
A Fully-Homomorphic Encryp-
tion System for Privacy-Preserving
Network-Based Contact Tracing

Tesi di Laurea Magistrale in
Telecommunication Engineering - Ingegneria delle
Telecommunicazioni

Author: Paul Horvath-Bojan

Student ID: 942383
Advisor: Prof. Massimo Tornatore
Co-advisors: Dr. Davide Andreoletti, Dr. Omran Ayoub
Academic Year: 2022–23

i

Abstract

The Coronavirus outbreak from late 2019–early 2020 came with a number of challenges
for humanity. Contact tracing is an important measure to decrease the further spread
of the contagion. Traditionally, contact tracing systems are based on phone applications
that check proximity with individuals confirmed positive for the virus and alert users of
potential risks. The adoption of app-based solutions has been scarce, limiting their effec-
tiveness. The main reasons for low adoption rates are either the majority of the population
not being technologically savvy or not willing to have the apps installed on their phones.
Additionally, the apps were perceived as posing a privacy risk, further hindering adoption.
To overcome these issues, we present a network-based approach to contact tracing that
relies on the emergence of 5G network coverage and geo-localization technologies which
promise to reach sub-metre accuracy in upcoming years. The proposed system involves
the cooperation between Mobile Operators (MO) and Government Agencies (GA). The
former is assumed to be able to accurately estimate the locations of their users, while the
latter is assumed to know the infection status of a country’s citizens. Through exchanging
these data, contacts with positive individuals can be detected. As both location data and
infection status are highly sensitive, they cannot be exchanged in the clear. To ensure
privacy, we propose a system allowing MOs and GA to perform computations directly on
encrypted data. The underlying cryptographic scheme of our solution is based on fully-
homomorphic encryption techniques that allow computations on encrypted data without
knowledge of the decryption key, allowing outsourcing computations even to potentially
untrusted parties. Our protocol uses the Cheon-Kim-Kim-Song (CKKS) cryptographic
system to compute a score of infection likelihood, given the number of positive individuals
in proximity within a given period. As computation of this score in encrypted domain is
highly time-consuming, we propose approximations of several key operations performed.
In doing so, reductions in computational time are achieved, at the expense of error in
values of the score. Through simulations, the error versus computational time trade-off
is evaluated. Results show computational times of up to several tens of minutes on a
personal computer, with worst-case induced absolute errors of 0.6634.

Keywords: Privacy; Homomorphic Encryption; Network-Based Positioning; Covid19

Abstract in lingua italiana

L’epidemia di Coronavirus dalla fine del 2019 all’inizio del 2020 ha portato una serie di
sfide per l’umanità. Il tracciamento dei contatti consente di diminuire l’ulteriore diffu-
sione del contagio. Tradizionalmente, i sistemi di tracciamento si basano su applicazioni
telefoniche che verificano la vicinanza con individui positivi al virus e avvisano gli utenti
di potenziali rischi. L’adozione di soluzioni basate su app è stata scarsa, limitandone
l’efficacia. Le ragioni principali sono la poca esperienza tecnologica di larga parte della
popolazione e la poca disponibilità a installare le app sui propri telefoni. Inoltre, le
app sono state percepite come un rischio per la privacy, ostacolandone ulteriormente
l’adozione. Per superare questi problemi, proponiamo un sistema di tracciamento dei
contatti basato sulle tecnologie di localizzazione delle infrastrutture telefoniche (e.g., 5G),
che garantiranno un errore sotto al metro nei prossimi anni. Il sistema proposto prevede
la cooperazione tra Operatori di telefonia mobile (MO) e Agenzie governative (GA). Si
assume che il primo sia in grado di stimare con precisione la posizione dei propri utenti,
e il secondo conosca lo stato di infezione dei cittadini di un paese. Attraverso lo scambio
di questi dati si possono rilevare i contatti con individui positivi. Poiché sia i dati sulla
posizione che lo stato dell’infezione sono altamente sensibili, non possono essere scambiati
in chiaro. Per garantire la privacy, proponiamo un sistema che consenta a MO e GA di
eseguire calcoli direttamente su dati crittografati. Lo schema crittografico alla base della
nostra soluzione, di tipo fully homomorphich, permette calcoli su dati crittografati senza
la conoscenza della chiave di decifratura, consentendo l’esternalizzazione dei calcoli anche
a parti potenzialmente non attendibili. Il nostro protocollo utilizza il sistema crittografico
Cheon-Kim-Kim-Song (CKKS) per calcolare un rischio di infezione, dato il numero di in-
dividui positivi nelle vicinanze in un determinato periodo. Data l’elevata complessità del
calcolo nel dominio cifrato, proponiamo approssimazioni di diverse operazioni chiave ese-
guite. In tal modo, si ottengono riduzioni del tempo di calcolo, a scapito dell’errore nei
valori del rischio. Attraverso simulazioni, viene valutato il trade-off tra errore e tempo
computazionale. I risultati mostrano tempi di calcolo fino a diverse decine di minuti su un
personal computer, con errori assoluti indotti nel caso peggiore di 0,6634. Parole chiave:
Riservatezza; Crittografia omomorfica; Posizionamento basato sulla rete; Covid19

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 Thesis Structure . 3

2 Related Work 5
2.1 Contact Tracing Solutions . 5
2.2 Proximity-Based Solutions . 5

2.2.1 Location-Based Solutions . 6
2.3 Privacy-Enhancing Methods . 7

3 Theoretical Background 9
3.1 Homomorphic Encryption Descriptions . 9

3.1.1 Fully-Homomorphic Encryption Schemes 11
3.1.2 CKKS . 12

3.2 Network-Based Positioning Technologies 19

4 Privacy-preserving Network-based Contact Tracing Protocol 23
4.1 Protocol Architecture . 23

4.1.1 Modelling of Involved Entities . 23
4.1.2 Attacker Model . 25

4.2 Score Computation . 26
4.2.1 Infection Status . 26
4.2.2 Contact . 26
4.2.3 Risk Score . 27

4.2.4 Inter-entity Communication . 27
4.3 Privacy-Preserving Implementation . 28

4.3.1 Cryptographic Primitives . 28
4.3.2 Adaptations from Plaintext Version 30
4.3.3 Final Protocol . 35

5 Simulation and Results 39
5.1 User Mobility Model . 39
5.2 Metrics . 39
5.3 Simulation Setup . 41

5.3.1 Simulation Parameters . 41
5.3.2 Controller and Entity Classes . 42
5.3.3 Simulations . 44

5.4 Illustrative Numerical Results . 45
5.5 Summary . 59

6 Conclusion and Future Work 61
6.1 Conclusion . 61
6.2 Future Work . 61

6.2.1 Parallelism and Distribution . 62
6.2.2 Algorithms and Alternate Schemes 62
6.2.3 Advances in Hardware . 62

Bibliography 65

List of Figures 75

List of Tables 77

1

1| Introduction

The initial scare and massive spread of the COVID-19/SARS-CoV-2 coronavirus and its
related disease in late 2019–early 2020 put a significant strain on everyone all over the
world. Starting from the first half of 2020 and essentially until working versions of the
vaccines were successfully deployed, tracing the contacts of the infected individuals was
the main way of protecting the general public, save for the highly restrictive curfews and
lockdown mandates.
The present work is inspired by a network-based contact tracing protocol described in
[18] and [19], which use two complementary cryptographic systems, namely the Pailler
partially-homomorphic encryption scheme [67] and Shamir secret sharing [75] for commu-
nications between the involved parties — namely, the MOs, their Users, and the GA. These
two schemes used in parallel produce a relatively high communication overhead per User.
This thesis proposes an alternative network-based approach using a fully-homomorphic
encryption (FHE) system to reduce said communication overhead and potentially allow
computations to be performed in a highly distributed fashion without the need for trusted
elements.

1.1. Overview and Motivation

Contact tracing in the status quo of the Covid-19 pandemic has been done via various
mobile applications. These applications use either a decentralized approach based on
the proximity of users, or a centralized approach based on evaluation of user locations
(visualization in figure 1.1, as shown in [51]). The proximity approach evaluates how close
users are to one another to assess the risk of infection based on privately-exchanged tokens
(generally using Bluetooth). On the other hand, the location-based approaches track user
locations and compare them to the locations of known infected users. Both location-based
and token/Bluetooth-based solutions have potentially-unresolved vulnerabilities.

2 1| Introduction

Figure 1.1: Centralized versus decentralized contact tracing [51].

Location-based solutions (e.g. Saudi Arabia’s Tawakkalna, Ghana’s GH COVID-19 Tracker,
Israel’s HaMagen 2.0 etc.) are susceptible to re-identification attacks ([35, 63]), in which
the identities of infected individuals can be obtained from their shared locations. In com-
parison, token-based applications (e.g. Italy’s Immuni, France’s TousAntiCovid, Aus-
tralia’s COVIDSafe, Singapore’s TraceTogether etc.) might allow a number of crafted
queries and token manipulation ([35]) to obtain infection status for a specific person
based on contact time.
The battery consumption related to leaving the GPS and/or Bluetooth functionalities
running at all times on users’ phones might also deter a number of users from participat-
ing to the contact tracing effort via applications (especially for GPS-based solutions).
According to [52], a critical mass of ∼ 80% of all smartphone users or ∼ 56% of the whole
population has to be part of the same contact tracing scheme to ensure that the epidemic
can be suppressed. According to Google-collected data on contact tracing applications
([44], [45], [46]). By 25.01.2021 [45], roughly a year after the start of the pandemic, only
2 countries had reportedly reached a desirable penetration (Singapore’s TraceTogether
reaching 80%, and Qatar’s Ehteraz reaching 91%), while in the US only D.C.’s DC CAN
managed to barely reach a 56.1% penetration. A similar report from 10.06.2020 [44] shows
that no country or US state managed to reach over 18% of the target population. The
reasons for this lack of adoption are either a distrust for the application-based solutions
or a lack of sufficient technological knowledge. The distrust might stem from any of the
above-mentioned reasons — either not wanting the battery to be drained or fear of po-
tential exposure of private data, such as location or health information.
Given that mobile operators already estimate user locations to improve service quality

1| Introduction 3

[17], and that 5G location can be accurate within 1 metre in dense and ultra-dense net-
works [57], a network-based solution for contact tracing seems, if not the most logical
step, at least one to be considered. Such a solution can be implemented without any need
for direct user interaction, hence eliminating the need for any tech-savvy skills from the
side of the users. The added battery consumption caused by keeping various services on
at all times will also be eliminated. The only remaining concern is security. Refs. [18, 19]
propose a solution in which mobile operators (MO) and a government agency (GA) col-
laborate to share data privately using a combination of Pailler [67] partially-homomorphic
encryption and Shamir [75] secret sharing. This work attempts to improve the underly-
ing protocol by using only one fully-homomorphic encryption (FHE) system. FHE is a
long-theorized concept in cryptography [72] made possible in 2009 by Gentry’s seminal
doctorate thesis [41]. FHE is an encryption scheme that enables analytical functions to
be run directly on encrypted data while yielding the same encrypted results as if the func-
tions were run on plaintext. The desired improvements are added security (even against
attacks via quantum algorithms), reduced communication overhead, as well as eliminating
the need for a trusted party. The reduced communication overhead is a result of data
being only exchanged once.
In this thesis, we propose a prototype protocol of such a network-based contact tracing
scheme using FHE and analyze its performance.

1.2. Thesis Structure

This thesis is structured into 5 Chapters, Introduction notwithstanding. Chapter 2
presents related work in the fields of privacy-preserving technologies and location accuracy-
enabling scientific developments. Chapter 3 presents the theoretical results used in sup-
port of the protocol construction, both in terms of encryption and in terms of geo-
localization methods. Chapter 4 describes in detail the protocol, its equivalent with-
out encryption, the approximations made and their respective justifications. Chapter 5
presents the simulations performed and interprets the results. Chapter 6 presents conclu-
sions and ideas for future developments. A more detailed description of each Chapter is
presented in the following.

Chapter 2 presents an overview of related work, both in terms of contact tracing tech-
nologies, as well as privacy-preserving technologies that facilitate the protocol and allow
a certain number of assumptions to be made. The contact-tracing Section 2.1 is split into
subsections dedicated to proximity-based (subsection 2.2) and location-based (2.2.1) im-
plementations, respectively. Both provide a number of examples from the two approaches,

4 1| Introduction

along with points of divergence with the current work. The second Section 2.3, dedicated
to privacy-enhancing technologies, is dedicated to listing the advances in FHE, both as
theoretical schemes, as well as practical applications, that facilitate the scope of this thesis.

Chapter 3 explains the theory behind the proposed system, with a first Section describing
the used cryptographic system and a second Section dedicated to positioning technologies.
Within Section 3.1, the theoretical background of FHE is presented, starting from initial
theories, evolution of schemes, and ending with a detailed description of the Cheon-Kim-
Kim-Song scheme (CKKS) [26]. Within Section 3.2, the case is made for the potential to
perform accurate location estimation in dense and ultra-dense 5G or 6G mobile networks,
as a means of collecting user locations with sub-metre accuracy. It presents promising
combinations of algorithms and input data in a 5G setting that would enable the locations
used in the protocol computations to be relevant for the real-life situations considered.

Chapter 4 describes the proposed protocol in more detail, with Section 4.1 dedicated to its
architecture — involved entities, their roles and the proposed attacker model — Section
4.2 dedicated to the description of the protocol functionality without encryption, and final
Section 4.3 describing the implementation in cipher domain. Protocol architecture Section
4.1 describes in detail the entities involved in the protocol in terms of their knowledge and
roles, establishes privacy goals, and the attacker model considered. The equivalent func-
tionality Section 4.2 presents the contact and score evaluation procedures as they would
occur without the need for preserving privacy. Section 4.3 concerning implementation in
cipher domain contains a subsection on the considered cryptographic primitives, one on
the necessary adaptations from the plaintext version, and a final one on the final protocol.

Chapter 5 is dedicated to simulation and results. It starts by establishing a Gauss-
Markov mobility model for generating User locations in Section 5.1. Then, the considered
performance metrics are described in Section 5.2. Section 5.3 presents the setup of the
simulation process. Finally, Section 5.4 presents and interprets the produced results.

Chapter 6 represents the conclusion and future work. In conclusion, the main ideas
of the thesis are reiterated. For the future work Section, a number of directions for future
research and developments are identified.

5

2| Related Work

In this chapter, we present the literature related to the main subjects of the thesis, namely
contact tracing and fully-homomorphic encryption. Section 2.1 provides an overview of
used contact tracing solutions, with In section 2.3, the FHE state of art landscape is
presented. It provides an overview of current FHE schemes and implementations, while
also showing a list of cutting-edge applications and facilitating technologies. At its end,
a short nod is given to the specific programming libraries used in this work.

2.1. Contact Tracing Solutions

This section presents a short overview of contact tracing approaches. Traditionally, con-
tact tracing is performed through mobile applications. These applications use the of the
users and confront them with the known infected user data, generally either through
collecting GPS data and comparing it with the (assumed) known locations of infected
individuals, through leveraging Bluetooth interactions between phones and evaluating
proximity with known infected users, or a combination of the two. Subsection 2.2 pro-
vides details on the proximity-based mobile applications used to perform contact tracing,
while 2.2.1 serves as a glimpse into location-based approaches.

2.2. Proximity-Based Solutions

Proximity-based solutions detect whether users are close to one another and perform con-
tact tracing by keeping private tokens for all individuals and storing the tokens of all
contacts. Then, when an individual becomes infected, it is flagged in a database and dur-
ing an exchange with said database, all other users who were in contact with the infected
individual are notified.
Of the proximity-based contact tracing solutions, we mention Singapore’s TraceTogether,
Mexico’s CovidRadar, Philippines’ StaySafe and Italy’s Immuni. Outstandingly, while
not being generically tagged as using Bluetooth or GPS, some apps are DP3T-compliant
[79] — a joint effort of a number of European experts (and Dan Boneh) to produce a

6 2| Related Work

privacy-preserving contact tracing framework — while some apps use the Google-Apple
exposure notification service [47, 48], which is essentially also Bluetooth-based. Google’s
Covid-19_apps [44], Covid Tracing Tracker [45], and COVID-19 Digital Rights Tracker
Supporting Data [46] spreadsheets were helpful to get a bird’s eye view of the state of the
app-based tracing at different points in time — the former two stopped being updated at
a cutoff point and essentially serve as snapshots.
The main drawbacks of proximity-based solutions are the vulnerabilities to attacks iden-
tified in [35], as well as the need to keep the Bluetooth on at all times, which comes at
an energy cost.

2.2.1. Location-Based Solutions

Location-based solutions use GPS to collect user location data and compare them against
the locations of known infected users. Of the application-based location solutions, we
mention China’s health code system, Bulgaria’s Virusafe, Kuwait’s Shlonik, Cyprus’ Cov-
Tracer and Iceland’s Rakning C-19.
Network-based approaches we will consider location-based, as contact tracing is performed
after assessment. To the best of our knowledge, except for [18, 19], there was only one
other similar work that discussed contact tracing through WiFi sensing in enterprise and
campus networks [78]; said work additionally proposes an algorithm that scales to net-
works of tens of thousands. For the purposes of this thesis, the drawback of this approach
is the fact that it considers authenticated networks with multiple access points. This
would not be translatable to outdoor movements, where WiFi connections are scarce or
nonexistent.
The two works [18, 19] essentially paved the way for this work, by proposing a mobile
operator-based network approach and a general protocol architecture which has inspired
the current architecture — the participating entities are modeled in a similar way and
the risk evaluation is also done in similar fashion, while the specific cryptographic sys-
tem used is a combination of more traditional cryptographic approaches, such as Pailler’s
probabilistic system [67] and Shamir’s secret sharing scheme [75]. Notably, some entities
are also given more trust in the security sense of the concept — i.e., if they break, the
system becomes insecure.
The protocol proposed in this thesis essentially falls into the category of location-based
contact tracing solutions, as proximity between users is only evaluated after having gath-
ered their locations.

2| Related Work 7

2.3. Privacy-Enhancing Methods

Fully homomorphic encryption methods are developed with secure data sharing in mind.
This is particularly relevant for the subject of this work, as it involves sensitive data
sharing also. A number of frameworks and platforms are currently considered state-of-
the-art. Of the frameworks, we recall some alternative implementations of the Cheon-
Kim-Kim-Song cryptosystem. These include:

• HElib [50]: Developed by IBM, it uses C++ to implement the Brakerski-Gentry-
Vaikuntanathan (BGV) [24], as well as the CKKS [26] schemes;

• Microsoft SEAL [74]: Developed by Microsoft, it uses C++ to implement the Brakerski-
Fan-Vercauteren [39] (BFV) scheme, as well as BGV and CKKS;

• HEAAN [12, 26]: Short for "Homomorphic Encryption for the Arithmetic of Approx-
imate Numbers"; developed by the cryptography group at Seoul National University
as a proof of concept for the CKKS cryptographic system;

• Lattigo [13, 66]: Developed in Go by École Polytechnique Fédérale de Lausanne’s
Laboratory for Data Security (EPFL-LDS), it implements the BFV, BGV and
CKKS schemes, with a focus on multi-party computation;

• PALISADE [7, 14]: Developed collaboratively by a number of universities and com-
panies, it uses C++ to provide a general-purpose library for most fully-homomorphic
intents and purposes. It implements BGV, BFV, CKKS, FHEW, TFHE and multi-
party computation extensions for BFV, BGV and CKKS. It got absorbed into the
OpenFHE project [20] mid-2022, along with select features of HElib and HEAAN.

In terms of platforms, the most relevant for this work are the ones which provide secure
sensitive data protection (such as location or health information), or works which might
improve the performance of

• Inpher’s XOR platform [5]: Bleeding-edge secure multi-party computation enter-
prise platform, it also enables secure federated learning. Inpher claims XOR will
implement FHE when hardware acceleration becomes available. It is currently used
inside Amazon Web Services and Google Cloud;

• Zama’s Concrete framework [9, 15]: Open-source Rust implementation of the TFHE
cryptographic system, constantly improved. Apart from the base library, it has three
additional flavours: a machine learning-oriented one implemented in Python, one
designed with hardware acceleration in mind, and finally another Python imple-
mentation with numpy-like capabilities. Concrete-Numpy was briefly considered as

8 2| Related Work

a coding base for simulation in this work, but ultimately abandoned due to the
limitations regarding size of numbers used in calculations (i.e., at most 7 bits with
limited accuracy at the time);

• Duality’s SecurePlus framework [3]: Enterprise solution for collaborative privacy-
preserving projects. It uses homomorphic encryption for analytics, machine learning
and SQL-like query functionalities. It supports integration with OpenFHE;

• Enveil’s ZeroReveal framework [4]: Enterprise solution with two submodules, one
for encrypted search and one for machine learning. The encrypted search submodule
boasts military-grade encryption;

• Google’s FHE Transpiler [49]: Modular platform that allows conversion from code
working on plain data to code working on encrypted data. It translates high-level
language code into another high-level language code that performs the same opera-
tions under a FHE library API. It boasts interchangeability of both initial and final
languages, as well as of the used FHE system.

• Cornami’s TruStream [2]: Software-defined computer architecture that boasts 106×
better performance in FHE situations.

In terms of used cryptography libraries, Saroja Erabelli’s py-fhe Python library [8] imple-
ments CKKS and BFV efficiently and has been used as the coding base for this work. The
main motivation for this is the scarcity of Python implementations for FHE, a program-
ming language better-suited for logging execution times of code fragments. The second
motivation is the freedom and clarity for setting cryptographic parameters within the
library.
Another library used for the initial code in this work was PySEAL [10]. The library is an
implementation of Microsoft’s SEAL v2.3 in Python. Unfortunately, at the time, SEAL
only offered support for BFV, which quickly turned out to be a cryptographic system
unsuitable for comparing numbers larger than 64.
To the best of our knowledge, this is the first attempt at implementing FHE in contact
tracing applications. From the point of view of contact tracing, this work expands upon
some previous explorations into network operator-based contact tracing [18, 19], while
giving the government authorities less responsibilities and hence less trust. From the
point of view of applying cryptography, this work is fresh in the sense that it provides an
insight into the feasibility of FHE, particularly regarding contact tracing. Moreover, it
uses an approximation of a step function via additions and multiplications to circumvent
the lack of comparison capabilities within the currently available FHE schemes.

9

3| Theoretical Background

In this chapter, we present the theoretical background required to understand the pro-
posed solution. Within Section 3.1, a brief history and theoretical background of (FHE) is
given. In subsection 3.1.1, a number of different FHE schemes are mentioned, along with
the most relevant advances and features. In subsection 3.1.2, special attention is given
to the Cheon-Kim-Kim-Song cryptographic system [26], which made the basis for this
work. Within the final Section 3.2, a number of algorithms and technologies that allow
sub-metre positioning in 5G networks are reviewed. Short descriptions of input data and
algorithms are given to both conventional approaches, as well as machine-learning imple-
mentations, with a mention of the projected improvements in the upcoming 6G wireless
era.

3.1. Homomorphic Encryption Descriptions

Encryption schemes allow data encryption in such a way that only the decryption key
owner can access data in plaintext. Schemes with homomorphic properties — i.e., ho-
momorphic encryption (HE) schemes — allow performing a set of operations directly
on encrypted data, without the need to decrypt and re-encrypt. More formally, HE is
a way of encrypting data such that the encryption function defines a group homomor-
phism between the plaintext space and the ciphertext space. That is to say, having
(P, ∗) the group of plaintexts and (C, ◦) the group of ciphertexts with their respec-
tive operations ∗ and ◦, the encryption function Encr : P 7→ C behaves such that
Encr(p1 ∗ p2) = Encr(p1) ◦ Encr(p2),∀ p1, p2 ∈ P .
Two main types of HE schemes exist — namely the partially-homomorphic encryption
schemes, and the FHE. The former allows performing only a set of operations on cipher-
texts, while the latter allows all operations to be performed. Of the former, examples are
the RSA cryptographic system [71] and the Pailler cryptographic system [67]. In the de-
fault version of RSA, multiplications between ciphertexts yield another ciphertext, which
encrypts the product of the initial plaintexts (homomorphism under multiplication). In
the Pailler scheme, a multiplication between ciphertexts encrypts the sum of the initial

10 3| Theoretical Background

plaintexts (homomorphism between (P,+) and (C, ·)).
FHE was first formally proposed in Ref. [72]. In this work, Shamir, Adleman and Der-
touzos theorised a FHE system. For this, they considered two algebraic systems

S = ⟨A; f1, . . . , fn; p1, . . . , pm; c1, . . . , ct⟩

S ′ = ⟨B; f ′
1, . . . , f

′
n; p

′
1, . . . , p

′
m; c

′
1, . . . , c

′
t⟩

(3.1)

Where:

• A,B are sets of values — e.g., integers Z;

• f1, . . . , fn are operations — i.e., when applied to one or more values in A, they yield
a value in A, fi(a1, . . . , ak) = ax (such as +,−, ·,÷ for Z). So are f ′

1, . . . , f
′
n for B;

• p1, . . . , pm are predicates — i.e., when applied to one or more values in A, they yield
a truth value, pi(a1, . . . , aj) = 0/1 (such as ≤). So are p′1, . . . , p

′
m for B;

• c1, . . . , ct are distinguished constants in A (such as 0, 1 for Z). So are c′1, . . . , c
′
t for

B.

These algebraic systems are mapped onto one another algebraic system via an invertible
function ϕ : S 7→ S ′. This function, along S and S ′, denote a FHE scheme if operations,
predicates and distinguished constant in S are carried by ϕ into S ′ in such a way that the
results are preserved after decryption. Formally:

f ′
i(ϕ(va1), . . . , ϕ(vak)) = ϕ(fi(va1 , . . . , vak)),∀i ∈ {1, . . . , n}, va1 , . . . vak ∈ A; (3.2)

p′i(ϕ(vb1), . . . , ϕ(vbj)) = ϕ(pi(vb1 , . . . , vbj)),∀i ∈ {1, . . . , n}, vb1 , . . . , vbj ∈ A; (3.3)

ϕ(cl) = c′l,∀l ∈ {1, . . . , t}. (3.4)

In addition, the scheme would have to be secure against ciphertext-only attacks, chosen
plaintext attacks, and the operations and predicates in encrypted domain should not be
enough to yield an efficient computation of ϕ.

3| Theoretical Background 11

3.1.1. Fully-Homomorphic Encryption Schemes

The idea of a fully-homomorphic cryptographic system remained theoretical for 31 years
after the paper was published, until Craig Gentry proposed a feasible scheme in his PhD
thesis [41]. Within it he proposed a means of encrypting numbers with added noise, and
the scheme’s security was based on Regev’s lattice and learning with errors (LWE) [70]
results. More specifically, the LWE problem is a search problem that requires solving a set
of linear equations, each correct within an additive error term. In his work, Regev proved
the problem to be equivalent to several worst-case hard (either proved or conjectured)
lattice problems. Differently from most of the widely-used cryptosystems (e.g., RSA),
FHE systems based on the LWE problem have been proven secure even against attacks
performed using quantum computing technologies.
In Gentry’s seminal thesis, he proposed a scheme that became the origin of noise-based
FHE systems. In such systems, ciphertexts are each associated with some level of noise.
At each operation involving the respective ciphertext, the noise amount increases. The
ciphertext remains decryptable until the noise reached a threshold or noise budget over
which the initial plaintext is unrecoverable. While additions and subtractions are almost
"free" in terms of noise increase, multiplications increase the noise significantly. Hence,
there is a limited number of multiplications one can perform on ciphertexts before hitting
this noise budget. The main result that turns this contruction into a FHE scheme is the
bootstrapping procedure, through which ciphertext noise is reset and the initial plaintext
is encrypted as a fresh ciphertext under a new secret key. This enables the multiplications
to continue essentially ad infinitum. However, it is computationally very expensive and
time-consuming.
In 2009, this marked the beginning of what is generally considered the first generation of
FHE schemes, with a first implementation in 2009 [37] and a second one [42] in 2010/11
taking over 30 minutes for performing basic bit operations.
The second generation of fully-homomorphic encryption schemes was based on either the
Ring Learning with Errors problem (RLWE) — which is a subcase of LWE specialized
to polynomial rings over finite fields — or on the NTRU problem [53], whose security
has since been proven flawed. The most notable representatives of the second generation
are the BFV [39] and the BGV [24] cryptographic systems, both working on integers and
still being considered state of the art today due to precision and security considerations.
BGV was based on the work of Zvika Brakerski and Vinod Vaikuntanathan [23], while
BFV was developed with Brakerski’s work [22] in view. Notably, they both provide single
instruction multiple data (SIMD) functionalities, albeit for shorter vector lengths than
more recent generations. While bootstrapping is possible in these schemes, emphasis was

12 3| Theoretical Background

put on calculations being done without performing it and hence them acting as levelled
homomorphic schemes — i.e., the ciphertexts are considered as having a limited number
of subsequent multiplications or max level, and after every one their level increases.
After the second generation of FHE, the advances have branched out into two distinct
directions. One of the directions was towards faster bootstrapping and generally quicker
computations, even at the cost of reduced ciphertext sizes, while the other was focusing
on implementing SIMD schemes that support complex numbers and floating point oper-
ations. Although not necessarily different generations in terms of time, the former are
considered to be in the third generation, while the latter currently only has the Cheon-
Kim-Kim-Song (CKKS) [26] scheme as representative.
The third generation was kickstarted by the GSW scheme [43], which proposed a new
relinearization procedure for dealing with multiplications in cipher domain, as well as a
new evaluation scheme which did not require the previously-used evaluation key (i.e., a
chain of the user’s encrypted secret keys) for each user. The relinearization of ciphertexts
is a process during which 3-dimensional ciphertexts resulting from homomorphic multi-
plications are turned back into 2-dimensional ciphertexts — by means of a relinearization
key — on which further operations can be performed. The scheme was then improved
by Léo Ducas and Daniele Micciancio to create the FHEW scheme [38], which reduced
bootstrapping times to under a second. A further improvement came in the shape of
TFHE [32], which employed a novel underlying field to further decrease bootstrapping
times to under 0.1 seconds and reduce bootstrapping keys from 1 GB to 16 MB.
The CKKS scheme is described in detail in the following subsection.

3.1.2. CKKS

The first and as of yet the only representative of the fourth generation of fully-homomorphic
encryption schemes, the CKKS scheme [26] is the only scheme that supports computa-
tion over complex numbers, while also providing support for SIMD functionalities over
encrypted values and providing an efficient rescaling procedure for securely reducing error
and ciphertext size. As this scheme was chosen for usage as a theoretical base in this
work, a comprehensive description of its functionality will be given.
CKKS is a leveled homomorphic encryption scheme, in the sense that certain operations
in the encrypted domain will only be possible between ciphertexts on the same "level".
Freshly encrypted ciphertexts start on level 0 and increment in level as they are sub-
sequently multiplied with ciphertexts of the same level (i.e., two ciphertexts of level n
multiplied homomorphically will produce a ciphertext of level n+1). Moreover, the noise
budget is limited, and multiplications increase the noise significantly — roughly, the noise

3| Theoretical Background 13

size in bits after the multiplication is equal to the sum of the noise sizes in the factors.
Through bootstrapping [28], a potentially infinite number of subsequent multiplications
can be performed, and the scheme becomes fully-homomorphic. Predictably, this is time-
consuming and while using CKKS as the underlying scheme of the protocol we prefer to
avoid it and alternatively set parameters to stay within the maximum level.
In the following lines, the differentiating aspects of the scheme are described. Plaintext
information is kept in the most significant bits (MSB) of the ciphertext with error in
the least significant bit (LSB) portion, and as subsequent multiplications are performed,
the MSB portion is pushed towards the end of the available ciphertext size, with error
occupying the rest (see 3.1). One of the novelties of the CKKS scheme is the rescaling
operation. It is performed by dividing both the ciphertext and its modulus by the same
division factor — usually equal to the scaling factor used in encoding and rounding to
the nearest valid ciphertext. This cuts both the final bits of the ciphertext, as well as the
final bits of the error, which makes both the error blowup during multiplications more
manageable and less likely to cause major inaccuracies due to error during decryption, as
well as make any follow-up operations on the ciphertext more efficient due to smaller size.

Figure 3.1: Multiplication and rescaling in CKKS [26].

In the following subsection, the operations in the scheme will be described. The ciphertext
lifecycle follows a patter of encode–encrypt–perform operations–decrypt–decode. Encod-
ing is needed prior to encryption because the initial plaintexts are vectors of complex
numbers, and the ciphertext space is a polynomial field of high degree with coefficients

14 3| Theoretical Background

bounded by a very large number. Some parallels with practical implementation aspects
will be drawn, mainly by exemplifying with respect to the library used in simulations
— Saroja Erabelli’s (formerly of Massachusetts Institute of Technology, now of Duality
Technologies Inc.) py-fhe Python implementation of the scheme.

Plaintext Encoding

Encoding maps the plaintext represented by a vector of 2k−1 complex numbers with inte-
ger real and imaginary parts onto a polynomial ring Z/(X2k+1) with coefficients bounded
by some 2n. The full mathematical description, while interesting, is beyond the scope of
this thesis.
The main relevant idea is that encoding is extremely quick compared to the speed of multi-
plications, and plaintext vector size determines ciphertext polynomial degree. Moreover,
before embedding the plaintext into the ciphertext polynomial ring, all values in the
plaintext vector are multiplied by a scaling factor ∆.

Encryption

The encryption routine suite has three major steps: key generation, encryption and de-
cryption. The fixed parameters prior to generating the encryption context are:

• quotient polynomial degree N ,

• scaling factor ∆;

• fresh ciphertext modulus q;

• big modulus P (in practice, of size
5

4
q or bigger).

The latter is used for performing modular reduction during the relinearization process.

• Key generation: secret key sk sampled according to parameters N (ciphertext poly-
nomial degree, and also plaintext vector length) and h (hamming weight). The
resulting secret key is:

sk ← HWT (h) (3.5)

where HWT (h) is the set of signed binary vectors {0,±1}N with Hamming weight
h. In practice, the chosen value for h is h = N/4, to keep a sparse secret key so as
not to have computational complexity blow up during encryption. The produced
key is a vector of the same length as the polynomial degree/ plaintext vector length,
with a quarter of the values ±1;

3| Theoretical Background 15

The public key pk is produced according to:

pk := (b, a) ∈ R2
q (3.6)

where a ← Rq is uniformly sampled from R with coefficients bounded by q, e ←
G(σ2) is an error term sampled from a discrete Gaussian distribution with standard
deviation σ, and b := −as + e (mod q). The public key is a pair of polynomials —
to be read as vectors of length N — of which one is a fully random term, and the
other is a linear combination of the secret key and error;
The relinearization key rk (called evaluation key in [26]) is produced by:

rk := (b′, a′) ∈ R2
Pq (3.7)

where P is a big integer, a′ ← RPq sampled uniformly from RPq, e′ ← G(σ2)

error sampled from a Gaussian distribution with standard deviation σ, and b′ :=

−a′s + e′ + P · sk2. For the purposes of the protocol, it is only relevant that the
relinearization key is very big.

• Encryption:

Encpk(m) := v · pk + (m+ e0, e1) (mod q) (3.8)

where v ← ZO(0.5) (ZO(ρ) samples each entry in the vector from {0,±1}N , with
probability ρ for both ±1 and 1− ρ for 0), e0, e1 ← G(σ2) sampled from a discrete
Gaussian distribution with standard deviation σ;

• Decryption:

Decsk(c = (b, a)) := b+ a · sk (mod ql) (3.9)

where ql is the modulus of the ciphertext level. Of note is the linearity of the
decryption procedure.

Operations on Ciphertexts

The considered operations on ciphertexts are addition with ciphertext and plaintext,
multiplication with ciphertext and plaintext, and rescaling. Of these, most interest is
presented by the multiplications — as is the case in any FHE scheme — as well as
the rescaling. As a note before going forward, the plain values taken in the following
computations are actually encodings of plaintext vectors.

16 3| Theoretical Background

• Plain addition:

Add_plain(c := (b, a),p) = (b+ p, a) (mod ql) (3.10)

where c is a ciphertext of level ql and p is an encoding of a vector of plain values.
The scaling factor of the two operands must match in order to ensure that the plain
value is not added to the error part of the ciphertext. Given that the plaintext is a
fresh encoding, that means the scaling factor of the ciphertext term must be ∆;

• Addition:
Add(c1, c2) := c1 + c2 (mod ql) (3.11)

where c1, c2 are both ciphertexts of level ql. The moduli and the scaling factors of
the ciphertext terms have to match;

• Multiplication with plain:

Mult_plain(c = (c0, c1),p) = (c0 · p, c1 · p) (mod ql). (3.12)

Of note is that the plain value is scaled up by ∆ and hence the result will be scaled
by an additional ∆;

• Multiplication:

Multrk(c1 = (b1, a1), c2 = (b2, a2)) := (d0, d1) + ⌊P−1 · d2 · rk⌉ (mod ql)

(d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (mod ql)
(3.13)

where ⌊·⌉ represents the rounding operation. In similar fashion to the plaintext
multiplication procedure, the resulting ciphertext will be scaled by the product of
the scaling factors of its factors. Moreover, the moduli of the initial ciphertexts have
to match;

• Rescaling:

RSl→l′(c) := ⌊
ql′

ql
c⌉(mod ql′) (3.14)

where l is the level of of the initial ciphertext c, l′ is the level of the final ciphertext,
and ql, ql′ are the respective ciphertext moduli. In practice, rescaling is done by
providing a division factor rather than a level.

3| Theoretical Background 17

Parameter Selection

In practice, the cyclotomic polynomials chosen as parameters are of form X2k for some
k ∈ N, for both ease of computation as well as ensuring maximal size of plaintexts and
ciphertexts — this blends security with practicality. The resulting vector will then be
of size poly_deg = 2k−1, and have the real parts encoded within the first half of the
polynomial, and the imaginary parts encoded in the second. Practical implementations
then select a sparse secret key sk — so as not to make encryption too computationally
intensive — of Hamming weight h = poly_deg/4.
Security-wise, the de facto standard for all fully-homomorphic encryption schemes is en-
suring the system is computationally resilient against chosen plaintext attacks (CPA) —
for CKKS, also considering the CPA+ variant [59], in case the decrypted data are then
shared with potentially malicious parties — as well as a number of lattice-based attacks
[31].
In this work, the considered desired security level is λ = 128 bits. That is, to be able
to break the encryption, an attacker would have to perform 2128 operations. The first
parameter to be chosen, following the security level, is poly_deg. This implicitly will set

sk Hamming weight to h :=
poly_deg

4
. For secret key hard to guess under security level

λ, given the key generation formula 3.5, h ≥ 64, and hence poly_deg = 256. Next, cipher-
text modulus q, strongly coupled with initial plaintext maximum size logN are chosen
in accordance to desired security level. Finally, scaling factor ∆ is chosen in accordance
to desired maximum level of ciphertexts (i.e., maximum required number of multiplica-
tions) and final result precision. The guidelines for choosing parameters in accordance to
security and desired functionalities are given as a series of tables in [31] (table 3.1).

18 3| Theoretical Background

CKKS Parameter Selection for Security against Lattice-based Attacks

h logp logN logPq log∆ max. level

64 10 14 219 29 5

15 431 33 9

16 930 42 17

17 2022 54 29

20 15 431 41 7

16 930 49 14

17 2022 60 25

30 16 930 57 12

17 2022 67 22

15 431 33 9

128 10 14 337 31 7

15 700 38 13

16 1450 48 23

17 2900 62 36

20 14 337 39 5

15 700 46 11

16 1450 55 20

17 2900 68 32

30 15 700 54 9

16 1450 62 17

17 2900 75 29

256 10 13 195 28 4

14 393 33 8

15 821 40 15

16 1623 50 24

17 3300 65 39

20 14 393 41 6

15 821 47 12

16 1623 57 21

17 3300 57 21

30 14 393 50 5

16 1623 65 19

17 3300 78 32

Table 3.1: CKKS Parameter Selection.

3| Theoretical Background 19

Table 3.1 shows a table of the practical parameter selection for security against IND-
CPA+ and lattice attacks, as shown in [31]. Assuming security parameter λ = 128 bit: h
— Hamming weight of secret key, logp — bit size of desired precision for final result, logN
— maximum possible modulus of fresh plaintext, logPq — size of big integer modulus
multiplied by fresh ciphertext modulus, log∆ — size of scaling factor.

Remarks

In general, it is very good practice to immediately rescale after performing multiplica-
tions. This reduces both error and ciphertext size, and hence reduces computational and
communication overhead in the grand scheme of things. In this work, the bulk of esti-
mations and simulations were done assuming the needed level for multiplications around
13. Hence, as per table 3.1, the chosen parameters were h = 64, Pq = 2930, q = 2744 and
∆ = 249. In practice, N is not chosen, and in any case 216 fully satisfies the needs for the
operations performed in this work.
Finally, a touch on the weakness identified by Li and Micciancio [59]. Indistinguisha-
bility against CPA+ is only required if the data is shared with untrusted parties. To
this end, Cheon, Hong and Kim [29] proposed a new decryption routine for sharing,
DecForSharesk(ctxt, Bctxt) during which an additional noise is added to the decryption
result:

m := ⟨ctxt, sk⟩+ e (mod q) (3.15)

where ⟨·⟩ denotes the original decryption procedure, and e← DZn,Bctxt is an error sampled
from a discrete Gaussian distribution over Zn — n length of encoding vector — with upper
bound Bctxt w.r.t. maximal norm |·|∞.
While the tight bound for Bctxt is not fully derived theoretically yet, some implementations
choose conservative bounds (such as HElib [50]), while others (such as SEAL [74]) advise
against sharing decrypted ciphertexts and instead treating them as private information
for the secret key owner only. In the particular case of this work, the considered approach
is that given how the final decrypted value is assumed to be correlated with information
pertaining to an individual’s health status, it would be counter-intuitive for the secret key
owner (i.e., the User in our construction) to share the decrypted values.

3.2. Network-Based Positioning Technologies

A very important concept for performing contact tracing for individuals positioned at
integer locations is first being able to collect or estimate accurately the locations mobile
devices. More specifically, there is a need for sub-metre location accuracy so that contact

20 3| Theoretical Background

tracing can be performed accurately in turn. To this end, the current 5G and the up-
coming 6G show promising results. Technologies such as massive Multiple Input-Multiple
Output (MIMO) localization, millimeter wave communication (mmWave), Ultra-Dense
Networks (UDN) and Device-to-Device (D2D) communications will facilitate network-
based localization in the near future.
In current 5G networks, there are a number of both conventional signal-processing and
machine learning-based technologies that could potentially achieve sub-metre accuracy
[65].
On the conventional side, there are a number of promising technologies which accurately
manage to localize devices within the metre, using a number of algorithms and input data
types, in both realistic and simulated environments. Said technologies are:

• Dynamic fingerprint matching algorithm paired with a received signal strength in-
dicator in ultra-dense 5G networks for indoor localization (simulated) [82];

• Extended Kalman filter paired with angle of arrival input data in ultra-dense 5G
networks for outdoor localization (realistic) [64];

• Extended Kalman filter paired with uplink reference signal input data in dense and
ultra-dense 5G networks for outdoor localization (simulated) [57, 58];

• An expectation maximization algorithm and a subspace-spaced algorithm paired
with uplink reference signal input data for indoor localization (simulated) [76];

• Unscented Kalman filter with time of arrival and angle of arrival input data for
indoor localization (simulated) [54];

• Cramer-Rao bound derivation paired with time difference of arrival and angle of
arrival input data for outdoor vehicle localization (realistic) [55];

• Deriving Ficher information of 5G and GNSS (Global National Satellite System)
with simulated GNSS and 5G signals for outdoor localization (simulated) [16];

• Orthogonal frequency division multiple access (OFDMA)-based visible light com-
munication positioning paired with light signals and received signal strength data
for indoor localization [81].

Quite clearly, there is quite a number of enabling algorithms and technologies to accurately
estimate end device location in 5G.
Machine learning, used in conjunction with massive MIMO and mmWave communications,
currently seems to be a rather pretentious option, in the sense that location accuracy below
2m — both indoor and outdoor — is only achieved under very specific conditions: low

3| Theoretical Background 21

noise, high number of antennas or base stations, line-of-sight (LOS) propagation. On the
other hand, in the presence of noise and non-line-of-sight propagation, error can grow to
exceed 20m. Of the more promising approaches, we mention:

• Neural Networks paired with angle of arrival data for both indoor and outdoor
localization [36];

• Densely-connected Neural Networks paired with received signal strength and GNSS
signal for outdoor localization [56];

• Neural Networks paired with channel state information for both indoor and outdoor
localization [40].

In 6G, the projections are that current solutions will be improved in terms of cost and
efficiency, while new enabling technologies and applications will allow for a more fine-
grained localization [21, 61, 62, 73, 77, 80]. For the purposes of this work, however,
worst-case sub-metre accuracy will suffice.

23

4| Privacy-preserving
Network-based Contact
Tracing Protocol

In this chapter, the contact tracing protocol is described. The protocol involves a gov-
ernment authority, mobile operators, and the respective mobile operators’ subscribers,
in order to generate privately a risk score for each user as a measure of their contact
with other users and the other users’ respective infection status. In section 4.1, general
information about the protocol is given.
Section 4.2 formally describes the considered score computation algorithm, as well as the
inter-entity communication phases.
The final section 4.3 provides details on how the privacy-preserving implementation was
done.

4.1. Protocol Architecture

This section gives a high-level description of the protocol. Subsection 4.1.1 includes
preambular details on the classes of entities involved — Users, Mobile Operators and
Government Authority — such as the correspondence between real-life physical entities
and the different actors in the protocol, as well as each of their respective responsibilities
and roles. It has three subsections, one for each type of entity. Subsection 4.1.2 establishes
the three major privacy goals of the protocol — confidentiality of location, confidentiality
of contact, and confidentiality of status and risk score — in relation with whose interest
it is to respect them. Moreover, it establishes the considered attack model.

4.1.1. Modelling of Involved Entities

The protocol considers three types of involved entities: Users, Mobile Operators (MO),
Government Authority (GA). For convenience, every User is considered to be subscribed to

24 4| Privacy-preserving Network-based Contact Tracing Protocol

a single MO, and all Users are subscribed to some MO; moreover, every User is considered
to have a single mobile device. Subscription to MOs hence defines a partition of the set
of Users within a GA’s jurisdiction.

Users

The Users are regular individuals/ subscribers, each identified one-to-one with their mobile
devices (i.e., mobile device i ≡ User i). Each User has an associated infection status,
which can either be positive or negative. As they move, their current location updates
accordingly. For contact tracing in the context of the protocol, Users each have a certain
infection status — as a 1/0 value — and current location — as a pair of coordinates
(x, y) — as properties at a considered time t. Every User is assumed to have willingly
and knowingly signed up to have their location and status used for the purposes of the
protocol.
As their location updates according to their movement, relatively frequent estimations are
done at the MO level (e.g., every 30 seconds), which in turn triggers the contact tracing
phase calculations.
They can poll their own MO to receive their own risk score.

Mobile Operators

MOs are the providers of access to mobile services. They are assumed to have the ca-
pability to estimate their Users’ locations within the metre, either through one of the
techniques described in section 3.2 or through some other means. Regardless of location
estimation techniques, the MO is thought to abide by 5G security standards ([11] or sim-
ilar), and communications between parties are considered secure. For the purposes of the
protocol, they collect their Users’ locations, as well as receive their Users’ status in order
to perform the contact tracing computations in the protocol.
The protocol assumes communication phases occur periodically (Ticks), during which
MOs exchange values of their Users’ locations and infection status. In order to gain ac-
cess to their Users’ status, at each Tick count multiple of a larger Period including 0
(e.g., for minutely Ticks and daily Period, Tick count must be a multiple of 1440), the
communication phase starts with the GA sending the Users’ status to the MOs. After
the information exchange is done, the contact tracing routine is performed for the current
state of the system (i.e., User locations and status).

4| Privacy-preserving Network-based Contact Tracing Protocol 25

Government Authority

The GA holds the infection status of all users, as far as they are known by the authorities
and the Users themselves. That is to say, if a User is confirmed positive, it is assumed that
by the next Period, the GA will be aware of that. This is achieved through communicating
with the appropriate medical and administrative authorities, given the Users’ consent to
make use of their data.
Distinctly from the MOs’ communication Ticks, the GA communicates every Period,
which is a multiple of the Ticks. This is done as a correspondence to how often countries
reported their positive Covid cases during the pandemic (i.e., daily, on average). As a
general line of thought, the Period was envisioned as equivalent to a day versus minutely
Ticks in the MO, although that is in no way meant to be the only use case.
An alternate version of the protocol where the GA is made aware of whether the Users
are at risk is described in [18, 19]. In this version, either the GA or the MO are considered
trusted, which in part might break the confidentiality goals established in the next section.

4.1.2. Attacker Model

In order to define the attacker model, we first establish what the privacy goals are. The
goals all relate to the general security concept of confidentiality — data is only accessible
to authorized parties — and are as follows:

1. Location confidentiality. A User’s location is only known to the user itself and their
MO. The User has an interest in achieving this goal so as not to have their location
data used without consent. The MO has an interest in achieving this goal so as
not to have competitors or other potentially malicious parties use data collected by
them;

2. Contact confidentiality. Information about whether a User is in contact with another
User and the number of times they were in contact can only be known to the
respective Users themselves. If the Users share the same MO, then the MO may
be party to this information; if the Users are from different MOs, then any MO
cannot know the identity of the other MO’s User, nor can they know the number
of times they were in contact. The User has an interest in achieving this goal so
as not to have their contact data used without consent. The MOs have an interest
in achieving this goal so as not to have their competitors or any other potentially
malicious parties use data collected by them;

3. Infection status and score confidentiality. User infection status can only be known

26 4| Privacy-preserving Network-based Contact Tracing Protocol

to the User themselves and the GA. A User’s risk assessment score is by default
only known to themselves. The User has an interest in achieving this goal as it is
highly sensitive data, certainly not to be used without their consent. The GA has
an interest in achieving this goal so as not to lose the trust of the Users.

An attacker is therefore defined as any party — malicious or not — that would break
the confidentiality goals. The communications themselves between entities via 5G are
assumed to be secure under 5G standards, with correctly configured equipment. Hence
the focus of this subsection will be on ensuring the privacy goals are met within the
system, by the entities involved in the protocol. The MOs and GAs are to be considered
honest but curious, as defined in [69]. To be more specific, it will be assumed that they
would execute the protocol as instructed, but given the data and the opportunity, they
would attempt to violate the privacy of the Users.

4.2. Score Computation

This section describes how the protocol is intended to work in the absence of the privacy
requirements. User locations are considered to be pairs of (x, y) coordinates. Consider
metaparameter δ to be the threshold of contact. That is, for contact tracing purposes, if
two Users are within distance δ, then they will be considered in contact; otherwise, they
will not. The following subsections define status encoding (in subsection 4.2.1), contact
evaluation (in subsection 4.2.2), and finally risk score calculation (in subsection 4.2.3).

4.2.1. Infection Status

A user i’s infection status at a given time t is encoded in a variable status
(t)
i , such that:

status
(t)
i =

{
1, if Useri is infected at time t,

0, otherwise.
(4.1)

This is considered to be accurately known by the GA at every start of Period.

4.2.2. Contact

Contact between two Users is evaluated by comparing the distance between them with
the contact distance threshold δ. If the distance is below δ, then the users are considered
in contact. For users Useri and Userj at a given time t, having set a distance function
between users Dist : (User1, User2) 7→ R, this can be modeled with a variable contact

(t)
ij ,

4| Privacy-preserving Network-based Contact Tracing Protocol 27

such that:

contact
(t)
ij =

{
1, if Dist(Useri, Userj) ≤ δ,

0, otherwise.
(4.2)

The choice for the distance function warrants at least a short discussion. Depending on
the setting, the Dist function can be Euclidean, Manhattan/taxicab, squared Euclidean
etc. In a plaintext-only setting, using anything but Euclidean distance would at a first
glance seem pretentious. In a setting that does not support root calculations, square
or otherwise (e.g., if User locations would be represented as Shamir secret shares [75],
or if encrypted under a fully-homomorphic scheme), [18, 19] proposed using the squared
variant of Euclidean distance. Moreover, this Dist function is closely linked to the value
of the contact threshold δ. To make this point clearer, if two Users are considered to be
in contact if within, for example, 2m of one another, and if Dist is chosen to be squared
Euclidean, then δ would have to be 4.

4.2.3. Risk Score

User risk scores are calculated by performing, for each respective User, the sum of the
infection status of all their respective previous and current contacts. At a fixed time t0:

score
(t0)
i =

∑
t≤t0

∑
j:contact

(t)
ij =1

status
(t)
j . (4.3)

4.2.4. Inter-entity Communication

In order to facilitate the transfer and updating of information, a number of actions are
performed periodically by the MOs and the GA. The frequency of periods differs from
MOs to GA: the MOs are assumed to communicate with a relatively low period — e.g.,
minutely, every 30 seconds etc. — which shall be called a Tick from now on, while the
GA communicates with a relatively high period — e.g., daily — which shall be called a
Period.
During each Tick, the following are assumed to happen in order:

1. Each MO estimates all their Users’ locations (xi, yi),∀Useri;

2. Contact evaluation contactij,∀j ̸= i for each User Useri is performed by their
respective MO;

28 4| Privacy-preserving Network-based Contact Tracing Protocol

3. User scores scorei,∀Useri are updated by their respective MO;

At every Period, the GA will communicate to each MO MOi the contact status of all
Users Useri subscribed to the respective MO. Hence the Period, while not necessarily a
multiple of the Tick, must first occur before the first Tick.
In addition to the periodic actions, there is an unscheduled entity-triggered events that
can occur, namely the User-triggered score request. During this event, the User polls their
MO for their current score, after which the MO sends the requested value to the User.
While the above description of the protocol is a bit too optimistic for a real-world scenario
in terms of data transparency, it provides insight into how the protocol is intended to
ultimately work and makes the privacy-preserving modifications easier to follow.

4.3. Privacy-Preserving Implementation

In the final version, the main change from the plaintext protocol is that information
cannot flow in plaintext between unauthorized parties. Therefore, it has to be encrypted
(or not to flow at all, but that would not be a sensible solution). As it is a main point of
emphasis in this work, the chosen cryptographic system will be a fully-homomorphic one,
more specifically CKKS [26]. Exact terminology and functions vary slightly depending
on the particular cryptographic system used. In the following subsections, the fully-
homomorphic encryption (FHE)-based protocol is described. In subsection 4.3.1, the
building-block operations of a general FHE scheme are described at high level. Subsection
4.3.2 presents the necessary major changes to the ideal version described in section 4.2 to
achieve a practical scheme. The changes include using a tessellation of the full protocol
area, as well as a contact function that approximates comparisons without performing
them, and finally the usage of CKKS as the underlying cryptographic system. The full
form of the protocol is described in the final subsection, 4.3.3.

4.3.1. Cryptographic Primitives

This subsection describes at a high level the general capabilities to be expected from a
fully-homomorphic cryptographic system. Denoting by Enc(x) the encryption of value
x, for all intents and purposes, this can be viewed at a very high level as an asymmetric
encryption system that allows:

• An unlimited number of addition-like operations with ciphertexts — such as addi-

4| Privacy-preserving Network-based Contact Tracing Protocol 29

tions, subtractions — both with plaintexts and ciphertexts:

cipherAddition(Enc(x), Enc(y)) = Enc(x+ y); (4.4)

cipherSubtraction(Enc(x), Enc(y)) = Enc(x− y). (4.5)

plainAdd(Enc(x), plain) = Enc(x+ plain). (4.6)

plainSub(Enc(x), plain) = Enc(x− plain). (4.7)

• A limited number of multiplication-like operations with ciphertexts — multiplication
of two ciphertexts, multiplication with a plaintext, exponentiation with plain integer
exponent, multiplicative inversion (the possibility to perform the latter depends on
the specific cryptographic system chosen; for example, CKKS [26] does not support
it):

cipherMult(Enc(x), Enc(y)) = Enc(x · y); (4.8)

cipherExp(plain, Enc(x)) = Enc(xplain); (4.9)

plainMult(plain, Enc(x)) = Enc(plain · x); (4.10)

cipherInverse(Enc(x)) = Enc(x−1). (4.11)

• Essentially no other types of operations, unless additional manipulations are done
to the encrypted values prior to encryption.

Under these circumstances, comparisons of encrypted values are highly discouraged —
while splitting the plaintext into bits prior to encryption, encrypting each bit separately
and then treating the created structure as such allows comparisons to be performed by
using a series of logical operations, this greatly reduces both the number of potential
multiplications that can be performed on the ciphertext, as well as the possible size of
the plaintext; moreover, the computational complexity grows at a rate comparable to

30 4| Privacy-preserving Network-based Contact Tracing Protocol

exponential for each plaintext.

4.3.2. Adaptations from Plaintext Version

This subsection motivates and describes the manipulations done in order to make the pro-
tocol practical and secure. Quite obviously, an FHE scheme will be used to encrypt data
and to perform computations on it. The necessary encryption procedures are described
in sub-subsection 4.3.2. Moreover, a tessellation procedure is described for the protocol
area in sub-subsection 4.3.2. In parallel, another case is made for using an approximate
formula for the contact function in sub-subsection 4.3.2.

Tessellation

Pairwise comparing all Users’ locations for possible contacts would be unrealistic (e.g., a
User near PoliMI could surely not have a contact with a User near Duomo while they are
in the respective locations), even considering plain locations. It is even more unrealistic to
do so in cipher domain, as the computations are significantly slower in fully-homomorphic
encryption schemes, mainly due to large ciphertext size. As a solution, a tessellation of the
total protocol area is considered. Each area is assigned an ID area_ID, while Users in the
area will be associated with the area_ID. During the information exchange between MOs
at Ticks, the area_ID of each User is transmitted along with the rest of the information,
and contact tracing will only be performed between Users within adjacent areas. While
this tessellation need not be composed of equally-sized squares, every delimited sub-region
can be included in such square. As a side note, not considering equal square tessellation
areas seems to just complicate matters unnecessarily. From here onward, the tessellation
of the area under protocol consideration will be considered as a splitting into equal-side
squares.

Encryption Context

The encryption happens for the cases when information flows from authorised to unau-
thorised parties, as per the privacy goals set in section 4.1.2. Therefore User locations
need to be encrypted when shared with any other party than the MO of the User itself,
and User infection status need to be encrypted before the GA shares them with the MOs.
These encryptions cause in turn the contact status between users of different MOs to be
encrypted by default, and also the risk score be encrypted, as the operations performed
would involve the encrypted infection status. Assume that each User Useri has public
key pki, and that Encpk is a function that encrypts plaintexts under public key pk. Then

4| Privacy-preserving Network-based Contact Tracing Protocol 31

the encryption of information

• Status encryption: assuming the status of Useri at a given time t to be statusi ∈
{0, 1}, the GA encrypts it under some other User Userj’s public key pkj, resulting
in

esij = Encpkj(statusi). (4.12)

• Coordinate encryption: assuming the coordinates of Useri at a given time t to
be (xi, yi), Useri’s MO encrypts them under another User Userj’s public key pkj,
resulting in

(exij, eyij) = (Encpkj(xi), Encpkj(yi)). (4.13)

• Distance encryption: Assume Useri is subscribed to some MOm and Userj is sub-
scribed to MOn, n ̸= m. When MOm calculates the squared Euclidean distance
between Useri and Userj, the coordinates of Useri will be available to it in plain,
while the coordinates of Userj will be received encrypted under pki. The squared
Euclidean distance becomes

Distij = cipherAdd(cipherMult(plainSub(exji, xi), plainSub(exji, xi)),

cipherMult(plainSub(eyji, yi), plainSub(eyji, yi))).
(4.14)

• Score update: Assume Useri’s current score is scorei, encrypted under pki, and that
contactij is the contact evaluation between Useri and Userj encrypted under pki.
Then the operation for updating the score of Useri becomes

scorei = cipherAdd(scorei, cipherMult(esji, contactij)). (4.15)

Notably, if both Useri and Userj are subscribers of the same MO, contactij can
be calculated in plain, as it will only involve values accessible to the MO without
encryption. That is, the formula becomes

scorei = cipherAdd(scorei, plainMult(esji, contactij)). (4.16)

32 4| Privacy-preserving Network-based Contact Tracing Protocol

The contact formula calculation was not mentioned because it will be discussed in the
very next sub-subsection.

Fully-Homomorphic Contact Formula

Accurate comparisons between numbers within CKKS is rather costly in terms of multi-
plications, especially at high numbers of polynomial degree — which is required to ensure
128 bits of security. Considering the tessellation in the protocol area proposed in sub-
subsection 4.3.2, an approximation formula is proposed to evaluate contact between two
Users. Let l be the side of the squares used for tessellating. Then, between any two Users
in adjacent areas, the maximum possible distance is 2

√
2l. Leveraging this, at a given

time t the new proposed contact formula between two Users — in plaintext form — using
only additions and multiplications is

contactij = (1− Dist(Useri, Userj)

8l2
)k, (4.17)

where Dist(Useri, Userj) is the squared Euclidean distance, and k is a suitably chosen
exponent. The parameters for the formula are tessellation area side l and k. It can be
assumed that tessellation area side is fixed, considering a trade-off between computational
efficiency and privacy — the larger the area, the higher the computational cost; the smaller
the area, the more likely an MO the User is unsubscribed to is to guess User locations.
Considering the tessellation side fixed, the exponent k is chosen to be the highest power
of 2 that best approximates the step function at the contact threshold δ. This is because,
using repeated squaring, the level of the final ciphertext will be the same for any power
between 2(x− 1) + 1 and 2x inclusively. As a heuristic, the best power of 2 to use is the

one that produces the closest value to 1 − 1 + sgn(x− δ)

2
at the point x = δ. Such a

choice yields a favorable balance between assigning higher weight to close contacts, while
also not assigning weight to farther Users. The choice for exponent k changes with the
chosen contact threshold. As shown in figures 4.1 and 4.2, the higher the considered
contact threshold, the lower the exponent k that needs to be used to best approximate
the contact formula. Within the figures, the red lines parallel to the x axis represent the
step function that models the presence/absence of contacts depending on distance — 1 if
the distance is under the considered threshold, and 0 if the distance is above.

4| Privacy-preserving Network-based Contact Tracing Protocol 33

(a) k choices for δ = 1, l = 50 (b) k choices for δ = 2, l = 50

Figure 4.1: Contact score as function of inter-user distance with three choices of exponent
for thresholds 1 and 2.

(a) k choices for δ = 3, l = 50 (b) k choices for δ = 4, l = 50

Figure 4.2: Contact score as function of inter-user distance with three choices of exponent
for thresholds 3 and 4.

The choice of exponent also depends on the length of the sides of the tessellation areas.
As shown in figures 4.3 and 4.4, the longer the side length l, the higher the need exponent
k.

34 4| Privacy-preserving Network-based Contact Tracing Protocol

(a) k choices for δ = 2, l = 100 (b) k choices for δ = 2, l = 150

Figure 4.3: Contact score as function of inter-user distance with three choices of exponent
for tessellation sides 100 and 150.

(a) k choices for δ = 2, l = 200 (b) k choices for δ = 2, l = 250

Figure 4.4: Contact score as function of inter-user distance with three choices of exponent
for tessellation sides 200 and 250.

In cipher domain, the contact function becomes

contactij = cipherExp(k, plainAdd(1, plainMult(− 1

8l2
, Dist(Useri, Userj)))). (4.18)

where the exponentiation is done through repeated squaring.

4| Privacy-preserving Network-based Contact Tracing Protocol 35

4.3.3. Final Protocol

This subsection describes the final version of the contact tracing protocol, with specific
CKKS [26] usage. It details all the phases of the protocol, from setup, Tick and Period
communications, to the unscheduled User score requests. The opening sub-subsection
lists the assumptions made in order to be able to run the protocol successfully.

Assumptions

This sub-subsection details the protocol assumptions. It describes the conventions which
all entities should agree upon to have a smooth interaction, along with suppositions about
the connections between them. Said conventions are related to common parameter selec-
tion, common formula selection and synchronized times. The final assumption is about
communication being possible at any time required. The assumptions related to running
the protocol are:

• All the entities have agreed on the same δ contact threshold (e.g., 2m), along with
the respective contact formula. This may be softened to only having the MOs agree
between one another, in accordance to the social-sanitary context. That is because
δ is only involved — if indirectly — in the computation of the contact between
Users, which is performed at the MO level.

• All the entities have agreed on the same CKKS parameters. That is to say, all
entities encode complex vectors of the same length — which must be greater or
equal to 128 — into polynomials of the same degree poly_deg (e.g., 256), using
the same scaling factor sc_fact. All Users produce secret keys according to the
same Hamming weight h = polg_deg/4, along with the corresponding public keys.
All fresh ciphertext moduli c_mod are the same, as well as all big integer P sizes
for relinearization and respect the parameter settings for security against the latest
known attacks (as per [31]).

• All entities agree on computing the necessary information using the same formulae
and algorithms. More specifically, distance is evaluated as per formula 4.14, contact
is evaluated as per formula 4.17, and User risk scores are updated as per formulae
4.15 and 4.16.

• The times at which entities communicate are fixed and known by all participants.
It is additionally assumed that the clocks of all participants are synchronized, so
that the Ticks and Periods commence at the same time for all.

36 4| Privacy-preserving Network-based Contact Tracing Protocol

Protocol Setup

This sub-subsection describes the actions to be performed before commencing the de facto
communication between entities for the purposes of contact tracing.
During the setup phase, every User Useri generates a suite of keys: a secret key ski,
a public key pki and a relinearization key rki. The public key and rki is sent to the
MO, ski is kept for the User only. The public key is also sent to the GA — but not the
relinearization key.
After every MO has received the public keys of all its Users, a public key exchange
commences. All MOs send the public keys of all their Users to all other MOs and hence
access to all public keys is granted to all MOs. The User relinearization keys are not
shared between the MOs. Moreover, all MOs initialize their Users’ scores to Encpki(0),
for each Useri with public key pki.
The GA collects the status of all Users from the relevant medical and administrative
authorities. Then, after having received the public keys from all Users, proceeds to encrypt
each User’s status under all other Users’ public keys.
After all of the above are performed by the entities, the protocol communication phases
can begin. They are described in the next sub-subsection.

Communication Phases

The communication phases are split into three categories: Tick communications, Period
communications, and unscheduled communications. The protocol commences via a Period
communication, which is initiated by the GA and repeats with a relatively low frequency
(e.g., daily). During this phase, the GA sends to each MO the status of their respective
Users encrypted under all other Users’ public keys. The Tick communications are initiated
by User movement and location updates. These events then trigger the information to be
exchanged between the MOs, after which the contact tracing and scoring computations
are being performed by each respective MO. The unscheduled communications involve a
User polling the MO for the score, after which the score encrypted under the User’s public
key is sent to the User. Then, the User decrypts the value using the secret key and finds
the score in plain.

Period communication: to each MO MOk, the GA sends

GA→MOk : [esij : ∀i s.t. Useri subscribed to MOk,∀j ̸= i], (4.19)

4| Privacy-preserving Network-based Contact Tracing Protocol 37

where esij is an encrypted status as defined in formula 4.12. The order of elements in
the list corresponds to the order of the MO’s Users’ public keys, or the correspondence is
made otherwise. The Period repeats in accordance to received updates from the medical
and administrative authorities.

Tick communication: as the location of Useri updates from (xi, yi) to (new_xi, new_yi),
the update is estimated by the MO. Automatically, according to the tessellation area
Useri finds itself in after the update, the new area ID area_IDi is assigned to Useri.
Afterwards, the inter-MO communication begins. Each MOm sends to every other MOn

a list of areas its Users are in.

MOm →MOn : [area_IDi : ∀i s.t. Useri subscribed to MOm]. (4.20)

The order of elements in the list corresponds to the order of the MO’s Users’ public keys,
or the correspondence is made otherwise. After this, each MO iterates through the list of
its Users’ areas, and for each one, encrypts the User’s coordinates under the public keys of
other MO’s Users in adjacent areas. Adjacency is determined by the following criterion:
if two areas touch at any point (i.e., sides or corners), then they are adjacent. Then it
sends the encrypted data to the corresponding MO, along with the encrypted status of
the User. The package sent between MOs is of form

MOm →MOn : [(esij, (exij, eyij)) : ∀i, j s.t. Useri subscribed to MOm

and Userj subscribed to MOn with area_IDi adjacent to area_IDj].
(4.21)

After all such packages are received by an MO, the contact tracing computations begin;
no further communication between MOs is performed until the next Tick. Contact tracing
computations are split into two categories: contact tracing between the MO’s Users —
can be done in plain — and between the MO’s Users and other MOs’ Users — must be
done in cipher domain. The plain contact computations can be either performed via the
threshold formula 4.2, or via the estimating formula 4.17. From here onward it will be
assumed they are done via the estimating formula. The cipher contact computations are
done using the formula 4.18. After the contacts between Users are evaluated, the scores
are updated using formula 4.16 for Users of the same MO, and formula 4.15 for Users
of different MOs respectively, for each User. This concludes the internal computations
following the inter-MO communication phase.

Unscheduled communications occur when a User sends a request under the protocol to

38 4| Privacy-preserving Network-based Contact Tracing Protocol

the subscribed MO. This request is assumed to be the only User-to-MO communication
possible after the setup phase. Upon receipt of the request, the MO sends back to the
User its encrypted score, which the User can then decrypt to reveal the plain score.
Figure 4.5 presents a sketch of protocol communication phases.

Figure 4.5: Sketch of Protocol Functionality.

Within the figure 4.5, the phases are presented in order of appearance. Phase (1) rep-
resents communication of User status between the relevant medical institutions and the
GA. Phase (2) represents the communication of encrypted status to the respective MOs.
Phase (3) represents the assessment of User locations by their respective MOs. Phase (4)
represents the exchange between the MOs at each Tick. Phase (5) represents the contact
tracing routine, ending with the update of encrypted User scores.

39

5| Simulation and Results

This chapter describes the simulation context and results for the work. It begins by
establishing a Gauss-Markov mobility model [25, 60] for User movement in section 5.1.
Then, in Section 5.2, the metrics in view are described. The third Section 5.3 presents the
simulation setup, in terms of used hardware and software construction. Fourth Section
5.4 describes and interprets the results. Finally, Section 5.5 draws general conclusions
regarding the outcomes.

5.1. User Mobility Model

As large scale fine-grained mobility data is difficult to collect and even more difficult to
find without hitting a number of paywalls, this work has resorted to producing synthetic
mobility data. In order not to have too much computational load on producing mobility
traces, the chosen approach was to use something relatively simple and quick, while also
not being too simplistic. To this end, the Gauss-Markov model [25, 60] was chosen, as it
allows variable velocity, angle of movement, as well as potential rest periods. The gener-
ator for the mobility traces was the pymobility Python library [68], more specifically the
Gauss-Markov mobility generator model. Its implementation was inspired by the mobility
model survey done by Camp and others [25].
In general, the aim was to simulate random movements of individuals randomly dis-
tributed over the protocol simulation area such that both average walking and speed-limit
driving — considered 50 km/h or 14 m/s — were included. Hence, the parameters were
set with a 50% chance to change direction and velocity, with a mean velocity of 7 m/s
and variance 7. The result yields a iterator of a list of doubles (x, y) of size equal to the
desired number of Users in the simulation context.

5.2. Metrics

This Section describes the considered metrics when producing simulation results. The
security of the system was set through a no-compromise approach — i.e., parameters set

40 5| Simulation and Results

according to FHE security standards in relation to the latest known attacks as per [31].
Having established that, the considered metrics are as follows:

• Error in score computation: The considered error was a combination of the mean
absolute error between threshold score in plain (as generated by using the formulae
4.2 and 4.3) and curve score encrypted (as generated by using the formulae 4.17,
4.15, and 4.16), as well as the threshold score in plain versus the curve score in
plain. CKKS [26] adds error to fresh encryptions by default, and during every mul-
tiplication, the size of the error grows to a sum of the errors of the two ciphertexts.
Moreover, the curve-based computation also adds errors compared to the threshold
one. That happens because the weight assigned to every possible distance follows
a smoother decrease that essentially assigns some weight to every distance up until
2
√
2l, where l is the tessellation area side length. Aiming for full lack of error is

infeasible, due to the two reasons mentioned above. The error in score computa-
tion metric therefore is a measure of how big the difference is between plain and
encrypted curve computations, and the relation with the threshold score.

• Computational complexity and run time: The main source of complexity for the
CKKS scheme — and all fully-homomorphic encryption schemes for that matter —
is the number of multiplications to perform. This is especially true if the required
security goals impose choosing large keys, along with large ciphertext moduli. For
example, to reach the desired goal of λ = 128 bits of security (as is recommended for
sensitive private data, such as User location and even more so infection status), one
must choose a polynomial degree of at least 256, which in turn imposes a secret key
size of 64 bits or more. Moreover, the need for a multiplicative level of at least 14
requires a ciphertext modulus of at least 930 bits, meaning that every multiplication
between ciphertexts implies multiplications of two pairs of 256-entry vectors with 930
× 930 bit entries, followed by a costly relinearization operation. This metric shows
the increase in computational complexity as the security of the system increases.
Run time is a direct consequence of complexity, paired with the hardware available.
However, it yields a reasonable palpable measure of how the system performs on a
personal machine. It was found very instructive to show run time for every tick, and
the impact various parameters have on it. Additionally, a graph of how ciphertext-
ciphertext multiplication time decreases after every rescaling is reported.

• Communication overhead: Communication overhead is a measure of the amount of
information exchanged by the different entities during the communication phases
of the protocol. The communication overhead is reported as a function of full
protocol area size, tessellation area size, User density and MO count. The main

5| Simulation and Results 41

generators of overhead are obviously the MOs, along with the GA. User overhead is
relatively negligible and will not be measured. The overheads are reported as MO
or GA overhead per User, as functions of tessellation area size and full protocol size,
respectively.

5.3. Simulation Setup

The hardware used is a laptop with an Intel(R) Core(TM) i7-9750H processing unit run-
ning at 2.60GHz with 16GB RAM (15.8GB available). It runs a Windows 11 operating
system, onto which a Windows Subsystem for Linux running Ubuntu 22.04.1 LTS with
8GB of allocated RAM memory. The simulation code is written in Python3, inside a
Conda envirnoment configured to run py-fhe [8] and pymobility [68]. This Section de-
scribes the simulation settings and construction. It starts by listing simulation parameters
and their meaning in subsection 5.3.1, and continues by describing the entity classes in
the code construction and their roles in subsection 5.3.2.

5.3.1. Simulation Parameters

Before the simulation is run, the parameters are established. Said parameters can be split
into two categories: simulation parameters pertaining to the issues not related to encryp-
tion, and encryption parameters pertaining to the encryption scheme. The simulation
parameters are:

• Population size: integer POPSIZE; Represents the number of Users in the system,
and also the number of entities simulated by the mobility generator;

• Total protocol area dimensions: (max_x,max_y) integer pair. Represents the
dimensions of the protocol area, and also the total dimensions of the area considered
by the mobility generator. During the simulations ran for generating results, it was
considered that max_x = max_y;

• Tessellation area dimensions: (area_x, area_y) integer pair. Represents the sizes of
the tessellations. During the simulations ran for generating results, it was considered
that area_x = area_y;

• Mobile operator count: integer MO_count. Represents the number of mobile op-
erators executing the protocol exchanges over the protocol area. MO_count ≥ 2

for the protocol to make sense;

• Contact threshold: integer thr. Represents the distance under which the Users are

42 5| Simulation and Results

considered in contact. In general, during simulations, thr = 2 was considered;

• Infected count: integer INFECTED_COUNT. Represents the count of infected
Users in the initial population. For the protocol to make sense, INFECTED_COUNT ≥
1;

• Exponent: integer k. Represents the number of repeated squaring operations per-
formed during contact calculation. It is determined by the tessellation area sizes,
as well as the contact threshold.

The encryption parameters are the scaling factor, polynomial degree, ciphertext modulus
and big number modulus of the CKKS encryption scheme. They are wrapped by an
instance of the CKKSParams class in py-fhe.

5.3.2. Controller and Entity Classes

Simulations are created by running a controller-style class that keeps track of the passing
of time and of the movements and additionally triggers all the calls to the appropriate
methods inside the entity classes. It is constructed from a movements_iterable object (es-
sentially an iterator created from an instance of a pymobility iterator of POPSIZE nodes
over a (max_x,max_y) area that is sampled every 60 iterations to mimic minutely move-
ments), a params object (an instance of the py-fhe CKKSParams class), MO_count, and
two tuples — (area_x, area_y) and (max_x,max_y). At initialization, the Controller
does the following in order:

1. It iterates once through movements_iterable and rounds the output locations to the
nearest integer coordinates;

2. It sets the current time to 0;

3. It builds a GA object;

4. It creates MO_count MO objects with incremental IDs and links them with each
another and with the GA;

5. It creates POPSIZE User objects with incremental IDs and links each of them to the
MO with ID User_ID % MO_count and with the GA, where % denotes modular
reduction. This ensures an even distribution of Users to MOs. Each User with
ID User_ID is initialized with a location equal to the User_ID’th entry in the
Controller’s current locations, which is passed to their respective MO.

The status of the Users is only stored inside the GA, in plaintext. It is set by randomly
choosing INFECTED_COUNT positions in a POPSIZE vector of bits and assigning

5| Simulation and Results 43

the value 1 to them; the rest are 0. The resulting vector is stored in the GA as the
User_status vector.
There are three families of protocol entities used for the simulations: two plaintext families
and an encryption-based family. By family it is meant the Controller, GA, MO and User
classes. The plaintext families are the threshold family — which uses the contact formula
based on threshold evaluation 4.2 — and the curve family, which use the contact formula
4.17 based on the approximations created for ciphertext evaluation. The Controller for
the plaintext families does not take encryption parameters as an initialization argument.
Instead, the Controller for the threshold scheme takes a thr argument as described in
subsection 5.3.1, while both the other two types of Controller take exponent k as an
initialization parameter. The encryption-based family is essentially the encryption variant
of the curve family.
At this point, the initialization phases for the plaintext families is over. For the encryption-
based family, the initialization phase ends after the User initialization, during which
encryption keys are generated and exchanged:

1. Upon creation, every User produces a key suite, of which he sends to the respective
MO the public and the relinearization keys. In parallel, the User sends the public
key to the GA;

2. The MO, upon reception of the keys, stores the relinearization key and relays the
public key to all other MOs;

3. In parallel, the MO initializes the score assigned to the User to an encryption of 0;

4. The GA, upon reception of the keys, encrypts the User_status vector position by
position under all the other Users’ public keys.

After the initialization phase is completed, the Controller commences the communication
phases as described in subsection 4.3.3. This is done via a major routine called Tick.
During the Tick, the following happen:

1. Check if the current Tick count is a multiple of a Period. If so, the Period commu-
nications are started from the GA;

2. Tick communications are initiated in the MO objects;

3. New locations are generated from the movements_iterable and rounded to the near-
est integers;

4. Tick count is incremented;

5. Locations are updated in each User, corresponding to the locations generated above.

44 5| Simulation and Results

The Period in the GA implies sending a list of encrypted status to each MO for each
User as described in the Communication Phases sub-subsection 4.3.3, more specifically
by formula 4.19.

The Tick in the MO triggers the following:

1. User locations are updated. The area ID assigned to each User is updated according
to the location. The set of User references assigned to each area ID is updated
accordingly;

2. A routine for evaluating the scores of its own Users. Contact is evaluated via the
plain version of the approximate contact formula 4.17. The score of each User is
updated through the score update formula for same-MO Users 4.16;

3. User locations are encrypted under the other MOs’ Users’ public keys;

4. Lists of areas, encrypted status and locations are exchanged with each respective
MO as defined in the Tick Communications sub-subsection of 4.3.3.

5. After the exchanges are performed with all MOs, contacts and scores are evaluated
preserving privacy. Squared distance between plain own User locations and en-
crypted locations is calculated, then multiplied with the encoded constant−1/(8area_x2),
subtracted from the encoded constant 1, and squared repeatedly according to the
exponent k to produce the contact value in encrypted form. Then, the contact value
is multiplied with the encrypted status as defined in the formula 4.12 and added to
the User’s score. This is performed for every User and concludes the Tick.

5.3.3. Simulations

This subsection describes the simulations set up for evaluating the performance of the
construction. They are of two types: simulations that evaluate encryption system perfor-
mance and simulations that evaluate the performance of the protocol as a whole.
The simulations that evaluate the encryption system performance imply running a number
of tests to evaluate running time for atomic operations on the specified hardware. The first
subtype of simulation evaluates run time for encoding, encryption, multiplications with
plaintext and ciphertext, additions with plaintext and ciphertext, decryption, rescaling,
and modulus lowering. The second subtype of simulation evaluates the decrease in time
required to perform subsequent squarings after rescaling the same ciphertext. They are
both performed outside of the protocol construction, over just an instance of the CKKS
suite with variable parameters.

5| Simulation and Results 45

The second type of simulation involves running the protocol using the Controller class
and all the classes created by it. The simulations involve running an instance of a Con-
troller of some family against either a Controller of another family or Controller of the two
other families. These simulations are enabled through the creation of iterator wrappers
over the pymobility generator that copy the results of the original minutely iterator for
two or three consecutive iterations respectively. In this way, the mobility data fed into
each Controller in the same simulation is exactly the same. During the simulations, final
scores are registered and compared in the different settings. In simulations involving the
encrypted Controller, run time is also registered.

5.4. Illustrative Numerical Results

This Section describes the specific simulations run, and the obtained results, along with
relevant figures and data tables.

Operation Execution Times

The considered simulation runs a selection of separate operations related to the CKKS
scheme on a large number of random integers (of values up to 3700) and records the time
it takes to perform each operation. The operations considered are the ones used in the
implementation of the protocol. The results are then aggregated in a data table and the
mean values and percentiles are reported. The considered simulations run on instances of
CKKS with the same polynomial degree (256), ciphertext modulus (2744), and big integer
modulus (2930). One simulation (see figure 5.1) is set up for a scaling factor of 242, while
the other (see figure 5.2) is set up for a scaling factor of 249.

Figure 5.1: Single operation times for scaling factor 242.

46 5| Simulation and Results

Figure 5.2: Single operation times for scaling factor 249.

The data collected shows that the most costly operation is the multiplication between
ciphertexts (listed in the cipher_mult column of the tables). It is roughly three times
more costly than the next two costliest operations, encryption and multiplication with
plaintexts. Moreover, as multiplications between ciphertexts is performed repeatedly
during each contact computation between Users of different MOs, it easily can be chosen
as the bottleneck of the protocol in terms of computation. An interesting result is the
decrease in multiplication time from scaling factor 242 to scaling factor 249. As a general
rule of thumb, it is preferred to use the highest scaling factor (that still provides security
as per [31], illustrated in figure 3.1) possible to ensure the highest possible precision of
the final result, as well as the highest decrease of ciphertext size during the rescaling
procedure (which happens after every multiplication). The achieved results also show
that fresh ciphertexts with higher scaling factors multiply quicker, which represents an
added encouragement to adopt such a parameter setting strategy.

Repeated Squaring Times

The considered simulation runs produces an instance of the CKKS suite with the same
parameters considered as the de facto security standard, namely polynomial degree 256,
ciphertext modulus 2744, big integer modulus 2930, and scaling factor 249. Then, a pair
of random integer coordinates is generated. The first one has x, y ∈ [0, 50), while the
second has x, y ∈ [−50, 100) to emulate two Users in adjacent tessellation areas. Then a
value equal to 1−Dist/20000 is encoded an encrypted, where Dist is the squared distance
between the coordinates — equivalent to the base of the exponentiation performed during
the contact calculation. The resulting value is then repeatedly squared and rescaled by
the scaling factor and the times of each subsequent multiplication are reported. This
operation is repeated 13 times, equivalent to the number of encrypted multiplications
and rescalings needed to run the contact tracing and scoring routines of the protocol

5| Simulation and Results 47

considering tessellation area side l = 50 and contact threshold δ = 2. The observed
multiplication times are reported in figure 5.3.

Figure 5.3: Multiplication times for decreasing ciphertext size visualization.

As can be seen in the figure, the time to perform a multiplication decreases as ciphertext
size decreases, and this is correlated with the size of ciphertext modulus after rescaling.
However, the decrease in ciphertext size does not fully account for the multiplicative com-
plexity, as the relinearization complexity also depends on the big integer modulus, whose
size remains unaffected by the rescaling procedure. The multiplication times between ci-
phertexts decrease from a mean of 1.63s for fresh ciphertexts (level 0) to 1.56s for level-13
ciphertexts. The exact numbers are described in figure 5.4

48 5| Simulation and Results

Figure 5.4: Multiplication times for decreasing ciphertext size description.

In addition to this, an estimate of how long a single contact score calculation takes, as
well as how long the score update procedure takes was done and is reported in table 5.1.

Execution Times for Contact Tracing and Scoring

Contact Score

mean 19.177152 20.742058

std 1.637950 1.768309

min 16.796706 18.159914

25% 17.605163 19.049309

50% 19.516737 21.105453

75% 20.216645 21.852071

max 28.899934 30.812420

Table 5.1: Execution times for contact tracing and scoring (3000 runs).

Communication Overhead

The fact that relevant information is sent between the parties only once and that the
calculations can be safely performed locally implies that one of the main advantages of
the proposed protocol is reduced communication overhead. Indeed, on a per-User basis,
on every run of the protocol (Tick), every MO produces a more than reasonable expected
overhead. The GA overhead per User, while significantly larger, is only produced once
per day, and hence can also be considered reasonable.

5| Simulation and Results 49

Figure 5.5: MO communication overhead per User as function of Users per area.

Figures show the mean expected overhead generated by each User for their respective
MOs. In figure 5.5, the dependence of the average overhead generated per User by each
MO is shown as a function of User density per tessellation area. The multiple lines
in the figure represent the overhead generated when two to six MOs are participating
in the protocol exchange. The tessellation area size considered is fixed at 50m × 50m.
The estimations show an average of 8.142MB of overhead for two MOs for a Milan-level
density of area (18.75 Users/2500m2 as per [6]), while the average can grow to 77.138MB
for a Manila-level density of area (around 108 Users/2500m2 as per [1]). The relationship
between User density and overhead per User is linear.

50 5| Simulation and Results

Figure 5.6: MO communication overhead per User as function of tessellation area side
length.

Figure 5.6 shows the relationship between tessellation area size and overhead generated
by each User, with different curves for different MO counts (from two to six). It considers
a constant User density of 5000/km2, or 0.005/m2, which is equivalent to a Milan-level
city considering 66% of the population has 5G-capable devices and all are subscribed
to MOs participating in the protocol. The break in the graph at 186m is because the
multiplicative level required to perform contact tracing according to the approximation
formula 4.17 implies the need to pass from a ciphertext modulus of 2744 to one of 21618.
The average communication overhead for a 50m-tessellation area side length is 5.357MB
for two MOs, while it grows to 123MB per User for 6 MOs for the lower bound at 186m.
At the tessellation area side length of 463m, the overhead generated for each User per
Tick surpasses 1GB, even for the two MO case. The relationship between tessellation

5| Simulation and Results 51

area side and generated overhead per User is quadratic.

Figure 5.7: GA communication overhead per User as function of total User count.

The overhead generated by the GA per User is reported as a function of the total area
under the action of the protocol — in figure 5.8, and as a function of the total number
of Users in figure 5.7. The overhead is estimated for the protocol using CKKS with the
polynomial degree set to 256 and ciphertext modulus 744 bits (i.e., a tessellation area of
side length less than 186m). The considered area under protocol action is considered to be
square-shaped, with a User density of 5000/km2. The relationship between GA overhead
per User and total User count is a linear one, with 2.381GB of data generated for 100000
Users for two MOs. The relationship between GA overhead per User and protocol area
side length is quadratic, with 2.076GB generated for each User on a 25km2 total area.
This is considered acceptable, given that this overhead is generated with a low frequency
(considered daily) relative to the frequency of protocol rounds.

52 5| Simulation and Results

Figure 5.8: MO communication overhead per User as function of total area side length.

Threshold versus curve contact scores

The results in this subsection were obtained by running simulations of the plaintext Con-
trollers against one another.

For each contact threshold δ from 1m to 10m, the corresponding exponent for the curve
contact approximation formula was established — considering tessellation area side equal
to 50m, heuristically the exponent k that produces the closest curve to the point ((δ, 0.5))
— and generate a threshold Controller with threshold δ, as well as a curve Controller
with exponent k. All the simulations were run over a population of 500 of which 50 were
infected, on an area of 200m × 200m, with a tessellation of 50m × 50m and two MOs.
Depending on the value of δ, they were run against one another for a number of Ticks.
For the initial run, all the pairs were run for 100 Ticks. Afterwards, the lower threshold
Controller pairs were run for a higher number of Ticks, to achieve higher scores, while
the higher threshold controller pairs were run for a lower number of Ticks to achieve the
lower scores. All data was collected in pairwise files. The resulting data points were
used to create the boxplots in figures 5.9 and 5.10 respectively — i.e., the coloured parts

5| Simulation and Results 53

(a) Threshold 1 (b) Threshold 2

(c) Threshold 3 (d) Threshold 4

(e) Threshold 5 (f) Threshold 6

Figure 5.9: Comparison of threshold score versus curve score for thresholds 1–6

54 5| Simulation and Results

(a) Threshold 7 (b) Threshold 8

(c) Threshold 9 (d) Threshold 10

Figure 5.10: Comparison of threshold score versus curve score for thresholds 7–10

5| Simulation and Results 55

show the values between the 25th and 75th percentiles, the dots are considered outliers,
and the remaining range of values is represented by the "whiskers". There is an obvious
correlated increase in the curve score as the threshold score increases. However, as the
threshold increases, the approximation formula 4.17 produces poorer approximations of
the desired threshold contact evaluation procedure. Moreover, extreme threshold score
values are rather poorly represented by the corresponding contact scores, with either
missing values in some cases or lower threshold scores having higher corresponding contact
scores. The scheme was mainly designed with contact threshold 2 in mind (as during
the Covid pandemic, authorities around the world suggested keeping a distance of 1–2
metres between persons), and it performs quite well at low thresholds — the respective
interquartile ranges almost partitions the space of values. For more overlapping value
ranges, an equivalent score could be computed by taking the average of the corresponding
threshold scores. At this point, this is an idea and possible grounds for future work.

Error in computation

For the assessment of errors in computation, the simulations performed involved running a
plaintext curve Controller against an encryption Controller. The simulations were meant
to evaluate the extent to which the CKKS cryptographic system-added errors affect the
final results of the computations. Both Controllers are initialized with the same mobility
iterator and the distinctive feature between different runs of the simulation is the encryp-
tion parameters used. To this extent, the main resource used for setting parameters was
the table provided in [31], recreated in table 3.1. Generally, error depends on the scaling
factor used, as well as on the multiplicative depth of the algorithms used. The following
describe the errors obtained during simulations with the preferred parameters for system
security (polynomial degree 256, ciphertext size 744 bit, big integer size 930 bit, scaling
factor 49). On a simulation (two runs, one value was removed because the plaintext result
was over 1) over a protocol area of 100m × 100m, using a tessellation of 50m × 50m for
20 Users of which 5 are infected, the absolute error behaves as described in table 5.2.

56 5| Simulation and Results

Absolute error plaintext curve vs ciphertext curve

Error

mean 5.151382e-02

std 1.618113e-01

min 7.061351e-13

25% 5.350806e-12

50% 1.620244e-06

75% 6.200350e-04

max 6.639255e-01

Table 5.2: Absolute error plaintext curve vs ciphertext curve for 20 Users in 100m ×
100m (2 runs of 10 Ticks each); one major outlier was removed.

Similarly, in a situation with the same encryption parameters, but with 10 Users over a
protocol area of 150m × 150m, the error behaves as described in figure ??.

Absolute error plaintext curve vs ciphertext curve

Error

mean 5.436674e-06

std 1.206621e-05

min 6.572359e-12

25% 1.366804e-11

50% 2.125079e-11

75% 4.560400e-08

max 3.525788e-05

Table 5.3: Absolute error plaintext curve vs ciphertext curve for 10 Users in 150m ×
150m (1 run of 10 Ticks).

The most relevant result is the max obtained error, as this will dictate the final error
upon addition in cipher domain. In a setup with a sparse User distribution, the errors
are lower than in denser situations.

5| Simulation and Results 57

Figure 5.11: Seconds to perform an average Tick for User count.

Protocol round execution time

The main drawback of using fully-homomorphic encryption in general is the long com-
putation times due to the multiplication of big ciphertexts — and additionally expensive
relinearization operations. This is the reason why the simulations comparing encrypted
calculations with plaintext ones are small in size compared to the relatively bigger simu-
lations comparing plaintext Controllers. The expected computation times are quadratic
in User count per tessellation area — similar to overhead. The first Tick time is expected
to take longer than the following ones, as it also involves the respective encryptions at
the GA level. Using polynomial degree 256, ciphertext modulus 2744, big integer modulus
2930, and scaling factor 249 the dependence of Tick times on the population size is reported
in figures 5.11 and 5.12. Figure 5.12 shows the distribution of the time it takes to perform
the first Tick as a function of User count, while 5.11 shows the times taken to perform
subsequent Ticks. The times were produced while running a series of simulations of the
encryption Controller for 10 Ticks each. The 10 and 15-User simulations were run 5 times
each, while the 20-User simulation was run 2 times. We recall an average time of around
18.5 minutes per Tick for 10 Users, 43 minutes for 15 Users, and 83 minutes for 20 Users.

58 5| Simulation and Results

Figure 5.12: Seconds to perform the first Tick for User count

5| Simulation and Results 59

5.5. Summary

This summary describes the obtained results and draws conclusions regarding the perfor-
mance of the system.
MO communication overhead per User depends on the used parameters — namely, ci-
phertext modulus — as well as the number of Users in a given area. In general, with
tessellation area growth, ciphertext modulus grows, as well as the number of Users in the
area. For only growing User densities over tessellation areas, the overhead grows linearly
with User count. We recall overhead values can reach as low as 5MB for a city of Milan
density.
GA communication overhead per User depends on the total number of Users affected by
the protocol. The apparently unappealing overhead order of magnitude is softened by the
fact that GA communication occurs at least 1440 times less often that the MO overhead
— considering daily GA communications and minutely MO communications. For exam-
ple, for a population of a million, considering 2 MOs, the overhead generated by the GA
per User corresponds to roughly 17MB for each MO communication round.
All things considered, the resulting overhead is quite low.
Errors in computation occur two-fold. Once due to the approximations, and once due to
the intrinsic errors added by CKKS. For parameters that provide a good security level
(i.e., polynomial degree 256, ciphertext modulus 2744, scaling factor 249), the resulting
absolute errors due to CKKS are in the worst case 0.6634, with a median of order 10−8.
The differences in scoring due to usage of a different formula we report in the threshold
figures. In general, the lower the threshold, the better the separation between approx-
imate values corresponding to threshold scores at the cost of more multiplications and
hence higher computational costs. On the other hand, the more the considered contact
threshold grows, the lower the needed exponent for formula 4.17, while values are more
difficult to classify.
Lastly, long computational times are the expected drawback of using FHE. The reported
times range from 18 minutes per Tick for 10 Users distributed to two MOs to 83 min-
utes for 20 Users. This is rather slow. As the high running times are due to the size
of ciphertexts, reducing the ciphertext size would imply either a loss in security — for
smaller Hamming weights — a loss in potential multiplication level — for smaller cipher-
text moduli — or both. The dependence of computational time on User count is roughly
quadratic, as both the comparison operations are done in sequence by the simulation.
We present as more relevant when considering high-scale performance the time taken to
perform a single multiplication, as well as the average contact and score computation. For
secure parameters, they are 1.632639s on average for a single multiplication, 19.177152s

60 5| Simulation and Results

on average to evaluate contact, and 20.742058 to compute score.

61

6| Conclusion and Future Work

6.1. Conclusion

While the Covid pandemic may be mostly behind us as a society, new epidemics and
contagions arise in all matter of corners of the world. In this work, a new approach
to performing contact tracing was proposed and prototyped. Individuals identified with
their devices have their locations estimated by their network operators and through the
collaboration of certain government agencies, a privacy-preserving contact tracing and
risk evaluation method is performed.
The advantages of using network operators for performing such a task are ease of access
and the lack of need for direct interaction with an application or the added discomfort of
having the users’ batteries drained by keeping various transceivers on at all times, such as
Bluetooth or GPS. All this stems from the operators’ estimations of their users’ locations
and the possible sub-metre accuracy achievable in dense 5G environments.
Moreover, state of art fully-homomorphic encryption schemes provide an exceptional
means of performing computations privately. This allows for reduced overhead while
exchanging data between parties, as the necessary data need only be sent once.
An additional novelty of this approach is the approximation of a step function through
a smooth addition and multiplication-based formula depending on a tessellation of the
considered area of effect of the protocol and the distance within which individuals are
considered in contact.
The main drawback of our solution is represented by the high computational time. Nev-
ertheless, continuous improvements of FHE, both on the theoretical and implementation
levels, promise to lower these high computational times to more acceptable values.

6.2. Future Work

The use of fully-homomorphic encryption provides an avenue of new and exciting ways of
expanding the work done in this thesis.

62 6| Conclusion and Future Work

6.2.1. Parallelism and Distribution

The protocol in this thesis was produced with single-thread execution in view, and pro-
vides a baseline for capabilities and performance. Additional concurrent execution can
be performed in many places within the actual FHE operations, as well as within the
calculations done for each contact tracing procedure, and not finally, different User con-
tact computations and subsequent score updates can be executed by multiple threads,
allowing a significant speed-up of what currently looks like a rather slow process.
Additionally, computations can be outsourced to potential third parties, to lighten the
load currently placed upon wholly on the network operators. Of course, this will imply
additional communication overhead, as well as a new potential point of breach for privacy
concerns.

6.2.2. Algorithms and Alternate Schemes

While the approximation formula used in this protocol is clever and gets the job done,
there are claims of better performance comparisons within the literature. Papers such as
[30], [33] suggest that improvements can be done to the current scheme to make it more
efficient in terms of execution times. They either exploit underlying number theoretical
properties of the number fields considered in the construction of the encryption suite, or
use alternative packing techniques yet to be explored in this work.
Moreover, there are a number of other schemes and implementations that have as of
yet been unexplored and warrant attention for the future. The BGV [24], BFV [39],
and TFHE [34] schemes, as well as the more ample usage of the RNS (Residue Number
System) variant of CKKS [27] can potentially speed up the comparisons which make up
the bulk of the computations in this work.
Not lastly, the full extent of the batching capabilities of CKKS has not been exploited
in the prototype produced for this work. While such an approach would not reduce the
data overhead generated by the government agents or by each round of the protocol, it
can potentially reduce the frequency of rounds without incurring significant additional
computational costs.

6.2.3. Advances in Hardware

The projected advances in specialized hardware, may allow these computations to per-
form much better in a future that is not that far away.
Upcoming software-defined architectures such as Cornami’s Trustream [2] claim 106 quicker
operations on FHE-based ciphertexts, quick enough for real-time computations on the en-

6| Conclusion and Future Work 63

crypted data. Once the availability of such hardware will not be a matter of discussion,
their impact on the current construction can be revisited and .

65

Bibliography

[1] Wikipedia list of cities proper by population density. https://en.wikipedia.org/
wiki/List_of_cities_proper_by_population_density.

[2] Cornami website. https://cornami.com/trustream.

[3] Duality website. https://dualitytech.com/product/.

[4] Enveil website. https://www.enveil.com/products.

[5] Inpher XOR website. https://inpher.io/xor-secret-computing/.

[6] Wikipedia page on Milan. https://en.wikipedia.org/wiki/Milan.

[7] PALISADE website. https://palisade-crypto.org/.

[8] py-fhe repository (release 1.0). https://github.com/sarojaerabelli/py-fhe.

[9] Zama concrete documentation. https://docs.zama.ai/concrete.

[10] Py-SEAL repository (release 2.2). https://github.com/Lab41/PySEAL, July 2019.

[11] 5g cybersecurity standards — enisa, 2022. URL https://www.enisa.europa.eu/

publications/5g-cybersecurity-standards.

[12] HEAAN (release 2.1). https://github.com/snucrypto/HEAAN/releases, Jan.
2022.

[13] Lattigo (release 4.0). https://github.com/tuneinsight/lattigo, Oct. 2022.

[14] PALISADE repository (release 1.11.2). https://gitlab.com/palisade/

palisade-development, Sept. 2022.

[15] Zama concrete repository (release 0.2.0). https://github.com/zama-ai/concrete,
Oct. 2022.

[16] Z. Abu-Shaban, G. Seco-Granados, C. R. Benson, and H. Wymeersch. Perfor-
mance analysis for autonomous vehicle 5g-assisted positioning in gnss-challenged
environments. 2020 IEEE/ION Position, Location and Navigation Symposium,

https://en.wikipedia.org/wiki/List_of_cities_proper_by_population_density
https://en.wikipedia.org/wiki/List_of_cities_proper_by_population_density
https://cornami.com/trustream
https://dualitytech.com/product/
https://www.enveil.com/products
https://inpher.io/xor-secret-computing/
https://en.wikipedia.org/wiki/Milan
https://palisade-crypto.org/
https://github.com/sarojaerabelli/py-fhe
https://docs.zama.ai/concrete
https://github.com/Lab41/PySEAL
https://www.enisa.europa.eu/publications/5g-cybersecurity-standards
https://www.enisa.europa.eu/publications/5g-cybersecurity-standards
https://github.com/snucrypto/HEAAN/releases
https://github.com/tuneinsight/lattigo
https://gitlab.com/palisade/palisade-development
https://gitlab.com/palisade/palisade-development
https://github.com/zama-ai/concrete

66 | Bibliography

PLANS 2020, pages 996–1003, 4 2020. doi: 10.48550/arxiv.2004.07380. URL
https://arxiv.org/abs/2004.07380v1.

[17] D. Andreoletti, S. Giordano, G. Verticale, and M. Tornatore. Discovering the geo-
graphic distribution of live videos’ users: A privacy-preserving approach. 2018 IEEE
Global Communications Conference, GLOBECOM 2018 - Proceedings, pages 1–6,
2018. URL https://ieeexplore.ieee.org/document/8647639/.

[18] D. Andreoletti, O. Ayoub, S. Giordano, M. Tornatore, and G. Verticale. Privacy-
preserving multi-operator contact tracing for early detection of covid19 contagions.
pages 1–6. IEEE, 12 2020. ISBN 978-1-7281-7307-8. doi: 10.1109/GCWkshps50303.
2020.9367403. URL https://ieeexplore.ieee.org/document/9367403/.

[19] D. Andreoletti, O. Ayoub, S. Giordano, G. Verticale, and M. Tornatore. Network-
based contact tracing for detection of covid-19 contagions: A privacy-preserving
approach. IEEE Communications Magazine, 59:42–48, 9 2021. ISSN 0163-
6804. doi: 10.1109/MCOM.001.2100015. URL https://ieeexplore.ieee.org/

document/9566510/.

[20] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise,
S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio, I. Quah, Y. Polyakov,
S. R.V., K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett, V. Vaikuntanathan, and
V. Zucca. Openfhe: Open-source fully homomorphic encryption library. Cryptology
ePrint Archive, Paper 2022/915, 2022. URL https://eprint.iacr.org/2022/915.
https://eprint.iacr.org/2022/915.

[21] A. Bourdoux, A. N. Barreto, B. van Liempd, C. de Lima, D. Dardari, D. Belot, E.-S.
Lohan, G. Seco-Granados, H. Sarieddeen, H. Wymeersch, J. Suutala, J. Saloranta,
M. Guillaud, M. Isomursu, M. Valkama, M. R. K. Aziz, R. Berkvens, T. Sanguan-
puak, T. Svensson, and Y. Miao. 6g white paper on localization and sensing. 6 2020.
doi: 10.48550/arxiv.2006.01779. URL https://arxiv.org/abs/2006.01779v1.

[22] Z. Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 7417 LNCS:868–
886, 2012. ISSN 03029743. doi: 10.1007/978-3-642-32009-5_50/COVER. URL
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_50.

[23] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. Proceedings - Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pages 97–106, 2011. ISSN 02725428. doi: 10.1109/FOCS.2011.12.

https://arxiv.org/abs/2004.07380v1
https://ieeexplore.ieee.org/document/8647639/
https://ieeexplore.ieee.org/document/9367403/
https://ieeexplore.ieee.org/document/9566510/
https://ieeexplore.ieee.org/document/9566510/
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://arxiv.org/abs/2006.01779v1
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_50

| Bibliography 67

[24] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. 2011.

[25] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing, 2:483–502, 2002. URL
https://onlinelibrary.wiley.com/doi/10.1002/wcm.72.

[26] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic
of approximate numbers. 2016.

[27] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. A full rns vari-
ant of approximate homomorphic encryption. Selected areas in cryptogra-
phy : ... annual international workshop, SAC ... proceedings. SAC (Confer-
ence), 11349:347, 2018. ISSN 16113349. doi: 10.1007/978-3-030-10970-7_
16. URL /pmc/articles/PMC8048025//pmc/articles/PMC8048025/?report=

abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048025/.

[28] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for ap-
proximate homomorphic encryption. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 10820 LNCS:360–384, 2018. ISSN 16113349. doi: 10.1007/
978-3-319-78381-9_14/FIGURES/3. URL https://link.springer.com/chapter/

10.1007/978-3-319-78381-9_14.

[29] J. H. Cheon, S. Hong, and D. Kim. Remark on the security of ckks scheme in practice.
2020.

[30] J. H. Cheon, D. Kim, and D. Kim. Efficient homomorphic comparison methods with
optimal complexity. In S. Moriai and H. Wang, editors, Advances in Cryptology –
ASIACRYPT 2020, pages 221–256, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-64834-3.

[31] J. H. Cheon, Y. Son, and D. Yhee. Practical fhe parameters against lattice attacks.
J. Korean Math. Soc, 59:35–51, 2022. ISSN 2234-3008. doi: 10.4134/JKMS.j200650.
URL https://doi.org/10.4134/JKMS.j200650.

[32] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomor-
phic encryption: Bootstrapping in less than 0.1 seconds. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 10031 LNCS:3–33, 2016. ISSN 16113349. doi:
10.1007/978-3-662-53887-6_1/FIGURES/1. URL https://link.springer.com/

chapter/10.1007/978-3-662-53887-6_1.

https://onlinelibrary.wiley.com/doi/10.1002/wcm.72
/pmc/articles/PMC8048025/ /pmc/articles/PMC8048025/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048025/
/pmc/articles/PMC8048025/ /pmc/articles/PMC8048025/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048025/
https://link.springer.com/chapter/10.1007/978-3-319-78381-9_14
https://link.springer.com/chapter/10.1007/978-3-319-78381-9_14
https://doi.org/10.4134/JKMS.j200650
https://link.springer.com/chapter/10.1007/978-3-662-53887-6_1
https://link.springer.com/chapter/10.1007/978-3-662-53887-6_1

68 | Bibliography

[33] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Improving tfhe: faster
packed homomorphic operations and efficient circuit bootstrapping. 2017.

[34] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Tfhe: Fast fully homomor-
phic encryption over the torus. 2018.

[35] H. Cho, D. Ippolito, and Y. W. Yu. Contact tracing mobile apps for COVID-19:
Privacy considerations and related trade-offs. 2020. URL http://arxiv.org/abs/

2003.11511.

[36] M. Z. Comiter, M. B. Crouse, and H. T. Kung. A data-driven approach to localization
for high frequency wireless mobile networks. 2017 IEEE Global Communications
Conference, GLOBECOM 2017 - Proceedings, 2018-January:1–7, 7 2017. doi: 10.
1109/GLOCOM.2017.8254732.

[37] M. V. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic en-
cryption over the integers. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6110
LNCS:24–43, 2010. ISSN 03029743. doi: 10.1007/978-3-642-13190-5_2/COVER.
URL https://link.springer.com/chapter/10.1007/978-3-642-13190-5_2.

[38] L. Ducas and D. Micciancio. Fhew: Bootstrapping homomorphic encryption in less
than a second. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 9056:617–640, 2015.
ISSN 16113349. doi: 10.1007/978-3-662-46800-5_24/COVER. URL https://link.

springer.com/chapter/10.1007/978-3-662-46800-5_24.

[39] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, 2012.

[40] K. Gao, H. Wang, H. Lv, and W. Liu. Toward 5g nr high-precision indoor positioning
via channel frequency response: A new paradigm and dataset generation method.
IEEE Journal on Selected Areas in Communications, 40:2233–2247, 7 2022. ISSN
15580008. doi: 10.1109/JSAC.2022.3157397.

[41] C. Gentry. A fully homomorphic encryption scheme. 2009.

[42] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. Cryptology ePrint Archive, 2010.

[43] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

http://arxiv.org/abs/2003.11511
http://arxiv.org/abs/2003.11511
https://link.springer.com/chapter/10.1007/978-3-642-13190-5_2
https://link.springer.com/chapter/10.1007/978-3-662-46800-5_24
https://link.springer.com/chapter/10.1007/978-3-662-46800-5_24

| Bibliography 69

Lecture Notes in Bioinformatics), 8042 LNCS:75–92, 2013. ISSN 03029743. doi: 10.
1007/978-3-642-40041-4_5/COVER. URL https://link.springer.com/chapter/

10.1007/978-3-642-40041-4_5.

[44] Google. Covid-19_apps, . URL https://docs.google.com/spreadsheets/d/

1qfbhFZbWCXd4GspSD6LL8CNmgzKEYtL-gQQk1gEKqrk/edit#gid=0.

[45] Google. Covid tracing tracker, . URL https://docs.google.com/spreadsheets/

d/1ATalASO8KtZMx__zJREoOvFh0nmB-sAqJ1-CjVRSCOw/edit#gid=0.

[46] Google. Digital rights tracker supporting data, . URL https://docs.google.com/

spreadsheets/d/1enCBRLVCo2Dp2B0AB3tEYvLc279i5LUuoGCzoelz8aQ/edit#gid=

1023364174.

[47] Google and Apple. Exposure notification bluetooth® specification. 4 2020.

[48] Google and Apple. Exposure notification cryptography specification. 4 2020.

[49] S. Gorantala, R. Springer, S. Purser-Haskell, W. Lam, R. Wilson, A. Ali, E. P. Astor,
I. Zukerman, S. Ruth, C. Dibak, P. Schoppmann, S. Kulankhina, A. Forget, D. Marn,
C. Tew, R. Misoczki, B. Guillen, X. Ye, D. Kraft, D. Desfontaines, A. Krishnamurthy,
M. Guevara, M. Perera, Y. Sushko, and B. Gipson. A general purpose transpiler for
fully homomorphic encryption. 2021.

[50] S. Halevi and V. Shoup. Design and implementation of helib: a homomorphic encryp-
tion library. Cryptology ePrint Archive, 2020. URL https://github.com/homenc/

HElib.

[51] E. Hernández-Orallo, C. T. Calafate, J. C. Cano, and P. Manzoni. Evaluating
the effectiveness of covid-19 bluetooth-based smartphone contact tracing applica-
tions. Applied Sciences 2020, Vol. 10, Page 7113, 10:7113, 10 2020. ISSN 2076-
3417. doi: 10.3390/APP10207113. URL https://www.mdpi.com/2076-3417/10/

20/7113/htmhttps://www.mdpi.com/2076-3417/10/20/7113.

[52] R. Hinch. Effective configurations of a digital contact tracing app: A report to
NHSX. Christophe Fraser, 1:1, 2020. URL https://www.pepp-pt.org. Alternative
URL (11.04.22): https://cdn.theconversation.com/static_files/files/1009/Report_-
_Effective_App_Configurations.pdf?1587531217.

[53] J. Hoffstein, J. Pipher, and J. H. Silverman. Ntru: A ring-based public key cryptosys-
tem. Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 1423:267–288, 1998. ISSN

https://link.springer.com/chapter/10.1007/978-3-642-40041-4_5
https://link.springer.com/chapter/10.1007/978-3-642-40041-4_5
https://docs.google.com/spreadsheets/d/1qfbhFZbWCXd4GspSD6LL8CNmgzKEYtL-gQQk1gEKqrk/edit#gid=0
https://docs.google.com/spreadsheets/d/1qfbhFZbWCXd4GspSD6LL8CNmgzKEYtL-gQQk1gEKqrk/edit#gid=0
https://docs.google.com/spreadsheets/d/1ATalASO8KtZMx__zJREoOvFh0nmB-sAqJ1-CjVRSCOw/edit#gid=0
https://docs.google.com/spreadsheets/d/1ATalASO8KtZMx__zJREoOvFh0nmB-sAqJ1-CjVRSCOw/edit#gid=0
https://docs.google.com/spreadsheets/d/1enCBRLVCo2Dp2B0AB3tEYvLc279i5LUuoGCzoelz8aQ/edit#gid=1023364174
https://docs.google.com/spreadsheets/d/1enCBRLVCo2Dp2B0AB3tEYvLc279i5LUuoGCzoelz8aQ/edit#gid=1023364174
https://docs.google.com/spreadsheets/d/1enCBRLVCo2Dp2B0AB3tEYvLc279i5LUuoGCzoelz8aQ/edit#gid=1023364174
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://www.mdpi.com/2076-3417/10/20/7113/htm https://www.mdpi.com/2076-3417/10/20/7113
https://www.mdpi.com/2076-3417/10/20/7113/htm https://www.mdpi.com/2076-3417/10/20/7113
https://www.pepp-pt.org

70 | Bibliography

16113349. doi: 10.1007/BFB0054868/COVER. URL https://link.springer.com/

chapter/10.1007/BFb0054868.

[54] Y. Jia, H. Tian, S. Fan, and B. Liu. Motion feature and millimeter wave multi-path
aoa-toa based 3d indoor positioning. IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, PIMRC, 2018-September, 12 2018. doi:
10.1109/PIMRC.2018.8580805.

[55] A. Kakkavas, M. H. C. Garcia, R. A. Stirling-Gallacher, and J. A. Nossek. Multi-array
5g v2v relative positioning: Performance bounds. 2018 IEEE Global Communications
Conference, GLOBECOM 2018 - Proceedings, 2018. doi: 10.1109/GLOCOM.2018.
8647812.

[56] R. Klus, J. Talvitie, and M. Valkama. Neural network fingerprinting and gnss data
fusion for improved localization in 5g. 2021 International Conference on Localization
and GNSS, ICL-GNSS 2021 - Proceedings, 6 2021. doi: 10.1109/ICL-GNSS51451.
2021.9452245.

[57] M. Koivisto, M. Costa, J. Werner, K. Heiska, J. Talvitie, K. Leppanen, V. Koivunen,
and M. Valkama. Joint device positioning and clock synchronization in 5G ultra-
dense networks. IEEE Transactions on Wireless Communications, 16(5):2866–2881,
2017. URL http://ieeexplore.ieee.org/document/7880669/.

[58] M. Koivisto, A. Hakkarainen, M. Costa, K. Leppanen, and M. Valkama. Con-
tinuous device positioning and synchronization in 5g dense networks with skewed
clocks. IEEE Workshop on Signal Processing Advances in Wireless Communications,
SPAWC, 2017-July:1–5, 12 2017. doi: 10.1109/SPAWC.2017.8227741.

[59] B. Li and D. Micciancio. On the security of homomorphic encryption on approximate
numbers. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 12696 LNCS:648–
677, 2021. ISSN 16113349. doi: 10.1007/978-3-030-77870-5_23/TABLES/2. URL
https://link.springer.com/chapter/10.1007/978-3-030-77870-5_23.

[60] B. Liang and Z. J. Haas. Predictive distance-based mobility management for multi-
dimensional pcs networks. IEEE/ACM Transactions on Networking, 11:718–732, 10
2003. ISSN 10636692. doi: 10.1109/TNET.2003.815301.

[61] C. D. Lima, D. Belot, R. Berkvens, A. Bourdoux, D. Dardari, M. Guillaud, M. Iso-
mursu, E. S. Lohan, Y. Miao, A. N. Barreto, M. R. K. Aziz, J. Saloranta, T. San-
guanpuak, H. Sarieddeen, G. Seco-Granados, J. Suutala, T. Svensson, M. Valkama,
B. V. Liempd, and H. Wymeersch. Convergent communication, sensing and localiza-

https://link.springer.com/chapter/10.1007/BFb0054868
https://link.springer.com/chapter/10.1007/BFb0054868
http://ieeexplore.ieee.org/document/7880669/
https://link.springer.com/chapter/10.1007/978-3-030-77870-5_23

| Bibliography 71

tion in 6g systems: An overview of technologies, opportunities and challenges. IEEE
Access, 9:26902–26925, 2021. ISSN 21693536. doi: 10.1109/ACCESS.2021.3053486.

[62] H. H. H. Mahmoud, A. A. Amer, and T. Ismail. 6g: A comprehensive sur-
vey on technologies, applications, challenges, and research problems. Transactions
on Emerging Telecommunications Technologies, 32, 2 2021. ISSN 21613915. doi:
10.1002/ETT.4233. URL https://dl.acm.org/doi/10.1002/ett.4233.

[63] M. Maouche, S. Ben Mokhtar, and S. Bouchenak. AP-attack: A novel
user re-identification attack on mobility datasets. 2017. URL https://hal.

archives-ouvertes.fr/hal-01785155.

[64] E. Y. Menta, N. Malm, R. Jantti, K. Ruttik, M. Costa, and K. Leppanen. On the
performance of aoa-based localization in 5g ultra-dense networks. IEEE Access, 7:
33870–33880, 2019. ISSN 21693536. doi: 10.1109/ACCESS.2019.2903633.

[65] F. Mogyorósi, P. Revisnyei, A. Pašić, Z. Papp, I. Törös, P. Varga, and A. Pašić.
Positioning in 5g and 6g networks - a survey. Sensors 2022, Vol. 22, Page 4757, 22:
4757, 6 2022. ISSN 1424-8220. doi: 10.3390/S22134757. URL https://www.mdpi.

com/1424-8220/22/13/4757/htmhttps://www.mdpi.com/1424-8220/22/13/4757.

[66] C. Mouchet, J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux. Lattigo: a
multiparty homomorphic encryption library in go.

[67] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), 1592:223–238, 1999. ISSN 16113349.
doi: 10.1007/3-540-48910-X_16. URL https://link.springer.com/chapter/10.

1007/3-540-48910-X_16.

[68] A. Panisson. pymobility v0.1 - python implementation of mobility models, May 2014.
URL https://doi.org/10.5281/zenodo.9873.

[69] A. Paverd, A. Martin, and I. Brown. Modelling and automatically analysing privacy
properties for honest-but-curious adversaries. 2014. URL https://www.cs.ox.ac.

uk/people/andrew.paverd/casper/.

[70] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
2009.

[71] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. 1977.

https://dl.acm.org/doi/10.1002/ett.4233
https://hal.archives-ouvertes.fr/hal-01785155
https://hal.archives-ouvertes.fr/hal-01785155
https://www.mdpi.com/1424-8220/22/13/4757/htm https://www.mdpi.com/1424-8220/22/13/4757
https://www.mdpi.com/1424-8220/22/13/4757/htm https://www.mdpi.com/1424-8220/22/13/4757
https://link.springer.com/chapter/10.1007/3-540-48910-X_16
https://link.springer.com/chapter/10.1007/3-540-48910-X_16
https://doi.org/10.5281/zenodo.9873
https://www.cs.ox.ac.uk/people/andrew.paverd/casper/
https://www.cs.ox.ac.uk/people/andrew.paverd/casper/

72 | Bibliography

[72] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homo-
morphisms. 1978.

[73] M. Saily, O. N. Yilmaz, D. S. Michalopoulos, E. Perez, R. Keating, and J. Schaep-
perle. Positioning technology trends and solutions toward 6g. IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2021-
September, 9 2021. doi: 10.1109/PIMRC50174.2021.9569341.

[74] SEAL. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, Mar.
2022. Microsoft Research, Redmond, WA.

[75] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 11 1979.
ISSN 15577317. doi: 10.1145/359168.359176. URL https://dl.acm.org/doi/abs/

10.1145/359168.359176.

[76] B. Sun, B. Tan, W. Wang, M. Valkama, C. Morlaas, and E.-S. Lohan. 5g po-
sitioning based on the wideband electromagnetic vector antenna. 2021. URL
http://ceur-ws.org.

[77] D. K. P. Tan, J. He, Y. Li, A. Bayesteh, Y. Chen, P. Zhu, and W. Tong. Integrated
sensing and communication in 6g: Motivations, use cases, requirements, challenges
and future directions. 2021 1st IEEE International Online Symposium on Joint
Communications and Sensing, JC and S 2021, 2 2021. doi: 10.1109/JCS52304.2021.
9376324.

[78] A. Trivedi, C. Zakaria, R. Balan, and P. Shenoy. Wifitrace: Network-based contact
tracing for infectious diseases using passive wifi sensing. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 5, 5 2020. doi: 10.1145/
3448084. URL http://arxiv.org/abs/2005.12045http://dx.doi.org/10.1145/

3448084.

[79] C. Troncoso et al. DP3T - decentralized privacy-preserving proximity tracing, 2020.
URL https://github.com/DP-3T/documents.

[80] T. Wild, V. Braun, and H. Viswanathan. Joint design of communication and sensing
for beyond 5g and 6g systems. IEEE Access, 9:30845–30857, 2021. ISSN 21693536.
doi: 10.1109/ACCESS.2021.3059488.

[81] H. Yang, W. D. Zhong, C. Chen, and A. Alphones. Integration of visible light
communication and positioning within 5g networks for internet of things. IEEE
Network, 34:134–140, 9 2020. ISSN 1558156X. doi: 10.1109/MNET.011.1900567.

[82] Y. Zhang, J. Jin, C. Liu, and P. Jia. Indoor 3d dynamic reconstruction fingerprint

https://github.com/Microsoft/SEAL
https://dl.acm.org/doi/abs/10.1145/359168.359176
https://dl.acm.org/doi/abs/10.1145/359168.359176
http://ceur-ws.org
http://arxiv.org/abs/2005.12045 http://dx.doi.org/10.1145/3448084
http://arxiv.org/abs/2005.12045 http://dx.doi.org/10.1145/3448084
https://github.com/DP-3T/documents

6| BIBLIOGRAPHY 73

matching algorithm in 5g ultra-dense network. KSII Transactions on Internet and
Information Systems, 15:343–364, 1 2021. ISSN 22881468. doi: 10.3837/TIIS.2021.
01.019.

75

List of Figures

1.1 Centralized versus decentralized contact tracing [51]. 2

3.1 Multiplication and rescaling in CKKS [26]. 13

4.1 Contact score as function of inter-user distance with three choices of expo-
nent for thresholds 1 and 2. 33

4.2 Contact score as function of inter-user distance with three choices of expo-
nent for thresholds 3 and 4. 33

4.3 Contact score as function of inter-user distance with three choices of expo-
nent for tessellation sides 100 and 150. 34

4.4 Contact score as function of inter-user distance with three choices of expo-
nent for tessellation sides 200 and 250. 34

4.5 Sketch of Protocol Functionality. 38

5.1 Single operation times for scaling factor 242. 45
5.2 Single operation times for scaling factor 249. 46
5.3 Multiplication times for decreasing ciphertext size visualization. 47
5.4 Multiplication times for decreasing ciphertext size description. 48
5.5 MO communication overhead per User as function of Users per area. 49
5.6 MO communication overhead per User as function of tessellation area side

length. 50
5.7 GA communication overhead per User as function of total User count. . . . 51
5.8 MO communication overhead per User as function of total area side length. 52
5.9 Comparison of threshold score versus curve score for thresholds 1–6 53
5.10 Comparison of threshold score versus curve score for thresholds 7–10 54
5.11 Seconds to perform an average Tick for User count. 57
5.12 Seconds to perform the first Tick for User count 58

77

List of Tables

3.1 CKKS Parameter Selection. 18

5.1 Execution times for contact tracing and scoring (3000 runs). 48
5.2 Absolute error plaintext curve vs ciphertext curve 56
5.3 Absolute error plaintext curve vs ciphertext curve 56

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Overview and Motivation
	Thesis Structure

	Related Work
	Contact Tracing Solutions
	Proximity-Based Solutions
	Location-Based Solutions

	Privacy-Enhancing Methods

	Theoretical Background
	Homomorphic Encryption Descriptions
	Fully-Homomorphic Encryption Schemes
	CKKS

	Network-Based Positioning Technologies

	Privacy-preserving Network-based Contact Tracing Protocol
	Protocol Architecture
	Modelling of Involved Entities
	Attacker Model

	Score Computation
	Infection Status
	Contact
	Risk Score
	Inter-entity Communication

	Privacy-Preserving Implementation
	Cryptographic Primitives
	Adaptations from Plaintext Version
	Final Protocol

	Simulation and Results
	User Mobility Model
	Metrics
	Simulation Setup
	Simulation Parameters
	Controller and Entity Classes
	Simulations

	Illustrative Numerical Results
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Parallelism and Distribution
	Algorithms and Alternate Schemes
	Advances in Hardware

	Bibliography
	List of Figures
	List of Tables

