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Abstract

The Hybrid High-Order (HHO) methods are discretization methods for partial differential
equations which have some advantages with respect to traditional numerical schemes;
in particular they support polytopal meshes and arbitrary approximation orders. The
elements of the mesh can have arbitrary shape and can coexist in the same mesh with
different shapes and number of faces. A direct consequence is the possibility to discretize
the physical domain through non-conforming meshes, which is particularly relevant for
physical phenomena occurring in small areas of the domain. In this case is indeed possible
to locally refine the mesh, without reconstructing it in the entire domain. As a result, a
significant advantage in terms of computational cost is achieved.

After introducing the HHO method for the Poisson problem, the goal of this work will be
to present a method to perform non-conforming mesh adaptivity, exploiting a-posteriori
estimators.

Starting from the HArD::Core library for HHO methods, developed by D. Di Pietro and J.
Droniou and written in C++, new methods for a non-conforming adaptivity of the mesh
have been developed, which are included in the new class DynamicMesh. First the im-
plementation aspects will be presented, then some numerical tests with a non-conforming
refined mesh will be performed.

Keywords: Polytopal methods, Hybrid High-Order methods, A posteriori error esti-
mators, Non-conforming mesh refinement





Estratto

I metodi Hybrid High-Order (HHO) sono metodi per la discretizzazione di equazioni alle
differenze parziali che comportano alcuni vantaggi rispetto ai metodi numerici tradizio-
nali; in particolare supportano mesh politopali e ordini di approssimazione arbitrari. Gli
elementi della mesh possono avere forma qualsiasi e possono essere contemporaneamente
presenti nella stessa griglia con forma e numero di lati differenti. Conseguenza diretta è
la possibilità di discretizzare il dominio fisico tramite mesh non conformi, il che risulta
particolarmente utile nel caso di fenomeni fisici concentrati in un punto o un’area ristretta
del dominio, poichè diventa possibile raffinare la mesh solo localmente, senza doverla
ricostruire nell’intero dominio. Ne risulta un guadagno non indifferente a livello di costo
computazionale.

In questo lavoro, dopo aver introdotto il metodo HHO per il problema di Poisson, lo scopo
sarà presentare un metodo per eseguire adattività della mesh non conforme, sfruttando
idealmente stimatori a posteriori dell’errore.

Partendo dalla libreria HArD::Core per metodi HHO, realizzata da D. Di Pietro e J.
Droniou in C++, sono stati sviluppati nuovi metodi - da integrare successivamente alla
libreria - contenuti nella nuova classe DynamicMesh, in grado di supportare un’adattività
non conforme della mesh. Verranno presentati dapprima gli aspetti implementativi della
nuova classe, ed infine alcuni test numerici con mesh raffinata in maniera non conforme.

Parole chiave: Metodi politopali, Metodi Hybrid High-Order, Stimatori a posteriori,
Raffinamento non conforme della mesh.
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Introduction

Hybrid High-order methods are discretization methods for partial differential equations
belonging to a family of numerical schemes which has recently undergone a flood of in-
terest, namely the polytopal methods. HHO are hybrid methods, namely they support
unknowns attached to both faces and cells, and can have arbitrary approximation orders.
Moreover, the crucial feature of polytopal methods is the freedom they give in discretiz-
ing the physical domain. They can indeed easily handle hanging nodes, non-matching
interfaces, and elements with different shapes and number of faces in the same mesh.
As a result non-conforming meshes can come into play and flexibly be used to discretize
complex domains and interfaces, as well as to deal phyisical phenomena occurring in one
point or in a small area of the domain, allowing a local adaptation of the mesh. The
latter cleary results in a significant computational cost improvement, making unnecessary
to re-build the mesh in the entire domain to preserve the quality of the mesh.

A local non-conforming adaptivity of the mesh is the main focus of this work, whose
goal will be, after introducing the HHO methods, to apply to them an automatic proce-
dure for a local non-conforming refinement of the mesh. We will show that in this way we
will be able to recover optimal order of convergence of the numerical solution also in case
of poorly regular exact solution, whereas with a uniformly refined sequence of meshes the
convergence rate is limited by the irregularities.
It is desirable for a proper adaptation procedure to be driven by suitable a posteriori error
estimators; however for now we limit our work only to adaptivity driven by the true error,
exploiting benchmark cases with known solutions.

In Chapter 1 we introduce the HHO method for the Poisson problem with Dirichlet
boundary conditions, starting by the discrete setting needed for the method and proceed-
ing then with the key elements for the discretization of the problem. We will show some
error estimates, valid under appropriate regularity hypothesis for the exact solution, and
finally we briefly report how the method is numerically implemented, highlighting how
HHO methods become skeletal methods through the crucial technique of static conden-
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sation, which allows to reduce the degrees of freedom of the problem accounting only for
face unknowns.
In Chapter 2 we give a brief overview of residual-based error estimators, that provide
reliable, fully computable and efficient upper bounds on the error. As a result they are
suitable to drive mesh adaptivity procedures, as we will show in upcoming work.
In Chapter 3 we present our original contribution to the work, namely some methods to
perform non-conforming adaptivity of the mesh, in the context of HArD::Core library, a
suite of C++ tools for polytopal methods, in particular HHO methods, developed by D.
Di Pietro and J.Droniou, which still lacked the functions to perform a non conforming
refinement and coearsening of the mesh. Finally we test the implemented method on a
benchmark case with a known irregular solution, showing that, through a non-conforming
adaptation procedure, we are able to recover optimal order of convergence of the numerical
solution.
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1| The HHO method

In this chapter we present the HHO method for the Poisson problem with Dirichlet bound-
ary conditions, starting with the necessary discrete setting, then proceeding with the key
elements of the numerical scheme. We show some error estimates and briefly explain how
the method is implemented. The discussion references to [2], [3], [6] and [5].

1.1. Discrete setting

In this section we expose some definitions and conventions that will be used in the rest
of the presentation. Starting from the notion of polytopal mesh of Ω, we formulate
assumptions on the way meshes are refined, and we introduce some local functional spaces
and projectors that will be needed in the construction and analysis of HHO methods.

1.1.1. Polytopal mesh

As we said (da scrivere intro) the support of polytopal meshes with possibly non-matching
interfaces is one of the key features of HHO methods, allowing us to perform local non-
conforming mesh adaptivity.
Let us start with some useful definitions.

Definition 1.1 (Simplex and polytopal set). Let an integer d ≥ 2 be fixed. Given a set
of vertices P := {P0, . . . ,Pd} ⊂ Rd such that the family of vectors {P1−P0, . . . ,Pd−P0}

(a) Matching
triangular

(b) Non-
conforming

(c) Polygonal

Figure 1.1: Examples of polytopal meshes in two and three space dimensions, from [2].
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is linearly independent, the interior of the convex hull of P is a simplex of Rd. For each
integer i ∈ {0, . . . , d}, the convex hull of P \ {Pi} is a simplicial face. A polytopal set (or
polytope) is a connected set that is the interior of a finite union of closures of simplices.

This means that a simplex is an open triangle (respectively a tethraedron) in dimension
d=2 (respectively d=3), and a polytope is an open polygonal (respectively a polyhedral
set).

From now on the domain Ω of our interest will be a - bounded, open, connected - polytopal
set of Rd.

The previous definition brings us to the following one.

Definition 1.2 (Polytopal mesh). A polytopal mesh of Ω is a couple Mh = (Th,Fh)

where:

(i) The set of mesh elements Th is a finite collection of nonempty disjoint polytopes T

with boundary ∂T and diameter hT such that the meshsize h satisfies

h = max
T∈Th

hT

and it holds
Ω =

⋃
T∈Th

T .

(ii) The set of mesh faces Fh is a finite collection of disjoint subsets of Ω such that, for
any F ∈ Fh, F is a non-empty open connected subset of a hyperplane of Rd and
the (d−1)-dimensional Hausdorff measure of its relative boundary F\F is zero. We
denote by hF the diameter of F . Further assume that:

(a) For each F ∈ Fh, either there exist distinct mesh elements T1, T2 ∈ Th such that
F ⊂ ∂T1 ∩ ∂T2 and F is called an interface, or there exists one mesh element
T ∈ Th such that F ⊂ ∂T ∩ ∂Ω and F is called a boundary face;

(b) The set of mesh faces is a partition of the mesh skeleton, i.e.,⋃
T∈Th

∂T =
⋃

F∈Fh

F .

Interfaces are collected in the set F i
h and boundary faces in Fb

h , so that Fh = F i
h∪Fb

h .
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For any mesh element T ∈ Th,

FT := {F ∈ Fh : F ⊂ ∂T}

denotes the set of faces contained in ∂T . Symmetrically, for any mesh face F ∈ Fh,

TF := {T ∈ Th : F ⊂ ∂T} (1.1)

is the set containing the one or two mesh elements sharing F . Finally, for all T ∈ Th
and all F ∈ FT , nTF denotes the unit normal vector to F pointing out of T .

1.1.2. Regular mesh sequences

In order to study the convergence of HHO methods with respect to the meshsize h we
need to make regular assumptions on how the mesh is refined. Here we refer to isotropic
meshes with non-degenerate faces.

Definition 1.3 (Matching Simplicial Mesh). Mh = (Th,Fh) is a simplicial mesh of Ω if,
for all T ∈ Th, T is a simplex of Rd. Mh is a matching simplicial mesh of Ω if it is a
simplicial mesh and the following additional conditions hold: (i) For any T, T ′ ∈ Th with
T ′ ̸= T , the set ∂T ∩ ∂T ′ is the convex hull of a (possibly empty) subset of the vertices of
T ; (ii) The set Fh is composed of the simplicial faces of the elements in Th.

Definition 1.4 (Matching simplicial submesh). LetMh = (Th,Fh) be a polytopal mesh
of Ω. We say that Mh = (Th,Fh) is a matching simplicial submesh of Mh if: (i) Mh

is a matching simplicial mesh of Ω; (ii) for any simplex τ ∈ Th, there is a unique mesh
element T ∈ Th such that τ ⊂ T ; (iii) for any simplicial face σ ∈ Fh and any mesh face
F ∈ Fh, either σ ∩ F = ∅ or σ ⊂ F .

The notion of matching simplicial submesh (Fig. 1.2) is merely theoretical: it will not be
constructed in practice.

Definition 1.5 (Regular mesh sequence). Denote by H ⊂ (0,+∞) a countable set of
meshsizes having 0 as its unique accumulation point. A family of meshes (Mh)h∈H =

(Th,Fh)h∈H is said to be regular if there exists a real number ϱ ∈ (0, 1), independent of h
and called the mesh regularity parameter, such that, for all h ∈ H, there exists a matching
simplicial submesh Mh = (Th,Fh) ofMh that satisfies the following conditions:

(i) Shape regularity. For any simplex τ ∈ Th, denoting by hτ its diameter and by rτ its
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Figure 1.2: Example of a matching simplicial submesh (dashed lines) of the non-
conforming mesh in Fig. (1.1b), taken from [2]

.

inradius, it holds

ϱhτ ≤ rτ ; (1.2)

(ii) Contact regularity. For any mesh element T ∈ Th and any simplex τ ∈ TT , where
TT := {τ ∈ Th : τ ⊂ T} is the set of simplices contained in T , it holds

ϱhT ≤ hτ . (1.3)

1.1.3. Local and broken polynomial spaces

LetMh denote a polytopal mesh of Ω. We define the broken Sobolev space

W s,p(Th) :=
{
v ∈ Lp(Ω) : v|T ∈ W s,p(T ) ∀T ∈ Th

}
.

Remark. Functions in W 1,p(Th) in general do not admit a global weak gradient. We can,
however, define the broken gradient operator ∇h : W 1,p(Th) → Lp(Ω)d such that, for all
v ∈ W 1,p(Th),

(∇hv)|T := ∇(v|T ) ∀T ∈ Th. (1.4)
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We denote the space of n-variate poynomials of total degree l as

Pl
n :=

{
p : Rn → R : ∃(γα)α∈Al

n
∈ RN l

n such that

p(x) =
∑
α∈Al

n

γαx
α for all x ∈ Rn

}
,

with
As

n := {α ∈ Nn : ∥α∥1 ≤ s} , (1.5)

N l
n := card(Al

n) =

(
l + n

n

)
, (1.6)

and, for a given multi-index α ∈ Al
n, we have set

xα := xα1
1 · · ·xαn

n .

Definition 1.6 (Local polynomial space). Let X ⊂ Rn, n ≥ 1, be an open bounded
connected set, and let an integer l ≥ 0 be fixed. The local (real-valued) polynomial
space Pl(X) is defined as the space spanned by the restrictions to X of functions in the
polynomial space Pl

n.

More generally, if V is a finite-dimensional vector space, the V -valued local polynomial
space Pl(X;V ) is the space of functions f : X → V such that the components of f on a
basis of V belong to Pl(X); we note that this definition does not depend on the chosen
basis (if the components in one basis are polynomial, then the components in any basis
are polynomial).

Definition 1.7 (Broken polynomial space). LetMh = (Th,Fh) denote a polytopal mesh
of Ω in the sense of Definition 1.2, and let an integer l ≥ 0 be given. We define the broken
polynomial space

Pl(Th) :=
{
vh ∈ L1(Ω) : vh|T ∈ Pl(T ) ∀T ∈ Th

}
.

1.1.4. Projectors on local polynomial spaces

In the design and analysis of HHO methods a key role is played by projectors on local
polynomial spaces. We are in fact interested in projecting functions on each element of
our mesh.

Definition 1.8 (Projector on a local polynomial space). Let an integer l ≥ 0 and an
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open bounded connected set X ⊂ Rn, n ≥ 1, be given. Let W be a vector space such that
Pl(X) ⊂ W . A linear mapping Πl

X : W → Pl(X) is a projector on the local polynomial
space Pl(X) if it is onto and idempotent, i.e., Πl

X ◦ Πl
X = Πl

X .

Projectors on local polynomial spaces are characterised by the property of polynomial
invariance.

Proposition 1.1 (Characterisation of projectors on local polynomial spaces). Let an
integer l ≥ 0 and an open bounded connected set X ⊂ Rn, n ≥ 1, be given. Let W be a
vector space such that Pl(X) ⊂ W . A linear mapping Πl

X : W → Pl(X) is a projector
on the local polynomial space Pl(X) in the sense of Definition 1.8 if and only if, for any
v ∈ Pl(X),

Πl
Xv = v. (1.7)

Proof. Let us assume that Πl
X is onto and idempotent, and let us prove (1.7). Take

v ∈ Pl(X). Since Πl
X is onto, there exists w ∈ W such that v = Πl

Xw. Taking the
projection of this equality and using the idempotence property, we obtain

Πl
Xv = Πl

X(Π
l
Xw) = Πl

Xw = v,

which is (1.7).

Assume now (1.7). Then, since Pl(X) ⊂ W , we have that

Pl(X) = Πl
XPl(X) ⊂ Πl

XW ⊂ Pl(X),

which shows that Πl
XW = Pl(X), i.e., Πl

X is onto. Moreover, using again the polynomial
invariance (1.7) we have, for any w ∈ W , that Πl

X(Π
l
Xw) = Πl

Xw, which proves that Πl
X

is idempotent.

The L2 orthogonal projector

One of the two fundamental projectors on local polynomial spaces we will need to carry
out the construction of the HHO methods is the following.

Definition 1.9 (The L2-orthogonal projector). The L2-orthogonal projector (in short, L2-
projector) π0,l

X : L1(X)→ Pl(X) is defined as follows: For all v ∈ L1(X), the polynomial
π0,l
X v ∈ Pl(X) satisfies

(π0,l
X v − v, w)X = 0 ∀w ∈ Pl(X). (1.8)
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Riesz representation theorem in Pl(X) for the standard L2(X)-inner product entails ex-
istence and uniqueness.

Moreover, the following characterization can be proved:

π0,l
X v = argmin

w∈Pl(X)

∥w − v∥2X .

It is easy to check that π0,l
X satisfies (1.7), i.e. it is polynomial invariant. Indeed, if

v ∈ Pl(X), then w = π0,l
X v − v ∈ Pl(X); hence, from (1.8),

(π0,l
X v − v, π0,l

X v − v)X = 0.

As consequence
π0,l
X v = v.

Let’s introduce now also the global L2-orthogonal projectors on broken spaces

π0,l
h : L1(Ω)→ Pl(Th),

such that for all v ∈ L1(Ω) and all T ∈ Th,

(π0,l
h v)|T = π0,l

T v|T . (1.9)

The elliptic projector

The other key example of projectors on local polynomial spaces is the following.

Definition 1.10 (The elliptic projector). The elliptic projector π1,l
X : W 1,1(X) → Pl(X)

is defined as follows: For all v ∈ W 1,1(X), the polynomial π1,l
X v ∈ Pl(X) satisfies

(∇(π1,l
X v − v),∇w)X = 0 ∀w ∈ Pl(X) (1.10a)

and

(π1,l
X v − v, 1)X = 0. (1.10b)

By the Riesz representation theorem in ∇Pl(X) for the L2(X)n-inner product, (1.10a)
defines a unique element ∇π1,l

X v ∈∇Pl(X), and thus a polynomial π1,l
X v up to an additive

constant. This constant is fixed by (1.10b).
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The following characterisation can be proven:

π1,l
X v = argmin

w∈Pl(X), (w−v,1)X=0

∥∇(w − v)∥2X .

In order to check if π1,l
X satisfies the condition of polynomial invariance (1.7), let us consider

v ∈ Pl(X) and w = π1,l
X v− v ∈ Pl(X). Then, by (1.10a), ∇(π1,l

X v− v) = 0. It follows that
π1,l
X v and v only differ by a constant, which must be zero due to (1.10b).

Theorem 1.1 (Approximation properties of the L2-orthogonal and elliptic projectors).
Let (Mh)h∈H be a regular mesh sequence. Let a polynomial degree l ≥ 0, an integer
s ∈ {0, . . . , l + 1}, and a real number p ∈ [1,∞] be given. Then, for any X element or
face of Mh, all v ∈ W s,p(X), and all m ∈ {0, . . . , s},

|v − π0,l
X v|Wm,p(X) ≲ hs−m

X |v|W s,p(X). (1.11)

and
|v − π1,l

T v|Wm,p(T ) ≲ hs−m
T |v|W s,p(T ). (1.12)

1.2. Basic principles of Hybrid High-Order methods:

Poisson problem

In this section we present the HHO methods applied to the Poisson problem:
Find u : Ω→ R such that

−∆u = f in Ω,

u = 0 on ∂Ω,

(1.13a)

(1.13b)

where Ω is an open bounded polytopal subset of Rn, n ≥ 2, with boundary ∂Ω and
f : Ω→ R is a given volumetric source term, assumed to be in L2(Ω).
Its weak formulation is the following:
Find u ∈ H1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (1.14)

where the bilinear form a : H1(Ω)×H1(Ω)→ R is such that

a(u, v) := (∇u,∇v). (1.15)
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1.2.1. Local construction

In this section we present the key local ingredients for developing the HHO methods:

• the discrete unknowns ;

• the interpolator ;

• the potential reconstruction operator ;

• the local approximation of the continuous bilinear form.

The discrete unknowns of the HHO methods are defined over elements and faces of a
polytopal mesh. Let us look for suitable spaces for them. Let us start with an important
remark, namely, let’s see how it’s possible to compute the elliptic projection starting from
the L2 orthogonal one. This result will inspire us to choose the right spaces for the discrete
unknowns.

Given a function v ∈ W 1,1(T ) and a function w ∈ C∞(T ) the following integration by
parts formula holds:

(∇v,∇w)T = −(v,∆w)T +
∑
F∈FT

(v,∇w·nTF )F . (1.16)

Considering in particular w ∈ Pk+1(T ) we can observe that, since ∆w ∈ Pk−1(T ) ⊂
Pk(T ) and thanks to the Definition (1.8) of the L2-orthogonal projector, (v,∆w)T =

(π0,k
T v,∆w)T . Analogously, applying the same Definition (1.8) since (∇w)|F ·nTF ∈ Pk(F ),

we can write (v,∇w·nTF )F = (π0,k
F v,∇w·nTF )F for all F ∈ FT . Finally, we can exploit

the Definition (1.10) of elliptic projectors to write (∇v,∇w)T = (∇π1,k+1
T v,∇w)T . To

conclude, we obtain from (1.16) the equivalent relation:

(∇π1,k+1
T v,∇w)T = −(π0,k

T v,∆w)T +
∑
F∈FT

(π0,k
F v,∇w·nTF )F . (1.17a)

Moreover, recalling once again the definitions of the projectors (1.10b) and (1.8), we get

0 = (π1,k+1
T v − v, 1)T = (π1,k+1

T v − π0,k
T v, 1)T . (1.17b)

From the above relation (1.17) we can observe that to compute the elliptic projection
π1,k+1
T v we do not need the full knowledge of v but it is sufficient the knowledge of the

L2-orthogonal projections of v on Pk(T ) and Pk(F ) for allF ∈ FT .



12 1| The HHO method

•

•

•
•

•

•

k = 0

•

••

••

••
•• ••

••

k = 1

•••

•••

• ••

••
•

••
•

•••

•••

k = 2

••••• •

Figure 1.3: Discrete unknowns in Uk
T for k ∈ {0, 1, 2}. The dots represent the number of

unknowns attached to an element or face, in dimension d = 2. Figure taken from [2].

The idea of the HHO method is therefore to write a scheme where the unknowns approx-
imate π0,k

T v and π0,k
F v.

Dicrete Unknowns

The last remark allows us to introduce the space of discrete unknowns the HHO construc-
tion hinges on (see Fig. 1.3):

Uk
T :=

{
vT = (vT , (vF )F∈FT

) : vT ∈ Pk(T ) and vF ∈ Pk(F ) ∀F ∈ FT

}
, (1.18)

endowed with the H1-like seminorm ∥·∥1,T such that, for all vT ∈ Uk
T ,

∥vT∥1,T :=
(
∥∇vT∥2T + |vT |21,∂T

) 1
2 ,

|vT |1,∂T :=

(∑
F∈FT

h−1
F ∥vF − vT∥2F

) 1
2

,
(1.19)

where hF is the diameter of F . The negative power of hF in the boundary term |vT |1,∂T
has been chosen in order to make both terms in the seminorm homogeneous from the
point of view of the dimension.

The idea is that the discrete unknowns represent projections L2 of degree k on the elements
and faces of the mesh. This leads us to introduce the following.

Local Interpolator

The second central component in our treatment is the local interpolator IkT , which allows
to obtain the discrete unknowns corresponding to a smooth function v ∈ W 1,1(T ).

IkT : W 1,1(T )→ Uk
T , IkTv := (π0,k

T v, (π0,k
F v)F∈FT

). (1.20)

Once we have defined the local interpolator we have that the unknowns of the space HHO



1| The HHO method 13

represent exactly the projections L2 of degree k on elements and faces of the mesh.

Proposition 1.2 (Boundedness of the local interpolator). For all T ∈ Th and all v ∈
H1(T ),

∥IkTv∥1,T ≲ |v|H1(T ), (1.21)

where the hidden constant depends only on d, ϱ and k.

Potential Reconstructor Operator

We now proceed, inspired by (1.17) (i.e. trying to replicate it), introducing the heart of
the HHO method, namely the potential reconstruction operator. pk+1

T : Uk
T → Pk+1(T ),

such that, for all vT ∈ Uk
T ,

(∇pk+1
T vT ,∇w)T = −(vT ,∆w)T +

∑
F∈FT

(vF ,∇w·nTF )F ∀w ∈ Pk+1(T ) (1.22a)

and
(pk+1

T vT − vT , 1)T = 0. (1.22b)

Note that (1.22a) univocally defines the gradient of pk+1
T , so that, in order to obtain a

unique reconstruction pk+1
T vT ∈ Pk+1(T ), we need to add the second condition (1.22b) on

its mean value.

Note moreover that, for all v ∈ W 1,1(T ),

pk+1
T IkTv = π1,k+1

T v. (1.23)

This property shows that, taken v sufficiently regular, the potential reconstruction applied
to the interpolator of v is an optimal approximation of v in the polynomial space Pk+1(T )

and this fact will be useful later to obtain the consistency of the method.

W 1,1(T ) Uk
T

Pk+1(T )

IkT

π1,k+1
T

pk+1
T

Figure 1.4: Illustration of the composition of IkT and pk+1
T (1.23), from [2].
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Local Contribution

Let us now arrange the final local contribution, approximating the continuous bilinear
form (1.15) on each element of the mesh T with the discrete bilinear form aT : Uk

T ×Uk
T →

R such that, for all uT , vT ∈ Uk
T ,

aT (uT , vT ) := (∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT , vT ). (1.24)

The first term is the standard Galerkin contribution, responsible for consistency - when
uT and vT are the interpolates of polynomials we retrieve the original form a -, while the
second one is a stabilisation bilinear form sT : Uk

T × Uk
T → R, whose role is to ensure

coercivity for the discrete problem (as it is the continuous one), and which is conceived
in such a way that:

(S1) sT is symmetric and positive semidefinite, since we wish aT to be symmetric and
positive semidefinite as it is a at the continuous level;

(S2) sT ensures stability and boundedness of the local discrete bilinear form: ∃ η > 0

independent of h and T such that, for all vT ∈ Uk
T ,

η−1∥vT∥21,T ≤ aT (vT , vT ) ≤ η∥vT∥21,T (1.25)

(notice that ∥·∥1,T and the seminorm induced by aT are equivalent);

(S3) sT is polynomial consistent :

sT (I
k
Tw, vT ) = 0 ∀w ∈ Pk+1(T ) and ∀vT ∈ Uk

T . (1.26)

(S2) ensures the coercivity of the bilinear form while (S3) its consistency with respect to
polynomials of degree k + 1. Moreover the requirement (S3) suggests that sT can be ob-
tained penalising residuals that vanish for interpolates of polynomial functions in Pk+1(T ).
Paradigmatic examples of such residuals are provided by the difference operators :

δkT : Uk
T → Pk(T ); δkTvT := π0,k

T (pk+1
T vT − vT ), (1.27)

δkTF : Uk
T → Pk(F ); δkTFvT := π0,k

F (pk+1
T vT − vF ) ∀F ∈ FT . (1.28)

The difference operators δkT and δkTF vanish for polynomial functions in Pk+1(T ):

Proposition 1.3 (Polynomial consistency of the difference operators). It holds, for all
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T ∈ Th and all w ∈ Pk+1(T ),

δkT I
k
Tw = 0 and δkTF I

k
Tw = 0 ∀F ∈ FT . (1.29)

Proof. Let us observe that

δkT I
k
Tw = π0,k

T (pk+1
T IkTw − π0,k

T w) = π0,k
T (π1,k+1

T w − w) = π0,k
T (w − w) = 0,

where the first equality is the definition of δkT I
k
T , the second one holds due to the compo-

sition of interpolant and projector operators (1.23) and the polynomial invariance (1.7)
for π0,k

T , and the third one again by polynomial invariance for π1,k+1
T .

Remark. Recalling the definition (1.20) of the local interpolator, one can check that the
difference operators are actually obtained in a natural way:

(δkTvT , (δ
k
TFvT )F∈FT

) = IkTp
k+1
T vT − vT . (1.30)

Two examples of stabilisation bilinear forms which satisfy (S1)-(S3) are the following:
Example (Original HHO stabilisation) The original HHO stabilisation is obtained setting

sT (uT , vT ) :=
∑
F∈FT

h−1
F ((δkTF − δkT )uT , (δ

k
TF − δkT )vT )F . (1.31)

Example (A stabilisation inspired by Virtual Elements) An expression for the stabilisation
term inspired by the Virtual Elements is obtained setting

sT (uT , vT ) := h−2
T (δkTuT , δ

k
TvT )T +

∑
F∈FT

h−1
F (δkTFuT , δ

k
TFvT )F . (1.32)

Unlike in (1.31), both volumetric and boundary contributions are present. The negative
powers of the element and face diameters in each term are again selected so as to ensure
dimensional homogeneity with the consistency term.

Although the difference operators are not the only ones that vanish with interpolates of
polynomials in Pk+1(T ), it can be proved that sT satisfies (S3) if and only if sT depends
on its arguments only through the operators δkT and δkTF .

Lemma 1.1 (Dependency of sT ). Let T ∈ Th and let sT : Uk
T × Uk

T → R be a symmetric
bilinear form. Then, sT satisfies the polynomial consistency (S3) if and only if it depends
on its arguments only via the difference operators (1.27).
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1.2.2. Discrete problem

Once we have set up the local contributions we can assemble the final discrete problem.
Let us introduce the global HHO space of discrete unknowns:

Uk
h :=

{
vh = ((vT )T∈Th , (vF )F∈Fh

) :

vT ∈ Pk(T ) ∀T ∈ Th and vF ∈ Pk(F ) ∀F ∈ Fh

}
, (1.33)

equipped with the global seminorm ∥·∥1,h such that, for all vh ∈ Uk
h,

∥vh∥1,h :=

(∑
T∈Th

∥vT∥21,T

) 1
2

, (1.34)

where the local seminorm ∥·∥1,T was defined in (1.19).
If vh ∈ Uk

h, vh ∈ Pk(Th) is a broken polynomial such that

(vh)|T := vT ∀T ∈ Th. (1.35)

Given a smooth function v ∈ W 1,1(Ω), the global interpolator Ikh gives the global discrete
unknowns:

Ikh : W 1,1(Ω)→ Uk
h, Ikhv := ((π0,k

T v)T∈Th , (π
0,k
F v)F∈Fh

). (1.36)

The following subspace accounts for Dirichlet boundary conditions:

Uk
h,0 :=

{
vh ∈ Uk

h : vF = 0 ∀F ∈ Fb
h

}
. (1.37)

On Uk
h,0 the global seminorm ∥·∥1,h becomes a norm thanks to the Poincaré inequality.

Lemma 1.2 (Discrete Poincaré inequality). There exists CP > 0 depending only on Ω,
d, and ϱ such that, for all vh ∈ Uk

h,0,

∥vh∥ ≤ CP∥vh∥1,h. (1.38)

In order to check that the seminorm ∥·∥1,h is a norm on Uk
h,0 we show that, for all vh ∈ Uk

h,0,
∥vh∥1,h = 0 implies vh = 0. Let vh ∈ Uk

h,0 be such that ∥vh∥1,h = 0. By the Poincaré in-
equality (1.38), we have ∥vh∥ = 0, hence vT = 0 for all T ∈ Th. Then, from the definition
(1.19) of the norm ∥·∥1,T , we also have that ∥vF − vT∥F = 0, hence vF = vT = 0 on F , for
all T ∈ Th and all F ∈ FT . Since any mesh face belongs to a set of faces FT for at least
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one mesh element T ∈ Th, this concludes the proof.

We can now define the global bilinear forms ah : Uk
h × Uk

h → R and sh : Uk
h × Uk

h → R:
For all uh, vh ∈ Uk

h,

ah(uh, vh) :=
∑
T∈Th

aT (uT , vT ), sh(uh, vh) :=
∑
T∈Th

sT (uT , vT ) (1.39)

and the stabilisation seminorm |·|s,h such that, for all vh ∈ Uk
h,

|vh|s,h := sh(vh, vh)
1
2 . (1.40)

Lemma 1.3 (Properties of ah). The bilinear form ah enjoys the following properties:

(i) Stability and boundedness. For all vh ∈ Uk
h,0, it holds with η as in (1.25) that

η−1∥vh∥21,h ≤ ∥vh∥2a,h ≤ η∥vh∥21,h with ∥vh∥a,h := ah(vh, vh)
1
2 . (1.41)

(ii) Consistency. It holds for all r ∈ {0, . . . , k} and all w ∈ H1
0 (Ω)∩Hr+2(Th) such that

∆w ∈ L2(Ω),

sup
vh∈Uk

h,0,∥vh∥a,h=1

|Eh(w; vh)| ≲ hr+1|w|Hr+2(Th), (1.42)

where the hidden constant is independent of w and h, and the linear form Eh(w; ·) :
Uk

h,0 → R representing the consistency error is such that, for all vh ∈ Uk
h,0,

Eh(w; vh) := −(∆w, vh)− ah(I
k
hw, vh). (1.43)

Finally, the HHO discrete approximation of the Poisson problem (1.14) reads: Find uh ∈
Uk

h,0 such that

ah(uh, vh) = (f, vh) ∀vh ∈ Uk
h,0. (1.44)

Proving the well-posedness of (1.44) requires:

Lemma 1.4 (Lax–Milgram). Let U be a real Hilbert space, let a : U × U → R denote
a bounded bilinear form, and let f ∈ U⋆, with U⋆ denoting the dual space of U. Further
assume that the bilinear form a is U-coercive, i.e., there exists a real number C > 0 such
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that, for all v ∈ U,
C∥v∥2U ≤ a(v, v),

where ∥·∥U denotes the norm induced by the inner product in U. Then, the problem: Find
u ∈ U such that

a(u, v) = ⟨f, v⟩U⋆,U ∀v ∈ U,

is well-posed, i.e., it admits a unique solution for which the following a priori bound holds:

∥u∥U ≤ C−1∥f∥U⋆ .

Lemma 1.5 (Well-posedness of problem (1.44)). Problem (1.44) is well-posed, and we
have the following a priori bound for the unique discrete solution uh ∈ Uk

h,0:

∥uh∥a,h ≤ η
1
2CP∥f∥, (1.45)

where CP denotes the constant of the discrete Poincaré inequality (1.38) and η is as in
(1.25).

Proof. Let us check the assumptions of the Lax–Milgram Lemma with U = Uk
h,0, a = ah,

and ⟨f, vh⟩U⋆,U = (f, vh). Uk
h,0 equipped with the norm ∥·∥a,h is a Hilbert space. The

bilinear form ah is obviously coercive with respect to the norm ∥·∥a,h with coercivity
constant equal to 1. Finally, by the discrete Poincaré inequality (1.38) and the norms
equivalence (1.41), it holds that

|(f, vh)| ≤ ∥f∥ ∥vh∥ ≤ CP∥f∥ ∥vh∥1,h ≤ η
1
2CP∥f∥ ∥vh∥a,h.

In particular this implies that the linear form f : vh 7→ (f, vh) is continuous

- METTERE FLUX FORMULATION ? -

1.2.3. A priori error analysis

Being the problem well-posed, let us now study if the discrete solution is convergent to the
exact one. We will see this result in two norms, the energy norm and the L2 norm. Note
that we cannot compare directly u and uh since they live in different spaces, hence we
will see the convergence result in two ways: comparing u to the potential reconstruction
of uu, and comparing uh to the interpolate of u.
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Energy error estimate

We start with a convergence result in the discrete energy norm. Thanks to the Strang
Lemma, we know that from a stability result follows an error estimate.

Theorem 1.2 (Discrete energy error estimate). Let (Mh)h∈H denote a regular mesh se-
quence in the sense of Definition 1.5. Let a polynomial degree k ≥ 0 be fixed. Let
u ∈ H1

0 (Ω) denote the unique solution to (1.14), for which we assume the additional reg-
ularity u ∈ Hr+2(Th) for some r ∈ {0, . . . , k}. For all h ∈ H, let uh ∈ Uk

h,0 denote the
unique solution to (1.44) with stabilisation bilinear form sT , T ∈ Th, in (1.24) satisfying
Assumptions (S1)-(S3). Then,

∥uh − Ikhu∥a,h ≲ hr+1|u|Hr+2(Th), (1.46)

where ∥·∥a,h is defined in (1.41) and the hidden constant is independent of h and u.

Proof. We use the Strang Lemma with U = H1
0 (Ω), a(u, v) = (∇u,∇v), l(v) = (f, v),

Uh = Uk
h,0 with norm ∥·∥a,h, ah = ah, lh(vh) = (f, vh), and Ihu = Ikhu. It follows that

∥uh − Ikhu∥a,h ≤ γ−1∥Eh(u; ·)∥a,h,⋆ , (1.47)

being Eh(u; ·) the consistency error (1.43) with w = u, as −∆u = f .

Moreover we know that the bilinear form ah enjoys the consistence property (1.42), that
we recall here for convenience:

sup
vh∈Uk

h,0,∥vh∥a,h=1

|Eh(w; vh)| ≲ hr+1|w|Hr+2(Th), (1.48)

Since we can recognise in the left-hand-side the dual energy norm of the consistency error,
(1.46) follows plugging (1.48) into (1.47).

This result gives us an estimate on the discrete error, defined as the difference between
the discrete solution uh and the interpolate of the continuous solution.

Let us now proceed showing a different error estimate, obtained comparing the continuous
solution to the potential reconstruction of the discrete one. To this end we define a global
potential reconstruction operator obtained piecewise from the local one: pk+1

h : Uk
h →

Pk+1(Th) such that, for all vh ∈ Uk
h,

(pk+1
h vh)|T := pk+1

T vT ∀T ∈ Th. (1.49)
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This operator allows now to compare directly pk+1
h uh to u.

Theorem 1.3 (Energy error estimate for the reconstructed approximate solution). Under
the assumptions and notations of Theorem 1.2, it holds that

∥∇h(p
k+1
h uh − u)∥ + |uh|s,h ≲ hr+1|u|Hr+2(Th), (1.50)

where the hidden constant is independent of h and u, and the |·|s,h seminorm is defined
by (1.40).

We can notice that in the left-hand-side there are two terms, the first one linking the
broken gradient of the global reconstruction to the gradient of u, and the second one
related to the stabilisation form. The latter can be associated to the jumps of u, telling
us that the jumps of u converge to 0 with hr+1.

L2-error estimate

Finally we state a result regarding the convergence of the error in L2-norm.

Remark (Approximation properties of the discrete space) Notice that, because of the defi-
nition of global interpolator, thanks to the equivalence of the norms ∥·∥1,h and ∥·∥1,a, and
exploiting the previous error estimate in energy norm, it can be proved the following:

∥uh − π0,k
h u∥ ≲ hr+1|u|Hr+2(Th), (1.51)

where uh is the discontinuous polynomial function given by the components of uh corre-
sponding to the each element T .

The key point now is to achieve an error estimate of higher degree, valid for HHO un-
knowns, which is called result of superconvergence, as the numerical solution converges to
the projection of the exact one faster than the projection to the exact solution. This is
possible adding further regularity to the continuous problem.

We, therefore, assume that for all g ∈ L2(Ω), the unique solution of the dual problem:
Find zg ∈ H1

0 (Ω) such that

a(v, zg) = (g, v) ∀v ∈ H1
0 (Ω) (1.52)

satisfies the elliptic regularity

∥zg∥H2(Ω) ≤ C∥g∥, (1.53)
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with real number C depending only on Ω. Elliptic regularity holds when the domain Ω is
convex.

To finally formalize the above idea let us state the following theorem.

Theorem 1.4 (Superconvergence of element unknowns). Let (Mh)h∈H denote a regular
mesh sequence in the sense of Definition 1.5. Let a polynomial degree k ≥ 0 be fixed.
Let u ∈ H1

0 (Ω) denote the unique solution of (1.14), for which we assume the additional
regularity u ∈ Hr+2(Th) for some r ∈ {0, . . . , k}. For all h ∈ H, let uh ∈ Uk

h,0 denote the
unique solution to (1.44) with stabilisation bilinear forms sT , T ∈ Th, in (1.24) satisfying
assumptions (S1)-(S3). Further assuming elliptic regularity and that f ∈ H1(Th) if k = 0,
it holds that

∥uh − π0,k
h u∥ ≲

h2∥f∥H1(Th) if k = 0,

hr+2|u|Hr+2(Th) if k ≥ 1,
(1.54)

where the hidden constant is independent of both h and u, and the global L2-orthogonal
projection π0,k

h u is defined according to (1.9), i.e., (π0,k
h u)|T = π0,k

T u|T for all T ∈ Th.

As anticipated, adding the hypothesis of elliptic regularity to the continuous problem we
gain an order of convergence with respect to the estimate 1.51, namely, the L2-norm of the
error converges as hk+2. This means that element-based discrete unknowns superconverge
to the L2-orthogonal projection of degree k of the exact solution, provided sufficient
regularity of the solution. This is one of the distinctive features of HHO methods.

1.3. Implementation

Let us start fixing a basis for Pl(T ) for any mesh element T ∈ Th and any integer l ≥ 0,
denoted by

Φl
T := {φT

i }1≤i≤N l
d
,

and a basis for Pk(F ), for any face F ∈ Fh, denoted by

Φk
F := {φF

i }1≤i≤Nk
d−1

.

Every function vT ∈ Pl(T ) and vF ∈ Pk(F ) can therefore be written as

vT =

N l
d∑

i=1

V T
i φT

i for all T ∈ Th and vF =

Nk
d−1∑
i=1

V F
i φF

i for all F ∈ Fh, (1.55)
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where the real numbers V T
i , V F

i are called degrees of freedom.
The resulting basis for the global HHO space Uk

h is obtained taking the Cartesian product
of the bases for the local polynomial spaces:

Φk
h :=

(
×
T∈Th

Φk
T

)
×
(
×
F∈Fh

Φk
F

)
.

1.4. Local construction and discrete problem

Let us now introduce briefly the algebraic formulation of the method for the Poisson
problem starting from the local contributions. Let vT ∈ Uk

T be given, and denote by VT

the corresponding vector of degrees of freedom partitioned as follows:

VT =


VT

VF1

...
VFN∂,T

 ∈ RNdof,T

with subvectors

VT = [V T
i ]1≤i≤Nk

d
∈ RNk

d , VF = [V F
i ]1≤i≤Nk

d−1
∈ RNk

d−1 ∀F ∈ FT ,

where, setting N∂,T := card(FT ), we have defined the integer

Ndof,T := dim(Uk
T ) = Nk

d +N∂,TN
k
d−1

representing the number of local degrees of freedom associated with T and its faces, and
we have introduced a numbering of the faces of T from 1 to N∂,T .

Let us now recall the local bilinear form:

aT (uT , vT ) := (∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT , vT ).

This form is associated with a symmetric positive semidefinite local matrix AT , which
represents the contribution of element T to the system matrix (see the definition (1.39)
of Ah).
This local contribution can be decomposed into its consistency and stability terms as

AT = Acons
T +Astab

T ∈ RNdof,T×Ndof,T . (1.56)
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The consistency contribution reads

Acons
T = P⊺

TSTPT ,

where PT is a matrix of size Nk+1
d × Ndof,T which represents the linear operator pk+1

T :

Uk
T → Pk+1(T ), once we have fixed a basis for Uk

T and one for Pk+1(T ), and ST :=[
(∇φT

i ,∇φT
j )T

]
1≤i,j≤Nk+1

d

.

The stability terms can be of different forms. The one corresponding to Example 1.31 is :

Astab
T =

∑
F∈FT

h−1
F (DTF − (Mk,k

FF )
−1Mk,k

FTDT )
⊺Mk,k

FF (DTF − (Mk,k
FF )

−1Mk,k
FTDT ), (1.57)

where

• for integers l,m ≥ 0, we define the local element mass matrix,

Ml,m
TT :=

[
(φT

i , φ
T
j )T

]
1≤i≤N l

d,1≤j≤Nm
d

;

• the face-element and face-face mass matrices, for a fixed face F ∈ FT and for given
integers l,m ≥ 0, are

Ml,m
FT :=

[
(φF

i , φ
T
j )F

]
1≤i≤N l

d−1,1≤j≤Nm
d

, Ml,m
FF :=

[
(φF

i , φ
F
j )F

]
1≤i≤N l

d−1,1≤j≤Nm
d−1

;

• DTF ∈ RNk
d−1×Ndof,T represent the difference operators δkTF : Uk

T → Pk(F ) and is
defined such that:

DTF := (Mk,k
FF )

−1Mk,k+1
FT PT −

[
0 0 · · · INk

d−1
· · · 0

]
;

• DT ∈ RNk
d×Ndof,T represents the element difference operator δkT : Uk

T → Pk(T ) and it
is defined such that

DT := (Mk,k
TT )

−1Mk,k+1
TT PT −

[
INk

d
0 · · · 0

]
.

The local contribution from the element T to the source term is

BT =

[
BT
T

0

]
∈ RNdof,T , BT

T :=
[
(f, φT

i )T

]
1≤i≤Nk

d

,
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where the 0 block fills the rows corresponding to all face unknowns.

We can now assemble the discrete problem element-wise.

Ãh =
∑
T∈Th

AT B̃h =
∑
T∈Th

BT . (1.58)

We assume the following ordering for the degrees of freedom: first those attached to mesh
elements, then those attached to interfaces and Neumann boundary faces, finally those
attached to Dirichlet boundary faces. Defining the set of non-Dirichlet faces

F ̸D
h := Fh \ FD

h = F i
h ∪ FN

h , (1.59)

this ordering induces the following block structure on Ãh and B̃h:

Ãh =


AThTh AThF ̸D

h
AThFD

h

AF ̸D
h Th AF ̸D

h F ̸D
h

AF ̸D
h FD

h

AFD
h Th AFD

h F ̸D
h

AFD
h FD

h

 , B̃h =

BTh

0

0

 .

We account for the non-homogeneous Neumann boundary condition defining the following
vector:

Bh,N =
[
BF,N

]
F∈F ̸D

h

with BF,N :=


0 if F ∈ F i

h,[
(gN, φ

F
i )F

]
1≤i≤Nk

d−1

if F ∈ FN
h .

Denoting by
Ndof,h := card(Th)Nk

d + card(F ̸D
h )N

k
d−1

the global number of degrees of freedom, the algebraic realisation of the discrete Poisson
problem with mixed boundary conditions reads:

Find Uh,0 =

[
UTh,0

UF ̸D
h ,0

]
∈ RNdof,h such that

[
AThTh AThF ̸D

h

AF ̸D
h Th AF ̸D

h F ̸D
h

][
UTh,0

UF ̸D
h ,0

]
=

[
BTh

Bh,N

]
−
[
AThFD

h

AF ̸D
h FD

h

]
UFD

h
=:

[
CTh

CF ̸D
h

]
. (1.60)
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1.4.1. Static condensation

HHO method is characterized by degrees of freedom attached to both cells and faces,
however, it is a common practice to account only for face unknowns assembling the global
system. This technique is known as static condensation. Hence HHO becomes a skeletal
method, being the unknowns of the solution referring only to face degrees of freedom.

Notice that the submatrix AThTh is block-diagonal (with each block corresponding to
one mesh element) and symmetric positive definite, and is therefore inexpensive to invert.
The block-diagonal structure is a consequence of the fact that, for a fixed mesh element
T ∈ Th, the discrete unknown uT attached to T interacts with the other discrete unknowns
only through the face unknowns uF , F ∈ FT .
As a consequence, a good idea seems to solve the linear system (1.60) in two steps:

(i) First, we express UTh,0 in terms of CTh and UF ̸D
h ,0, solving the following computa-

tionally cheap equation:

UTh,0 = A−1
ThTh

(
CTh −AThF ̸D

h
UF ̸D

h ,0

)
. (1.61a)

This step is the actual static condensation step;

(ii) Second (the main step), face-based coefficients in UF ̸D
h ,0 are obtained solving the

following global problem, involving only quantities attached to the mesh skeleton:

(
AF ̸D

h F ̸D
h
−AF ̸D

h ThA
−1
ThThAThF ̸D

h

)
︸ ︷︷ ︸

=:Asc
h

UF ̸D
h ,0 = CF ̸D

h
−AF ̸D

h ThA
−1
ThThCTh . (1.61b)

This step requires to invert the symmetric positive definite matrix Asc
h , with size

N sc
dof,h := card(F ̸D

h )N
k
d−1. (1.61c)
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This chapter deals with a posteriori residual-based error estimators, whose relevance is
related to mesh adaptation. A posteriori-driven mesh refinement gives some crucial advan-
tages, such as the significant enhancement of the performance of problems with singular
solutions, allowing to fully exploit the high-order of approximation of HHO schemes. In-
deed, for smooth exact solutions, increasing the polynomial degree yields a corresponding
increase in the convergence rate, as we saw in the previous section. However, if this is not
the case and instead the exact solution is not regular enough, the order of convergence is
limited by the poor regularity of the solution. In order to restore optimal order of conver-
gence local mesh adaptation can help, typically using local a posteriori error estimators
to mark the elements with the largest error, so that they will be refined. The analysis
takes into consideration [2] as well as [1] and [4] for the residual based approach and the
Fichera corner benchmark problem.

2.1. Reliable upper bound

The goal of this section is to prove an upper bound of the discretization error of the
following form

∥∇h(p
k+1
h uh − u)∥ ≲ ε, (2.1)

where the hidden constant is independent of the meshsize and of the problem data.

If ε, the estimator, is computable only through the discrete solution and the problem
data, this upper bound is said to be reliable.

For polytopal meshes we will see an even stronger property than reliability: we will obtain
an estimate of the form

∥∇h(p
k+1
h uh − u)∥ ≤ ε.

This time there are no undetermined constants in the right-hand side, so that the upper
bound is said to be guaranteed and fully computable.

Let us now proceed briefly introducing some definitions used to derive error estimators
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exploiting a residual-based approach .

For any integer l ≥ 1 and any broken polynomial function vh ∈ Pl(Th), let the residual
R(vh) ∈ H−1(Ω) be such that, for all φ ∈ H1

0 (Ω),

⟨R(vh), φ⟩−1,1 := a(u− vh, φ) = (f, φ)− a(vh, φ), (2.2)

where ⟨· , ·⟩−1,1 denotes the duality pairing between H−1(Ω) and H1
0 (Ω).

Let now the boundary residual operator Rk
∂T : Uk

T → Dk
∂T be such that, for all vT ∈ Uk

T ,
the vector of polynomials

Rk
∂TvT := (Rk

TFvT )F∈FT

satisfies, for all α∂T = (αTF )F∈FT
∈ Dk

∂T ,

−
∑
F∈FT

(Rk
TFvT , αTF )F = sT ((0,∆

k
∂TvT ), (0, α∂T )). (2.3)

The residual-based approach used to derive error estimators relies on the following abstract
estimate.

Lemma 2.1 (Abstract estimate). Let u ∈ H1
0 (Ω) solve the Poisson problem (1.14). Then,

for any integer l ≥ 1 and any broken polynomial function vh ∈ Pl(Th), it holds that

∥∇h(u− vh)∥2 ≤ inf
φ∈H1

0 (Ω)
∥∇h(φ− vh)∥2 +

(
sup

φ∈H1
0 (Ω),∥∇φ∥=1

⟨R(vh), φ⟩−1,1

)2

. (2.4)

We can observe that the difference between the continuous solution of the Poisson problem,
u, and a generic broken polynomial function vh is estimated by two terms: a nonconformity
term that measures the difference between vh and the closest element of H1

0 (Ω) and
a residual term measuring how far is vh from being the exact solution of the Poisson
problem in terms of the dual norm of the residual 2.2.

From this estimate it’s possible to prove the upper bound we were looking for, which is
the following.

Theorem 2.1 (A posteriori error upper bound). Let Mh denote a polytopal mesh in
the sense of Definition 1.2, and let an integer k ≥ 0 be fixed. Let u ∈ H1

0 (Ω) and
uh ∈ Uk

h,0 denote the unique solutions to problems (1.14) and (1.44), respectively, with
local stabilisation bilinear forms sT , T ∈ Th, satisfying assumptions (S1)-(S3). Then, it
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holds that

∥∇h(p
k+1
h uh − u)∥ ≤ ε :=

[∑
T∈Th

(
ε2nc,T + (εres,T + εsta,T )

2
)] 1

2

, (2.5)

with local nonconformity, residual, and stabilisation estimators such that, for all T ∈ Th,

εnc,T := ∥∇(pk+1
T uT − u∗

h)∥T ,
εres,T := CP,ThT∥(f +∆pk+1

T uT )− π0,0
T (f +∆pk+1

T uT )∥T ,

εsta,T := C
1
2
F,Th

1
2
T

(∑
F∈FT

∥Rk
TFuT∥2F

) 1
2

,

(2.6a)

(2.6b)

(2.6c)

where u∗
h is an arbitrary function in H1

0 (Ω) and, for all F ∈ FT , the boundary residual
operator Rk

TF is defined by (2.3).

In 2.5 you can still distinguish the different contributions coming from 2.4:
∑

T∈Th ε
2
nc,T

coming directly from the nonconformity term and the rest coming from the residual part.

Remark. The function u∗
h can be obtained from the HHO discrete solution uh by applying

the node-averaging operator, defined below, to the global potential reconstructor pk+1
h uh.

Let an integer l ≥ 1 be fixed. WhenMh = (Th,Fh) is a matching simplicial mesh in the
sense of Definition 1.3, the node-averaging operator I lav,h : Pl(Th) → Pl(Th) ∩ H1

0 (Ω) is
defined by setting, for each Lagrange interpolation node N ,

(I lav,hvh)(N ) :=


1

card(TN )

∑
T∈TN

(vh)|T (N ) if N ∈ Ω,

0 if N ∈ ∂Ω,

where the set TN ⊂ Th collects the simplices to which N belongs. We then set

u∗
h := Ik+1

av,hp
k+1
h uh. (2.7)

The generalisation to polytopal meshes can be realised applying the node averaging o-
perator to pk+1

h uh on a matching simplicial submesh of Th (whose existence is guaranteed
for regular mesh sequences, see Definition 1.5).
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2.2. Local and global efficiency

In this section we will show that the previous estimate is both local and global efficient
by showing that it is bounded from above by the discretisation error. This is important
to be sure that the estimators localise the error correctly and do not overstimate it.

Let us start with the local efficiency. An error estimator on a given mesh element T ∈
Th is local efficient if it provides a local lower bound, namely if it is bounded by the
approximation error on some elements surrounding T . This implies that the a posteriori
estimate is eligible to drive local mesh refinement.

The local efficiency of the previous estimators is given by the following theorem.

Theorem 2.2 (A posteriori local error lower bound). We let the assumptions of Theo-
rem 2.1 hold and further assume, for the sake of simplicity, that

(i) for all T ∈ Th, the stabilisation bilinear form sT is given by (1.32);

(ii) the H1
0 -conforming reconstruction u∗

h is obtained using the node-averaging operator
on the matching simplicial submesh Mh = (Th,Fh) of Mh = (Th,Fh) of Definition
1.5;

(iii) we have, for the forcing term, f ∈ Pk+1(Th).

Then, it holds, for all T ∈ Th,

εnc,T ≲
(
∥∇h(p

k+1
h uh − u)∥N ,T + |uh|s,N ,T

)
,

εres,T ≲ ∥∇(pk+1
T uT − u)∥T ,

εsta,T ≲ |uT |s,T ,

(2.8a)

(2.8b)

(2.8c)

with hidden constants possibly depending on d, ϱ, and on k, but independent of h, T , and
u. For all T ∈ Th, ∥·∥N ,T denotes the L2-norm on the union of the elements in TN ,T and
we have set, with stabilisation seminorm |·|s,T ′, for T ′ ∈ TN ,T , such that, for all vT ′ ∈ Uk

T ′,
|vT ′ |2s,T ′ := sT ′(vT ′ , vT ′),

|uh|s,N ,T :=

 ∑
T ′∈TN ,T

|uT ′|2s,T ′

 1
2

.

As immediate consequence, the global lower bound holds. This entails global efficiency of
the estimator:

Theorem 2.3 (Global lower bound). Under the assumptions of Theorem 2.2, it holds
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that [∑
T∈Th

(
ε2nc,T + (εres,T + εsta,T )

2
)] 1

2

≲
(
∥∇h(p

k+1
h uh − u)∥ + |uh|s,h

)
,

with hidden constant independent of h and f , but possibly depending on d, ϱ and k.

2.3. Numerical examples: a posteriori-driven mesh

adaptivity

In this section we will see how to incorporate a posteriori estimators into mesh adap-
tivity, showing then some numerical examples carried out by [2] exploiting a conforming
refinement of the mesh.

The typical adaptive procedure is characterized by the iteration of the following four steps:

• solve for the numerical scheme on the current mesh;

• compute the error estimator;

• mark certain elements with precise values of the estimators;

• refine them to get the next mesh.

Algorithm 2.1 Pseudocode of the automatic mesh adaptation procedure.
1: Set a tolerance tol > 0 and a maximum number of iterations Nmax

2: Generate an initial coarse mesh T (0)
h , set n← 0, and let T (n)

h ← T (0)
h

3: repeat
4: Solve the HHO problem (1.44) on T (n)

h

5: for T ∈ T (n)
h do

6: Compute and store the local estimator εT :=
[
ε2nc,T + (εres,T + εsta,T )

2
] 1

2

7: end for
8: for T ∈ T (n)

h do
9: if T is among the 5% elements with the largest local estimator then

10: Set a target diameter of hT/2
11: else
12: Set a target diameter of hT

13: end if
14: end for
15: Set n← n+1 and generate a novel mesh T (n)

h by using the target element diameters
16: until ε < tol or n > Nmax

The following numerical tests are performed on the Fichera corner benchmark problem,
whose solution is known to be singular:
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Figure 2.1: Error vs. Ndof for the test case of Fichera problem. “un”= uniformly refined
meshes, “ad”= adaptively refined meshes. Figure taken from [2].

u(x1, x2, x3) =
4

√
x2
1 + x2

2 + x2
3.

In Figure 2.1 it is plotted the numerical error versus the number of degrees of freedom
Ndof on uniformly and adaptively refined mesh sequences for polynomial degrees up to 2.

Notice that the error is plotted against the number of degrees of freedom instead of the
global meshsize h since h may not vary locally refining the mesh.

We can clearly see that with uniformly refined meshes the convergence order is not optimal,
being limited by the poor regularity of the solution. On adaptively refined mesh sequences,

on the other hand, the optimal convergence rates of N
(k+1)

d
dof and N

(k+2)
d

dof in both the energy-
norm and L2-norm are recovered. This confirms that Algorithm 2.1 is able to restore
optimal orders of convergence.
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adaptivity

An important asset of polytopal methods is the ability to treat non-conforming meshes.
This is due to the fact that, by introducing a hanging node on an edge in the mesh, it
can be seen as the union of other two different coplanar edges and the adjacent cell will
be considered as a polytope with one more edge.
In this work, new non-conforming refinement methods for 2D meshes have been deve-
loped, and in this chapter they will be presented.

The theoretical benefit from a non-conforming refinement is being able to refine the mesh
just locally, without adjusting and reconstructing the mesh in the entire domain, but
only in a small area. This is crucial when you cope with phenomena which occur in one
point or in a small part of the domain and it results in a significant computational cost
reduction. The implementation rationale is, therefore, to make this theoretical concept
a concrete advantage, by reproducing it at a computational level. As a consequence, the
goal is to perform at each refinement only local operations.

Let us notice that the notion of non-conforming refinement of the mesh naturally leads
to the notion dynamic mesh. Indeed, if we were interested in locally refining the mesh
to better capture particular physical phenomena, we may want to coarsen it where the
phenomena are less relevant or smoother. Therefore we will introduce a new DynamicMesh

class, which has the simultaneous potential of both refining and coarsening the mesh.

3.1. HArD::Core library

Let us start by briefly introducing the HArD::Core library, the essential core for the
following development of new methods and classes. HArD::Core provides a suite of C++
tools to implement numerical schemes on general polytopal meshes, whose unknowns are
polynomials in the cells, both on the edges and on the faces (hybrid methods). The aim
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is to deal with generic polytopal meshes. The library was mainly designed for the Hybrid
High-Order methods: several HHO methods are already implemented in this framework,
however the tools provided in this library are useful for a range of numerical methods.

The main sections of the library are the following modules:

• a set of classes and functions to represent suitable basis of polynomial functions in
Rd with d = 2, 3;

• classes providing cell and edge quadrature rules, and values of basis functions at the
nodes;

• HHO scheme classes, which load the mesh, properly impose boundary conditions,
assemble the global system, and solve it;

• a set of classes to construct and describe polyhedral meshes and their entities. Suit-
able classes represent vertices, edges and cells (in the 2d case), and the mesh object
can be seen as a collection of its enties, containing vectors of vertices, edges and
cells. This is the module we will focus on.

3.1.1. The Mesh class

In order to handle the mesh, the main item is the Mesh class, which contains vectors of
Cell, Edge and Vertex objects, based on classes that suitably represent all the entities
of the mesh. The mesh class provides also methods to extract single elements, such as
particular cells, edges, or vertices with a given index, as you can see below. For instance,
the function Mesh::get_cells() returns a vector with all the cells of the mesh, ordered
according to their global indeces, while the function Mesh::cell(size_t i) returns the
cell with global index i.

Listing 3.1: The Mesh class with its main methods and attributes

class Mesh {

private:
// primary data: list of cells , edges , vertices ...
std::vector <Cell*> _cells;
std::vector <Edge*> _edges;
std::vector <Vertex*> _vertices;
std::vector <Cell*> _b_cells; // boundary cells
std::vector <Edge*> _b_edges;
...



3| Non-conforming mesh adaptivity 35

public:
Mesh();
~Mesh();

inline size_t n_cells () const; // number of cells in the mesh
inline size_t n_edges () const; // number of edges in the mesh
inline size_t n_vertices () const; // number of vertices in the mesh
size_t n_b_cells () const; // number of boundary cells
...

inline double h_max () const; // max of diameter of cells

inline std::vector <Cell*> get_cells () const; // lists all the cells
inline std::vector <Edge*> get_edges () const; // lists the edges
inline std::vector <Vertex*> get_vertices () const; // lists the

vertices
Cell* cell(size_t iC) const; // get a constant pointer to a cell

using its global index
Edge* edge(size_t iE) const; // get a constant pointer to an edge

using its global index
Vertex* vertex(size_t iV) const; // get a constant pointer to a

vertex using its global index
...

};

3.2. DynamicMesh class

The goal of this work is to develop a new class which extends the classical Mesh, called
DynamicMesh, which mantains the same interface as Mesh. In this way the two classes
will be interchangeable and all the already existing schemes for solving partial differential
equations, which use the Mesh class and all its methods, will not need to be changed.

Hence, the aim of our DynamicMesh class will be to add some new methods to refine the
mesh, and in the meantime to overload the already existing getter functions get_cells(),
cell(size_t i), etc. Clearly they have to work in a more sophisticated way, assuming
the mesh has been refined. Particularly, they will have to iterate over the mesh taking
into account properly all the sub-elements coming from the refined elements.

Listing 3.2: Structure of the DynamicMesh class

class DynamicMesh: public Mesh {
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public:
// overloaded Mesh functions

inline size_t n_cells () const; // number of cells
inline size_t n_edges () const; // number of edges
inline size_t n_vertices () const; // number of vertices

inline std::vector <Cell*> get_cells () const; // lists all the cells
inline std::vector <Edge*> get_edges () const; // lists all the edges
inline std::vector <Vertex*> get_vertices () const; // all vertices
Cell* cell(size_t iC) const; // pointer to the cell iC
Edge* edge(size_t iE) const; // pointer to the edge iE
Vertex* vertex(size_t iV) const; // pointer to the vertex iV
...

// some new methods and attributes to perform adaptivity of the mesh
... // see the following sections

};

Let us notice that, in this work, we will treat only the 2D case with triangular mesh
elements that will be refined into four smaller cells joining the mid points of the original
one, as shown in figure 3.1.

Figure 3.1: 2D triangular refined cell.

The basic mechanism is therefore the following: when a cell (edge) is refined, it becomes
father of four (two) new children cells (edges, respectively).

Pay attention to the fact that the vectors of cells, edges and vertices already contained in
the DynamicMesh object, inherited from the Mesh class, will not actually change. They are
indeed private members of the Mesh class, and, from a coding point of view, they cannot be
modified. On the other hand, even theoretically we do not want to modify them, neither
we need it. Hence they will remain untouched. What will change is only the information
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carried by the refinement operation, in such a way that our DynamicMesh object becomes
a sort of virtual mesh, which contains all the information about the refinements but not
every concrete element of the mesh.

How to store the information? To this purpose, some new ad-hoc classes have been
created, namely CellInfo and EdgeInfo, which represent each cell and edge, with their
global indices, and contain a vector of (pointers to their) children - possibly empty - and
(a pointer to) their father, if any. They are stored in two vectors called _cells_infos

and _edges_infos within the DynamicMesh class, in such a way that, at the beginning,
when the mesh is still not refined, there is a correspondence 1 to 1 between each CellInfo

(EdgeInfo) and each Cell (Edge).

Listing 3.3: CellInfo and EdgeInfo classes

class CellInfo{

private:
size_t _Gi; // global index of the cell
size_t _Li; // local index (among the cells in the same level of

refinement)
size_t _has_children = 0; // number of children and subchildren
size_t _has_father = 0; // number of ancestors
std::vector <CellInfo*> _children;
CellInfo* _father = nullptr;

size_t _n_vertices; // always 3
std::vector <Vector2d > _coords; // vertices of the cell (always the

original three vertices , even if the cell is refined)
std::vector <CellInfo*> _neighbours; // the 3 "big" neighbours of the

cell , possibly "virtual" cells , if they are actually refined
std::vector <EdgeInfo*> _edges; //the 3 big edges , which can be "

virtual" and have children
std::vector <EdgeInfo*> _children_edges; // the 3 new edges that join

the midpoints of the cell’s edges when it is refined
...

public:
std::vector <size_t > vertices_ids (); // it looks at the edges of the

cell and takes consequently the indices of the vertices
// getter functions
...

}

class EdgeInfo{
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// same structure ad CellInfo

}

3.2.1. The refinement function

At every cell refinement, given the global index of the cell to be refined, what happens is
basically the following.

1. The corresponding (with same global index) CellInfo is located.

2. Four new CellInfo objects are created, namely the cell’s children, with as father
attribute the old cell.

3. The children attribute of the refined CellInfo will be filled with its new children.

4. Two new EdgeInfo objects per each edge of the cell are created, neamely the children
of each edge, with the corresponding father.

5. The children attribute of each edge is filled accordingly.

In this way a tree-like structure will be generated, with every cell pointing to its children,
and to its father. Notice moreover that every CellInfo contains also (the pointers to) its
neighbours. This is necessary since the neighbours of a refined cell will change number
of edges and vertices, so, ideally, the neighbours have to be identified and modified (Fig.
3.2). We will see later more in detail how this is carried out, looking at the function
DynamicMesh::cell(size_t i).

Figure 3.2: Tree-structure of a refined mesh.

Notice that the CellInfo attributes vertices, edges and neighbours contain always
only three elements, even if the cell is refined and has actually more of them. We can
think of them as virtual edges and neighbours, and, in order to catch the real ones, one
needs to go deeply into their children and subchildren.
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This is indeed the main point of the new class, namely being able to iterate correctly
through all the elements and through all the children of each element. The overloading
getter functions which return the elements of the mesh (like DynamicMesh::get_cells(),
DynamicMesh::cell(size_t i) etc.) will have indeed to iterate through all the elements,
checking if they have children, and if so, through all the children, in order to emulate the
behaviour of the overloaded functions (Mesh::get_cells(), Mesh::cell(size_t), etc.)
and to return the right elements. In order to do it, recursive functions are exploited,
which go deep into each element’s children, until they reach the last level, meaning cells
with no children anymore.

Listing 3.4: Overview of the refinement method

void DynamicMesh :: refine(CellInfo* c) {

_n_ref ++; // number of refined cells in the mesh

// - initialising the new elements

std::vector <CellInfo*> new_cells (4); //The 4 new little cells
std::vector <EdgeInfo*> central_edges (3); //The 3 new central edges
...

// - refining the edges

size_t new_vertex_idx = n_vertices ();

for (auto& e : c->_edges){ // cicle over the "big" edges of the cell
if(!e->_has_children) {

edge_refine(e, new_vertex_idx);
new_vertex_idx ++;

}
else e->_refined_cells ++;

}

// - storing the vertices ’ coordinates and the vertices ’ indeces of
the new elements

...

// - creating the first 3 new cells and the central edges

for (size_t i = 0; i < 3; i++){
new_cells[i] = new CellInfo(find_global_index(c) + i, i,

vertices[i]);
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...
central_edges[i] = new EdgeInfo(0, next_index_edge + i, verts ,

ids);
central_edges[i]->_father_cell = c;
c->_children_edges.push_back(central_edges[i]);
...
new_cells[i]->_father = c;
c->_children.push_back(new_cells[i]);

}

// - adjusting the indeces
...

// - creating the 4th new cell
new_cells [3] = new CellInfo(find_global_index(c) + 3, 3, vertices

[3]);
new_cells [3]-> _has_father = c->_has_father + 1;
new_cells [3]-> _father = c;
c->_children.push_back(new_cells [3]);
...

Remark about indexing. Let us explain briefly how the indices of the elements are ad-
justed. Given a cell with index iC which we want to refine, its children will take indices
iC, iC+1, iC+2 and iC+3. The indices of all the subsequent elements must be shifted
accordingly. The same happens for the edges. However, the new edges created inside the
refined cell, joining the midpoints of its old edges, do not have a father and so they are
added at the end, both in terms of indexing and in terms of physical vector; they are
indeed added at the bottom of the _edges_infos vector. Similarly, regarding the new
vertices, since they do not have a direct father, they are ideally added at the end - ideally,
because notice that it does not exists a vector of vertices stored in the DynamicMesh class
- and so they take as indices the last ones in the numbering. Finally let us remark that,
while for sake of simplicity in this presentation has been shown the global index of the
element _iG_ in each CellInfo and EdgeInfo, actually, to avoid to iterate all over the
elements every time a cell is refined in order to update the global index, our choice was
to not consider it as attribute of the class. What is actually done is instead to add a
public method DynamicMesh::find_global_index(CellInfo* c) that iterates over the
elements and returns the right global index. This choice can be easily reversed according
to which operations are performed the most in each circumstance.

Recalling now our initial goal, which was to try to perform just local operations, let
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us explain briefly how it has been achieved.

Each time an element (a cell, or an edge, or a vertex) is asked to be returned by the getter
functions of the mesh, the new overloading getter functions of DynamicMesh check if the
element is still unchanged with respect to the original mesh, or it has changed due to
the refinement operations. In the first case it returns (a pointer to) the original element
already present in the Mesh vectors storing the original elements, while in the latter case
it creates a new element from scratch.

Let us make a practical example. If the function DynamicMesh::cell(iC) is called, it
must return the cell with iC-th global index. Hence, what it does is the following:

1. it locates the corresponding CellInfo (with global index iC);

2. it checks if that CellInfo has been refined (namely, it has a non-empty children
vector) or if it has some refined neighbours;

3. if the answer is no, it returns (read: a pointer to) the original corresponding cell;

4. if yes, it creates a new Cell with the right number of edges and vertices, and returns
it.

As a result, just the cells which are explicitly refined, and their neighbours, will be re-
created, while all the others will be kept the same.

We conclude this section by showing one of the main bricks of all the implemented func-
tions, namely the method DynamicMesh::find_cell_info(size_t iC). This is the func-
tions which perform the correct iterations all over the cells, returning the CellInfo of
index iC. It calls an overloaded function with the same name; by comparing it with re-
spect to the previous one, it takes a further argument, a vector of cells among which it
looks for the cell iC. The latter is a recursive function, which for every refined cell calls
recursively itself with as argument the vector of the cell’s children.

Listing 3.5: Method to iterate over the cells and find the right one.

CellInfo* DynamicMesh :: find_cell_info(size_t iC) const {
if (iC >= n_cells ())

... //error
if (_n_ref ==0) // if the number of refined cells is 0

return _cells_infos[iC];
else

return find_cell_info(iC, _cells_infos);
}
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CellInfo* DynamicMesh :: find_cell_info(size_t iC , const std::vector <
CellInfo*> & c_infos) const {
size_t count = 0;
size_t prev_count;
for (size_t i = 0; i < c_infos.size(); i++){ //for every cell in

c_infos
if (count == iC) {

if (!( c_infos[i]->_has_children)) return c_infos[i];
else return find_cell_info(iC - count , c_infos[i]->_children

);
} else if (count > iC){

return find_cell_info(iC - prev_count , c_infos[--i]->
_children);

} else {
prev_count = count;
if (!( c_infos[i]->_has_children)) count ++;
else count += c_infos[i]->_has_children;

}
}

if (count > iC) {
return find_cell_info(iC - prev_count , c_infos[c_infos.size()

-1]->_children);
}

return nullptr;
}

3.2.2. The coarsening function

A dynamic mesh, as we explained, should also support the possibility of being coarsened.
In this work, as a first step towards this direction, it has been implemented a method
to merge children cells coming from the same father, which, therefore, has to be already
refined. Therefore, we can go back from the refined to the initial mesh. In upcoming work
we will extend further this feature, making the coarsening operation also for the original
mesh possible.

Given the already explained structure of the code, and since most of the work is performed
by the getter functions - which have to check if each element has children, and properly
go through every entity of the mesh - the coarsen method is quite straightforward. It
takes as input a CellInfo object to be merged with its brother cells, and executes the
following steps.
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1. It checks if the cell has a father (meaning that it comes from a refined cell).

2. If not, it does nothing.

3. If yes, it deletes all father’s children and their children, if they have any.

4. The same procedure is applied to the edges of the father. It checks if each edge
needs to be coarsened (i.e. if all its adjacent cells are not refined anymore), and if
so, it deletes all its children.

Listing 3.6: Coarsen method

void DynamicMesh :: coarsen(CellInfo* cell){ // coarsening of 1 level

if (!cell ->_has_father)
return;

// - Delete the children cells of the father
CellInfo* father = cell ->_father;
// for every (father ’s) child , delete it and all their children ,

recursively
for (size_t i = 0; i < 3; i++) {

CellInfo* child = father ->_children[i];
if (!child ->_has_children)

delete child;
else {

coarsen(child ->_children [0]);
delete child;

}
}
father ->_children.clear();
father ->_has_children = 0;

// - Decrease _has_children by 3 in all ancestors.
CellInfo* c = father;
while (c->_has_father){

c = c->_father;
c->_has_children -= 3;

}

// - Delete the children edges of the father and fix the indices
...
father ->_children_edges.clear ();

// - Coarsen the father ’s edges , if they do not have anymore refined
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adjacent cells
for (auto& e : father ->_edges) {

if (e->_refined_cells == 1)
edge_coarsen(e);

else if (e->_refined_cells == 2)
e->_refined_cells --;

}
}

The adaptive algorithm

Finally, the function DynamicMesh::adapt(vector<size_t> flags) has been imple-
mented. It takes as input a vector of flags, having the size of the total number of cells
in the mesh. The flags denote for every cell if it has to be refined or left the same. In
upcoming work, we will include also the coarsen option for each cell.

Listing 3.7: The adapt method

void DynamicMesh :: adapt(std::vector <size_t > flags){
size_t n_refined = 0; // number of refined cells while executing adapt

function

for (size_t i = 0; i < flags.size(); i++){ // iterating over each
cell
if (flags[i]==1) {

refine(find_cell_info(i + n_refined * 3)); // flag’s
elements refer to the cells in order

n_refined ++;
}
else if (flags[i]==0) {

//do nothing
}
else{

std::cout << "ERROR , for now we want flags to be a vector of
just 0 and 1" << std::endl;

}
}
return;

}

Remark. Notice that this function can be improved in upcoming work. Up to now it
calls for every flag element (i.e. for every cell) the function find_cell_info(size_t),
which goes through all the mesh again. As a consequence this function performs O(n2)
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(a) original mesh (b) refined cell 6 (c) refined cells 6, 1, and
some children

Figure 3.3: A simple mesh on the left, with visible cells indexing, in the center cell 6 is
refined, on the right cell 6, cell 1, one of its children and again one of its further children
are refined.

(a) refined cells 6 and 3 (b) refined cells 6, 3 and
2

(c) refined cells 6, 3, 2
and all children of 3

Figure 3.4: Here an example of refined adjacent cells

operations just iterating all over the cells. A much better possibility is to move forward
through the flags vector and through all the cells of the mesh at the same time, since they
are ordered in the same way.

3.3. Numerical tests

In the last section, our code is finally tested. First of all we show some examples of
non-conforming refined meshes, which exploit the methods previously illustrated. In Fig.
3.3 and 3.4 we start with two simple examples of non-conforming refinement, applied to
a simple mesh were the indices of the cells are highlighted. First, in In Fig. 3.3 we refine
cell 6, then cell 6 plus cell 1 and some of its children and subchildren. As for the second
example, in Fig. 3.4, we show the refinement of adjacent cells. Next, in Fig. 3.5 we
plot an example with a slightly more sophisticated mesh, taken from HArD::Core library,
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(a) mesh1_1.typ2 from
HArDCore library

(b) the top left corner is
refined

(c) again a top left
smaller area is refined

Figure 3.5: mesh1_1.typ2 from HArDCore library is refined

where we refine an area of the mesh, and then again a subarea.

Finally the algorithm 2.1 for the automatic adaptation procedure has been implemented,
by exploiting our non-conforming refinement methods. Up to now, it has been used the
true error in local energy norm as the crucial feature to select which cells of the mesh have
to be refined; in the course of our upcoming work, also the version based on a posteriori
estimators will be included.

The algorithm, as explained in the previous chapter, takes the 5% of the cells with highest
error and refine them, exploiting the function DynamicMesh::adapt(flags), where flags
marks the selected cells. Differently from the previous chapter, the refinements this time
will be non-conforming.

Listing 3.8: Automatic mesh adaptation procedure

void automatic_mesh_adaptation(double tol , size_t N_max , DynamicMesh*
mesh_ptr , ...){

size_t n = 0;
double err = tol + 1;

std::vector <double > l2_errors;
std::vector <double > en_errors;
std::vector <size_t > dofs;

while (err > tol && n < N_max) {

// 1 - Solve the problem
...
HybridCore hho(mesh_ptr , K + 1, K, use_threads , output);
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HHO_Diffusion model(hho , K, L, kappa , source , BC, exact_solution
, grad_exact_solution , solver_type , use_threads ,output);

...

model.assemble(hho);

UVector u = model.solve(hho);

UVector Uh = hho.interpolate(exact_solution , L, K, 2 * K + 2);

// 2 - Compute the errors and mark the elements

size_t N_top5 = ceil(mesh_ptr ->n_cells () * 5.0 / 100.0);
std::vector <double > highest_error(N); // the highest 5% errors
std::vector <size_t > highest_error_indices(N); // the indices of

their corresponding cell.
...

std::vector <size_t > flags(mesh_ptr ->n_cells ());

for (size_t iT = 0; iT < flags.size(); iT++){ //for every cell I
compute the error
double local_error = model.EnergyNorm_cell(hho , u - Uh, iT);
...
double min = minimum(highest_error , index); //index is a

reference where you get the index of the minimum within
the vector highest_error

if (local_error > min){
highest_error[i] = local_error;
highest_error_indices[index] = iT;

}
}

for (size_t k : highest_error_indices)
flags[k] = 1;

// store errors and dofs at each iteration
double L2error = hho.L2norm(u - Uh) / hho.L2norm(Uh);
double EnergyError = model.EnergyNorm(hho , u - Uh) / model.

EnergyNorm(hho , Uh);
size_t nbedgedofs = model.get_ntotal_edge_dofs ();
l2_errors.push_back(L2error);
en_errors.push_back(EnergyError);
dofs.push_back(nbedgedofs);
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(a) (b)

Figure 3.6: Exact solution for Fichera corner problem (shown on an adaptively refined
grid). We can observe a singularity in the origin.

// 3 - refine the marked elements

mesh_ptr ->adapt(flags);

n++;
err = L2error;

}
}

Finally we are ready to perform some convergence tests, by testing our methods on a
diffusion problem with irregular solution, namely the Fichera corner problem already
mentioned in Chapter 2, whose solution is:

u(x1, x2) =
4

√
x2
1 + x2

2,

which is singular in the origin (Fig. 3.6).

The convergence estimates are, therefore, not proven to be true, and indeed we showed
in Section 2.3 that they do not hold for a uniformly refined mesh sequence. Here, we
show that, by exploiting the adaptation algorithm with our implemented methods for
non-conforming refinement of the mesh, optimal orders of convergence are recovered. Let

us recall the optimal orders of convergence: N
(k+2)

d
dof for energy-norm and N

(k+1)
d

dof for L2-
norm. The convergence results are displayed in figures 3.7, 3.8, 3.9, 3.10, with different
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Figure 3.7: Error vs. Ndof for the test case of Fichera problem with polynomial degree 0.
The expected convergence rate is N−1

dof for the error in L2 norm, and N
−1/2
dof for the error

in energy norm.

polynomial degrees.

Let us conclude by showing the refined mesh (mesh1_1.typ2 displayed in figure 3.5) at a
different number of iterations of the adaptation algorithm 2.1, still applied to the Fichera
problem. See Fig. 3.11 for further details.
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Figure 3.8: Error vs. Ndof for the Fichera solution with polynomial degree 1. The expected
convergence rate is N−3/2

dof for the error in L2 norm, and N−1
dof for the error in energy norm.

Figure 3.9: Error vs. Ndof for the Fichera solution with polynomial degree 2. The expected
convergence rate is N−2

dof for the error in L2 norm, and N
−3/2
dof for the error in energy norm.



3| Non-conforming mesh adaptivity 51

Figure 3.10: Error vs. Ndof for the Fichera solution with polynomial degree 3. Expected
convergence rate: N

−5/2
dof for the L2 error, N−2

dof energy error.
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(a) 5 iterations (b) 10 iterations

(c) 15 iterations (d) 20 iterations

(e) 25 iterations (f) 30 iterations

Figure 3.11: Different number of iterations for the adaptive refinement algorithm with
mesh mesh1_1.typ2
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4| Conclusions and future

developments

As we showed in the last section, a non-conforming adaptivity of the mesh is able to recover
the optimal convergence rates also for poorly regular solutions. The novelty introduced
in our work, namely the non conformity of the refinement, can potentially significantly
reduce the computational cost required by an adaptation procedure, since it needs to
re-build the mesh just locally at every refinement operation. It suits perfectly problems
where physical phenomena occur in small areas of the domain, or problems which result
in poorly regular solutions, like interface problems.

Future research can enhance our work on several grounds.
First of all, the next goal could be to go further with the adaptation procedure, focusing
on incorporating also the coarsening feature, in such a way that, where the numerical
scheme turns out to have a low error, the mesh can be coarsened in order to save com-
putational effort. Another interesting possibility is to make the adaptation of the mesh
driven by a posteriori-estimators, instead of the true errors, so that it can be used also in
more complex problems, whose solution is unknown. Moreover, the computational effort
of our method could be explored more deeply, looking also for smart ways to avoid jumps
in the memory space used by our algorithm.
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