Moreover, requirements might contain constraints on
extra-functional properties, or some input properties can create some opti-
mization opportunities.

In this context, to help developers, the autonomic computing approach
has been proposed [9], where the applications are enhanced with a set of
self-* properties, such as self-healing, self-optimization or self-protection.
This thesis will focus on the self-optimization property. This property aims
at enhancing the application by enabling it to find and exploit optimization
opportunities given by the system evolution.

1.1 Thesis Motivations

With the rise of heterogeneous platforms, the already difficult task of opti-
mizing an application has become even more difficult. Indeed, the amount
of possibilities to tune extra-functional properties has increased, since we
also need to consider which component we are going to run the application
(or even part of it) on.

In order to obtain the best, application autotuning techniques have been
proposed in literature. The importance of autotuning lies in the fact that
it is very difficult for the original application developer to select the best
configuration that can enforce the constraints across different machines,
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1.2. Thesis Contributions

with unknown input and varying configurations.
In this context, I want to insert the work of my thesis. I envision future

application not as monolithic code, but as a sequence of self-tuning mod-
ules, capable of adapt themselves in two orthogonal directions. The first is
adaptivity to the input, intended as being able to change how the application
performs its work according to some characteristics of the input data. The
second is adaptivity to the platform, intended as being capable of changing
according to varying runtime constraints and exploit, whenever available,
the heterogeneity of present and future platforms.

This thesis consists of a collection of methodologies that aim at advanc-
ing the state of the art in the field of application autotuning with a focus on
heterogeneity.

1.2 Thesis Contributions

The main contribution of this thesis is a collection of techniques to enhance
a target application with autotuning capabilities, with a focus on hetero-
geneous contexts in the second part of the thesis. As these techniques are
strongly tailored to the target application, they are not implemented in a sin-
gle framework. However, the methodology behind them is general and can
be easily ported into similar contexts. Furthermore, these methodologies
have been developed inside two European Projects, ANTAREX (AutoTun-
ing and Adaptivity appRoach for Energy efficient eXascale HPC systems)
and E4C (Exscalate4Cov).

In particular, the contributions are the following:

1. A framework to automatically tune compiler flags or library parame-
ters at function level. The framework exploits different tools (mAR-
GOt [10], COBAYN [11], LARA [12], MilepostGCC [13]) in a joint
effort to ease the programmer job and automatically and seamlessly
obtain the best possible configuration according to the underlying ar-
chitecture for every different hotspot kernel in the code.

2. Analysis of applications to find and expose autotuning possibilities
in a reactive way. Applications have been made capable to react to
changes in the underlying configurations or changing requirements
provided by the user.

3. A methodology has been developed to respect a requirement on time
to solution of an application that has been previously enriched with
autotuning capabilities.

3



Chapter 1. Introduction

Table 1.1: Techniques developed in this thesis and application for which they were tai-
lored. Global means that the technique does not have a specific application.

Technique Global GeoDock PTDR Object Detection Multiplication
Function Level Autotuning Chapter 4

Reactive Autotuning Chapter 9 Chapter 7
Time to Solution Chapter 9

Proactive Autotuning Chapter 12 Chapter 6 Chapter 7
Heterogeneity Parameters Tuning Chapter 10

Hybrid approach Chapter 11
Tunable Library Chapter 5

4. A methodology to proactively autotune applications according to the
input data.The objective of this methodology is to increase computa-
tion efficiency and thus save energy and time.

5. Porting of an application to the heterogeneous context, using the Ope-
nACC language, and optimization of its computation organization on
the GPU.

6. Optimization of the distribution of the computation across CPU and
GPU, mapping the kernels on the most suitable hardware according to
the characteristics of the kernel itself.

7. Creation of a parametric library for the synthesis of long unsigned
multipliers on FPGA. The library allows the programmers to create
hardware accelerators to perform this important operation with a fo-
cus on parametrization and the offering of several trade-offs in perfor-
mance and cost.

As previously mentioned, these methodologies have been studied in dif-
ferent use cases and application. Table 1.1 reports for all the techniques
previously described on which application they have been ported and in
which chapter this will be discussed.

In the remainder of this thesis, I will write using the first-person plural to
acknowledge the support from my advisor and colleagues. However, I take
responsibility for all the decisions and choices described in this thesis, since
I was the main investigator. The only exceptions are the works described,
Chapter 4 and Chapter 9, which are a joint effort with other colleagues.

1.3 Thesis Outline

This thesis is organized into three main sections. The first section focuses
on the state of the art in application autotuning. Firstly we describe the re-
search done up to now, then a background section focuses on the mARGOt
autotuner, a tool that I contributed to develop.
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Figure 1.1: Global architecture of the proposed framework.

The second section is divided into 4 chapters, and focuses on different
methodologies for autotuning applications, at compiler, library or applica-
tion level. The third section focuses on a single application, a molecular
docking tool, that has been used as a use case several times during my
Ph.D. to develop and validate new techniques. In last section we will also
describe its evolution and we will refer to some experiments that were made
possible thanks to the introduced innovation.

Finally, Chapter 13 summarizes the proposed approach and states rec-
ommendations for future works.

The work of this thesis has not been implemented in a single framework
but is a collection of methodologies. However, they aim at suggesting a
global collective paradigm for writing future applications.

Figure 1.1 shows the global vision of a self-tuning module. As we can
see, a lot of different components are added to the original source code of
the application to obtain the final adaptive binary. Not all of these compo-
nents are present together in any of the analyzed scenarios, however, there
has always been a global view that has driven the work of this thesis.
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Chapter 1. Introduction

We can clusterize the components into three different macro categories:

• Code-related tunable parameters.

• Data features.

• Heterogeneous components.

The first category comprehends all of those characteristics such as com-
piler flags and library-related parameters, whose optimality may be depen-
dent on the environment of the execution of the code. The autotuning of
these parameter has been investigated in Chapter 4 and Chapter 9.

In Chapter 4 we propose a methodology to seamlessly and automati-
cally select, at function level, the optimal configuration of compiler flags
and OpenMP parameters. In Chapter 9 instead, we study a particular appli-
cation to find autotuning opportunities, and we propose a technique to set
and enforce a time to solution on the application runtime.

The second category is related to the application data. Indeed, some ap-
plications may require different behavior according to different inputs, and
the optimality of the application can change (there is no one-fits-all solu-
tion). We investigated this perspective mainly in Chapter 6 and Chapter 7.

In Chapter 6 we studied a Probabilistic Time-Dependent Routing algo-
rithm for a navigation application and noticed that some characteristics of
the input, which we called Data Features, could be used to tune the Mon-
teCarlo simulation to improve the computation efficiency. In Chapter 7 we
studied different object detection networks and demonstrated that no so-
lution is optimal for all the images. Even if we were unable to build a
predictor, we believe that this work shows the potential of the autotuning
paradigm in this field.

The third category is related to the exploitation of heterogeneity since
we want our application to be able to use all the computing resources avail-
able on the machine where it is running. This approach has been studied
on the GPU with the evolution of the geometric docking application (Chap-
ter 10, Chapter 11 and Chapter 12 ) and on FPGA with the development of
a parametric library for unsigned long multiplication (Chapter 5).

In particular, in Chapter 10 we followed a traditional approach for GPU
kernel development using the OpenACC language followed by a parame-
ter space exploration and autotuning. In Chapter 11 we further optimized
the previous work by considering hardware characteristics when selecting
where to run the different kernels that compose the application. Finally, in
Chapter 12, we optimized the application for a novel GPU and we applied
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1.3. Thesis Outline

the Data Feature approach in a heterogeneous context, showing that it can
introduce benefits.

In Chapter 5 we developed a library to create, exploiting High Level
Synthesis, hardware accelerators for the multiplication of large unsigned
integers. The library is heavily parametrized and can create accelerators
that cover several orders of magnitude in terms of performance and resource
utilization, according to the constraints of the programmers.

The content of most of the chapters of this thesis has already been pub-
lished in international conferences or journals. The reuse of the images
from those sources has been highlighted under each caption.

7





CHAPTER2
Previous work

The main focus of this thesis is to develop a general approach for applica-
tion autotuning in a heterogeneous system. The approach will be proposed
with several case studies, where it has been tailored to specific applications.

This chapter provides at first an introduction to the related research
field, and it defines a common terminology in the state-of-the-art. Then
it describes the mARGOt framework, an autotuning framework that I con-
tributed to develop to support the analysis carried out in this thesis.

2.1 Background and definitions

The methodology proposed by this thesis belongs to the autonomic com-
puting research topic. In this field, computing systems can be called auto-
nomic if they are able, thanks to a set of elements, to manage themselves
without a human in the loop. In the original work [9], four aspects of self-
management have been identified.

• Self-Configuration: the system shall be able to configure automati-
cally, according to high-level policies. When a new component is
integrated, it has to seamlessly integrate into the system. An example
can be found in [14].

9



Chapter 2. Previous work

• Self-Optimization: the system will have to seek to improve their per-
formances. They have to continually monitor, experiment and tune
their parameters.

• Self-Healing: the system has to detect and repair localized software
and hardware problems, as proposed in [15].

• Self-Protection: the system must defend itself from attacks, as pro-
posed in [16].

In this work, we will focus on Self-Optimization property. Previous surveys
[17–19] can give a more detailed view on the autonomic computing field
for the other self-* properties.

In the autonomic computing field, a system is composed of both hard-
ware and software components. Therefore, in literature, several approaches
have been proposed to optimize the efficiency of both. In particular, we can
divide these approaches into two orthogonal categories:

• Resource Managers: in this category fall all the approaches where
the Self-Optimization property is obtained through resource manage-
ment or allocation. Usually, there is a task at system level that is
in charge of distributing the resources across the different applica-
tions. This approach is quite wide-spread and can be found in data
centers [20,21], in grid computing [22], in multicores [23–25], in em-
bedded contexts [26, 27] or in heterogeneous systems [28].

• Application Autotuners: all the approaches where the Self-Optimization
property is obtained at software level by the application itself fall in
this category. Here the application can manage some configuration
parameters to reach the end-user requirement. In this thesis, we will
focus on this approach.

Before going in-depth with the literature in the autotuning field, we need
to clarify the definition of some key concepts. The first important keyword
is the term application. In this work, with application we consider a sub-
set of all the possible software that may run on the system. In particular,
we will consider only the applications that perform an elaboration without
any human interaction, such as a molecular docking application or a nav-
igation system. Another key concept is the definition of metrics. We call
metric any measurable property of the application that can be targeted by
an optimization problem, i.e. what in literature is called Extra Functional
Property (EFP) or Non Functional Property, such as energy consumption,
time to solution, or quality of the result that the end-user can be interested

10



2.2. Autotuning

in minimizing or maximizing. Examples of metrics that we will see in this
thesis are the minimization of energy consumption, in the navigation sys-
tem application, while respecting user service level agreement. Or the time
to solution of a batch molecular docking application while maximizing the
output quality. As we already mentioned, many applications expose some
tunable parameters, called Software Knobs, that can be modified to change
the EFPs of the application according to the end-user requirements. Finally,
there is the concept of Input Features. It is possible in some circumstances
that some characteristics of the input (such as its size) can help the process
of self-optimization. This happens if some correlation between the input
and the metric can be found.

2.2 Autotuning

In this section, we will introduce and classify all those techniques proposed
in the literature that aims at giving the Self-Optimization property.

A first classification of the autotuning techniques can be done by clus-
tering them according to when autotuning happens, which means at deploy
time or runtime. We define this classification as "Autotuning Time Classifi-
cation" A second classification can be done according to the invasiveness of
the autotuning technique in the original application. We define this classi-
fication as "Autotuning Integration Classification". In this section, we will
see the difference between the two taxonomies and we will explore the state
of the art following the second classification strategy

2.2.1 Autotuning Time Strategies

We can distinguish different autotuning approaches according to "when"
the autotuning happens during the lifetime of the application. On one hand,
the autotuning is performed during the software installation on the plat-
form: variants are generated statically, they are tested (all or through a
model-driven approach) and the best one is selected. This approach is also
called static autotuning. On the other hand, the variations are generated at
runtime giving more flexibility (at the cost of greater overheads). This ap-
proach is also known as dynamic autotuning. Between these two extreme
solutions, there is a compromise in the middle: the variants can be created
at deploy or design time, but selected at runtime.

Figure 2.2 shows the difference between these three approaches. the
left part is common to all of them and shows how the original code can be
enriched before applying autotuning strategies. The tuning parameters can
be manually inserted into or exposed from the application, or they can be
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Figure 2.1: Overview of the Autotuning Time strategies.

deduced automatically by the compiler/linker. More details on this are pro-
vided by the second classification in Subsection 2.2.2. Once this operation
is done, the tunable application with variants is ready for the autotuning
process. In this image, the yellow background represents operations done
at deploy time, while the blue background represents operations performed
at runtime. The upper rectangle represents the static process: the variants
are tested with some training input, their validity is checked and the most
performant variant is selected to be deployed. The second rectangle repre-
sents the hybrid process: here the training phase is used to build a model,
that will be inserted in the application to drive the variant selection at run-
time, according to some input that can be features of the data or the status
of the platform. We can notice that the rectangle is split in two: the first
section is indeed done during the application deployment, while the final
choice happens at runtime. In the last rectangle, all the autotuning happens
at runtime. It is still required to create a model, and it is done by running the
variants and measuring them. This is done by dividing the runtime of the
application into two phases: the training phase and the exploitation phase.
In the training phase the application tests the possible variants, with an ex-
haustive search or a model-driven approach. In the exploitation phase it
uses the model created during the previous phase to select the best variant
according to some input, which can be related to the application input data
or the system status, or both of them.

2.2.2 Autotuning Integration Strategies

The other way to classify autotuning considers the invasiveness of the au-
totuning integration inside the original application. Figure 2.2 shows the
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Figure 2.2: Overview of the Autotuning Integration strategies.

four levels of integration, from the less invasive to the most invasive one.
Dotted lines represent human interventions required.

1. Library-level (orange box). These techniques consist in the creation
of an autotuning library that has to be integrated into the application
through API [29]. In this way, the application results agnostic to au-
totuning, which is performed only in the library [30, 31].

2. Compiler-level (red box). In these techniques, the compiler is in charge
of autotuning the application. The programmer is not directly involved
in the autotuning process [32, 33].

3. Application-level (green box). Here the programmer is directly in-
volved. He is in charge of providing the software knobs or some vari-
ant to the autotuner (which is usually integrated as a library) [34].

4. Framework-level (purple box). Here the autotuning is performed by
the framework, which requires a strong interaction of the programmer.
It may be because it has to use a particular language [35,36] , or wrap
the application [37], or provide a function to check the Quality of
Service (QoS) [38]. We decided to insert in this group also Domain
Specific (DS) approaches since they usually require (re)writing the
application in a specific language, or when they are easily integrated,
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that is done under human supervision (e.g. [39]) the check for result
accuracy acceptability.

Library level techniques

The first technique for autotuning an application that has been proposed in
literature is the library approach: The idea is to isolate compute-intensive
kernels behind a library Application Programming Interface (API) and to
optimize the implementations for the underlying architectures. In this way,
the application developer is released from the optimization task. This ap-
proach is domain-specific since the libraries exploit domain knowledge
to perform aggressive optimizations. An example of this approach is the
BLAS API (Basic Linear Algebra Subprograms, [29]). The API defines
a set of primitives for linear algebra, that has become a de-facto standard
for dense linear algebra applications. For example, the ATLAS [30] and
SPIRAL [31] libraries exploit the BLAS interface.

The implementation of these two libraries employs two different ap-
proaches. ATLAS employs the concept of "automated empirical optimiza-
tion of software" (AEOS). It consists of a collection of parametric or op-
timized routines to perform the same operation. At compile time, ATLAS
tests and measures their performance, then it selects the fastest one to use at
runtime. SPIRAL uses a domain-specific language (DSL) to write the rou-
tines. The framework then uses this language to generate optimized code
for the library according to the underlying architecture. In both cases, tar-
geting a restricted number of functionalities enables the autotuning libraries
to explore a vast design space. They exploit heuristics to prune the space
and find the optimal implementation.

Other examples of this approach can be found in different domains, such
as sparse matrix [40], Fast Fourier transforms [41] or Stencil computation
[42, 43].

Finally, an interesting solution has been proposed in [44], where the
library is in charge of optimizing memory, communication, and paralleliza-
tion layout of an application targeting an HPC cluster. This allows the
domain expert developer to focus only on creating the optimal algorithm
without having to consider how the actual computations are organized.

Compiler level techniques

A second category comprehends all those tools that can insert autotun-
ing technique at compile-time, without requiring user intervention. These
techniques are more general and are not constrained by the domain of
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applicability. Usually, compiler optimizations have been designed with
a do-not-harm philosophy. This means that they are not performed in
some cases where they can slow down common workloads. This approach
however eliminates a lot of possibilities. Indeed, some optimizations are
architecture-dependent, and thanks to autotuning, the compiler can explore
more aggressive optimization techniques that tailor the application to the
underlying platform.

Examples of these techniques are insertion of parallelization with SIMD
or GPU-kernel creations or loop tiling, unrolling, permutation, and so on.
These techniques can be found in tools like ADAPT [32]. Here code is en-
riched with automatic parallelization, a monitoring system, and a runtime
selection of the most performing variant of the code. This result can be
obtained thanks to the online compilation of the different variants, where
the parameters are selected and tuned. Others rely on polyhedral transfor-
mation techniques to obtain the variants. For example in [33] the compiler
generates multiple candidates through a model based on polyhedral tech-
niques, then tests the variants and selects the best one. A similar approach
has been proposed in [45], where the authors propose a compiler that can
generate, thanks to polyhedral models, parallel code for heterogeneous plat-
forms. The compiler manages not only the kernel generation but also all the
required data movement and the load balancing between the heterogeneous
compute units.

Another interesting approach has been proposed in [46], where a source
to source compiler introduces some approximation by modifying the gen-
erated assembly code: it removes or duplicates or moves some instructions
to reduce the energy consumption of the application. It validates the gener-
ated code with statistical tests and accepts the variants only if the test gives
an error lower than a given constraint.

In [47] the authors propose an autotuning framework for the Insieme
Compiler, which is able to automatically analyze the source code, identify
regions of interests and create several variants that can be selected at run-
time. In [48] they further optimize this approach by enabling multi-region
autotuning for parallel applications. In this follow-up work, the compiler
can detect different regions of the application and autotune several param-
eters (such as number of OpenMP threads, loop tiling, and so on), and it
evaluates the interferences of changing these parameters across different
regions. This enables optimizations that are not possible when considering
each kernel individually.

In [49] the authors suggest the use of a Deep Neural Network to autotune
the code. They create a framework that is able to rewrite OpenCL source
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code in a way that produces a meaningful feature vector for a DNN, which
is trained to select the optimal resource to use to run that code (CPU or
GPU) or other feature such as thread coarsening.

Finally, [50] propose DDOT, an autotuner that introduces a data-driven
approach for compiler and runtime parameters. It exploits existing knowl-
edge collected through experiments on different application to suggest the
optimal value for these parameters for every requesting application. DDOT
is able to provide the optimal values for the parameters quickly and with
high accuracy thanks to its utilization of collaborative filtering. Indeed, it
is able to find a utilize similarities to previously optimized applications.

Application level techniques

The third category of autotuning techniques is the one strictly related to
an application. As we already mentioned, some applications expose some
software knobs that can be used to change their behavior. However, this
is not always true. Usually, human intervention is needed to expose them
from the original source code. The advantage of this approach is that allows
to explore possibilities that for a general approach are not available (i.e.
algorithm selection or application parameter tuning).

In [34, 51] authors suggest using control theory to create dynamic au-
totuner. The application requires software knobs that enable performance-
accuracy trade-offs, and the developer is in charge of providing (or iden-
tifying) them. after that the autotuner is connected (or created [51]) and
trained. During the runtime, the correct variant is selected according to
platform condition and knobs value. Here the programmer is required only
in the identification of the available knobs and in the evaluation of QoS of
the application, so the human intervention is light.

An alternative approach suggests training a Bayesian network for au-
tomatic algorithm selection [52]. In this work, the autotuner consists of
the bayesian network, which has to be trained at deploy time with training
inputs to drive the choice of the correct variation at runtime. The interven-
tion of the programmer here happens in two of the steps: the knob exposi-
tion and the training of the network. The knob required by this approach
is to have different algorithmic implementations of an operation (such as
different sorting algorithms). The training set must be representative of
real-world instances, and this too must be provided by the user.

Finally, several approaches can select the optimal version between dif-
ferent implementations of a function [53, 54]. These approaches can tar-
get heterogeneous platforms, where the different implementations run on
different hardware [55, 56]. They can manage workload splitting across
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the different compute units, or autotune kernel launch parameters typical
of GPUs (such as grid configurations). These approaches are interesting
because the autotuner is agnostic to the application. It sees the different
versions of the function as software knobs, and the modeling algorithm can
select the best variant according to the status and input. This allows adding
this new perspective, function autotuning, to the classical software knobs.

An interesting approach to expose software knobs is provided by ATune-
IL [57]. Here an instrumentation language is proposed that can be used to
annotate through pragmas the original source code. After that, a source
to source compiler generates the different variants, and autotuning is per-
formed statically.

In this class we insert mARGOt [10], an autotuner that we developed
and whose features will be explained more in detail in Section 2.3.

Frameworks and Domain-Specific techniques

We insert in the last category two different techniques, that have a strong
impact on the original application. The application often needs to be com-
pletely rewritten to cope with the constraints imposed by this final category
of techniques. Indeed, often the programming language is the key com-
ponent of these techniques [35]. We also inserted some Domain Specific
techniques because they can be applied, maybe in a seamless way, but only
if an expert programmer evaluates their validity in the context of the ap-
plication. Examples of this last case are [39, 58]. We can cluster these
techniques into different groups, according to their application context.

Many approaches are related to the approximate computing field. Here,
the quality of the result becomes a knob, that can be tuned: usually, by
lowering the quality the application can save some energy. An example of
this approach can be found in [59]. Here the programmer has to rewrite the
application to use anytime computing techniques. The advantage is that a
quick (and not precise) result is obtained in a lower time, and iterative re-
finements allow to increase the accuracy of the result itself. The execution
of the application can be stopped at any moment, and this is another advan-
tage of this approach. Other examples are [38,39,60]. In these approaches,
there is no iterative refinement but a proactive prediction. Models are cre-
ated that can select at compile time or run time the value for the knobs.
In particular [60] uses Bayesian network to build the model, and selects
at runtime the values of the knobs. In [38] statistical QoS are tested at
compile-time and the selected version is the fastest among those that do
not violate them. Finally, in [39] a subsampled image is used as a canary
to select which approximations can be applied. Moreover, among the ap-
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proximate computing techniques, some do not require human intervention
in rewriting code. However, they are strictly domain-specific and there is
still human in the loop since the decision of whether to apply or not must
be taken from the human. Those techniques are [58, 61]. The first one ap-
plies approximation to CUDA kernels (such as removing atomic accesses
or reducing the thread granularity), tests for QoS acceptability and selects
at deploy time the best performing implementation. The second one tar-
gets six particular patterns in parallel kernels and applies approximations
to them at compile time. The autotuning is performed statically by testing
the QoS of the different solutions and selecting the best one that does not
violate the constraints.

Another domain-specific approach, related to GPU kernel autotuning,
is [62]. In this paper, the autotuner is in charge of managing at runtime the
CUDA kernel parameters such as grid size, loop unrolling, ...

Other approaches, no more restricted to a domain, are complete frame-
works that are used to wrap the original application or decompose it into
tunable kernels that can also be exposed to other languages. An example of
the first can be found in [37]. Here the focus is on the autotuning frame-
work, that is agnostic from the application. It wraps the application itself
and, once the knobs are given to the tool, it defines a Design Space Explo-
ration (DSE) and uses models to optimally perform it. The human in this
approach has to expose the knobs as application parameters, at compile-
time, and to integrate it inside the framework. An example of the second
approach is SEJITS [63]. Here the kernels are written using "efficiency
language", such as C or CUDA, to obtain the best performance, while the
global application is written using "consumer language" such as python.
the framework is in charge to use just-in-time compilation to exploit the
efficient kernels when available. The idea behind this approach is to have
a library of kernels that can be used by multiple applications, hiding the
complexity of efficient programming to high-level users.

Finally, some frameworks require a complete re-writing of the applica-
tion in their own language. This approach is for sure the most invasive one,
however allows more in-depth autotuning than the other approaches, since
the language is designed for this purpose. The most important example is
the Petabricks language [35, 36, 64, 65]. The language comes with the sup-
port of all the compiling infrastructure. It offers the possibility of selecting
algorithm implementation [35]. A further refinement allows the choice to
be driven at runtime by input features [64]. It is possible to manage ap-
proximate applications [36] and to search for the optimal configuration at
runtime [65].
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Figure 2.3: Global architecture of the proposed framework. Purple elements represent
application code, while orange elements represent mARGOt high-level components.
The black box represents the executable boundary.

Source: [10]

Slightly less invasive are OrCL [66] and Active Harmony [67]. Here
the custom language is in the first case an annotation language and in the
second case a scripting language used outside the application. OrCL re-
quires the user to add annotations in Orio language to the original appli-
cation. Such annotations are comments in the code that the Orio source to
source compiler can parse and translate into C/OpenCL code. The autotun-
ing of the parallel code happens in deploy time, where several parameters
are tested and measured and the best configuration is found. Active Har-
mony is a framework where the original code has to be enriched with API
calls to the framework. The developer needs to expose parameters and
to notify their existence to the framework, that is in charge of autotuning
them measuring the performances. This is done at deploy time and requires
adding a Resource Specification Language (RSL) script to notify the frame-
work which are the available resources for the autotuning.

2.3 mARGOt

mARGOt is a reactive and proactive autotuning framework that has been
used in several of the techniques presented in this thesis. For this reason
it is important to introduce it and some of its key concepts and definitions.
Figure 2.3 shows an overview of the mARGOt framework and how it in-
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teracts with an application. In this chapter, we will assume that the target
application has a single kernel g that elaborates an input i to generate the
desired output o. However, mARGOt has been designed to be capable of
managing different kernels (each one defined block) of an application in a
completely independent way. We also assume that the kernel already ex-
poses the software-knobs needed to alter its behavior. Let x = [x1, . . . , xn]
the vector of software-knobs, then we define a kernel as o = g(x, i).

Given this abstraction of the target application, we define the end-user
requirements. The metrics of interest (the EFPs) are defined as the vector
m = [m1,m2, . . . ,mn]. If the application programmer is able to find some
properties of the input, we will define such properties as the vector f =
[f1, f2, . . . , fn]. Given these definitions, the requirements of the application
can be formalized as in Equation 2.1:

max(min) r(x;m | f)
s.t. C1 : ω1(x;m | f) ∝ k1 with α1 confidence

C2 : ω2(x;m | f) ∝ k2

. . .

Cn : ωn(x;m | f) ∝ kn

(2.1)

where r is the objective function defined as a composition of any variable
defined either in m or in x by using their mean values. C represents the set
of constraints. Each Ci is a constraint expressed as the function ωi, defined
over the software-knobs or the EFPs and it must satisfy the relationship
∝∈ {<,≤, >,≥} with a threshold value ki. If ωi targets a statistical vari-
able it also has to have a confidence αi. Since mARGOt is agnostic to the
distribution of the parameter, the confidence is expressed as an integer co-
efficient of its standard deviation (i.e. two times the standard deviation).
If there are input features, then the value of the rank function r and the
constraint functions ωi may also depend from f .

The main goal of mARGOt is to solve the following optimization prob-
lem: finding the configuration x̂ that satisfies all the constraints C and max-
imizes (minimizes) the objective function r, given the current input i. The
application must have a configuration. If it is not possible to satisfy all
the constraints, mARGOt will relax some of them, until it finds a feasible
solution. For this reason, the constraints have a priority. mARGOt starts
relaxing the lowest priority constraints first. Therefore, the end-user is re-
quired to give a priority to all the constraints. As shown in Figure 2.3, the
mARGOt framework is composed of the application manager, the moni-
tors, and the application knowledge. In the next subsections, we will see
each component in detail, and we will conclude this section with some
considerations on the integration effort required to insert mARGOt in the
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <points version="1.3" block="example">
3 <point>
4 <parameters>
5 <parameter name="knob1" value="3.4"/>
6 <parameter name="knob2" value="100"/>
7 </parameters>
8 <system_metrics>
9 <system_metric name="metric1" value="212.862" standard_dev="6.49"

/>
10 <system_metric name="metric2" value="27.6" standard_dev="0.9"/>
11 </system_metrics>
12 <features>
13 <feature name="feature1" value="100"/>
14 <feature name="feature2" value="10" />
15 </features>
16 </point>
17 </points>

Figure 2.4: XML configuration file to define the application-knowledge for an application.

Source: [10]

application.

2.3.1 Application-knowledge

For generic applications, the relation between software-knobs, EFPs and in-
put features is complex and unknown a priori. Therefore, we need to model
the extra-functional behavior of the application to solve the optimization
problem stated in Equation 2.1. In mARGOt a list of Operating Points
(OPs) is used to model the application-knowledge. Each Operating Point
θ expresses the target software-knob configuration and the achieved EFPs
with the given input features; i.e. θ = {x1, . . . , xn, f1, . . . , fn,m1, . . . ,mn}.
Every Operating Point represent a working configuration of the application,
with the expected values of the metrics given a configuration (i.e. a set of
software knobs) and the input. In the mARGOt xml configuration files, all
the software knobs are listed with the keyword parameter, the metrics with
system_metric and the data features with feature. We choose this solution
mainly for three reasons: firstly, to solve by inspection the optimization
problem (which is the most efficient solution). Then, to guarantee that the
chosen configuration is not illegal for the application. Finally, because it
provides great flexibility in terms of management.

Figure 2.4 shows an example of an XML configuration file, containing a
single Operating Point (lines 3-16). In this example, the target application
exposes two software-knobs (knob1 and knob2), has two metrics (metric1
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and metric2) and it is possible to extract two features from the input (fea-
ture1 and feature2). For this reason, the OP is composed of three sections:
the software-knobs configuration (lines 4-7), the metric section with the ex-
pected performance distribution (lines 8-11), and the related feature cluster
(lines 12-15).

The OP list is a required input and mARGOt is agnostic to the methodol-
ogy used to obtain it. Typically this is a design-time task, known as Design
Space Exploration (DSE) in literature. It is a well-known problem, aimed
at finding the Pareto Set. There are several previous approaches to find
it efficiently [68–70]. The chosen methodology is out of scope from the
mARGOt perspective.

Moreover, mARGOt has the capability of changing the application knowl-
edge at runtime.

2.3.2 Monitors

It is important to observe the behavior of the application and the platform
during the execution. For this reason, mARGOt has monitors. They are
of critical importance because they provide feedback information. As we
have seen, application knowledge defines the expected behavior which may
change because of factors that are external from the application. For exam-
ple, a power capper reduces the frequency of the processor. We expect the
application to notice the performance degradation, and to react by changing
its configuration to compensate. This is only possible thanks to feedback
information.

If it is not possible to monitor an EFP at runtime, mARGOt can still
work. It will operate in an open-loop, basing its decision only on the ex-
pected behavior.

2.3.3 Application Manager

This component is the core of the mARGOt dynamic autotuner since it
provides the self-optimization capability. It is implemented using a hierar-
chical structure, as shown in Figure 2.5, where each level of the hierarchy
targets a specific problem. The Data-Aware Application-Specific Run-Time
Manager (DA AS-RTM) provides a unified interface to application devel-
opers to set or change the application requirements, to set or change the
application-knowledge and to retrieve the most suitable configuration x̂.
Internally, the DA AS_RTM clusters the application-knowledge accord-
ing to the input features f by creating an Application-Specific Run-Time
Manager (AS-RTM) for each cluster of Operating Points with the same in-
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Data-Aware Application-Specific RunTime Manager 

Application-Specific RunTime Manager 1 ASRTM 2
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Figure 2.5: Overview of the Application Manager implemented in mARGOt, based on a
hierarchical approach.

Source: [10]

put features. Therefore, the clusters of OPs are implicitly defined in the
application-knowledge. Given the input features of the current input, the
DA AS-RTM selects the cluster with the features closer to the ones of the
current input. Once the cluster for the current input is selected, the corre-
sponding (AS-RTM) is in charge of solving the optimization problem stated
in Equation 2.1. It has to select the configuration of the software-knobs x̂,
according to changes in the execution environment and to the input fea-
tures. However, it is possible that the objective function changes during the
runtime. We define state a set of constraint and an objective function. It is
possible to have different states in the AS_RTM of a block, however only
one of them is the active one since only one optimization function can be
active.

To solve the optimization problem, the RunTime Manager has to per-
form a single algorithm. At first, it assumes that the application-knowledge
satisfies all the constraints, therefore all the OPs are valid thus contained in
the valid OPs list Lvalid. Then, for each constraint ci, it iterates over the set
of OPs and it performs two operations:

• It creates the list Lci of all Operating Points invalidated by the current
constraint, and moves them from the list of the valid OPs to this list.

• It sorts all the OPs in Lci according to their distance from satisfying
the constraint ci.

After iterating over all the constraints, it sorts the list of valid OPs Lvalid ac-
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cording to the objective function r. If the list of the valid Operative Points
is not empty, it returns the one that maximizes the objective function. Oth-
erwise, mARGOt iterates over the constraints according to their priority, in
reverse order, until it finds a constraint ci with a non-empty Lci . Then the
best OP is the closest to satisfy the constraint ci, i.e. Lci [0]. This algorithm
must always return a single OP.

2.3.4 Integration Effort

While designing the framework, we focused on three points to ease the
integration effort:

• separation of concerns between functional and extra-functional prop-
erties.

• limit the intrusiveness as much as possible.

• ease of use of the instrumentation code.

However, it is still required to the end-user or to the application developer
to identify constraints, requirements, software knobs, and input features.

To ease the integration process, we provide a utility tool that generates
a high-level interface for the target application. This tool takes as input
two XML files that describe the extra-functional properties of interest. In
particular, the main configuration file describes the adaptation layer, and
the second configuration file describes the list of known operating points,
as seen in Figure 2.4. The main configuration file defines:

1. The monitors of interest for the application;

2. The optimization parameters, i.e. the EFPs of interest, software-knobs,
and input features;

3. The optimization problem stated in Equation 2.1.

Starting from these configuration files, the utility tool generates a library
containing all the required glue code to hide, as much as possible, the im-
plementation details. In particular, this library exposes five functions to the
developers:

• init. A global function that initializes the data structures.

• update. A function that updates the software-knobs of a block with
the optimal configuration found.

• start_monitor. A function that starts all the monitors of a block.
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• stop_monitor A function that stops all the monitors of a block.

• log A function that logs the monitors of a block.

This library hides the details of the basic usage of the framework. However,
if application developers require more advanced adaptation strategies, for
example changing the application requirements at runtime, they will need
to use the real mARGOt interface, since the high-level interface provided
by the generated library will no more be enough.

2.4 Summary

In this chapter, we have seen the background and the state of the art in the
autotuning field. We explored it through two perspectives, the time of au-
totuning and the intrusiveness. In a second moment we have introduced
mARGOt, an autotuning framework that we developed, and we will see
how we used it to enhance applications in Chapter 4, Chapter 9 and Chap-
ter 6.
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CHAPTER3
Methodology

This chapter is focused on explaining the conceptual framework that is be-
hind the work done in this thesis. As already mentioned in Chapter 2, this
framework has not been implemented but it is an important reference model
that has guided me through all my work. For this reason, we could call it a
meta-framework, since it is an ideal entity. It is fundamental to understand
the whole work done in this thesis since it has always driven the research.

We consider future applications as a sequence of self-tuning modules,
that can adapt at runtime to the changing condition of the platform they
are executed on. Moreover, they shall be able to exploit the heterogene-
ity, whenever available, and organize themselves to run each section of the
application on the hardware that is most suitable to the computations that
are being executed (i.e. if the application has a strong control-flow bound
section, should be running on the CPU, while if there is a section with a lot
of data-parallel computation it should run on the GPU). However, to reach
this goal the original application needs to be changed and integrated by the
developer. As we can see in Figure 3.1, there are two different areas. The
first one is the user required code, and the second is the actual self-tuning
module.

The user required code can be divided into two macro-areas, the first
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being the mandatory code (i.e. the application code and the constraint con-
figuration) and the second the application-specific code, which is useful to
have in a module but not mandatory. Application-specific code consists of
pieces of code that have to be manually or semi-manually integrated into the
original application to create more opportunities for the autotuning of the
application during the runtime. Examples of application-specific code are
the manual exposition of software knobs, such as searching accuracy-time
to solution tradeoffs, or when inserting heterogeneity in a homogeneous
application. The addition of the application-specific code to the application
has to be done at design time since it needs to be performed by a program-
mer. More in detail, the operation that we envision in this category are:

• Manual Knob Exposition: the application is analyzed to find and ex-
pose some software knobs that were no present in the original applica-
tion formulation. These knobs can be related to performance-accuracy
tradeoffs, or other parameters that were in the original application de-
cided once (such as command line parameters) and never changed dur-
ing the run of the application itself. An example of this analysis is
done in Chapter 9.

• Data Features: an analysis of the input data is performed, to take ad-
vantage during the runtime of some features of the input. This usually
means that we want to cluster the set of inputs and manage the clusters
in different ways during the runtime since we can take advantage of
the features of the punctual input that we found with this analysis. An
example of this is done in Chapter 6

• Heterogeneous Kernels: the application is analyzed and a hotspot ker-
nel is ported to a more suitable architecture, that can be the GPU or
an FPGA. The kernel is integrated into the original application flow,
following the traditional approach of heterogeneous computing. An
example of this can be found in Chapter 10.

The important section of Figure 3.1 is the right part, what is called the
self-tuning module. This module is the key component of future applica-
tions. The original application is enriched with several components, thus
becoming able to perform self-management during its runtime. We can no-
tice from the picture that there are three main phases to obtain the ultimate
goal of having an adaptive binary (which is the self-tuning module runtime
implementation):

• create the enhanced application source code
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Figure 3.1: The complete meta-framework.

• profiling

• runtime adaptive application

The first step is probably the most complex one. This step can be partially
automatized but in most cases, it requires interaction with the programmer.

In this step, we need to integrate into the original source code the possi-
bility of self-tuning. This means that we need to insert an adaptivity layer,
i.e. an autotuner, into the application and teach it which are the tunable
parameters and how. In particular, we can notice from the picture that there
are two different libraries for the autotuner, a profiling library, and a run-
time library. These are needed since the profiling library is used at profile
time to learn the behavior of the application (more in detail, of every pro-
filed kernel) on the target platform, changing the input and the values of the
software knobs. However, this library contains profiling functionalities that
are not needed at runtime and lacks the knowledge needed to autotune. The
runtime library is indeed pruned from the useless profiling functionalities
and enriched with the Application Knowledge, and it consists in the adapta-
tion layer that manages the application and gives the ability of self-tuning.
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In this thesis, we used the mARGOt autotuner, described in detail in
Section 2.3.

However, the autotuner alone is unable to do anything. To enable the
self-tuning, we also need to provide the autotuner the software knobs. This
work can be done manually, as we already mentioned, or in a semi-automatical
way. Indeed, the top right part of the self-tuning module picture focuses
on this use case. Some features are common to all the applications, such
as compiler flags. Other possible knobs derive from libraries, that may be
used in the program. In both these cases, it is possible to semi-automatically
insert these knobs in the application code. We need to instrument the ap-
plication at function level. In this way, we can learn the behavior of the
different sets of parameters and compiler flags on these functions. We will
see in Chapter 4 a study in this direction. The autotuner API can also be
inserted during the function instrumentation, and they are needed to profile
the behavior of the function. The last way to enrich an application is, as
we already have seen, to insert some heterogeneous kernels. Sadly there
is no way to do this automatically since as we will see in Chapter 10 even
directive-based approaches require heavy modification of the original ap-
plication source code.

Once all of these operations are done, and we have obtained the enriched
code, a training phase occurs to extract knowledge from the application. A
design space exploration has to be performed, to find the Pareto optimal
frontier in the available parameter space. Previous research [68–70] have
proposed methodologies to obtain the Pareto set. In this thesis, however, the
methodology used to search the Pareto set is not important, and will not be
investigated. This operation allows building the Application Knowledge,
where the interaction of the software knobs with the evaluation metrics on
the target machine is stored.

Once the Application Knowledge is obtained, it is possible to build the
adaptive binary. This binary is the objective of the work of this thesis, and
consists in the revised version of the original application as a sequence of
self-tuning modules, able to adapt to the changing condition of the platform
where they have been trained, or to changes in the requirements and the
input data.

30



Part I

General Autotuning Techniques
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CHAPTER4
A Seamless Online Compiler and System

Runtime Autotuning Framework

In this chapter, we address the problem of fine-grain autotuning, enabling
the change of compiler flags across different functions or the number of
involved OpenMP threads, with the final purpose of having the target ap-
plication always working in the most efficient configuration. In particular,
we propose SOCRATES, an approach where several tools are joined to-
gether to reach the self-tuning capability of the application. Moreover, we
focus on reaching this goal with as little intrusiveness as possible, to ease
the adoption of this solution by the programmers and to avoid introducing
substantial changes in the original codebase. We demonstrate that thanks
to SOCRATES we are able to maintain the running application in its op-
timal configuration (in terms of efficiency) while the objective function or
the underlying platform change.

4.1 Introduction

Thanks to the continuous evolution of computing platforms, achieving per-
formance portability of applications is a difficult task for developers. Per-
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formances are strongly dependent on the underlying platform and some
characteristics of the input data. Moreover, they are also influenced by
the system runtime. The autotuning approach has been proposed as the
solution to this problem. Indeed, having code able to adapt to different
platforms and conditions could enable performance portability. However,
this approach has several unresolved questions. Among them, we can men-
tion that writing such code needs a flexible and high-level language capable
to express functional aspects, without constraining the implementation. In
this way, it could be customized later, when the platform is decided, thus
generating a program optimized for that platform.

As we have seen in Chapter 2, several approaches have been proposed,
from the less intrusive but more restricted ones to rewriting completely the
application to obtain adaptation. The target of these approaches is to give
the autotuning capabilities to the application, thus finding the best config-
uration for the target platform. Usually, the less intrusive solution aims at
finding one best-fit-all solution, without considering that the environment
can change. Indeed, the workload may change, or the resource manager
may allocate new cores to the application during the runtime. The solu-
tions able to target these opportunities are the dynamic autotuners. How-
ever, their drawback is that they require a high level of intrusiveness in the
original application.

In this chapter, we aim at obtaining a dynamic solution able to adapt
at runtime changes of the configuration with an approach that has as little
intrusiveness as possible. Indeed, configuring some extra-functional prop-
erties such as compiler flags and/or number of OpenMP threads can be not
trivial if we want to always have the optimal configuration whenever the ex-
ternal conditions of the application are changing. This chapter introduces
the SOCRATES approach. With this approach, we aim at offering the run-
time autotuning of these Extra-Functional parameters at function level, with
a framework that does not require any modification to the original applica-
tion.

Figure 4.1 shows the components of the global autotuning vision tar-
geted in this chapter. As we can see, most of the components are on the
right side, the automatic one, while on the left side there are only the con-
straints and the original application source code. The main contribution
indeed is the separation of concern: when writing the application, the de-
veloper does not need to be concerned with autotuning. After that, in a
separate step, the autotuning is inserted into the application. We use an
aspect-oriented language, LARA [12], to achieve the separation of con-
cerns. Indeed, in this work, the extra-functional parts of the application
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Figure 4.1: Highlight of thesis approach targeted in this chapter.

(included the mARGOt autotuner) are inserted in the application through
LARA. Finally, SOCRATES introduces energy consumption as a key vari-
able to be considered at runtime, thus introducing energy-efficient execu-
tion.

4.2 Background

The Aspect-Oriented Programming (AOP) approach [71] addresses several
challenges in this context, by providing mechanisms that increase modular-
ity and avoid code pollution. Not surprisingly, AOP has been intensively
researched over the last decade (see, e.g., applications of AspectJ [72] and
AspectC++ [73]). In this work, we adopted LARA DSL for its power-
ful selection and composition mechanisms provided, not only regarding
explicitly weaving constructs (e.g., by inserting code) but also regarding
hardware/software compiler and synthesis transformations.

There are approaches for the specification of code transformation and
optimization strategies, such as CHiLL, PATUS, and Loopy. With CHiLL [33],
we write code transformation recipes. These are scripts, separate from the
main source files, with sequences of loop transformations to be applied to
the program. On the other hand, PATUS [74] offers a DSL intended to be
used for stencil codes. With this DSL, it is possible to control the appli-
cation of several loop transformations, as well as the usage of architecture
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extensions (i.e., SSE). Loopy [75] allows the programmer to specify a series
of loop transformations which are then automatically applied and guaran-
teed to be correct by formal verification. These are specified in a script (as
in CHiLL) and are applied to the internal polyhedral representation.

Tuning the OpenMP parameters is not a novelty, since it has already
been proposed in [76–78]. There the focus is on automatic parallelization
of code with automatic selection of parameters done in a second phase. The
approach of these works focuses on finding the one-fit-all solution for the
given platform, without considering dynamic autotuning.

Overall, the proposed approach improves the state of the art thanks to the
flexibility of its components: it allows to decouple the autotuning problem
from writing the application and inserts dynamical autotuning that consider
the evolution of the system in taking the optimal decision.

4.3 Proposed Methodology

SOCRATES aims at providing, in a seamless way, a framework able to
enhance, at kernel level, an application with an energy-aware autotuning
module. Figure 4.2 shows in detail the flow of the framework and shows all
the tools involved.

The starting point of the proposed approach is a standard C/C++ source
code describing the functional behavior of an application, i.e. o = f(i)
where a function f computes the output o from the given input i.

To reduce the compiler flag space, we used GCC-Milepost [13] and
COBAYN [11]. The first tool is needed to analyze every kernel of the
original code and to extract code features. These features are needed by
COBAYN to select the most promising compiler flags for every kernel.

Once the compiler flag space is defined, we use the LARA toolbox
to perform two actions, needed to obtain the adaptive kernels: 1) Mul-
tiversioning and 2) Autotuner insertion. These operations are shown in
Figure 4.3. In particular, the first action transforms the original applica-
tion into a tunable version. It inserts a set of dynamic knobs that can
change its behavior. Thanks to this, the program model becomes o =
f(i, k1, k2, . . . , kn), where k1, k2, . . . , kn are the set of knobs related to
EFPs of the application (such as its execution time) or the result (such as
its accuracy). In this way, several versions of the kernel are created and
a wrapper is generated that will be used to call the selected version of the
kernel. The second action is the introduction of the autotuner functionali-
ties, i.e. the initialization function, with all the information to configure the
dynamic knobs according to the requirements and the environmental con-
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Figure 4.2: Tool flow of the SOCRATES approach from the original application source
code to the generation of the application adaptive binary.

Source: [79]

dition. Moreover, it inserts the autotuner functions that wrap the kernel call
and monitor its behavior. In particular, three of these functions are required:
start, update and stop. The first function will start the monitoring system,
the second will select the version of the kernel according to the monitor
values and the third will stop the monitoring system. In the example, we
only show an application with a single kernel, but the strong point of this
methodology is that it can be applied on more than one kernel.

After the LARA step, we have obtained the Enhanced application code,
which needs to be profiled in order to create the application knowledge
required by the final adaptive application binary. This is done by run-
ning a profiling campaign on all the available alternative kernels, collecting
their behavior on the underlying architecture. Finally, using the application
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knowledge we can create the final adaptive application.
Even if the overall approach is suitable for different contexts, we de-

signed SOCRATES to address the following autotuning space:

Compiler Options (CO) : This knob represents a combination of compiler
flags. We used the four standard optimization levels from gcc: Os,
O1, O2, O3, plus some specific transformations that were deemed as
the more interesting in [80]: -funsafe-math-optimizations, -fno-guess-
branch-probability, -fno-ivopts, -fno-tree-loop-optimize, -fno-inline-
functions, -funroll-all-loops ;

Number of threads (TN) : This knob sets the number of OpenMP threads
between 1 and the number of logical cores;

Binding Policy (BP) :This knob sets the OpenMP binding policy: spread
or close. We set the environmental variable OMP_PLACES to cores.

4.3.1 Step 1: Reduce the compiler flag space

Even if we did not consider all the possible compiler flags for the explo-
ration, the Design Space is still too large. For this reason, we decided to
use the COBAYN framework to prune the space and select, without hav-
ing to measure every possible combination, the most promising compiler
flags. COBAYN is an autotuning framework that exploits Bayesian Net-
works (BN) to extract the most suitable compiler optimizations from the
source code. A required step before the prediction is the application char-
acterization. Indeed, COBAYN uses application features to speed up the
iterative compilation methodology, thus predicting which are the most suit-
able compiler optimization to enable. We perform the kernel characteriza-
tion using GCC-Milepost, and we adapted COBAYN to work at function
granularity. Thanks to this step, the 128 possible combinations of flags are
reduced to 4 alternatives, before the application knowledge building step.
These 4 alternatives are different for every kernel analyzed, since this step
is performed in complete authonomy for every analyzed kernel.

4.3.2 Step 2: Integration

As we already mentioned, SOCRATES seamlessly integrates the autotun-
ing into the original application thanks to the LARA DSL. Thw two strate-
gies, Multiversioning and Autotuner insertion, are in charge of this job.
They are used to enhance automatically the original code, obtaining a tun-
able application with an adaptive layer (the mARGOt layer). In particu-
lar, we use code transformation and code insertion strategies specified in
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Figure 4.3: Example of the automatic application code transformation from the original
code (a) to the final adaptive code (c).

Source: [79]

LARA aspects to interact with the original code. MANET [81] is used as
a source-to-source compiler to insert the required code as described in the
aspects.

As we already mentioned, the Multiversioning strategy clones the ker-
nel several times. The autotuning space has to be represented here. In
particular, as we said, we have three dimensions: compiler flags, OpenMP
threads, and OpenMP binding. Out of these three, two are statical param-
eters, while only the number of threads can be managed at runtime. For
this reason, we need to clone the kernel several times. Each function clone
represents a different version of the kernel in terms of compiler options and
binding strategy. No cloned versions have been generated to manage the
number of threads variable because it can already be changed at runtime.
For each function clone, the strategy inserts GCC pragmas to set compila-
tion flags (e.g., #pragma GCC optimize ("O3,fno-ivopts"))
and OpenMP pragmas (e.g., #pragma omp for proc_bind(close))
to configure the parallelization of the kernels. Then it generates the wrap-
per, which allows switching the target version according to control vari-
ables. Finally, the strategy replaces each call of the kernel from the original
source code, with a call to the wrapper (see Figure 4.3b). The entire process
is fully automated.

The second strategy, Autotuner insertion, is responsible for the integra-
tion of mARGOt. As we already said, this strategy is in charge of two tasks.
The first is to insert all mARGOt headers and the setup call needed by the
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Table 4.1: Metrics collected from the application of LARA strategies.

Benchmark Att Act O-LOC W-LOC D-LOC Bloat

2mm 698 378 136 2068 1932 7.29
3mm 708 378 125 1801 1676 6.32
atax 684 250 81 1071 990 3.74
correlation 1347 410 138 2366 2228 8.41
doitgen 561 218 72 1018 946 3.57
gemver 631 218 94 1008 914 3.45
jacobi-2d 4429 154 145 2918 2773 10.46
mvt 339 154 64 571 507 1.91
nussinov 551 154 78 1356 1278 4.82
seidel-2d 445 154 47 565 518 1.95
syr2k 376 186 66 749 683 2.58
syrk 370 186 62 743 681 2.57

Average 928 237 92 1353 1261 4.10

autotuner. The second task is to wrap the kernel call with the mARGOt API
that monitors the EFP and makes the variant selection.

4.4 Experimental Results

The platform used for the experiment is a NUMA machine with two Intel
Xeon E5-2630 V3 CPUs for a total of 16 cores with hyperthreading enabled
and 128 GB of DDR4 memory (@1866 MHz). We tested our methodology
on 12 benchmarks from the Polybench/C benchmark suite [82]. We used
SOCRATES to automatically generate the self-tunable applications, with-
out adding a single line of code into the target applications. The Design
Space considered for this campaign is the one described in Section 4.3.
mARGOt is in charge of performing two tasks. The first one is to profile
the application to build the application knowledge. This is done by per-
forming a Design Space Exploration (DSE). The second task is to manage
the application at runtime according to the application requirements given
by the experiment. To evaluate this approach, we used a full-factorial anal-
ysis over the design space.

Table 4.1 presents some metrics regarding the application of LARA to
each benchmark source. Att is the number of attributes of the source code
that are checked by LARA. This number includes function signatures and
pragmas. Act is the number of actions performed, including cloning and
code insertions.
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Figure 4.4: Power/Throughput distribution of the Pareto-optimal software-knobs configu-
ration.

Source: [79]

The LOC columns represent, the number of lines of code of the original
(O-) benchmark, the weaved (W-) benchmark and their difference (D-). The
number of logical lines of source code in the complete LARA strategy is
265, which is used to calculate the Bloat metric [83]. This metric estimates
how much code is weaved in the original application for each line of code
in the LARA aspect.

These data present an overview of the complexity of the task, which
should be done manually. Let’s examine 2mm as example. MANET au-
tomatically inspects multiple points in the source code, checking 698 at-
tributes. Then it performs transformations (or insertions) on 378 of the
inspected points. From the Bloat value we can see that we insert an average
of 7.29 lines of C code per line of LARA aspect code. The large differ-
ence between benchmarks is explained because their kernels may be very
different in size, with a different number of loops.

Figure 4.4 shows the analysis of the trade-off space between power con-
sumption and throughput of the target kernels obtained with a full-factorial
DSE. In particular, the boxplot shows the distribution between the through-
put and the average power consumption. The y-axis represents the distribu-
tion of the target metrics for each evaluated application. In the construction
of the graph, we considered only the Pareto-optimal configurations. As we
can see, there is no one-fits-all configuration. This proofs the importance
of the proposed approach.

Figure 4.5 shows the changes in the configuration for 2mm if the tuning
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Figure 4.6: Execution trace of the 2mm application. We changed the requirement each
100 seconds at runtime.

Source: [79]

is done statically with a target power budget. We can see on the x-axis
the target power budget, while on the y-axis there are the values of the
software knobs in that configuration. The plot shows the available power-
performance trade-off found in the Pareto curve. It can be seen that there are
no knobs that are always the best. For this benchmark, COBAYN suggested
the following flag combinations:

1. CF1): O3, no-guess-branch-probability, no-ivopts, no-tree-loop-optimize,
no-inline;

2. CF2): O2, no-inline,unroll-all-loops;

3. CF3): O2, unsafe-math-optimizations, no-ivopts, no-tree-loop-optimize,
unroll-all-loops;

4. CF4): O2, no-inline.

With the last experiment, we wanted to show the full potential of SOCRATES,
with a runtime experiment. We simulate an experiment where the power
budget changes twice, at first relaxing the initial constraint, then we recre-
ate it. The idea behind this is that the application has two states in its
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execution, the energy save configuration and the throughput configuration.
The first one optimizes the Throughput per Watt2 (Thr/W 2), while the sec-
ond is interested only in the throughput. Figure 4.6 reports the execution
trace of the target application (2mm). We can notice that the parameter set
changes whenever (at 100 and 200 seconds) we change the target configu-
ration. mARGOt adapts the knobs to meet the configuration requirement.

4.5 Summary

This chapter contributes to the thesis by presenting SOCRATES, an auto-
tuning framework designed to enable performance portability without re-
quiring user contribution. We have shown by applying SOCRATES to the
OpenMP polybench suite that it enables application adaptivity at runtime.
It allows to always select the better configuration according to runtime con-
straints that can change during the application lifetime.

The outcome of this work has been published in the Design, Automation
and Test in Europe Conference, 2018 [79].
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CHAPTER5
A library for tunable Multipliers Hardware

Accelerators

In this chapter, we will consider the first heterogenous autotuning tech-
nique, targeting Field Programmable Gate Arrays (FPGA). In this context,
we will create a tunable library that follows the idea of others in literature
that can generate different accelerators for an important primitive operation
in computer science, the large unsigned multiplication. This operation rep-
resents a significant computation effort in some cryptographic techniques.
Thus, the use of dedicated hardware is an appealing solution to improve
performance or efficiency.

The library can generate several large integer multipliers with different
characteristics in terms of throughput and area occupancy through High
Level Synthesis. In this way, even programmers that are not expert in using
or programming FPGA can easily and quickly create accelerators for their
application. The goal of this chapter is to provide a library that enables the
end-user to explore a wide range of possibilities, in terms of performance
and resource utilization, without requiring them to know implementation
and synthesis details. Experimental results show the large flexibility of the
generated architectures and that the generated Pareto-set of multipliers can
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outperform some state-of-the-art RTL designs.

5.1 Introduction

The increasing concern for security and safety [84] led to the more widespread
usage of cryptographic techniques and an increase of their complexity. The
multiplication between large integers is a common operation in this con-
test. As an example, the work in [85] uses the Pailler cryptosystem to
perform data aggregation without decryption at intermediate hops in a net-
work. However, this operation requires a significant computation effort,
promoting the usage of efficient and optimized hardware component im-
plementations to improve its performance, even if they have limited cus-
tomization opportunities. The latter aspect is of paramount importance,
when the component usage may have different requirements in terms of
energy efficiency and performance. Therefore, researchers have spent a
significant effort to investigate hardware accelerators for the multiplication
of large numbers [86–90].

In this chapter, we propose a methodology to generate a throughput ori-
ented hardware accelerator for large integers multiplication. By customiz-
ing high-level parameters, the users can search for the best compromise
between resource utilization and performance, according to their require-
ments. We target Field Programmable Gate Arrays (FPGA), to exploit their
flexibility. FPGA are a particular category of programmable hardware with
reconfigurability capabilities. In the context of High Performance or High
Throughput Computing, it is possible to use them to implement acceler-
ators. A research path on tightly coupled FPGA-processor [91] aims at
reducing the data transfer overhead significantly. Therefore, having spe-
cialized hardware units to multiply large integers near the CPU might be
appealing. However, RTL programming is a costly and long procedure
that requires a high level of specialization. For this reason, we target High
Level Synthesis (HLS). HLS is a collection of methodologies that generate
the hardware description starting from a high-level language. The benefits
of this approach are two-fold. On one hand, it enables non-specialized de-
velopers to create hardware accelerators. On the other hand, by changing
parameters in the high-level language, it is easier to generate a wide range
of hardware descriptions. To the best of our knowledge, no HLS tool can
support natively and in an efficient way large unsigned multiplication.

The main idea behind this chapter is to follow the approach of autotun-
ing libraries such as ATLAS,MKL,SPIRAL adopted in High Performance
Computing (HPC) [30,31,41,92]. These libraries expose a single interface,
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Figure 5.1: Highlight of thesis approach targeted in this chapter.

while they tune the actual implementation for the underlying architecture
and input data. The proposed methodology is a parametric design for large
integer multipliers, to enable trade-offs exploration between performances
and area utilization.

To validate the methodology, we compare with state-of-the-art multipli-
ers [89, 93]. In particular, we perform an initial Design Space Exploration
(DSE) to identify multiplier configurations with Pareto-optimal trade-offs.

We may summarize the contributions of this chapter as follows:

• We propose a parametric approach to generate, using HLS, large inte-
ger multipliers.

• We provide the user the possibility to explore different levels of re-
source utilization.

• We propose a novel strategy to combine well-known multiplication
algorithms.

• We perform a Design Space Exploration to analyze the performance-
area trade-off.

• We publicly release the implementation code at
https://gitlab.com/me2x/hls_multipliers.
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In the context of the global framework, this chapter focuses on enabling
the heterogeneous computing approach with a different architecture. In this
case, the focus moves on creating an accelerator on an FPGA. This is only
a first step toward a heterogeneous self-tuning module that relies on this
platform. It is however important since it creates a starting point for future
applications, that can exploit the proposed library and can couple it with
the autotuning framework (for example to change the deployed multiplier
according to constraints on the FPGA area available) and realize a real self-
tunable module.

5.2 Background

This section describes the works in the literature related to the proposed
approach. In particular, we focus on two main aspects. At first, we describe
different implementations of large integer multiplication. Then we analyze
autotuning libraries and how they approach alternative implementations.

Large integer multiplications If we focus on software, the GMP library [94]
contains a collection of optimized algorithms. The optimal one is chosen
at runtime according to the underlying architecture and operands size. This
library is empirically considered the reference implementation for software
multiplication. For example, both the FLINT library [95] and the NTL
library [96] exploit GMP in their internal implementation. While soft-
ware multiplications focus on the execution time, a hardware implemen-
tation must consider multiple extra-functional properties, such as area con-
sumption and energy efficiency. Therefore, it is not possible to identify
a single optimal solution for a given data size. A large fraction of liter-
ature investigates multiplication between small numbers, for example up
to 128 bits [90]. An interesting approach has been proposed in a previous
work [93], which employs an Open Source generator to optimize the usage
of the Digital Signal Processor (DSP) available on the FPGA. However,
it has been optimized for latency and not throughput. Rafferty et al. [89]
provide an extensive comparison of different techniques to perform integer
multiplications with arbitrary size and inspired us for this work. In par-
ticular, it is possible to use four base algorithms: the direct multiplication
(Schoolbook), the Comba multiplication, the Karatsuba multiplication, and
the Number Theoretic Transforms (NTT). Direct multiplication exploits the
greatest number of DSPs, limiting its applicability for large numbers. On
the opposite side, the Comba multiplier uses the least amount of resources,
but it is the slowest. In the middle range lies the Karatsuba multiplier. Fi-
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nally, NTT relies on Fourier transform and it requires a significant operand
size (greater than 16384 bits [89]) to outweigh the initialization cost. More-
over, it is possible to combine different base algorithms, to leverage their
strength. We consider the combined approach [89] as the baseline for the
multipliers generated by the proposed approach. A significant fraction of
the related works reported in this section targets FPGA. As previously men-
tioned, properly programming these devices with RTL requires experienced
programmers. Since our objective is to provide the possibility to perform
large unsigned multiplications to a large audience, we will target HLS. The
proposed library will have to be integrated into the high-level code, and
from there the HLS tool translates the functional behavior to logic level
and it creates the hardware description [97–100].

Autotuning Libraries The typical workload of HPC includes scientific ap-
plications that belong to a wide range of domains. However, these applica-
tions typically share several computing-intensive patterns in their hotspots,
usually algebraic operations. To implement an efficient code that performs
such tasks requires the knowledge of the underlying architecture, introduc-
ing the problem of performance portability. Moreover, the application de-
veloper must perform this engineering task for every application. Auto-
tuning libraries solve this problem by isolating a small set of performance-
critical functionalities with a standard application programming interface
(API). The function implementation uses different architecture-specific op-
timizations that are automatically applied according to the target platform.
In this way, they release the application developer from the optimization
task. An example of this approach is the BLAS API (Basic Linear Algebra
Subprograms, [29]). The API defines a set of primitives for linear alge-
bra, which has become standard for dense linear algebra applications. For
example, the ATLAS [30] and SPIRAL [31] autotuning libraries exploit
the BLAS interface. We have already analyzed this approach in detail in
Subsection 2.2.2.

5.3 Target Class of Multiplication Algorithms

The basic multiplication method, named schoolbook, replicates the paper
and pen method that is commonly used. Its drawback is that it requires a
very large amount of load and store to update the result when we consider
large integers. For this reason, literature investigates alternative multiplica-
tion methods. Among all of them, this work targets the intermediate size
of operands, where the non-optimality of the direct approach starts to be a
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a, b←integers of n bit
for i← 0 to 2n-2 do

if i < n then
ppi ←

∑i
k=0 ak ∗ b(i−k)

else
ppi ←

∑n−1
k=i−n+1 ak ∗ b(i−k)

end if
end for
z ←

∑2n−2
k=0 (ppk << k)

Figure 5.2: Algorithm of the Comba Multiplication

a, b← integers of n bit
ah ← a >> n/2
al ← a & n/2− 1
bh ← b >> n/2
bl ← b & n/2− 1
zh ← ah ∗ bh
zl ← al ∗ bl
zmid ← (al + ah) ∗ (bl + bh)− zh − zl
z ← zh << n+ zmid << (n/2) + zl

Figure 5.3: Algorithm of the Karatsuba Multiplication

problem, and before the size of the operands is too big to justify the NTT
approach.

Comba Multiplication This multiplication algorithm, proposed by Comba
[101], aims at reducing the number of load-store required to compute the
results, without altering the complexity. Algorithm 5.2 shows the algorithm
of this multiplication technique. It computes partial products between the
digits of the operands, and the order of the partial products allows to build
directly the final result by shifting and summing the computed partial prod-
uct with the result. The complexity of the operation does not change.This
algorithm is appealing when there are limited hardware resources [87].

Karatsuba Multiplication This multiplication algorithm, proposed by Karat-
suba [102], aims at reducing the complexity of the operation. It splits the
operands into two smaller terms and computes the final result as a poly-
nomial multiplication and it can be applied recursively. Therefore, if the
complexity of the operation using the previous algorithms is O(n2), the
complexity of the Karatsuba algorithm is O(nlog23). It replaces one n bit
multiplication with three n/2 bit multiplications and 4 additions. The al-
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gorithm is reported in Algorithm 5.3 However, recursively applying the
algorithm requires a high number of hardware resources [88].

Karatsuba-Comba Multiplication The Karatsuba algorithm is an appealing
approach to implement a large integer multiplication, due to the lower com-
plexity of the operation. Therefore, to mitigate the resource requirements,
researchers investigated the possibility to combine the Karatsuba and the
Comba algorithms [89, 103]. Previous works investigate both software im-
plementation [103] and hardware implementation [89]. In particular, the
latter focuses on a hardware implementation that performs a single iteration
of the Karatsuba algorithm, while it uses the Comba algorithm to compute
the three internal multiplications. Experimental results demonstrate that
this solution has the lowest latency for operands between 512 and 16384
bits [89].

5.4 The Proposed Approach

This section describes the proposed methodology and its implementation.
In particular, we propose to use a parametric high-level architecture de-
scription and to rely on a High Level Synthesis framework for the actual
hardware implementation of the multiplier. At first, we describe the gener-
ated architecture template and extract the high-level parameters. Then, we
describe how these high-level parameters change the generation of the mul-
tiplier. Since we are targeting HLS, we aim at exploiting the DSPs available
on the FPGA board. For this reason, we will not decompose the operation
to the bit level.

Architecture Template The proposed methodology provides an architectural
template that combines the multiplication algorithms described in Section 5.3,
allowing the exploration of a wide range of performance-resources trade-
offs. The idea is to use a divide et impera approach. We use recursion to
reduce the operands bit-width to increase multiplication efficiency, while
we use sharing techniques to limit the required amount of logic in the com-
putation. Figure 5.4 shows the architecture template and highlights the
sizes of the operands across the different layers. We split the multiplication
algorithm into three phases: (1) Karatsuba Operands Decomposition: we
recursively apply the Karatsuba algorithm to reduce the complexity of the
multiplication. Every recursion step is named "layer". (2) Products Evalu-
ation using the Comba Algorithm. (3) Karatsuba Result Composition: we
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Figure 5.5: Karatsuba multiplication layer with replicated (left) and shared (right) multi-
pliers for the inner multiplications.

Source: [104]
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recursively apply the sum and shifts required by the Karatsuba algorithm to
obtain the result, from the inner layer to the outer.

In the “operand decomposition” phase, at every layer, the dimension of
the data is halved and the three multiplication are instantiated, following
the traditional approach for the Karatsuba algorithm. We add, at every
layer, a choice that allows the programmer to force the re-use of the inner
multiplier to perform all the three multiplications needed by the Karatsuba
algorithm in a pipelined fashion. This introduces the possibility to replicate
or share resources, for each Karatsuba layer, as depicted in Figure 5.5. In
particular, the dotted circles represent the required multiplications ( zh, zm
and zl), while the squares represent the instantiated multipliers. On the
left side of Figure 5.5, there is the traditional approach of the Karatsuba
multiplication, where all the three multipliers are instantiated. On the right
side of Figure 5.5, we represent the pipelined architecture for a Karatsuba
layer, where a single multiplier is created and the three multiplications are
pipelined. The idea of forcing the reuse of inner resources enables the
trade-off between performance and resource usage. Therefore, we can use
this mechanism to balance the initiation intervals of the different layers, to
prevent idle inner layers.

When the bit size of the intermediate multiplication terms (i.e. zh, zm,
zl) reaches a given threshold, a last layer of Karatsuba instantiates its three
multiplications using the Comba algorithm. This is the second phase of
the multiplication. Even at this layer, the user can specify the number of
instantiated Comba multipliers (1 or 3). We implement the Comba algo-
rithm in a slightly different way with respect to the standard way with one
single multiplier that evaluates all the partial products serially. This choice
is done to enable parametrization inside this component. In particular, we
divide the multiplication into four steps: (1) We split the two operands in
digits, according to the size of the Direct multiplication. Each digit is stored
in a different variable to enable parallel access. (2) We compute the partial
products independently. According to the number of Direct multipliers, we
can modulate the latency of this phase. If this parameter is equal to the
number of multiplications, they are computed in parallel. If this parame-
ter is equal to one, it computes the products serially. Otherwise, there is
some degree of parallelism in the computation of these products. We use
Direct Multipliers because they are mapped directly on DSP. (3) We com-
pute the sums needed to generate the partial products (the sum of all the
columns in Algorithm 5.2) into separate variables. (4) We reconstruct the
final result. We use only sums, shifts, and masks to reduce the hardware
complexity. This approach allows all the internal variables to be written
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and read-only once, thus leaving all the scheduling decisions to the HLS
tool and enabling pipelined and/or parallel approaches, if enough resources
are allowed for allocation. Finally, in the last phase, we combine the partial
results of each Karatsuba layer.

Using this approach, we can expose to the designer, two categories of
high-level parameters. The first one is related to the dimensions of the
operands, while the second category controls the resource reuse. In particu-
lar, the parameters that fall in the first category are: OP_DIM(the bit size of
the multiplier operands), CH_DIM(the bit size threshold of the last Karat-
suba layer) TH_DIM(the bit size of the direct multiplication, i.e. the digit
bit-width in the Comba algorithm). To generate a balanced multiplier, these
parameters must be a power of two. The second category of parameters ad-
dresses resource utilization. In particular, the high-level parameters that fall
in this category are: L2_N_MUL(the number of OP_DIM/2 bits Karatsuba
Multiplier to instantiate, 1 or 3). more LN_N_MUL(the number of Karat-
suba Multiplier to instantiate inside the x-th layer, 1 or 3. The number of
these parameters is tied to the number of Karatsuba layers). N_COMBA(the
number of Comba multipliers in each innermost Karatsuba layer compo-
nent, 1 or 3) and N_MUL(the maximum number of Direct multipliers al-
lowed in the implementation of each Comba). We designed the approach
to be agnostic to the HLS engine. However, in the current implementation,
we use Vivado HLS pragmas to enforce resource-related parameters. It is
possible to port the methodology in a different HLS engine by changing
this implementation detail.

Methodology Implementation This work aims at generating throughput ori-
ented large integer multipliers, with a wide range of extra-functional prop-
erties, in terms of Initiation Time (i.e. the inverse of the throughput) and re-
source usage. In this way, the end-users can generate the most suitable mul-
tiplier according to their requirements. The recursive nature of Karatsuba
is a good match for recursive functions. However, they are not supported
by most HLS tools. Therefore, instead of using complex code generators,
we propose to use C++ templates to solve the recursion at compile-time,
generating the actual code in the multiplier declaration. While its usage
in the application code is consistent, by changing the template arguments,
it is possible to drastically change its hardware implementation, leading to
different extra-functional behaviors. Therefore, the high-level parameters
described before with the architecture template definition are implemented
using variadic C++ templates. To the best of our knowledge, [89] proposes
the first implementation of the Karatsuba-Comba multiplier. In particular,
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Figure 5.6: An example of multiplier that can be generated by the proposed approach,
according the high-level parameters configuration.

it investigates a hardware design that uses a single layer of Karatsuba, to
reduce the operands bit-width, and three Comba multipliers to perform the
inner products. However, its implementation does not follow a pipeline
approach and it exposes limited flexibility. On the contrary, our proposed
approach is throughput oriented, and it enables a greater level of flexibility
since it enables the reuse of pipelined components. Indeed, by changing
high-level parameters, it is possible to set the number of Karatsuba layers.
Moreover, it is possible to define for each layer the reuse policies to limit
the area of the multiplier, leading to unexplored multiplier architectures.

Figure 5.6 shows an example of a generated multiplier architecture. We
report the operands bit-size on the left side of the image, while on the right
side we report the number of multipliers used in each layer. In particu-
lar, it aims at multiplying two 2048 bit integers (OP_DIM= 2048). This
instance exploits 4 layers of Karatsuba to reduce the size of the operands
(CH_DIM= 256). Moreover, we enforce the reuse of all the multipliers, ex-
cept the ones of the third Karatsuba layer (L2_N_MUL= 1, L3_N_MUL=
3, L4_N_MUL= 1, N_COMBA= 1). Finally, we use two (N_MUL= 2) 32
bits (TH_DIM= 32) direct multipliers in each Comba multiplier. This mul-
tiplier is declared with a single line of cpp code, where we set the param-
eters in this simple way: multiplier <2048,256,32,1,2,1,3,1>(A,B,OUT),
where A and B are two ap_uint<2048>and out is an ap_uint<4096>variables.
The actual parametrized interface of the whole library is:
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Table 5.1: High-level parameters values explored in the DSEs. OP is the operand dimen-
sion, LM is the number of sub-multiplier, NC is the number of Comba multipliers, NM
is the number of Direct Multipliers. Frequency is in MHz.

OP CH_DIM TH_DIM LM NC NM Freq
2048 1024 512 256 128 128 64 32 1 3 1 3 1 2 4 100
1024 1024 512 256 128 64 64 32 16 1 3 1 3 1 2 4 150
512 512 256 128 64 64 32 16 1 3 1 3 1 2 4 250
256 256 128 64 32 32 16 1 3 1 3 1 2 4 8 300
128 128 64 32 32 16 1 3 1 3 1 2 4 8 350

1 m u l t i p l i e r <OP_DIM , CH_DIM, TH_DIM ,N_COMBA,N_MUL, . . . > ( a p _ u i n t <
OP_DIM>A, a p _ u i n t <OP_DIM>B , a p _ u i n t <2*OP_DIM>OUT)

The variadic template is needed to manage the variable number of LX_N_MUL
parameters. The code of the library component is made available1.

5.5 Experimental Results

This section evaluates the benefits of the proposed approach. At first,
we describe the Design of Experiment that we used to generate the mul-
tiplier implementations. Then, we analyze their extra-functional proper-
ties in terms of Initiation Time and resource usage at the post-place stage.
Finally, we compare them with state-of-the-art multipliers. In particular,
we consider RTL implementations [89] and several instances generated by
FloPoCo [93]. To perform these tasks, we use the tool Vivado HLS 2018.2
and Vivado 2018.2, on a Virtex7 xc7vx980t.

Design of Experiments The methodology aims at generating multipliers with
a wide trade-off space between performance and resource usage, given the
target operands size. Table 5.1 reports for all the considered operands di-
mensions (from 128 bits to 2048) the values of the explored parameters that
influence the architecture. We performed a DSE for all of these bit-widths,
combining in a full factorial DoE these parameters. The idea is to explore
up to five Karatsuba layers with different sharing policies and characteris-
tics of direct multipliers. The Design Space dimensions for the different
operands size, from 128 to 2048, are respectively 112, 240, 270, 558 and
540 configurations. We select the target frequency to compare fairly with
the existing solutions [89]. Once the DSE is completed, we performed
Pareto filtering to remove all the points that are dominated, also by state-
of-the-art multipliers.

1https://gitlab.com/me2x/hls_multipliers
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(b) DSE 256 bit
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Figure 5.7: Initiation time of different multipliers, by varying the number of used resources
and the operand size. Each row represents a different resource, while each column
represents a different operand size. The blue dot represents the multipliers created
with the proposed methodology, the green triangles represent the multipliers created
with the pipelined version of FloPoCo, the red cross are the multipliers created with
the combinational version of FloPoCo, the lilac squares are the Vivado ISE multipliers
(as reported in [89]) and the orange diamonds are the Karatsuba-Comba multipliers
proposed by [89].
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Design Space Analysis Figure 5.7 shows the result of the Design Space Ex-
ploration of multipliers from 128 (Figure 5.7a) to 2048 (Figure 5.7e) bits.
For each operand size, we report the trade-off between the Initiation Time
and the target resource. The Initiation Time is the time elapsed between the
start of two pipelined operations, i.e. the inverse value of the Throughput.
In particular, the first row shows the DSP consumption, the second row the
LUT usage, while the third row shows the Registers usage. All the reported
plots use a logarithmic scale. If we focus only on the multipliers generated
by the proposed approach (named “ours”), we can notice how the Initiation
Time spans over 3 orders of magnitude, for all the operands size. More-
over, there is a strong correlation between Initiation Time and the number
of DSP, where the lowest Spearman correlation coefficient among the dif-
ferent operand sizes is −0.96, with a p-value smaller than 0.0001. The
Initiation Time is also correlated with the multiplier area: the Spearman
coefficient is between −0.7 and −0.8, with a p-value smaller than 0.0001.
Even if we expected these results, it shows how the methodology can pro-
vide to the end-user the multiplier that best fits its requirements, in terms
of performance and area utilization. For example, in all the operand sizes
that we analyzed, the end-user can always choose between a fast multiplier
(e.g. with Initiation Time lower than 10ns) and a small one (e.g. with less
than 10 DSP).

Comparison with multipliers from Flopoco [93] FloPoCo is a VHDL generator
of arithmetic cores. Even if it mainly targets small operands, it can gener-
ate large integer multipliers. Moreover, the library supports the generation
of throughput-oriented pipelined components. Therefore, we compare the
multipliers generated by the proposed methodology, with the ones gener-
ated by FloPoCo version 5.0. For each operand size, we generate different
multipliers by changing the amount of available DSP, including one without
restrictions. When the tool fails to generate a pipelined component, for ex-
ample when we limit the amount of DSP, it will fall back to a combinational
component. Figure 5.7 reports the generated pipelined multipliers (named
“Flopoco pipelined”) whenever it is possible to generate them. While it
reports the generated combinational component (named “Flopoco combi-
national“) when the pipelined version is unavailable. A deep exploration of
resource parameters is difficult using FloPoCo. Indeed, when we consider
the time requested by FloPoCo to generate the multiplier RTL description,
we notice a drastic increasing trend due to the operands bit size. In particu-
lar, the tool can generate a 128 bit within an hour time frame. However, the
time increases to days for 512 bit multipliers and it was unable to produce
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any 2048 bit multiplier after two weeks of computation. This is visible in
Figure 5.7e, where no FloPoCo solution are plotted, but also in Figure 5.7d
where only a combinational configuration is available. These times are sev-
eral orders of magnitude higher by the minutes required by the proposed
methodology to obtain the RTL. If we consider the combinational multipli-
ers, we need to differentiate between larger than 512 bit integer multipli-
ers and smaller than 256 bit integer multipliers. While for larger numbers
(512-1024) FloPoCo has a worse DSP and LUT utilization compared to the
ones generated by the proposed methodology, this is not always true for the
small ones ( 128-256 ). Figure 5.7a and Figure 5.7b show a solution where
FloPoCo has better DSP and Register utilization, at the same throughput
level. However, that solution requires a much larger number of LUT. When
we change the resource constraining parameters, we noticed that FloPoCo
is not capable of generating trade-offs between resources and throughput.
Indeed, it uses LUT to replace DSP to generate architectures with a sim-
ilar level of throughput. If we consider the pipelined multipliers, the pro-
posed methodology generates a module with a better DSP utilization, at the
same LUT and throughput level. However, FloPoCo generates multipliers
with better Register utilization. The only exception we found is depicted
in Figure 5.7d where, by using a very large number of DSP, the FloPoCO
multiplier outperforms ours in terms of throughput. Analyzing the solu-
tion generated by our methodology, we found that the carry propagation in
the adder required by the final Karatsuba recomposition is the critical path.
This highlights that there is still room for further improvement in the next
future.

Comparison with Rafferty et al. [89] This work investigates the performance
and resource usage of several multipliers. In particular, it shows how the
ISE instantiated multiplier and the Karatsuba-Comba design have the best
throughput according to the size of the operands (ISE up to 512 bit, Karatsuba-
Comba above). Both of them are hand-optimized. The former belongs to
the Xilinx ISE library and the latter is proposed in the paper [89]. There-
fore, this section considers both of them (named “ISE [89]” and “Karatsuba-
Comba [89]” in Figure 5.7). From the results, we can notice how the ISE
multipliers are the ones with the best Initiation Time and the highest DSP
consumption for small integers, up to 256 bit. However, they are Pareto-
dominated by the multipliers generated by the proposed methodology, if
we consider 512 bits operands. Moreover, when we target larger inte-
gers they become unavailable. The known Karatsuba-Comba multipliers
(named “Karatsuba-Comba [89]”) are unable to reach the throughput of the
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multipliers generated by the proposed methodology, with the same amount
of DSP, for all the analyzed bit sizes. However, we can notice that the
hand-designed hardware can efficiently use LUT and Registers, compared
to other multipliers that target a similar throughput. This behavior is due to
the HLS procedure that is unable to reach the same optimization level when
it translates high-level languages into hardware description. Both the solu-
tions presented in [89] are not flexible and do not allow any performance-
resource trade-off exploration.

5.6 Summary

Working with FPGA increases the complexity of evaluating the performance-
power tradeoffs that the developer needs to consider when writing applica-
tions. In this chapter, we have seen a methodology that allows generating
a tunable library of large integer multipliers using HLS. It uses a para-
metric Karatsuba-Comba multiplication template to instantiate throughput
oriented multipliers. This flexibility enables the end-user to select the most
suitable multiplier, according to the application requirements, after having
evaluated the possible trade-offs. Indeed, from experimental results, we
can notice how the proposed methodology can generate multipliers with a
range of performances and resource usage that is greater than one order of
magnitude.

The outcome of this work has been published in the Design, Automation
and Test in Europe Conference, 2021 [104].
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CHAPTER6
Autotuning a Server-Side Car Navigation

System

In this chapter, we study a HPC application and we try to improve the com-
putation efficiency of this application by searching for a proactive way to
limit the amount of computation required. In particular, we analyze a Prob-
abilistic Time-Dependent Routing application (PTDR), a component in a
traffic navigator application. We propose a novel approach for dynamically
selecting the number of samples used for the Monte Carlo simulation that
is used to solve the PTDR, thus improving the computation efficiency. The
focal point of this approach is the study of the input and the research of a
function that can extract characteristics of the input that can be used to drive
the application. Once this function is found, we integrate it into the orig-
inal application with the LARA aspect-oriented language, already used in
Chapter 4 for a different purpose. We manage the runtime process of selec-
tion with mARGOt autotuner, which has been enriched with the proactive
functionality thanks to this case study.
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6.1 Introduction

The idea of smart city is a place where common tasks are automatized to
ease the life of citizens. One of these tasks is traffic prediction: this can be
used to avoid congestions, thus easing the life of the people that can predict
the travel time when moving in the city, but also reducing car emissions.
Moreover, if we consider the self-driving car vision, the routing requests are
going to increase by a large amount, along with the necessity of real-time
updates of the traffic situation. This is going to increase the computational
resources dedicated to this task since the main computation required are
operations on large graphs. Consequently, the trend is to move these tasks
to more powerful infrastructures, such as HPC.

From the algorithmic point of view, the routing problem is well known
in the literature. The optimal path between two points in a graph is a well-
known problem and Dijkstra’s shortest path algorithm has been proposed
to solve it. However, this is not the only problem that a navigation system
has to target. The system has to be able also to manage larger optimization
problems, such ah route planning for a fleet of delivery vehicles or waste
collection vehicles. Another targetable problem could be traffic manage-
ment in the smart city context [105]. However, the definition of the optimal
path can be not unique. It depends on the weights used in the graph that
represent the road system. The shortest path is only based on geometrical
distance, while the fastest path only considers the time elapsed in the trip.
There might be even more complex criteria; however, their description is
out of the scope of this work. The time needed to travel a road is affected
by various elements, such as accidents, traffic congestion, road work, and
so on. A simple starting point is to use the upper legal limit of speed, based
on the assumption that each vehicle travels at the same speed. However,
this approach is inaccurate because of the natural behavior of traffic.

Research efforts have been spent in the latest time in predicting the
average speed on the road network using statistical analysis and various
models. This has been made possible thanks to the collection of histori-
cal traffic monitoring data. However, a single-speed value prediction is not
very useful since it is not visible the stochastic behavior of the traffic. The
probability distribution of the speed at different times of the day allows in-
corporating real-world events that can cause major delays and affect traffic
over vast areas. In this way, it is possible to compute the probability of
arriving within a certain time. This change in the approach can be useful
in creating a more accurate route planning system. This problem is called
Probabilistic Time-Dependent Routing ( PTDR ).
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Figure 6.1: Framework techniques used in this chapter.

This problem has already been addressed in literature, and a solution
with a scalable algorithm has been proposed in [106,107]. We consider this
work as the starting point for this chapter. In detail, the scalable algorithm
uses the probability distribution of the travel times for the individual edges
to estimate the distribution of the total travel times using Monte Carlo sim-
ulations. This algorithm is already integrated into an experimental server-
side routing service, which is deployed into an HPC center, to offer optimal
performance for a large number of requests, such as in the smart city con-
text. There the PTDR algorithm used simulates a large number of vehicles
traveling on a determined path at a definite hour of departure. The speed
of the vehicles is sampled from a speed profile, which is a speed probabil-
ity distribution associated with the edge of the graph. With this approach,
the number of samples used in the Monte Carlo simulation is a parameter
that strongly affects the accuracy of the prediction, as well as the compu-
tational effort. Since the system is designed to serve a large number of
requests, small changes in the workload required to serve a single request
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can affect the overall efficiency. The original version [106] is based on a
worst-case tuning of the required number of samples, without any capabil-
ity of adapting to the road or the starting time. A reactive approach like
the one suggested in [108] is not viable, thanks to its high overhead, we
propose a methodology to proactively select the number of samples to use
in the Monte Carlo simulation required for the PTDR algorithm.

In the context of the global framework, this chapter introduces the con-
cept of data features. We define as data feature some characteristics of the
input that can be captured with a quick function before the run of the ker-
nel and that can drive the run to obtain benefits from the extra-functional
point of view. Figure 6.1 shows the involved components, which in this
circumstance are only the autotuning framework and some custom writ-
ten functionalities to extract the data features. These functions are then
integrated, together with the autotuner, with the DSL seamless integration
process to enforce the separation of concern between the functional and the
extra-functional code.

In particular, the contributions of this chapter can be summarised as fol-
lows:

• A methodology has been proposed to proactively self-adapt the PTDR
algorithm presented in [106, 107] to the input data;

• A probabilistic error model has been studied to correlate the charac-
teristics of the input data to the number of samples used in the Monte
Carlo simulation;

• An aspect-oriented programming language has been used to separate
the functional version of the application from the adaptivity layer.

6.2 Background

Many formulations of the problem of determining the optimal path in a
stochastic time-dependent graph have been proposed [109]. The starting
point of this work is closest to the Shortest-path problem with on-time ar-
rival reliability (SPOTAR) formulation. This is a variant of the Stochastic
on-time arrival (SOTA) problem, which has a practical solution as shown
in [110]. The objective of these algorithms is to maximize the probabil-
ity of arriving within a time budget and can handle optimal routing in a
stochastic network. However, they are not able to manage time-dependent
solutions. In [109] there is a practical result for a time-dependent SOTA
approach. [111] approach the SPOTAR problem from the theoretical point
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of view, and suggests a way to extend it with time dependency. Other works
show different theoretical approaches and practical application of the SOTA
problem [110, 112–114]. In particular, the last work [113] presents a solu-
tion for the SPOTAR problem as a heuristic based on a policy-based SOTA
approach. However, the authors assume the network as time-invariant,
which is not true if we consider long travels. Moreover, this solution is
not usable in on-line systems since the scalability to real-world graph is a
concerning issue.

This chapter proposes an approach that is built on top of [106, 107],
where an approximate solution of the time-dependent variant of the SPOTAR
problem based on Monte Carlo simulations is proposed. Our approach is
based on the k-shortest paths algorithm [115–117] to determine the paths
to use for the PTDR estimation. This separation allows us to implement the
whole approach in an online HPC system that can provide adaptive routing
in real-time. Since the PTDR is based on Monte Carlo techniques, we can
find in literature some methodologies to improve its efficiency. As reported
in [118], there are two main ways to improve it. The first one is to improve
the sampling efficiency, the second is to target the sampling convergence.
However, in both cases, the optimal solution is reached by exploiting the
iterative nature of the Monte Carlo simulation. Indeed, several techniques
have been proposed to determine which is the best next sample to maximize
the gathered knowledge [118, 119] thus improving the sampling efficiency.
However, in the implementation under analysis, this approach is not valid
since it requires analyzing the result at each sampling iteration, while we
want to exploit the parallelism of the underlying HPC architecture [107]
that excludes any iterative approach to the Monte Carlo. For the same rea-
son, we have to discard also the approaches that require a statistical prop-
erty evaluation after every iteration. For example, [108] check the error
acceptability after every sample, which is not acceptable for our approach.
Both approaches would introduce too much overhead. As already analyzed
in [106], the specific problem requires that the number of samples is chosen
a priori in a proactive rather than in a reactive manner.

A solution closer to the proposed one has been envisioned in [120], with
a two-step approach. The authors suggest having a first shot with a reduced
number of samples to provide an initial approximate solution as fast as pos-
sible, and then to refine it to the required accuracy in successive iterations.
In our context, this idea suffers from two big weaknesses. First, the ap-
proximate result is suitable for scientific workflows where it can be used to
trigger the next stage of computations, which is not our case. Second, in
the iterative phase, it uses a reactive approach that we already discussed is
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not ideal in our case, since we require a proactive solution in this specific
problem to exploit HPC capabilities.

6.3 Monte Carlo Approach for Probabilistic Time-Dependent
Routing

Many theoretical formulations and several algorithms have been developed
to solve the problem of computing the distribution of the travel times of a
road [109]. In this chapter, we consider a path-based approach (SPOTAR)
where the paths are known a-priori (since they are evaluated in the pre-
vious K alternative paths step) and the goal is to evaluate the travel-time
distributions for each one of those paths [121].

The complete traffic navigator application pipeline is shown in Fig-
ure 6.2. The focus of this chapter is on the efficient estimation of the arrival
time distribution (PTDR - Probabilistic Time-Dependent Routing phase).
To provide a global view of the traffic navigator pipeline, the three main
steps of the application can be described as follows:

1. Determinate the K-alternative paths. In this scenario getting the short-
est path is not sufficient when no traffic information is inserted in
the road computation. For this reason, we need to evaluate more
than one road using a K-shortest path with limited overlap algorithm
[115–117]. This step is out of the scope of this thesis.

2. For every path, evaluate the travel time using the PTDR module. The
exact solution of the travel time estimation has exponential complex-
ity, which is approximated with the Monte Carlo approach proposed
in [106]. This module is the focus of this chapter, which aims at opti-
mizing the Monte Carlo simulation used in the PTDR algorithm.

3. This last step gathers all the predicted times, and reorders all the
measured paths, according to the timing distributions and user pref-
erence [122].

The need for performance pushes us to implement this pipeline in an HPC
system. Moreover, we focus on improving the performances by not doing
useless computation, following the approximate computing paradigm. This
approach is designed to be used in an online system to serve a large volume
of routing requests.

The definition of a probabilistic road network is inspired by the defini-
tion of the stochastic time-dependent network described by Miller-Hooks
[121]. The only difference is in the conception of the segment travel times,
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Figure 6.2: The complete navigation pipeline.

Source: [123]

which we substituted with the distribution of the speed probability (speed
profile) at a given time of departure within a week. Formally, we define the
network as follows.

We define G = (V,E) as a well connected, directed, and weighted
graph, where V is the set of vertices and E is the set of edges. Each vertex
represents a crossroad or some point of interest with a geospatial property
of the road. Each edge represents the individual road segments between
the points of interest. Every path selected by the K-Alternative paths algo-
rithm can be formally represented as a vector of edges S = (s1, s2, . . . , sn),
where Sp ⊆ E and n is the number of segments in the path.

We are interested in finding a realistic estimation of the travel time θ
as θ̂S,t,PS where S is the given path, t is the time of departure, and PS
are the probabilistic speed profiles of all the segments of the given path S.
More in detail, we divide the possible departure time into time windows
T = {t : t = n · φ, n ∈ N} [124], where the length of the interval φ is
determined by input data. t ∈ T is a departure time within this set. P is
the set of probabilistic speed profiles, given for each edge e ∈ E, where
PS ⊆ P . Each speed profile p ∈ P is composed of a set of discrete speed
values each of them with an assigned probability. These speed values are
derived from historical traffic data and their quantity depends on how they
were extracted from the data. The minimum speed value represents the
speed when the road is congested, while the highest speed is the free-flow
speed.

In this work, we consider a total time frame of one week where every
interval lasts 15 minutes (φ = 900s). This allows reflecting traffic varia-
tions at different hours across the day, managing differently all the days of
the week. Extending the time frame, it is possible to consider other differ-
ent factors, such as the seasons (that could influence the travel time having
different wheater) or holidays. Every segment has 4 possible speed values,
which are created according to the characteristics of the historical profiled
data collected on the considered road.

Moving to the SPOTAR problem, we are not interested in finding one
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Figure 6.3: The original approach for PTDR routing based on Monte Carlo simulations
to derive the travel time distribution.

Source: [123]

single precise travel time value θ, but we need to evaluate the probability
distribution of the arrival time. Given the problem formalized above, we
can estimate the travel time distribution traversing all the segments that
constitute a path considering the distribution of their speed profiles. In
particular, we can build a tree where every layer is a segment in the selected
path, as done in [106]. The root of the tree is the starting segment of the
trip, while the leaves are the end segment. Each node in the tree has l
children, one for each value of the speed probability for that segment. The
depth of the tree corresponds to the number of segments that build the path
|S|. Each edge in the tree has a discrete speed value, the probability of that
speed being the correct one and the length of the considered segment. A
depth-first-search (DFS) can be used to evaluate the travel time, where at
every level we select an arbitrary node in the tree. Then, after the traversal,
we can build the travel time as the sum of the time spent in all segments,
evaluated as length/speed, where the probability of that travel time is the
product of all the visited edges probabilities. A single traversal represents a
single trip, done by a car along the entire path. To build the exact probability
distribution we need to perform an exhaustive search over all the possible
nodes in the tree, from the root to the edges. This cannot be done, since it
scales exponentially with the number of segments in the path.

However, it is possible to use a Monte Carlo approach to perform this
task. If we generate a large number of random tree traversals, we can build
a distribution of the travel times using the results of these traversals, thus
building an approximate distribution that estimates the real one. We define
the final distribution obtained with Monte Carlo simulation as MCS(x, i).
This distribution is a collection of θ values (θ1...θx). In the definition x is
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the number of random tree traversals, and i is the input set of the θ̂ function
(i.e. S, t, PS).

These distributions usually have a long-tailed shape, because of proper-
ties of the traffic such as accidents, which are rare events but have a strong
impact on the travel time. For this reason, to estimate correctly the distribu-
tion of the travel times, large numbers of samples (x) are needed. As we al-
ready mentioned, we cannot rely on run-time stability analysis of the Monte
Carlo simulation, since we target parallel architectures we need that every
sample θ of the Monte Carlo simulation, which means each tree traversal,
has to be independent of the others. However, we need to know beforehand
the number of samples θ required to build the probability distribution, to
efficiently exploit the parallelism.

To summarise, Figure 6.3 represent the original PTDR algorithm. All
the required data (such as starting and ending point and starting time) are
given to the Monte Carlo simulation, which can provide the probability dis-
tribution for the given route thanks to a fixed a-priori number of traversals.

6.4 The Proposed Approach

The considered Monte Carlo simulation uses a fixed number of samples x in
all the performed run. This is the conventional approach, where this number
is selected with worst-case analysis. Indeed, this is the lowest number of
samples required to guarantee a target accuracy [107]. Here we present a
technique that we propose, which allows selecting at runtime the number of
samples needed for the Monte Carlo simulation to guarantee the accuracy
according to characteristics of the input data.

However, before moving to the proposed methodology, we want to prop-
erly contextualize the problem. Even if we are trying to build the travel
time distribution, what we are really interested in is to know a value, τi,
that guarantees that the travel time will be within that value: P (θ < τi) ≥ y
where i is the input set of the travel-time function and y is the probability
value. This value, τi, is the output of the PTDR. To enable our approxi-
mation, we need to characterize this value with an additional property, y,
where y is the probability that the travel time will be lower than τ . The
resulting formulation of this property is τi,y.

With the Monte Carlo simulation, we can evaluate the value of τi,y using
x samples as follows τ̂xi,y = MCS(x, i, y). In particular, the value τ̂xi,y is
obtained selecting the y-th percentile of the distribution obtained from the
Monte Carlo simulation on a finite number of samples (i.e. if y = 95% then
τ̂xi,y is the 95th percentile of the distribution).
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With the proposed approach, we want to minimize the execution time
of the MCS, while minimizing the prediction error defined as errorxi,y =
|τi,y−τ̂xi,y |

τi,y
. The target problem can be expressed as follows:

minimize
x

cpu_timexi

subject to errorxi,y ≤ ε
(6.1)

where ε is the maximum tolerated error that can be done in the computa-
tion. We want to link this error to the output of the MCS, in particular to
the desired percentile of the predicted travel time. This allows us to abstract
from the actual path. Since there is a strong correlation between the execu-
tion time and the used number of samples x, it is possible to simplify the
problem as a minimization of the number of samples x instead of cpu_time
Considering the properties of the Monte Carlo approach, we can derive that
τi,y ≡ τ̂∞i,y, where τ̂∞i,y is the output of the MCS function when evaluated
with an infinite number of samples. Thus, we can rewrite the error as

errorxi,y =
|τ̂∞i,y − τ̂xi,y|

τ̂∞i,y
(6.2)

Another property of Monte Carlo is that the value τ̂xi,y is a random variable,
asymptotically normally distributed with mean µτ̂xi,y and standard deviation
στ̂xi,y [125]. Then, thanks to the central limit theorem [126], if we consider
a number of samples high enough, the average value does not depend on
the number of Monte Carlo simulations. Moreover, the standard deviation
decreases constantly while we increase the number of samples used in the
Monte Carlo simulation. Given all of these properties, it is possible to
define the error as a random variable characterized by a normal distribution
with mean 0 and a standard deviation στ̂xi,y/µτ̂xi,y . In the following, we refer

to the standard deviation of the error as ντ̂xi,y =
στ̂x
i,y

µτ̂x
i,y

. This is defined as

the coefficient of variation (relative standard deviation) of the result of the
Monte Carlo simulation.

However, given the probabilistic nature of the problem, it is impossible
to guarantee that the error will always be below ε. On the other hand, it
is possible to relax the problem by introducing the concept of confidence
interval (CI) on the error. In particular, thanks to the normal distribution of
the error, we can correlate the selected confidence interval with the expected
error:

P (errorxi,y ≤ ε) ≥ CI =⇒ ˆerrorxi,y ≤ n(CI)× ντ̂xi,y ≤ ε (6.3)
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where n(CI) is a value that express the confidence level. We derived the
confidence level from the 1-3 σ-intervals of the normal distribution, so
n(68%)=1, n(95%)=2 and n(99.7%)=3. Thus, by decreasing the number
of Monte Carlo simulations used to derive τ̂xi,y, on the one hand, we reduce
the application execution time, but on the other hand we are also affect-
ing the accuracy, which can be seen from the increase of the coefficient of
variation ντ̂xi,y .

An additional problem comes from the input dependency of τ̂xi,y. This
means that, if the input is unknown (such as an unknown path) it is not
possible to predict the possible Monte Carlo error, using only the number of
samples as prediction variable. To deal with this, we need to find a feature
ui of the inputs i that can be used to quickly evaluate the input and find the
number of samples necessary to contain the error below the threshold ε. In
this way, we can evaluate the error using ui instead of the real value i thus
transforming the original problem into

errorxi,y ≤ n(CI)× ντ̂xui,y . (6.4)

We found this feature ui , which we called unpredictability, since it rep-
resents a set of characteristics of the inputs i (road, starting time,...) that
provides information about how complex is the prediction of τi,y. There-
fore this unpredictability is also related to the number of samples required
to ensure a confidence level on the error The details on the unpredictability
feature and the function used to evaluate it are presented in Section 6.4.1.

With this new formulation of the problem, the error is no more directly
related to the specific input set i but only to the identified feature ui. Thus,
the number of samples needed to satisfy the constraint on the confidence
can be extracted by ντ̂xui,y ≤

ε
n(CI)

. The missing step to finalize the method-
ology is to determine the correlation between the unpredictability function
and the output error. This has been done running a profiling phase on a
representative set of inputs, to extract the values of ν̂τ̂xui,y that we then used
to evaluate the correlation. The details on this profiling campaign are pre-
sented in Section 6.4.2

To summarise, Figure 6.4 shows the proposed methodology. We add an
adaptivity layer on top of the Monte Carlo simulation to quickly determine,
at runtime, from the characteristics of the actual input, the number of sam-
ples required to satisfy the accuracy requirement. This is possible thanks
to the feature-extraction procedure that estimates the unpredictability given
the input data. The dynamic autotuner combines the data feature with the
profiled knowledge plus the extra-functional requirements to correctly con-
figure the Monte Carlo simulation before its run.
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Figure 6.4: The proposed adaptive approach for PTDR routing. We can notice that the
Monte Carlo simulation is now driven not only by the input but also from the Dynamic
Autotuner.

Source: [123]

6.4.1 Unpredictability Feature

The evaluation of the input, i.e. the extraction of the data feature, is an oper-
ation that has to be done at runtime, before the call to the Monte Carlo func-
tion. For this reason, this operation has to be very quick and lightweight,
otherwise, the speedup of the computation in the Monte Carlo phase will
be overshadowed by the cost of the extraction overhead, and the whole ap-
proach would be meaningless

From our experiments, we discovered that a measure of the unpredictabil-
ity of the considered path can be extracted from a simple statistical property
of a small set of travel times θ evaluated with a quick Monte Carlo simu-
lation on a small number of fragments. The property we are referring to
is the coefficient of variation. Intuitively, if the results of this quick Monte
Carlo are very spread out, then the path is going to be difficult to predict,
thus we need a high number of samples to build an accurate estimation of
the distribution. On the other hand, if this coefficient of variation is very
small, the path is probably very easy to predict.

The unpredictability function is defined as ui = σxθi/µ
x
θi

where σθi and
µθi are the standard deviation and the average of a set of travel times evalu-
ated with a MCS done with the minimum number x of samples allowed at
runtime. We decided to evaluate the unpredictability function with the first
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set of Monte Carlo samples to reduce the overhead due to the data feature
extraction. The data feature extraction function will use the result of the
first run to evaluate if more samples are needed, and how many.

To validate the unpredictability function as a proxy of the input, we use
the Spearman correlation test [127] between the unpredictability function
and the value of ντ̂xi,y used in the calculation of the expected error for dif-
ferent values of x and y over a wide range of inputs sets i. In all cases,
the correlation values were larger than 0.918 showing a p-value equal to
0. These results corroborate our hypothesis, with the p-values showing that
the results are statistically significant.

6.4.2 Error Prediction Function

The last missing step is to build the knowledge on the expected error given
the unpredictability. To achieve this result we need to extract ν̂τ̂xui,y from
profiled data. Our profiling campaign is done by running, several times for
each configuration, the Monte Carlo simulation. We decided to use, for the
number of samples, values ranging from 100 to 3000. 100 is the minimum
number of samples required to have an estimation of the percentiles of the
distribution, while 3000 is the number of samples that are good enough to
satisfy the worst-case condition for the current Monte Carlo simulation, as
shown in the previous work [128]. 2 more intermediate steps have been
inserted between the minimum and the maximum value. These two levels,
300 and 1000, have been derived considering that the error of the Monte
Carlo decreases as 1/

√
n [129]. In this way, at each sampling level, the

error is almost halved.

Every set of the Monte Carlo simulation is run with the same configura-
tion (in terms of number of samples) on a large set of inputs i (i.e. roads,
starting time,...). From every run we extract ντ̂xui,y and ui. We decide to
use the quantile regression on these collected data [130] as predictor ν̂τ̂xui,y .
Since we are not interested in predicting the average of the final result, but
we need the predictor in the inequality formula ν̂τxui,y ≤

ε
n(CI)

, the quantile
regression enhance the robustness of the model. Any quantile value higher
than the 50th (the purely linear regression) guarantees stronger robustness
for the considered inequality. The selection of the quantile is an additional
parameter that can be tuned in the context of selecting the desired trade-off
between robustness and performance.
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Figure 6.5: Integration flow outlining the two main LARA aspects and related actions:
original code enrichment and autotuner configuration.

Source: [123]

6.5 Integration Flow

The previous section presented the proposed methodology from the theo-
retical perspective, highlighting the trade-offs between execution time and
elaboration error. In this section, we focus on the application developer
perspective by proposing an integration flow that is capable of enhancing
the target application with limited effort. This integration flow enforces
the separation between the functional and extra-functional concerns using
an Aspect-Oriented Programming Language to inject the code needed to
introduce the adaptivity layer in the target source code.

The adaptivity layer consists of the insertion of the mARGOt autotuner,
which can manage the adaptivity concepts presented in Section 12.3. The
target application is then transformed as shown in Figure 6.4. As we can
see, the autotuner is in charge of selecting the number of samples that min-
imize the execution time, with a constraint on the error. This selection
is done evaluating the unpredictability (data evaluation and feature extrac-
tion step) and using profiled knowledge, obtained through the procedure
described in Section 6.6.1.

We want to hide all this code manipulation from the end-user, thus we
adopt LARA [12] as language to describe the strategies and its Clava 1

compiler for the source to source code transformation. LARA is a Domain
Specific Language inspired by Aspect-Oriented Programming. It allows
the user to capture specific points in the code and then analyze and act on
those points. This approach creates a new version of the application without

1Project repository: https://github.com/specs-feup/clava
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1 // Load data
2 Routing::MCSimulation mc(edgesPath, profilePath);
3 auto run_result = mc.RunMonteCarloSimulation(samples, startTime);
4 ResultStats stats(run_result);
5 Routing::Data::WriteResultSingle(run_result, outputFile);
6 return 0;

Listing 6.1: Original source code before integrating the adaptivity layer.

changing the original source code, thus separating the functional concerns
from the optimizations specified in the LARA aspect. Clava is a C/C++
source-to-source compiler of the LARA framework. This compiler can
execute the LARA aspects and perform the code transformations described
in the aspect on the original code, thus creating a new version.

In this work, we use Clava to perform two tasks:

1. insert the autotuner into the original source code.

2. configure the autotuner according to the requirements.

Figure 6.5 shows this process, from the original source code to the final
application. It also highlights the two main LARA aspects used. We report
in Listings 5.1–4 the original code, the two aspects, and the final code.

In particular, the code in Listing 6.2 is the LARA aspect needed to
configure mARGOt. This code produces the adaptivity layer tailored to
the application requirements. In lines 9–16, we define the software knob
(num_samples), the data feature (unpredictability), the metrics (error) and
the goal (i.e. the Service Level Agreement, error < 3%). The goal in
mARGOt is a condition that is needed when defining the optimization prob-
lem. Once all of this has been defined, it is possible to define the multi-
objective constrained optimization problem, which has to be managed by
the autotuner (lines 18–23). In mARGOt optimization problems are called
states (line 19). The constraints are generated in line 23, where the number
represents the priority of the constraint. In the case of more than one con-
straint, if the runtime is unable to satisfy both of them, it will relax the low
priority one. Lines 21–22 define the objective function. In this case, the
objective is the minimization of the number of samples so the aspect de-
scribes it as a linear combination (line 21) of the num_samples knob (line
22). The number in line 22 is the linear coefficient that has to be used in
the linear combination for the considered knob. Finally, line 26 builds the
LARA internal structure margoCodeGen_ptdrMonteCarlo which is needed
by Clava to create the mARGOt configuration file and code generator.
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1 aspectdef McConfig
2 /* Generated Code Structure*/
3 output codegen end
4
5 /* mARGOt configuration */
6 var config = new MargotConfig();
7 var travel = config.newBlock(’ptdrMonteCarlo’);
8
9 /* knobs */

10 ptdrMonteCarlo.addKnob(’num_samples’, ’samples’, ’int’);
11 /* data features */
12 ptdrMonteCarlo.addDataFeature(’unpredictability’, ’float’,

MargotValidity.GE);
13 /* metrics */
14 ptdrMonteCarlo.addMetric(’error’, ’float’);
15 /* goals */
16 ptdrMonteCarlo.addMetricGoal(’my_error_goal’, MargotCFun.LE, 0.03,

’error’);
17
18 /* optimization problem */
19 var problem = ptdrMonteCarlo.newState(’problem’);
20 problem.setStarting(true);
21 problem.setMinimizeCombination(MargotCombination.LINEAR);
22 problem.minimizeKnob(’num_samples’, 1.0);
23 problem.subjectTo(’my_error_goal’, 1);
24
25 /* creation of the mARGOT code generator for the following code

enhancement (McCodegen aspect) */
26 margoCodeGen_ptdrMonteCarlo = MargotCodeGen.fromConfig(config, ’

ptdrMonteCarlo’);
27 end

Listing 6.2: LARA aspect for configuring the mARGOt autotuner.
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1 aspectdef McCodegen
2 /* Target function, mARGOt code generator from McConfig aspect, #

samples for feature extraction */
3 input targetName, margoCodeGen_ptdrMonteCarlo,

unpredictabilitySamples end
4
5 /* Target function call identification */
6 select stmt.call{targetName} end
7 apply
8 /* Target Code Manipulation */
9 /* Add mARGOt Init*/

10 margoCodeGen_ptdrMonteCarlo.init($stmt);
11 /* add unpredictability code */
12 $stmt.insert before UnpredictabilityCode(unpredictabilitySamples)

;
13 /* Add mARGOt Update */
14 margoCodeGen_ptdrMonteCarlo.update($stmt);
15 /* Add Optimized Call Code */
16 $stmt.insert replace OptimizedCall(unpredictabilitySamples);
17 end
18 end
19
20 /* Unpredictability extraction code */
21 codedef UnpredictabilityCode(unpredictabilitySamples) %{
22 auto travel_times_feat_new = mc.RunMonteCarloSimulation([[

unpredictabilitySamples]], startTime);
23 ResultStats feat_stats(travel_times_feat_new, {});
24 float unpredictability = feat_stats.variationCoeff;
25 }% end
26
27 /* Optimized MonteCarlo call */
28 codedef OptimizedCall(unpredictabilitySamples) %{
29 auto run_result = mc.RunMonteCarloSimulation(samples - [[

unpredictabilitySamples]], startTime);
30 run_result.insert(run_result.end(), travel_times_feat_new.begin(),

travel_times_feat_new.end());
31 }% end

Listing 6.3: LARA aspect for inserting the application-specific glue code (unpredictability
extraction) and the required mARGOt calls.
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1 // Load data
2 Routing::MCSimulation mc(edgesPath, profilePath);
3 auto travel_times_feat_new = mc.RunMonteCarloSimulation(100,

startTime);
4 ResultStats feat_stats(travel_times_feat_new, {});
5 float unpredictability = feat_stats.variationCoeff;
6 if(margot::travel::update(samples, unpredictability)) {
7 margot::travel::manager.configuration_applied();
8 }
9 auto run_result = mc.RunMonteCarloSimulation(samples - 100, startTime

);
10 run_result.insert(run_result.end(), travel_times_feat_new.begin(),

travel_times_feat_new.end());
11 ResultStats stats(run_result);
12 Routing::Data::WriteResultSingle(travel_times_new, outputFile);
13 return 0;

Listing 6.4: Target source code after the integration of the adaptivity layer.

The second aspect (shown in Listing 6.3) is the custom aspect that in-
serts the proposed methodology in the application. It takes as input (line 3)
the target function call that we want to tune, the mARGOt code generator
produced by the previous aspect (Listing 6.2), and the number of samples
needed to evaluate the unpredictability feature. In line 6, we search in the
code to find the statement (stmt) where there is the Monte Carlo function
call. This is the target join point that will be manipulated. Lines 7–17 con-
tain the manipulation actions done on the selected join point stmt of the
target code. There are two different types of operations: the first one is to
integrate the mARGOt calls for the library initialization and to update the
software knob (Lines 10 and 14). The second operation is to insert the glue
code (LARA codedef ) to evaluate the unpredictability (line 12 and lines
21–25), and to replace the original Monte Carlo call with the optimized
one that does not repeat the unpredictability samples (line 16 and lines 28–
31).

Overall, from the numerical point of view, the usage of LARA allows us
to insert the methodology using only 53 lines of code to generate 221 lines
of C++ code. However, this is not the main advantage. This approach is
valid even with such a small amount of inserted code for three reasons.

1. The user will not have to care about the details of the mARGOt con-
figuration files and its low-level C++ API.

2. The user will not need to provide the same information in different
places. There is some mARGOt-specific information that has to be
provided in several steps during the integration of the autotuner (such
as in the configuration file, when inserting the API, ...). With this
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automated insertion, the information has to be provided only once,
thus reducing the error probability.

3. This approach allows separation of concerns. All the extra-functional
optimization, including the proposed approximation methodology, are
kept separate from the original application. In this way, the developer
of the original application does not need to be involved in the opti-
mization process.

6.6 Experimental Results

In this section, we will show the results of the proposed methodology ap-
plied to the PTDR algorithm. The platform that we used for the exper-
iments consists of several nodes equipped with Intel Xeon E5-2630 V3
CPUs (@2.8 GHz) with 128 GB of DDR4 memory (@1866 MHz) on a
dual-channel memory configuration. At first, we analyze the results of the
model training, needed to build the model that estimates the expected er-
ror (see Section 6.6.1). Then, in Section 6.6.2 we validate the approach by
verifying that it satisfies the constraint imposed on the error ε. We compare
the proposed approach to the original version, which decides the number
of samples a priori to satisfy the worst case, in Section 6.6.3. Finally, in
Section 6.6.4, we evaluate the overhead introduced, and in Section 6.6.5
we evaluate the optimization impact on the whole process, at system level.

6.6.1 Training the Model

As we already said, before using the proposed approach we need to train
the error prediction model. So, the first phase is done off-line, and it con-
sists in training the error model ( ˆerrorxi,y). This is done, as presented in
Section 6.4.2, by using a different number of samples. To train the quantile
regression model, we profiled data extracted by running random request to
the PTDR algorithm on a training set. The training set has been built us-
ing 300 different paths across the Czech Republic, all characterized with
time-slots. In this way, we are able to consider different speed-profiles for
each segment of the paths. All the requests have been made for all the four
levels of sampling used by the proposed methodology (i.e. 100, 300, 1000
and 3000, as described in Section 6.4.2). The output of the model training
is represented in Figure 6.6. The points in the three plots represent the out-
put of the profiling runs, and are the same across the different images. The
lines are the quantile regression lines, which is the model that will be used
at runtime. The three sub-figures are different for the value of the quantile
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(b) Quantile regression using the 75th perc.
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(c) Quantile regression using the 95th perc.

Figure 6.6: Training of the error model by using different number of samples and quantile
regressions. We can notice the different regression lines across the figures.

Source: [123]
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6.6. Experimental Results

used for the linear regression. Figure 6.6a represents the 50th percentile,
Figure 6.6b represents the 75th percentile, while Figure 6.6c represents the
95th percentile.

We can see that the three regressions are different. We pass from a
more permissive one, on the 50th percentile in Figure 6.6a, where almost
half of the points are below the corresponding regression line, to the most
conservative one in Figure 6.6c where only a few points are above. We can
also notice that the coefficients of the lines of the quantile regression are
almost doubled passing from 75th to 95th percentile (e.g. for 100 samples,
the coefficients pass from 0.27 to 0.38, while for 3000 samples they pass
from 0.049 to 0.071).

With this final step, we are now ready to test the proposed methodology.
The models are ready and can be integrated into the dynamic autotuner,
which will be in charge of selecting at run time the most appropriate con-
figuration that will satisfy the error constraint. In Section 6.6.2 we will
demonstrate the effectiveness of this methodology.

6.6.2 Validation Results

The set of results presented in this section aims at demonstrating the va-
lidity of the proposed approach, more in detail that the proposed way to
dynamically select the number of samples is still able to satisfy the con-
straint on the target error. To do this, we randomly generated 1500 requests
to the enhanced PTDR module. The routes used in this phase are different
from the ones used in the training phase of the model, even if all of them
come from a single dataset of routes in the Czech Republic. The approach
is validated using three different quantile regressions (on 50th, 75th and
95th quantile), two different target errors ε (3% and 6%) and a confidence
interval (CI) for the error constraint equal to 99% (i.e. n(99%) = 3). The
ground truth of the run is built running the Monte Carlo simulation with
1 million samples, which are enough to be considered a real estimation
of the travel time distribution. Then we build the error as the maximum
between different key percentiles of the difference of the run with one mil-
lion samples against the autotuned run. The selected percentiles are: 5th,
10th, 25th, 50th, 75th, 90th and 95th percentile. The error is then built as
maxpercentiles(|MCS(x, i, y)−MCS(1000000, i, y)|).

The output of this experiment is reported in Figure 6.7 and Figure 6.8.
The first image targets an error constraint of 3%, while the second targets ε
equal to 6%. On the x-axis, we have plotted the unpredictability feature of
the path, on the y-axis the error. Every dot in the plot reports the result of
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(a) Quantile regression using the 50th perc.
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(c) Quantile regression using the 95th perc.

Figure 6.7: Validation of the proposed approach by using 3% as target error and different
percentiles for the quantile regression.

Source: [123]

a PTDR request. The shape depends on the number of samples used in the
actual Monte Carlo simulation. As we can see, usually the error is smaller
than the target error. This was an expected result since the more conser-
vative is the quantile regression, the less are the points that are above the
line produced by it. Moreover, we also introduced a Confidence Interval of
99%, and we can notice that this confidence is respected in the results of
this run. Moreover, we can notice comparing the different quantile regres-
sions that the unpredictability threshold values shift from right to left. For
example, if we look at Figure 6.7 (ε = 3%) we can notice that the maxi-
mum unpredictability value for having 300 samples moves from 0.075 to
less than 0.06 respectively when considering the quantile regression from
the 50th percentile, up to the 95th quantile. The same thing happens in Fig-
ure 6.8 (ε = 6%) where the same threshold moves from an unpredictability
of 0.15 to 0.14 and 0.11 when using the 50th, the 75th and the 95th as quan-
tile value for the regression. Finally, we can notice the difference in terms
of the number of samples used when we change the target ε value. Indeed,
while for ε equal to 3% ( Figure 6.7) only a tiny fraction of the runs use
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6.6. Experimental Results
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(a) Quantile regression using the 50th perc.
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(b) Quantile regression using the 75th perc.
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(c) Quantile regression using the 95th perc.

Figure 6.8: Validation of the proposed approach by using 6% as target error and different
percentiles for the quantile regression.

Source: [123]

100 samples and there are a lot of cases where 3000 samples are needed
to be used. If we relax the constraint on the error, setting ε equal to 6% (
Figure 6.8) 3000 samples are never used and in a non-negligible fraction of
the runs only 100 samples are required.

6.6.3 Comparative Results with Static Approach

In this section, we will show the advantages obtained by the proposed ap-
proach compared to the baseline version [106] where the number of sam-
ples is defined a priori. To provide a fair comparison, we selected the num-
ber of samples of the baseline with the data of the same training dataset.

To obtain the baseline, we need to analyze the cumulative distribution
of the expected error distribution of the 4 levels of sampling used in this
chapter (i.e. 100, 300, 1000, and 3000). The static value is the minimum
sampling level able to pass a defined threshold of the cumulative value be-
fore reaching the error constraint value ε. This threshold value recalls the
robustness meaning of the quantile regression used in our approach. For
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this reason, we will compare the proposed approach with this static tuning
at the same percentile level. This means that the percentile used in the static
tuned to set the threshold level is going to be the same percentile used in
the dynamic approach to set the quantile regression. For example, if we use
a quantile regression at 95%, we will compare it with the statically tuned
version where the number of samples has been defined looking at the cu-
mulative curve that reaches at least 95% before crossing the target error
constraint. Figure 6.9 reports the cumulative distributions that are used in
building the static model. If we consider the last vertical line, where the
error constraint is set at ε = 6%, the static tuning says that for percentiles
between 72th and 98th we need to use 1000 samples, if we want to have the
certainty that the error is below ε = 6% we will need to use 3000 samples,
while if we want a percentile smaller than 72th we can use 300 samples.
On the other hand, if we look at the first vertical line (ε = 3%) we can
select 3000 samples within the percentile interval 65th-97th, 1000 samples
for percentile values smaller than 72th (down to 5th), while we need more
than 3000 samples if the requested accuracy is very tight and we need a
percentile larger than 97th.

In Table 6.1 we report the comparison between the proposed adaptive
technique and the original version (baseline). For the baseline, the number
of samples is evaluated with the previously described autotuning approach.
In particular, Table 6.1 presents the average number of samples (first num-
ber) and the gain respect to the baseline (second number) for different per-
centiles used in building the predictive models and different values of error
constraint ε. Again, we used as dataset some randomly selected pairs of
Czech Republic routes and starting times different from those used for the
training. The route is chosen with absolute randomness, while the starting
time is selected using a more realistic distribution of when people usually
start driving, taken from [131, 132].

In all the considered cases, the proposed approach reduces the number

Table 6.1: Average number of samples for the validation set using different quantile re-
gression values (columns) and different error constraints. The results are reported for
the baseline and proposed adaptive versions.

Average Number of Samples
ε 50th perc. 75th perc. 95th perc.

3% baseline 1000 3000 3000
adaptive 632 (-36%) 754 (-74%) 1131 (-62%)

6% baseline 300 1000 1000
adaptive 153 (-49%) 186 (-81%) 283 (-71%)
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Figure 6.9: Cumulative distribution of the error by using different numbers of samples
over the training set.

Source: [123]

of samples with a minimum reduction of 36% and a maximum value of
81%. As expected, the average number of samples used by the dynamically
tuned approach is lower when we relax the error constraint (i.e. 6%). The
lower gain for the configurations using the 50th percentile is due to the fact
that in this experiment the baseline requires a lower number of samples
with respect to the latter cases (i.e. 1000 vs 3000 for ε = 3% and 300 vs
1000 for ε = 6%). Focusing on the absolute numbers, it is evident that the
least accurate percentile (50th) is the experiment with the lowest number
of samples used. This reduction in samples is visible also in the execution
time of the application since there is a linear dependency of the Monte Carlo
simulation from the number of samples required to run it. There is but a
small overhead introduced by the proposed methodology that is analyzed
in Section 6.6.4. In particular, we observed an execution time speed-up
between 1.5x and 5.1x.

We want to present the benefits of the proposed methodology from an-
other perspective. Figure 6.10 shows the number of samples required by the
proposed methodology when we perform the PTDR request on the same
road, at different starting times. In particular, we perform this request every
15 minutes since that is the smaller time granularity (φ) we have for the
database containing the speed profiles. The two plots (a) and (b) have been
generated using targeting errors of respectively 3% and 6% while for both
experiments we used a quantile regression on the 75th percentile.

Just by looking at the number of samples requested by the adaptive ver-
sion of the Monte Carlo simulation, it is possible to recognize well-known
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Figure 6.10: Number of samples selected by the proposed adaptive method when the same
request is performed every 15 minutes during the entire week.

Source: [123]

traffic behaviors in both plots. We can notice that during the weekdays the
plots are characterized by two peaks (the first between 7 and 8 am, and the
second between 4 and 5 pm) where the unpredictability forces the adaptive
approach to use the highest value of samples. On the other hand, we can
notice that in the evening the situation is more moderate and the path has a
predictable behavior, that allows reducing the samples required for the re-
quests that happen in that timeframe. This dynamic behavior, captured by
the proposed methodology, cannot be exploited by using the original (base-
line) version. Indeed, the original version must be tuned by considering
the worst case, that is 3000 samples for the experiment in Figure 6.10(a)
(ε = 3%) and 1000 samples for the experiment in Figure 6.10(b). In both
cases, the static tuning requests a larger number of samples than the pro-
posed technique, that instead can know when the worst case is happening
and use the accurate solution at that moment (e.g. during the traffic peaks),
while it can approximate the solution using fewer samples when the road is
more predictable.

On the other hand, if we consider to statically tune to the average case
(i.e. 1000 samples for the experiment in Figure 6.10(a) (ε = 3%) and 300
samples for the experiment in Figure 6.10(b)) we are losing the accuracy
of the request at the moment where it is most needed, and wasting com-
putational power in other moments of the day. Indeed, there are still many
sampling reduction possibilities in predictable moments that will not be
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Figure 6.11: Evaluation of the execution time overhead due to the additional code for
the proposed method with respect to the target Monte Carlo simulation by varying the
number of samples.

Source: [123]

captured, and as we already said, the prediction will not be able to satisfy
the output quality constraint during the most critical periods. Finally, a
static policy is also sub-optimal since the unpredictability does not capture
only the starting time, but also other path characteristics such as if the road
is an urban one or a countryside path, or the length of the road (which is
important to know when it is expected to traverse a congested area).

6.6.4 Overhead Analysis

With the proposed methodology, we have inserted an overhead that is to
calculate the unpredictability function. In Section 6.5 we described how
we reduced the integration overhead from the application developer point
of view. This section clarifies the time-overhead introduced to obtain the
proposed adaptivity. In particular, as we already said, we insert additional
computations to calculate the unpredictability function ντ̂xi,y and to call the
autotuner to determine the right number of samples to be used. Note that
the 100 Monte Carlo samples, required to extract the data feature, are not
and will not be counted as part of the overhead, since they are reused (and
thus discounted) in the second Monte Carlo call (see Listing 6.4).

Figure 6.11 shows in boxplot the execution time (y-axis) of the main
points of the PTDR algorithm. In particular, the first box shows the over-
head introduced by the proposed methodology. The following boxes rep-
resent the execution time of the Montecarlo from 100 to 1M samples. The
dataset used to obtain this result is the usual validation dataset, built on
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several paths across the Czech Republic chosen randomly. We expected
that the execution time of the Monte Carlo simulation was correlated to the
number of samples, and this experiment confirms the hypothesis. The dif-
ferent paths used are between 300 and 800 segments long, and this is the
main reason for the variability of the Monte Carlo computing time with a
defined number of samples. Looking at the overhead, we can notice that
it is almost negligible if we compare it to the time needed to perform the
Monte Carlo simulation. Indeed, it is more than two orders of magnitude
less than the smaller Monte Carlo simulation with 100 samples. To give a
comparison, the overhead cost is comparable to the evaluation of a single
sample of the Monte Carlo on a road composed of 200 segments.

6.6.5 System-Level Performance Evaluation

The final experiment that we present in this chapter aims at quantifying,
at system level, the benefits of the proposed adaptive method. In this sec-
tion, we present an analysis that evaluates the efficiency of the adaptive
PTDR module when included in the full navigation pipeline presented in
Figure 6.2 We used Java Modeling Tools (JMT) [133] to build a perfor-
mance model of the whole pipeline. JMT is an environment built to perform
performance evaluation and workload characterizations based on queuing
models [134]. This tool can be used to perform capacity planning sim-
ulations and workload characterization to automatically identify possible
bottlenecks. In particular, we build the model of the pipeline creating one
station for each of the modules of the pipeline and we add a fork-join unit
to model the parallel PTDR evaluations of the different paths found in the
first station.

The model is shown in Figure 6.12. It has been annotated with the exe-
cution times of the different modules, derived by the profiling, considering
a value for K (the number of alternative paths to evaluate) equal to 10. The
system is modeled to be able to serve a load produced by 100K cars every
2 minutes. This number is due to the application scenario considered: on
the one hand, we suppose that self-driving cars are always connected to the
route planner, and on the other hand we estimate the number of requests
following some studies on the Milan urban area [135, 136]. Here, the pop-
ulation of the considered area is around 4 million people, and every day
there are more than 5 Million trips estimated. More than half of them are
done with private cars.

Under these conditions and considering the configuration with ε = 6%
and 95thpercentile, we found that the proposed technique allows obtaining

88



6.7. Summary

Figure 6.12: Complete navigation pipeline modeled using JMT.

Source: [123]

a 36% reduction in terms of the number of resources needed to satisfy the
target workload. In particular, we have studied 2 cases. The first one con-
siders the number of resources needed to satisfy the steady-state conditions,
which means the throughput in terms of input requests satisfied by all the
stages. In this case, with the static approach, we need at least 777 com-
puting resources (cores). Among them, 400 cores (52% of the entire set)
should be dedicated to PTDR. By applying the proposed technique, only
497 cores are needed, we can reduce to 120 (24% of the entire set) those
required for the PTDR stage. The second case considers a more dynamic
environment where following the rule of thumb proposed in [137] we keep
the average utilization rate of each station below 70%. In this way, the sys-
tem is not completely utilized and is more prepared to react to a burst of
requests without introducing any delay. In this second case, with the static
approach, we need 1010 cores to allocate the entire pipeline, and 572 of
them (57% of the entire set) should be dedicated to the PTDR stage. By
applying the proposed technique, we can reduce the number of cores to
646, and out of them, only 172 (26% of the entire set) are dedicated to the
PTDR.

6.7 Summary

In this chapter, we focused on Probabilistic Time-Dependent Routing to
show how it is possible to improve computation efficiency, introducing a
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methodology to reduce the computation when it is deemed unneeded. The
methodology can quickly test the input data and extract some features that
are used to drive the computation phase. The runtime decision is based
on a probabilistic error model, learned offline. We have shown that the
proposed approach, by focusing the computation effort where it is needed,
can save a large fraction of simulations (between 36% and 81%) compared
to static autotuning, since it can capture more information from the current
input. We have also shown that considering the entire routing pipeline,
the proposed approach can save actual resources, thus making the pipeline
cheaper to deploy, without losing the capability of serving a large number
of requests.

Finally, we have inserted the whole methodology in the original appli-
cation with an aspect-oriented language (LARA) that allowed us to enforce
the separation of concerns between the functional and the extra-functional
requirements, and to ease the methodology integration for the programmer.

The outcome of this work has been published in the journal IEEE Trans-
actions on Emerging Topics in Computing [123].
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CHAPTER7
Demonstrating the benefit of Autotuning in

Object Detection context

In this chapter, we will show the potential benefit of autotuning the in-
ference process in the Deep Neural Network (DNN) context, tackling the
object detection challenge. We benchmarked different neural networks to
find the optimal detector in the COCO 17 well-known database [138], and
we demonstrate that there is not a one-fit-all solution. This is even more
evident if we also consider the time to solution (i.e. the time required by a
network to process an image) as a deciding factor. Indeed, we demonstrate
that thanks to a reactive methodology it is possible to respect changing re-
quirements that by using a single network would be violated. Moreover, we
believe that a proactive approach could further improve the autotuning ap-
proach, allowing to select the best network among the available ones given
some characteristics of every single image. However, we were not able to
identify a predictor function that would allow this approach. Nonetheless,
we believe that this work can be useful as a motivational work for further
investigation in this direction.
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7.1 Introduction

A lot of progress has been done in the last 10 years in the context of Neu-
ral Networks. They have recently been used to solve complex problems
such as image classification [139], voice to text [140] or object detec-
tion [141]. Since their introduction, they have eclipsed the old methods
that were used to perform these tasks. In particular, they have become the
de-facto standard in the field of computer vision (image classification and
detection) [142].

However, since there are a lot of different networks in literature, it is dif-
ficult to select the most suitable architecture (in terms of network deployed
and hardware architecture used). DNNs are characterized by an accuracy
metric. In the object detection field, this metric is called mAP (mean av-
erage precision). this metric tells the user how accurate is the network in
finding an object and classifying it. This is not enough, since we may be
interested in other characteristics of the network, such as the response time.
In some contexts, such as in autonomous driving, an approximate detection
in a quick time is better than an accurate one that comes too late.

An interesting job in classifying several networks by their accuracy and
time to solution has been done in [143]. In this work, the authors clas-
sify some of the most important object detection networks and provide and
compare their performances on a single GPU architecture.

Starting from that work, we benchmarked different networks on differ-
ent CPU-GPU environments. From that experiment, we found out that there
is no single one-fits-all network, even in terms of accuracy on a single im-
age. For this reason, we decided to analyze the problem of autotuning in
this field, searching for some characteristics of the application or of the
network itself that may enable a runtime network selection, whenever is
beneficial.

Thus the contributions of this chapter are:

• We performed a benchmarking campaign aimed at exploring accuracy-
performance tradeoffs 1. This result has been used in the MLPerf In-
ference v 0.5 benchmarking campaign, where this was the only aca-
demic contribution 2.

• We demonstrate through a simple automotive use case how the dy-
namic autotuning approach can satisfy changing constraints that a sin-
gle network was unable to satisfy;

1This work has been performed while I was an intern in dividiti Ltd.
2https://mlperf.org/inference-results-0-5
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Figure 7.1: Highlight of thesis approach targeted in this chapter.

• We built an oracle function based on the benchmarking campaign, that
can select the best network among the used ones for every image of
the COCO17 dataset, thus evaluating the possible advantage in having
a proactive (per image) autotuning approach;

• We highlighted the failed attempts done to employ the proactive method
either by finding some image features and training a selector using
common machine learning techniques, or adopting an image classifi-
cation network.

In the context of the global framework, this chapter focuses on providing
motivation and explaining the possible benefit of an autotuning approach in
the context of DNN based computer vision, which is very important for
current researches on autonomous driving cars.

The components of the holistic framework that are involved in this chap-
ter can be seen in Figure 7.1. We can notice the GPU kernel presence since
the networks were benchmarked using the TensorFlow backend on both
CPU and GPUs. However, the focus point of this chapter is, as in the pre-
vious one, the data feature box, since we would like to have a proactive ap-
proach where the data feature drives the network selection done at runtime
by the self-tuning module. Heterogeneity is available thanks to TensorFlow
but is not considered in the autotuning approach studied in this chapter. For
this reason, it has been inserted among the homogenous approaches.
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7.2 Background

Thanks to recent advances in the deep learning field, a lot of different mod-
els have been proposed to tackle the object detection challenge. These net-
works have a very different accuracy and execution time, and selecting the
most suitable one is very complex.

In the context of image classification, an interesting work [144] proposes
an approach to select dynamically the network performing the inference,
proving that is possible to improve both the accuracy and the inference
time thanks to this autotuning. There the authors use a K-Nearest-Neighbor
predictor to select, among 4 different models, which one is the best to use
for every different image.

Another interesting approach is proposed by [145]. Here the authors
suggest the usage of two networks, with a big/LITTLE approach: as for the
big/LITTLE CPU, two architectures are used, one small and fast (the little
architecture) and one that is more accurate and more time consuming (the
big architecture). They perform the inference with the little network and
they use the big as a fallback solution only if the little network prediction is
deemed not accurate. However, even in this work, the solution is proposed
for the image classification challenge.

Another dynamic methodology for the image classification has been
proposed in [146]. Here the same network is trained several times, with
different datasets, and an ensemble of networks is used to perform the infer-
ence. The networks are used sequentially and if a certain threshold metric
is reached the result is returned without executing the remaining networks.

Several other design-time optimizations are proposed in literature to
build the networks [147], to compress them [148] or to switch from im-
age processing to more expensive and accurate input (eg. LIDAR) [149].

All of these work targeting the network selection are done in the context
of image classification. Indeed, to the best of our knowledge, there is no
work targeting the dynamic selection of the network in the object detection
challenge.

7.3 Motivations

To show the potential benefit of having a self-tuning network, we run an
extensive benchmarking campaign on different models and platforms. The
objective of this campaign is to explore the behavior of different DNN
on different platforms and with different configurations. In particular, we
tested on CPU (with and without the AVX2 instructions) and GPU (with
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Figure 7.2: Results of the benchmarking accuracy campaign.

Source: [150]

and without the TensorRT library support). We selected 12 different mod-
els. Most of them were coming from the Tensorflow Zoo 3, trying to balance
the SSD-based and the Faster-RCNN based models. To those models, we
added a reimplementation of the YOLO-v3 network.

From the accuracy point of view, the campaign consists of 24 different
experiments (12 models and with or without batch resizing). From the
performance point of view, the number of experiments is increased to 360
(12 models, 5 TensorFlow configurations, and 6 different batch sizes). The
experiments have been done on the whole validation set of the COCO 2017
dataset.

As a motivation for the proposed idea, we will analyze the results of this
benchmarking campaign, firstly from the accuracy point of view, then from
the performance perspective and finally, we will analyze the Pareto frontier
of the whole space.

Figure 7.2 shows the results of the accuracy benchmarking done. The
most accurate model is Faster-RCNN-NAS, which reaches the overall mAP
of 44%. Usually, a model with a good overall mAP performs consistently
well across all three object categories. There are, however, some excep-
tions: SSD-Inception-v2 has the 2nd best score on large objects, but per-
forms rather poorly on medium and small objects; on the contrary, YOLO-
v3 has the 2nd worst score on large objects, but is on the 4th place on small
objects and performs OK on medium objects.

The bad accuracy obtained on small objects is a well-known problem
3https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
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(a) Influence of batching on accuracy.

(b) Influence of batching on performances.

Figure 7.3: Influence of batching.

Source: [150]

of SSD-based models. This is why the Feature Pyramid Network (FPN)
feature have been introduced. Thanks to this feature, the SSD-ResNet50
and SSD-MobileNet-v1 models are able to reach 2nd and 3rd place on small
objects (and on the 2nd and 4th place overall).

The images in the COCO dataset have different shapes and sizes. For the
inference to be performed, they need to be resized to match the model input
size. This is usually done inside the network, as a first layer. However,
this is not possible when processing a batch of images. In this case, all the
images of a batch need to be resized before the inference is performed. This
procedure may damage the accuracy, as shown in Figure 7.3a

In particular, the Faster-RCNN are the problematic networks. Beside
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Figure 7.4: Result of the benchmarking campaign with the measured accuracy. The batch
accuracy loss can be seen in the Faster-RCNN models.

Source: [150]

the Faster-RCNN-NAS, the other networks have a keep-aspect-ratio layer,
which becomes problematic when resizing the images to a unique size.

However, batching images can be significant for the performances, so
we need to consider this possibility and not just discard it a-priori. Indeed,
as we can see from Figure 7.3b, with a fixed backend (CUDA without Ten-
sorRT in the image), increasing the batch size leads to an increase in the
number of frames per second (FPS) processed. This growth can also be
very significant, leading to almost double performances for some networks
(YOLO v3 goes from 32 to almost 60 FPS). The complete result from the
exploration can be seen in Figure 7.4. Here the color symbolizes the net-
work used for the inference, while the shape is the backend and the size of
the marker symbolizes the batch size. We can notice that the GPU back-
ends are faster than the CPU ones and that the bigger points usually have
the best performances. From the image, it is also possible to notice the
accuracy drop due to batching of the Faster-RCNN networks.

However, the general behavior is not always true. Some networks show
some unexpected results that show why autotuning could be very important
in this field. The first is that batching can be detrimental to the perfor-
mances. Figure 7.5a shows the effect of batching with different backend on
the Faster-RCNN NAS. As we can see, the CPU backend is slowed down
when batching is enabled. This is probably due to the big memory require-
ment. Another interesting result from the benchmarking campaign is shown
in Figure 7.5b. The inference run on the CPU shows a higher FPS than the
GPU one.
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(a) Faster-RCNN NAS performances with different backend

(b) SSD-Mobilenet v1 performances with different backend

Figure 7.5: Effects of different backend.

Source: [150]

To conclude the motivational discussion, Figure 7.6 shows the best con-
figuration (considering ideal accuracy for the Faster-RCNN networks that
have problems with batching). We can notice that there is not a one-fit-all
optimal solution, since both the optimal backend and the optimal batch size
changes across the different models. Moreover, the networks on the Pareto
set are also different if we consider different target accuracy. All these vari-
ations strongly suggest that, should a network selector function be found
like in the methodology proposed in [144] for the image classification chal-
lenge, the object detection challenge could largely benefit from an adaptive
autotuning approach.

7.4 The Proposed Approach

In this section, we will see the methodology followed while introducing
autotuning in this context. At the first time, we will see how exploiting two
networks in analyzing a stream of frames can allow adapting to different
constraints (maximize the accuracy of the prediction or maximize the frame
rate) reactively. With reactive, we mean that the autotuner reacts to the
change of the constraints and allows the self-tuning module to respond to
this change and still be able to respect the given constraints. This approach
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Figure 7.6: Best performance for every network at the different accuracy metrics (small,
medium and large).

Source: [150]

recalls the one from Chapter 4.
We then try to create a predictor function that can work as an oracle for

unknown images. This is a proactive approach that relies on the concept of
data feature that has been introduced in Chapter 6. To create the predictor,
we will search for some data features and we use them to create a function
that can predict which is the best network to use to perform the inference.

7.4.1 Reactive approach

In the reactive approach, the idea is of having the self-tuning module able
to react to changes in the system or external conditions. Changes in exter-
nal conditions are reflected in changes in the constraints. Figure 7.8 shows
the approach from a high-level point of view: we must process a stream
of images while respecting some constraints that may change during the
runtime. We have a set of networks with different (and known) characteris-
tics in terms of accuracy and time to solution. The autotuning module is in
charge of selecting the most suitable among them according to the current
constraints.

To show the validity of this approach, let us suppose a simplified sce-
nario in the context of autonomous driving, which is one of the most impor-
tant contexts in the object detection challenge. We need to find the possible
obstacles on or near the road. To simplify the approach, let us suppose that
we have 2 possible scenarios: highway and city driving. In the first case,
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(a) Execution time for every frame.

(b) mAP of all categories

(c) mAP of the car category

Figure 7.7: Execution log of the same stream with the two different networks, with a
change of network in the middle.

we need to have a quick response and we need to identify "big" objects such
as cars, while in the second case we have a slower speed, which means that
we can use a slower network but we require a greater accuracy since we
need to identify the "small" pedestrians.

In this simplified example, the autotuner is in charge of switching from
context 1 (city driving) to context 2 (highway) and back whenever a thresh-
old speed is passed. For this experiment, we have used the KITTI dataset
[151], which is a dataset created for the autonomous driving context. As
the first network (the fast one for the highway context), we retrained the
SSDLite-Mobilenet, while as the accurate network we retrained the Faster-
RCNN NAS network.

We show in Figure 7.7 an example of a run where we hypothesize to
start the trip inside the city, where the most accurate network is used, and
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Autotuning Module

Stream of
images Network 2

Network n

Image with
detections

Network 1
Constraints

Knowledge

Figure 7.8: Architecture of the Reactive module.

after a certain number of processed frames we move to a highway context,
where we need faster processing. In Figure 7.7a we report the processing
time of a single frame. We can easily see that the first network (in the first
half of the picture) has a slow execution time (1 sec per frame), while the
second is way faster (less than 100ms). In Figure 7.7b we report the mAP
of all the categories (car and pedestrian) that we are interested with. We
can notice that the mAP of the second network is a lot worse than the first
network. However, if we look at Figure 7.7c instead, we can notice that
the accuracy loss of the second network when we are only interested in the
mAP of the car category is slightly noticeable. In this way, we show that
we can maintain the ability to find cars on the road within a constrained
time to solution, which is smaller because of the higher navigation speed.
This result confirms the benefit of dynamic autotuning in the context of
the simplified scenario hypothesized before since we are able to respect the
accuracy/response time request in both the contexts, while both the consid-
ered networks are not able to do it if taken individually.

7.4.2 Proactive approach

An orthogonal approach to the previous approach is the proactive one. The
proactive approach to dynamically select the network aims at using char-
acteristics of both the network and the image that is going to be processed
to match the image with its best possible network. We believe that if there
is not a one-fit-all best network while considering only the accuracy of the
prediction, and there may be some features of the images that determine
if a network behaves better than other networks in finding objects in that
precise image. Thus, we are interested in finding those characteristics of
the images, and building a predictor that may be able to select the optimal
object detection network.

The first step is to verify that the best network to perform the inference
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Figure 7.9: Composition of the Oracle on the full COCO validation set. All the considered
networks are present, which means that they are optimal in predicting some images.

would change across the dataset. We create an oracle function, that selects
the best network for all the images of the COCO validation set. In particu-
lar, the program selects the highest mAP after evaluating an image with all
the networks, and as a tiebreaker, it uses the execution time (the fastest one
among the network with the same accuracy wins). Figure 7.9 reports the pie
chart of the oracle. We can notice that almost half of the chart is occupied
by the Faster-RCNN NAS, the most accurate network. We expected this
network to be dominating. However, this network does not have always the
best accuracy. Moreover, the oracle shows that all the different networks
are represented which means that they are optimal for at least some images.
The second step is to search the data features and a prediction function to
drive the network selection proactively given the target image. Figure 7.10
shows two different attempts that we performed in building the predictor.
The first one, which we define "traditional Machine Learning (ML) ap-
proach", can be seen in Figure 7.10a. The second attempt, where we used
neural network techniques, can be seen in Figure 7.10b. Figure 7.10a shows
the pipeline that we designed to perform object detection with network se-
lection done with the traditional ML approach. The first step is Feature
Extraction, which is a module that is in charge of quickly analyzing the im-
age and extract some features. Then the predictor module is a function in
charge of driving the network selection. This function needs to be able to
quickly select the network given the data features extracted from the previ-
ous step. Finally, the image is forwarded to the object detection network,
which performs the detection task and returns the objects detected in the
given image. To create the feature extraction module, we need to identify a
small set of features that can be quickly extracted from the image.

We started the search of the data features from the ones used in [144]
since the authors were already working in the DNN context. Other can-
didate features are taken from [39]. In this work, four easily obtained

102



7.4. The Proposed Approach

Number of keypoints Number of corners Number of contours
Dissimilarity Homogeneity ASM
Energy Correlation Number of peaks
Contrast Variance Mean
Hues(4 bins) Saturation (4 bins) Brightness (4 bins)
Histogram of the three colors (3*8 bins) Number of pixels that are edges in the

image
Number of objects (connected compo-
nents)

Aspect ratio Histogram of gradients(8 bins)

Table 7.1: List of all the features collected to build the predictor.

Feature Extraction
Module

Image to
process

Network Predictor
Module

Network 1

Network n

Image with
detections

(a)

Image Classification
Network retrained as

Predictor Module
Image to
process

Network 1

Network n

Image with
detections

(b)

Figure 7.10: Structure of the two attempts done in implementing the proactive approach
to object detection, using a traditional Machine Learning approach (a) or using an
Image Classification Neural Network (b).

characteristics (mean, variance, local homogeneity, and covariance) are
used to decide how to approximate an image. Moreover, we considered
standard image processing features from literature [152]. We extracted all
of these features and others using well-known Python packages, such as
OpenCV [153] and Skimage [154], collecting in total over 50 image fea-
tures. The complete list of the considered features is reported in Table 7.1.
We did extract all of these features, however, we are aware that we need
to reduce the number of features to use, since getting all of these would be
too time-consuming. Moreover, some of them (for example the connected
components) are too expensive in terms of extraction time and have been
discarded a priori.

The following step is to build the classifier. To do this, we use both
the output of the oracle and the extracted features of the images, since we
need to learn the correlation between these features and the best network.
We decided to use the scikit library [155] since it is a well-known and ver-
ified module for the most common ML algorithms. We used a Principal
Component Analysis (PCA) to restrict the space of features, assigning to
this methodology the duty of finding out which ones are the most important
features that we have to consider. We then passed the output of the PCA to
the following step, which is the model training. Before training the model,
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we have to create the training and the test set. From the available 5000
images (for which we have the array of features with the associated best
network), we create a training set of 4500 images, while the other 500 are
left as validation set. Since the goal is to implement a classification layer,
we have tested most of the classifier engines available in the scikit-learn
module. Among them, we tested Decision Tree, Random Forest, Bagging,
AdaBoost, Extra Trees, Gradient Boosting, SGD, MLP, KNeighbors. How-
ever, no one of those algorithms was able to provide a robust classifier that
could be used as the predictor, as we can notice from Figure 7.11. In par-
ticular, Figure 7.11a shows the result on the complete set of networks. In
most cases, the accuracy of the validation set was around 40% which is
also the number of occurrences of the most accurate model always (the last
column in the figure). The tree predictor is the one that shows the worst
result, around 30%. To reduce the noise in the data available for the learn-
ing phase, we restricted the number of models. We decided to use only the
ones that were Pareto optimal in the benchmarking study. This reduced the
number of available models to 6. Nonetheless, even with the reduced num-
ber of target networks, the traditional ML classifiers were unable to learn
how to predict the best network to use to perform object detection given
the image. The result of this final experiment is reported in Figure 7.11b.
We can notice that even with this reduction in the possible networks there
is no valid predictor: the last column (Faster-RCNN-NAS) is the predictor
that always selects the Faster-RCNN-NAS network to perform the detection
since it is the most accurate one. This predictor has an accuracy of 55%,
which means that in more than half of the test images the RCNN-NAS has
the optimal accuracy in the reduced validation set. All the predictors have
a worse result, meaning that they can guess the optimal network with less
accuracy than always selecting the same, and most used, network.

Since the traditional approach did not lead us to a working solution for
our problem, we decided to attempt using a DNN classifier. In particular,
we selected a MobilenetV2, trained on the ImageNet dataset. We decided to
perform transfer learning, thus only modifying the last layers (the classifier
layers) of the network, without changing the feature extraction layers. The
network we used to perform the transfer learning has 154 frozen layers and
the last layer has 1280 features coming out, to which we attach the dense
layers used to perform the classification. The total number of parameters
of this network is 5,149,771, and more than half of them are frozen, so they
cannot be trained during the transfer learning. As we can see, we have much
more features than with the previous approach. We used the keras [156]
framework to perform the transfer learning. Since the oracle shows that
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(a) Accuracy of the predictors with all the networks

(b) Accuracy of the predictors with a restricted set of networks.

Figure 7.11: Results of the training of the different models.

there is no a similar amount of images for all the network, we needed to
rebalance the dataset to have a fair training phase. The training data have
been preprocessed to obtain a balanced dataset where all the labels (in our
case, the target networks) have the same amount of training images. This
is a well-known technique used to avoid that the dataset unbalancing can
influence the learning process. However, even this approach did not lead to
a working predictor. The new predictor always learns to predict one or two
networks.

We do not know the exact reason behind all of these failures. We be-
lieve that the main reason is that object detection is a much more complex
operation if compared to image classification where a similar attempt was
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successful [144]. Indeed, the DNN used to tackle this challenge are more
complex than the classification networks: [143] shows how most object de-
tection networks are composed of two sections, a region proposal network
that aims at creating the bounding boxes of the objects, and a feature extrac-
tor, which is an image classification network that provides the label to the
object extracted with the first stage. We think that this failure may be due
to the fact that the image features extracted with traditional image process-
ing or with feature extraction layers trained for the classification problem
are not enough. Indeed, these features may not be sufficient to model the
region proposal problem. Thus, a different set of features may be needed.

7.5 Summary

In this chapter, we have studied the possibility of applying autotuning in the
object detection context, where to the best of our knowledge has not been
already attempted before. We have shown why the autotuning methodology
could be very profitable for this context, with a large benchmarking cam-
paign that demonstrates that there is not a one-fit-all optimal solution. We
have seen that using a reactive approach leads to benefits: we were able to
satisfy changing requirements by exploiting two networks that were unable
to satisfy the given constraints if taken singularly. Even if our attempt in
building a working predictor was not successful, we believe that this can
be a motivational study that could inspire some researchers, more expert in
the DNN field, that this approach could be meaningful.

The outcome of this work has been accepted for publication to the SAMOS
2021 international conference.
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CHAPTER8
Background

In this secon half of the thesis we will describe some techiniques introduced
on a molecular docking application called GeoDock. This application is a
key component of this thesis, since half of the work that I did during my
Ph.D. was focused on improving the performance of this particular use case.

GeoDock is a component, in charge of geometric docking, of the Ligen
[157] tool, which is itself a component in the EXSCALATE (EXaSCale
smArt pLatform Against paThogEns)1 tool-flow. This tool-flow is the in-
silico section of a real drug discovery pipeline.

The goal of a drug discovery process is to find new drugs starting from
a huge exploration space of candidate molecules. Typically, this process
involves several in vivo, in vitro and in silico tasks ranging from chemical
design to toxicity analysis and in vivo experiments. Figure 8.1 shows the
complete pipeline of a traditional drug discovery approach. We can no-
tice that the virtual screening is a step in the exploratory research phase.
Molecular docking represents but one stage of this step [158, 159]. It aims
at estimating the three-dimensional pose of a given molecule, named ligand
when it interacts with the target protein. The ligand is much smaller than
the target protein. For this reason, we only consider a region of the protein,

1https://www.exscalate.eu/en/platform.html
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Figure 8.1: Complete drug discovery pipeline. The virtual screening task has been high-
lighted.

Source: [160]

called pocket (or binding site). The pocket is an active region of the protein
where it is likely that an external small molecule can interact.

Molecular docking is a well-known research topic. There are two ap-
proaches to this task: the first one is deterministic and the second random-
based.

Random-based approaches use well-known techniques to estimate the
interaction between the ligand and the pocket. Among these techniques,
there are genetic algorithms (like in [161, 162]) and Monte Carlo simula-
tions ( [163, 164]).

However, random-based techniques have a strong drawback, which is
that they do not guarantee the reproducibility of the solution. Indeed, sev-
eral companies require that the computational solution has to be repeatable.
This requirement is given because, being the following steps of the drug
discovery pipeline long and expensive, they don’t want to commit basing
their decision on a not repeatable solution. For this reason, it is often re-
quired to use a deterministic solution to the docking problem, to guarantee
its repeatability.

Among deterministic approaches, an early work [165] considers only
rigid movement of the ligand, without modification of its molecular struc-
ture. However, from a geometrical point of view, it is possible to identify a
subset of bonds – named rotamers – which can split the ligand into exactly
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two disjoint non-empty fragments when they are removed. Rotamers can
independently be rotated without changing the chemical connectivity of the
ligand. Therefore, most approaches evaluate also the changes in the shape
of the ligand that can be generated from the rotation of all its rotamers.
For example, in [166] the molecular docking framework can deal with the
flexibility of the ligand molecule by adopting a model of the electrostatic
interactions to finalize the docking. Similar works such as DOCK [167],
FlexX [168], FlexX-Scan [169] and sur-flex [170] provide deterministic
molecular docking algorithms that are able to modify the shape of the lig-
ands exploitintg the rotable bonds. These algorithms rely on both geomet-
ric and pharmacophoric properties in their docking procedure. However,
all these works implement a different docking procedure with respect to
GeoDock.

From the computational point of view, the evaluation of each ligand is
independent of the evaluation of all the other candidates. This and the huge
amount of candidates to process makes this problem an embarrassingly par-
allel one. Nonetheless, to find the optimal pose of the ligand when it inter-
acts with the pocket, we still have to manage a large number of degrees
of freedom, produced by the rotamers. To simplify the computation, the
pocket is usually represented as a static structure, where the position of the
atoms cannot change during the docking process. However, the ligand is a
set of atoms connected by covalent bonds, i.e. atoms that share an electron
pair. These atoms can move during the docking process and the shape of
the ligand can change thanks to the rotation of the rotamers. Indeed, while
the target pocket is represented as a rigid structure to simplify the compu-
tation, the ligand is represented as a flexible set of atoms bound together by
chemical bonds, i.e. sharing electron pairs between atoms (covalent bond).
This makes the evaluation of the interactions between a single ligand and
the pocket from the chemical and physical perspective a computationally-
intensive problem. For this reason, state of the art approaches [171–175]
suggest separating the pose prediction task from the virtual screening task.
These two tasks are very similar to each other in their organization: the first
one (pose prediction) focuses on finding the best positioning of a ligand in
a pocket. The second one (virtual screening) aims at selecting a small set of
promising ligands across a large dataset of candidates that maximize the fit
to the given binding site. However, several industrial applications [163,176]
perform both tasks into a single software module.

A fundamental difference between the pose prediction and the virtual
screening task lies in how the chemical and physical interactions between
ligand and pocket are used. Indeed, in the pose prediction task, it is possible
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to estimate the position of the ligand without using them (geometrical ap-
proach) or not (pharmacophoric approach). However, chemical information
is needed when performing the virtual screening. The pharmacophoric ap-
proach is the most computational-intensive, while the geometric approach
is more lightweight, thus faster. However, the best solution according to
a pharmacophoric score implies a good geometrical score and a more ac-
curate prediction. Indeed, there are no guarantees on the chemical com-
patibility of the pocket-ligand pair when using the geometrical approach.
The optimal solution obtained with a geometric approach may be either
a non-valid solution or a poor solution from a pharmacophoric perspec-
tive. Therefore, it is mandatory to use pharmacophoric information when
doing the final selection. The geometrical approach may be useful to fil-
ter among all the candidate ligands those that cannot geometrically fit the
target pocket. This allows to perform the chemical scoring on an already
reduced set, thus speeding up the virtual screening process as a whole.

Nowadays, the amount of candidates evaluated with a virtual screen-
ing pipeline is in recently reached 1 billion docked molecules on the entire
Summit Supercomputer [177]. The objective of our research is to enable the
exascale drug discovery paradigm, which can manage hundreds of billions
or trillions of candidate drugs. This can be obtained thanks to the speed-up
in the first phase of the drug discovery process, the one performed through
computer simulations (in-silico). Indeed, having better docking perfor-
mances allows testing more candidates. This can be obtained by applying
autotuning techniques to the algorithms, or exploiting the heterogeneity of
the HPC facilities as we will see in the following chapters.
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CHAPTER9
Introducing Autotuning in GeoDock in a

Homogeneous Context

In this chapter, we studied the original monolithic GeoDock application
to find optimization and autotuning opportunities. In particular, we ana-
lyzed the algorithm to identify some application related software knobs,
that allow applying the approximate computing paradigm. Those knobs re-
lax constraints on the correctness of the result, allowing higher throughput.
Moreover, we study that is possible to find a relation between the exposed
trade-offs and the input size. We exploit this relation to force a constraint
on the time-to-solution, maximizing the output quality under this time con-
straint. The output of this work is an initial tunable version of the applica-
tion, although it is still running on the CPU only.

9.1 Introduction

During the virtual screening process, the time budget is an important con-
straint that has to be considered when designing a screening campaign. It
is common practice to have a domain-expert human, whose job is to tune
the size of the database of molecules to dock according to the time budget.
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Figure 9.1: Framework techniques used in this chapter.

This approach constrains the space that can be explored. Indeed, it does not
provide any guarantee neither to find a good local result nor that the global
optimum will be part of the tested dataset. We have already described the
application in Section 8. Since the algorithm is a greedy exploration of the
input space, the best approach to increase the probability of finding a good
match is to enlarge the number of tested candidates. This result can be
obtained in two ways: the first is to adopt more powerful machines or in-
troduce accelerated kernels, the second is to shorten the time elapsed in the
evaluation of a single ligand-pocket pair. This can be done by introducing
autotuning and approximation in the docking process.

In this chapter, we focus on Geodock. We show how, working with a
homogeneous system without any help from accelerated kernels, we can
increase the search space by studying the application and introducing some
performance-accuracy trade-offs. In particular, we introduce some approxi-
mate computing techniques in the most compute expensive kernels, and we
evaluate the trade-offs that these techniques can offer. Moreover, we create
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a performance model that, given enough data to process, can estimate the
computation time, for every value of the set of software knobs. Thanks to
this model, we enhance the application with an adaptive layer that is used
to enforce a constraint on time-to-solution.

In the context of the general framework, we can see in Figure 9.1 the
involved techniques. Manual intervention is required since the application
has to be studied and the software knobs, that are domain-related, have to
be exposed. Then the autotuner is inserted into the application. Profiling
runs are performed to build the application knowledge and it is integrated
into the adaptive binary. This resulting binary is able to enforce the time to
solution.

To summarize, in this chapter we propose a methodology to enable tun-
able approximations to explore performance-accuracy trade-offs. We en-
hance Geodock with software knobs, and we use them to control time-to-
solution in the virtual screening task. In particular,

1. Geodock has been analyzed to introduce approximate computing in
the most significant kernels;

2. performance/accuracy trade-offs have been enabled by exposing soft-
ware knobs that can drive approximations;

3. a performance model based on the software knobs and the input size
has been created to estimate the time-to-solution;

4. Geodock has been enhanced with an autotuning layer that can satisfy
a user-defined time budget.

9.2 Background

Approximate computing techniques are well-known methodologies used
to generate trade-offs in accuracy-performance. We already summarized
some of them that are used in autotuning in Chapter 2. Here we will focus
on algorithm level techniques [178]. In this work, we exploited grid-based
optimizations in the docking kernel. In computational physics, it is com-
mon to exploit multi-level grid models to obtain an accurate result in a
restricted area of the full simulated environment.

In these works, the parameter that enables the trade-off is the size of the
grid. Tweaking this parameter allows to increase or decrease the number of
elements to process. Nested grids are a well-known paradigm, that has been
used for a long time in modeling thermosphere [179–181] and ocean flows
[182]. This paradigm enabled the adoption of variable-sized grids instead
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of the previously used regular grids. Variable-sized grids allow improving
the performance of the models since they can focus the precision in the
area of interest. They have been used in the climate forecast model. [183]
demonstrated that variable resolution grids have in the long term the same
accuracy in climate forecast as the nested grid model.

Tile optimization is another application of grid processing. In image
rendering, an element is taken from each tile, and its value is used to se-
lect which computations are required for all the elements in that tile. this
approach is called deep peeling [184–186].

9.3 Methodology

This section first introduces Geodock. In particular, we describe the algo-
rithm, and we profile it to find the computationally heavy kernels. Then,
with functional analysis, we search where the approximation is giving ben-
efits while considering the correctness of the result. This process is what
enables the accuracy-throughput trade-off. Finally, we describe how we
used this knowledge to set up the auto-tuning and to enforce the time-to-
solution

9.3.1 Application Description

The optimization of the pose of the ligand is the most computationally
intensive kernel in the virtual screening task. Geodock takes as input a
database of ligands and the target pocket. It modifies geometrically the lig-
and, moving the atoms according to the rotamers, searching the best pose
among the possible ones. For each pose produced, it has to compute a
score. It produces as output the score of each pocket-ligand pair.

Geodock performs the virtual screening task using only geometric fea-
tures of the molecules. It estimates the pocket-ligand interactions, evaluat-
ing the similarity between the shape of the ligand and the three-dimensional
shape of the pocket in PASS (Putative Active Sites with Spheres) format
[187]. It used the overlap score function to score each ligand against the
pocket. The overlap score, as defined in Equation 9.1, is the reciprocal of
the minimum square distance between the ligand and the pocket:

o =
l

l∑
i=0

p

min
j=0

d2(L[i], P [j])

(9.1)

where o is the overlap score, l is the number of atoms in the ligand L, p
is the number of 3D points in the pocket P , and d2 represents the squared
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Figure 9.2: visualization of a docked ligand (connected structure) inside a PASS version
of the target pocket (dark spots).

Source: [189]

distance between the i-th atom of the ligand and the j-th point of the pocket.
The higher is the overlap, the better is the better geometric compatibility
between pocket and ligand.

Figure 9.2 shows an example of docked a ligand inside a pocket (i.e.
1cvu [188]). The PASS representation of the pocket is reported in the image
by the black points. They represent the center of the spheres used to model
the binding site. The docked shape of the ligand is visible in the 3D image,
and the bottom left corner highlights its planar representation. The larger
points are the atoms L of the ligand while the connections between atoms
are the bonds.

9.3.2 Analysis of Geodock

Geodock targets an HPC platform. It targets the multi-node parallelism
thanks to the MPI master/slave paradigm. The master process reads the
input database of ligands and dispatches them to the slaves, whenever they
end the previous ligand evaluation. Each slave docks the ligand and com-
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99.9% - MPISlaveTask

98.7% - Molecule::MatchProbesShape

89.2% - Molecule::MeasureOverlap

08.2% - Fragment::CheckBumps

Figure 9.3: Application Call Graph profile. Functions taking less than 2% of the overall
execution time are omitted.

Source: [189]

putes the overlap score with the target pocket. At the end of its job, each
slave notifies the master of the overlap score found and waits for new data
to be processed. Geodock does not consider other levels of parallelism.
Indeed, being an embarrassingly parallel problem there is no need to paral-
lelize inner loops since this would lead to an underutilization of some cores
in the serial parts.

We started by profiling the application to locate the computational in-
tensive hotspot. We used GPROF1 to perform this task. Figure 9.3 shows
the Call Graph report, grouping the individual functions by the caller.

As we can notice, the application spends most of its execution time in the
MatchProbesShape. This is the kernel that performs the optimization
of the ligand’s pose. It uses a steepest descent algorithm to manage all the
internal degrees of freedom of the ligand (i.e. the rotamers rotations). In
this chapter, we focus on the introduction in this kernel of software knobs
inspired by approximation techniques that allow us to manage the time-to-
solution of this functionality.

Algorithm 9.1 shows the pseudo-code of the hotspot kernel. At first,
the algorithm searches the rotamers (line 1) and finds all the possible ways
to change the shape of the ligand. Then, it searches for the best shape
by rotating the bonds one by one. (lines from 2 to 20). In particular, it
grows left and right ligand fragments, starting from the two extremes of the
bond (line 3) and it rotates them independently. Every fragment is rotated
step by step up to a 360 degree angle (lines from 4 to 5); At each step,
we have to check whether the ligand shape is valid since there is a non-null
possibility of internal bumping of the molecule. (line 6), If a bump is found,
it invalidates that shape and we need to continue with the following rotation
step. If the ligand shape is valid, the algorithm computes the overlap score
and checks if it is better than the previous score (lines from 7 to 9). At the

1GNU gprof https://sourceware.org/binutils/docs/gprof/

118

https://sourceware.org/binutils/docs/gprof/


9.3. Methodology

Data: the pocket and the 3D structure of the ligand
Result: the overlap score of the ligand

1 get the list of rotamers;
2 foreach rotamer do
3 grow the right and left fragment;
4 for angle in 0-360 degrees with step 1 degree do
5 rotate left fragment to angle;
6 if the ligand shape is feasible then
7 measure the overlap of the ligand;
8 check if the overlap is improved
9 end

10 end
11 set the left fragment to best angle found;
12 for angle in 0-360 degrees with step 1 degree do
13 rotate right fragment to angle;
14 if the ligand shape is feasible then
15 measure the overlap of the ligand;
16 check if the overlap is improved
17 end
18 end
19 set the right fragment to best angle found;
20 end
21 return the overlap score of the ligand;

Algorithm 9.1: Pseudo-code of the MatchProbesShape kernel, which changes
the shape of the ligand to maximize the overlap score.

end of the whole 360 degrees of exploration, we need to emplace the atoms
in the best position found (line 11).

The kernel is agnostic in regard to whether the left or the right fragment
is evaluated, and for this reason, we do not differentiate between the two
fragments.

As we can notice from Figure 9.3, most of the time in the computation is
spent into the scoring function (Molecule::MeasureOverlap). How-
ever, the implementation of this function has already been optimized. The
contribution of this work is to reduce the number of calls to this function,
thus avoiding useless computation when it is likely that they would not
bring any improvement.

To achieve this result, we need to analyze the kernel and see if there is
some possibility of skipping the scoring without losing information. We
started by analyzing the rotation. Figure 9.4 reports the value of the score
for a rotation of 360 degrees with a step of 1 degree. Thanks to this analysis
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Figure 9.4: Changes in the overlap score by rotating a fragment of the ligand. The x-axis
represents the angle of the rotation, while the y-axis represents the overlap score of the
ligand.

Source: [189]

we can see how the rotation of a rotamer affects the score. The x-axis
represents the rotation space, from 0 to 359 degrees, and the blue points
represent the overlap score when the ligand is valid. The image reports the
analysis done on a single ligand-pocket couple, however this behaviour is
common to all the analyzed ligand-pocket couples.

We define delta overlap the difference between the maximum and the
minimum overlap in a 360-degree rotation. We define as peak the set of
contiguous and valid rotation angles that have an overlap score higher than
50% of the delta. We can immediately notice that it is not necessary to test
all the angles, thus this is a first candidate approximation knob. However,
to justify this, we need further analysis to find when and where we can skip
computations.

Figure 9.5a correlates the size of a rotamer with its impact on the overlap
score. On the x-axis, we represent the relative size with respect to the size
of the ligand. On the y-axis, we can see the normalized delta overlap.

It is easy to notice that small fragments have small deltas. This means
that such they have a limited impact on the final score of the ligand.

Figure 9.5b correlates the degree width of a peak with its height, which
has been normalized with respect to the delta overlap. From this plot, we
can notice that the wider the peaks are, the higher is the possibility that they
contain the maximum overlap. Moreover, the narrow ones usually don’t
reach the maximum height. From these two analyses, we can deduce that
the overlap is a smooth function, and angles that are neighbors have close
values. Finally, we study the frequency of the peaks. Figure 9.5c shows the
number of peaks generated by the rotation of a fragment (y-axis), clustering
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Figure 9.5: Analysis on the peaks of overlap across different fragments. Each plot shows
the minimum value, the 25th, 50th, 75th percentile and the maximum value.

Source: [189]

them by fragment size (x-axis). We can notice that larger fragments usually
have only one peak, while smaller ones tend to have more.

Besides the functional behavior of the most compute-intensive kernel,
we study how the execution time is spent by the application to find the
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Figure 9.6: Analysis of the execution time and the frequency of fragments, grouped by
their relative size.

Source: [189]

best rotation angle. Figure 9.6a shows on the x-axis the fragment size and
on the y-axis how the execution time is divided among the principal func-
tions. We already knew that most of the execution time of the main kernel
is spent in the scoring function, however from the image we can see that
the execution time of that function does not depend on the fragment size.
This was expected since the scoring involves the evaluation of the whole
ligand. Figure 9.6b complete this analysis, showing the distribution of the
size of a fragment compared to the whole ligand in the target database. We
can notice that smaller and larger fragments are slightly more represented,
however, all the dimensions are represented (the minimum appearance rate
is around 8%).
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9.3.3 Exposing Tunable Application Knobs

In the original version of the application, [176], several parameters are con-
sidered. They are able to change the behavior of the docking algorithm,
from a chemical point of view. Most of them have no impact on the execu-
tion time of the application. The only exception is a parameter that allows
skipping some rotations. It implements a traditional loop-perforation tech-
nique. In particular, instead of performing the rotation for all the degrees, it
allows skipping some of them by rotating the fragment of 2 or more degrees
in each rotation. This obviously improves the application performance but
could degrade the accuracy.

Thanks to the analysis done in the previous section, we can introduce
more aggressive software knobs to approximate the original application.
We know that small fragments have a smaller impact on the overlap score
value (see Figure 9.5a), so we can introduce a parametric loop perfora-
tion instead of the original flat loop perforation. This allows focusing only
on the biggest and more important fragments of the ligand. The paramet-
ric loop perforation works in the following way: whenever the size of the
current fragment is below a given THRESHOLD, we will evaluate it using
a coarse-grained rotation, defined by an angle of LOW-PRECISION STEP
degrees. Otherwise, we will use a fine-grained rotation, with an angle of
HIGH-PRECISION STEP.

Moreover, since MatchProbesShape is clearly a greedy algorithm,
it is possible that its accuracy is improved by repeating the whole procedure
more times. For this reason, we define another knob REPETITIONS, which
is the number of times that the whole procedure has to be repeated. This
parameter can seem to increase the accuracy and the computation time of
the application. However, combined with the approximations introduced in
the kernel, it can be used to run multiple time an approximated version than
once the original one. Given the greedy approach, this could also lead to
better results.

Finally, we can use the peak analysis done previously to extract other
information from the application. We noticed that the overlap score func-
tion is quite smooth with respect to the rotation space. Moreover, the most
important peak of every fragment is usually a wide one (the median value
is at 68 degrees). For this reason, we believe that we can use a peeling ap-
proach to divide the angle into tiles, and perform the high precision rotation
only in the tile that contains the optimal result. In particular, for each frag-
ment above the THRESHOLD parameter, we partition the 360-degree angle
into tiles of a fixed size x. Then we perform a fast evaluation only on the
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Source: [189]

central element of each tile. In a second refinement, we examine the opti-
mal tile with rotations of HIGH-PRECISION STEP degrees. With this tiling
approach, the number of evaluated rotations (y) is a function of the tile size
and of the HIGH-PRECISION STEP parameter, as described in Equation 9.2

y =
360◦

x
+

x

HIGH-PRECISION STEP
(9.2)

Since we want to minimize the computation effort while preserving the
probability of finding the best score, we minimize Equation 9.2. The solu-
tion of this is reported in Equation 9.3.

x̂ = 6 ∗
√
10 ∗
√

HIGH-PRECISION STEP (9.3)

For example, if we set HIGH-PRECISION STEP at the original accuracy
(1 degree), the optimal tile size is at 18 degrees. As we can see from Fig-
ure 9.7, the probability of identifying the most important peak with this
peeling element is still well above 90%, which means that this approxima-
tion is acceptable. Indeed, Figure 9.7 shows, for each tile size (x-axis), the
probability that the most important peak is wider than the evaluated tile size
(y1-axis, blue line) and the number of evaluated iterations (y2-axis, green
line). The red line highlights the value obtained when minimizing the num-
ber of evaluation with the proposed technique. As a consequence Equa-
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tion 9.3, we observe that a change in parameter HIGH-PRECISION STEP
implies a change in the value of the optimal tile size and in the probability
of finding the best peak.

To summarize, starting from the original algorithm described in Algo-
rithm 9.1, we introduced five tunable software-knobs: HIGH-PRECISION
STEP, LOW-PRECISION STEP, THRESHOLD, REPETITIONS and ENABLE
REFINEMENT, that enable approximation on the application and reduce the
number of evaluations of the score function. The driving idea is that we
want to focus the elaboration only when it is required. And we try to avoid
useless computation thanks to the functional behavior analyzed in Subsec-
tion 9.3.2.

To summarize, we report in Algorithm 9.2 the final parametric algorithm
of MatchProbesShape. The outer loop (line 2) contains the original
algorithm and consist of repeating the pose optimization according to REP-
ETITIONS. The optimization of the pose is described for the left fragment
between line 5 and line 16. We test the relative size of the fragment against
the THRESHOLD (line 5), to decide if perform either a coarse-grained ex-
ploration or a fine-grained one. The coarse-grained exploration (line 6)
uses the LOW-PRECISION STEP. The fine grained exploration (lines 9-15)
is parametrized and has two possibilities. According to ENABLE REFINE-
MENT, we can perform a two-step optimization using iterative refinements,
or a flat exploration using HIGH-PRECISION STEP. The two-step optimiza-
tion is done with the peeling technique that we explained before. We eval-
uate the peeling elements of the rotation (line 10), then we refine the explo-
ration of the most promising tile using HIGH-PRECISION STEP (line 11).
Again, thanks to the symmetry of the problem, the procedure is applied to
the right fragment (lines 17-28) in the same way.

9.3.4 Application Autotuning

The software knobs defined aim at decreasing the time-to-solution of the
application. However, as a side-effect, they also reduce the accuracy of
the results. From the end-user point of view, a manual selection of these
parameters is not an easy task. Therefore we use the mARGOt autotun-
ing framework to autotune the application and select the software-knobs
configuration that maximizes the accuracy given a time budget.

The autotuner requires knowledge about the application behavior in or-
der to select the most suitable configuration. There are two types of infor-
mation needed by mARGOt to build the knowledge for this application:

1. Platform Independent knowledge, related to the error introduced with
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Data: the pocket and the 3D structure of the ligand
Result: the overlap score of the ligand

1 get the list of rotamers;
2 for the number of REPETITIONS do
3 foreach rotamer do
4 grow the right and left fragment;
5 if relative size of left fragment ≤ THRESHOLD then
6 place the left fragment in the best angle found with step

LOW-PRECISION STEP;
7 end
8 else
9 if ENABLE REFINEMENT then

10 evaluate the peeling element for each tile;
11 place the left fragment in the best angle found in the best tile using

step HIGH-PRECISION STEP;
12 end
13 else
14 place the left fragment in the best angle found with step

HIGH-PRECISION STEP;
15 end
16 end
17 if relative size of right fragment ≤ THRESHOLD then
18 place the right fragment in the best angle found with step

LOW-PRECISION STEP;
19 end
20 else
21 if ENABLE REFINEMENT then
22 evaluate the peeling element for each tile;
23 place the right fragment in the best angle found in the best tile

using step HIGH-PRECISION STEP;
24 end
25 else
26 place the right fragment in the best angle found with step

HIGH-PRECISION STEP;
27 end
28 end
29 end
30 end
31 return the overlap score of the ligand;

Algorithm 9.2: The tunable pseudo-code of the MatchProbesShape kernel.

the approximation.

2. Platform Dependent knowledge, related to the execution time of the
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application on the actual machine that is used.

The first knowledge can be obtained by running only once, on a represen-
tative set of pocket and ligands, an experimental campaign. It is important
that the set is large, in order to avoid bias. Once this knowledge is built, it
can be used in different runs and on different platforms, since the error only
depends on the knobs related to the approximation of the application.

On the other hand, to enforce a time-to-solution constraint, we need to
know the execution time on the given platform and the input set before-
hand. Given the architecture of the application, and since the problem is
data-parallel, the overhead introduced by the MPI synchronization is con-
sidered negligible even when scaling on a supercomputer machine with a
large set of nodes. Therefore, assuming that those nodes are homogeneous,
we predict the time on the serial application and split it according to the
number of available resources.

Considering a single software-knobs configuration, it is possible to use
features of the input database to estimate the time to solution. For this
reason, we model the entire database as a set of ligands with the same av-
erage features. In particular, the model is built with a multivariate linear
regression with interaction to estimate the time-to-solution tla for the aver-
age ligand. The vector of predictors x is composed by the number of points
of the target pocket xpp, the average number of atoms in a ligand xla, the
average number of rotamers in a ligand xlr, and all the possible interactions
among them (i.e. xpp · xla, xpp · xlr, xla · xlr, and xpp · xla · xlr). Thus, the
target model is simply composed of tla = α · x + β, where α is the vector
of predictor coefficient, while β is the intercept.

To generalize this approach, we consider the parameters of the regres-
sion as a function of the proposed software knobs. This is possible because
the impact of the input on the execution time is strongly dependent on the
software-knobs configuration. Considering this, we can build a model to
estimate the time-to-solution as stated in Equation 9.4. Here, k is the vec-
tor of software knobs and ν is the number of ligands to dock, in the input
database.

t = ν · (α(k) · x+ β(k)) (9.4)

As we already mentioned, we should train the performance model ev-
ery time we change the computing platform. However, the experiment de-
scribed in Subsection 9.5.1 characterize the size of the database required to
train the model.

To recap, we enhanced the original algorithm of the application finding
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and exposing software knobs, thus enabling performance-accuracy trade-
offs. We used mARGOt to automatically configure the application requir-
ing the user to provide only a couple of simple parameters, i.e. the number
of available nodes and the available time-budget. The characteristics of the
actual input can be either provided by the user or extracted by a preliminary
input analysis.

9.4 Experimental Setup

Before showing the benefit of the proposed approach, we need to define the
boundaries of the experiment, in terms of dataset, metrics of interest, and
execution platform.

9.4.1 Data Sets

To evaluate the proposed methodology and its benefits, we used a database
of 113K ligands.

The ligands were different both in terms of atoms (from 28 to 153) and
in rotamers (from 2 to 53). Moreover, the order of the ligands inside the
dataset is randomized, in order to remove bias due to their size.

We used 6 pockets protein pockets complexes derived from the RCSB
Protein Data Bank (PDB) [188]: 1b9v, 1c1v, 1cvu, 1c2, 1dh3, 1fm9. In par-
ticular, the PASS [187] version of the pockets has also been used together
with the database of ligands. The PASS version uses spheres to represent
binding sites. This solution has been widely used in the context of fast
docking [187].

9.4.2 Metrics of Interest

The most important way to measure the performance of Geodock is to con-
sider two metrics, the throughput (i.e. how many atoms per second it can
evaluate) and, as previously said, the time to solution.

Now we need to identify a metric to estimate the error introduced by
the approximation. We call this metric overlap degradation. It is used to
quantify the mean loss of accuracy introduced by approximation techniques
with respect to the baseline. We consider as baseline the configuration that
leads, on average, to the better overlap score: HIGH-PRECISION STEP = 1◦,
THRESHOLD = 0, REPETITIONS = 3 and ENABLE REFINEMENT = false.
The overlap degradation is defined as described in Equation 9.5,

scoredegradation = (1− overlapapprox
overlaporiginal

)× 100 (9.5)
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where overlapapprox is the mean score of the top 1% of the ligands of the
evaluated configuration, while overlaporiginal is the mean score of the top
1% ligands of the baseline. Since this metrics evaluates the loss in accuracy
of the approximated application, the lower it is its value, the closer is the
approximated application to the original one.

9.4.3 Target Platform

The platform used to execute the experiments is composed of two dedicated
nodes of the supercomputer GALILEO, at the CINECA supercomputing
center. Each node is equipped with two Intel Xeon E5-2630 V3 CPUs
(@2.8 GHz) and 128 GB of DDR4 NUMA memory (@1866 MHz) on a
dual-channel memory configuration.

9.5 Experimental Results

In this section, we evaluate the benefits of the proposed approach using
four different experiments. The first experiment is needed to evaluate the
data sensitivity. Geodock is a data-dependent application, so we want to
find out how many ligands are needed to stabilize the input sensitivity. This
means, how many ligands are needed to evaluate a configuration. The sec-
ond experiment targets the approximation techniques. We want to show the
enabled trade-off with respect to the baseline, evaluating the effect of the
degradation of the overlap score on a single ligand.

The third experiment validates the accuracy of the time-to-solution model.
Finally, the fourth experiment shows the benefits of the proposed approach,
in two different scenarios.

9.5.1 Data Dependency Evaluation

To evaluate the trade-off space, we need to find the set of Pareto optimal
configurations, which are the configurations that are non-dominated con-
sidering both target metrics (throughput and accuracy). However, this ap-
plication needs to work with a database of ligands that is heterogeneous in
terms of the number of atoms and rotamers. Thus it is possible that the
performance and the input dataset are correlated, and that the application
performance depends on the input.

This experiment aims at finding the dependence of the performance of
the configuration from the input dataset. If we manage to find its indepen-
dence, we can avoid profiling the configuration behavior for every different
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Figure 9.8: Application analysis in terms of throughput per process and overlap score
degradation, changing the number of ligands. For each configuration we show the
average values (dot) and the standard deviation (colored area).

Source: [189]

dataset. To this end, we evaluate the behavior of four different configura-
tions of the enhanced version of Geodock in terms of tunable knobs. For
each of them, we measure the throughput and the degradation of the overlap
score while changing the number of considered ligands. The set of ligands
used to evaluate all the configurations has been changed in every run, in
order to simulate different datasets. We run this experiment 20 times, with
20 different input sets, for all the different configurations and we measure
the two metrics (throughput and error) more times, after processing differ-
ent numbers of ligands. Figure 9.8 shows the results of this experiment.
In both plots, on the x-axis, we have the different amounts of evaluated
ligands. On the y-axis, we have in Figure 9.8a the application throughput,
while in Figure 9.8b we depict the overlap degradation. Each dot represents
the average value of the configurations while changing the input database
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put: Flat vs Full.

Source: [189]

of ligands. The transparent curve represents the standard deviation of the
measures, which we consider an indicator of the uncertainty of the average
value. We can notice (see Figure 9.8a) that the average of the throughput
has a minimal dependency (as the small standard deviation demonstrate)
on both on the number of ligands in the target database and on the input
data. We can notice that after the 2K ligands value, all the plots are con-
stant and their standard deviation is zero. This result was expected, given
that we defined the throughput as the number of atoms evaluated, and not
as the number of ligands. On the other hand, Figure 9.8b shows that the
overlap degradation has a stronger dependency from the dataset than the
throughput. Nonetheless, as can be evinced from the image, with a dataset
larger than 5K ligands the value is steady and after 10K also the standard
deviation is almost null. The overlap degradation depends on the top 1%
ligands in the baseline configuration, so it is more related to the selected
database. However, since it stabilizes we can say that no more than 10K
ligands are needed to determine the expected throughput and error of any
configuration.

9.5.2 Trade-off Analysis

With this experiment, we want to define the performance-accuracy trade-off
created by the techniques proposed in Subsection 9.3.3. First, we run the
different configurations on a single node of Galileo with a database of 20K
ligands. Figure 9.9 reports the Pareto front of this design space exploration.

In particular, we want to compare the difference between the previous
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approach (flat loop perforation) proposed in the original paper [176] and the
configurations obtained by the studies on the application done in this chap-
ter. The design space exploration has been performed with a full factorial
Design Of Experiments (DoE).

The flat design space is composed by only two parameters, that are:
HIGH-PRECISION STEP [1◦, 2◦, 3◦, 5◦, 10◦, 15◦, 45◦, 60◦], REPETITIONS [1,
2, 3].

On the other hand, the Full design space, which exploits the software
knobs proposed in this chapter, is the following: HIGH-PRECISION STEP
[1◦, 2◦, 3◦, 5◦], LOW-PRECISION STEP [45◦, 90◦], THRESHOLD [0, 0.3, 0.6,
0.8], REPETITIONS [1, 2, 3], ENABLE REFINEMENT [true, false].

The baseline configuration is the most accurate, and can be obtained by
both the flat and full approaches. This configuration is HIGH-PRECISION
STEP=1◦ and REPETITIONS=3 for the flat version, and HIGH-PRECISION
STEP=1◦, LOW-PRECISION STEP=*, THRESHOLD=0, REPETITIONS=3, and
ENABLE REFINEMENT=false for the full version.

As expected, as shown in Figure 9.9, the Pareto front of the full version
strictly dominates the one built with the flat sampling. In particular, we
want to highlight the first configuration on the full curve after the Baseline:
here we enabled iterative refinement, and thanks to this knob we can sig-
nificantly improve the throughput of the application (7.4X) with a limited
overlap degradation (2.3%) compared to the baseline.

We used some pocket-ligand pairs from the Protein Data Bank (PDB)
[188] to better see the effects of the degradation. The PDB is an on-
line database that contains three-dimensional structural data of biological
molecules, and the co-crystallized pose within the target pocket. This pose
is the actual pose of the ligand for that pocket.

Figure 9.10 shows three scores for each pocket-ligand pair:

• the overlap score of the crystal as described in PDB, and scored with-
out moving any atom with the overlap score function.

• the overlap score of the docked ligand with the baseline version.

• the overlap score of the first configuration of the approximated version
(the first point in the full curve in Figure 9.9).

This experiment shows that the degradation of the overlap score is not
only on average small but also if we consider a single ligand as target. The
fact that the co-crystallized score is lower than the docked is not surprising:
the real pose of the ligand also takes into account chemical issues that are
not visible in the geometric approach.
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Figure 9.10: Overlap score by varying the target pocket for the co-crystallized ligand, for
the baseline and proposed approximated version.

Source: [189]

9.5.3 Time-to-solution Model Validation

This experiment validates the time-to-solution model described in Subsec-
tion 9.3.4. In particular, the model is defined within the design space of the
full version described in Subsection 9.5.2. The model consists in a linear
regression (see Equation 9.4). In order to finalize the model, we need to
evaluate the coefficients for each configuration. To do this, we run several
times the application using 1K ligands for each available configuration.

The models obtained with this experiment have an average adjusted R2

value equal to 0.977.
To validate the model we run an experimental campaign. We used a

leave-one-out approach on the pocket and a different set of ligands with
respect to the ones used to train this model. For every pocket and every
configuration, we execute the entire application three times, with different
datasets composed of 1K, 2K, 5K, or 10K ligands. Smaller datasets are
not interesting since this model is needed to drive the virtual screening, an
experimental campaign that targets a large number of ligands (millions or
more). For each run we store the predictor value and the observed value,
thus obtaining the prediction error. Figure 9.11 shows as boxplot the dis-
tribution of those errors. We can notice that the average error is below 1%
of the total time to solution. This experimental campaign is run on more
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Figure 9.11: Prediction error of the time to solution, with different sized dataset.

Source: [189]

than 15K different runs. The maximum outlier has an error prediction of
7.9%. Moreover, we can notice that the accuracy increases as the size of
the dataset increases.

9.5.4 Use-case Scenarios

The final experiment evaluates the benefits of the proposed approach for
the end-user, which is in this case a pharmaceutical company that wants to
perform a virtual screening campaign within a specific time budget. We
can see two exploitation scenarios of the performance-accuracy trade-off
introduced with our methodology. In the first one, we allocate a time budget
for the computation, and we investigate what is the effect of increasing the
size of the database to be screened, to increase the probability of finding a
drug. In the second one, we fix the size of the database, and we observe the
effects of changing the time budget. We can think of these two scenarios
as an attempt to provide the end-user with two high-level knobs: the first
one being the number of ligands to be screened and the second one the time
budget, thus the cost of the experiment. The time-to-solution model is used
to set the right low-level application knobs included in Geodock to satisfy
the constraints.

Figure 9.12 shows the result of this experiment, using eight nodes of the
Galileo machine. In the top 2 plots, on the y-axis, we report the expected
performance of the application. In the other plots, we report the selected

134



9.5. Experimental Results

 0

 20

 40

 60

 80

 100

E
x
p
e
ct

e
d
 c

o
m

p
le

ti
o
n
 [

%
]

Baseline Adaptive

 0

 10

 20

 30

 40

 50

O
v
e
rl

a
p
 d

e
g
ra

d
a
ti

o
n
 [

%
]

 0

 20

 40

 60

 80

 100

Lo
w

 p
re

ci
si

o
n
 s

te
p
 [

°]

 0

 10

 20

 30

 40

 50

 60

H
ig

h
 p

re
ci

si
o
n
 s

te
p
 [

°]

 0

 20

 40

 60

 80

 100

T
h
re

sh
o
ld

 s
iz

e
 [

%
]

 1

 2

 3

R
e
p
e
ti

ti
o
n
 [

#
]

no

yes

 250  500  750  1000

It
e
ra

ti
v
e
 r

e
fi
n
e
m

e
n
t

Ligand db size [x106]

(a) Scenario 1. Varying the size of the ligand
database allocating one day to the time bud-
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Figure 9.12: Geodock behavior in terms of expected percentage of ligand database com-
pletion, expected overlap degradation, and the selected configuration (a) by varying
the size of the input, and (b) the time budget, when using 8 nodes of Galileo.

Source: [189]

configuration of the software knobs.
For this experiment, we define the performance of the application as

the expected completion percentage of the ligand database and the related
overlap degradation of the result. The completion percentage reflects the
percentage of ligands in the target database that have been docked. Each
plot includes two lines, the dashed one represents the baseline version of

135



Chapter 9. Introducing Autotuning in GeoDock in a Homogeneous Context

Geodock the other one reflects the adaptive version presented in this chap-
ter.

The x-axis represents the proposed high-level parameter tuned by the
end-user, according to the scenario (size of the dataset in Figure 9.12a or
time to solution in Figure 9.12b). In particular Figure 9.12a the end-user
is interested in imposing a constraint of one day to elaborate the whole
dataset. The image shows how the knobs are changed according to the size
of the dataset selected. On the other hand, Figure 9.12b shows an example
of when the end-user would like to select the time budget to dock a database
of 500× 106 ligands, and the image show the changes in the configuration
if the total time given to elaborate the dataset is changed.

In both cases, we can see that the proposed software knobs enable a
lot of possibilities for the end-user to tune the problem size and time to
solution. Moreover, by using mARGOt combined with the time to solution
model, we free the end-user from the burden of having to select manually
all of the software knobs and we can expose him to more high-level and
straightforward parameters.

Indeed, even if the average trend of the application knobs values can be
derived from their meaning, the actual values and the time at which is better
to change the configuration according to the high-level constraints are very
difficult to select without automatic support. A clear example of this is the
parameter THRESHOLD. We can see in the middle range (300–700×106)
of the problem size that it changes quite a lot of times in the experiment
shown by Figure 9.12a.

In terms of application performance, we can notice in Figure 9.12a that
the baseline dataset complexion rapidly decreases. Indeed, without adap-
tivity, it is difficult to process large datasets in a fixed time. On the other
hand, thanks to the adaptive approach proposed in this chapter we can pro-
cess 100% of the database up to 850×106 ligands, in the given time. This
obviously provokes a degradation of the overlap score, however, this degra-
dation is smooth, as can be seen from the second-row graph. The same
result, from the opposite perspective, can be seen in Figure 9.12b, where
we run the complementary experiment. Here we fix the size of the dataset
and we ask the user to give a time to solution constraint to process that
dataset. We can notice that both the baseline and the adaptive one are at the
beginning not able to process the full dataset. However, by increasing the
time budget, the adaptive solution quickly manages to exhaust the search,
even if with a low-quality result. The baseline on the other hand is still
processing less than 10% of the dataset when the adaptive solution finishes
it. Further increase in the time budget leads to improving the quality, as can
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be seen in the second-row graph. It is interesting to note that the adaptive
solution can exhaust the dataset in less than 1 day, with less than 40% of
degradation, while the baseline is still stuck at less than 10%, and requires
more than 20 days to finish the run.

Finally, this experiment shows how the adaptive approach can provide
an output with a limited overlap degradation (less than 10%), while the
baseline can process only the 10% of input data set (Figure 9.12b, more or
less at 2 days of run time). This result demonstrates the effectiveness of the
extracted low-level knobs in Geodock.

9.6 Summary

In this chapter, we have analyzed Geodock as a representative HPC ap-
plication. From the analysis of the application and domain knowledge, we
were able to identify five software-knobs that enable accuracy-performance
trade-offs, by focusing the computation where it is really useful and has an
impact on the output value. The adaptive version of Geodock is charac-
terized by different levels of accuracy, that are automatically managed by
mARGOt according to the needs of the end-user of the virtual screening
experimental campaign. In particular, experimental results demonstrated
how, by scaling the quality of the results, the application is able to complete
a virtual screening campaign over a given ligand database, with different
time budgets. These results are an important advantage for pharmaceutical
companies where the usage of software and HPC systems have become an
important asset in the search for novel drugs. Due to the large number of
possible molecules to evaluate, the proposed approach can either lower the
cost of the virtual screening process or allow to evaluate a larger number of
ligands, thus increasing the chances of finding a good candidate drug.

The analysis derived from the work presented in this chapter has been
used to optimize and tune a very large virtual screening run on the whole
MARCONI machine from CINECA (>250Kcores, >10PetaFlops system).
When this work has been done, this machine was at position number 17 on
the top 500. In particular, this experiment has performed one of the largest
virtual screening campaign for the ZIKA virus considering a database of
1.2B ligands. The resulting candidates are currently under in-vitro and in-
vivo testing.

The outcome of this work has been published in the Journal of Super-
computing [189].
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CHAPTER10
Porting and Tuning Geodock kernels to

GPU using OpenACC

In this chapter, we focus on porting Geodock to a heterogeneous node,
showing how it is possible to significantly improve computation efficiency
by using heterogeneous architecture. In this chapter, we will describe how
we analyzed and rewrote the application to match the GPU parallel archi-
tecture, and we performed a minimal static autotuning to select, before the
run, the optimal configuration for some GPU parameters. In this imple-
mentation of GeoDock, we used the OpenACC language to implement the
parallel kernels on the GPU.

10.1 Introduction

In the last decade, energy consumption has become an important issue also
in the HPC domain. For this reason, a switch from homogeneous systems
to heterogeneous systems has begun. By using different hardware accelera-
tors, such as GPUs or Xeon-phi, heterogeneous systems usually have better
energy efficiency and can provide more FLOPs. Indeed, most of the top
positions in the Green500 list (as of June 2020, [2]) are occupied by het-
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Figure 10.1: Highlight of thesis approach targeted in this chapter.

erogeneous machines. The improvement in efficiency often implies an in-
crement in programming complexity, since application developers must use
different paradigms to leverage features of these co-processors. In particu-
lar, GPUs have many computational cores that expose a much higher level
of parallelism than CPUs. However, with respect to CPUs cores that have
complex features, such as out-of-order and speculative execution, GPUs
cores have a simpler architecture. Therefore, complex code and control
flow operations lead to significant degradation of the performance of a GPU
application.

GeoDock can leverage the parallelism on the ligand level using a clas-
sic MPI master/slave approach. However, in this paper we investigate the
possibility to offload the geometrical docking kernel on GPU, to leverage
its internal parallelism for decreasing the time to solution, leading to two
main benefits for the end-user. On one hand, it decreases the monetary cost
of the drug discovery process. On the other hand, it enables an increment
of the number of ligands analyzed by LiGen, increasing the probability to
find a good candidate.

In the context of the global framework, this chapter is focused on intro-
ducing heterogeneity in the application, and not on self-tuning the appli-
cation at runtime. As can be seen in Figure 11.1, the self-tuning module
is composed only by the enriched code with the GPU kernel, without any
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autotuning functionality inserted in. Nonetheless, this work is important
because introduces some key concepts in working with heterogeneous plat-
forms. Indeed, this is the starting point in creating a heterogeneous self-
tuning module.

To summarize, the main contributions of this chapter are the following:

• We create a kernel for accelerating GeoDock, using OpenACC direc-
tives.

• We analyze the obtained performance and discuss the language and
algorithm limits, comparing it with the CPU baseline.

10.2 Background

To harness GPU capabilities, application developers may choose between
two main approaches. In the first approach, they use specific computing
languages, such as CUDA [190] or OpenCL [191], for writing device code
and for managing data transfers. Those languages provide application de-
velopers the finest control of the computation. However, even if the lan-
guage is based on C/C++, they require to rewrite the algorithm according to
the memory model and the parallelization scheme of the chosen language.
Moreover, they introduce a maintainability problem since the device code
is not usually suitable for running on the host device, which leads to code
duplication.

A second approach is to decorate the original source code with compiler
directives to highlight the region of code to offload and to describe data
transfers between the host and device memory. The compiler generates
automatically the device code and the required glue code for data transfer.
The benefit of this approach is that the application is written in a single
language, which may run on the device and the host as well. However, since
the device code is automatically generated, it may suffer from performance
penalties. Moreover, application developers are still in charge of exposing
enough parallelism and of minimizing control flow operations, to have a
performance improvement.

In this chapter we decided to use the directive language OpenACC [192]
to exploit GPU capabilities. The starting point is an already optimized code
for the CPU, that was already designed to expose parallelism to leverage the
CPU vector units.
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Input: Target Pocket and the initial pose of the ligand
Output: The geometric score of the evaluated poses
repeat

Generate_Starting_Pose(Pose_id);
for angle_x in range(0:360) do

Rotate(angle_x, Pose_id);
for angle_y in range(0:360) do

Rotate(angle_y, Pose_id);
Evaluate_Score(Pose_id)

end
end
for fragment in ligand_fragments do

for angle in range(0:360) do
Rotate(fragment, angle, pose_id)
Bump Check(fragment, pose_id) Score(fragment, pose_id)

end
end

until Pose_id < N ;
Algorithm 10.1: Pseudo-code of the original algorithm that performs the geomet-
rical docking for the CPU.

10.3 The Proposed Approach

This section describes the approach that we followed to accelerate the ge-
ometrical docking kernel of the docking application on GPUs. First, we
analyze the application to identify opportunities to offload computation to
the GPU. Then, we describe how we seized those opportunities to improve
the application performances.

10.3.1 Application Description

LiGenDock application uses a mixed approach for docking a ligand in the
target pocket . It starts considering geometric features, then it simulates
the actual physical and chemical interaction for the most promising ligand
poses. With GeoDock we focus only on the geometrical docking phase,
used to filter out incompatible ligands .

Algorithm ?? shows the pseudo-code of the geometrical docking. Due
to the high number of degrees of freedom, it is unfeasible to perform an
exhaustive exploration of the possible pose of the ligand. For this reason,
the application implements a greedy optimization heuristic with multiple
restarts.

The outer loop generates N different initial poses for the target ligand ,
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maximizing the probability to avoid local minimum. Each iteration of the
outer loop aims at docking the ith initial pose of the ligand .

Within the body of the outer loop, the docking algorithm is divided into
two sections. The first one (lines 3-9) performs rigid rotations of the ligand
, to find the best alignment with the target pocket , according to the scoring
function. We will refer to this section of the algorithm as Rigid Rotation or
Alignment. In the last section of the algorithm (lines 10-14), we optimize
the shape of the ligand by evaluating each fragment in an independent fash-
ion (line 10). In particular, we rotate each fragment to find the angle that
maximizes the scoring function without overlapping with the other atoms
of the ligand (lines 11-13). We will refer to this section of the algorithm
as Optimize Pose. We need to evaluate each fragment sequentially, since
a fragment may include another fragment. Therefore, if we parallelize the
pose optimization over the fragments, we might change the ligand structure
in an unpredictable way, invalidating the outcome of the application.

Finally, Figure 10.2 depicts the geometric docking workflow, highlight-
ing data dependencies. In particular, the initial poses are independent, since
every initial pose represents the actual starting point of the docking algo-
rithm. For every starting pose, we perform rigid rotations to select the most
suitable alignment of the initial pose of the ligand for the target pocket .
After the Rigid Rotations, we proceed with the Pose Optimization phase,
evaluating each fragment of the ligand sequentially. As output, we retrieve
N poses, one for each starting pose.

10.3.2 Profiling

To identify bottlenecks of the application on CPU, we profiled the applica-
tion using Score-P, a well-known profiling tool [194]. Figure 10.3 reports
the result of this analysis for the most significant functions. In particular,
for each function we report the percentage of time spent in that function,
comprehending children, and the number of times that it is called in the
algorithm. From the results, we noticed that the main bottleneck of the
application is the scoring function. Even if the function itself is rather sim-
ple, we need to call it every time we modify the ligand structure, to drive
the pose optimization process. In particular, the scoring function evaluates
“how good” is the position of every atom of the ligand inside the pocket .
The actual score of the ligand is the average score of the atoms. Due to the
code optimization, this function leverages the CPU vector units to process
the score of each atom, leading to an execution time of less than 100ns.
However, due to the high number of calls from the algorithm (107), this
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Figure 10.3: The application profiling result. For each significant function, we show two
information: the percentage of time spent in that function (comprehend sub-functions)
and the number of calls.

Source: [193]

function becomes the bottleneck of the application. Moreover, the func-
tions that rotate the ligand atoms or that test whether a pose is valid, have a
negligible impact on the overall execution time, since they are also able to
exploit the vector units of the CPU.

From the profiling analysis, the application complexity is not restricted
to a single complex function, but it is due to the high number of alternative
poses to evaluate for finding the best one. Moreover, since the algorithm
is greedy, we need to perform multiple restarts to lower the probability of
finding a local minimum. Therefore it seems to fit the parallel nature of the
GPU paradigm. On the other hand, we don’t have a single kernel to offload
to the GPU, but we need to address the whole algorithm, or the data transfer
cost would be higher than the benefit.

From the implementation point of view, we decided to use the OpenACC
directive language to offload application code to the kernel. Moreover,
OpenACC provides to application developers the possibility to explicitly
control data transfers, minimizing the related overhead.

10.3.3 Implementation

From the CPU profiling of the application, we implemented a first version
of the algorithm that aims at minimizing data transfer, while maintaining
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the application structure. We decided to introduce parallelism on the num-
ber of poses (they can all be managed in parallel and are completely inde-
pendent). In this way, we transfer data only at the beginning and at the end
of the docking algorithm (i.e. once in the lifetime of the ligand ).

From the implementation point of view, the following changes are re-
quired to generate the binary of the offloaded kernel, i.e. the parallel region
in OpenACC jargon. All the data structures interacting with the offloaded
kernel have to be compliant with the OpenACC guidelines [195] for han-
dling data. In particular, this means that the data structures that interact
with the offloaded kernels must manage data transfers in the constructor
and destructor. The constructor allocates memory on the device side and
it copies the initialized data into device memory. The destructor must free
both the device and the host memory. Moreover, it is mandatory to mark
each function called inside the parallel region with the OpenACC “routine”
directive.

Since we plan to parallelize the computation over the initial poses, we re-
quire a private data structure to represent the initial pose of the ligand. The
OpenACC language provides the private keyword to express this con-
cept. However, the system runtime available on our platform was not able
to support this feature1. Since it is a class containing arrays, whose copy
constructor has been redefined according to the OpenACC manual [196],
it is not clear the source of the problem. Therefore, we decided to bypass
the issue by replicating the initial pose and by using manual management
of the data. Even if it required a fair amount of code refactoring, we still
tried to maintain the original structure of the application.

With this modification, we fixed the illegal access issue, but the GPU
application was slower than the CPU one. We analyzed the problem and
noticed that this was not due to data movement since everything was resi-
dent on the GPU. We found out that we were not really exploiting the par-
allelism of the GPU because parallelizing the computation of all the poses
was not giving enough work to the GPU. At this point the Rigid Rotations
are still happening sequentially for every restart. Indeed, having to insist on
the same data structure for all the Rigid Rotations of one pose was limiting
the amount of exposed parallelism.

To obtain an advantage from the use of the accelerator, we had to rework
the source code to find (and expose) more parallel computation, as shown
in Algorithm 10.2. To achieve the desired result, we had to modify the
rotation and scoring functions, unifying them to avoid storing all the tem-

1The GeoDock execution triggered an illegal access to the GPU memory when trying to transfer the private
data structure.
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Input: Target Pocket, initial pose of a ligand
Output: A set of scores, one for each pose
repeat

Generate_Starting_Pose(Pose_id);
until Pose_id < N ;
for angle_x in range(0:360) do

for angle_y in range(0:360) do
repeat

Rotate_and_Score(angle_x, angle_y, Pose_id);
until Pose_id < N ;

end
end
Reductions Set_Optimal_Pose repeat

for fragment in ligand_fragments do
for angle in range(0:360) do

Rotate(fragment, angle, pose_id)
Checkbump(fragment, pose_id) Score(fragment, pose_id)

end
Reductions Set_Optimal_Pose

end
until Pose_id < N ;
ResultRetrievalfromGPU

Algorithm 10.2: Pseudo-code of the final algorithm offloaded to the GPU, where
the Rigid Rotations are parallelizable. Inside the Rotate_and_Score function the
initial pose is only read from the kernel, which evaluates on the fly the score of the
atom after applying the rotation. In this way, we eliminate the need to store all the
rotation poses, and we can perform the two loops in a complete parallel way. Only
the optimal pose will be stored after the reductions (outside of both for loops). The
same principle applies to the Pose_Optimization phase, however only the inner
loop can be parallelized since the fragments must be managed sequentially.

porary ligand poses. With this modification, we were able to expose more
parallelism, since the rigid rotations are no more sequentially executed on
a shared data structure. After the computation, we schedule a reduction
to retrieve the best score, storing only the best pose of the ligand for the
following step. Finally, we rotate the ligand data structure accordingly, to
forward to the optimization phase.

This implementation improved the computation efficiency, moving the
bottleneck from the Rigid Rotation section to the Optimize Pose function.
We applied the same technique to expose parallel computation also in the
pose optimization phase. However, the exposed parallelism is limited by
two factors. On one hand, we rotate a fragment along with a 1-dimensional
axis instead of a free rotation in a 3-dimensional space. On the other hand,
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we must optimize each fragment in sequence to save the ligand consistency.
Therefore, we exploit again the pattern of parallel evaluation followed by a
reduction, but the number of data is smaller: we need to perform a reduction
at the end of every fragment evaluation. As previously stated, since we
have to process the fragments sequentially, it is not possible to expose more
parallelism with respect to the first approach.

10.4 Experimental Results

We performed the measurement on a target machine with an Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz CPU and an Nvidia Tesla K40m GPU. The
operating system was CentOS 7.0, and we compiled the program using PGI
17.10. We compiled the baseline using GCC 5.4, with the avx flag to enable
vectorization on top of the O3 optimization level.

We analyzed the performance of the GPU kernel using nvprof [197], in
terms of execution time, occupancy, and multiprocessor activity. The GPU
occupancy is the number of used warps, in percentage. The multiprocessor
activity is the percentage of time when the streaming multiprocessors have
one or more warps issuable, i.e. not in a stalled state.

The input dataset for the experiments uses 23 different ligand and pocket
pairs, taken from PDB database [198]. In particular, we used the following
pockets: 1b9v, 1br6, 1c1b, 1ctr, 1cvu, 1cx2, 1d3h, 1ezq, 1fcx, 1fl3, 1fm6,
1fm9, 1fq5, 1gwx, 1hp0, 1hvy, 1lpz, 1mq6, 1oyt, 1pso, 1s19, 1uml and 1ydt.
For each pocket , we docked the relative co-crystallized ligand . We used
those molecules to have a correct estimation of the execution time of the
application.

10.4.1 Performance evaluation on the GPU

To optimize the application performance, we tried different mapping of
the computation on the GPU. OpenACC offers three levels of parallelism:
vector, worker, and gang. Vector level parallelism is the SIMT (Single
Instruction, Multiple Threads) level on GPU. Gang level is the outer-most
parallelism level, where all the elements are independent and the communi-
cation between gangs is forbidden. Worker is an intermediate level used to
organize the vectors inside a gang. We investigated how these levels of par-
allelism are mapped on Nvidia GPUs by the PGI compiler. The only related
information was found in the PGI development forum, where one of the de-
velopers mentioned that "worker is a group of vectors which conceptionally
maps to a CUDA warp. Our actual implementation maps a vector to threa-
dIdx.x and worker to threadIdx.y." This means that the vector and worker
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Figure 10.4: Execution time of the three ported kernels, cumulative and of a single call.

Source: [193]

levels are the dimensions of a CUDA block, while the number of gangs is
the CUDA grid. Therefore, we split the initial poses at gang level, since all
of them are independent. We set all the functions that change the position
of the atoms at vector level. The intermediate loops are set at worker level.
From the CUDA specification, it is known that the block maximum size is
1024 [199], which can be divided into three dimensions. However, only
2 dimensions are addressable with OpenACC. Using this information, we
performed a Design Space Exploration to tune the block size, taking into
account Nvidia’s recommended best practices. From experimental result,
the best size configuration for each function is:

• Rigid Rotations: 8 workers and 128 vector length.

• Optimize Pose: 64 workers with 1 as vector length.

In particular, Figure 10.4a reports the total execution time of the GPU
kernels. The total time is the sum of the execution time of a function across
all the different datasets. We can notice that on GPU the bottleneck shifted
from the Rigid Rotations to the Optimize Pose function.

Focusing on the execution time of single functions, we can notice from
Figure 10.4b that the Optimize Pose has the greatest variance. This result
is expected since this function depends on the number of fragments of each
ligand , and on how likely they overlap with each other. We can also notice
that the execution time for the Reductions is constant.

We also tried to let the compiler select the configuration. In this case,
the automatically selected configuration led to a decrease in performance.
For example, the compiler selected to organize Rigid Rotations in blocks of
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Figure 10.5: GPU utilization of the accelerated kernel, divided into the different functions,
and multiprocessor activity in the kernel.

Source: [193]

128 vectors, with no workers, and in 360 gangs, with all the intermediate
loop serialized. This configuration achieved a low occupancy (24%) and
4.5 times the execution time (67 seconds). The best solution we found in
terms of execution time for the Optimize Pose is to avoid vector parallelism,
due to control flow issues in the inner loop.

Even if the selected configuration is the best for the execution time, none
of these kernels was able to obtain full utilization of the GPU. It is possible
to see the result of this experiment in Figure 10.5a: We were able to reach an
almost full utilization only in the Reduction.The Rigid Rotations kernel was
able to reach a 50% utilization. The Pose Optimization has low utilization,
due to the inherent control flow, i.e. the sequential optimization of the
fragments.However, as reported in Figure 10.5b, we can notice that all the
involved processors, in all the considered functions, are heavily loaded: the
lowest result is indeed 90%.

Finally, we analyze the cost of data transfer. From Figure 10.6 we
can notice that it can be considered negligible: the total amount of data
transferred, considering all the 23 different dataset execution, is less than
100MB as can be seen from the left y-axis. The total elapsed time in data
transfers is around 15ms, across all the executions, and it can be seen on
the right y-axis.

10.4.2 Performance comparison with baseline

Figure 10.7 shows the execution time of the original kernel on the CPU. As
previously mentioned, the most expensive function is Rigid Rotation that
takes 206 seconds. We can notice that for this kernel the GPU version has
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Metric Original OpenACC Version
Execution Time 298s 831s

Number of Intructions 2,849,354,869,375 6,309,979,483,835
Cache Misses 380,672 783,114,693

IPC 3 2.4

Table 10.1: Comparison of the original application and the execution of the OpenACC ap-
plication on the CPU: OpenACC version shows worse performance overall due mostly
to data management, as the huge increase in cache misses shows.

a speedup of 16x (from 206s to 12s). On the other side, the Optimize Pose
has only a 2x speedup (from 80 to 34), even if in the GPU version we are
performing all the initial poses in parallel. This behavior is expected since
we can exploit more parallelism in the Rigid Rotation function, while the
sequential nature of Optimize Pose hinders the GPU performance.

If we observe the single function execution times for the CPU in Fig-
ure 10.7b, we can notice that even on CPU, the Optimize Pose has the
largest variance.

10.4.3 Performance evaluation on the CPU

One of the reasons for choosing OpenACC over a CUDA implementation
was to have a single source code for different architectures. Given the
changes in the application that we made to optimize the performance on
the GPU, this experiment aims at evaluating the performance of the new
application on the CPU. From the execution time perspective, we noticed
almost a 3x slowdown. To investigate the reasons behind this behavior, we
used linux perf to analyze the performance counters. The results of the
experiment are reported in Table 10.1.

Even if the IPC is slightly lower, the cache misses are 3 orders of mag-
nitude higher. Moreover, the number of instructions is more than doubled.
As expected, the replicated initial poses of the ligand and the inserted code
to perform the reductions deteriorates the performance on the CPU. If the
GPU programming paradigm requires independent data, to leverage the ar-
chitecture parallelism, CPU architectures benefit from data locality. More-
over, on GPU the best practice is to perform the same operation on different
data, while on CPU it is better to perform different operations on the same
data.
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10.5 Summary

In the drug discovery process, the virtual screening of a large chemical
library is a crucial task. The benefits of an improvement in the time spent on
evaluating the interaction from a ligand and the target pocket , are twofold.
On one side it reduces the monetary cost of the process, on the other side
it enables the end-user to increase the number of the evaluated ligands ,
increasing the probability of finding a better solution.

In this chapter, we focued on a newer version of GeoDock, again op-
timized only for the CPU, and we performed a porting of the most com-
pute intensive kernel to the GPU using the OpenACC directive language.
We performed an experimental campaign to evaluate the performance of
the application in terms of execution time, occupancy, and multiprocessor
activity. We also evaluated the OpenACC paradigm as "write once run ev-
erywhere", and noticed that the application has to be changed to obtain
performances on different architectures.

We believe that it is possible to further improve the obtained results
with a different approach. In the following chapter, we reorganized the
application structure to exploit asynchronous queues and offload only the
sections with heavy parallelism (i.e. the Rigid Rotation kernel), while using
the CPU for the control flow bound sections (i.e. the Optimize Pose kernel).

The outcome of this work has been published in the 6th international
workshop on Parallelism in Bioinformatics 2018 [193].
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CHAPTER11
Optimizing GeoDock Throughput in

Heterogeneous Platforms

In this chapter, we further optimize the geometric docking application to
take full advantage of the whole heterogeneous platform. In particular, in
the previous chapter, we have seen that simply porting the kernel to the
GPU gives an improvement in performances, however, it has drawbacks.
The most obvious one is that it leaves the CPU idle. Moreover, even if we
consider using the CPU to run the same kernels in parallel, distributing the
dataset between the two compute units, we noticed that different sections
of the application are more suitable for the different architectures.

With this chapter we investigate a different way to divide the compu-
tation across the available computing resources, trying to bind the compu-
tation to the most suitable architecture. From the implementation point of
view, we used OpenMP on top of the OpenACC implementation to organize
the computation.

We show with an experimental campaign that this approach is able to
fully exploit the underlying node and obtain a better throughput up to 25%
just with a re-organization of the computation without changing the com-
putational resources available on the node.
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11.1 Introduction

As we already mentioned, power consumption is becoming a key factor in
the HPC context. For this reason, accelerators have begun to be used along-
side the traditional CPUs in this context. Among them, the most commonly
used accelerators are GPGPUs. Indeed, most of the top positions in both
the Top500 and Green500 are occupied by heterogeneous platforms that
exploit the GPGPU as an accelerator. Depending on the application al-
gorithm, hardware accelerators might significantly improve the application
throughput with respect to general purposes CPUs, considering the same
power consumption.

However, to create a heterogeneous application the programmer must
consider the characteristics of the application and of the available compute
units. In the previous chapter (Chapter 10) we investigated the benefits and
limitations of using the OpenACC [192] language extension in a molec-
ular docking application, to accelerate the computation done in the most
compute-intensive kernels of GeoDock. In this chapter, we implement a
hybrid version by using OpenMP [200] and OpenACC to leverage opti-
mally all the processing elements on a heterogeneous node. In particular,
given the limitation analyzed in the previous chapter, we aim at mapping
each phase of the application on the most suitable processing element. To
summarize, the contributions of this chapter are the following:

• We propose a Hybrid CPU/GPU version of the geometric docking al-
gorithm capable to fully exploit the node heterogeneity;

• We analyze the resource utilization of the different solutions to find
the best configuration also in presence of multi-GPU nodes, searching
for the best balance.

• We discuss the obtained results, comparing them with the sequential
CPU application, the GPU implementation of the previous chapter and
the traditional data-splitting across the different compute units of the
dataset

In the context of the global framework, this chapter is focused on opti-
mizing heterogeneity in the application, and not on the self-tuning at run-
time. Indeed, as we can notice in Figure 11.1, the involved components are
the same as the previous chapter: the enriched code with the GPU kernel,
without any runtime autotuning functionality inserted in. Nonetheless, this
work is still in the context of the global framework, because it is focused on
tuning the application. The performed tuning in this case is not automatical
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Figure 11.1: Highlight of thesis approach targeted in this chapter.

but manual and involves a re-writing of the source code to re-organize the
parallelism and the exploitation of the GPU. The tuning performed in this
chapter is interesting because introduces the concept of optimality of a ker-
nel with the underlying architecture, and the idea of selecting the running
place of the different pieces of the application according to their character-
istics.

11.2 Background

In this chapter, we leverage directive-based languages, like OpenACC [192]
and OpenMP [200] to improve the original application and manage the par-
allelism of the heterogeneous node. In these languages, the application de-
veloper uses compiler directives to annotate the source code. The toolchain
transforms and compiles the offloaded kernels, and generates the code to
transfer the data between host and device. Moreover, it automatically gen-
erates the initialization code. The benefit of this approach is the ease of
use. The programmer writes the entire application with a single language
independently from the actual target, i.e. CPU host or the accelerator. With
this approach, a single source code can be executed on different hardware,
thus enabling functional portability. However, the application developer is
still in charge of writing an algorithm suitable for the device memory model
and parallelization scheme. Despite the multi-platform approach of those
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languages, the kernels must be tuned according to the target platform, since
performance portability is still an open problem [201]. Indeed, one of the
conclusions of the previous chapter is that the code modified and optimized
for the GPU was not efficient when compiled and run on the CPU as the
original code.

To improve computation efficiency, we aim at optimizing the exploita-
tion of all the computational resources available in an HPC node, while
continuing to use MPI for inter-node communication. In modern systems,
the HPC node typically includes several CPUs and GPUs. The multi-GPU
problem has been investigated in literature. For example, the approaches
proposed in [202, 203] suggest extending OpenMP to support multiple ac-
celerators seamlessly. OpenACC has runtime functions to support the uti-
lization of multiple GPU, however, lacks GPU to GPU data transfer, in
single node [204] and multinode [205]. A previous work in literature [206]
investigates a hybrid approach with OpenMP and OpenACC. It proposes
the usage of OpenMP to support a multi-GPU OpenACC application, as-
signing each GPU to an OpenMP thread. In this context, each OpenMP
thread performs the data transfer between the host and the target device,
without performing any other computation.

In this chapter, we extend the previous one by suggesting a new ap-
proach that offloads to the GPU the most compute-intensive kernels, us-
ing a hybrid approach of OpenMP and OpenACC. In this way, we exploit
multi-GPU nodes offloading to accelerators only the kernels that maximize
the advantage of being run on the GPU, while keeping the utilization of this
resource as high as possible. Unlikely previous approaches, we rely on the
CPU to execute the kernels that are less suitable for the GPU. Moreover,
to maximize the utilization of the resources, every OpenMP thread has a
GPU associated. In this way, the computing thread has access to both the
CPU and the GPU. Thanks to this, we can split the workload across the
compute units, associating the kernels to the compute units according to
the characteristics of the function to evaluate and of the compute unit itself.

11.3 The Proposed Approach

In this section, we describe the proposed approach to accelerate GeoDock
using GPUs. First, we quickly recap in Section 11.3.1 the work done in
the previous chapter where we accelerated the whole algorithm with GPUs,
relying on OpenACC. Then, we describe in Section 11.3.2 the analysis that
leads us to implement the hybrid OpenMP/OpenACC solution. As we have
already explained, the idea is to allocate the workload on the heterogeneous
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Figure 11.2: Overview of the GPU implementation of the docking algorithm. Each box
represents a computational part of the application that might be executed indepen-
dently. The optimization phase must evaluate each fragment sequentially and the whole
procedure might be repeated to refine the final result.

Source: [207]

resources according to different hardware capabilities, to improve the over-
all performance of the application.

11.3.1 OpenACC Implementation

In Chapter 10 we developed a pure GPU version of the algorithm, where
both the main kernels (alignment and pose optimization) are offloaded to
the GPU. In particular, starting from the profiling analysis, we implemented
a first version of the algorithm that aims at minimizing the data transfer
while maintaining the application structure.

Figure 11.2 shows a graphical representation of the algorithm described
in the previous chapter, highlighting independent sections of the algorithm,
by using different boxes. We might consider each restart of the docking
algorithm as a different initial pose. Given that every initial pose might
proceed independently, we have the first level of parallelism to map on the
GPU. Given an input ligand, it is possible to generate and dock the ligand
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Listing 11.1: Pseudo-code of the GPU algorithm.
1 l o a d ( p o c k e t ) ;
2 f o r ( l i g a n d : l i g a n d s )
3 {
4 l i g a n d _ t l i g a n d _ a r r [N ] ;
5 # pragma acc p a r a l l e l l oop
6 f o r ( p o s e _ i d = 0 ; p o s e _ i d < N, p o s e _ i d ++) {
7 l i g a n d _ a r r [ p o s e _ i d ] = l i g a n d ;
8 }
9 # pragma acc p a r a l l e l l oop gang

10 f o r ( p o s e _ i d = 0 ; p o s e _ i d < N, p o s e _ i d ++) {
11 g e n e r a t e _ s t a r t i n g _ p o s e ( l i g a n d _ a r r [ p o s e _ i d ] ) ;
12 # pragma acc worker
13 a l i g n _ l i g a n d ( l i g a n d _ a r r [ p o s e _ i d ] , p o c k e t ) ;
14 # pragma acc loop seq
15 f o r ( r e p = 0 ; r e p < n u m _ r e p e t i t i o n s ; r e p ++) {
16 # pragma acc worker
17 o p t i m i z e _ p o s e ( l i g a n d _ a r r [ p o s e _ i d ] , p o c k e t ) ;
18 }
19 }
20 }

initial poses on the device side. All the phases of the docking algorithm are
performed in parallel, on different data, and we only extract the result at the
end of the algorithm. In this way, we transfer data only at the beginning and
at the end of the docking algorithm (i.e. once in the lifetime of the ligand).

From the implementation point of view, we use OpenACC to avoid
rewriting the application source code in a different language. OpenACC
can operate with data structures that are resident on the GPU and usable
across different kernels. The implementation details are reported in Chap-
ter 10.

Listing 11.1 describes the pseudocode of this GPU implementation. We
can notice the replication of the data before the docking procedure, needed
to increase the exposed parallelism. The original ligand is copied according
to the number N of multiple restarts of the algorithm (lines 4–8). Once we
initialize the memory on both the device and the host side, we evaluate each
starting pose in the parallel region (lines 9–19) offloaded to the GPU. It is
possible to notice how in the pseudocode there are no pragmas for transfer-
ring data between host and device. All the data transfers are managed with
constructors and destructors of the data structures, according to the Ope-
nACC standard. To leverage all the levels of parallelism available in the
GPU, we inserted different levels of parallelism in the code as well. Ope-
nACC offers three levels of parallelism: vector, worker, and gang. Vector
level parallelism is the SIMT (Single Instruction, Multiple Threads) level
on GPU. Gang level is the outer-most parallelism level, where all the ele-
ments are independent and the communication between gangs is forbidden.
Worker is an intermediate level used to organize the vectors inside a gang.
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In particular, the vector and worker levels are the dimensions of a CUDA
block, while the number of gangs is the CUDA grid. Therefore, we split
the initial poses at gang level, since all of them are independent (line 9–10).
We set all the internal functions (not shown in Listing 11.1) that change
the position of the atoms at vector level. The intermediate functions (i.e.
align_ligand and optimize_pose) are set at worker level (lines
12–13 and 16–17). The pose optimization loop (lines 15–18) is marked
with a loop seq pragma. This is mandatory to force the compiler to
execute that loop sequentially.

To evaluate the performance of this GPU version, we profiled the appli-
cation and compared the results with the CPU baseline. In the alignment
phase, we obtained a good speedup (16x). We noticed that the pose opti-
mization was less suitable for GPU acceleration since too few operations
per kernel were possible. Indeed, the sequentiality of the fragments and
the control flow operations, inserted by the correctness checks, limit the
reached speedup over the baseline CPU version. The final speedup for this
kernel was only 2x. Moreover, the profiling results show how the bottle-
neck of the application is changed. With the GPU version, approximately
70% of the time is spent in the Optimize Pose kernel, while the Alignment
takes less than 30%. This is a different result with respect to the profiling
done on the baseline application on CPU.

More in-depth analyses of this are described in Chapter 10.

11.3.2 Hybrid OpenMP/OpenACC Implementation

The GeoDock application implemented in GPU, and described in the pre-
vious section, has two main limits. On one hand, it is not able to use the
available CPU cores to perform the computation. On the other hand, not
all the phases of the application can fully exploit the architectural features
of the GPU. As a consequence, the application is wasting or misusing a
large fraction of the node computation capabilities. Given that our target
is to optimize the performance of GeoDock on the full node, this section
investigates the possibility to split the workload between CPU and GPU.

Starting from the profiling information of the GPU implementation, in-
stead of simply partitioning the data among CPU processes and GPU pro-
cesses, we modified the algorithm to bring the pose optimization phase back
to the CPU. In particular, we would like to exploit the multicore architec-
ture, enabling each CPU thread to evaluate one ligand, and offloading only
the alignment kernel to the GPU. The basic idea, depicted in Figure 11.3, is
to exploit the GPU for the kernel that benefits most of the massive-parallel
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Figure 11.3: Overview of the hybrid OpenMP/OpenACC implementation of the docking
algorithm. The alignment phase of the ligand is offloaded to GPU, while the optimiza-
tion phase is performed in the CPU. Each OpenMP thread interacts with a single GPU.
The arrows identify data transfer between host and device.

Source: [207]
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Listing 11.2: Pseudo-code of the hybrid algorithm.
1 l o a d ( p o c k e t ) ;
2 # pragma omp p a r a l l e l
3 f o r ( l i g a n d : l i g a n d s )
4 {
5 # pragma omp s i n g l e n ow a i t
6 # pragma omp t a s k
7 {
8 l i g a n d _ t l i g a n d _ a r r [N ] ;
9 # pragma omp c r i t i c a l

10 # pragma acc d a t a
11 {
12 # pragma acc p a r a l l e l l oop
13 f o r ( p o s e _ i d = 0 ; p o s e _ i d < N, p o s e _ i d ++) {
14 l i g a n d _ a r r [ p o s e _ i d ] = l i g a n d ;
15 }
16 # pragma acc p a r a l l e l l oop gang
17 f o r ( p o s e _ i d = 0 ; p o s e _ i d < N, p o s e _ i d ++) {
18 g e n e r a t e _ s t a r t i n g _ p o s e ( l i g a n d _ a r r [ p o s e _ i d ] ) ;
19 # pragma acc worker
20 a l i g n _ l i g a n d ( l i g a n d _ a r r [ p o s e _ i d ] , p o c k e t ) ;
21 }
22 }
23 f o r ( p o s e _ i d = 0 ; p o s e _ i d < N, p o s e _ i d ++) {
24 f o r ( r e p = 0 ; r e p < n u m _ r e p e t i t i o n s ; r e p ++) {
25 o p t i m i z e _ p o s e ( l i g a n d _ a r r [ p o s e _ i d ] , p o c k e t ) ;
26 }
27 }
28 }
29 }

architecture while mapping the other kernels to the CPU. Each CPU thread
takes care of a different ligand, avoiding data movement among threads,
therefore maximizing also the parallelism determined by the ligand library.
The only data movements are between CPUs and GPUs.

In this GeoDock implementation, we use OpenACC for the GPU kernel
programming, while we exploit OpenMP for the CPU-level parallelism.
Listing 11.2 shows the pseudocode of the algorithm. The outermost loop
that iterates over the ligand library is parallelized using an OpenMP par-
allel region (line 2), where for every different ligand we create a single
nowait task (lines 5–6). Task is a construct that was introduced in OpenMP
3 and it is used to describe parallel jobs leaving the organization of the par-
allelism to the scheduler. They are particularly effective for parallelizing
irregular algorithms. The single keyword specify that an OpenMP re-
gion (in this case the task) executes a single instance of the related region.
It is required to enforce that each task is in charge of an iteration of the
outermost loop. The nowait keyword is used to skip the implicit barrier
at the end of the single region. In this way, the thread does not wait for the
completion of the task but can execute the next iteration of the loop.

The execution time spent for docking a ligand depends on several fac-
tors, such as the number of atoms, the number of fragments, and geometri-
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cal properties of both the target pocket and ligand. Since these factors might
drastically change between ligands of the same library, we might consider
our docking algorithm as an irregular application. Therefore, the proposed
implementation leverages the tasks construct to create a task for every lig-
and to be docked. As soon as an OpenMP thread becomes free, a pending
task is assigned to it, until there is a task waiting to be executed. Moreover,
we use the tied task implementation to limit migration, restraining a task to
be executed on the same thread that generated it. Moreover, we bind each
OpenMP thread to a physical core, by using the OpenMP environment vari-
able OMP_PLACES=cores. In this way, we can associate a ligand to one
physical core, avoiding the extra movement of the data.

Beside the Task construct, we tried to exploit other OpenMP strategies
to make the application parallel. In particular, we evaluated the taskloop
keyword, which is a construct used to create one task for each iteration of
a loop, and the traditional parallel for. The first construct is not supported
by PGI 17.10, so we were not able to exploit it. The parallel for has em-
pirically shown slightly worse throughput in the considered case. We also
tried all the OpenMP scheduling algorithms (static, dynamic, and guided)
and none of them was able to improve the performance obtained with the
task construct.

The GPU kernel is implemented inside an OpenMP critical region
(line 9) to avoid race conditions. We also considered using OpenACC fea-
tures, such as asynchronous queues, however, they performed worse than
this implementation. We exploit the implicit barrier at the end of the par-
allel region to enforce thread synchronization at the end of the library of
ligands to be docked.

The GeoDock algorithm implementation is similar to the one described
in Section 11.3.1. In particular, the data replication (lines 12–15) and the
alignment phase (lines 16–21) are almost the same. The only difference is
in the data structure implementation, due to the limited support of C++ stan-
dard libraries from OpenACC. For this reason, we manually managed data
copies before and after the critical section used to offload the alignment to
the GPU. These changes are omitted in the application pseudocode. How-
ever, we encountered a key issue in the memory management of the hybrid
solution. In the GPU version, we used CUDA unified memory to reduce
the impact of data organization on the application developer. This feature
enables addresses accessible from different types of architectures (normal
CPU and CUDA GPU cores) hiding the complexity of the management
from the programmer. If we use this implementation, the Unified Memory
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Listing 11.3: Pseudo-code of the hybrid multi-GPU algorithm.
1 l o a d ( p o c k e t ) ;
2 omp_lock_t l o c k _ a r r a y [N_GPUS ] ;
3 # pragma omp p a r a l l e l
4 f o r ( l i g a n d : l i g a n d s )
5 {
6 # pragma omp s i n g l e n ow a i t
7 # pragma omp t a s k
8 {
9 l i g a n d _ t l i g a n d _ a r r [N ] ;

10 omp_se t_ lock ( l o c k _ a r r a y [ t i d%N_GPUS ] ) ;
11 # pragma acc s e t device_num ( t i d%N_GPUS)
12 # pragma acc d a t a
13 {
14 # pragma acc p a r a l l e l l oop
15 f o r ( p o s e _ i d = 0 ; p o s e _ i d < N, p o s e _ i d ++) {
16 l i g a n d _ a r r [ p o s e _ i d ] = l i g a n d ;
17 }
18 # pragma acc p a r a l l e l l oop gang
19 f o r ( p o s e _ i d = 0 ; p o s e _ i d < N, p o s e _ i d ++) {
20 g e n e r a t e _ s t a r t i n g _ p o s e ( l i g a n d _ a r r [ p o s e _ i d ] ) ;
21 a l i g n _ l i g a n d ( l i g a n d _ a r r [ p o s e _ i d ] , p o c k e t ) ;
22 }
23 }
24 omp_unse t_ lock ( l o c k _ a r r a y [ t i d%N_GPUS ] ) ;
25 f o r ( p o s e _ i d = 0 ; p o s e _ i d < N, p o s e _ i d ++) {
26 f o r ( r e p = 0 ; r e p < n u m _ r e p e t i t i o n s ; r e p ++) {
27 o p t i m i z e _ p o s e ( l i g a n d _ a r r [ p o s e _ i d ] , p o c k e t ) ;
28 }
29 }
30 }
31 }

support for the Kepler architecture fails to properly allocate memory1. To
solve this issue, we manually manage the memory allocation and transfers,
by using OpenACC pragmas. For this reason, we created a data region
around the offloaded kernels (line 10). The pose optimization kernel is no
more decorated with pragmas (lines 23–26) because it is executed on the
CPU, therefore we need to iterate over the aligned poses (line 23).

Tuning considerations.

The hybrid approach requires careful tuning to efficiently exploit the com-
puting resources of the heterogeneous node. We can highlight two possible
problems: GPU idle time and CPU thread waiting time. In the first case,
the CPU threads are not able to provide enough data to fully exploit the
GPU, leading to resource underutilization. It is possible to notice this ef-
fect in Figure 11.3 on the GPU side. After the execution of the alignment
phase of the ligand L2, all the other CPU threads are still busy on the pose
optimization phase. Therefore, The GPU is in idle state until the alignment

1When we enable the multi-threading with OpenMP, the CUDA managed memory fails. The manager tries
to allocate the memory, from different threads, in the same area and returns a runtime error.
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Figure 11.4: Complete organization of the application.

Source: [207]

of the ligand L4 is offloaded. The second problem happens when there are
too many CPU threads and the GPU is overloaded. In this case, each CPU
thread can have a long waiting time before accessing the GPU to offload the
alignment kernel. In Figure 11.3 we can notice an example of this problem
at the beginning of the execution, where the ligand L2 and the ligand L3
are waiting for alignment of the ligand L1 to end. For these two reasons,
balancing the load between CPU and GPU is very important. In the exper-
imental results, we show how we tuned the number of threads to optimize
the full node performance.

Multi-GPU.

The considerations on the application tuning are even more important when
we address multi-GPU nodes. From the implementation point of view, to
distribute the workload across multiple devices, it is enough to provide
different values to the #pragma acc set device_num(...). We
used the thread number to decide on which GPU the thread will offload the
kernel.

Moreover, we substituted the original critical section with an OpenMP
mutex. This gave us the possibility to exploit the parallelism in the kernel
offloading having one kernel in each GPU. The algorithm is reported in
Listing 11.3. In particular, we set the device using the related OpenACC
pragma (line 11), after locking the mutex (line 10). In this way, a set of
threads is associated with a single GPU. As already mentioned, tasks are
associated with a thread only when they start executing, and not at their
creation. This characteristic of tasks manages the load balancing.
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Multi-Node.

GeoDock has been designed to run on large HPC machines, exploiting MPI
for inter-node communication. The complete application organization is
reported in Figure 11.4. OpenMP and OpenACC are used to manage CPU
and GPU parallelism within the node as described in previous sections.
MPI is used to handle data parallelism across the different nodes. We em-
ploy a pure Master-Slave paradigm, where the master process dispatches
groups of ligands to the slave processes. However, the focus of this work
is intra-node optimization, since the advantages obtained on a single node
are replicated in all the involved nodes. For this reason, we will run and
analyze all the experiments on a single node, neglecting the MPI overheads
due to the communication with the master process.

11.4 Experimental Results

We performed the experimental campaign using a single GPU node of the
GALILEO2 machine at CINECA2. The target node is equipped with a 2x8-
core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz CPU and two NVIDIA
Tesla K80 GPU cards. The operating system was CentOS 7.0, and we
compiled the program using PGI Compiler 17.10 enabling the fastsse flag
to activate the vectorization on top of the O3 optimization level.

The data shown in this section are the results of several runs using dif-
ferent sets of ligands and a single target pocket to keep into consideration
possible performance variability. The evaluation has been done consider-
ing a large set of ligands. The ligands complexity was different in terms
of number of atoms and fragments. In particular, the number of atoms per
ligand across the whole set is on average 39.6 with a standard deviation of
6.7. The maximum number of atoms is 73, and the minimum is 28. The
average number of fragments is 13.3 with a standard deviation of 4.3. The
maximum number of fragments is 34 while the minimum is 6.

Given that the application performance is dependent on the ligand com-
plexity, our first experiment wants to define a reasonable number of ligands
that is large enough to absorb those differences. Figure 11.5 shows the
convergence analysis done by increasing the size of the set of ligands used
for the experiment. In particular, we performed several runs with a differ-
ent number (and different set) of ligands, and we measure the application
throughput reporting the average and the standard deviation. We can see
that all three different versions of the code can be considered stable with

2http://www.hpc.cineca.it/hardware/galileo-0
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Figure 11.5: Analysis of the stability of the time required to dock a ligand.

Source: [207]

few ligands to dock (>500). In all the next experiments we used 1500
ligands, to further absorb the possible performance variance. This set of
ligands can be seen as a workload of a slave MPI process running on a
single node in the context of a larger master-slave MPI application.

To easily and fairly compare the different implementations we presented,
we need to define the terminology that we use in the following sections. We
use the term CPU process CPUproc when we refer to an MPI process ex-
ecuting the baseline CPU version of the docking algorithm, described in
Chapter 10. We use the term GPU process GPUproc when we refer to
an MPI process executing the OpenACC version presented in Chapter 10
and recalled in Section 11.3.1, which uses one CPU thread and one GPU.
Finally, we use the term hybrid process HY proc

#ompTh,#GPUs when we refer
to an MPI process executing the OpenMP/OpenACC version described in
Section 11.3.2. In particular, #ompTh is the number of OpenMP threads,
while #GPUs is the number of used GPUs. The required balancing among
the threads is needed to optimally use the underlying resources. How-
ever, there is no need to divide the amount of data a-priori, since the MPI
master will dispatch the ligands upon request of the slave process, thus
avoiding unbalances among the processes. For this reason in the following
analysis we will only consider how to divide the available resources into
CPUproc,GPUproc and HY proc

#ompTh,#GPUs.

11.4.1 Single GPU

This section analyzes the performance of the proposed hybrid implementa-
tion of GeoDock, focusing on a single GPU case, to compare with previous
implementations. The first experiment aims at defining a baseline through-
put, in terms of ligands per second, using the reference dataset. Figure 11.6
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Figure 11.6: Throughput of the GeoDock application considering a single GPU, by vary-
ing its configuration.

Source: [207]

shows the throughput computed with different configurations of GeoDock
implementations: (i) by using all the CPUs (16×CPUproc); (ii) by using the
GPU (1×GPUproc); (iii) by using the GPU and the remaining CPU cores
(15× CPUproc + 1×GPUproc). The number of CPUproc and the sum of
CPUproc andGPUproc has been kept equal to the number of cores available
in the node because having more OpenMP threads than CPU cores does not
increase the performance. The results show how a single GPUproc has a
speedup of 1.1x with respect to the original application that exploits all the
CPUs of the node (16×CPUproc). Therefore, if consider the configuration
that uses the GPU and the CPU cores (15 × CPUproc + 1 × GPUproc),
we can achieve a speed-up of 2x. We use this third configuration as the
baseline for comparing the proposed hybrid approach.

The second experiment aims at analyzing the performance of the hy-
brid solution, by varying the number of OpenMP threads from 1 to 16.
Figure 11.7 shows the experimental results. In particular, the x-axis repre-
sents the number of the OpenMP threads used in the evaluated configuration
(HY proc

n,1 , with n={1,...,16}). The y-axis represents the reached throughput.
The solid line represents the throughput reached only by the HY proc

x,1 , while
the dashed line represents the throughput when it is combined with a num-
ber of CPU processes sufficient to fill the node, i.e. HY proc

n,1 + (16 − n) ×
CPUproc.

The results can be split into two different regions. On the left side of
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Figure 11.7: Scaling analysis of the hybrid approach in terms of throughput, by changing
the number of OpenMP threads. Baseline represents the 15×CPUproc+1×GPUproc

application.

Source: [207]

the figure, we can see that by increasing the number of OpenMP threads up
to 7 the performance of HY proc

n,1 almost linearly increases. This is mainly
due to the increment of GPU usage. Few CPU threads are not able to fully
exploit the GPU. On the other hand, starting from 7 OpenMP threads the
Hyprocn,1 performance reaches a saturation point since the GPU starts to be
the bottleneck. Indeed, at 7 OpenMP threads, the GPU is already fully used,
and with more CPU threads feeding it does not increment the throughput.
Similarly, the performance of HY proc

n,1 + (16 − n) × CPUproc reaches the
maximum throughput when the saturation for the hybrid version happens
(i.e. HY proc

7,1 + 9 × CPUproc). After this configuration, the performance
of HY proc

n,1 + (16− n)× CPUproc reduces while increasing the number of
the OpenMP threads for the hybrid version. If we use more CPU threads
for the hybrid version, we are reducing the number of the CPU process we
can exploit and thus their cumulative throughput contribution. The result
for the optimal configuration reports a speedup of 1.16x with respect to the
15×CPUproc+1×GPUproc configuration, which was set as our baseline.

11.4.2 Multi-GPUs

This experiment analyses the performance of the hybrid approach accord-
ing to the number of available GPUs in the target node. The analysis is
done by considering up to 4 GPUs which is the limit of our node (each
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K80 card includes 2 GPUs). This analysis does not aim at showing which
is the optimal amount of resource to use in the node to obtain the maxi-
mum throughput. Its objective is to show how to organize the resources to
maximize the throughput. So it should not be surprising that using all the
4 available GPUs will provide the best overall throughput. The analysis
carried on using only 2 or 3 GPUs are interesting since they allows us to
validate the proposed methodology.

Figure 11.8 shows the application throughput of the hybrid process while
varying the number of OpenMP threads (x-axis) and the number of GPUs.
In particular, solid lines represent GeoDock configurations that uses only
hybrid processes (HY proc

n,k , with n={4, ..., 16} and k={2, 3, 4}). While
dashed lines represent the full node behaviour, where it uses CPUproc for
the unused cores, i.e. the HY proc

n,k + (16− n)× CPUproc configuration.
If we focus on GeoDock configurations that use only the hybrid ap-

proach with a node composed of two GPUs, experimental results show how
the application has an almost linear growth up to 8 cores (from 2.5 ligands
per second to 4.5 ligands per second). Then, the throughput gain slows
down and it is almost negligible if we increase the number of OpenMP
threads from 12 to 16 (the throughput ends at 5.8 ligands per second). On
the other hand, if we focus on GeoDock configurations that use 3 and 4
GPUs, we have a steady growth in the application throughput over the en-
tire range of OpenMP threads. We might conclude that with the number of

171



Chapter 11. Optimizing GeoDock Throughput in Heterogeneous Platforms

 5

 6

 7

 8

 9

 12  16  20  24  28  32T
h
ro

u
g

h
p

u
t 

[L
ig

a
n
d

s/
se

c]

#OpenMP Threads in Hybrid

2 GPU 3 GPU 4 GPU

(a) Throughput

 70

 75

 80

 85

 90

 95

 100

 12  16  20  24  28  32

U
ti

liz
a
ti

o
n
 (

%
)

#OpenMP Threads in Hybrid

2 GPU 3 GPU 4 GPU

(b) GPU Utilization

Figure 11.9: Analysis of the application when using more OpenMP threads than CPU
availables.
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OpenMP threads we considered, the GPUs are under-utilized. In particular,
the GeoDock configurations that use 3 GPUs are slowing down a bit only
in the last part of the plot, while in the GeoDock configurations that use 4
GPUs the throughput grows almost linearly.

The dashed lines represent the usage of CPUproc for the spare cores.
The results show a similar trend. The main difference lies in the first part
of the plot, where there are few OpenMP threads employed in the hybrid
approach. The maximum throughput for the full node is the maximum point
of these lines. We can notice from the picture that, according to the number
of GPUs, the highest point of the functions is reached by the following
configurations: HY proc

14,2 + 2× CPUproc, HY proc
16,3 , and HY proc

16,4 .
To improve the GPU utilization when we have access to three and four

GPUs, we empirically evaluate the benefits of using more OpenMP threads
than available cores. Figure 11.9 depicts the application throughput (Fig-
ure 11.9a) and GPU utilization (Figure 11.9b) of the multi-GPU hybrid
approach. In this experiment, we evaluated a number of OpenMP threads
between 12 (less than the number of cores) and 32 (two times the num-
ber of cores). When we have access to two GPUs, the application reaches
the peak throughput by using 16 OpenMP threads, which is equal to the
number of available cores. This is an expected result since the application
completely utilizes the GPUs without overloading the system with OpenMP
threads. However, when we have access to more than two GPUs, the appli-
cation reaches the peak throughput by using a number of OpenMP threads
greater than the available cores. This benefit is due to the increased utiliza-
tion of GPUs. Indeed, the operating system can serve an available worker
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while a second thread waits for the completion of the kernel on the GPU.
In particular, with three GPUs the best configuration is HY proc

24,4 , while with
four GPUs the best configuration is HY proc

28,4 . If we increase the number of
OpenMP threads above such configurations, the context switch overhead
hinders the application performance.

To conclude our performance analysis, Figure 11.10 shows the compar-
ison of the best configurations exploiting the full heterogeneous node. As
baseline we used k × GPUproc + (16 − k) × CPUproc (where k is the
number of available GPUs) and as proposed we select the best configura-
tion obtained with the hybrid approach according to the previous analyses.
In all cases, by varying the number of available GPUs, the configurations
including the hybrid version have a higher throughput. This is due to the
best exploitation of the GPUs only for the kernels where there is a higher
speedup. In particular, the performance improvement in the case of 1, 2,
3, and 4 GPUs is respectively 15%, 25%, 20%, and 6%. As mentioned
before, in the case of 4 GPUs the performance speedup against the baseline
is lower because the 16 cores are not enough to fully exploit all the GPUs.
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11.5 Summary

Working with heterogeneous platforms introduces more complexity when
writing applications since the programmer needs to consider the creation
of kernels for the accelerators and how to distribute the computations that
have to be performed across the different hardware. This is even more
complex since the different hardware have different characteristics, and the
developer needs to consider those characteristics when designing the appli-
cations and selecting which kernel will run where.

In this chapter, we have seen how it is possible to further optimize the
GeoDock application that we have seen in the previous chapter. In partic-
ular, we have seen how, thanks to an improved organization of the compu-
tation and on the selection of the more suitable platform for the different
kernel, we were able to improve the throughput of GeoDock (up to 25%)
without changing the underlying architecture.

The outcome of this work has been published in the Journal of Super-
computing [207].
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CHAPTER12
Improving GeoDock GPU efficiency with

Cuda and Dynamic Kernel Tuning

With the rise of the COVID19 pandemic, the GeoDock application (de-
scribed in Section 8) needed to be further optimized to be usable in the
search for a drug to find a therapeutic cure against the virus. In this chap-
ter we will show a porting of GeoDock to a newer supercomputer, with a
more powerful GPU component, and we will optimize the application with
CUDA in order to obtain the most from the powerful V100 GPGPU. This
lead to a drastic improvement in the performances (more than 3x). More-
over we introduce some data-driven autotuning in the application that allow
us to avoid some not needed computation, further improving the speedup
under certain circumstances.

The work described in this chapter has been carried out as part of the
Exscalate4COVID European project, and since GeoDock is a key compo-
nent in the EXSCALATE pipeline for drug discovery, it was fundamental
for the largest virtual screening ever performed (November 2020) [208].
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12.1 Introduction

The SARS-COV2 pandemic has created new challenges for the whole world,
which had to put a lot of effort into researching a way to contrast the spread
of the epidemy. In this context, we insert our effort spent in improving the
performance of GeoDock. The application is needed to perform a large vir-
tual screening campaign to find potential candidate drugs that can contrast
the virus. However, to manage such a large number of candidates (in the
order of billions) in a reasonable time we need to improve the capabilities
of the application itself. Moreover, knowing beforehand the target plat-
form capabilities (Marconi100 supercomputer from CINECA and HPC5
from ENI) allows us to make some decisions in the porting of the applica-
tion, that has been tailored for those machine architectures. In particular,
since both of them are heterogeneous machines, with the same GPU accel-
erator (the NVIDIA V100 GPGPU cards), we decided to rewrite the most
compute-intensive kernels from OpenACC to CUDA, to harness the full
power of the GPU.

From the autotuning point of view, we inserted in the main algorithm
some knowledge that makes it able to select at runtime the number of itera-
tion (and thus, the dimension of the CUDA grids). This mechanism exploits
some features of the data (and of the docking algorithm) to optimize, with-
out loss of precision, the execution time. For this reason, we classify it as
proactive autotuning.

Thus the contributions of this chapter are:

• An in-depth analysis of the porting from OpenACC to CUDA of the
important kernels of GeoDock.

• The introduction of the proactive autotuning in the application.

In the context of the global framework, this chapter provides a working
example of a heterogenous autotuning module.

The components of the framework that are involved in this chapter can
be seen in Figure 12.1. We can notice the GPU kernel presence since the
key point of this work is the automatic tunability of those kernels. We use
the data feature to select the kernel grid parameters, thus creating a real
dynamic application that will change its configuration according to its data
input.
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Figure 12.1: Highlight of thesis approach targeted in this chapter.

12.2 Background

CUDA (Compute Unified Device Architecture) is a programming model
that has been created by NVIDIA to program their GPU architectures. Its
language allows more fine-grained control over the GPU than other gen-
eral approaches like OpenACC or OpenCL. This allows the programmer to
obtain the maximum performance from these devices. Indeed, as several
works in the state of the art show [209, 210], the CUDA implementation is
always able to deliver the best speedup when using NVIDIA devices. This
is not surprising at all, since this language is designed to work only with
NVIDIA GPGPU.

In particular, this language gives access to the full control of the mem-
ory. Indeed, using OpenACC we were not able to fully control memory
allocation and utilization, with only the copy pragmas being available. As
stated in [209], OpenACC has some directive to work with cached mem-
ory. However, the programmer is not able to control them, since everything
is managed by the compiler. This is true also for other memory function-
alities, that are only used if the compiler decides that it is possible to use
them.

On the other hand, with CUDA we can access all the memory function-
alities. In particular, we are interested in textures, pinned memories, and
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shared memory. Another feature that becomes available is the warp level
primitives. This set of instructions, that have been made easy to use with
the introduction of cooperative groups in CUDA 9 [211], enables the co-
operation of different threads in the same warp or sub-warp. In particular,
they allow us to use the data resident in registers of different threads in the
same warp, thus enabling the exchange of data between the threads without
having to move data into memory.

Finally, from a preliminary version, we noticed that the CUDA perfor-
mances were higher than the OpenACC ones.

12.3 Porting to CUDA

In this section, we will describe with a top-down approach the reorgani-
zation of the code done while porting the application to CUDA. In the
first moment, we will see some general considerations and ideas that have
driven the whole porting. Then we will see in detail the porting of the main
kernels, and all the techniques adopted to optimize their execution time.
Finally, we will compare this solution with the previous one to show the
performance improvement.

12.3.1 General Considerations

Since more levels of parallelism are needed to fully exploit the GPU, to op-
timize the application we must aim at a SIMT (Single Instruction Multiple
Threads) approach, where different threads are executing the same opera-
tion on different inputs. This must be done since threads are the inner paral-
lelism level in the CUDA hierarchy. They are organized in blocks (of max
1024 threads), which are themselves organized in grids. A block is mapped
on a single streaming multiprocessor (SM), while the grid is distributed
across the SM on the GPU. This organization is visible in Figure 12.2

Figure 12.2: GPU Threads Layout

An important detail in organizing the code is the attention to warps: a
warp is a group of 32 threads, that are executed at the same time, running
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the same instruction on different data. This is the finest grain available: dif-
ferent threads inside a warp cannot execute different instructions. When-
ever that is needed, it creates the so-called "warp-divergence". Warp diver-
gence is a particular condition where some of the instructions executed by
the warp are needed by some threads only, while other threads need to do
other operations. This situation creates overhead: all the threads must ex-
ecute all the instructions and discard the unused ones. The most common
instructions that create warp divergence are the conditional instructions,
such as loops, if, and so on. This condition creates important slowdowns in
the execution of the code so must be avoided whenever possible.

Figure 12.3: Gpu Memory Layout

Another important feature of the GPU that must be considered is the
memory hierarchy, visible in Figure 12.3. It is really important that all the
data are close to where they are needed, however, GPUs have small cache
memory and a different organization with respect to the CPU. There are 3
different levels of memory on the board:

• Global Memory: the slowest and biggest memory available on the
accelerator. data must be moved here from the host memory.

• Shared Memory: a small scratchpad (max 96KB on the V100) shared
among the threads of a block, and accessible by all of them. It can be
used to synchronize threads.

• Register set: a private space for each thread where to store the vari-
ables. is the fastest (and smallest) memory. There are between 60
and 80 registers per thread available, and it is important to not over-
load them since register spilling is one of the most frequent slow-
down causes. Moreover heavy register pressure can limit the num-
ber of threads in a thread block (if not enough registers are available,
we need to limit the number of threads in a threadblock to "free" the
needed registers).
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On the application side, the main challenge is the reorganization of the
computation, to maximize the parallelism, while keeping the computation
balanced. We have already found three different levels of parallelism in
the application, as can be seen in Chapter 10 and Chapter 11. These par-
allelism levels allow us to target the multinode machine, and to distribute
the computation across different nodes with limited impact of communi-
cation on the performances. The outer level is the number of candidate
ligands to evaluate: since this number is in the order of billions, we can
consider this problem embarrassingly parallel. This allows us to distribute
the ligands across the different nodes and cores of the supercomputer, with
a very small communication overhead (we do not need to synchronize the
nodes during the runtime, but only at the beginning and at the end of the
computation). The intermediate level is due to the adopted docking algo-
rithm: multiple restarts where every restart has a different starting pose.
For this reason, all the poses are independent and can be evaluated in par-
allel. Indeed, besides the initial situation, even at this level all the data can
be considered independent and don’t need synchronization before the final
score evaluation phase, where the best-scored pose is selected. The inner
level of parallelism is given by the atoms: every ligand is composed of sev-
eral atoms that are moved according to some rotations and translation. This
is the SIMT approach that we are searching for since the same instruction
(rotate or translate) is applied to different data (the atoms). Moreover, we
need to give strong attention to memory organization. We aim at reducing
to the minimum the number of expensive operations (such as data trans-
fer, memory allocation, and deallocation). Meanwhile, we need to keep the
data as close as possible to the compute units.

To optimize the utilization of the GPU accelerators, they are shared
among different threads, asynchronously. Every ligand will be tied to a
thread, that is tied to an asynchronous queue and a reserved space in the
GPU memory. The reservation of the space at thread level instead of at
ligand level allows us to allocate and deallocate that memory only once in
the lifetime of the thread. This is a first optimization that allows saving
a lot of memory operations, since this memory space is not linked to the
docking of a single ligand, but is linked to the lifetime of the application.
The drawback of this approach is that we need to allocate the worst case
space, and this must be known at compile-time. This introduces a limitation
on the maximum size of the processed ligands. However, this is not a real
issue in the application since it can be changed at compile time. Moreover,
some data structures (such as the pocket space) can be shared among all the
threads that are using the same GPU: this can be done since they are read-
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only data structures, not modified in the docking process. The access to the
pocket does not follow a coalesced pattern but the access point is given by
the x,y,z coordinates of the atom and for this reason, has a random pattern.
Random accesses in memory are a costly operation in GPU since they dis-
able the coalesced access mechanism that allows providing data to all the
threads in a warp with a single read operation. However, there is a feature in
CUDA that allows improving the performance in these situations, which is
the texture cache. Texture caches allow organizing data in 2D or 3D spaces
and are optimized for semantical data locality. This means that accessing
points in the space that are close to the previous ones is usually faster since
they should already be cached. We expect that rotations and translation in
the 3D space will not place atoms "too far" across the different iterations.
For this reason, we use the texture cache to store the protein pocket values.

On the other hand, when multi-dimensional arrays are needed and they
have to be accessed from different thread-blocks, it is very important to
organize the data in a way that allows the reads to be coalesced. For this
reason, we extensively use CUDA pitched arrays in storing temporary val-
ues that are needed across kernels. Pitched arrays are an instrument pro-
vided by CUDA that inserts automatically padding at the end of every line
of multi-dimensional arrays, to optimize memory accesses. In particular, it
avoids bank-conflicts and allows coalesced accesses.

Finally, to reduce the data transfer between the GPU and the host all
the kernels involved in the docking process were ported to the GPU. From
the previous experience with OpenACC, we know that the most expensive
operation in CPU is the alignment kernel, while in the GPU it becomes
the pose optimization kernel, which occupies from 50 to 90% of the wall
time, according to the molecule characteristics (size, number of rotatable
bonds,...).

12.3.2 Kernels analysis and optimizations

Initial Poses The first kernel takes as input the original stretched position
of the ligand and generates all the restarts. It is a quite small kernel since
it has to perform few rotations to generate the different initial poses. For
this reason, each atom in every pose has its own thread. The number of
restarts is mapped across different thread blocks, as can be seen in Fig-
ure 12.4. Memory-wise, we can see from Figure 12.5 that we exploit the
shared memory to synchronize the position of the bond identifiers atoms,
while all the other atoms are stored in the registers. The only accesses to
the global memory are done to read the initial pose at the beginning of the

181



Chapter 12. Improving GeoDock GPU efficiency with Cuda and Dynamic
Kernel Tuning

computation and to store the result at the end of the kernel.

Figure 12.4: Initial pose, Parallelism Layout

Figure 12.5: Initial pose, Memory Layout

Move to Center This kernel is needed to move the center of mass of the
ligand towards the center of the space (the coordinates 0,0,0). The compu-
tation of this kernel is quite lightweight, however, it has a strong synchro-
nization point. This happens when we need to evaluate the central point of
the ligand, which requires evaluating the mean position of the atoms. For
this reason we organize the computation in warps (1 warp = 1 restart) as
can be seen in Figure 12.6. This allows us to use warp primitives to syn-
chronize, without having to wait for all the threads. Moreover, the warp
primitives allow the use of quick reduction operations and the broadcast of
the result. Since all of these operations are done on a single warp, there
is no stall introduced by this approach. The memory in this kernel is quite
straightforward, atom coordinates are read from the global memory, stored
in registers, and the output is written back at the end of the kernel. No
shared memory is needed, as shown in Figure 12.7.

Alignment This kernel used to be the bottleneck in the CPU version of the
application. However, it is a GPU-friendly algorithm, and we already know
from the OpenACC porting (Chapter 10) that it is going to be accelerated
significantly by using the GPU. This happens because the different rotations
can be fully parallelized and there are almost no control flow operations in

182



12.3. Porting to CUDA

Figure 12.6: Move to center, Parallelism Layout

Figure 12.7: Move to center, Memory Layout

the algorithm. Moreover, to maximize the distribution of the computations,
we divided the alignment phase into 3 different kernels:

1. Score evaluation and reduction to obtain the maximum score. The
reduction can manage a maximum of 1024 angles. The limit to the
number of angles is due to the fact that every thread evaluates an angle,
and the max number of threads per block is 1024.

2. If more than 1024 angles are being tested in a single pose, a reduction
kernel is in charge of selecting the best angle.

3. The final kernel is in charge of placing the molecule with the angle
that was showing the best score.

Using this organization, we can have different parallelism and a better bal-
ancing among the threads.

Evaluate Score This is the main kernel of the alignment phase, where
most of the computations are done. Since there are quite a lot of evaluations
to be performed, we map a full rotation on a single thread, that evaluates
the rotation matrix and applies it to all the atoms of the ligand. With this
organization up to 1024 angles can be evaluated in a thread block, as can
be seen in Figure 12.8. For this reason, it is possible that more than 1
thread block handles a restart. If this happens, we need kernel number 2
(the reduction kernel), otherwise, that kernel can be skipped.
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Figure 12.9 shows the memory organization of the kernel: we use the
shared memory to store the starting position of the atoms, in this way the
load can be distributed across the different threads, and they are close to
the compute units. They will be read-only data for the whole duration of
the kernel, so there is no concurrency issue in having them shared across
threads that are doing different operations. The rotation matrices are local
to each thread, so they are saved in the registers. The global memory is
used only at the beginning and at the end of the kernel.

Figure 12.8: Align Score Parallelism Layout

Figure 12.9: Align Score Memory Layout

Reduction This kernel performs a quick reduction between the remain-
ing scores: every thread loads a score from the global memory with coa-
lesced access, then performs a warp reduction and store the resulting best
score (and the pose that generates it). Every warp manages a restart (as can
be seen in Figure 12.10. The shared memory is not used here, since the
scores can be directly stored in the registers (as per Figure 12.11).

Emplace This kernel is a very quick one that places the molecule in its
best pose. Every thread manages an atom, every thread block is a restart.
From the memory point of view, the global memory accesses are coalesced,
and everything stays in the registers.
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Figure 12.10: Align Reduction Parallelism Layout

Figure 12.11: Align Reduction, Memory Layout

Optimize pose The algorithm that performs this operation is the most com-
plex to parallelize, since it has to be performed sequentially fragment per
fragment, and contains some patterns (early termination and triangular ma-
trix) that are not friendly for a GPU environment.

The original code of the algorithm is reported in Listing 12.1. We want
to maintain the early termination inside the check_bump while keeping the
warps aligned and the data as close as possible to the processing units.
Moreover, we want to avoid replicating the same operation across different
threads when they are not needed.

The algorithm is reorganized to separate some sections into different
kernels. The separation is important because it allows organizing the com-
putation grids in a different way across the functions. The final pseudo code
is reported in Listing 12.2.

Listing 12.1: Pseudo-code of the original function
1 for (frag:fragments)
2 {
3 for (angle: angles)
4 {
5 rotate_pose(ligand, angle, frag);
6 check_bump(ligand);
7 }
8 }
9 vibrate (ligand)
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Listing 12.2: Pseudo-code of the final function
1 for (frag : fragments)
2 {
3 evaluate_rotation_matrices<<<restarts,angles>>>(ligand,frag);
4 Rotate_bump_pose <<<restarts, (32, angles)>>>(ligand, matrices,frag

,score_arr);
5 Final_reduction<<<restarts, scores>>>(scores_arr, best_angles);
6 Emplace ligand<<<restarts, atoms>>>(ligand,best_angles);
7 }
8 vibrate(ligand);

The matrix evaluation is extracted into a separate kernel. This is done
because the matrices will be used across different threads, so they will be
either re-evaluated a lot of times or they need to be shared using the shared
memory. However, as we will see, we already use the shared memory so
that is not a viable option. For this reason, we extracted this computation
from the original function to not repeat it. The rotate kernel is warp-sized,
and this is enforced to maintain the early exit in the check_bump function.
Every warp will evaluate if there are internal collisions within the atoms
of the ligand, and if they find one, they will mark the position as invalid.
Doing this operation warp-sized allows using the voting primitives and en-
force that there is no warp divergence when forcing the early termination.
The final reduction has the same functionality as the reduction in the align-
ment phase and is used whenever there are more angles to evaluate than
16. The number is different from the previous reduction function for two
main reasons. The first is that, since 32 threads are cooperating in doing
the work, only 32 different poses can be evaluated in a thread-block. The
second reason is that this kernel has a heavy register pressure, and if we run
with 32 poses (1024 threads total) it fails because of the register pressure.
For this reason, we limit the "angles" variable to 16. Finally, the emplace
kernel puts the ligands in the optimal position.

Rotate_Bump_Pose This function is at the same time the most difficult
function to parallelize and the most important kernel to work on, since it
becomes the bottleneck of the whole application on the GPU, as seen from
Chapter 10. It has been re-written multiple times, each time changing the
whole organization of the kernel in the attempt of improving its perfor-
mance. The final version is organized in warps, and the check_bumps are
no more organized in a triangular pattern, but we exploited the fact that
bump(a, b) == bump(b, a) to evenly distribute the computation across the
threads. Warp organization has a lot of benefits:
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Figure 12.12: Warp reorganization of the triangular matrix. Different colors represent
the iterations to evaluate the triangular matrix. The x and y values are the iteration
number of the atoms whose bumping is checked.

• Allows the use of warp voting primitives.

• Allows moving data between threads.

• Allows forcing the SIMD, with no thread misalignment within the
warp.

• Early exit frees a full warp and not a thread, which is very important
since as we already mentioned warps are the smallest issue unit in
CUDA.

The reorganization of the triangular matrix follows the pattern shown in
Figure 12.12. Every different color is an iteration of the loop, and we can
notice that with 16 iterations we can check all the bumps between 32 atoms.

Moreover, this re-organization has two perks: the first one is that the
atom positions can be exchanged between the threads, without the need of
accessing the memory. For example, if we consider thread 0, at the first
iteration it performs bump(0, 1) and in the second bump(0, 2). The coordi-
nates of atom 2 however are already in the registers, since they were used
by the first iteration of thread 1, which was bump(1, 2). So, it is possible
to use the shfl primitive to move those values from thread 1 to thread 0,
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without having to read them from the global memory. The second advan-
tage is given by the balance of the threads: all are doing the same amount
of operations. Indeed, after the check is done on the single thread, a warp-
voting primitive is called and if there is a bump the whole warp performs
the early exit from the function. And since an angle is evaluated by a warp,
other useless evaluations are avoided. It is important to notice that the other
warps (that are working on different angles, so are independent) are not
influenced by this early exit operation.

More details on the kernel organization can be seen in Figure 12.13 and
Figure 12.14. The first figure shows the organization of the parallelism:
every warp manages a different angle, every thread block works on a dif-
ferent restart. It is possible that more than one thread block works on a
single restart if more than 16 angles are required. This limit, as we already
mentioned, is due to register pressure.

Figure 12.13: Rotate Bump Kernel, Parallelism Layout

The second figure shows some detail of the memory organization: the
rotation matrices are read from the global memory, while the atoms (that are
not read-only in this situation) are stored in the shared memory. Moreover,
we can see that some atoms are in the registers: these are representing the
phenomenon previously described when the check bump function moves
them across the threads without reading the memory.

Figure 12.14: Rotate Bump Kernel, Memory Layout
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Reduction and Emplace The final reduction and the emplace kernels are
akin to the one of the alignment (see 12.3.2 and 12.3.2), so they won’t be
described a second time.

Geometric Scoring Functions To evaluate the generated poses we use three
geometric scoring functions, which evaluate how the ligand is positioned
in the pocket, if all its atoms are inside and if there is some bump in the
structure of the ligand.

Pacman Score This function interacts with the pocket and evaluates both
the pacman and the is_in_pocket values. To evaluate the Pacman Score, we
need to count all the pocket spaces that are neighbors of the atoms. How-
ever, spaces that are neighboring more than one atom need to be counted
only once. For this reason, we need to implement a sorting algorithm: we
use a bitonic sort, which is a GPU-oriented algorithm that works well with
small datasets. This is our case since the whole data can be stored in the
shared memory. After the sorting algorithm, a function counts the number
of different occupied spaces and obtains the Pacman score.

Figure 12.15: Pacman Kernel, Parallelism Layout

Figure 12.15 shows the parallelism organization. In this function, the
number of active threads per restart is greater than the number of atoms,
since this improves the sort, making it more distributed. Indeed, this func-
tion could use the whole (1024) thread space, however, it has been capped
at 256 threads per thread-block because of register pressure. Every restart
is mapped on a different thread block.

From the memory perspective, as shown in Figure 12.16, we use the
shared memory to store the visited space in the pocket before the sorting
algorithm. This space is then sorted and counted, so the function works
only with the shared memory. Once again, we managed to limit the accesses
to global memory only to get the initial data and to store the final results.

Ligand is bumping This function checks if the outcome of the docking
process has some internal bumps. The kernel of the function works as the
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Figure 12.16: Pacman Kernel, Memory Layout

rotate_bump function, however, in this kernel, we need to check all the
fragments. Nonetheless, it is a simplified version of the check_bump func-
tion since we don’t have to rotate. We still want to exploit the early exit, so
we organize the kernel in warps, as can be seen in Figure 12.17.

Figure 12.17: Pacman Kernel, Parallelism Layout

From the memory perspective, shown in Figure 12.18, we adopted the
mechanism of passing the atom position between threads with shfl oper-
ations, so we don’t need any shared memory, and global memory is read
only at the beginning of the kernel.

Figure 12.18: Pacman Kernel, Memory Layout

12.4 Experimental Results

To compare the final CUDA implementation with the previous OpenACC
one, we have run several experiments and measurements on a single node
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of the Marconi100 Supercomputer in CINECA. The node is equipped with
2 IBM Power9 CPUs and 4 NVIDIA v100 GPU connected with NVLink.
Thanks to this extensive rewriting of the kernels, we have obtained a strong
speedup compared to the previous OpenACC version: the CUDA applica-
tion can process more than 3 times the amount of ligands processed by the
previous application. Indeed, using the full node the OpenACC version has
a throughput of 461 Ligands per second. 336 Ligands per second is the
throughput of the 4 V100 GPU, while the other 130 ligands are processed
by the power9 CPUs. The OpenACC has been configured in a similar way
to the CUDA application, with all the kernels processed on the GPU. This
version is more similar to the version presented in Chapter 10 than to the
one of Chapter 11 because these GPGPUs are way more powerful than the
K40 used in the previous experiments, and performing only the alignment
kernel on GPU would have hurt performances. We used the asynchronous
threads mechanism to have more threads insisting on a GPU, oversubscrib-
ing the device, also in the OpenACC version of the application, to have a
fair comparison.

Tuning the CUDA application To optimize the utilization of the Marconi100
node, we need to tune the available parameters. In particular, we are inter-
ested in knowing what is the optimal number of GPU threads and CPU
threads. We define as GPU thread a thread that processes a ligand using
GPU kernels (and the CPU is used only to move data and enqueue the ker-
nels), while a CPU thread works only on the CPU.

Figure 12.19: Performance Heatmap of GPU and CPU threads.

To perform this experiment we use a dataset that is representative of all
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the possible ligands’ size and fragment numbers, since we need to statically
setup the amount of workers before running the experiments. In this way,
we can avoid to repeat this effort when we change the dataset. We will see
in the following section an orthogonal technique to optimize the application
considering input characteristics. Figure 12.19 shows the outcome of the
design space exploration done. On the columns, we report the number of
GPU threads allocated for the job, while the rows have the CPU threads. We
can notice that the total amount of threads can be more than the available
threads on the Power9 processors since we are open to the possibility that
oversubscription and hyperthreading could bring some benefit. However,
from the results of the experiment, we can notice that this hypothesis is
not true, since the optimal points on the heatmap are around 64GPU and
20CPU threads, which are less than the number of logical cores available
on the node. Nonetheless, the hyperthreading approach is correct, since
the optimal point has more thread than the number of physical cores of the
node.

Finally, thanks to this CUDA porting, we were able to increase the
throughput by 1000 ligands per second, on the same dataset. Indeed, the
total throughput of the node was 1445 ligands per second: the porting pro-
vided a speedup of more than 3x compared to the OpenACC version of
Chapter 10.

12.5 Autotuning

Even if autotuning is not the focal point of this chapter, we believe that is
possible to further speed up the application by applying the techniques de-
veloped in the previous chapters. In particular, we analyzed the application
and noticed that there is an important data dependency that, if addressed
correctly, can allow the application to save some operations. In particular,
it is a repetition of the evaluation of some poses that happens whenever
there are not enough fragments in the ligand to generate the initial poses.
These repetitions are not improving the accuracy of the result but they are
only performing the same pose evaluation more times, so it is desirable to
avoid them. We applied the technique developed in Chapter 6, to proac-
tively select the number of poses to test. In particular, we used the number
of fragments as data-feature and the number of poses as software knob. It
is important to notice that this software knob strongly influences the ap-
plication since for several kernels it is involved in the grid organization.
Indeed, by changing this parameter the dimension of the CUDA grids are
effectively modified, and the amount of calculation required to obtain the
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Figure 12.20: Speedup compared to the CUDA version without autotuning and percentage
of autotuning opportunity in some different datasets.

solution changes. This has a heavy influence on the application whenever
this proactive autotuning is triggered.

However, it rarely happens with the dataset that we used previously.
The reason is that the dataset that we used to measure the performance is a
dataset of large ligands, and this phenomenon is triggered only by small lig-
ands. In particular, the dataset we used has an average of 20 fragments per
ligand, and less than 10% of the ligands have less than 10 fragments. The
autotuning opportunity is only available for ligands with less than 4 frag-
ments. However, when we were preparing for a larger molecular docking
experiment, we were given a more representative set of datasets. Among
those datasets, we noticed that there were some of them where most ligands
had a small number of fragments.

Figure 12.20 shows the result of this autotuning approach on several
datasets, with different autotuning opportunities. We define as "autotun-
ing opportunity" the percentage of ligands with less than 4 fragments with
respect to the total amount of ligands in a dataset. We define as "relative
speedup" the ratio of the throughput of the autotuned version of the applica-
tion compared to the baseline one. As we can see, whenever the autotuning
opportunity is over 90%, the autotunable version of the application has a
strong speedup, of at least 1.4x, which comes completely for free. Indeed,
this speedup does not introduce any degradation in the application output
accuracy. Moreover, looking at Table 12.1, we can notice that there is no
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Dataset ID 1 2 3 4 5 6 7 8 9
Atoms Number 36.34 40.87 52.28 66.17 75.82 91.22 95.68 69.67 73.53

Table 12.1: Average size of the ligand of the datasets used to explore the autotuning
approach introduced.

correlation between the speedup obtained with autotuning and the dimen-
sion of the ligands. It is also interesting to analyze the last two datasets (8
and 9). The speedup obtained by the first dataset is very little (1.02x) while
the second dataset reports no variation in execution time from the original
application without autotuning. Dataset 8 is a collection of ligands with a
large number of fragments (average of 18 and 12 of standard deviation),
which gives a very limited opportunity for the autotuning approach to show
its benefits. Indeed, the autotuning approach is strongly dependent on the
input data. The last dataset shows a very important result: the autotuning
inserted in the application does not generate any performance loss when-
ever the dataset is completely not suitable for the autotuning (0%). This
result justifies the entire approach, since the insertion of autotuning, in the
worst case, does not generate any performance loss. On the other hand, in
the best case, it provides a speedup of 1.6x without any accuracy loss.

12.6 Summary

In this chapter, we have seen the optimization and re-organization of the
code of GeoDock. In particular, this work has been fundamental in en-
abling the trillion docking experiment performed in the context of the EXS-
CALATE4COV project. In that experiment, which is the largest molecular
docking experiment ever attempted up to date, a trillion of molecules have
been docked in 60 hours on two supercomputers, Marconi100 and HPC51.
This experiment has been done to search for a ligand that could be a can-
didate drug to cure the infection of the COVID-19 virus. As we have seen,
thanks to the porting to CUDA the speed of GeoDock has dramatically
increased, and since this is the bottleneck of the whole application, this al-
lowed a significant increment in the throughput. Indeed, without this port-
ing the trillion docking experiment would not have been possible. More-
over, we were able to apply previously discovered autotuning techniques
to this new context, thus validating them in a different context from their
original one. This also proofs that those techniques not only valid in their
original context. However, the introduced autotuning is at the moment very
limited and we are currently trying to discover other opportunities.

1https://www.hpcwire.com/2020/11/25/exscalate4cov-runs-70-billion-molecule-coronavirus-simulation/
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The outcome of this work has been published in an abstract at the Eu-
roHPC 2021 summit and a paper is currently in preparation. This work has
also won the HIPEAC Tech Transfer award in October 20202

2https://www.hipeac.net/news/6940/winners-of-the-hipeac-tech-transfer-awards-2020/
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CHAPTER13
Conclusions

In this thesis, we addressed the problem of application autotuning, and how
we can give the application an adaptation layer even in heterogeneous con-
texts. The main outcome is a meta-framework composed of a collection of
techniques that allows the user to enhance the application with a proactive
or adaptive behavior. Those techniques require the user to interact with the
application since in most cases some knowledge is not available without
human interaction. However, after the initial effort, the application shows
effective benefits during its lifetime.

We have experimentally evaluated the proposed approach and its ex-
ploitation in different scenarios, in particular seeing how those techniques
can benefit also real HPC applications. The remainder of this chapter sum-
marises the finding and limitations of the proposed approach and provides
recommendations for future works.

13.1 Main contributions

The main results of the work carried out in this thesis might be summarised
as follows:

1. A methodology has been proposed to review applications in order to
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reformulate them as a sequence of self-tuning modules. A self-tuning
module is in this context a kernel that performs one of the functional-
ities of the original application that has been enhanced with an adap-
tivity layer. Thus it is able to adapt, in a reactive or a proactive way,
to changes in the execution context of the application due to external
factors (such as the condition of the machine) or input data.

2. An approach has been proposed to provide to application developers
a way to automatically and seamlessly find the best possible config-
uration of an application according to the underlying architecture for
different hotspots kernels. This approach provides self-optimization
capabilities to the target application and targets compiler options and
OpenMP parameters.

3. A Probabilistic Time Depending Routing application has been stud-
ied and a methodology to proactively reduce the computation load
required with limited accuracy loss has been proposed. This method-
ology allows increasing the computation efficiency, thus leading to
reduced energy and time consumption.

4. In the context of Deep neural networks, we have benchmarked several
object detection networks to build a knowledge base. We then sup-
posed a scenario in the automotive context where none of the bench-
marked networks was able to respect all the constraints, however, if
we use more than one network it becomes possible to satisfy the re-
quirements. This is possible with the introduction of application auto-
tuning, which reacts to the changing environment and select the most
suitable network at runtime. Moreover, we believe that it could be
possible to create a predictor that is able to select the most suitable
network according to the characteristics of the image. However, in
this case, we were only able to prove that this could be beneficial but
we were unable to build the actual predictor.

5. A molecular docking application designed for High Performance Com-
puting platforms has been studied several times, in a first moment to
introduce a mechanism to enforce a time to solution on a homoge-
neous node, then its hotspot kernels have been ported to GPGPU to
increase its performances. This work has been done using the Ope-
nACC language, and the resulting application has been optimized to
exploit in the best way the available resources of the node. Finally, the
search for the maximum throughput forced us to re-organize the ap-
plication one more time and rewrite its kernels using CUDA. On this

198



13.2. Recommendation for future works

final version of the molecular docking application, we also applied
autotuning techniques to avoid some useless computation whenever
certain conditions on the input were met. This application has been
used in the world largest molecular docking experiment

6. We created an open-source library that can be used in High Level Syn-
thesis to create hardware accelerators for the multiplication of Large
Unsigned Integers. The focus of this library is its flexibility, which al-
lows creating large and high throughput multiplier and small and slow
ones. This design choice is done to follow the paradigm of autotuning
libraries that tailor the functionality to the underlying architectures (in
this case, we tailor the architecture to the user’s needs).

13.2 Recommendation for future works

Experimental evaluations of the proposed techniques have promising re-
sults; however, there are still possible improvements that can be investi-
gated. In our opinion, the most challenging open questions are the follow-
ing:

1. The search for knobs and metrics must be provided by end-users and
application developers since they are application-specific. However,
there are works [6] in literature where generic error metrics are found
and applied to different applications. It could be interesting to inves-
tigate their effectiveness in order to create a methodology to automat-
ically insert adaptivity in applications.

2. The extraction of the data features that enables the proactive auto-
tuning is always delegated to the human programmer. Indeed, the
programmer must have the intuition that some characteristics of the
input can be used to drive the selection of the software knobs. It could
be very interesting to study some methodologies to automatically find
some input features and their impact on general applications.

3. Some of the proposed techniques support automatic integration. An
interesting work would be to enlarge this support. This could become
even more important if the previous point (a methodology for auto-
matic search of input feature) becomes real.

We hope that the work discussed in this thesis will motivate researchers
to further investigate the application autotuning topic, even in heteroge-
neous contexts. We believe that our view on future applications, seen as a
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sequence of self-tuning modules, is correct and we hope that the proposed
meta-framework could help future programmers in organizing their appli-
cations.
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dro Pinto, Erven Rohou, Nico Sanna, Kateřina Slaninová, Emanuele
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software implementation of long integer modular arithmetic. In Cryptographic Hardware
and Embedded Systems – CHES 2005, pages 75–90.

[104] Emanuele Vitali, Davide Gadioli, Fabrizio Ferrandi, and Gianluca Palermo. Parametric
throughput oriented large integer multipliers for high level synthesis.

[105] Paolo Toth and Daniele Vigo. Vehicle Routing: Problems, Methods, and Applications, vol-
ume 18. SIAM, 2014.

[106] Radek Tomis, Lukáš Rapant, Jan Martinovič, Kateřina Slaninová, and Ivo Vondrák. Prob-
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