
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

CHALLENGES AND OPPORTUNITIES IN

MULTI-AGENT REINFORCEMENT LEARNING

Doctoral Dissertation of:
Giorgia Ramponi

Supervisor:
Prof. Marcello Restelli

Tutor:
Prof. Barbara Pernici

The Chair of the Doctoral Program:
Prof. Barbara Pernici

2021 – XXXIII





To my grandfather Adriano.

1





Acknowledgements

First of all, I would like to thank my thesis reviewers, Professor Lillian
Ratliff and Professor Olivier Pietquin. It was a great honor to have you as
reviewers. I am really grateful to you for your valuable suggestions, which
helped me improve this thesis and for the time you spent reading it.

Il finale. Il finale di un lungo percorso, faticoso, nuovo, emozionante,
stressante, divertente, appassionante. Penso che la passione sia quello che
ci spinge ad intraprendere questa via, anche perché senza di essa le lunghe
giornate, nottate, weekend, spesi a studiare, scrivere paper, derivare teoremi,
riflettere, cancellare, e ricominciare, sarebbero impossibili da superare.

Ma questo percorso non sarebbe possibile affrontarlo senza le persone
giuste.

Parto con ringraziare la prima persona che mi ha fatto scoprire il mistero
e il fascino della ricerca, la professoressa Gaia Maselli. Grazie per aver
convinto una ragazzina del secondo anno di triennale ad appassionarsi a
questo tipo di vita.

Un grazie speciale va, senza dubbio, al mio advisor, Marcello Restelli,
che mi ha accolto tra i suoi dottorandi, scommettendo su di me. Grazie
perché hai trovato del tempo da dedicarmi quando già avevi tante persone
da seguire. Grazie soprattutto perché, in questo anno e mezzo, penso di
aver imparato molto, partendo da zero, e senza di te non sarebbe mai stato
possibile.

Un grazie va sicuramente ai professori Marco Brambilla, Stefano Ceri
e Florian Daniel, che mi hanno accompagnato in questa prima parte di

3



dottorato. Grazie Marco per avermi lasciata andare quando ho capito che la
mia passione mi portava su altri temi. Grazie Stefano per i consigli, i caffé
per capire cosa mi rendesse infelice, l’interesse che metti per tutti i tuoi
studenti e la dedizione che dedichi al tuo lavoro. Un grazie a Florian (spero
che in qualche modo tu lo possa sentire) per le birre a Lambrate, i pomeriggi
spesi con me e Marco Di Giovanni a parlare di cosa significhi essere un
ricercatore e per averci insegnato che il dottorato, qualunque argomento
avessimo scelto, ci avrebbe aiutato a maturare.

Grazie ai miei colleghi che in questi anni hanno riempito gran parte delle
mie giornate. Grazie a Marco, mio compagno di ufficio per i primi due anni,
e penso di poter dire anche amico. All’inizio non ci andavamo molto a genio,
abbiamo discusso spesso, ma poi ci siamo stati accanto, nelle varie school,
conferenze e viaggi. Le chiacchiere sono state infinite, tra un caffé e l’altro.
Incredibilmente ho conosciuto una persona molto più ansiosa di me, ma alla
fine siamo riusciti a terminare questo percorso. Grazie Gaia per essere stata
un’amica oltre che una collega. Dal momento imbarazzante in cui ci hanno
presentate, ho subito capito che in te avrei trovato una persona speciale.
Grazie per le cene, le chiacchiere, e tutti i momenti che abbiamo passato
insieme. Grazie anche a tutti gli altri del gruppo GECO, Andrea, Anna,
Michele, Luca, Eirini, Pietro, Arif, con cui ho passato pranzi indimenticabili.
Grazie a Sara, che e’ una delle persone più buone e gentili mai conosciute,
che in poco tempo è diventata un’amica. Sono sicura che queste qualità ti
faranno fare grandi cose.

Grazia all’altra mia famiglia del Politecnico, l’Airlab. In primis devo
ringraziare i miei compagni di ufficio Alberto, Andrea e Matteo e scusarmi
per aver imposto la mia presenza. Grazie per le pause dal lavoro, le dis-
cussioni, per aver esaudito i miei desideri dei bollitori e delle piantine (che
purtroppo non hanno superato questi mesi). Ho imparato molto da voi.
Grazie a Giulia, Andrea, Alessandro e Alberto per le serate e i momenti di
svago che purtroppo non sono potuti essere tanti per colpa della pandemia.
E’ bello trovare persone così divertenti e allo stesso tempo brillanti. Grazie
a Mirco per i confronti su argomenti di ricerca e non, le conversazioni con
te sono sempre stimolanti. Grazie a Nico e Giuseppe per aver condiviso con
me l’esperienza di Lille, ho scoperto due persone speciali. Un grazie poi a
tutti gli altri, Simone, Francesco, Luca, Alessio, Matteo, Lorenzo, Pierre,
Mattia, Alessandro, Marco, Amarildo. Amarildo, grazie anche per essere
stato coautore di uno dei lavori di questa tesi.

Grazie alle altre persone che questo percorso mi ha fatto incontrare. Chi
ho conosciuto alle conferenze o alle school. Indimenticabile MLSS, dove ho



incontrato persone incredibili, che condividevano la mia stessa curiosità; un
grazie anche alla famiglia fantastica della ragazza di Jose Carlos (che non
ho conosciuto ma che spero un giorno di conoscere) per avermi fatto vivere
la vera Spagna e mangiare la vera Paella.

Grazie alle persone con cui ho condiviso il mio periodo a Boston, in asso-
luto le personalità più stravaganti che io abbia mai incontrato, in particolare
Nicola, Elena, Beatrice, Rudi, Jamir e Roberto. Non ho dimenticato Luna,
la persona che mi ha fatto subito sentire a casa in una città a me sconosciuta,
e con cui ci siamo sentite immediatamente affini. I momenti che abbiamo
vissuto sono indimenticabili, da feste su navi della Marina Militare a gite
in barca, da giornate al mare sponsorizzate Harvard a pagaiate sul Charles
River. La cosa però più importante è l’amicizia che abbiamo costruito e che
continua ancora.

Un grazie speciale va a Matteo Pirotta, che tra uno scherzo e l’altro,
è diventato mio amico. Sei una persona indubbiamente intelligente, ma
oltre questo anche buona, divertente e sorprendente. I nostri aperitivi online
hanno reso piu “normale” l’ultimo periodo covid a Milano.

Grazie alla mia portiera Stella, che oltre ad essere la portiera migliore che
si possa avere, sempre pronta a dare una mano, mi è stata particolarmente
vicina durante il covid. Un grazie a tutte le persone, Alessandro, Giulia,
Andrea, Maurizio, le farmaciste, Valentino che mi hanno aiutato in quel
periodo difficile.

Un grazie agli amici. Questa scelta di vita, che ti porta a lasciare casa, ad
avere poco tempo libero, inevitabilmente toglie tempo agli affetti di sempre
e alcuni purtroppo si perdono per strada. Grazie però agli amici che invece
sono rimasti e che hanno data luce a questi anni. Grazie Bea per essere
stata presente sempre, come se fossimo vicine. La tua amicizia è un dono
importante perché oltre le risate, le giornate al mare, gli aperitivi, sei una
persona che quando sceglie di esserti amica lo fa dando tanto. Grazie Flavi
perché Milano non sarebbe stata la stessa senza di te. Ci siamo conosciute
possiamo dire durante questi anni e con te non mi sono mai sentita sola.
Grazie perché ci sei sempre stata, senza mai dirmi di no. Abbiamo avuto
tante serate assurde e speso ore e ore a chiacchierare. Grazie Giuli, perché
senza di te mi sarei sentita, soprattutto all’inizio, sperduta a Milano. Grazie
perche, anche se ogni tanto sei sfuggente, nei momenti difficili ci sei sempre
stata, dalle delusioni d’amore, a momenti no di questi tre anni. Grazie Marti,
per le varie volte che mi sei venuta a trovare a Milano, per la tua semplicità
e sotto sotto dolcezza. Grazie Lulla, anche se io non ti chiamo mai così,
perché, anche se la distanza si è fatta sentire nel nostro rapporto, so che la



nostra amicizia supererà anche questi momenti. Sei un’amica e una persona
incredibile. Grazie Luca (G.) perché, anche se lontani, la nostra amicizia ha
continuato ad essere una parte importante della mia vita. Grazie Luca (R.),
mio fratello non di sangue ma di vita, per quando ti ospitavo e non mi facevi
dormire perché volevi sempre parlare e parlare, per avermi fatto uscire e
respirare un po’ di vita quando ero chiusa nel mio lavoro, per le volte che mi
hai portato in questura e perché se mi serve qualcosa non mi dici di no. Un
grazie anche a Pietro per aver passato con me il primo anno di dottorato, tra
treni Roma-Milano, e a cui, anche se ora ci siamo allontanati, non posso non
voler bene. Grazie a Soeren, il mio fratello acquisito potrei dire. Grazie per
essere per Vale la persona che sei e per i pomeriggi passati a chiacchierare,
a giocare a giochi da tavola e per darmi voi due, ogni giorno, un esempio
dell’amore che tutti vorremmo. Grazie anche a tutti gli altri amici, Seme,
Vitto, Bene, Carla, tutti gli amici di Golfo Sereno, e qualche nome che forse
ora non avrò scritto, ma che non per questo non è nel mio cuore.

Un grazie speciale ad Andrea che è stato il faro in un momento difficile
e delicato della mia vita. La tua bontà e gentilezza sono doti difficili da
trovare. Il tuo supporto è stato per me il più grande aiuto e i momenti
insieme la parte bella di questo viaggio. Il dottorato mi ha per certi versi
tolto tanto ma sicuramente mi ha regalato la possibilità di incontrarti e già
questo basterebbe. Già sai tutto, spero che il nostro cammino continui così.

Infine grazie alla mia famiglia perché senza di loro niente di questo
sarebbe stato possibile. Grazie a mia madre, per essere sempre disponibile,
buona, per la tua intelligenza e perché il nostro rapporto penso sia maturato
tanto in questi anni lontane. Grazie a mio padre, per le discussioni, confronti,
per la sua perspicacia, per aver imparato insieme ad ascoltare le diverse
opinioni; vorrò sempre sapere la tua. Non c’è giorno in cui, se viviamo in
due posti diversi, io non senta la vostra mancanza. Grazie a mia sorella, la
mia migliore amica, forse la persona da cui è stato più difficile allontanarmi.
Sai quanto vorrei che vivessimo nella stessa città, quanto vorrei passare più
tempo con te e quanto sei stata importante per non farmi arrendere in questi
tortuosi anni. Grazie ai miei nonni che non ci sono più, ma che sento che mi
seguono nel mio tragitto. Grazie a mia nonna che è la persona al mondo che
più ha intuito per i miei sentimenti e che vorrei avere più vicina.

Finisce così questa lunga lista di ringraziamenti, probabilmente ce ne
sarebbero molti altri da fare.

Giorgia
Milano, 16 Maggio 2021



Abstract

Reinforcement Learning (RL) is a Machine Learning area that studies sequential decision-
making problems, where a learning agent interacts with an unknown environment in order
to maximize its rewards. In recent years, RL methods have made substantial progress in
solving real-world problems. However, the most successful applications, such as beating
the world champion player of Go, solving robotic control problems, managing the power
consumption of households, and achieving promising results in autonomous driving, involve
more than one agent and can be cast in the Multi-Agent Reinforcement Learning (MARL)
setting. However, although the MARL setting is an important research area of practical
interest, this framework is still poorly understood from a theoretical point of view. In
general, the presence of many agents makes the learning problem more complex, and in
many situations, single RL algorithms cannot be applied.

In this thesis, we take a step toward solving this problem, providing theoretically sound
algorithms for this setting. We analyze the challenges and opportunities that a multi-agent
environment creates in the RL framework, providing new approaches in three RL sub-
problems while also showing how they are interconnected. The contributions of the thesis
are theoretical, algorithmic, and experimental. We take inspiration from practical problems,
we design new algorithms with desirable theoretical properties to solve them, and we show
their performances in benchmarks domains and on real-world data.

The thesis is divided into four parts. In the first part, we provide the background and
preliminaries necessary to follow the rest of the thesis. We start by introducing the RL
problem and classical algorithms to solve it. Then, we introduce the Inverse RL problem,
i.e., the problem of recovering reward functions from an expert’s demonstrations. Finally,
we provide the necessary background on game theory and MARL.

In the second part, we analyze how the presence of multiple agents affects the Inverse
Reinforcement Learning problem and objective. We provide two novel algorithms: the first
considers how to recover and cluster the intentions of (i.e., the rewards optimized by) a set
of agents given demonstrations of near-optimal behavior; the second aims at inferring the
reward function optimized by an agent while observing its actual learning process. The
experimental evaluation is conducted on synthetic problems and two real-world problems.

I



We then show the importance of learning (or knowing) the other agent’s intention to
construct efficient algorithms. In particular, in the third part, we study online learning in
the MARL scenario, showing how the presence of other agents can increase the hardness of
the problem while proposing statistically efficient algorithms. We design two algorithms to
solve the Configurable MDP problem, a setting where an external entity can partially control
the transition model. Then, we analyze the statistical limits of general-sum stochastic games
when we control only one agent, providing a new lower bound and a near-optimal algorithm.

Finally, in the fourth part, we study MARL from an optimization viewpoint while
showing the difficulties that arise from multiple function optimization problems. Then, we
present a new algorithm for this scenario, providing convergence results and extensively
evaluating it against SotA baselines.

II



Contents

I Introduction and Preliminaries 5

1 Introduction 7
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Reinforcement Learning 15
2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . 16

2.1.1 Returns and Episodes . . . . . . . . . . . . . . . . . 17
2.1.2 Policies and Value functions . . . . . . . . . . . . . . 18
2.1.3 Bellman operators . . . . . . . . . . . . . . . . . . . 19
2.1.4 Characteristics of Reinforcement Learning algorithms 20

2.2 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Policy evaluation . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Policy iteration . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Value Iteration . . . . . . . . . . . . . . . . . . . . . 24

2.3 Value-based algorithms . . . . . . . . . . . . . . . . . . . . 24
2.3.1 SARSA . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Q-learning . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Policy Gradient Approaches . . . . . . . . . . . . . . . . . 26
2.4.1 REINFORCE . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 G(PO)MDP . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Policy Gradient Theorem . . . . . . . . . . . . . . . 29

2.5 Actor-critic algorithms . . . . . . . . . . . . . . . . . . . . 30

III



Contents

3 Inverse Reinforcement Learning 31
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Model-based Inverse Reinforcement Learning . . . . . . . . 33

3.2.1 Feature Expectation Matching . . . . . . . . . . . . . 33
3.2.2 Maximum Entropy Inverse Reinforcement Learning . 34
3.2.3 Maximum Likelihood Inverse Reinforcement Learning 35

3.3 Model-free Inverse Reinforcement Learning . . . . . . . . . 36
3.3.1 Relative Entropy Inverse Reinforcement Learning . . 36
3.3.2 Cascaded Supervised Learning Approach to Inverse

Reinforcement Learning . . . . . . . . . . . . . . . . 37
3.3.3 Gradient Inverse Reinforcement Learning . . . . . . 37

4 Multi-agent Reinforcement Learning 39
4.1 Normal-form Games . . . . . . . . . . . . . . . . . . . . . 40
4.2 Stochastic Games . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Cooperative stochastic games . . . . . . . . . . . . . . . . 44
4.4 Competitive stochastic games . . . . . . . . . . . . . . . . 45
4.5 General-sum stochastic games . . . . . . . . . . . . . . . . 47

II Inverse Reinforcement Learning in Multi-Agent Systems 51

5 Inverse Reinforcement Learning for multi-agent systems 55
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Inverse Reinforcement Learning about Multiple Inten-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Inverse Reinforcement Learning from a Learner . . . 60

6 Inverse Reinforcement Learning about Multiple Intentions 63
6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Σ-Gradient Inverse Reinforcement Learning . . . . . . . . . 65
6.3 Theoretical analysis of Σ-GIRL . . . . . . . . . . . . . . . 68

6.3.1 Approximation of Σ as in Corollary 6.2.1 . . . . . . . 69
6.3.2 Correctness of the recovered weights . . . . . . . . . 71

6.4 Multiple-Intention Σ-GIRL . . . . . . . . . . . . . . . . . . 73
6.4.1 Computational Complexity Analysis . . . . . . . . . 76

6.5 Discussion on the related work . . . . . . . . . . . . . . . . 76
6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6.1 Single-IRL experiments . . . . . . . . . . . . . . . . 77
6.6.2 Multiple-intentions experiments . . . . . . . . . . . . 80

IV



Contents

6.6.3 Twitter experiment . . . . . . . . . . . . . . . . . . . 83

7 Inverse Reinforcement Learning from a Learner 85
7.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Learning from a learner following the gradient . . . . . . . 87

7.2.1 Exact gradient . . . . . . . . . . . . . . . . . . . . . 88
7.2.2 Approximate gradient . . . . . . . . . . . . . . . . . 90

7.3 Learning from improvement trajectories . . . . . . . . . . . 92
7.3.1 Recovering learning rates and reward weights . . . . 93
7.3.2 Theoretical result . . . . . . . . . . . . . . . . . . . 94

7.4 Discussion on the related works . . . . . . . . . . . . . . . 98
7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5.1 Gridworld . . . . . . . . . . . . . . . . . . . . . . . 99
7.5.2 MuJoCo environments . . . . . . . . . . . . . . . . . 102
7.5.3 Autonomous driving scenario . . . . . . . . . . . . . 103

III Online Learning in Multi-Agent Reinforcement Learning 105

8 Online Learning in Stochastic Games 109
8.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 Non-Cooperative Configurable Markov Decision Processess 115
9.1 Configurable MDPs . . . . . . . . . . . . . . . . . . . . . . 117
9.2 Non-Cooperative Configurable MDPs . . . . . . . . . . . . 118
9.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 119
9.4 Action-feedback Optimistic Configuration Learning . . . . . 121

9.4.1 Regret Guarantees . . . . . . . . . . . . . . . . . . . 122
9.5 Reward-feedback Optimistic Configuration Learning . . . . 126

9.5.1 Regret Guarantees . . . . . . . . . . . . . . . . . . . 128
9.6 Comparison between the two algorithms . . . . . . . . . . . 134
9.7 Discussion on the related works . . . . . . . . . . . . . . . 135
9.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.8.1 Configurable Gridworld . . . . . . . . . . . . . . . . 136
9.8.2 Configurable Market . . . . . . . . . . . . . . . . . . 138
9.8.3 Student-Teacher . . . . . . . . . . . . . . . . . . . . 139

10 Online Learning in General-sum Turn-based Stochastic Games 141
10.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 142
10.2 Lower bound on the regret . . . . . . . . . . . . . . . . . . 143

V



Contents

10.2.1 Discussion on the lower bound . . . . . . . . . . . . 148
10.3 TSG Optimistic Policies Value Iteration . . . . . . . . . . . 149

10.3.1 Regret Guarantees . . . . . . . . . . . . . . . . . . . 150
10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 154

IV Policy Optimization in Multi-Agent Reinforcement Learn-
ing 155

11 Continuous games and gradient-based approaches 159
11.1 Continuous Games . . . . . . . . . . . . . . . . . . . . . . 160

11.1.1 Helmhotz game decomposition . . . . . . . . . . . . 161
11.1.2 Desired convergence points . . . . . . . . . . . . . . 163

11.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 164
11.3 MARL and policy-gradient algorithms . . . . . . . . . . . . 167

12 Newton Optimization On Helmhotz Decomposition 173
12.1 Newton method for non-convex functions . . . . . . . . . . 174
12.2 Newton for Games . . . . . . . . . . . . . . . . . . . . . . 175

12.2.1 Newton’s method for Potential games . . . . . . . . . 175
12.2.2 Newton’s method for Hamiltonian games . . . . . . . 175
12.2.3 Newton’s method for General games . . . . . . . . . 177
12.2.4 Discussion on desired convergence points . . . . . . 180

12.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 181
12.3.1 Matrix games . . . . . . . . . . . . . . . . . . . . . 181
12.3.2 Continuous gridworlds . . . . . . . . . . . . . . . . 184
12.3.3 Generative Adversarial Network . . . . . . . . . . . 184
12.3.4 Computational time . . . . . . . . . . . . . . . . . . 185

13 Conclusions and Future works 197
13.1 Inverse Reinforcement Learning in Multi-Agent Systems . . 198

13.1.1 Future directions . . . . . . . . . . . . . . . . . . . . 198
13.2 Online Learning in Stochastic Games . . . . . . . . . . . . 199

13.2.1 Future directions . . . . . . . . . . . . . . . . . . . . 200
13.3 Optimization methods for Multi-Agent Reinforcement

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
13.3.1 Future directions . . . . . . . . . . . . . . . . . . . . 201

Bibliography 203

VI



Contents

A Learning in Continuous Games: a (brief) introduction 233
A.1 Continuous Games . . . . . . . . . . . . . . . . . . . . . . 233
A.2 Classical learning dynamics . . . . . . . . . . . . . . . . . 234

B Supporting lemmas for Chapter 6 237

C Supporting lemmas and additional results for Chapter 7 243
C.1 Matrix perturbation and linear least square problems . . . . 243
C.2 Additional results . . . . . . . . . . . . . . . . . . . . . . . 245

VII





Mathematical notation

I have tried to use the same notation during all the thesis to improve the
readability, at the expense, sometimes, of using a different notation from that
in the literature. However, in these cases, I have specified the differences
between the literature. I hope that the notation, in general, would be clear
and understandable.

Vectors are indicated with lower case bold letters; matrices with upper
case letters. We indicate in calligraphic functions and spaces. The operator
T indicates the transpose of a matrix, [v1, . . . , vn] indicates a row vector,
instead [v1, . . . , vn]T a column vector. An element of a matrix is indicated
with vi,j where i is the row and j the column. We indicate with [N ] the set of
integers between 1 and N . The 1 {predicate} operator indicates the random
variable that is equal to 1 if the predicate is true and 0 if the predicate is
false. I report below a table with the notation used in the thesis.

S State space
A Action space
P Transition probability function
H Horizon
γ Discount factor
γi Discount factor of agent i
µ Initial state distribution
R Agent’s reward function
Ri Agent i’s reward function
π Policy
πθ Policy parametrized by θ

V πh (s) Value function of policy π in state s
Qπh(s, a) Action-value function of policy π in state s and action a

V ? Optimal value function in state s

1



Contents

Q? Optimal action-value function in state s and action a
J(π) Expected discounted return of policy π

J
πi,π−i
i Expected discounted return of joint policies πi, π−i for agent i

Tπ Bellman operator of policy π
T ? Optimal bellman operator

ψ(π) Expected discounted feature expectation of policy π
ψ(θ) Expected discounted feature expectation of policy πθ
φ(s, a) Features’ vector of state s and action a

ω Reward’s weights
Rω(s, a) Linear reward with weights ω
J(θ,ω) Expected discounted return of policy πθ and rewardRω
vec(A) Vectorization of matrix A
σmin(A) Minimum singular value of matrix A
Part III

br Best response function
Qπ1,π2
i,h (s, a) Action-value for agent i with policy π1 and pi2 at time step h in state s

and action a
V π1,π2
i,h (s) Value function for agent i with policy π1 and pi2 at time step h in state s
V π1,π2
i,h Agent i expected return with policy π1 and pi2 at time step h
Ro Agent’s reward function (in Chapter 9)
Rc Configurator’s reward function
P Configuration space

Qπ,Pc,h (s, a) Configurator’s Q-value with policy π and configuration P
Qπ,Po,h (s, a) Agent’s Q-value with policy π and configuration P
V π,Pc,h (s) Configurator’s value function with policy π and configuration P
V π,Po,h (s) Agent’s value function with policy π and configuration p

V π,pc Configurator’s expected return with policy π and configuration P
V π,Po Agent’s expected return with policy π and configuration P

πi = π∗Pi Agent’s best response to configuration Pi
V i = V

π∗Pi ,Pi
c Configurator’s expected return with the agent’s best response policy π∗Pi

to configuration Pi
V ∗ = V

π∗Pi∗
,Pi∗

c Configurator’s expected return with the agent’s best response policy π∗Pi
to the best configuration Pi∗

Ṽ ik Optimistic configurator’s expected return for configuration Pi at episode
k

π̃i,k Estimated agent’s best response policy for configuration Pi at episode k
∆i = V ∗ − V i Suboptimality gap of the configuration Pi (Chapter 9)

K Number of episodes
Ni Number of times the configuration Pi is played (Chapter 9)

Nk(s) Number of visits of state s before episode k (Chapter 9)
N i
k,h(s) Number of visits of state s at step h before episode k with configuration

Pi (Chapter 9)
Ro,k(s) Lower confidence value for the agent’s reward Chapter 9)
Ro,k(s) Upper confidence value for the agent’s reward Chapter 9)
R̂o,k(s) Sample mean of observed rewards Chapter 9)

Qi
o,k,h

(s, a) Lower confidence value of the agent’s Q-function with configuration Pi
Chapter 9)

Q
i

o,k,h(s, a) Upper confidence value of the agent’s Q-function with configuration Pi
Chapter 9)

2



Contents

Aik,h(s) Set of agent’s plausible actions in state s at step h up to episode k
Chapter 9)

dih(s) Visitation probability the state s at step h with configuration pi under
the agent’s best response policy πi Chapter 9)

d̃ih(s) Visitation probability the state s at step h with configuration pi under
the estimated agent’s best response policy π̃i,k Chapter 9)

RegretA(K) Regret of Algorithm A after K episodes
KL(·, ·) KL-divergence between two probability laws
kl(·, ·) binary KL-divergence
Aik,h(s) Set of agent 2’s possible actions in state s at step h up to episode k and

playing policy π1 (Chapter 10)
Nk(s, a) Number of times the state-action pair s, a is visited up to episode k

(Chapter 10)
N i
k(s) Number of times the state s is visited up to episode k playing the policy

πi1 (Chapter 10)
d Minimum probability of visit every reachable state (Chapter 10)

Part IV
ξ(θ) Simultaneous gradient
J (θ) Game Jacobian
Ci Expected discounted cost function for agent i

S(θ) Symmetric component of the game Jacobian
A(θ) Antisymmetric component of the game Jacobian
H−1
m PT-inverse of matrix H with parameter m

3





Part I

Introduction and Preliminaries

5





CHAPTER1
Introduction

“This was simply the idea of a learning system that wants some-
thing, that adapts its behavior in order to maximize a special
signal from its environment.”

R. S. Sutton & A. G. Barto, Reinforcement Learning: An Introduction

“The importance of the social phenomena, the wealth and the
multiplicity of their manifestations, and the complexity of their
structure, are at least equal to those in physics. It is there-
fore to be expected, that mathematical discoveries of a statue
comparable to that of calculus will be needed. [. . . ] We be-
lieve that it is necessary to know as much as possible about
the behavior of the individual and about its forms of exchange.”

O. Morgenstern & J. von Neumann, Theory of Games and Economic Behavior

We can say that this thesis started from these two quotes. Both authors
are observers: they watched what was happening in the world around them
to be able to model it mathematically. The first observed how humans
learn to perform a task. As they said, the idea is “simple”: humans adapt
their behavior to maximize a signal from the environment. Imagine a child
who has to learn to ride a bicycle. The child starts by sitting on the seat,

7



Chapter 1. Introduction

and nothing happens. Then she puts her feet on the pedals but rides too
slowly, causing the bicycle to lose its balance, and she falls. She thus learned
from her experience that she must pedal faster to avoid falling again. This
concept was mathematically modeled by Reinforcement Learning [Sutton
et al., 1998]. The second authors note that we are “social beings”, i.e., we
act in a social system in which multiple entities interact with each other.
Therefore, the actions of each entity can not only result in an individual
income, but also change the income of other entities. If we decide to buy a
stock on the stock exchange, the result of our action will affect not only us
but also the entire stock market. It is easy to imagine that these interactions
can be very complex, and we can hardly understand how our decisions can
affect the world around us. One of the sciences that mathematically model
these interactions is called Game Theory [Morgenstern and Von Neumann,
1953].

From these considerations, we can conclude that in order to create a
system that is capable of acting autonomously, we must study how to build
an autonomous learning agent (Reinforcement Learning) and model how
this is influenced by the other entities that surround it (Game Theory). Multi-
agent Reinforcement Learning (MARL) [Buşoniu et al., 2010, Zhang et al.,
2019a] is a bridge between these two worlds. The MARL framework studies
the problem of learning by interacting with an unknown system, considering
that it is composed of more than one entity.

In this thesis, we analyze the challenges and the opportunities that arise
from switching from single-agent RL to MARL. A first opportunity is the
possibility to model real-world situations (e.g., autonomous driving [Shalev-
Shwartz et al., 2016], robotic control problems [Lillicrap et al., 2015], or
networking systems [Yu et al., 2018]) in a better way. The first challenge is
that the environment becomes non-stationary [Hernandez-Leal et al., 2019]:
the outcome that we receive from an action also depends on the other agents’
actions. So it is clear that it could be fundamental to learn the interests of
the other agents to learn how to act. Moreover, our goal is no longer clear.
Are we sure that we only want to maximize our interest? For example, our
aim could be to optimize the total gain the system makes. Or we might be
interested in only converging to a solution that is "good" for everyone (an
equilibrium [Nash et al., 1950, Von Stackelberg, 2010]). But what is this
good solution? Plus, what should we do if we cannot agree with the other
agents?

In the same way, we can say that we are analyzing the difficulties of mov-
ing from game theory, where we have perfect knowledge of the interactions
between agents, to MARL where we have to learn them by interacting with

8



1.1. Overview

the environment. Good algorithms must also take into account that there
could be some uncontrollable agents that pursue different objectives.

We try to solve some of these challenges. We analyze the MARL frame-
work from different but related points of view. We start by studying the
Inverse Reinforcement Learning framework (IRL) in the multi-agent setting.
IRL is a paradigm to recover an RL agent’s intention, and this capability,
as we have mentioned above, could be essential in a multi-agent system,
where the interests of the other entities condition our decisions. Then, we
consider the learning problem in Multi-Agent RL from two different but
complementary perspectives: online learning and optimization. These two
extensively studied ways to solve the single-agent RL framework acquire
new challenges in the multi-agent setting.

1.1 Overview

The thesis is organized into four parts; except for the first part, each one
takes into account a different perspective of the problem of learning in a
multi-agent environment, as we have described in the previous section.

The first part is dedicated to the introduction and the preliminaries neces-
sary to follow the rest of the thesis. In Chapter 2 we report an overview on
RL: we provide the background on Markov Decision Processes [Puterman,
2014] and RL [Sutton et al., 1998], describing the most popular settings
and algorithms. Chapter 3 introduces the IRL problem [Osa et al., 2018],
presenting the most relevant approaches to solve it. Then, in Chapter 4 we
present the necessary background for MARL [Buşoniu et al., 2010, Zhang
et al., 2019a], starting from the Game theory concepts necessary for this
framework, then formalizing the Stochastic games [Shapley, 1953], and fi-
nally proposing some algorithms to solve this setting. If the reader is already
familiar with RL, IRL and MARL, we suggest skipping these chapters and
go directly to Part 2.

In the second part, we analyze the problem of IRL in a multi-agent envi-
ronment. The multi-agent setting creates new challenges and opportunities
for the IRL setting. In fact, in a multi-agent environment, we can have
observed, for example, more than one expert. Moreover, in a multi-agent
context, we can use the IRL algorithms to learn our opponent’s reward func-
tion. In Chapter 5, we introduce the IRL problem in a multi-agent domain,
describing the new settings that arise. Then in Chapter 6, we propose an
algorithm to deal with IRL about Multiple Intentions, i.e., the problem of
recovering the reward functions from a set of experts. In Chapter 7 we intro-
duce a new algorithm to deal with the problem of inferring the intentions

9



Chapter 1. Introduction

from a learning agent, i.e., an agent that is not an expert but that is learning
a task. This setting is of particular interest in multi-agent RL, where most of
the algorithms use the other agent’s reward functions.

In the third part, we address the problem of online learning in Stochastic
Games. Online learning is interested in measuring the quality of the whole
learning process. In Stochastic Games, there are additional challenges
compared with MDPs, since we have to learn the other agents’ behaviors to
design our policy. In Chapter 8, we introduce the online learning problem,
and we revise the literature. In Chapter 9 we propose an algorithm to deal
with the online learning problem in the Configurable Markov Decision
Process, which we cast to a particular multi-agent problem where we can
control only the configurator. In Chapter 10, we introduce a new lower
bound on the online learning problem in Stochastic Games, proposing an
algorithm that nearly-matches this lower bound.

The fourth part of this thesis is devoted to the optimization viewpoint
of learning in Stochastic Games. We start by introducing, in Chapter 11, a
more general problem, learning in Continuous Games. Then, we show how
to deal with Continuous Stochastic Games, proposing a way to approximate
the gradient and the hessian of the game’s expected discounted returns.
In Chapter 12 we introduce a new optimization algorithm for Continuous
Games, proving its quadratic convergence rate in two classes of games and
linear convergence in general games. Finally, we test the algorithm in many
simulated domains, comparing it with many state-of-the-art baselines.

1.2 Contributions

In this thesis, we study opportunities and challenges that can arise from
learning in a multi-agent environment. The rest of this section summarizes
the thesis’s contributions, where most of the work is published or under
review. In all these works, the author of this thesis contributed to the design
of the algorithms, their theoretical analysis, the empirical evaluation, and
the realization of the manuscript.

Inverse Reinforcement Learning about Multiple Intentions The first contribution
is about the problem of Inverse Reinforcement Learning about Multiple
Intentions [Babes et al., 2011], i.e., the problem of estimating the unknown
reward functions optimized by a group of experts that demonstrate opti-
mal behaviors and cluster the experts by the recovered rewards. There are
not many works that addressed this problem; moreover, these ones either
require access to a model of the environment [Babes et al., 2011, Choi

10



1.2. Contributions

and Kim, 2012] or repeatedly compute the hypothesized rewards’ optimal
policies [Almingol and Montesano, 2015, Rajasekaran et al., 2017]. These
requirements are rarely met in real-world applications, in which interacting
with the environment can be expensive or even dangerous. We first propose
a new IRL algorithm that cast the single IRL problem as a constrained
likelihood maximization, and then we use this formulation to cluster agents
based on the likelihood of the assignment. In this way, we can efficiently
solve, without interactions with the environment, both the IRL and the clus-
tering problem. The algorithm is tested on a real Twitter dataset, clustering
the users by their intentions, i.e., what posts to retweet. These results are
reported in Chapter 6. We also propose an extension of this work (listed
below), where we tested the algorithm in other real-world applications: in
recovering the intentions of controlling the Lake Como dam and learning
the reward functions of a set of people who use an autonomous driving
simulator. This extension is not reported in the thesis.

Ramponi, G., Likmeta, A., Metelli, A. M., Tirinzoni, A., & Restelli, M. (2020, June). Truly Batch
Model-Free Inverse Reinforcement Learning about Multiple Intentions. In International Conference
on Artificial Intelligence and Statistics (pp. 2359-2369). PMLR.

Likmeta, A., Metelli, A.M., Ramponi, G., Tirinzoni, A., Giuliani M. & Restelli. (2021, March)

Dealing with multiple experts and non-stationarity in inverse reinforcement learning: an application

to real-life problems. Machine Learning Journal.

Inverse Reinforcement Learning from a Learner In a multi-agent setting, to
achieve the convergence to a Nash Equilibrium, in most situations, it is
useful to know the reward function of the other agents. However, in IRL,
we have to wait for the agent’s convergence to its optimal policy before
applying IRL algorithms. We propose a new algorithm to infer a learning
agent’s reward function [Jacq et al., 2019]. Our approach is based on the
assumption that the observed agent is updating her policy parameters along
the gradient direction. For the proposed algorithm, we provide theoretical
insights into our algorithms’ performance. Then we evaluate the approach
in simulated domains and on an autonomous driving scenario. We reported
the results in Chapter 7.

Ramponi, G., Drappo, G., & Restelli, M. (2020). Inverse Reinforcement Learning from a

Gradient-based Learner. In Proceedings of the 33rd International Conference on Neural Infor-

mation Processing Systems (pp. 2458–2468 ).

Online Learning in a Non-cooperative Configurable Markov Decision Process In
Chapter 9 we analyse the online learning problem in Configurable Markov

11



Chapter 1. Introduction

Decision Processes [Metelli et al., 2018, Metelli et al., 2019b, Metelli et al.,
2019a]. In the Configurable Markov Decision Processes, there are two
entities, an RL agent and a configurator, that can modify some environ-
ment parameters. We introduce the Non-Cooperative Configurable Markov
Decision Process, a framework that allows two (possibly different) reward
functions for the configurator and the agent. This setting generalizes the
Configurable Markov Decision Process. We consider the problem in which
we can control only the configurator, and we have to find the best among
a finite set of possible configurations. For this problem, we propose two
learning algorithms to minimize the configurator’s expected regret, which
exploits the problem’s structure.

Ramponi, G., Metelli, A. M., Concetti, A., & Restelli, M. (2021). Online Learning in Non-

Cooperative Configurable Markov Decision Process. In Reinforcement Learning in Games workshop

at Association for the Advancement of Artificial Intelligence.

Online Learning in General-sum Turn-based Stochastic Games The theoretical
problem of learning in Stochastic Games [Shapley, 1953] has been divided
into two different setting: online and offline settings. In the online setting
[Littman, 1994, Bowling and Veloso, 2002, Brafman and Tennenholtz, 2002,
Conitzer and Sandholm, 2007], we have the control of only one agent, which
has to maximize its own rewards in a multi-agent environment. Instead,
in the offline setting [Szepesvári and Littman, 1996, Lagoudakis and Parr,
2002, Perolat et al., 2015] we have control over all the agents. While the
offline framework has received considerable attention in the last two years
[Bai et al., 2020, Bai and Jin, 2020, Zhang et al., 2020b], it fails at modeling
many use-cases of practical interest. For example, in many robot control
problems, the agents interact with humans, which are non-controllable
agents; another example is card/video-games, where it is unrealistic that the
opponent will use the same learning algorithm. On the other hand, while
the online setting is more suitable to model previous examples, it remains
less studied. In Chapter 10 we analyze the online problem in general-sum
Stochastic games, providing new insights on the performance limits and
proposing a new algorithm for this setting. These contributions are original
for this thesis.

Policy Optimization for Continuous (Stochastic) Games In Chapter 12 we pro-
pose a new policy-based algorithm for MARL. In MARL, the standard
policy gradient algorithms fail due to the non-stationarity of the setting and
the different interests of each agent [Mertikopoulos et al., 2018b, Mazumdar

12



1.2. Contributions

et al., 2020a]. In fact, algorithms must consider the complex dynamics
of these systems to guarantee rapid convergence towards a (local) Nash
equilibrium. We start the chapter reviewing the main concept of continuous
games [Ratliff et al., 2013] and we start by casting the MARL problem
in this setting. We propose a Newton-like algorithm for MARL problems.
This method ensures quadratic convergence in two classes of games: (exact)
Potential and Hamiltonian Games. Furthermore, we show that our algorithm
is attracted to symmetric stable fixed points (a subset of stable fixed points)
in general games and repelled by strict saddle ones.

Ramponi, G., & Restelli, M. (2021). Newton Optimization on Helmholtz Decomposition for

Continuous Games. In Proceedings of the AAAI Conference on Artificial Intelligence.

13





CHAPTER2
Reinforcement Learning

Within the research on Machine Learning, Reinforcement Learning (RL)
proposes a method for learning through tests: the agent performs an action
and receives feedback from the environment that corresponds to the "good-
ness" of its decision. Do you remember anything? When we have to learn
a new task, we start taking “random” actions and learn from our mistakes.
RL, taking inspiration by the human learning process, is a paradigm to learn
in a sequential decision-making setting to optimize some reward signal. The
RL problem involves a learning agent (or learner) which interacts with an
environment during a sequence of discrete-time steps. This interaction is
described by three components: the state, the action and the reward (see
Figure 2.1). The state describes the actual configuration of the environment
perceived by the agent, which can be a subset of the environment state’s
characteristics. The action consists of the decision taken by the RL agent.
The environment responds to every performed action with a state change and
a reward. The reward is a numeric feedback of the agent’s performances. In
RL, the interactions are formally described by a Markov Decision Process
(MDP) [Bellman, 1957, Puterman, 2014]. In this chapter, we revise the
basic concepts of RL taking inspiration from textbooks on this topic [Sutton
et al., 1998, Puterman, 2014, Szepesvári, 2010]. The goal is not to provide

15



Chapter 2. Reinforcement Learning

�

�
action

At

Agent

Environment

state

St

reward

Rt

Figure 2.1: The agent–environment interaction in a Markov decision process.

an exhaustive review of the literature, but to discuss the fundamental ideas
relevant to this thesis.

2.1 Markov Decision Processes

Markov Decision Process (MDP) [Puterman, 2014] is the canonical frame-
work of RL to describe the interaction between agent and environment.
In this section, we introduce the formal definition of the MDPs. Then
we present the basic concepts of this mathematical formulation: policies,
returns, value functions, action-value functions, and Bellman operators.

Definition 2.1.1 (Markov Decision Process). A (discounted) Markov Deci-
sion Process (MDP) is a tupleM= (S,A,P ,R, γ, µ,H) specified by:

• A state space S, which may be finite or infinite1.

• An action space A, which may be finite or infinite1.

• A transition function P : S × A → ∆(S), where with ∆(S) we
indicate the space of probability distributions over S. With P(s′|s, a)
we indicate the probability of transitioning to state s′ from state s
taking action a.

• A reward function R : S × A → R. With R(s, a) we describe the
immediate reward obtained in state s taking action a.

1In this thesis, for mathematical convenience, we assume that the space is measurable.

16



2.1. Markov Decision Processes

• A discount factor γ ∈ [0, 1].

• An initial state distribution µ ∈ ∆(S) which describes the probability
of starting from any state.

• The horizon of the problem H that can be infinite or a positive integer.

.

An MDP can be finite or continuous, depending if the state and the action
spaces are finite or infinite. If H = ∞ we say that the MDP is infinite-
horizon, instead if H < ∞ we say that the MDP is finite-horizon. Some
MDPs, called episodic, have some special states called terminal or absorbing
states; when the agent ends up in these states it cannot escape and the reward
is 0. As introduced in the previous section, the interaction between the agent
and the environment is partially controlled by the agent and partially by the
environment. In fact, at each discrete time step h the agent takes an action ah,
and the state sh transits to the state sh+1 based on the transition probability
function P(·|sh, ah). The agent at every interaction receives also a reward
R(sh, ah) which depends on the current state sh and the performed action
ah. In an MDP, the probabilities given by P completely characterize the
environment dynamics. This property is called Markov property [Puterman,
2014].

2.1.1 Returns and Episodes

The reward function formalizes the agent’s goal or intention; informally, the
agent aims to maximize cumulative sum of the received rewards. Given a
sequence of state-action pairs, we can evaluate the discounted return, which
determines the importance of future rewards:

GH =
H∑

t=0

γtR(st, at).

This quantity is a random variable depending on the agent’s decisions and
the transition probability. It is to notice that the discounted return is always
finite in finite-horizon and also in infinite-horizon MDPs if γ < 1 [Sutton
et al., 1998]. For example, if the reward is 1 in all states,

GH =
∞∑

h=0

γhR(sh, ah) =
1

1− γ .

We denote an episode or trajectory with τ = τ0:H = {s0, a0, . . . , sH−1,
aH−1, sH) ∈ T where T is the space of all the trajectories associated to an

17



Chapter 2. Reinforcement Learning

MDP. A trajectory describes the sequence of states and actions that the agent
experiences in a certain simulation.

2.1.2 Policies and Value functions

The goal of an RL agent is to find a policy that maximizes the discounted re-
turn. A policy 2 is a set of decision rules for each time-steps π : {π1, . . . , πH}.
Each decision rule πh is a mapping from states to probability distributions
over actions. In other words, if the agent is following the policy π at time h,
πh(a|sh) is the probability to select the action a in state sh. If all decision
rules in a policy π are equivalent we say that the policy is stationary. A
policy is deterministic if for every state s ∈ S , at every time step h ∈ [0, H]
the associated distribution πh(·|s) is deterministic. In this case, with some
abuse of notation, we write πh(s).

The value function of a state s under a policy π is the expected return
when starting from a state s and following the policy π. We define formally
the value functions as:

Definition 2.1.2 (Value function). Given a state s ∈ S , a policy π ∈ Π, and
a timestep h ∈ [0, H) we define the value function V π

h (s) as:

V π
h (s) = E

[
Gh
H |s0 = s

]
= E

[
H−1∑

h′=h

γh
′R(sh′ , ah′)|sh = s

]
, (2.1)

where the expectation is taken under ah ∼ πh(·|sh) and sh+1 ∼ P(·|sh, ah).

The value function describes the expected total amount of reward that
the agent receives if it follows the policy π.

Similarly the value of taking an action a in state s at time h under a
policy π defines the expected return of taking the action a in state s at time
h following the policy π.

Definition 2.1.3 (Action-value function). Given a state s ∈ S, an action
a ∈ A and a policy π ∈ Π, at time h, we define the action-value function
Qπ
h(s, a), also called Q-function, as:

Qπ
h(s, a) = E

[
Gh
H |sh = s, ah = s

]
= E

[
H−1∑

h′=h

γh
′R(sh′ , ah′)|sh = s, ah = a

]
,

(2.2)
where the expectation is taken under ah′ ∼ πh(·|sh′) and sh′+1 ∼ P(·|sh′ , ah′).

2In this thesis we consider only Markov policies.

18



2.1. Markov Decision Processes

When h = 0 we will write V π(s) and Qπ(s, a). Solving an RL task
means finding a policy that maximizes the acquired reward over all the run.
We say that a policy π is better or equal than a policy π′ if the expected
return of π is greater than the expected return of π′ for all the states, i.e.
∀s ∈ S V π(s) ≥ V π′(s). If a policy is greater or equal to all the other
policies, this policy is called optimal policy. In every MDP there always
exists at least one policy that is optimal:

∀s ∈ S : V π?(s) = sup
π∈Π

V π(s).

From this concept we can define the optimal value function and action-value
function for every state s ∈ S and action a ∈ A:

V ?(s) = sup
π∈Π

V π(s),

Q?(s, a) = sup
π∈Π

Qπ(s, a).

To solve the episodic RL problem the agent seeks to find a policy that
maximizes the expected discounted return under the initial state distribution.

Definition 2.1.4 (Expected discounted return). We define the expected dis-
counted return of a policy π as:

J(π) := E

[
H−1∑

t=0

γtR(sh, ah)

]
= E

s0∼µ
[Vπ(s0)] ,

where the expectation is taken with respect to s0 ∼ µ, sh+1 ∼ P(·|sh, ah),
ah ∼ π(·|sh).

So the the expected discounted return of optimal policy is:

J(π?) = sup
π∈Π

J(π).

2.1.3 Bellman operators

For infinite-horizon MDPs where γ ∈ [0, 1) we define the following Bellman
equations [Bellman, 1957]:

Definition 2.1.5 (Bellman equations). Let π be a stationary policy. Then
∀s ∈ S, ∀a ∈ A, V π(s) and Qπ(s, a) satisfy the following Bellman equa-

19



Chapter 2. Reinforcement Learning

tions:

V π(s) =

∫

a∈A
π(a|s)Qπ(s, a)da,

Qπ(s, a) = R(s, a) + γ

∫

s′∈S
P(s′|s, a)V π(s′)ds.

From these equations we define the Bellman operators:

Definition 2.1.6 (Bellman operators). Let π be a stationary policy. Then
∀s ∈ S , ∀a ∈ A we define the following Bellman operators T π for the value
function and action-value function:

(T πV )(s) :=

∫

a∈A
π(a|s)

(
r(s, a) + γ

∫

s′∈S
P(s′|s, a)V π(s′)ds′

)
da,

(T πQ)(s, a) := R(s, a) + γ

∫

s′∈S
P(s′|s, a)

∫

a′∈A
Qπ(s′, a′)da′ds′.

From these definitions it easy to see that the discounted value functions
satisfy the following consistency linear system:

(T πV π) = V π.

In these class of MDPs an optimal policy also exists, and, moreover, a
deterministic stationary policy always exists [Sutton et al., 1998]. The
optimal value functions are the fixed points of the optimal Bellman operator:

Definition 2.1.7 (Bellman operators). We define ∀s ∈ S, ∀a ∈ A the opti-
mal Bellman operators T ? for the value function and action-value function:

(T ?V )(s) := sup
a∈A

r(s, a) + γ

∫

s′∈S
P(s′|s, a)V (s′)ds′,

(T ?Q)(s, a) := R(s, a) + γ

∫

s′∈S
P(s′|s, a) sup

a′∈A
Q(s′, a′)ds′.

An important property of the Bellman operators is that they are γ-
contracting with respect to the l∞ norm [Puterman, 2014], if γ ∈ [0, 1):

‖T πV − T πV ′‖∞ ≤ γ ‖V − V ′‖∞ ,
‖T ?V − T ?V ′‖∞ ≤ γ ‖V − V ′‖∞ .

2.1.4 Characteristics of Reinforcement Learning algorithms

Model-based vs model-free RL algorithms can be divided into model-based
and model-free methods. Model-based algorithms learn or require the model

20



2.2. Exact Algorithms

of the environment and use techniques as dynamic programming. Instead,
model-free approaches do not need an explicit formulation of the model and
rely on learning from interactions with the environment.

On-policy vs off-policy The optimal solution of an MDP can be learned using
two paradigms: on-policy and off-policy learning. The on-policy methods
evaluate or improve the policy that is used to generate the data. On the other
hand, off-policy algorithms evaluate or improve a different policy from the
one used to interact with the environment.

Exploration-exploitation dilemma To learn an optimal policy on-line, so while
interacting with the environment, an agent has to follow a policy that suffi-
ciently explores state-action pairs, but that exploits the acquired knowledge
of the environment to control the returns. This is known in literature as the
exploration-exploitation dilemma.

Common policies We describe common policies used in RL problems. The
first policy is the ε-greedy policy. The ε-greedy policy balances between
exploration and exploitation. The policy at every time-step and for every
state-action pair (s, a) ∈ S ×A is equal to:

π(a|s) =

{
1− ε+ ε

|A| if a = arg maxa′∈AQ(s, a′)
ε
|A| otherwise

.

The Boltzmann policy instead uses the Boltzmann distribution with the
action-value functions. So at every time-step h and for every state-action
pair (s, a) ∈ S ×A:

π(a|s) =
exp(βQ(s, a))∑

a′∈A exp(βQ(s, a′))
,

where β is a tunable parameter. The two parameters ε and β influences
the exploration of the policy: lower is ε (or higher is β) more the policy
is deterministic, and so more it exploits the best action; on the other hand,
higher is ε (less is β more the policy is decide uniformly between the actions,
so more it explores.

2.2 Exact Algorithms

This section provides some algorithms to exactly solve an MDP when we
have full information, including the transition model P and the reward

21



Chapter 2. Reinforcement Learning

Algorithm 1 Policy evaluation

Input: π (the policy to be evaluated), ε (a small threshold determining the accuracy)
∆ =∞
Vπ(s) = 0 ∀s ∈ S
while ∆ > ε do

for each s ∈ S do
v ← V (s)
V (s)←∑

a∈A π(a|s)(R(s, a) +
∑
s′∈S P(s′|s, a)V (s′))

∆← min(∆, |V (s)− v|)
end for

end while
Output: value-function V

function. The methods that we expose are based on Dynamic Programming
(DP) [Bertsekas et al., 1995, Powell, 2007]). In this section, we assume that
the state and action spaces are finite, but a common way to find approximate
solutions when the spaces are continuous is to discretize the state and action
spaces and then apply finite-state algorithms.

2.2.1 Policy evaluation

The first problem that we solve is evaluating the performance of a policy.
This task is also called policy evaluation or policy prediction. Since the envi-
ronment dynamics are known, we can repetitively use the Bellman equations
to get an increasingly accurate approximation of the value function. The
initial approximation is chosen arbitrarily, and then we apply the Bellman
operator to the current approximation of the value function (see Algorithm
1).

2.2.2 Policy iteration

With the policy evaluation we can estimate how “good” is a policy with
respect to another one. Starting from a policy π we seek to find a policy π′

that increases the performances of π. In order to do this we use the policy
improvement theorem [Sutton et al., 1998] which states that, given two
policies π and π′, such that ∀s ∈ S:

Qπ(s, π′(s)) ≥ V π(s),

then ∀s ∈ S:
V π′(s) ≥ V π(s).

The idea is that if following the policy π′ we do not take worse decisions
than following π, then π′ is globally no worse than π. A way to construct

22



2.2. Exact Algorithms

Algorithm 2 Policy iteration

Input: ε (a small threshold determining the accuracy)
∆ =∞
Vπ(s) ∈ R and π(s) ∈ A ∀s ∈ S
while not policy-stable do

Policy Evaluation
while ∆ > ε do

for each s ∈ S do
v ← V (s)
V (s)←∑

a∈A π(a|s)(R(s, a) +
∑
s′∈S P(s′|s, a)V (s′)

∆← min(∆, |V (s)− v|)
end for

end while
Policy Iteration
policy-stable← true
for each s ∈ S do

old-action← π(s)
π(s)← arg maxa∈A r(s, a) + γ

∑
s′∈S P(s′|s, a)Vπ(s′)

If old-action 6= π(s), then policy-stable← false
end for

end while
Output: policy π

these improvements is to greedy update the current policy π selecting the
best action at every state according to the current values of the action-value
functions. In other words we create the greedy policy π′ of π:

π′(s) = arg max
a∈A

Qπ(s, a)

= arg max
a∈A

(
r(s, a) + γ

∑

s′∈S

P(s′|s, a)V π(s′)

)
.

We can see that we are applying the Bellman optimal operator to the value
function in order to increase the performance of the current policy. So this
greedy operation generates a sequence of monotonically policy improve-
ments:

π0 → V π0 → π1 → V π1 → · · · → π? → V π? ,

where we alternate between a policy evaluation and a policy improvement.
This process is called policy iteration, and we give a complete pseudo-code
in Algorithm 2.

23



Chapter 2. Reinforcement Learning

Algorithm 3 Value iteration

Input: ε (a small threshold determining the accuracy)
∆ =∞
Vπ(s) ∈ R and π(s) ∈ A ∀s ∈ S
while ∆ > ε do

for each s ∈ S do
v ← V (s)
V (s)← maxa∈AR(s, a) +

∑
s′∈S P(s′|s, a)V (s′)

∆← min(∆, |V (s)− v|)
end for

end while
Output: a deterministic policy π such that:
π(s) = arg maxa∈AR(s, a) +

∑
s′∈S P(s′|s, a)V (s′)

2.2.3 Value Iteration

The problem of policy iteration is that every iteration involves a policy
evaluation step. This quite expensive step is unnecessary since the policy
evaluation can be truncated without effecting the policy iteration algorithm
(see [Sutton et al., 1998]). The idea of Value Iteration is to stop the policy
evaluation after one step. The Value Iteration algorithm combines the policy
iteration and policy evaluation step:

vk+1(s) = max
a∈A

r(s, a) + γ
∑

s′∈S

P(s′|s, a)Vπ(s′),

for all s ∈ S . In other words, the algorithm applies repetitively the Bellman
optimal operator until convergence. A pseudo-code of Value Iteration is
reported in Algorithm 3.

2.3 Value-based algorithms

In most RL tasks, we do not have access to the transition model P and the
reward functionR, but we have to learn them from experience. Temporal
Differences (TD) algorithms [Sutton et al., 1998] execute the current policy
π and update at every step the estimation of the value function. The main
idea of TD is to update the value function of a state with the estimated value
of the next states and its reward. So, if we are in state st at time t, the TD
update will be:

V (sh) = V (sh) + α(R(sh, ah) + γV (sh+1)− V (sh)),

where α can be interpreted as a learning rate. The value inside the brackets
is called Temporal Difference error, and can be regarded as how the current

24



2.3. Value-based algorithms

Algorithm 4 SARSA

Input: α (step size), ε > 0, N (number of episodes), H (episode’s length)
Q(s, a) ∈ R ∀s ∈ S, a ∈ A
for each episode i ∈ [N ] do

Initialize s ∼ µ
Choose action a using policy derived from Q(s) as ε-greedy
for each step h ∈ [H] do

Take action a, observe rewardR(s, a) and next state s′

Choose action a′ using policy derived from Q(s′) as ε-greedy
Q(s, a)← (1− α)Q(s, a) + α(R(s, a) + γQ(s′, a′))
s← s′, a← a′

end for
end for
Output: a deterministic policy π such that:
π(s) = arg maxa∈AR(s, a) +

∑
s′∈S P(s′|s, a)V (s′)

value function well estimates the real value function. In this section we re-
view two well-known TD approaches: an on-policy TD algorithm (SARSA)
and an off-policy TD algorihm (Q-learning).

2.3.1 SARSA

SARSA [Rummery and Niranjan, 1994] is an on-policy Temporal Differ-
ence algorithm that uses the Temporal Difference error to update the value
function. The main difficulty is to estimate an action-value function instead
of a value function:

Q(sh, ah) = Q(sh, ah) + α(R(sh, ah) + γQ(sh+1, ah+1)−Q(sh, ah)),

so at every time step h the algorithm updates the action-value function of
the current state Q(sh, ah) with the received rewardR(sh, ah) and the next
action-value function Q(sh+1, ah+1). Since the rule uses the quintuple of
events (sh, ah, Rh, sh+1, ah+1) the name of the algorithm is Sarsa. The
convergence properties of SARSA depend on the policies used. If the policy
guarantees sufficient exploration such as ε-greedy policies or Boltzmann,
the algorithm will converge to a deterministic one also optimal [Singh
et al., 2000]. The SARSA asymptotic convergence was also studied under
function approximation in [Perkins and Precup, 2003, Melo et al., 2008].
The pseudocode of SARSA update is presented in Algorithm 4.

25



Chapter 2. Reinforcement Learning

Algorithm 5 Q-learning

Input: α (step size), ε > 0, N (number of episodes), H (episode’s length)
Q(s, a) ∈ R ∀s ∈ S, a ∈ A
for each episode i ∈ [N ] do

Initialize s ∼ µ
for each step h ∈ [H] do

Take action a using policy derived from Q(s) as ε-greedy, observe rewardR(s, a)
and next state s′

Q(s, a)← (1− α)Q(s, a) + α(R(s, a) + γmaxa∈AQ(s′, a))
s← s′

end for
end for
Output: a deterministic policy π such that:
π(s) = arg maxa∈AR(s, a) +

∑
s′∈S P(s′|s, a)V (s′)

2.3.2 Q-learning

The Q-learning algorithm [Watkins and Dayan, 1992] is one of the most
popular algorithm in RL. As said before it is an off-policy TD algorithm and
its update rule is defined as:

Q(sh, ah) = Q(sh, ah) + α(R(sh, ah) + γmax
a∈A

Q(sh+1, a)−Q(sh, ah)).

The update is very similar to the SARSA ones. The main difference is
that Q-learning at each step approximates the Q∗ with the maximum of the
current Q-value, independently of the actual policy used. The success of this
algorithm is due to its simplicity and the great convergence results [Watkins
and Dayan, 1992, Tsitsiklis, 1994, Kearns and Singh, 1999, Szepesvári et al.,
1997]. Recently in [Jin et al., 2018] the authors analysed the regret of
this algorithm with some refining exploration techniques proving that it
nearly-matches the optimal regret. A pseudocode of the classical Q-learning
approach is given in Algorithm 5.

2.4 Policy Gradient Approaches

Policy gradient approaches [Deisenroth et al., 2013, Peters and Schaal,
2008b, Williams, 1992, Kakade, 2001] take a different perspective on the
RL problem: we move from action-value based algorithms to methods
which learn only a parametrized policy. With parametrized policy we
intend that the agent’s policy is a function πθ parametrized by a set of
parameter θ ∈ Rd, which determines the probability to select an action,
without looking at the action-value estimates. These methods have some

26



2.4. Policy Gradient Approaches

advantages and disadvantages over classical RL algorithms. The possibility
to parametrize the policy permits to deal with high-dimensional problems
[Peters and Schaal, 2008b] such as humanoid robots. Moreover, using
an opportune parametrization, the policy can converge to a deterministic
one, or can converge to any probability distribution. Another advantage
is that the action’s probabilities change in a smoother way, permitting to
have stronger (and easier to prove) convergence guarantees. Finally, policy
search methods permit to incorporate previous knowledge in the learning
process [Deisenroth et al., 2013]. In this thesis, we present the episodic
version of these algorithms (following the presentation in [Peters and Schaal,
2008b, Sutton et al., 1998]) and we refer to [Baxter and Bartlett, 2001,
Deisenroth et al., 2013] for the infinite-horizon case.

In policy gradient methods, the policy can be parametrized in any way
as long as it is continuously differentiable (one or two times depending on
the algorithm) with respect to its parameters. We present now the com-
mon parametrization for discrete and continuous actions/states spaces. For
discrete MDPs a natural parametrization is the Boltzmann (or soft-max) one:

πθ(a|s) =
ef(a,s,θ)

∑
a′∈A e

f(a,s,θ)
.

The function f can be any arbitrary: computed by a Neural Network or linear
in the state-action features (f(s, a,θ) = φ(s, a)Tθ where φ(s, a) ∈ Rd). For
continuous MDP a natural parametrization is the Gaussian one:

πθ(a|s) =
1√
2πσ

exp

{
−1

2

(
a− µθ(s)

σ

)2
}
,

where µθ(s) is the state-dependent mean and σ2 is the variance.
The idea of policy search methods is to optimize the expected return

using optimization methods, as for example stochastic gradient ascent:

θ′ = θ + α∇θJ(θ), (2.3)

where α is the learning rate. In order to evaluate the∇θJ(θ) different meth-
ods were proposed. In this thesis we report the REINFORCE, G(PO)MDP
and Policy Gradient theorem 3. The main skeleton of these approaches is
presented in 6.

3We continue to use H instead of T to indicate the episode’s lenght to be consistent in the thesis

27



Chapter 2. Reinforcement Learning

Algorithm 6 Policy Gradient algorithm

Input: a gradient evaluation function f , a learning rate α
Initialize θ randomly
for i = 1, 2, . . . do

Perform a trial and obtain D = {τ1, . . . , τk}
ĝ ← f(θ, D)
θ ← θ + αĝ

end for

2.4.1 REINFORCE

The REINFORCE algorithm was proposed by [Williams, 1992]. The REIN-
FORCE policy gradient is given by:

∇θJR(θ) = E
τ

[
H−1∑

h=0

∇θ log πθ(ah|sh) (R(τ)− b)
]
,

where b is a baselines andR(τ) =
∑H−1

h=0 γ
hR(sh, ah). The baseline aims

at minimizing the variance of the gradient estimator, so it has to satisfy the
following condition:

∇bVar
[
∇θJRθ

]
= ∇b E

τ

[
(∇θJRθ )2

]
= 0.

So the optimal baseline, for each dimension d of the policy parameters θ, is
equal to:

bRd =

Eτ
[(∑H−1

h=0 ∇θd log πθd(ah|sh)
)2

R(τ)

]

Eτ
[(∑H−1

h=0 ∇θd log πθd(ah|sh)
)2
] .

2.4.2 G(PO)MDP

The G(PO)MDP algorithm [Baxter and Bartlett, 2001] considers that the
rewards from the past do not depend on the future actions. So if we consider
the reward at step h, we can ignore all the gradients of the future actions.
From this idea we can derive the G(PO)MDP approximation of the gradient:

∇θJRθ = E
τ

[
H−1∑

h=0

h∑

j=0

∇θ log πθ(aj|sj) (R(sh, ah)− bh)
]
.

In this case also the baseline depends on the timestep. As we have done in
the previous section for the REINFORCE algorithm, we can easily derive a

28



2.4. Policy Gradient Approaches

baseline which minimizes the variance of the G(PO)MDP estimator:

bGd,h =

Eτ
[(∑h

j=0∇θd log πθd(ah|sh)
)2

R(sh, ah)

]

Eτ
[(∑h

j=0∇θd log πθd(ah|sh)
)2
] .

2.4.3 Policy Gradient Theorem

The Policy Gradient Theorem (PGT) algorithm is based on the Policy Gra-
dient Theorem [Sutton et al., 1999], which, instead of using the reward
R(sh, ah) at time step h, uses the expected value of the reward at this step.
This value is given by the Q-value Qπθ

h (sh, ah) at time h. The idea similarly
to G(PO)MDP is that the rewards are not correlated to the future decisions.
The Policy Gradient Theorem states that:

∇θJRθ = E
τ

[
H−1∑

h=0

∇θ log πθ(ah|sh)
(
H−1∑

j=h

R(ah, sh)

)]
.

This algorithm is equivalent to the G(PO)MDP version, .i.e., the two ones
lead to the same gradient estimation [Deisenroth et al., 2013].

Remarks regarding policy gradient approaches A known problem of policy gra-
dient estimators is the high variance, which is known to be a source of slow
convergence. The REINFORCE algorithm is the one that suffers the most
from that, in fact one of the purpose of constructing the G(PO)MDP estima-
tor is of removing some unnecessary terms to reduce the variance. On the
other hand, REINFORCE (without baseline) can be efficiently implemented
using automatic differentiation tools; in fact it can be written as the gradient
of a dot product between a vector of differentiable functions (the sums of
log-policies) and a vector of constants (the sums of returns).

The baselines that we have introduced in the previous section aim at
reducing the variance. However, the baselines cannot be computed exactly
but they need to be estimated from data and, to keep the gradient estimate
unbiased, it is necessary to use separate data to estimate it. However, in
practice it is used a single batch of data, with the hope that the bias will
have a negligible effect on the estimation error, compared to the variance
reduction of the baseline.

Other more recent works investigate regularization effects on the policy
gradient, to find the optimal trade-off between reducing the variance and
introducing bias [Jaderberg et al., 2016, Namkoong and Duchi, 2017, Kartal

29



Chapter 2. Reinforcement Learning

et al., 2019, Lin et al., 2019b]. In RL this regularization usually corresponds
to an additional entropy term, and it is used also to encourage the policy
exploration. In [Zhao et al., 2016] and [Papini et al., 2018] the authors
add a regularization term using the variance of the policy gradient, taking
inspiration from SVRG [Johnson and Zhang, 2013]. This term provide more
consistent policy improvements at the expense of reduced performance.
Recently in [Flet-Berliac et al., 2021] the authors propose an actor-critic
algorithm providing a new training objective for the critic based on the resid-
ual variance. However, the problem of finding the best trade-off between
reducing the variance and introducing a bias is an open research question.

2.5 Actor-critic algorithms

The actor-critic algorithms are composed by: the actor, i.e., it is a parametrized
policy πθ and a critic, i.e., it is a parametrized action-value function Qω or
value function Vω that evaluates the current policy. Actor-critic algorithms
are the core components of Deep RL, where the actor and the critic compo-
nent are approximated by neural networks. We revise the reader to recent
surveys [Li, 2017, Arulkumaran et al., 2017, François-Lavet et al., 2018].

The idea behind actor-critic algorithms is that if the function approxima-
tion of the action-value function is “compatible” with the one used for the
policy (where with compatible we intend that∇ωQω(s, a) = ∇θπθ(a|s)),
and ω is a stationary point of the corresponding objective, then we can use
Qω instead of Qπθ to evaluate the policy gradient [Sutton et al., 2000,Konda
and Tsitsiklis, 2000]. These results where used in [Peters and Schaal, 2008a]
combined with natural policy gradient. In [Schulman et al., 2015] the au-
thors propose a trust-region optimization method (TRPO), and similarly
in [Schulman et al., 2017b] it was introduced proximal policy optimization
(PPO). The two algorithms achieved very effective results in learning high-
dimensional tasks. In [Silver et al., 2014] the authors derive a deterministic
version of the policy gradient, and it was extended to deep neural networks
in [Lillicrap et al., 2015]. The advantage actor-critic (A3C) was proposed
in [Mnih et al., 2015] where the authors use asynchronous actor learners
and the policy is updated using the policy gradient theorem. The authors
of [Haarnoja et al., 2018] use maximum entropy RL to derive soft actor-critic
(SAC) algorithm, and the algorithm achieve state-of-the-art results in many
continuous control tasks.

30



CHAPTER3
Inverse Reinforcement Learning

In the previous chapter, we have introduced RL as a framework to learn
how to perform a task described by a reward function. However, for many
tasks, we already have experts (for example, humans) who know how to
accomplish the same task. Moreover, in some cases it is extremely difficult
to design a suitable reward function. The Imitation Learning paradigm aims
to exploit the expert information to clone the experts’ behavior or formalize
the expert’s intentions. The Imitation Learning framework is divided into
two main subareas: Behavioral Cloning (BC) [Bain and Sammut, 1995] and
Inverse Reinforcement Learning (IRL) [Russell, 1998]. Behavioral Cloning,
as the name says, aims to clone the expert’s behavior in order to use it as a
policy. IRL, instead, can recover the expert’s reward function to understand
its intentions and use this reward function to learn an optimal policy in any
environment, even different from the one in which the expert acts. In this
thesis, we focus our attention on the IRL framework. For more information
about BC, we suggest the reader to look at the following survey [Osa et al.,
2018].

31



Chapter 3. Inverse Reinforcement Learning

�

♂ d

Reward

Action

State

Expert

Environment

Observer

RL

Reward?

Figure 3.1: The expert-observer interaction in the Inverse Reinforcement Learning frame-
work.

3.1 Problem statement

As said before, the IRL framework is composed of two agents: an expert
who shows how to perform a task and an observer who watches the expert’s
demonstrations and learns from them the reward function. This setting
is described in Figure 3.1. The framework used in IRL problems is the
Markov Decision Process without Rewards (MDP\R). An MDP\R is
defined as a tupleM\R = (S,A,P , γ, µ,H) which is equal to an MDP
but without having the notion of the reward function. [Russell, 1998] defines
the objective of the IRL problem as:

Determine the reward function that the expert is optimizing.

The observer practically receives a dataset of expert’s demonstrations, or
it has access to the observer’s policy. Then the observer has to recover
a reward function, which makes the expert’s behavior optimal. One of
the major difficulties of the IRL problem is that the objective function is
ill-posed [Ng et al., 2000] since a policy can be optimal for many reward
functions. To obtain the solution many different reward choice functions
were proposed based on different reasonable principles including feature-
based matching [Abbeel and Ng, 2004], maximum margin planning [Ratliff
et al., 2006], maximum entropy [Ziebart et al., 2008, Ziebart et al., 2010],
Generative Adversarial learning [Ho and Ermon, 2016], Bayesian framework
[Ramachandran and Amir, 2007], boosting methods [Ratliff et al., 2007], and
Gaussian Processes [Levine et al., 2011]. The majority of the IRL algorithms
require an iterative learning process that alternates between recovering the

32



3.2. Model-based Inverse Reinforcement Learning

reward function and evaluating the reward function in the environment, i.e.,
computing the optimal policy for the recovered reward function. However,
in the literature, some algorithms do not require this interaction with the
environment and use only the given set of expert trajectories.

As in standard RL, the IRL algorithms can be divided in model-based
approaches and model-free ones. The first approaches need to estimate a
model of the environment to solve the IRL problem or to have access to the
MDP. The second ones, instead, recover the reward functions using only
the expert’s demonstrations. For this part we follow the presentation of the
survey [Osa et al., 2018].

3.2 Model-based Inverse Reinforcement Learning

The IRL algorithms of this section leverage on a previous knowledge of the
system dynamics. In this section we describe three model-based algorithms
for IRL: Feature Expectation Matching [Abbeel and Ng, 2004], Maximum
Entropy IRL [Ziebart et al., 2008], Maximum Likelihood IRL [Babes et al.,
2011].

3.2.1 Feature Expectation Matching

In [Abbeel and Ng, 2004] the authors propose an algorithm which solves
the IRL problem matching the feature expectation of the expert’s policy.
We start by assuming that the reward function is linear in the state-action
features, i.e. given a state s ∈ S and action a ∈ A the reward is given by:

R(s, a) = ωTφ(s, a),

where φ(s, a) ∈ Rd is a known feature vector of the state-action pair and
ω ∈ Rd is an unknown weight vector. From this, we define the expected
return, given a policy π, as:

J(π) = E

[
H−1∑

h=0

γhR(sh, ah)

]

= E

[
H−1∑

h=0

γhωTφ(sh, ah)

]

= ωT E

[
H−1∑

h=0

γhφ(sh, ah)

]
,

33



Chapter 3. Inverse Reinforcement Learning

where the expectation is taken with respect to s0 ∼ µ, sh+1 ∼ P(·|st, at),
ah ∼ π(·|sh). We define the right-hand side as the feature expectation ψ(π):

ψ(π) = E

[
H−1∑

h=0

γhφ(sh, ah)

]
.

From this equations we can write the expected return as:

J(π) = ωTψ(π).

The idea of [Abbeel and Ng, 2004] is to learn the reward weights which
induce an optimal policy that matches the feature expectations of the expert’s
one. The algorithm alternates between computing the weights that minimize
the distance between the actual feature expectations and the expert’s feature
expectation, and update the feature expectations evaluating the optimal pol-
icy for the current weights. One advantage of feature-expectation matching
is that the resulting policy performs provably close to the expert’s one.

However, this algorithm is still ambiguous since many policies can match
the expert’s feature expectations. To solve this issue, [Ratliff et al., 2006]
proposed the Maximum Margin Planning algorithm, which finds the reward
weights that maximize the difference between the optimal policy and the
others. Another idea is to maximize over the policy distributions using the
maximum entropy principle [Ziebart et al., 2008]. We explain this algorithm
in the next section.

3.2.2 Maximum Entropy Inverse Reinforcement Learning

In the previous section, we described an approach that finds a reward function
to match the expert’s feature expectations. However, many policies have
this characteristic. [Ziebart et al., 2008] propose an algorithm to solve this
problem by finding the distribution that maximizes the entropy among all
the distributions that match the feature expectations. This algorithm, based
on the Maximum Entropy principle [Jaynes, 1957], learns a policy that
maximizes the entropy:

max
π
H(π) = max

π

∑

τ

π(τ) log

(
1

π(τ)

)

s.t.ψ(π) = ψ(πE)
∑

τ

π(τ) = 1, ∀τ , π(τ) ≥ 0,

34



3.2. Model-based Inverse Reinforcement Learning

where π(τ) =
∏H−1

h=0 π(ah|sh) and πE is the expert policy. Ziebart et al.
proved that the distribution that maximizes the entropy and satisfies the
constraints follows:

π(τ) ∝ exp (R(τ)) ,

whereR(τ) = ωT
∑H−1

h=0 φ(sh, ah). From this equation we can express the
probability to see a trajectory in terms of the reward weights:

p(τ |ω) =
exp

(
ωTφ(τ)

)

Z(ω)
,

where Z(ω) =
∑

τ ′ exp
(
ωTφ(τ)

)
is the partition function and p(τ |ω) is

the probability of see a trajectory τ given the reward weights ω. This
equation holds only for deterministic environments, while for stochastic
environments we have to add also the transition probabilities information:

p(τ |ω) =
exp

(
ωTφ(τ)

)

Z(ω)
µ(s0)

H−1∏

h=1

P (sh|sh−1, ah−1).

From this, we can rewrite the optimization problem as:

arg max
ω

∑

τ∈D

log p(τ |ω),

where D is the expert trajectories dataset. This is a convex optimization
problem, which can be simply solved using gradient ascent optimization.

3.2.3 Maximum Likelihood Inverse Reinforcement Learning

The Maximum Likelihood IRL algorithm was proposed in [Babes et al.,
2011]. The idea behind this algorithm is to find the reward weights which
maximize the likelihood of the given dataset of expert demonstrations. The
authors define the policy as a Boltzmann policy:

πω(a|s) =
exp (βQ(s, a))∑

a′∈A exp (βQ(s, a′))
.

Then they state that,

Qω(s, a) = ωTφ(s, a) + γ
∑

s′∈S

P(s′|s, a)
∑

a′∈A

exp (βQ(s′, a′))∑
a′′∈A exp (βQ(s′, a′′))

Q(s′, a′),

and they optimize the log-likelihood of the given trajectories D:

max
ω

L(D|ω) =
∑

τ∈D

∑

s,a∈τ

log πω(a|s).

35



Chapter 3. Inverse Reinforcement Learning

The algorithm alternates between computing the current Q-values and a
gradient-ascent step to optimize the likelihood.

3.3 Model-free Inverse Reinforcement Learning

In many real applications the exact dynamics are often unknown, and it
could be not possible to interact with the environment. The algorithms that
we present in this section solve these issues without requiring the transition
probabilities of the underlying MDP.

3.3.1 Relative Entropy Inverse Reinforcement Learning

The approach of Relative Entropy Inverse Reinforcement Learning (REIRL)
[Boularias et al., 2011] takes inspiration by Relative Entropy Policy Search
[Peters et al., 2010] and Maximum Entropy IRL [Ziebart et al., 2008].
The algorithm receives as input a set of trajectories D and minimizes the
relative entropy between a prior trajectory distribution p0 and the trajectory
distribution pL induced by the learned policy πL. Since the transition model
is unknown the authors estimate the trajectory distribution using Importance
Sampling techniques. Similarly to Maximum Entropy IRL the optimization
problem can be formalized as:

min
pL

∑

τ∈D

pL(τ) log

(
pL(τ)

p0(τ)

)

s.t ‖ψ(πL) = ψ(πE)‖1 ≤ ε
∑

τ

pL(τ) = 1, ∀τ , pL(τ) > 0,

where ε is evaluated using a Hoeffding bound. From this formulation we
can derive the Lagrangian of this problem as:

∑

τ∈D

pL(τ) log

(
pL(τ)

p0(τ)

)
− ωT

(∑

τ∈D

p(τ)φ(τ)− ψ(πE)

)

−
d∑

i=1

|ωi|εi + η

(∑

τ∈D

p(τ)− 1

)
.

Then the authors evaluate the dual problem and solve it using sub-gradient
methods and importance sampling.

36



3.3. Model-free Inverse Reinforcement Learning

3.3.2 Cascaded Supervised Learning Approach to Inverse Reinforce-
ment Learning

Cascaded Supervised Inverse Reinforcement Learning [Klein et al., 2013,
CSI] starts with an initial classification step that defines a score function
followed by a regression step which provides the reward function. The
first step of the algorithm is a classification that associated a score function
qC ∈ S × A and a decision rule πC : S → A for every action a ∈ A and
state s ∈ S. The classification can be seen as a method to infer the action-
value function of the RL problem. This step is performed using a score
function-based multi-class classifier (SFMC), as for example a Multi-class
Support Vector Machine. From these two functions we can derive a reward
RC : S ×A → R:

RC(s, a) = qC(s, a)− γ
∑

s′∈S

P(s′|s, a)qC(s′, πC(s′)). (3.1)

However, since the transition model is unknown and we need to approximate
it. It is assumed to have another dataset DR of transitions, performed by an
arbitrary policy. From this dataset we can acquire the information about the
dynamics of the system. From this dataset we construct another dataset D′

where, for every (s, a, s′) ∈ DR, we add the triplet:

(s, a, r̃) r̃ = qC(s, a)− γq(s′, πC(s′)).

Then a regressor is used to fed the points in the dataset D′ to derive the final
reward function R̃.

In the paper it is also provided a theoretical analysis in which the au-
thors show that the demonstrated policy is near-optimal with respect to the
recovered reward function.

3.3.3 Gradient Inverse Reinforcement Learning

In [Pirotta and Restelli, 2016] the authors present the Gradient Inverse
Reinforcement Learning algorithm. This is, as far as we know, the first
IRL algorithm based on the policy gradient. The authors consider policy
parametrized by a parameter θ as in section 2.4. We start by defining the
policy gradient [Deisenroth et al., 2013] written as its decomposition under
a linear reward modelRω(s, a) = ωTφ(s, a):

∇θJ(θ,ω) = E

[
+∞∑

t=0

γtRω(st, at)
t∑

l=0

∇θ log πθ(al|sl)
]

= ∇θψ(θ)ω,

37



Chapter 3. Inverse Reinforcement Learning

where∇θψ(θ) = (∇θψ1(θ)| . . . |∇θψq(θ)) ∈ Rd×q is the Jacobian matrix.
When the expert’s policy πEθ ∈ ΠΘ optimizes the reward function RωE ,
θE is a stationary point of the expected return J(θ,ωE). So, the gradient
of ∇θJ(θE,ωE) = ∇θψ(θE)ωE must vanish by the first-order necessary
conditions for optimality [Nocedal and Wright, 2006]. In other words,
the weight ωE , associated to the reward function optimized by the expert,
belongs to the null space of the Jacobian∇θψ(θE).

GIRL [Pirotta and Restelli, 2016] leverages on this observation to recover
the expert’s weight vector ωE . In practice we do not have access to the
true Jacobian matrix ∇θψ(θE), but to a finite-sample estimate ∇̂θψ(θE),
obtained starting from the trajectories in D = {τ1, ..., τn}. As we pre-
sented in previous chapter 2, an unbiased sample-based estimate of∇θψ(θ)
can be obtained with the standard policy gradient estimators, such as RE-
INFORCE [Williams, 1992] or G(PO)MDP [Baxter and Bartlett, 2001].
However, this estimation might result of full rank due to estimation errors,
preventing the search of the corresponding null space. For this reason, GIRL,
instead of looking for the null space of ∇̂θψ(θE), seeks for the direction
of minimum growth by minimizing the Lp-norm of the gradient estimate,
leading to the optimization problem:

min
ω∈Rq+
‖ω‖1=1

∥∥∥∇̂θψ(θE)ω
∥∥∥
p

p
. (3.2)

This objective has the desirable property of being convex for any choice of
p ≥ 1.

38



CHAPTER4
Multi-agent Reinforcement Learning

In the previous chapter we have considered the basic RL setting, where
one agent is learning a task in an environment without the presence of
other agents. In reality, the majority of the real-world problems are multi-
agent, i.e., multiple agents act in the same context. We can mention for
example successful results on the application of RL algorithms: beating
the world champion player of Go [Silver et al., 2017], solving robotic
control problems [Lillicrap et al., 2015], managing the power consumption
of households [Chung et al., 2020], and achieving promising advancements
in autonomous driving [Shalev-Shwartz et al., 2016]. These tasks can be
modeled as Multi-Agent Reinforcement Learning (MARL) problems, a
framework that characterizes all the decision-making problems with more
than one agent. The agents can cooperate, compete, and optimize their
own expected return. This chapter introduces the preliminaries necessary to
understand the MARL framework, following the lines of [Zhang et al., 2019a,
Buşoniu et al., 2010]. In the beginning, we introduce the Normal Form
Games [Myerson, 2013], then we formalize the Stochastic Games [Shapley,
1953], and we expose the equilibrium concepts. Then we introduce the
primary differentiation in the MARL framework: cooperative, competitive,
and general-sum games. Finally, we introduce some approaches to solve

39



Chapter 4. Multi-agent Reinforcement Learning

Player 2
head tail

Player 1 head 1, −1 −1, 1
tail −1, 1 1, −1

Table 4.1: Reward (payoff) function of the Matching Pennies game.

these problems. As for RL, this chapter is not intended to give a full review
of the MARL literature but only to have the necessary preliminaries for this
thesis. In Chapter 8 and 11 we provide more details on the related work
for the three algorithms that we presented in this thesis. We remind the
reader of recent surveys on this topic [Zhang et al., 2019a, Buşoniu et al.,
2010, Nguyen et al., 2020, OroojlooyJadid and Hajinezhad, 2019, Da Silva
and Costa, 2019, Hernandez-Leal et al., 2019, Papoudakis et al., 2019] to
have a complete overview of the MARL works. Moreover in appendix A
it is reported a brief introduction of learning in games, and in particular of
learning in continuous games.

4.1 Normal-form Games

A Normal-form game [Myerson, 2013, NFG] is the most straightforward
game that we can consider. A Normal-form game is formally defined as
follows.

Definition 4.1.1 (Normal-form game). A N -player Normal-form game is a
tuple NFG = (N,A,R) where:

• N is the number of agents in the game,

• A = A1 × · · · × AN where Ai is the finite set of actions of agent i,

• R = (R1, . . . ,RN), where Ri : A → R is a real-valued reward
function (payoff function) for the agent i.

If the action space is finite, the game is finite, otherwise if the action
space is continuous the game is continuous. An example of a Normal-form
game is reported in Table 4.1. The game in the table is the Matching Pennies
game. The rows are the possible actions for the first agent, and the columns
correspond to the second player’s action. Each player’s reward is described
in the cell: the left for the first player and the right for the second one. As for
the single-agent RL, we can define a deterministic policy (or pure strategy)
if the agent selects with probability 1 only one action. Instead, the policy is

40



4.1. Normal-form Games

stochastic (or mixed) if it specifies a probability distribution over the actions.
We define the “gain” of an agent i as the expected return:

J
πi,π−i
i = E[Ri],

where the expectation is taken under the policies πi and the joint policies
π−i = (π1, . . . , πi−1, πi+1, . . . , πN), i.e., the joint policy of all the players
except i. We can define the goodness of a policy by introducing the concept
of best response.

Definition 4.1.2 (Best response). The agent i is playing its best response to
the opponents’ policies (or strategy profile) π−i, if its policy πi is such that
J
πi,π−i
i ≥ J

π′i,π−i
i for every π′i ∈ ∆(Ai).

From this definition, we introduce the first equilibrium concept: the Nash
Equilibrium [Nash et al., 1950].

Definition 4.1.3 (Nash equilibrium). A joint strategy π = (π1, . . . , πN) is a
Nash equilibrium if, for all agents i ∈ [N ] 1, πi is the best response to π−i.

It was proved that every Normal-form game has a Nash Equilibrium
[Nash et al., 1950]. However, finding a Nash Equilibrium is a PPAD
complete problem already in a three-player game [Papadimitriou, 1992,
Daskalakis et al., 2009]. Another problem with this concept is that there
could be more than one Nash Equilibrium in the game, and it is not easy to
decide what equilibrium is the best among the others.

Another equilibrium concept is the Stackelberg Equilibrium. The Stack-
elberg paradigm was initially introduced to model a particular economic
situation where there is a leader that moves first and a follower that re-
acts to the leader movement [Von Stackelberg, 2010]. More formally, in a
Stackelberg game, an agent, called the leader, takes an action and then the
other agents, the followers, respond to the leader’s decision. The Stackel-
berg game can model situations in which the actions are asynchronous, and
some agents decide their actions by looking at the previous agent’s decision.
In this thesis, we consider only the case in which there is one leader and
one follower 2. With πLD, we indicate the leader policy, and with πFL the
follower policy.

Definition 4.1.4 (Follower best response). A follower best response is a set
of policies BR(πLD) = arg maxπFL∈ΠFL

JπLD,πFLFL . The follower response
function is a function ζ : ΠLD → ΠFL such that ζ(πLD) ∈ BR(πLD) for
every leader’s policy πLD ∈ ΠLD.

1With [N ] we indicate all the integers between 1 and N .
2The extension to the multiple-follower setting is easy to be inferred from our definitions.

41



Chapter 4. Multi-agent Reinforcement Learning

The Stackelberg equilibrium is then defined as follows.

Definition 4.1.5 (Stackelberg equilibrium). For a Stackelberg game with
one leader and one follower, given a follower response function ζ, a ζ-
Stackelberg equilibrium is a policy πLD such that:

πLD = arg max
πLD∈ΠLD

J
πLD.ζ(πLD)
LD

A joint policy (πLD, πFL) is a Stackleberg equilibrium if there exists ζ such
that πLD is a ζ-Stackelberg equilibrium and ζ(πLD) = πFL.

There are also other important solution concepts in literature, such as
Correlated equilibrium, Coarse-correlated equilibrium [Aumann, 1987],
Bayesian equilibrium [Fudenberg and Tirole, 1991]. Since these solution
concepts were not used in this thesis, we do not report their definitions.

4.2 Stochastic Games

In this section, we extend the notion of the Normal-form game and the
Markov Decision Process to Stochastic Games. Stochastic Games (or
Markov Games) [Shapley, 1953, SG] are a generalization of an MDP to
the multi-agent setting and an extension of the Normal-form games to the
scenario where there is more than one state.

Definition 4.2.1 (Stochastic Games). A Stochastic Game (or Markov game)
is a tuple SG = (N,S,A,P ,R, γ, µ,H) specified by:

• N agents,

• A state space S, which may be finite or infinite,

• An action space A = (A1, . . . ,AN), where Ai are the actions of the
i-th agent,

• A transition function P : S × A → ∆(S), where with P(s′|s, a) we
indicate the probability of transitioning to state s′ from state s taking
actions a = (a1, . . . , aN),

• A set of reward functionsR = (R1, . . . ,RN) whereRi : S ×A → R
is the reward function for the agent i,

• A set of discount factors γ = (γ1, . . . , γN), where γi ∈ [0, 1] for all
i ∈ [N ],

42



4.2. Stochastic Games

• An initial state distribution µ ∈ ∆(S) which describes the probability
of starting from any state.

• The horizon H of the problem that can be infinite or a finite integer.

As for MDPs, given a state s under a joint policy π we can define the
expected return starting from s.

Definition 4.2.2 (Value function). Given a state s ∈ S and a joint policy
π = (π1, . . . , πN), we define the value function Vπ,i(s) for the agent i ∈ [N ]
as:

V π
i,h(s) = E

[
H−1∑

h′=h

γh
′
i Ri(sh′ , ah′)|sh = s

]
, (4.1)

where ah = (a1
h, . . . , a

N
h ) and the expectation is taken under ah ∼ π(·|sh)

and sh+1 ∼ P(·|sh, ah).

Then we can define the action-value function as follows.

Definition 4.2.3 (Action-value function). Given a state s ∈ S and a joint
policy π = (π1, . . . , πN), at time h, we define the action-value function
Qh
i,π(s), also called Q-function, for the agent i, as:

Qπ
i,h(s, a) = E

[
H−1∑

h′=h

γh
′Ri(sh′ , ah′)|sh = s, ah = a

]
, (4.2)

where ah = (a1
h, . . . , a

N
h ) and the expectation is taken under ah ∼ π(·|sh)

and sh+1 ∼ P(·|sh, ah).

As we have done for the single-agent RL, we define the expected dis-
counted return for the agent i as:

Jπi = E
s∼µ

[V π
i (s)]. (4.3)

We can easily extend the concepts of Nash Equilibrium and Stackelberg
equilibrium to Stochastic games (see Section 4.1).

A special case of Stochastic games are the Turn-based Stochastic games
[Shapley, 1953, TSG]. The main difference between Stochastic Games and
Turn-based Stochastic games is the interaction between the agents. For
example, in a 2-agent Turn-based Stochastic game, the state space is divided
between the two agents S = S1 ∪ S2, and, at each time step h, the game is
in one state sh and the agent that controls this state chooses an action from
its action space A. We define a Turn-based Stochastic game more formally
as follows.

43



Chapter 4. Multi-agent Reinforcement Learning

Definition 4.2.4 (Turn-based Stochastic games). A Turn-based Stochastic
game is a tuple T SG = (N,S1, . . . ,SN ,A,P ,R, γ, µ,H) specified by:

• N agents,

• A state space S = S1 ∪ · · · ∪ SN , which may be finite or infinite,

• An action space A,

• A transition function P : S × A → ∆(S), where with P(s′|s, a) we
indicate the probability of transitioning to state s′ from state s taking
action a,

• A set of reward functionsR = (R1, . . . ,RN) whereRi : S ×A → R
is the reward function for the agent i,

• A set of discount factors γ = (γ1, . . . , γN), where γi ∈ [0, 1] for all
i ∈ [N ],

• An initial state distribution µ ∈ ∆(S) which describes the probability
of starting from any state.

• The horizon H of the problem that can be infinite or a finite integer.

For Turn-based Stochastic games, we can define an opportune notion of
action-value function derived from the one of the stochastic games. Since
this is an easy modification, we do not report it here.

The reward functions of each agent characterize every game. Different
reward functions generate different game dynamics. We can identify three
main classes of games: cooperative, zero-sum, and general-sum games.

Best response evaluation Given a joint policy π−i of the other agents, the
problem of finding the best response is the same as solving an MDP. In
fact, given the other agent policies, the Stochastic games reduce to a single-
agent Markov Decision Process. In this case, we can use methods such as
Value-iteration or Policy-iteration to solve this task.

4.3 Cooperative stochastic games

Cooperative games are characterized by full cooperation between the agents.
All the agents have the same reward functionR1 = R2 = · · · = RN . This
setting is referred in literature as Multi-agent MDPs [Boutilier, 1996, Lauer
and Riedmiller, 2000] in the AI community, team Markov games [Yoshikawa,
1978, Wang and Sandholm, 2002] in the control/game theory community,

44



4.4. Competitive stochastic games

and exact Potential games from a game theoretic perspectives [González-
Sánchez and Hernández-Lerma, 2013, Lã et al., 2016].

In these games, if we apply the Bellman operator for single-agent RL
over the joint action space, and from its unique solution V ?, we can derive a
Nash equilibrium policy.

Value-based methods In this setting, the action-value functions are identical
between all agents, and for this reason, we could use Q-learning taking the
maximum over the joint action space A. In [Littman, 2001] converge to NE
policy was established to convergence to the Nash equilibrium policy if there
is a unique equilibrium solution, or the agents are coordinated in its selection.
An example in which the agent are coordinated in the equilibrium selection
was proposed in optimal adaptive learning [Wang and Sandholm, 2002],
which is the first cooperative MARL algorithm with provable convergence
to a Nash equilibrium.

Policy gradient methods In the cooperative framework, since each agent op-
timizes the same function, we can apply single-agent RL policy gradient
algorithms.

4.4 Competitive stochastic games

Competitive (zero-sum) games are characterized by the property that for
every state s ∈ S , actions a = (a1, . . . , an) the sum of the agents rewards is
equal to 0, i.e.

∑N
i=1Ri(s, a) = 0. This class of games receives much atten-

tion since it models natural settings such as two agents that compete against
each other [Littman, 1994], and robust learning since the other agent can
be seen as the uncertainty that makes the learning process difficult [Jacob-
son, 1973, Başar and Bernhard, 2008]. However, there is a great difference
between solving a two-agent or multi-agent stochastic game; in fact, also
finding a Nash equilibrium for a three-player zero-sum stochastic game is
demonstrated to be PPAD-complete [Papadimitriou, 1992, Daskalakis et al.,
2009]. For this reason, most algorithms are concentrated on two-player
zero-sum games. In the rest of this section, we focus on the two-player
setting.

In the zero-sum games we have that the expected discounted return of
the first agent is equal to the negated of the expected discounted return of
the second agent, i.e., V π1,π2

1 (s) = −V π1,π2

2 (s) for each s ∈ S. From the
Von Neumann’s minimax theorem [Von Neumann and Morgenstern, 2007]

45



Chapter 4. Multi-agent Reinforcement Learning

Algorithm 7 Minimax-Q

Input: learning rate α, number of rolls out N
Initialize s ∼ µ, Q1 ∈ R, V = 0, π1

for i = 1, 2, . . . , N do
a1 ← π1(·|s)
Take action a1 observe rewardR, next state s′ and opponent action a2

V1(s) = maxπ(s)∈∆(A1) mina′2∈A2

∑
a′1∈A′1 π(a1|s)Q1(s, a′1, a

′
2)

Q1(s, a1, a2)← (1− α)Q1(s, a1, a2) + α(R+ γV (s))
π1(s)← arg maxπ(s)∈∆(A1) mina′2∈A2

∑
a′1∈A1

π(a′1|s)Q1(s, a′1, a
′
2)

s← s′

end for

we define the optimal value function V ? : S → R as, for every s ∈ S:

V ?(s) = max
π1

min
π2

V π1,π2

1 (s) = min
π2

max
π1

V π1,π2

1 (s).

This implies that the minimax solution is also a Nash equilibrium solution.
[Shapley, 1953] shows that V ? is the unique solution of a Bellman equation,
and from that, we can construct a Nash equilibrium joint policy:

(T ?V ?)(s) = max
π1(·|s)

min
π2(·|s)

∑

a1∈A1

∑

a2∈A2

π1(a1|s)π2(a2|s)Q1(s, a1, a2).

To solve the max-min optimization problem we can use a linear program
[Vanderbei et al., 2015]. This Bellman operator is γ-contractive in the
infinite norm and has V ? as unique solution. From this Bellman operator
we can derive, as in MDPs, a Value-iteration algorithm [Littman, 2001],
and policy-iteration algorithms [Hoffman and Karp, 1966, Van Der Wal,
1978, Rao et al., 1973].

Value-based methods In [Littman, 1994] was proposed Minimax-Q, an algo-
rithm based on Q-learning to solve two-player zero-sum stochastic games.
As we said before, the minimax equilibrium is equal to the Nash equilibrium
in this class of games. For this reason, the author simply uses the minimax
operator to take into account the opponent actions:

π1(·|s) = arg max
π(·|s)∈Π1

min
a2∈A2

∑

a1∈A1

π(a1|s)Q(s, a1, a2)

This algorithm is guaranteed to converge in zero-sum stochastic games
to a stationary Nash equilibrium under similar assumption as Q-learning
[Szepesvári and Littman, 1999]. The pseudocode of Minimax-Q is presented

46



4.5. General-sum stochastic games

in 7. Minimax-Q was also extended to function-approximation setting
[Lagoudakis and Parr, 2002]. Other value-based algorithms were proposed
to solve the zero-sum stochastic game setting, based on different principles
such as actor-critic fictitious play [Perolat et al., 2018].

Policy-gradient methods Recently there was a growing interest into continu-
ous games. In this case finding a Nash Equilibrium in a continuous game
reduces to a nonconvex-nonconcave problem [Chasnov et al., 2020a]. In this
setting, it was proved that policy gradient algorithms, such as REINFORCE,
fail to converge to a Nash equilibrium solution, due to the cyclic behavior of
the game dynamics. We provide more information about these algorithms in
Chapter 11.

4.5 General-sum stochastic games

The general-sum setting is notorious by the most challenging one, and the
less understood. In this setting, finding a Nash Equilibrium is PPAD compete
even for a two-player normal-form game [Chen et al., 2009]. Moreover,
it was proved that the value-iteration method fails to find Nash equilibria
and, also, policy-gradient methods avoid a subset of Nash equilibria in
general-sum continuous games [Zinkevich et al., 2006, Kearns et al., 2013].

However, in finite-horizon undiscounted stochastic games we can con-
struct a value-iteration like algorithm that converges to Nash-equilibrium
policies. The algorithm, described in [Kearns et al., 2013], computes for
every timestep h the Q-value functions for each state s, actions a1 ∈ A1,
a2 ∈ A2 and agent i ∈ {1, 2}:

Qπ1,π2

i,h (s, a1, a2) = Ri(s, a1, a2) +
∑

s′∈S

P(s′|s, a1, a2)

∑

a′1∈A1

π1(a′1|s′)
∑

a′2∈A2

π2(a′2|s′)V π1,π2

i,h−1 (s′, a′1, a
′
2).

Then it computes a Nash equilibrium for the state game (Qπ1,π2

1,h (s, ·, ·),
Qπ1,π2

1,h (s, ·, ·)). This algorithm is proved to find a Nash equilibrium solution
policies [Kearns et al., 2013].

Value-based methods Under some strict assumptions some value-based al-
gorithms were proposed for the general-sum setting. The algorithm Nash-
Q [Hu and Wellman, 2003], similar to Minimax-Q, generalized the Q-
learning algorithm to the multi-agent setting. The algorithm at each iteration

47



Chapter 4. Multi-agent Reinforcement Learning

Algorithm 8 Nash-Q

Input: learning rate α, number of rolls out K
Initialize s ∼ µ, Q1, . . . , QN , V1, . . . , Vn, π1, . . . πN
for i = 1, 2, . . . , N do
a1 ← π1(·|s)
Take action ai observe rewards R1, . . . ,Rn, next state s′, other agent actions
a2, . . . , an
for every agent j ∈ [N ] do

Update Qj(s, a1, . . . , an) ← (1 − α)Qj(s, a1, . . . , an) + α(Rj(s, a1, . . . , an) +
γπ1 · · · · · πNVj(s′))

end for
π1(s), . . . , πN (s)← Nash(Q1(s), . . . , QN (s))
s← s′

end for

i for every state s ∈ S evaluates the policies of all the agents computing the
Nash equilibrium for the current stage game:

(π1(·|s), . . . , πN(·|s)) = Nash(Qi,1(s, ·), . . . , Qi,N(s, ·)),

where the function Nash computes the Nash equilibrium of the game. This
algorithm is proved to converge to a Nash equilibrium solution under the
assumption that there exists a unique Nash equilibrium every time it is
necessary to compute the Nash function. Moreover, every agent has to
see the other agents actions and rewards. The pseudocode of Nash-Q is
presented in Algorithm 8.

Recently Perolat et al. have shown that the minimizer of the empirical
Bellman residual is an approximate Nash equilibrium, and the authors use
this finding to construct an algorithm for the general-sum setting [Pérolat
et al., 2017].

Policy-gradient methods Policy-based algorithms were proposed to solve
general-sum games. However the convergence is guaranteed only in spe-
cific classes of games: policy prediction in two-player two-action bimatrix
games [Zhang and Lesser, 2010, Song et al., 2019]; WoLF in two-player
two-action games [Bowling and Veloso, 2002]; AWESOME in repeated
games [Conitzer and Sandholm, 2007]. Recently, many algorithms have
been studied to apply policy gradient methods to general-sum continuous
games. As for zero-sum games, we cannot apply policy-gradient algorithms
from single-agent RL, due to the cyclic dynamics of these games [Chasnov
et al., 2020a]. However, recently many algorithms which take inspiration
from dynamical system theory were proposed [Balduzzi et al., 2018,Letcher

48



4.5. General-sum stochastic games

et al., 2019, Foerster et al., 2018, Fiez et al., 2020a, Mescheder et al., 2017].
The convergence guarantees of these algorithms are not strong as for the
zero-sum and cooperative games, but, in most cases, are limited to a subset
of local Nash equilibrium points. We provide a broader overview of these
methods in Chapter 11.

49





Part II

Inverse Reinforcement Learning
in Multi-Agent Systems

51





The IRL [Ng et al., 2000, Osa et al., 2018] framework aims at recovering
the reward function of an optimal agent. In the classical setting, an expert,
i.e., an agent that has already learned a task, makes available a dataset
of its interactions with the environment. From this, the IRL algorithm
recovers the reward function that the expert is optimizing. When there are
multiple agents in the environment, also the IRL framework changes its
objective. For example, there could be multiple experts who show their
possible different behaviors, leading to an increase in available data, but a
necessity to cluster them by their intentions. Or, an agent can be interested
in learning the adversary reward function, to use it to compute its strategy
or to cooperate; however, it has to discover it without waiting for the other
agent’s convergence to an optimal policy.

In this part, we address the problems associated with IRL in MA envi-
ronments. We start by presenting in Chapter 5 the new chances and issues
that the multi-agent setting creates, and we revise the literature connected
to these problems. Then in Chapter 6, we present the first contribution of
this thesis, introducing a new algorithm for the IRL about Multiple Inten-
tions [Babes et al., 2011] setting. The proposed algorithm [Ramponi et al.,
2020b, Likmeta et al., 2021] aims at clustering a set of experts by their
intentions, recovering them for each cluster. Finally, in Chapter 7 we present
an algorithm to solve the IRL from a learning agent problem [Jacq et al.,
2019]. The proposed algorithm [Ramponi et al., 2020a] infers the reward
function while observing an agent that is actually learning a task.

53





CHAPTER5
Inverse Reinforcement Learning for

multi-agent systems

The IRL framework is widely studied in the standard setting, i.e., when
there is an observer with access to a dataset of expert’s interactions with
the environment. These interactions, encoded by the expert’s policy, are
optimizing an unknown reward function. The IRL goal consists of finding a
reward function that explains the expert’s demonstrations, i.e., that makes the
expert’s policy optimal [Ng et al., 2000]. In the literature [Argall et al., 2009,
Hussein et al., 2017, Osa et al., 2018] there are other methods beyond IRL
to address an imitation learning problem, such as Behavioral Cloning [Bain
and Sammut, 1995], which outputs an imitating policy (e.g., Behavioral
Cloning [Argall et al., 2009]). IRL, however, compared to them, explicitly
provides a succinct representation of the expert’s intention. This produces
two main advantages: first, the reward function offers a generalization of the
expert’s policy to unobserved situations, also permitting to use it in different
environments; second, the recovered reward has an explainability power,
since its description of the expert’s behavior can also help in system design
issues.

However, in real-world situations in which it could be useful to use the

55



Chapter 5. Inverse Reinforcement Learning for multi-agent systems

IRL setting, there could be more than one agent performing a task. The
imitation-learning paradigm is used, for example, in autonomous driving
research, but there is more than one driver on the streets. Moreover, if
we are competing with opponents on some board games, we would like to
know their intentions before they become experts. These novel problems
cannot be solved using the algorithms presented in Chapter 3. Exploiting
the knowledge that we are in a multi-agent environment creates possibilities
and new challenges which we describe below.

Inverse Reinforcement Learning about Multiple Intentions An interesting and
practical opportunity that a natural multi-agent system can provide is the
possibility to observe more than one expert optimizing the same reward
function. For example, we can have access to more driving demonstrations
from different drivers or download data from different social-network users.
The usage of this larger dataset can help batch model-free IRL algorithms,
which leverage only the demonstrations’ information to recover the reward
function. Moreover, we can use this data to cluster different users by their
intentions. For example, in a social network, identifying users’ intents and
using them to cluster the users can provide valuable information for design-
ing effective marketing or advertising strategies. This more general problem
is called Inverse Reinforcement Learning about Multiple Intentions [Babes
et al., 2011, Choi and Kim, 2012, Almingol and Montesano, 2015, MI-IRL].
As said before, in this framework, we aim to identify groups of experts who
share the same goal.

Inverse Reinforcement Learning from a learning agent In a multi-agent scenario,
in most cases, it is not possible to wait for the convergence of the agent’s
learning process . In fact, an agent has to infer the unknown reward functions
that the other agents are learning before actually becoming “experts” to either
cooperate or compete with them. The knowledge of the other agents’ reward
function is necessary for most situations to have a learning algorithm with
good convergence properties or to minimize the regret, as we will show in
Chapters 9 and 12. Moreover, in many situations, we can learn something
useful by observing an agent’s learning process. These observations contain
essential information about the agent’s intentions and can be used to infer its
interests. Imagine a driver learning a new circuit. During its training, we can
observe how it behaves in various situations (even dangerous ones), which is
useful for understanding which states are good and which should be avoided.
Instead, only a small sub-region of the state space could be explored when
observing expert behavior, thus leaving the observer unaware of what to

56



5.1. Preliminaries

do in situations that are unlikely under the expert policy. This framework,
which we called Inverse Reinforcement Learning from a learner (IRLfL),
was recently proposed by Jacq et al. in [Jacq et al., 2019]. This setting
involves two agents: a learner who is currently learning a task (who takes
the place of the expert) and an observer who wants to infer the learner’s
intentions.

Multi-agent Inverse Reinforcement Learning The first challenge that could
come to our mind in a multi-agent setting is the necessity to change the
objective of the IRL problem. In a multi-agent environment, an agent is
optimizing a multi-agent expected reward function, so it could be useful to
change the IRL goal to, for example, finding a set of reward functions that
explain the Nash equilibrium of the system. This problem is defined in the
literature as Multi-agent IRL [Natarajan et al., 2010, Hadfield-Menell et al.,
2016, Lin et al., 2019a], but it is out of the scope of this thesis.

5.1 Preliminaries

In this section we provide the preliminaries necessary for the next chapters.
As commonly done in the IRL literature [Pirotta and Restelli, 2016, Ziebart
et al., 2008, Abbeel and Ng, 2004], we assume that the expert’s reward
function can be represented by a linear combination with unknown weights
ω of q basis functions φ:

Rω(s, a) = ωTφ(s, a), ω ∈ Rq, (5.1)

whereφ : S×A → [−Mr,Mr]
q is a known bounded feature vector function.

We define the feature expectations of a policy πθ as:

ψ(θ) = E
s0∼µ,

ah∼πθ(·|sh),
sh+1∼P (·|sh,ah)

[
+∞∑

h=0

γhφ(sh, ah)

]
. (5.2)

The expected discounted return, under the linear reward model, is defined
as:

J(θ,ω) = E
s0∼µ,

ah∼πθ(·|sh),
sh+1∼P (·|sh,ah)

[
+∞∑

h=0

γhRω(sh, ah)

]
= ωTψ(θ). (5.3)

Then the gradient of expected discounted return [Pirotta and Restelli, 2016]

57



Chapter 5. Inverse Reinforcement Learning for multi-agent systems

is equal to:

∇θJ(θ,ω) = E
s0∼µ,

ah∼πθ(·|sh),
sh+1∼P (·|sh,ah)

[ +∞∑

h=0

γhRω(sh, ah)
h∑

l=0

∇θ log πθ(al|sl)
]

= ∇θψ(θ)ω,

where∇θψ(θ) = (∇θψ1(θ)| . . . |∇θψq(θ)) ∈ Rd×q is the Jacobian matrix
of the feature expectations ψ(θ) w.r.t. the policy parameters θ.

Behavioral cloning step In order to use gradient-based IRL approaches is
necessary the knowledge of the functional form of the expert’s policy, in
order to compute the score ∇θ log πθE(a|s). However, in many cases the
policy is unknown and we have to estimate it by the demonstrations. We
assume that the expert’s policy belongs to a parametric policy space ΠΘ

made up of differentiable policies, so it is possible to recover an approxima-
tion of the expert’s parameters θE through behavioral cloning, exploiting
the trajectories in D. We reduce this problem to a maximum-likelihood
estimation, solving the following optimization problem:

max
θ∈Θ

1

n

n∑

l=1

H−1∑

h=0

log πθ(al,h|sl,h). (5.4)

From this, we obtain an estimate θ̂E of θE . It is known that the maxi-
mum likelihood estimation is consistent under mild regularity conditions on
the policy space ΠΘ and assuming the identifiability property [Casella and
Berger, 2002]. Some finite-sample guarantees on the concentration of the dis-
tance ‖θ̂E − θE‖p were also derived under stronger assumptions [Spokoiny
et al., 2012].

Reward features In this thesis, we consider linear reward features that are
built by practitioners. However, in recent years, there is a growing interest
in learning the representation in an autonomous way. For example, [Munk
et al., 2016, Ota et al., 2020, Rajeswaran et al., 2017, Zhang et al., 2018]
authors learn state representation to improve Deep RL performance. In
order to integrate these new techniques with the algorithms presented in
the next chapters, a possible solution could be to learn the representation
of the reward features that reduces the loss function of the IRL algorithm.
However, this method does not guarantee that the recovered reward function
is better (in performance) than others. Achieving a smarter solution to unify
the two methods requires more in-depth analysis.

58



5.2. Related work

5.2 Related work

In this section, we present the related work for the two settings mentioned
before: IRL about Multiple Intentions and IRLfL. We describe in details
the algorithms most related to ours, which are used as baselines for our
approaches.

5.2.1 Inverse Reinforcement Learning about Multiple Intentions

The Inverse Reinforcement Learning about Multiple Intentions problem was
proposed by [Babes et al., 2011]. The authors solved it via an Expectation-
Maximization (EM) approach considering a Boltzmann policy for the expert.
The algorithm requires that the number of clusters is known. To relax this
assumption, [Choi and Kim, 2012] employed a Bayesian non-parametric
approach. These algorithms work only for finite MDPs. Instead, some
recent works addressed the MI-IRLproblem in continuous state-action spaces
[Almingol and Montesano, 2015, Rajasekaran et al., 2017]. In [Tateo et al.,
2017] the authors presented a model-free method for solving a single IRL
problem given a set of trajectories generated by different experts’ policies.
In this section, we explain more in detail the Maximum Likelihood IRL for
Multiple Intentions algorithm [Babes et al., 2011], since it was used as a
baseline for our experiments.

Maximum Likelihood IRL for Multiple Intentions

The authors assume there existK intentions, each one represented by reward
weights ωi, with i ∈ [K]. The observer receives a dataset of N > K
trajectories D = {τ1, . . . , τn}, and its goal is to recover the K intentions
from D. The Expectation-Maximization Maximum Likelihood IRL (EM-
MLIRL) algorithm adopts EM to compute a maximum likelihood model
in the face of missing data, which are, in this case, the clusters’ labels.
The algorithm is model-based, i.e., it needs to have access to the transition
model to compute the reward parameters. The expectation step calculates
the probability that a trajectory is generated by an expert who is optimizing
the i-th intention with i ∈ [K]. Then, in the maximization step, for every
intention i ∈ [K], the MLIRL algorithm (see Chapter 3) is used to recover
the i-th intention, weighting each trajectory with the probabilities computed
in the expectation step. The process is repeated until convergence.

59



Chapter 5. Inverse Reinforcement Learning for multi-agent systems

5.2.2 Inverse Reinforcement Learning from a Learner

The problem of estimating the reward function of an agent who is learning
is relatively new. This setting was proposed by Jacq et al. [Jacq et al., 2019]
and, to the best of our knowledge, it is studied only in that work.

In another line of work, sub-optimal demonstrations are used in preference-
based IRL [Christiano et al., 2017, Ibarz et al., 2018] and in ranking-based
IRL [Brown et al., 2019, Castro et al., 2019]. Some of these works require
the algorithm to ask a human to compare the possible agent’s trajectories to
learn the underlying reward function of the task. Instead, in [Balakrishna
et al., 2020] an Imitation Learning setting was proposed where the observer
tries to imitate the behavior of a supervisor who demonstrates a convergent
sequence of policies.

Other works related to the IRLfL setting are the ones on theory of
minds [Rabinowitz et al., 2018, Shum et al., 2019]. In these papers, the
authors propose algorithms that use meta-learning to build a system that
learns how to model other agents. It is not required that agents are ex-
perts, but they must be stationary. This assumption cannot be satisfied in
the IRLfL setting since the observed agent changes its policy during the
learning process.

Learning from a Learner

In [Jacq et al., 2019] the authors proposed a method based on entropy-
regularized reinforcement learning, in which they assumed that the learner
is performing soft policy improvements. The authors start by considering
that every policy update generates a strict policy improvement, where the
policy update π2 from π1 is performed by:

∀s ∈ S π2(·|s) = arg max
π′(·|s)∈Π

E
a∼π′(·|s)

[
Qπ1

(s, a)
]
.

Since these policies can be only deterministic they proposed to solve this
issue by placing the algorithm in an entropy-regularized framework. The
entropy-regularized framework permits to construct the greedily-improving
policies as:

π2(a|s) ∝ exp (Qπ1(s, a)) .

Such greedy improvements, called soft policy improvements (SPIs) are
used in well-known algorithms such as Soft-Actor-Critic [Haarnoja et al.,
2018]. The objective of the algorithm is now to extract the reward function
that explains all the observed SPIs. Previously to do that, the LfL algo-

60



5.2. Related work

rithm recovers the policies by behavioral cloning on the dataset of observed
trajectories.

Ranking-based Inverse Reinforcement Learning

The Trajectory-ranked Reward EXploration (T-REX) [Brown et al., 2019]
algorithm uses ranked trajectories to learn a reward function from sub-
optimal demonstrations. The algorithm, given the ranked trajectories, infers
the reward using a neural network which optimizes:

P(J(ω)(τi) < J(ω)(τj)) ∼
exp

(∑
s∈τj rω(s)

)

exp
(∑

s∈τi rω(s)
)

+ exp
(∑

s∈τj rω(s)
)

if i < j, where J(ω)(τi) is the return of the trajectory τi with the reward rω.
In order to augment the dataset size the authors train the network on partial
couples of trajectories.

61





CHAPTER6
Inverse Reinforcement Learning about

Multiple Intentions

As we explained in the previous chapter, the problem of MI-IRL [Babes
et al., 2011] involves an observer who has access to the demonstrations
performed by multiple experts. The observer has to recover the reward
functions and use them to cluster the observed agents. Solving this problem
is helpful for an explainability reason since it could be used to understand the
similarity between apparently different agents. Moreover, as an immediate
benefit, grouping experts who show other behaviors but share the same
intent allows enlarging the set of demonstrations available for the reward
recovery process. This has a significant impact on several realistic scenarios,
where the only information available is the demonstration dataset, and no
further interactions with the environment are allowed, such as in batch
model-free IRL (see Chapter 3). This setting is particularly challenging
but quite common. Consider, for instance, the problem of inferring the
intentions of a group of car drivers, given a set of demonstrations. We
cannot perform forward learning (at least in a non-simulated environment)
for safety reasons, and, typically, the amount of data available is not enough
to perform off-line learning. However, in the literature, there are not many

63



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

approaches to solve the batch model-free IRL problem.
In this chapter, we propose a novel batch model-free IRL algorithm,

named Σ-Gradient Inverse Reinforcement Learning (Σ-GIRL), and then
we extend it to the multiple-intention setting. Σ-GIRL is derived from
Gradient Inverse Reinforcement Learning [Pirotta and Restelli, 2016, GIRL].
GIRL, as explained in Chapter 5, is an IRL algorithm that searches for a
reward function that makes the estimated policy gradient [Deisenroth et al.,
2013] vanish. Such reward function is a stationary point of the expected
return and, under suitable conditions, it makes the policy demonstrated by
the expert an optimal policy. The algorithm we present, instead, explicitly
considers the uncertainty in the gradient estimation process. In particular,
we cast the IRL problem as a constrained maximum likelihood problem,
in which we look for the reward function that maximizes the likelihood of
the estimated policy gradients, under the constraint that such reward is a
stationary point of the expected return. The resulting objective function
accounts for the variance of the gradient and reduces to the GIRL case for a
specific choice of the covariance model. Then, we embed Σ-GIRL into the
multiple-intention framework by proposing a clustering algorithm that, by
exploiting the likelihood model of Σ-GIRL, groups the experts according
to their intentions. The optimization of the multiple-intention objective is
performed in an expectation-maximization (EM) fashion, in which the (soft)
agent-cluster assignments and the reward functions are obtained through an
alternating optimization process (Section 6.4). Finally, in Section 6.6 we
present an experimental evaluation aimed at highlighting the performance
of Σ-GIRL, compared with state-of-the-art methods on simulated domains
and on a real-world experiment in which we recover and cluster the intents
of a group of Twitter users (Section 6.6).

6.1 Problem statement

In Inverse Reinforcement Learning about Multiple Intentions [Babes et al.,
2011] there are a set of experts E = (E1, . . . , Em) and a set of (unknown)
reward functions R = (Rω1 , . . . ,Rωk), with k ≤ m. Each expert Ei ∈ E
demonstrates a policy πEi ∈ ΠΘ (i.e., there exists θEi ∈ Θ such that
πEi = πθEi ). The policy πEi optimizes a reward Rωi , with i ∈ {1, . . . , k}.

The observer receives a set of datasets D = (D1, . . . , Dm), where each
Di = {τ1, . . . , τni} is the set of ni trajectories demonstrated by Ei. The
observer’s goal is to recover the reward functions optimized by each of the
m experts. An illustration of the model is given in Figure 6.1.

64



6.2. Σ-Gradient Inverse Reinforcement Learning 0

D1 D2 Dm
...

E1 E2 Em
...

Rω1
Rωk

...

Figure 6.1: Graphical model of the MI-IRL problem: fromR1, . . . ,Rk, m different expert
policies are generated, which in turn generate m demonstrations’ datasets.

A naïve approach to this problem would be to solve m independent
IRL problems. However, since, in practice, we typically have k � m,
this solution would be highly sub-optimal since it would produce an exces-
sively large number of distinct reward functions. Moreover, if we have few
demonstrations per-agent, then the reward recovered with this solution can
be highly suboptimal. A more interesting and efficient solution will be to
cluster the experts’ dataset to recover k reward functions that explain the
experts’ behaviors.

We assume to know the identity of the expert generating each trajectory
and the number of reward functions k, but not the policy parameters θEi .

6.2 Σ-Gradient Inverse Reinforcement Learning

We start by introducing a new batch model-free IRL algorithm, named
Σ-Gradient Inverse Reinforcement Learning (Σ-GIRL). Σ-GIRL extends
GIRL [Pirotta and Restelli, 2016] (see Chapter 3) to account for the uncer-
tainties injected by the Jacobian estimation process.

The GIRL algorithm finds the reward function that minimizes the gradient
of the expected discounted return i.e., it seeks weights ω that belong to the
null-space of the Jacobian∇θψ(θ). However, in most cases, we do not have
access to the true Jacobian, but we have to estimate it by samples. For this
reason, it could be possible that the null-space of the estimated Jacobian is
empty. GIRL, also in this situation, treats every estimated component in
the same way without using the information about the uncertainty due to
the Jacobian estimation. We take a different perspective employing directly
the knowledge of the variance estimates: we allow the components of the

65



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

estimated Jacobian ∇̂θψ(θ) to move in order to generate a new Jacobian
M ∈ Rd×q that has a non-empty null space. The idea of our algorithm is
that the more a component ∇̂θψij(θ) is uncertain, the more we are allowed
to change it since it is more plausible that we have made some errors in its
estimation. To formalize this intuition, we reformulate the minimization
problem of GIRL into a constrained maximum-likelihood problem. Since
the Jacobian is a mean of n samples, by the Central Limit Theorem, its
distribution approaches a normal as n grows to infinity [Casella and Berger,
2002]. So, the idea is to model the Jacobian estimation as a (matrix) Gaussian
distribution [Gupta and Nagar, 2018]: ∇̂θψ(θ) ∼ N

(
M, 1

n
Σ
)
, where M

is the mean of the Jacobian estimation and Σ ∈ Rdq×dq is the covariance
matrix.The corresponding likelihood function, given the trajectory dataset
D = {τ1, . . . τn} is:

LΣ(M|D) =

√
n√

(2π)dq|Σ|
e−

n
2‖vec(∇̂θψ(θ)−M)‖2

Σ−1 , (6.1)

where, for a matrix A, vec(A) denotes the vectorization of A, i.e. the vector
obtained by stacking the columns of A. We now formulate the IRL problem
as the problem of finding the weight vector ω and the new Jacobian M that,
jointly, maximize the likelihood, while ω belongs to the null space of M:

min
ω∈Rq+
‖ω‖1=1

min
M∈Rd×q
Mω=0

∥∥∥vec
(
∇̂θψ(θ)−M

)∥∥∥
2

Σ−1
. (6.2)

The inner minimization of this optimization problem can be solved in
closed form, leveraging on a weighted low-rank approximation of the matrix
∇̂θψ(θ) [Manton et al., 2003].

Theorem 6.2.1. If Σ is positive definite, the optimization problem (6.2) can
be restated as:

min
ω∈Rq+
‖ω‖1=1

∥∥∥∇̂θψ(θ)ω
∥∥∥

2

[(ω⊗Id)TΣ(ω⊗Id)]
−1 , (6.3)

where⊗ denotes the Kronecker product and Id is the identity matrix of order
d. Furthermore, the approximating Jacobian M(ω) is given by:

vec (M(ω)) =
{

Idq −Σ(ω ⊗ Id)
[
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1

× (ω ⊗ Id)
T
}

vec
(
∇̂θψ(θ)

)
.

66



6.2. Σ-Gradient Inverse Reinforcement Learning

Proof. The proof is analogous to that of Theorem 1 of [Manton et al., 2003]. Let ω ∈ Rq be a
fixed vector, we solve the following optimization problem:

min
M∈Rd×q
Mω=0

∥∥∥vec
(
∇̂θψ(θ)−M

)∥∥∥2

Σ−1
.

Now we employ Lagrange multipliers, leading to the Lagrangian function:

L(M,λ) =
∥∥∥vec

(
∇̂θψ(θ)−M

)∥∥∥2

Σ−1
+λTMω

=
∥∥∥vec

(
∇̂θψ(θ)

)
− vec (M)

∥∥∥2

Σ−1
+λT (ω ⊗ Id)

T vec (M) ,

whereλ ∈ Rd is the Lagrange multiplier and we exploited the properties of the vectorization operator
and the Kronecker product to derive the second equation.

Since the Lagrangian function L is convex with respect to vec (M), to solve the optimization
problem is sufficient to make the gradient vanish:

∂L
∂vec (M)

= 2Σ−1
(

vec
(
∇̂θψ(θ)

)
− vec (M)

)
+ (ω ⊗ Id)λ = 0 (6.2.1.1)

∂L
∂λ

= (ω ⊗ Id)
T vec (M) = 0. (6.2.1.2)

From Equation (6.2.1.1), we obtain an expression for vec (M) as a function of λ:

vec (M) = vec
(
∇̂θψ(θ)

)
+

1

2
Σ(ω ⊗ Id)λ.

By substituting into Equation (6.2.1.2), we get the value of λ:

(ω ⊗ Id)
T vec

(
∇̂θψ(θ)

)
+

1

2
(ω ⊗ Id)

TΣ(ω ⊗ Id)λ = 0

=⇒ λ = −2
[
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1

(ω ⊗ Id)
T vec

(
∇̂θψ(θ)

)
.

Finally, we get the expression for vec (M):

vec (M) = vec
(
∇̂θψ(θ)

)
−Σ(ω ⊗ Id)

[
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1

(ω ⊗ Id)
T vec

(
∇̂θψ(θ)

)
=

{
Idq −Σ(ω ⊗ Id)

[
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1

(ω ⊗ Id)
T

}
vec
(
∇̂θψ(θ)

)
.

We can now substitute the value of vec (M) into the loss function:

∥∥∥vec
(
∇̂θψ(θ)−M

)∥∥∥2

Σ−1
=

∥∥∥∥Σ(ω ⊗ Id)
[
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1

(ω ⊗ Id)
T vec

(
∇̂θψ(θ)

)∥∥∥∥2

Σ−1

= vec
(
∇̂θψ(θ)

)T
(ω ⊗ Id)

[
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1

(ω ⊗ Id)
TΣΣ−1

×Σ(ω ⊗ Id)
[
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1

(ω ⊗ Id)
T vec

(
∇̂θψ(θ)

)
= vec

(
∇̂θψ(θ)

)T
(ω ⊗ Id)

[
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1

× (ω ⊗ Id)
T vec

(
∇̂θψ(θ)

)
=
(
∇̂θψ(θ)ω

)T [
(ω ⊗ Id)

TΣ(ω ⊗ Id)
]−1 (

∇̂θψ(θ)ω
)

=
∥∥∥∇̂θψ(θ)ω

∥∥∥2

[(ω⊗Id)TΣ(ω⊗Id)]−1
,

67



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

where we employed the properties of the vectorization operator and the Kronecker product in the

last but one line and the definition of norm in the last line.

Unfortunately, the objective function (6.2) is non-convex for a generic
choice of Σ. However, for specific choices of Σ we are able to prove the
convexity and recover the objective function optimized by GIRL.

Corollary 6.2.1. Let Q ∈ Rd×d be a positive definite matrix and let 1q
denote the q-dimensional vector of all ones. If Σ = 1q1

T
q ⊗ Q, then

objective function (6.3) is convex. Furthermore, if Q = Id, then the objective
function (6.3) is equivalent to (3.2) with p = 2.

Proof. When Σ = 1q1
T
q ⊗Q, we can provide the following derivation exploiting the properties

of the Kronecker product and recalling that ωT1q = 1 because of the enforced constraints:

(ω ⊗ Id)
TΣ(ω ⊗ Id) = (ω ⊗ Id)

T
(
1q1

T
q ⊗Q

)
(ω ⊗ Id)

= (ωT1q1
T
q ⊗ IdQ)(ω ⊗ Id)

= (1Tq ⊗Q)(ω ⊗ Id)

= 1
T
q ω ⊗QId

= Q.

Therefore, the objective function becomes
∥∥∥∇̂θψ(θ)ω

∥∥∥2

Q−1
which is clearly convex in ω, as Q is

positive definite. Moreover, if we take Q = Id, then we have
∥∥∥∇̂θψ(θ)ω

∥∥∥2

Id

=
∥∥∥∇̂θψ(θ)ω

∥∥∥2

2
,

that is the objective function (3.2) optimized by GIRL when p = 2.

Since in real situations we do not have access to the true covariance
matrix Σ, we can approximate it with the empirical covariance Σ̂.1

In the following, we are going to denote with p(D|ω) = LΣ(M(ω)|D)
the value of the objective as a function of the weight vector attained by the
optimal mean matrix M(ω). As intuition suggests, this quantity can be
interpreted as the likelihood of the dataset D, given a weight vector ω. We
will employ it in the clustering procedure (Section 6.4).

6.3 Theoretical analysis of Σ-GIRL

In this section, we provide two theoretical analyses of the proposed method
Σ-GIRL. We start by analyzing how to approximate the covariance matrix
Σ in order to make the minimization problem (6.3) convex, as we defined
in Corollary 6.2.1. Then, we analyze what is the “error" that we introduced
with this approximation. As the second analysis, we provide a finite-sample

1The empirical covariance matrix Σ̂ might be singular when dq � n. In such cases, we resort to standard
corrections to enforce well-conditioning [Ledoit and Wolf, 2004].

68



6.3. Theoretical analysis of Σ-GIRL

analysis on the correctness of the recovered weights, assuming that Σ is
the true covariance matrix of the distribution that generated the estimated
Jacobian ∇̂θψ(θ).

6.3.1 Approximation of Σ as in Corollary 6.2.1

We can approximate a generic matrix Σ as a matrix of the form 1q1
T
q ⊗Q, as

in Corollary 6.2.1, getting a closed form for Q. To do this approximation, we
want to minimize the Frobenius-norm distance between Σ and 1q1Tq ⊗Q:

min
Q∈Rd×d
Q�0d

1

2

∥∥Σ− 1q1
T
q ⊗Q

∥∥2

F
, (6.4)

where we required that Q � 0d, i.e. that Q is positive definite whenever Σ
is.

We solve the problem ignoring the constraint and then we prove that the
resulting matrix is indeed positive definite whenever Σ is.

Lemma 6.3.1. Let Σ = nCov[vec(∇̂θψ(θ))], the problem (6.4) admits a
unique solution that is:

Q = nCov [∇θψ(θ)1q]

=
1

q2

q∑

i=1

q∑

j=1

Σiq:(i+1)q,jq:(j+1)q (6.5)

=
1

q2
(1q ⊗ Id)

T Σ (1q ⊗ Id) , (6.6)

where we denoted with Σi:i′,j:j′ the submatrix obtained by taking the rows
between i and i′ and the columns between j and j′. Furthermore, Q is
positive definite whenever Σ is.

Proof. Recall that the Kroneker product 1q1Tq ⊗Q constructs a matrix in which Q is repeated
q × q times, arranged in a square matrix. Thus, it follows that we can rewrite the norm as:

1

2

∥∥∥Σ− 1q1Tq ⊗Q
∥∥∥2

F
=

1

2

q∑
i=1

q∑
j=1

∥∥Q−Σiq:(i+1)q,jq:(j+1)q

∥∥2

F
.

This is a least-squares problem, that can be solved in closed form, yielding to a matrix Q which is the
mean of the blocks Σiq:(i+1)q,jq:(j+1)q .

To get the expression (6.5) we observe that each block can be rewritten as:

Σiq:(i+1)q,jq:(j+1)q = Cov [∇θψi(θ),∇θψj(θ)] .

69



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

Given the linearity of the covariance we have:

1

q2

q∑
i=1

q∑
j=1

Σiq:(i+1)q,jq:(j+1)q =
1

q2

q∑
i=1

q∑
j=1

Cov [∇θψi(θ),∇θψj(θ)]

=
1

q2
Cov

[
q∑
i=1

∇θψi(θ),

q∑
j=1

∇θψj(θ)

]

=
1

q2
Cov [∇θψi(θ)1q,∇θψj(θ)1q] .

Then the equality 6.6 follows from the properties of the Kroneker product.
We need now to prove that matrix Q is positive definite whenever Σ is. Q is positive definite if

and only if:
inf

x∈Rd:x 6=0
xTQx > 0.

Let us now consider the following derivation:

inf
x∈Rd:x6=0

xTQx =
1

q2
inf

x∈Rd:x 6=0
xT (1q ⊗ Id)

T Σ (1q ⊗ Id) x

≥ 1

q2
inf

x∈Rdq :x 6=0
xTΣx > 0.

having observed that (1q ⊗ Id) x is never null unless x is null.

We can notice that this approximation is equivalent to take a specific
choice for the weights ω = 1

q
1q.

We now upper bound the gap between the objective function value at-
tained by the optimum when we consider either matrix Σ or its approxima-
tion of the form 1q1

T
q ⊗Q. We call this value gap.

First of all, let us denote with lA(ω) the objective function in prob-
lem (6.3), when using A as covariance model. Let A and B be two co-
variance matrices and let ωA and ωB be any of the optimal weight for the
corresponding covariances. Supposing that A is the true covariance, we
want to bound 0 ≤ lA(ωA) − lA(ωB). Using a standard argument from
empirical risk minimization:

lA(ωA)− lA(ωB) = lA(ωA)− lA(ωB)± lB(ωB)

≥ lA(ωA)− lB(ωA) + lB(ωB)− lA(ωB)

≥ −2 sup
ω
|lA(ω)− lB(ω)| ,

where we exploited the fact that lB(ωB) ≤ lB(ωA). Thus, it sufficies to
prove an upper bound on |lA(ω)− lB(ω)| that is uniform over ω.

Theorem 6.3.1. Let Σ be the true covariance matrix and 1q1Tq ⊗Q be its
approximation. Then, it holds that:

gap ≤ 2dq

smin(Σ)2

∥∥∥∇̂θψ(θ)
∥∥∥

2

F

∥∥Σ− 1q1
T
q ⊗Q

∥∥
F
, (6.7)

70



6.3. Theoretical analysis of Σ-GIRL

where σmin is the minimum singular values of true covariance matrix Σ.

Proof. We use Lemma B.0.2 with A = Σ and B = 1q1
T
q ⊗Q:∣∣∣lΣ(ω)− l1q1Tq ⊗Q(ω)

∣∣∣ ≤ ∥∥∥∥(ω ⊗ Id)
[
(ω ⊗ Id)

T
1q1

T
q ⊗Q (ω ⊗ Id)

]−1

(ω ⊗ Id)
T

∥∥∥∥
F

×
∥∥∥∥(ω ⊗ Id)

[
(ω ⊗ Id)

T Σ (ω ⊗ Id)
]−1

(ω ⊗ Id)
T

∥∥∥∥
F

×
∥∥∥∇̂θψ(θ)

∥∥∥2

F

∥∥∥(1q1Tq ⊗Q
)
− Σ

∥∥∥
F
.

Let us now consider the following identity:

Id =
1

q
(1q ⊗ Id)

T (1q ⊗ Id) . (6.8)

For the norm involving B we employ Lemma B.0.1 and for the other we directly derive:∥∥∥∥ (ω ⊗ Id)
[
(ω ⊗ Id)

T
(
1q1

T
q ⊗Q

)
(ω ⊗ Id)

]−1

(ω ⊗ Id)
T

∥∥∥∥
F

=
∥∥∥(ω ⊗ Id) Q−1 (ω ⊗ Id)

T
∥∥∥
F

=
∥∥∥(ω ⊗ Id) IdQ

−1Id (ω ⊗ Id)
T
∥∥∥
F

=
1

q2

∥∥∥(ω ⊗ Id) (1q ⊗ Id)
T (1q ⊗ Id) Q−1 (1q ⊗ Id)

T (1q ⊗ Id) (ω ⊗ Id)
T
∥∥∥
F

=

∥∥∥∥(ω ⊗ Id) (1q ⊗ Id)
T (1q ⊗ Id)

[
(1q ⊗ Id)

T Σ (1q ⊗ Id)
]−1

(1q ⊗ Id)
T (1q ⊗ Id) (ω ⊗ Id)

T

∥∥∥∥
F

≤
∥∥∥(ω ⊗ Id) (1q ⊗ Id)

T
∥∥∥2

2

∥∥∥∥(1q ⊗ Id)
[
(1q ⊗ Id)

T Σ (1q ⊗ Id)
]−1

(1q ⊗ Id)
T

∥∥∥∥
F

≤
∥∥∥(ω ⊗ Id) (1q ⊗ Id)

T
∥∥∥2

2

√
d

σmin(Σ)
,

where we exploited Lemma B.0.2. To bound the remaining term we have:∥∥∥(ω ⊗ Id) (1q ⊗ Id)
T
∥∥∥

2
≤ ‖ω ⊗ Id‖2 ‖1q ⊗ Id‖2
≤ ‖ω‖2 ‖Id‖2 ‖1q‖2 ‖Id‖2
≤ ‖ω‖1

√
q ≤ √q.

6.3.2 Correctness of the recovered weights

In this section, we provide a finite-sample analysis of Σ-GIRL, under the
assumption that Σ is the true covariance matrix of the distribution having
generated the estimated Jacobian ∇̂θψ(θ). We consider the case in which
the weight vectorωE is unique under the simplex constraint (Equation (5.1)),
to avoid multiple solutions. Similar to what was done in [Pirotta and Restelli,
2016], we can evaluate the norm of the difference between the expert’s

71



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

weights ωE and the recovered ones ω̂. The following result provides a
finite-sample bound for this quantity.

Theorem 6.3.2. Let ∇̂θψ(θ) be an unbiased estimate of the Jacobian
∇θψ(θ) obtained with the trajectories D = {τ1, . . . , τn}. Let 1

n
Σ =

Cov[vec(∇̂θψ(θ))] be the true covariance matrix of the estimated Jaco-
bian. Let ω̂ be the weight vector recovered by Σ-GIRL run with covariance
matrix Σ and ωE be the expert’s weight vector. If∇θψ(θ) and M(ω̂) have
rank q−1 and sq−1(∇θψ(θ)) = s > 0, where sq−1(·) denotes the (q−1)-th
singular value, then it holds that:

E
[∥∥ω̂ − ωE

∥∥
2

]
≤
√

16dq ‖Σ‖2

s2n
,

where the expectation is taken w.r.t. the randomness of the trajectories in D
used to compute ∇̂θψ(θ).

Proof. From the proof of Theorem 13.2 of [Pirotta, 2016], we know that:∥∥∥ω̂ −ωE∥∥∥
2
≤
√

2(1− cosα), (6.9)

where α is the angle between the two vectors ω̂ and ωE . We now provide a bound for cosα. Since
ω̂ and ωE belong to the orthogonal complements of the column spaces generated by M(ω̂) and
∇θψ(θ) respectively. From Lemma B.0.4, we have that:

cosα ≥ 1− 2

sq−1(∇θψ(θ))2
min

Π∈Permq
‖∇θψ(θ)−M(ω̂)Π‖2F .

We now consider the following sequence of derivations:

min
Π∈Permq

‖∇θψ(θ)−M(ω̂)Π‖2F ≤ ‖M(ω̂)−∇θψ(θ)‖2F (6.10)

≤ ‖vec (M(ω)−∇θψ(θ))‖22 (6.11)

≤ 4 ‖Σ‖2
∥∥∥vec

(
∇̂θψ(θ)−∇θψ(θ)

)∥∥∥2

Σ−1
, (6.12)

where line (6.10) is obtained from selecting Π = Iq . Line (6.11) derives from observing that the
Frobenius norm of a matrix equals theL2-norm of the corresponding vectorization. Finally, line (6.12)
follows from Lemma B.0.5. Putting this latter result into Equation (6.9), we have:

∥∥∥ω̂ −ωE∥∥∥
2
≤
√

16 ‖Σ‖2
sq−1(∇θψ(θ))2

∥∥∥vec
(
∇̂θψ(θ)−∇θψ(θ)

)∥∥∥2

Σ−1
.

Now we compute the expectation of the norm of the difference:

E
[∥∥∥ω̂ −ωE∥∥∥

2

]
≤ E

[√
16 ‖Σ‖2

sq−1(∇θψ(θ))2

∥∥∥vec
(
∇̂θψ(θ)−∇θψ(θ)

)∥∥∥2

Σ−1

]

≤
√

16 ‖Σ‖2
sq−1(∇θψ(θ))2

E
[∥∥∥vec

(
∇̂θψ(θ)−∇θψ(θ)

)∥∥∥2

Σ−1

]
,

72



6.4. Multiple-Intention Σ-GIRL

where the last passage follows from Jensen’s inequality. To conclude, we compute the expectation
inside the square root by observing that it is the expectation of a zero-mean random vector under the
norm induced by its true covariance matrix. Thus, by renaming x = vec

(
∇̂θψ(θ)−∇θψ(θ)

)
∈

Rdq and recalling that E[xxT ] = Cov[∇̂θψ(θ)] = Σ
n

we have:

E
[
‖x‖2Σ−1

]
= E

[
xTΣ−1x

]
= E

[
tr(xTΣ−1x)

]
= E

[
tr(Σ−1xxT )

]
= tr

(
Σ−1E

[
xxT

])
= tr

(
Σ−1 Σ

n

)
=
dq

n
.

Our result extends Theorem 13.2 of [Pirotta, 2016] in a few aspects. The
result of [Pirotta, 2016] is clearly applicable to Σ-GIRL, since it assumes
that the estimated Jacobian ∇̂θψ(θ) has already rank q − 1. In such case,
GIRL and Σ-GIRL behave in the same way as M(ω̂) = ∇̂θψ(θ). However,
Theorem 6.3.2 is more general and applies for Σ-GIRL even for a full-rank
estimated Jacobian ∇̂θψ(θ). Furthermore, although Σ-GIRL is presented
considering a Gaussian likelihood model, Theorem 6.3.2 makes no assump-
tion on the distribution of the Jacobian, but just requires that Σ is the true
covariance matrix.

6.4 Multiple-Intention Σ-GIRL

In this section, we consider the problem of IRL about Multiple Intention (MI-
IRL), using Σ-GIRL as a building block for solving the single-intention IRL
problem. As said before, a naïve solution would be to solve m independent
IRL problems, one for each expert agent Ei. However, since we typically
have k � m (i.e. fewer intentions than experts), this solution would be
highly sub-optimal, especially in situations where few demonstrations are
available per agent. In such cases, it is much wiser to cluster the trajectories
during the IRL step, also from a practical point of view. To this end, we
adopt an expectation-maximization (EM) approach [Dempster et al., 1977]
to find the parameters ωj , together with the agent-cluster assignments that
maximize the overall likelihood. We introduce the hidden random variable
Yi ∈ {1, . . . , k} that, for each expert Ei with i ∈ {1, . . . ,m}, indicates to
which cluster Ei is assigned. In other words, Yi = j means that agent Ei
is optimizing the reward Rωj . For these random variables, we assume a
prior distribution αj = p(Yi = j), independent of i, where αj ≥ 0 and∑k

j=1 αj = 1. We will denote with Y = (Y1, . . . Ym) the concatenation of
all the Yis. The collection of parameters we are going to optimize on is given
by the concatenation of the weight vectors ωj and the prior probabilities αj ,
i.e. Ω = (ω1, . . . ,ωk, α1, . . . , αk).

73



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

The crucial observation, for applying EM, is that we can compute the
likelihood of a dataset Di, once we know the cluster assignment of agent Ei,
i.e. Yi:

p(Di|Yi = j; Ω) = p(Di|ωj), (6.13)

where the latter is defined in Section 6.2 (Equation (6.1)). Exploiting
the independence of the datasets D = (D1, . . . , Dm) and recalling that
p(Di, Yi|Ω) = p(Di|Yi; Ω)p(Yi|Ω), we can define the likelihoodL(Ω|D,Y) =
p(D,Y|Ω) of all the data as:

L(Ω|D,Y) =
m∏

i=1

p(Di, Yi|Ω) =
m∏

i=1

αYip(Di|ωYi).

According to [Bilmes et al., 1998], in the expectation step (E-step), we
compute the probability of the assignment Yi, conditioned by the data Di, in
terms of the old parameters Ωold, i.e. zij = p(Yi = j|Di; Ωold). We derive
zij using Bayes theorem:

zij =
p(Di|Yi = j; Ωold)p(Yi = j|Ωold)

p(Di|Ωold)

=
αold
j p(Di|ωold

j )
∑k

h=1 α
old
h p(Di|ωold

h )
.

In the maximization step (M-step), instead, we look for the new parameters
Ω that maximize the expectation of the log-likelihood logL(Ω|D,Y) under
the previously found distribution over the assignments Yi:

Q(Ω,Ωold) = E
Y∼p(·|X;Ωold)

[logL(Ω|D,Y)]

=
∑

y

log(L(Ω|D,y))p(y|D,Ωold)

=
∑

y

m∑

i=1

log(αyipyi(Di|ωyi))
m∏

i′=1

p(yi′|Di′ ,Ω
old)

=
k∑

y1=1

· · ·
k∑

ym=1

m∑

i=1

log(αyipyi(Di|ωyi))
m∏

i′=1

p(yi′ |Di′ ,Ω
old) =

74



6.4. Multiple-Intention Σ-GIRL

Algorithm 9 Multiple-Intention Σ-GIRL
input: datasets D = (D1, . . . , Dm), number of clusters k, number of iterations Nite
output: optimal parameters Ω = (ω1, . . . ,ωk, α1, . . . , αk)

Initialize Ω0 randomly
for t = 1, . . . , Nite do

E-step: Compute zij =
αt−1
j p(Di|ωt−1

j )∑k
h=1 α

t−1
h p(Di|ωt−1

h )

M-step: Optimize Ωt ∈ arg maxωj ,αj Q(Ω,Ωt−1)

=
∑k
j=1

∑m
i=1 zij (logαj + log p(Di|ωj))

end for
return ΩNite

=
k∑

j=1

m∑

i=1

log(αjp(Di|ωj))
k∑

y1=1

· · ·
k∑

ym=1

1{j=yi}

m∏

i′=1

p(yi′|Di′ ,Ω)

=
k∑

j=1

m∑

i=1

log(αjp(Di|ωj))zij

=
k∑

j=1

m∑

i=1

zij (logαj + log p(Di|ωj))

=
k∑

j=1

m∑

i=1

zij logαj +
k∑

j=1

m∑

i=1

zij log p(Di|ωj),

where we obtain this expression following a derivation analogous to the one
presented in [Bilmes et al., 1998] and denoting with y = (y1, . . . , ym) the
realization of the random vector Y.

Thus, the EM algorithm keeps alternating the E-step by computing the
probabilities zij and the M-step by computing the new parametrization Ω
and α optimizing Q(Ω,Ωold). Algorithm 9 reports an overview of Multiple-
Intention Σ-GIRL. It is worth noting that for the computation of the new
Ω it is required the solution of k IRL problems. Indeed, for a fixed j ∈
{1, . . . , k}, denoting with ∇̂θψi(θ) the estimated Jacobian of agent Ei, the
objective function to be optimized is given by:

min
ωj∈Rq+
‖ωj‖1=1

m∑

i=1

zijni

∥∥∥∇̂θψi(θ)ωj

∥∥∥
2

[(ωj⊗Id)Σi(ωj⊗Id)T ]−1
.

75



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

6.4.1 Computational Complexity Analysis

In this section we provide the computational complexity analysis of Σ-GIRL
and MI-Σ-GIRL.

The computational cost of the Jacobian estimation is linear in the number
of policy parameters d, reward parameters q, samples N , and horizon H;
while the cost of estimating the full covariance matrix is quadratic in d and
q, and linear in N and H . Thus, for a given ω, evaluating the objective in
Equation (6.3) has a cost of O (d3 + d2q2), where the d3 term comes from
the inversion of matrix

[
(ω ⊗ Id)

T Σ (ω ⊗ Id)
]
.

The cost of an EM step is O(MkC), where M and k are the number of
agents and clusters respectively and C is the cost of optimizing the function,
which depends on the optimizer.

6.5 Discussion on the related work

As we exposed in Chapter 3, there has been a growing interest in making
IRL algorithms scale over real-world continuous domains, where only a
few or no environment interactions are allowed [Boularias et al., 2011, Jain
et al., 2019]. However, these algorithms have some limitations: [Boular-
ias et al., 2011] requires a dataset collected under an explorative policy;
instead, [Jain et al., 2019]repeatedly needs to solve batch RL problems to
compute (approximately) optimal Q-functions. On the other hand, [Klein
et al., 2012], and [Klein et al., 2013] (see Chapter 6) reduced IRL to a struc-
tured classification problem which, similarly to GIRL [Pirotta and Restelli,
2016], can be solved efficiently using only the observed trajectories and
without further interaction with the environment. These algorithms require
a good estimate of the expert’s feature expectations for each action, even
those that the expert has not demonstrated. Σ-GIRL mitigates this issue by
considering an explicit model of the uncertainty Σ of the gradient estimate
while importing all the advantages of GIRL.

In its first formulation, the MI-IRL problem was solved via an EM
algorithm considering a Boltzmann policy for the expert [Babes et al., 2011].
Then Bayesian non-parametric approaches were proposed in the case k
is unknown. These methods, however, require access to the environment
(which must have a finite a state-action space) and need a careful tuning of
the temperature parameter. Our multiple-intention version of MI-Σ-GIRL,
instead, can be employed in continuous environments and just requires the
selection of the number of clusters k as a unique hyperparameter.

76



6.6. Experiments

G

Cluster 1

T1

Cluster 2

T2

T3

S

Figure 6.2: Gridworld with puddles showing the start state (S), the goal state (G), puddles
(light blue) and three sample trajectories: T1 (red) from the first cluster, T2 (black) and
T3 (green) from the second cluster.

6.6 Experiments

This section is devoted to the experimental evaluation of Σ-GIRL in both
single-intention (Section 6.6.1) and multiple-intention (Section 6.6.2- 6.6.3)
settings.2 For the single intention case, Σ-GIRL is compared with some
batch model-free IRL algorithms in two continuous domains: the Linear
Quadratic Gaussian regulator [Dorato et al., 2000, LQG] and a Gridworld
with puddles domain (Figure 6.2). For the multiple-intention case, we test
the quality of the clusters identified by Multiple-Intention Σ-GIRL compared
to Maximum-Likelihood IRL [Babes et al., 2011, MLIRL] in the Gridworld
with puddles. Finally, we evaluate Σ-GIRL in a real-world case study in
which we infer and cluster the intentions of a group of Twitter users.

Optimization of Σ-GIRL objective function The objective function optimized
by Σ-GIRL is, in the general case, non-convex. In the experiments, we
optimize this function using the implementation of SLSQP (Sequential
Least SQuares Programming) from scipy Python package3. We used the
default parameters and tolerance value 1e − 8. We took the best of 25 in
the LQG experiment and 5 in the Gridworld experiment different random
initializations.

6.6.1 Single-IRL experiments

We start evaluating the performance of Σ-GIRL compared with state-of-the-
art model-free IRL algorithms in the single-intention IRL problem.

2The code is available at github.com/sigma-girl-MIIRL.
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.

minimize.html

77

https://github.com/gioramponi/truly_batch_model-free_MI-IRL.git
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html


Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

101 102 103
−35

−30

−25

−20

Episodes (n)

A
v
e
ra

g
e

R
e
tu

rn
Ĵ
E

101 102 103

0.2

0.3

0.4

0.5

0.6

Episodes (n)

‖ω̂
−
ω

E
‖ 2

Σ-GIRL GIRL REIRL Optimal

Figure 6.3: Average return in the original environment ĴE of the optimal policy given the
recovered weights ω̂ (left) and distance between the recovered and expert’s weights
‖ω̂ − ωE‖2 (right) in the LQG experiment. 100 runs, 95 % c.i.

Linear Quadratic Gaussian regulator We consider the two-dimensional LQG
environment in which the agent has to reach the origin, limiting the magni-
tude of the actions. The reward features are the state and actions squared
φ(s, a) = (−s2

1,−s2
2,−a2

1,−a2
2)T and the weights are ωE = (1, 1, 1, 1)T .

The expert plays a Gaussian linear policy, in which the control matrix K is
computed in closed form and with fixed diagonal covariance diag(0.1, 2).4

We show, for each of the algorithms considered, the performance of the
optimal policies with the recovered reward function in the original environ-
ment ĴE and the distance between the weights found and the expert weights
‖ω̂ − ωE‖2, as a function of the number of trajectories. In Figure 6.3, we
notice that Σ-GIRL outperforms both GIRL and REIRL5 in both indexes,
achieving better performance and weights closer to the original ones. REIRL
requires, besides the expert demonstrations, a dataset collected using a sec-
ond uniform policy. This requirement partially violates the assumption of
no interaction with the environment. The full sample covariance matrix was
used in this experiment since it resulted well-conditioned.

Gridworld The second experiment aims at evaluating the performance of
Σ-GIRL in a continuous Gridworld environment. The agent is initialized in

4This asymmetric choice induces a higher variance in the second dimension of the state and action spaces; so
that we can easily see the benefits of Σ-GIRL in modeling the gradient uncertainty.

5REIRL is implemented following the original paper.

78



6.6. Experiments

100 101 102 103 104
−3

−2.5

−2

−1.5

−1

Episodes (n)

A
v
e
ra

g
e

R
e
tu

rn
Ĵ
E

100 101 102 103 104

0

0.5

1

1.5

Episodes (n)

‖ω̂
−
ω

E
‖ 2

Σ-GIRL GIRL REIRL CSI Optimal

Figure 6.4: Average return in the original environment ĴE of the optimal policy trained
with G(PO)MDP with the recovered weights ω̂ (left) and distance between the recovered
and expert’s weights ‖ω̂ − ωE‖2 (right) in the Gridworld experiment. 20 runs, 95 %
c.i.

a random position and has to reach the goal in the minimum number of steps
by playing a bivariate Gaussian policy, linear in a set of 9× 9 radial basis
functions, that generates the x and y displacement. There is a region in the
border of the environment that should be avoided. To make the environment
more challenging, the agent is also penalized for performing high magnitude
actions. The reward feature space is given by three features: two binary
features indicating whether the agent is at the border or in the central region
and −‖a‖2

2 to penalize the magnitude of actions. The expert’s weights
are ωE = (1, 100, 0)T . In Figure 6.4, we compare the performance of Σ-
GIRL with GIRL, REIRL, and CSI [Klein et al., 2013, Cascade Supervised
IRL]. CSI is implemented following the authors’ implementation6. We
report the results using SVM as classifier and SVR as regressor (as in the
original implementation, with the same library7). We notice that Σ-GIRL is
able to recover weights that are almost identical to the expert’s ones even
with a small (30) number of trajectories. This, as expected, reflects on the
performance, in the original environment, of the optimal policy learned
using the recovered weights. While GIRL is still able to obtain a good
weighting, REIRL and CSI’s performance are significantly suboptimal.

6The repository is in: https://github.com/edouardklein/RL-and-IRL.
7http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

79



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

101 102 103
−35

−30

−25

−20

Episodes (n)

A
v
e
ra

g
e

R
e
tu

rn
Ĵ
E

101 102 103

0.2

0.3

0.4

0.5

0.6

Episodes (n)

‖ω̂
−
ω

E
‖ 2

Σ-GIRL Σ-GIRL-DIAG GIRL Σ-GIRL-Id Optimal

Figure 6.5: Comparison on the LQG experiment with different choices of covariance model.
100 runs, 95% c.i.

Σ-GIRL Comparison In this section, we compare different choices of the
covariance matrix used in Σ-GIRL in the LQG environment. Apart from
the full sample covariance matrix and the matrix of Corollary 6.2.1 (which
reduces our algorithm to GIRL), we also consider using a diagonal sample
covariance matrix and the identity matrix. The former considers only the
uncertainty in each of the Jacobian matrix entries, while the latter does not
consider the uncertainty.

Figure 6.5 shows the results in the LQG environment. We can see that
using the uncertainty of the gradient estimation clearly achieves better per-
formance. In the environment considered, using the full sample covariance
matrix offers only a slight improvement when considering few trajectories
compared to the diagonal case. In larger problems, where estimating the full
covariance matrix might be prohibitive, using a diagonal covariance model
offers improvements with respect to not using the uncertainty at all in the
gradient estimation. The use of an identity matrix instead do not produce
satisfying results.

6.6.2 Multiple-intentions experiments

In this experiment, we compare the Multiple-Intention Σ-GIRL with MLIRL
[Babes et al., 2011], to test the capability of clustering agents which demon-
strate multiple intentions. MLIRL is implemented following the original
paper and the thesis of the main author [Vroman, 2014]. Unfortunately (as
far as we know) the authors do not provide a public repository. We consider a
Gridworld-puddles consisting of an initial state, a goal state, and some states
are puddles, as in Figure 6.2. The world is characterized by a three-feature
reward: one for the goal state, one for the puddles, and one for the other

80



6.6. Experiments

101 102

0.6

0.8

1

Episodes (n)

C
lu

st
e
ri

n
g

a
c
c
u
ra

c
y

101 102

−50

0

Episodes (n)

A
v
e
ra

g
e

R
e
tu

rn
Ĵ
E

Σ-GIRL MLIRL T2+T3 T2
T3 Optimal

Figure 6.6: Clustering accuracy of MI-Σ-GIRL and MLIRL (left) and average return in the
original environment ĴE of the policies trained given the weights recovered separately
for T2 and T3 and their cluster (right) in the Gridworld experiment. 20 runs, 98% c.i.

Demonstrations per agent

Running Time 5 10 30 100

Σ-GIRL 1.25s 1.28s 1.21s 1.51s
MLIRL 60.96s 62.20s 69.22s 93.23s

Table 6.1: Running time of MI-Σ-GIRL and MI-MLIRL with increasing number of trajec-
tories per agent.

states. In this setting, we consider two clusters of agents which demonstrate
different behaviors: the first cluster (T1) has the goal of ignoring the puddles,
the second (T2+T3) has the goal of avoiding puddles. For the second cluster,
we have three agents that have three different but equivalently optimal poli-
cies (Figure 6.2). The first agent (T2) always chooses to go up as the first
action, the second (T3) to go down, and the third one randomly performs
up or down as the first action, and then they all follow the border. The
first cluster weights are ωT1 = (1, 1, 1)T and the second cluster weights are
ωT2,T3 = (1, 10, 1)T . The agents are initialized in the initial state S, and
they play bivariate Gaussian policies linear in the state space. We set the
number of clusters to 2 and increase the number of trajectories per agent
(from 5 to 100). For MLIRL, we set the same hyperparameters as in [Babes
et al., 2011], and we appropriately discretize the actions.

Then, we perform an empirical analysis of the algorithm MLIRL [Babes
et al., 2011]. The previous results show that the algorithm is unable to

81



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

Reward Features
N. agents

Popularity N. retweets δtime

Cluster 1 0.56 0.00 0.44 4
Cluster 2 0.16 0.19 0.65 6
Cluster 3 0.78 0.03 0.19 4

Table 6.2: The reward weights learned by Σ-GIRL: popularity score of a retweet, number
of retweets in a window T , and retweet proximity (δtime).

cluster the agents properly. We perform two experiments. In the first one,
we have two agents with two different intentions. In the second one, we have
two agents with the same intention but different optimal policies and one
agent with another intention. As shown in Figure 6.7, in the first experiment
MLIRL succeeds in the clustering task (left). When we add trajectories
performed by two agents with the same intentions but different optimal
policies, the algorithm decreases its performance (right). This behavior
explains the results of Section 6.6 where we have a dataset with three agents
sharing the same intention (but different optimal policies) and two agents
with the other reward function.

101 102

0.6

0.8

1

Episodes (n)

C
lu

st
e
ri

n
g

a
c
c
u
ra

c
y

101 102

0.6

0.8

1

Episodes (n)

C
lu

st
e
ri

n
g

a
c
c
u
ra

c
y

MLIRL Σ-GIRL

Figure 6.7: Clustering accuracy in the case of two agents and two clusters (left) and in the
case of three agents and two clusters (right). 20 runs 98 % c.i.

82



6.6. Experiments

6.6.3 Twitter experiment

In the last experiment, we employ the MI-Σ-GIRL algorithm to cluster and
infer Twitter users’ intentions.8 In particular, we turn to the questions:

“Why does a user decide to retweet a post? What is their intention in
deciding to post the tweet?”

Data The dataset consists of 14 Twitter accounts (agents) and their follow-
ings. The total number of followings is 5745. We collected their tweets from
November 2018 to the end of January 2019 using a crawling process. The
total number of followings’ tweets is 468304. We suppose that each user
can see only the tweets of whom she follows. We assume that a user sees
a tweet with a probability of 0.01 to simulate the real behavior of a social
network’s user. After receiving a tweet, the agent must select between two
actions: she can re-post it on her page or not re-post it.

Features We represent the state space with three features: the popularity
of a tweet, the number of retweets out of the last T = 10 (retweet window)
tweets seen by the agent, and the retweet proximity. The popularity score
is the weighted sum of the number of likes collected by the tweet and the
number of retweets:

Popularity-score = αNlike + (1− α)Nretweet

where α = 0.5 and then normalized by the average of the popularity score of
user’s tweets. The retweet proximity is computed as δtime = 0.1(̇t− t0)− 1
where t is the earliest time at which the agent receives a tweet that she
decides to retweet after having retweeted at time t0 < t. When an agent
performs a retweet, she goes to a next state s′ which is composed of the
popularity of the new tweet, δtime = 0 (since the last action was a retweet)
and the number of retweet mod10. The reward features are the same as
the state ones, but the Popularity-score is set to 0 when the agent does not
re-tweet the tweet.

Clustering results We perform behavioral cloning on the agents’ demonstra-
tions employing a two-layer neural network (8 neurons each). Then, we
divide the demonstrations into trajectories of size 10 to have one retweet
window in every trajectory. We apply Multiple-Intention MI-Σ-GIRL with
k = 3 clusters. The results are shown in Table 6.2, while Figure 6.8 reports

8It is worth noting that MLIRL [Babes et al., 2011] cannot be applied in this experiment as we are in a fully
batch setting and we cannot interact with the environment.

83



Chapter 6. Inverse Reinforcement Learning about Multiple Intentions

1 2 3
0

200

400

600

Cluster

N
.
o
f
fo
ll
o
w
e
rs

1 2 3
0

2000

4000

Cluster
N
.
o
f
fo
ll
o
w
in
g
s

1 2 3
0

20

40

60

80

Cluster

N
.
o
f
re
tw

e
e
ts

Figure 6.8: Twitter clustering statistics. Average number of followers (left), followings
(center) and retweets (right) for each cluster.

some statistics on the three clusters found. The results underline that the first
cluster is interested in retweeting posts with high popularity at a high fre-
quency. Indeed, this cluster represents a standard Twitter user who follows
many users and has fewer followers. The second cluster shows a different
behavior: these agents do not want to retweet too often. They have not
used the social network much, as they have few retweets and follow a small
number of people. The last cluster is the most interesting one: these agents
tend to retweet all popular tweets. Upon inspecting them, we discover that
they are commercial accounts (a bot, a company, and two HR managers). It
is not surprising that they show the intention to post popular tweets, but they
are uninterested in following other accounts.

84



CHAPTER7
Inverse Reinforcement Learning from a

Learner

The standard IRL setting assumes that an observer receives the interactions
between another agent, the expert, which already knows how to perform
the task, and the environment. However, as we have introduced in Chapter
5, in some cases, the observer can observe the learning process of this
other agent, and so it can try to infer the agent’s reward function before-
hand. This setting, called Inverse Reinforcement Learning from a Learner
(IRLfL), was proposed in [Jacq et al., 2019] and posed new opportunities
and new challenges. In fact, IRLfL violates the common IRL assumption
that the perceived demonstrations come from an expert. In [Jacq et al.,
2019] the authors assume that the learner is learning under an entropy-
regularized framework, motivated by the assumption that the learner is
showing a sequence of constantly improving policies. However, many
Reinforcement Learning (RL) algorithms [Deisenroth et al., 2013] do not
satisfy this assumption, and also human learning is characterized by mistakes
that may lead to a non-monotonic learning process. In this chapter, we
propose an algorithm for this relatively new setting, IRLfL, called Learning
Observing a Gradient not-Expert Learner (LOGEL), which is not affected

85



Chapter 7. Inverse Reinforcement Learning from a Learner

by the violation of the constantly improving assumption. Given that many
successful RL algorithms are gradient-based [Deisenroth et al., 2013] and
there is some evidence that the human learning process is similar to a
gradient-based method [Shteingart and Loewenstein, 2014], we assume that
the learner is following the gradient direction of her expected discounted
return. The algorithm learns the reward function that minimizes the distance
between the actual policy parameters of the learner and the policy parameters
that should be obtained if she were following the policy gradient using that
reward function.

After a formal introduction of the IRLfL setting in Section 7.1, we provide
in Section 7.2 a first solution to the IRLfL problem when the observer has
full access to the learner’s policy parameters and learning rates. Then, in
Section 7.3 we extend the algorithm to the more realistic case in which
the observer can identify the optimized reward function only by analyzing
the learner’s trajectories. For each problem setting, we provide a finite-
sample analysis to give to the reader an intuition on the correctness of the
recovered weights. Finally, we consider discrete and continuous simulated
domains to empirically compare the proposed algorithm with state-of-the-art
baselines in this setting [Jacq et al., 2019, Brown et al., 2019]. Moreover,
we report preliminary results on a simulated autonomous driving task (see
Section 7.5.3).

7.1 Problem statement

The Inverse Reinforcement Learning from a Learner setting (IRLfL), pro-
posed in [Jacq et al., 2019], involves two agents (as shown in Figure 7.1):

• a learner which is learning a task defined by the reward function RωL ,

• and an observer which wants to infer the learner’s reward function.

More formally, the learner is an RL agent which is learning a policy πθ ∈ ΠΘ

in order to maximize its discounted expected return J(θ,ωL). The learner is
improving its own policy by an update function f(θ,ωL) : Rd × Rq → Rd,
i.e., at time t, θt+1 = f(θt,ω

L). The observer, instead, perceives a sequence
of learner’s policy parameters {θ1, · · · ,θm+1} and/or a dataset of trajecto-
ries for each policy D = {D1, · · · ,Dm+1}, where Di = {τ i1, · · · , τ in}. Her
goal is to recover the reward function RωL that explains πθi → πθi+1

for
all 1 ≤ i ≤ m, i.e., the updates of the learner’s policy. We denote by ωL

(θL) the reward (policy) parameters of the learner, and by ω̂ (θ̂) the reward
(policy) parameters recovered by the observer.

86



7.2. Learning from a learner following the gradient

�

� d

Reward

Action

State

Learner

Environment

Observer

RL

Reward?

Figure 7.1: The learner-environment-observer interaction in the Inverse Reinforcement
Learning from a Learner framework.

IRL algorithms for IRLfL problem It is easy to notice that this problem has the
same intention as Inverse Reinforcement Learning since the demonstrating
agent is motivated by some reward function. On the other hand, in classical
IRL, the learner agent is an expert and not a non-stationary agent. For this
reason, we cannot simply apply standard IRL algorithms to this problem
or use Behavioral Cloning [Pomerleau, 1989, Argall et al., 2009, Osa et al.,
2018] algorithms, which mimic a suboptimal behavior.

7.2 Learning from a learner following the gradient

Many algorithms that are the state of the art of reinforcement learning are
policy-gradient methods [Deisenroth et al., 2013, Peters and Schaal, 2008b,
Sutton et al., 2000], i.e., approaches which optimize the expected discounted
return with gradient updates of the policy parameters. Moreover, recently it
has been proved that even standard RL algorithms such as Value Iteration
or Q-learning have strict connections with policy gradient methods [Goyal
and Grand-Clement, 2019, Schulman et al., 2017a], and some neuroscience
works established that the human learning process follows the gradient
direction [Shteingart and Loewenstein, 2014]. For the above reasons, in
our work, we assume that the learner is optimizing the expected discounted
return using gradient descent.

For the sake of presentation, we start by considering the simplified
case in which we assume that the observer can perceive the sequence of
the learner’s policy parameters (θ1, · · · ,θm+1), the associated gradients of

87



Chapter 7. Inverse Reinforcement Learning from a Learner

the feature expectations (∇θψ(θ1), . . . ,∇θψ(θm)), and the learning rates
(α1, · · · , αm). Then, we will replace the exact knowledge of the gradients
with estimates built on a set of demonstrations Di for each learner’s policy
πθi (Section 7.2.2). Finally, we introduce our algorithm LOGEL, which,
using behavioral cloning and an alternate block-coordinate optimization
[Tseng, 2001], is able to estimate the reward’s parameters without requiring
as input the policy parameters and the learning rates (Section 7.3).

7.2.1 Exact gradient

We express the gradient of the expected return as [Sutton et al., 2000, Peters
and Schaal, 2008b]:

∇θJ(θ,ω) = E
s0∼µ,

ah∼πθ(·|sh),
sh+1∼P (·|sh,ah)

[ +∞∑

h=0

γtRω(sh, ah)
t∑

l=0

∇θ log πθ(al|sl)
]

= ∇θψ(θ)ω,

where∇θψ(θ) = (∇θψ1(θ)| . . . |∇θψq(θ)) ∈ Rd×q is the Jacobian matrix
of the feature expectations ψ(θ) w.r.t. the policy parameters θ. In the rest
of the chapter, with some abuse of notation, we will indicate ψ(θt) with ψt.

We define the gradient-based learner updating rule at time t as:

θLt+1 = θLt + αt∇θJ(θLt ,ω
L) = θLt + αt∇θψL

t ω
L, (7.1)

where αt is the learning rate. Given a sequence of consecutive policy param-
eters (θL1 , · · · ,θLm+1), and of learning rates (α1, · · · , αm) the observer has
to find the reward function Rω such that the improvements are explainable
by the update rule in Eq. (7.1). This implies that the observer has to solve
the following minimization problem:

min
ω∈Rq

m∑

i=1

‖∆i − αi∇θψiω‖2
2 , (7.2)

where ∆i = θi+1 − θi. This optimization problem can be easily solved in
closed-form under the assumption that

(∑m
i=1 α

2
i∇θψT

i ∇θψi
)−1 is invert-

ible.

Lemma 7.2.1. If the matrix
(∑m

i=1 α
2
i∇θψT

i ∇θψi
)−1 is full-rank then the

optimization problem (7.2) is solved in closed form by

ω̂ =

(
m∑

i=1

α2
i∇θψT

i ∇θψi
)−1( m∑

i=1

αi∇θψT
i ∆i

)
. (7.3)

88



7.2. Learning from a learner following the gradient

Proof. Taking the derivative of (7.2) with respect to ω:

∇ω
m∑
i=1

‖∆i − αi∇θψiω‖22 =
m∑
i=1

∇ω(∆i − αi∇θψiω)T (∆i − α∇θψiω)

=
m∑
i=1

∇ω(∆T
i ∆i + (α∇θψiω)T (αi∇θψiω)− (2αi∇θψiω)T∆i)

= 2

(
m∑
i=1

α2
i∇θψT

i ∇θψi
)
ω − 2

m∑
i=1

(
αi∇θψT

i ∆i

)
.

Taking it equal to zero:(
m∑
i=1

α2
i∇θψT

i ∇θψi
)
ω −

m∑
i=1

(
αi∇θψT

i ∆i

)
= 0

ω =

(
m∑
i=1

α2
i∇θψT

i ∇θψi
)−1( m∑

i=1

αi∇θψT
i ∆i

)

When problem (7.2) has no unique solution or when the matrix to be
inverted is nearly singular, in order to avoid numerical issues, we can resort
to a regularized version of the optimization problem. In the case we add an
L2-norm penalty term over weights ω we can still compute a closed-form
solution.

Lemma 7.2.2. The regularized version of (7.2) is equal to:

min
ω

m∑

i=1

‖∆i − αi∇θψiω‖2
2 + λ ‖ω‖2

2 ,

where λ > 0. We can solve the regularized problem in closed form:

ω =

(
m∑

i=1

α2
i∇θψT

i ∇θψi + λIq

)−1( m∑

i=1

αi∇θψT
i ∆i

)
.

Proof. Taking the derivative respect to ω:

∇ω
m∑
i=1

‖∆i − αi∇θψiω‖22 + λ ‖ω‖22

=

m∑
i=1

∇ω(∆i − αi∇θψiω)T (∆i − αi∇θψiω) +∇ωλωTω

=

m∑
i=1

∇ω(∆T
i ∆i + (αi∇θψiω)T (αi∇θψiω)− 2αi∇θψiω)T∆i) + 2λω

= 2

(
m∑
i=1

α2
i∇θψT

i ∇θψi
)
ω − 2

m∑
i=1

(
αi∇θψT

i ∆i

)
+ 2λω.

89



Chapter 7. Inverse Reinforcement Learning from a Learner

Taking it equal to zero:(
m∑
i=1

α2
i∇θψT

i ∇θψi + λIq

)
ω −

m∑
i=1

(
αi∇θψT

i ∆i

)
= 0

ω =

(
m∑
i=1

α2
i∇θψT

i ∇θψi + λIq

)−1( m∑
i=1

αi∇θψT
i ∆i

)
.

7.2.2 Approximate gradient

In practice, we do not have access to the Jacobian matrix ∇θψ, but the
observer has to estimate it using the learner’s dataset of learning demon-
strations D and some unbiased policy gradient estimator, such as REIN-
FORCE [Williams, 1992] or G(PO)MDP [Baxter and Bartlett, 2001] (see
Chapter 2). The estimation of the Jacobian will introduce errors on the
optimization problem (7.2). Obviously the estimation of the reward weights
ω becomes more accurate when more data are available [Pirotta et al., 2013].
On the other hand, during the learning process, the learner will produce more
than one policy improvement, and the observer can use these improvements
to get better estimates of the reward weights.

In order to have an insight on the relationship between the amount of
data needed to estimate the gradient and the number of learning steps, we
provide a finite-sample analysis on the norm of the difference between the
learner’s weights ωL and the recovered weights ω̂. The analysis takes into
account the number of learning steps and the number of demonstrations
for each learning step, without having any assumption on the policy of the
learner. We denote with Ψ = [∇θψ1, · · · ,∇θψm]T the concatenation of

the Jacobians and Ψ̂ =
[
∇̂θψ1, · · · , ∇̂θψm

]T
the concatenation of the

estimated Jacobians.

Theorem 7.2.1. Let Ψ be the true Jacobians and Ψ̂ the estimated Jaco-
cobian from n trajectories {τ1, · · · , τn}. Assume that Ψ is bounded by a

constant M and λmin(Ψ̂
T
Ψ̂) ≥ λ > 0. Then, with probability at least 1− δ:

∥∥ωL − ω̂
∥∥

2
≤ O

(
1

λ
M

√
dq

2n

(√
log dq

m
+
√
dq

))
.

Proof. We decompose the estimated Jacobian Ψ̂ = Ψ + E, where E is the random variable
component caused by the estimation of the∇θψ. Since we estimate the jacobians with an unbiased
estimator the mean of E is 0. We reshape Ψ and E as Ψ ∈ Rm×dq and E ∈ Rm×dq . Now E, since

90



7.2. Learning from a learner following the gradient

its mean is 0 and all lines are independent of each other, is a sub-Gaussian matrix with parameters
( 1
m
σE ,

1
m

ΣE)1.
The proof follows similar argument of the proof of Theorem 1 in [McWilliams et al., 2014].∥∥∥(Ψ + E)T (ΨωL)− (Ψ + E)T (Ψ + E)ωL

∥∥∥
2

=
∥∥∥ΨT∇θψTωL + ETΨTωL −ΨTΨωL −ΨTEω∗ − EΨTωL − ETEωL

∥∥∥
2

=
∥∥∥−ΨTEωL − ETEωL

∥∥∥
2
.

Now we bound separately these two terms, using Lemma C.1.3:∥∥∥ΨTEωL
∥∥∥

2
≤ ‖Ψ‖2 σE

∥∥∥ωL∥∥∥
2

√
log dq

m∥∥∥ETEωL∥∥∥
2

=
∥∥∥(ETE + σ2

EIqd − σ2
EIqd)ω

L
∥∥∥

2
≤ σ2

E

(
C

√
log dq

m
+
√
dq

)∥∥∥ωL∥∥∥
2

with probability 1− c1 exp(−c2 log dq) where c1, c2 are positive constants that do not depend on
σE , n, q. Now applying Lemma C.1.2:∥∥∥ωL − ω̂∥∥∥

2
≤ 1

λ

(
‖Ψ‖2 σE

∥∥∥ωL∥∥∥
2

√
log dq

m
+ σ2

E

(
C

√
log dq

m
+
√
dq

)∥∥∥ωL∥∥∥
2

)

We need, now, to bound the random variable σE . Remember that Ei = ∇θψi − ∇̂θψi. Since
∇̂θψ are assumed to be bounded by M , by applying Hoeffding’s inequality, with probability 1− δ1,

‖Ei‖2 =
∥∥∥∇̂θψi −∇θψi

∥∥∥
2
≤M

√
dq log( 2

δ1
)

2n
.

So E is a subgaussian random variable where each component is bounded by M

√
•dq log( 2

δ1
)

2n
.

Then,

P

∥∥∥ωL − ω̂∥∥∥
2
≥ 1

λ
M

√
dq log( 2

δ1
)

2n

∥∥∥ωL∥∥∥
2
‖Ψ‖2

√
log dq

m
+M

dq log( 2
δ1

)

2n
C

√
log dq

m
+
√
dq


≤ P

∥∥∥ωL − ω̂∥∥∥
2
≥ 1

λ
M

√
dq log( 2

δ1
)

2n

∥∥∥ωL∥∥∥
2

(
‖Ψ‖2

√
log dq

m
+ C

√
log dq

m
+
√
dq

)
≤ δ1 + c1 exp(−c2 log dq)

So the result follows after renaming δ = 1− (δ1 + c1 exp(−c2 log dq)) as in [McWilliams et al.,

2014].

The theorem shows how we can reduce the error on the recovered weights
increasing the dataset size n for each learning step and/or increasing the

1A zero-mean matrix E is called sub-Gaussian with parameter ( 1
m
σE ,

1
m

ΣE), if each row eT is sampled
independently and has E[eie

T
i ] = 1

m
ΣE and for any unit vector v ∈ Rp, vT ei is a sub-Gaussian random

variable with parameter at most 1√
p
σE [McWilliams et al., 2014].

91



Chapter 7. Inverse Reinforcement Learning from a Learner

number of learning steps m. This fact is quite important for this problem.
In fact, the number of policy improvement steps of the learner is finite as
the learner will eventually achieve an optimal policy. Knowing the finite
number of learning improvements m, we can estimate how much data n we
need for each policy to get an estimate with a certain accuracy.

Intrinsic bias Another important aspect to take into account is the intrinsic
bias [McWilliams et al., 2014] due to the gradient estimation error that
cannot be solved by increasing the number of learning steps, but only with a
more accurate estimation of the gradient. However, we show in Section 9.8
that, experimentally, this intrinsic bias, i.e. the component of the bound that
does not depend on the number of learning steps, does not influence the
capability of recovered correct weights.

7.3 Learning from improvement trajectories

In a more realistic scenario, the observer has access only to a dataset D =
(D1, . . . ,Dm+1) of trajectories generated by each policy, such that Di =
{τ1, · · · , τn} ∼ πθi . Furthermore, the learning rates are unknown and
possibly the learner applies an update rule other than (7.1). The observer
has to infer the policy parameters Θ = (θ1, . . . ,θm+1), the learning rates
A = (α1, . . . , αm), and the reward weights ω. If we suppose that the learner
is updating its policy parameters with gradient ascent on the discounted
expected return, the natural way to see this problem is to maximize the
log-likelihood of p(θ1,ω, A|D):

max
θ1,ω,A

∑

(s,a)∈D1

log πθ1(a|s) +
m+1∑

i=2

∑

(s,a)∈Di

log πθi(a|s),

where θi = θi−1 + αi−1∇θψi−1. Unfortunately, solving this problem di-
rectly is not practical as it involves evaluating gradients of the discounted
expected return up to the m-th order. To deal with this, we break down the
inference problem into two steps: the first one consists in recovering the
policy parameters Θ of the learner and the second in estimating the learning
rates A and the reward weights ω (see Algorithm 10). To some extent, this
process resembles the expectation-maximization approach of the previous
Chapter 6.

To recover the policy parameter we apply the same approach as exposed
in Section 5.1. So, we apply a behavioral cloning procedure exploiting the
trajectories in D = {D1, · · · ,Dm+1} and casting the problem of finding the
parameter θi to a maximum-likelihood estimation.

92



7.3. Learning from improvement trajectories

Algorithm 10 LOGEL

Require: Dataset D = {D1, . . . ,Dm+1} with Dj = {(τ1, . . . , τnj ) | τi ∼ πθj}
Ensure: Reward weights ω ∈ Rq

1: Estimate policy parameters (θ̂1, . . . , θ̂m+1) with Equation 5.4
2: Initialize A and ω
3: Compute learning rates A and reward weights ω by alternating Equation (7.6) and

Equation (7.3) up to convergence

7.3.1 Recovering learning rates and reward weights

Given the parameters (θ̂1, . . . , θ̂m+1) learned by behavioral cloning, if the
learner is updating its policy with a constant (even unknown) learning rate
we can simply apply Eq. (7.2). On the other hand, with an unknown learner,
we cannot make this assumption and it is necessary to estimate also the
learning rates A = (α1, . . . , αm). The optimization problem in Eq. (7.2)
becomes:

min
ω∈Rq ,A∈Rm

m∑

t=1

∥∥∥∆̂t − αt∇̂θψtω
∥∥∥

2

2
(7.4)

s.t. αt ≥ ε 1 ≤ t ≤ m. (7.5)

where ∆̂t = θ̂t+1 − θ̂t and ε is a small constant. To optimize this function
we use alternate block-coordinate descent [Tseng, 2001]. We alternate
the optimization of parameters A and the optimization of parameters ω.
Furthermore, we notice that these two steps can be solved in closed form.
When we optimize on ω, the optimization can be done using Lemma 7.2.1.
Instead, when we search for the learning rates A we can solve for each
parameter αi ∈ A, with 1 ≤ i ≤ m, in closed form.

Lemma 7.3.1. The minimizer of (7.4) with respect to αi ∈ A is equal to:

α̂i = max

(
ε,
(

(∇̂θψiω)T (∇̂θψiω)
)−1

(∇̂θψiω)T ∆̂i

)
. (7.6)

The inner matrix cannot be inverted only if the vector ∇̂θψω is equal
to 0. This would happen only if the expert is at a stationary point, so ∇̂θψ
is 0. The alternated block-coordinate optimization converges under the
assumption that there exists a unique minimum for each variable A and
ω [Tseng, 2001].

93



Chapter 7. Inverse Reinforcement Learning from a Learner

7.3.2 Theoretical result

In this section, we provide a finite-sample analysis of LOGEL when only
one learning step is observed. In this setting, the observer has access to
two datasets D∞,D∈, where D1 is generated by an unknown policy πθ1

and D2 by the policy πθ2 , where θ2 = θ1 + α∇θJ(θ1,ω
L) . We assume

that the Jacobian matrix ∇̂θψ is bounded and the learner’s policy is a
Gaussian policy π ∼ N (θTϕ(s), σ2). The analysis evaluates the norm of
the difference between the learner’s weights ωL and the recovered weights
ω̂. Without loss of generality, we consider the case where the learning rate
α = 1. The analysis takes into account the bias introduced by the Behavioral
Cloning and the gradient estimation.

Theorem 7.3.1. Let πθ1 , πθ2 be two Gaussian policies πθi(·|s) ∼ N (θTi ϕ(s),
σ2) with i ∈ {1, 2}, such that πθ2 is the improvement of πθ1 . Let i ∈ [1, 2].
Given datasets Di = {τ i1, . . . , τ in} of trajectories generated by πi, such that
Si ∈ RnH×d is the matrix of corresponding states features, let the minimum
singular value of σmin(STi Si) ≥ η > 0, ∇̂θ1ψ uniformly bounded by M ,
the state features bounded by MS , and the reward features bounded by MR.
Then with probability 1− δ:

∥∥ωL − ω̂
∥∥

2
≤ O


(M +M2

SMR)

σmin(∇θ1ψ)

√
log(2

δ
)

nη




where ωL are the true reward parameters and ω̂ are the parameters recov-
ered using Lemma 7.2.1.

The theorem, that relies on perturbation analysis [Wedin, 1973] and least
squares with fixed design [Rigollet, 2015], underlines how LOGEL, with
a sufficient number of samples to estimate the policy parameters and the
gradients, succeeds in recovering the correct reward parameters.

Proof of Theorem 7.3.1

In this section we prove the theoretical result on the recovered weights from
our algorithm LOGEL.

We start by bounding the bias introduced by the behavioral cloning
procedure.

Lemma 7.3.2. Given a dataset D = {(s1, a1), · · · , (snH , anH)} of state-
action couples sampled from a Gaussian linear policy πθ(·|s) ∼ N (θTϕ(s),
σ2) such that S ∈ RnH×p is the matrix of states features and let the minimum

94



7.3. Learning from improvement trajectories

singular value of (STS) be σmin ≥ η > 0, then the error between the
maximum likelihood estimator θMLE and the mean θ is, with probability
1− δ:

∥∥θMLE − θ
∥∥

2
≤ σ

√
r + log(1

δ
)

nTη
,

where r is rank(STS).

Proof. We start by stating that the maximum likelihood for linear Gaussian policies can be recast
as an ordinary least-squares problem. We write the log-likelihood logL(θ).

logL(θ) = log

(
nH∏
i=1

π(ai|si)
)

=

nH∑
i=1

log

(
1√

2πσ2
exp

(
− (ai − θTϕ(si))

2

2σ2

))

= nH log

(
1√

2πσ2

)
−

nH∑
i=1

(ai − θTϕ(si))
2

2σ2

The resulting maximum likelihood problem is given by:

arg max
θ

logL(θ) = arg min
θ

nH∑
i=1

(ai − θTϕ(si))
2

Then having the following linear least-squares problem:

min
θ
‖Sθ −A+ ε‖2 ,

where ε is an error with mean 0 and variance σ2, S ∈ RnH×p is the matrix of states features and
A ∈ RnH is the vector of actions. Using Theorem C.1.1, we can say that with probability 1− δ:

∥∥θMLE − θ
∥∥

2
≤ σ

√
r + log( 1

δ
)

nHη
,

where r is rank(STS).

We need now to add an auxiliary lemma to bound the 2-norm differences
between the gradient of the logarithm of two Gaussian policies in the terms
of the 2-norm difference between the means of the Gaussians.

Lemma 7.3.3. Given two Gaussian policies πθ1(·|s) ∼ N (θT1 ϕ(s), σ2) and
πθ2(·|s) ∼ N (θT2 ϕ(s), σ2) with same variance and and with state features
bounded by MS:

‖∇θ log πθ1(a|s)−∇θ log πθ2(a|s)‖2 ≤
M2

S

σ2
‖θ1 − θ2‖2 .

95



Chapter 7. Inverse Reinforcement Learning from a Learner

Proof. The gradient of the log policy of a general policy πθ(a|s) is:

∇θ log π(a|s) =
ϕ(s)T (a− θTϕ(s))

σ2
.

Now we apply this result to the difference in norm between two Gaussian log policies:

∥∥∇θ log πθ1(a|s)−∇θ log π(a|s)
∥∥

2
=

∥∥∥∥ϕ(s)T (a− θT1 ϕ(s))

σ2
− ϕ(s)T (a− θT2 ϕ(s))

σ2

∥∥∥∥
2

=

∥∥∥∥ϕ(s)

σ2
(θT1 ϕ(s)− θT2 ϕ(s))

∥∥∥∥
2

≤
∥∥∥∥ϕ(s)

σ2

∥∥∥∥
2

‖θ1 − θ2‖2 ‖ϕ(s)‖2 (7.7)

≤ M2
S

σ2
‖θ1 − θ2‖2 . (7.8)

In line 7.7 we use the Cauchy-Schwartz inequality, and in line 7.8 the assumption that the state

features are bounded by MS .

Then we bound the 2-norm differences between the estimated Jacobian
of a Gaussian policy parametrized by the maximum likelihood value, and
the real Jacobian.

Lemma 7.3.4. Given a dataset D = {τ1, · · · , τn} of trajectories such that
every trajectory τi = {(s1, a1), · · · , (sH , aH)} is sampled from a Gaussian
linear policy πθ(·|s) ∼ N (θTϕ(s), σ2), the maximum likelihood estima-
tor θMLE computed on D, the condition of Lemma 7.3.2 holds, the ∇̂θψ
uniformly bounded by M , the state features bounded by MS , the reward
features bounded by MR. Then with probability 1− δ:

∥∥∥∇̂θψ(θMLE)−∇θψ(θ)
∥∥∥

2
≤M

√
qd

√
log(2

δ
)

2n
+
HM2

SMR

(1− γ)σ

√
r + log(1

δ
)

nη
,

where γ is the discount factor and r is the rank of STS.

Proof. We start by decomposing the norm of the difference in two components, using the triangular
inequality:

∥∥∥∇̂θψ(θ̂)−∇θψ(θ)
∥∥∥

2
≤
∥∥∥∇̂θψ(θ)−∇θψ(θ)

∥∥∥
2

+
∥∥∥∇̂θψ(θ)− ∇̂θψ(θ̂)

∥∥∥
2
.

The first component is bounded by Lemma C.2.1. We will bound now the second component, using

96



7.3. Learning from improvement trajectories

the Reinforce estimator for the gradient:∥∥∥∇̂θψ(θ)− ∇̂θψ(θ̂)
∥∥∥

2
=

=

∥∥∥∥∥ 1

n

n∑
i=1

H∑
t=1

∇θ log πθ(ai,t|si,t)Ri,tγt − 1

n

n∑
i=1

H∑
t=1

∇θ log πθ̂(ai,t|si,t)Ri,tγt
∥∥∥∥∥

2

=
1

n

∥∥∥∥∥
n∑
i=1

H∑
t=1

(∇θ log πθ(ai,t|si,t)−∇θ log πθ̂(ai,t|si,t))Ri,tγt
∥∥∥∥∥

2

≤ 1

n

n∑
i=1

H∑
t=1

∥∥(∇θ log πθ(ai,t|si,t)−∇θ log πθ̂(ai,t|si,t))
∥∥

2

∥∥Rtγt∥∥2
(7.9)

≤ 1

n

MR

(1− γ)

n∑
i=1

H∑
t=1

M2
S

σ2

∥∥∥θ − θ̂∥∥∥
2

(7.10)

≤ HM2
SMR

σ2(1− γ)
σ

√
r + log( 1

δ
)

nη
. (7.11)

In line 7.9 we apply the Cauchy-Schwartz inequality. In line 7.10 we apply lemma 7.3.2 and in line

7.11 we apply lemma 7.3.2. Merging the two results the proof follows.

Finally we derive the bound on the error on the recovered weights.

Theorem 7.3.1. Let πθ1 , πθ2 be two Gaussian policies πθi(·|s) ∼ N (θTi ϕ(s),
σ2) with i ∈ {1, 2}, such that πθ2 is the improvement of πθ1 . Let i ∈ [1, 2].
Given datasets Di = {τ i1, . . . , τ in} of trajectories generated by πi, such that
Si ∈ RnH×d is the matrix of corresponding states features, let the minimum
singular value of σmin(STi Si) ≥ η > 0, ∇̂θ1ψ uniformly bounded by M ,
the state features bounded by MS , and the reward features bounded by MR.
Then with probability 1− δ:

∥∥ωL − ω̂
∥∥

2
≤ O


(M +M2

SMR)

σmin(∇θ1ψ)

√
log(2

δ
)

nη




where ωL are the true reward parameters and ω̂ are the parameters recov-
ered using Lemma 7.2.1.

Proof. First we have to bound the error on ∆ created by the behavioral cloning. Given ∆ = θ2−θ1

and ∆̂ = θ̂2 − θ̂1:

∥∥∥∆− ∆̂
∥∥∥ =

∥∥∥θ2 − θ1 − θ̂2 + θ̂1

∥∥∥ ≤ ∥∥∥θ1 − θ̂1

∥∥∥+
∥∥∥θ2 − θ̂2

∥∥∥ ≤ 2σ

√
r + log( 1

δ
)

nη
.

So we can bound the difference in norm between the real weights ωL and the estimated weights ω̂.

We indicate with κ the condition number of∇θψ, with χ =
‖∇̂θψ−∇θψ‖2
‖∇θψ‖2

and y = ∇θψHω. We

97



Chapter 7. Inverse Reinforcement Learning from a Learner

apply the pertubation Lemma C.1.1.∥∥∥ωL − ω̂∥∥∥
2
≤ κ

(1− κχ) ‖∇θψ‖2
(χ
∥∥∥ωL∥∥∥

2
‖∇θψ‖2 +

∥∥∥∆− ∆̂
∥∥∥

2
) + χ ‖y‖2 ‖∇θψ‖2

(7.12)

≤
κ
∥∥∥∇̂θψ −∇θψ∥∥∥

2

c ‖∇θψ‖2

∥∥∥ωL∥∥∥
2

+
κ
∥∥∥∆− ∆̂

∥∥∥
2

c ‖∇θψ‖2
+ ‖∇θψ‖2 ‖y‖2 (7.13)

=
∥∥∥∇θψ − ∇̂θψ∥∥∥

2

(
κ
∥∥ωL∥∥

2

c ‖∇θψ‖2
+ ‖y‖2

)
+
∥∥∥∆− ∆̂

∥∥∥
2

κ

c ‖∇θψ‖2

=
∥∥∥∇θψ − ∇̂θψ∥∥∥

2

( ∥∥ωL∥∥
2

cσmin(∇θψ)
+ ‖y‖2

)
+
∥∥∥∆− ∆̂

∥∥∥
2

1

cσmin(∇θψ)

+ 2σ

√
r + log( 1

δ
)

nη

1

cσmin(∇θψ)

≤ O

 (M +M2
SMR)

σmin(∇θψ)

√
log( 2

δ
)

nη

 ,

where in line 7.12 we apply Lemma C.1.1 and in line 7.13 we apply Equation 7.3.2 and Lemma 7.3.4.

7.4 Discussion on the related works

This setting was proposed in [Jacq et al., 2019]. The authors proposed
a method based on entropy-regularized reinforcement learning, in which
they assumed that the learner is performing soft policy improvements. In
order to derive their algorithm, the authors also assume that the learner
satisfies the policy improvement condition. We remove this assumption,
taking only that the learner is changing its policy parameters along the
gradient direction (which can result in a performance loss). Other works
such as T-REX [Brown et al., 2019, Castro et al., 2019] also recover the
reward function from suboptimal demonstrations, although they require to
have supplementary information about the observed trajectories such as a
performance ranking or human labeling.

7.5 Experiments

This section is devoted to the experimental evaluation of LOGEL. The
algorithm LOGEL is compared to the state-of-the-art baseline Learner From
a Learner (LfL) [Jacq et al., 2019] and T-REX [Brown et al., 2019] in
a gridworld navigation task and in two MuJoCo environments. In these
experiments the assumption that the learner is gradient-based is violated

98



7.5. Experiments

S -5

7

0

-1

-3

Figure 7.2: Gridworld environment: every area has a different reward weight. In the green
area the agent is reset to the starting state.

and in the MuJoCo task the reward features are constructed by states and
actions features. Therefore we can argue that in this experiment the reward
linearity assumption is violated, since we use a different reward space for
the recovered reward function.

7.5.1 Gridworld

The first set of experiments aims at evaluating the performance of LOGEL in
a discrete Gridworld environment. The Gridworld, represented in Figure 7.2,
is composed of five regions with a different reward for each area. The
agent starts from the cell top left and when it reaches the green state, then
it returns to the starting state. The reward feature space is composed of the
one-hot encoding of five areas: the orange, the light grey, the dark grey, the
blue, and the green. The learner weights for the areas are (−3,−1,−5, 7, 0)
respectively.

As a first experiment, we want to verify in practice the theoretical finding
exposed in Section 7.2. In this experiment, the learner uses a Boltzmann pol-
icy and she is learning with the G(PO)MDP policy gradient algorithm. The
observer has access to the true policy parameters of the learner. Figure 7.3
shows the performance of LOGEL in two settings: a single learning step and
increasing batch size (5, 10, 20, 30, 40, 50); a fixed batch size (batch size
5 and trajectory length 20) and an increasing number of learning steps (2,
4, 6, 8, 10). The figure shows the expected discounted return (evaluated in
closed form) and the difference in norm between the learner’s weights and
the recovered weights 2. We note that, as explained in Theorem 7.2.1, with
a more accurate gradient estimate, the observer succeeds in recovering the
reward weights by observing even just one learning step. On the other hand,
as we can deduce from Theorem 7.2.1, if we have a noisy estimation of the

2To perform this comparison, we normalize the recovered weights and the learner’s weights

99



Chapter 7. Inverse Reinforcement Learning from a Learner

0 20 40

−10

−5

0

Batch size (n)

J
(θ

∗
)

0 20 40

0

0.2

0.4

Batch size (n)

‖ω̂
−
ω

L
‖ 2

2 4 6 8 10

−2

0

2

Learning step (m)

J
(θ

∗
)

2 4 6 8 10

0.02

0.04

0.06

0.08

0.1

Learning steps (m)

‖ω̂
−
ω

L
‖ 2

LOGEL Optimal

Figure 7.3: Gridworld experiment with known policy parameters. The learner is using
G(PO)MDP. From left the expected discounted return and the norm difference between
the true weights and the recovered ones with one learning step; the same measures with
fixed batch size (5 trajectories with length 20). The performance of the observers are
evaluated on the learner’s reward weights. Results are averaged over 20 runs. 98% c.i
as shaded area.

0 5 10 15 20 25 30

−15

−10

−5

Learning steps (m)

J
(θ

∗
)

Figure 7.4: Learning performance
of G(PO)MDP. 20 runs, 98%c.i.

0 10 20 30 40

−15

−10

−5

0

Learning steps (m)

J
(θ

∗
)

Figure 7.5: Learning performance
of Q-Learning. 20 runs, 98%c.i.

0 5 10 15 20 25 30

−20

−10

0

Learning steps (m)

J
(θ

∗
)

Figure 7.6: Learning performance
of SPI. 20 runs, 98%c.i.

0 5 10 15 20 25 30

−20

−15

−10

−5

0

Learning steps (m)

J
(θ

∗
)

Figure 7.7: Learning performance
of SVI. 20 runs, 98%c.i.

gradient, with multiple learning steps, the observer succeeds in recovering
the learner’s weights. It is interesting to notice that, from this experiment,
it seems that the bias component, which does not vanish as the learning
steps increase (see Theorem 7.2.1), does not affect the correctness of the
recovered weights.

In the second experiment we consider four different learners using:
Q-learning [Sutton et al., 1998], G(PO)MDP [Deisenroth et al., 2013],
Soft policy improvement (SPI) [Jacq et al., 2019] and Soft Value Iteration

100



7.5. Experiments

10 20 30

−60

−40

−20

0

Learning steps (m)

J
(θ

∗
)

Q-learning

10 20 30

−60

−40

−20

0

Learning steps (m)

G(PO)MDP

5 10

−2

0

2

Learning steps (m)

SPI

5 10 15 20

−40

−20

0

Learning steps (m)

SVI

LFL LOGEL Optimal Behavioral Cloning

Figure 7.8: Gridworld experiment with estimated policy parameters and four learners:
from left Q-learning, G(PO)MDP, SPI, SVI. The green line is the LfL observer, the blue
one is the LOGEL observer and the red one Behavioral Cloning. The performance of
the observers are evaluated on the learner’s reward weights. Results are everaged over
20 runs. 98% c.i. as shaded area.

(SVI) [Haarnoja et al., 2018]. First of all we analyze the learning process of
each learning agent, because the number of learning steps that we employ
in the experiment depends on the number of policy updates that the learner
takes to become an expert. In the following plots, we report the expected
discounted return for each learner: Q-Learning (Figure 7.5), G(PO)MDP
(Figure 7.4), SPI (Figure 7.6), SVI (Figure 7.7). In these plots, the ex-
pected discounted return is estimated using a batch of 50 trajectories for
each learner. The discount factor used in all experiments is 0.96. After this
step we perform the experiment by setting the number of learning steps
looking at the learning process (as in Figures 7.5,7.4,7.6,7.7): Q-learning
and G(PO)MDP requires more steps to learn the task, instead SPI and SVI
become optimal in less than 10 steps. For this experiment, we compare the
performance of LOGEL , LfL [Jacq et al., 2019] and Behavioral Cloning. In
Figure 7.8 we can notice that LOGEL succeeds in recovering the learner’s
reward weights even with learner algorithms other than gradient-based ones.
In fact, SPI, SVI, and Q-learning are not gradient-based learners (although
it was proved recently that Q-learning and SVI follow the gradient direc-
tion [Goyal and Grand-Clement, 2019]). On the other hand, LfL does not
recover the reward weights of the G(PO)MDP learner, which does not use
Bellman updates but gradient ones, and needs more learning steps than
LOGEL to learn the reward weights when Q-learning learner and SVI are
observed. However, it achieves comparable performance to LOGEL when
the learner is SPI. Behavioral Cloning only mimics the last seen policy,
which can be suboptimal.

101



Chapter 7. Inverse Reinforcement Learning from a Learner

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

Million env steps (m)

J
(θ

)
Reacher

0 0.2 0.4 0.6 0.8 1

0

2

4

Million env steps (m)

Hopper

LfL LOGEL Learner TREX BC

Figure 7.9: From the left, the Reacher and the Hopper MuJoCo environments. The red
line is the performance of the learner during 20 learning steps. The observers, LfL,
LOGEL, T-REX and Behavioral Cloning (BC) observe the trajectories of the learning
steps from 10 to 20. The performance of the observers are evaluated on the learner’s
reward weights. Scores are normalized setting to 0 the first return of the learner and to
1 the last one. The results are averaged over 10 runs. 98% c.i. are shown as shaded
areas.

7.5.2 MuJoCo environments

In the second set of experiments, we show the ability of LOGEL to infer
the reward weights in more complex and continuous environments. We
use two environments from the MuJoCo control suite [Brockman et al.,
2016]: Hopper and Reacher. As in [Jacq et al., 2019], the learner is trained
using Policy Proximal Optimization (PPO) [Schulman et al., 2017b]3, with
16 parallel agents for each learning step. For each step, the length of the
trajectories is 2000. Then we use LOGEL , LfL or T-REX [Brown et al.,
2019] to recover the reward parameters. In the end, the observer is trained
with the recovered weights using PPO and the performances are evaluated
on the learner’s weights, starting from the same initial policy of the learner
for a fair comparison. The scores are normalized by setting to 1 the score
of the last observed learner policy and to 0 the score of the initial one (as
done in [Jacq et al., 2019]). In both environments, the observer learns using
the learning steps from 10 to 20 as the first learning steps are too noisy. The
reward function of LfL is the same as the one used in the original paper,
where the reward function is a neural network equal to the one used for
the learner’s policy. Instead, for LOGEL we used linear reward functions
derived only from state and action features. The reward for the Reacher
environment is a 26-grid radial basis function that describes the distance
between the agent and the goal, plus the 2-norm squared of the action.
In the Hopper environment, instead, the reward features are the distance

3It is important to notice that PPO violates the gradient learning assumption of LOGEL.

102



7.5. Experiments

between the previous and the current position and the 2-norm squared of
the action. The T-REX algorithm aims to recover a reward function from
ranked trajectories, where the rank is given by an oracle and is based on the
expected discounted return. We use the algorithm in the LfL setting, where
we approximate the ranking with the temporal updates of the policies, as
was done in an example in the original paper. We implement the reward
function as in the original paper with a three layer neural network with 256
as hidden size.

The results are shown in Figure 7.9, where we reported results averaged
over 10 runs. For Behavioral Cloning we report the performance of the
policy learnt at the 20th step; in fact Behavioral Cloning cannot improve its
performance with learning steps. We can notice that LOGEL succeeds in
identifying a good reward function in both environments, although in the
Reacher environment the recovered reward function causes slower learning.
Instead, LfL fails to recover an effective reward function for the Hopper
environment [Jacq et al., 2019]. The T-REX algorithm, as in the original
paper, succeeds in recovering a good approximation of the reward weights in
the Hopper domain; instead, it does not succeed into recovering the reward
function of the Reacher environment.

Implementation details For the MuJoCo experiments, we use the same hy-
perparameters as in [Jacq et al., 2019], apart from that we use 16 parallel
agents for PPO, due to resource constraints. The number of forward steps are
settled to 2000. As in [Jacq et al., 2019], we select a subset of the learner’s
trajectories and we do not use the first 10 trajectories because the first phase
of learning is too noisy. We evaluate the algorithms on the first 1 million
environment steps.

7.5.3 Autonomous driving scenario

In this section, we report a preliminary experiment that we perform on a
driving simulator scenario. We employ the SUMO simulator, an open-source,
continuous road traffic simulation package designed to handle large road
networks. SUMO focuses on the high-level control of the car, integrating an
internal system that controls the vehicle dynamics. During the simulation,
SUMO provides information on the other vehicles around the ego vehicle.

We consider a crossroad scenario which consists of an intersection with
an arbitrary number of roads. The vehicle coming from the source road has
to reach a target road that has a higher priority. The goal of the agent is to
drive the ego car and enter the target road, avoiding dangerous manoeuvres.

103



Chapter 7. Inverse Reinforcement Learning from a Learner

Time Jerk Slow Crash

0

0.2

0.4

0.6

0.8

1

Features

W
e
ig
h
ts

Recovered Weights True Weights

Figure 7.10: Reward weights for the autonomous simulate driving scenario.

Recovered Real
Weights Weights

Time 0.0401 0.0017
Jerk 0.0174 0.0003
Slow 0.0001 0.0000
Crash 0.9424 0.9980

Table 7.1: Reward weights for the autonomous simulate driving scenario.

The reward features consists of four components:

• Time, a constant feature at each decision step;

• Jerk, the absolute value of the instantaneous jerk, i.e., the finite- differ-
ence derivative of the acceleration;

• Harsh Slow Down, a binary feature, which activates whenever the
velocity is lower than a threshold;

• Crash, a binary feature which activates when the vehicle violates the
safety constraints or performs a crash.

The agent’s policy is a rule-based policy, i.e., a set of parametrized rules,
which is learned using Policy Gradients with Parameter-based Exploration
(PGPE) [Sehnke et al., 2008]. It is important to notice that the agent’s policy
is not differentiable. We perform 10 PGPE updates of the agents and then
we use the learning trajectories with LOGEL. In the behavioural cloning
step, we use a linear layer to approximate the policy of the learner. Table 7.1
shows the normalized weights recovered by LOGEL and the normalized
real weights. As shown in Table 7.1 and in Figure 7.10, the reward weights
recovered are quite similar to the real ones.

104



Part III

Online Learning in Multi-Agent
Reinforcement Learning

105





Approaching the RL problem from an online learning perspective, we are
not only interested in finding the optimal policies but also in measuring the
performance of our algorithm during the learning process. The performance
is measured using the regret, i.e., comparing the performance of the agent’s
actual policy with the optimal one; or evaluating the sample complexity,
i.e., studying how many interactions with the environment are necessary to
converge to an optimal solution. In the last two years, there is an increasing
interest in studying the MARL problem from an online learning perspective,
approaching the problem from two different perspectives: when we control
all the involved agents and, instead, when we can control only one of them.

In Chapter 8 we present the problem formally and revise the related
literature. In Chapter 9 we propose a new algorithm [Ramponi et al., 2021]
to solve the problem of online learning in Configurable MDP. We start by
introducing the concept of Non-cooperative MDP, i.e., a Configurable MDP
where the agent and the configurator can have different reward functions.
Then we propose two algorithms based on the feedback that the configura-
tor perceives from the interaction between agent-environment. Finally, in
Chapter 10, we propose a new lower bound on the expected regret for the
General-sum Stochastic Game setting. Then we propose a new algorithm
that nearly matches the proposed lower bound.

107





CHAPTER8
Online Learning in Stochastic Games

The RL goal that we have considered so far consists of finding a policy that
maximizes the cumulative expected sum of rewards. In the online learning
setting, instead, we are not only interested in finding the optimal policy
but also in measuring the performance of our algorithm during the learning
process. To evaluate the algorithm behavior, the reward that it collects is
compared with the ones of an optimal policy. This performance measure,
called regret, well characterizes the exploration-exploitation dilemma that
we have introduced in Chapter 2, i.e., the problem of finding the best trade-
off between following a decision rule that seems optimal and exploring
different solutions. The exploration, clearly, can lead to instantaneous lower
performances but can also provide information to learn the optimal policy 1.

In RL, the online learning setting was extensively studied in the Bandit
literature [Auer et al., 2002, Lattimore and Szepesvári, 2020]. We have not
introduced the Bandit framework in the preliminaries since they are out of
the scope of this thesis. However, a Bandit is informally an MDP without
dynamics, where the agent playing an action receives a stochastic realization
of its reward. The objective is to learn the best action (or action in the

1We refer the reader to the Prediction, Learning & Games [Cesa-Bianchi and Lugosi, 2006] and Bandit
Algorithms [Lattimore and Szepesvári, 2020] books for a thorough introduction to the online learning problem.

109



Chapter 8. Online Learning in Stochastic Games

contextual setting) to maximize the expected return. Besides its apparent
simplicity, this problem captures the difficulties of learning when we are in
the presence of uncertainty and models many real-world problems.

There are also many works that treat the online learning problem in
Markov Decision Processes [Jaksch et al., 2010, Bartlett and Tewari, 2009a,
Fruit et al., 2018, Osband et al., 2013, Osband and Van Roy, 2017, Agrawal
and Jia, 2017]. In the MDP setting, new challenges have to be solved. In fact,
the exploration-exploitation dilemma in MDPs is clearly more complicated
since we also have to account for the transition probability model and for
its estimation. Moreover, when we move to the multi-agent setting, we add
other difficulties since we also need to control more than one agent or/and
to account for the non-controllable agents’ decisions.

In this chapter, we introduce the online learning problem in Stochastic
games, analyzing the two settings that were proposed in the literature: the
Online and the Offline setting. Then, we review the works that addressed
this problem.

In the rest of this part, we expose two algorithms to solve the online
setting in two different contexts. First, we analyze the online learning
in the Configurable Markov Decision Process (in Chapter 9), where we
control only the configurator entity, and our algorithm does not handle the
agent. Then, we account for the Turn-based Stochastic Games setting (in
Chapter 10) where we have to face an unknown opponent. With these two
contributions, we make a step forward to the theoretical understanding of
the general-sum MARL problem.

8.1 Problem setting

In the Stochastic Games [Shapley, 1953] literature, the theoretical problem
of learning are studied under two different setting, that we call as in [Wei
et al., 2017, Xie et al., 2020a, Tian et al., 2020], offline and online.

In the offline setting [Szepesvári and Littman, 1996, Lagoudakis and
Parr, 2002, Perolat et al., 2015], all the agents are controlled by a central
learner, which decides what actions they have to take. It can also be thought
of as learning in a self-play, i.e., where we are against ourselves. In this
framework, the goal, in general, is finding an ε-Nash Equilibrium. The
algorithm is usually measured by its sample-complexity, i.e., how many
interactions with the environment are necessary to learn an ε-Nash Equilib-
rium. Obviously, if we are in a zero-sum game, it is equivalent to estimate
how many samples are required to learn a maximin (or minimax) policy.

In the online setting [Littman, 1994, Bowling and Veloso, 2002, Brafman

110



8.1. Problem setting

and Tennenholtz, 2002, Conitzer and Sandholm, 2007], instead, we can
control only one agent, which has to maximize its own expected cumulative
sum of rewards in a multi-agent environment. This leads to new challenges
with respect to the single-agent setting since the environment is no longer
stationary and, so our exploration process is highly dependent on the other
agents’ policies. In the online setting, we are interested in studying the
algorithm’s regret, i.e., the difference between the cumulative sum of rewards
obtained by a benchmark policy and the one obtained by our algorithm
during the learning process.

Since we propose two algorithms to deal with the online setting, we
continue this section introducing the preliminaries for this one.

In this thesis, we consider the two-player finite-horizon (episodic) Stochas-
tic Game setting, SG = (N,S,A,P ,R, γ, µ,H), described in Chapter 4,
i.e., an SG such that N = 2, H < ∞ and γ = 1. As we have introduced
in Chapter 4, for this setting, we can construct a value-iteration-like algo-
rithm that converges to an Equilibrium policy, under the assumption that the
admissible policies are only the Markovian ones. The interaction between
the two agents proceeds in episodes, where at the beginning of each one,
the agents decide what policy to play. We indicate with K the number of
episodes played by the two agents.

We define as π1 = (π1,1, . . . , π1,K) and π2 = (π2,1, . . . , π2,K) the two
sequences of policies that, respectively, are played by our agent (agent 1) and
the other agent (agent 2). Moreover, we denote with V π1,π2

1,h (s) and V π1,π2

2,h (s)
the value functions of agent 1 and agent 2 in the state s ∈ S at time step
h and with V π1,π2

1 = Es∼µ[V π1,π2

1,1 (s)] and V π1,π2

2 = Es∼µ[V π1,π2

2,1 (s)] the
expected returns for the two agents.

We do not know the agent 2 policies π2 a priori. and our goal is to learn a
sequence of policies π1 which minimizes the total (expected) regret, which
is defined by:

E[Regret(K)] =
K∑

k=1

V ?
1 − V

π1,k,π2,k

1 , (8.1)

where V ?
1 corresponds to the benchmarks couple of policies π?1, π

?
2 used to

compare our algorithm. In literature there are common ways of defining
V ?

1 [Xie et al., 2020a]. The most used is the minmax policy defines as:

V minmax = min
π2∈Π2

max
π1∈Π1

V π1,π2

1 , (8.2)

which corresponds to play in a zero-sum games.

111



Chapter 8. Online Learning in Stochastic Games

The second is the Stackelberg Equilibrium of the game:

V SE = max
π1∈Π1

V
π1,br(π1)

1 , (8.3)

where br : Π1 → Π2 corresponds to a function that select a best response
policy for the agent 2 to each policy of the agent 1.

While the first way of defining the benchmark policy is suitable to account
for adversarial settings, where the other agent can change adversarially its
policy to maximize the regret, or we are in a zero-sum game, it cannot be
used in a general-sum setting where the agent 2 only wants to maximize
its own reward function. In fact, in the latter setting, agent 1 could hope
to achieve better performance than when facing an adversarial opponent.
However, it was shown that in some cases, like the one where we cannot
observe anything of the other agent interactions, it is necessary to adopt
the minimax benchmark since, otherwise, the regret minimization problem
would be too difficult [Tian et al., 2020].

On the other hand, in many cases, we can observe the other agent inter-
actions with the environment, and in other situations, it is possible that we
retrieve its rewards (for example, using IRL approaches). In these problems,
it is more reasonable to use the more challenging Stackelberg Equilibrium
benchmark.

8.2 Related works

After the introduction of the concept of Stochastic Games (aka Markov
Games) [Shapley, 1953], many RL algorithms were proposed to learn in this
setting. Some of them were discussed in the preliminary Chapter 4.

However, the theoretical study of this setting is quite poor, compared to
the empirical one (see the survey [Zhang et al., 2019a, Da Silva and Costa,
2019,Hernandez-Leal et al., 2019,Papoudakis et al., 2019]). Only in the last
years there has been a growing interest in providing algorithms with strong
sample-complexity and regret guarantees for the two theoretical MARL
settings that we introduced in Section 8.1: the offline and online ones. In
this section, we review the algorithms that were proposed to address these
two settings.

Offline setting The majority of the works in theoretical MARL provide
results in the zero-sum offline setting. In the offline zero-sum setting both
model-free [Bai et al., 2020, Zhang et al., 2020c] and model-based [Bai and
Jin, 2020, Sidford et al., 2020, Li et al., 2020, Liu et al., 2020, Zhang et al.,
2020b] algorithms were proposed with near-optimal sample complexity and

112



8.2. Related works

regret guarantees. For the model-based setting, the prevalent approach is to
assume to have access to a generative model [Sidford et al., 2020, Zhang
et al., 2020b] where the authors provide non-asymptotic results on the
number of query to the generator. However, in [Liu et al., 2020] the authors
proposed a model-based algorithm for the zero-sum setting without access to
a generative model and that matches the information-theoretic lower bound.
Moreover, in this recent work, the authors also proposed the first line of
provably sample-efficient algorithms for multi-player general-sum games.
In [Li et al., 2020] the authors introduced, instead, an algorithm to learn a
Nash Equilibrium in the multi-player general-sum setting. Very recently, the
first algorithm to deal with sample complexity in the general-sum games
that achieves an ε-Stackleberg Equilibrium was introduced [Bai et al., 2021].
In this paper the authors consider the bandit feedback setting i.e., they can
see only the random samples of the rewards received by the two players. In
the paper it is identified a fundamental gap between the exact value of the
Stackelberg equilibrium and its estimated version using finite samples. This
result gives insights into the hardness of learning in General-sum games also
when the setting is state-less and the algorithm has the control of the leader
and the follower.

Online setting The online setting is only studied, as far as we know, in
the zero-sum setting. The first work that analyzes the problem of online
learning in Stochastic Games is [Brafman and Tennenholtz, 2002]. In this
paper the authors propose the famous R-MAX algorithm that deals with
the zero-sum average-reward setting and provides the first regret bound
for the setting. In [Wei et al., 2017] the authors provide an algorithm for
zero-sum Stochastic games that extends UCRL2, but that works under strong
reachability assumptions. This algorithm significantly improve the R-MAX
regret bound. [Xie et al., 2020a] propose an algorithm with a "weak" regret
notion (the minimax defined before) which is compatible with a zero-sum
game, using function approximation. This work is analyze under the finite-
horizon setting and it achieves near-optimal regret bounds. Instead, [Tian
et al., 2020] introduce the online setting with bandit-feedback. In this setting
the agent cannot observe any interaction between the adversarial agent and
the environment. The authors extend the method of [Bai et al., 2020] to deal
with this setting. In [Xie et al., 2020a] the authors leave as open question
how to construct an algorithm to achieve optimal regret exploiting a "weak
opponent", i.e., an opponent that is not totally adversarial (as in zero-sum
games). We address this open question in Chapter 10.

113



Chapter 8. Online Learning in Stochastic Games

Adversarial MDPs The adversarial MDP problem is strictly related to the
Stochastic Game setting. Most of the works in this setting consider adversar-
ial rewards [Even-Dar et al., 2009, Gergely Neu et al., 2010, Zimin and Neu,
2013, Dick et al., 2014, Rosenberg and Mansour, 2019, Jin et al., 2020a].
i.e. the presence of an adversary that can change the received rewards. Ob-
viously this setting is quite different from the Stochastic Games, since the
adversary can affect only the rewards and not the transitions model. There
are also some works that consider adversarial transitions [Yu and Mannor,
2009,Neu et al., 2012,Lykouris et al., 2019]. We can apply these approaches
in the bandit setting where we cannot see any feedback from the other agent,
with the scope of constructing an algorithm robust to these perturbations.

114



CHAPTER9
Non-Cooperative Configurable Markov

Decision Processess

In this chapter, we solve an online learning problem in the Configurable
Markov Decision process framework, which involves two entities, the con-
figurator and the agent.

As we have explained in the previous chapters, the standard RL frame-
work concerns an agent whose objective is to maximize the reward collected
during its interaction with the environment. However, there are real-world
scenarios in which the agent itself or an external supervisor (configurator)
can partially modify the environment. For example, in an autonomous
driving scenario, it is possible to alter the car setup to suit its needs bet-
ter. Recently, the Configurable Markov Decision Processes [Metelli et al.,
2018, Conf-MDPs] were introduced to model these scenarios and analyze
the interactions between the agent and the configurator.

Originally, solving a Conf-MDP consists of simultaneously optimizing a
set of environmental parameters and the agent’s policy to reach the maximum
expected return. In many scenarios, however, the configurator does not know
the agent’s reward and its intention differs from that of the agent, leading
to new appealing schemes. For instance, imagine we are the owner of

115



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

a supermarket, and we have to decide how to arrange the products on the
shelves. We intend to increase the company’s final profit; instead, a customer
aims to spend the shortest time possible inside the supermarket and only buy
the indispensable products. Since we do not know the customer’s reward
function, the only possibility is to try different dispositions and see their
reactions. Nevertheless, what if we knew what buyers are most interested in?
In this case, we can strategically decide how to position other products close
to the popular ones to induce the customer in a more profitable behavior.

In this chapter, we introduce the Non-Cooperative Configurable Markov
Decision Processes (NConf-MDP), a new framework that handles the possi-
bility of having different reward functions for the agent and the configurator.
While a Conf-MDP assumes that the configurator acts to help the agent to
optimize its expected reward, an NConf-MDP, instead, allows modeling
a more extensive set of scenarios, including all the cases in which agent
and configurator display a non-cooperative behavior, modeled by the in-
dividual reward functions. Obviously, this setting cannot be solved with
straightforward application of the algorithms designed for Conf-MDPs that
focus on the case in which both entities share the same interests. In fact,
if the configurator and the agent optimize separately different objectives,
they might not converge to an equilibrium strategy [Mertikopoulos et al.,
2018b, Papadimitriou and Piliouras, 2016]. Moreover, accounting for the
agent’s interests would be, as in Stochastic games, advantageous for the
configurator [Hu and Wellman, 2003].

In this novel setting, we consider an online learning problem, where
the configurator has to select a configuration, within a finite set of possible
configurations, in order to maximize its own return. This framework can be
seen as a leader-follower game, in which the follower (the agent) is selfish
and optimizes its own reward function, and the leader (the configurator) has
to decide the best configuration w.r.t. the best response of the agent. Clearly,
to adapt its decisions, the configurator has to receive some form of feedback
related to the agent’s behavior. In this chapter, we analyze two settings based
on whether the configurator observes just the agent’s actions or also a noisy
version of the agent’s reward function. For the two settings, we propose
algorithms based on the Optimism in the Face of Uncertainty [Auer et al.,
2002, OFU] principle.

• We extend the Configurable Markov Decision Process setting to deal
with situations where the configurator and the agent have different
reward functions. We call this new framework the Non-Cooperative
Markov Decision Process (Section 9.2).

116



9.1. Configurable MDPs

• We provide an algorithm, Action-feedback Optimistic Configuration
Learning (AfOCL), which maximizes the configurator’s performance
under the assumption that it observes the agent’s actions only (Section
9.4). We show AfOCL achieves finite expected regret, scaling linearly
with the number of admissible configurations. Moreover, as far as
we know, we provide the first problem-dependent regret analysis in
Multi-Agent RL.

• Then, we introduce an algorithm Reward-feedback Optimistic Config-
uration Learning (RfOCL) that assumes to observe a noisy version of
the agent’s reward in addition to the agent’s actions (Section 9.5). We
prove that, under suitable conditions, it is possible to further exploit the
structure underlying the decision process, removing the dependence
on the number of configurations. This is the first proof that takes into
account the suboptimality gap of the controllable agent (the configura-
tor) as well as the suboptimality gaps of the uncontrollable agent (the
RL agent).

• Finally, we provide an experimental evaluation on benchmark domains,
inspired by the motivational scenarios of NConf-MDPs (Section 9.8).

9.1 Configurable MDPs

We start by introducing the Configurable Markov Decision Process (Conf-
MDPs).

Definition 9.1.1 (Configurable MDP [Metelli et al., 2018]). A Configurable
Markov Decision Process (Conf-MDP) is defined as CM = (S,A,P, γ, µ,R,
H)1, where (S,A, γ, µ,R, H) is an MDP without transition function, and
P is a configuration space.

A Conf-MDP extends the MDP concept by considering a configura-
tion space P (i.e., a set of transition models) instead of a single transition
model P . This allows us to model situations in which we can modify some
environmental parameters to optimize the expected discounted return.

The Q-value of a policy π ∈ Π and configuration P ∈ P is the expected
sum of the rewards starting from (s, a) ∈ S ×A at step h ∈ [H]:

Qπ,P
h (s, a) = R(s) + E

sh′∼P,π

[
H∑

h′=h+1

R(sh′)|sh = s, ah = a

]
,

1In this chapter we consider rewards which are function of the state only.

117



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

having denoted with Esh′∼P,π the expectation w.r.t. the distribution
P(·|sh′−1, πh′−1(sh′−1)). The value function is given by V π,P

h (s) = Qπ,P
h (s, πh(s))

and the expected return is defined as V π,P = Es∼µ[V π,P
1 (s)]. In a Conf-

MDP the goal consists in finding a policy π∗ together with an environment
configuration P∗ so as to maximize the expected return, i.e.

(π∗,P∗) ∈ arg max
π∈Π,P∈P

V π,P .

9.2 Non-Cooperative Configurable MDPs

The definition of Conf-MDP (see section 9.1) allows modeling scenarios
in which agent and configurator share the same objective, encoded in a
single reward functionR. In this section, we introduce an extension of this
framework to account for the presence of a configurator having interests that
might differ from those of the agent.

Definition 9.2.1 (Non-Cooperative Configurable MDP). A Non-Cooperative
Configurable Markov Decision Process (NConf-MDP) is defined by a tuple
NCM = (S,A,P, µ,Rc,Ro, γc, γo, H), where (S,A,P, µ,H) is a Conf-
MDP without reward and discount factors, Rc,Ro : S → [0, 1] are the
configurator and agent (opponent) reward functions, and γc, γo ∈ [0, 1] are
the configurator and agent discount factors.

In this chapter we assume that the discount factors are equal to 1, since
we consider the finite-horizon (episodic) setting. Moreover, we consider
finite state and action spaces. Given a policy π ∈ Π and a configuration
P ∈ P, for every (s, a) ∈ S ×A and h ∈ [H] we define the configurator
and agent Q-values as:

Qπ,P
c,h (s, a) = Rc(s) + E

sh′∼P,ah′∼π

[
H∑

h′=h+1

Rc(sh′)|sh = s, ah = a

]
,

Qπ,P
o,h (s, a) = Ro(s) + E

sh′∼P,ah′∼π

[
H∑

h′=h+1

Ro(sh′)|sh = s, ah = a

]
.

We denote with

V π,P
c,h (s) = Qπ,P

c,h (s, πh(s)), V π,P
o,h = Qπ,P

o,h (s, πh(s)),

the value functions and with

V π,P
c = E

s∼µ
[V π,P
c,1 (s)], V π,P

o = E
s∼µ

[V π,P
o,1 (s)],

the expected returns for the configurator and the agent respectively.

118



9.3. Problem Formulation

Connections with Robus RL There are some natural connections between
the Robust RL [Morimoto and Doya, 2005] problem and Non-cooperative
Conf-MDPs. The intent of Robust RL is to learn policies that are robust to
transition model shifts. The literature regarding Robust control problems
is wide [Nilim and El Ghaoui, 2005, Mannor et al., 2012, Lim et al., 2013,
Mannor et al., 2016, Tessler et al., 2019]. Many works tract the problem
considering an adversary that can change the environment transitions during
the learning process, leading to a min-max optimization problem. However,
we have to notice that this setting is quite different from Non-cooperative
Conf-MDPs, where the reward functions are not the necessary opposite.
However, the main difference between the NConf-MDP and Robust MDP
problem is in the control that we have on the entities: in NConf-MDPs, we
can control the configurator and, in some cases also the agent.

9.3 Problem Formulation

While for classical Conf-MDPs [Metelli et al., 2018, Metelli et al., 2019a] a
notion of optimality is straightforward as agent and configurator share the
same objective, in an NConf-MDP, they can display possibly conflicting
interests. We assume a sequential interaction between the configurator
and the agent that resembles the leader-follower protocol [Breton et al.,
1988, Balcan et al., 2015, Peng et al., 2019]. First, the configurator (leader)
selects an environment configuration P ∈ P and then the agent (follower)
plays a best response policy π∗P ∈ Π, i.e., an optimal policy for the MDP
(S,A,P , µ,Ro, H):

π∗P ∈ arg max
π∈ΠHD

V π,P
o .

Before proceeding we make the following assumption.

Assumption 9.3.1. For every environment configuration P ∈ P, the agent
will always play the same best response policy π∗P . Furthermore, π∗P is
deterministic.

We assume that the agent will react with the same optimal policy π∗P
whenever facing configuration P . This is a common assumption in standard
Stackelberg Games [Balcan et al., 2015, Peng et al., 2019, Sessa et al.,
2020]. Moreover, we require that the best response is a deterministic policy.
This assumption is justified since, for every MDP, there exists at least one
deterministic optimal policy [Sutton et al., 1998, Puterman, 2014].

119



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

Under Assumption 9.3.1, the goal of the configurator is well-defined and
consists in finding a configuration P∗ ∈ P that is optimal under the agent’s
best response policy:

P∗ ∈ arg max
P∈P

V
π∗P ,P
c .

From a game theoretic perspective, the pair (P∗, π∗P∗) can be regarded as a
Stackelberg equilibrium of the corresponding game [Breton et al., 1988].

The configurator knows everything about the NConf-MDP, except for the
agent reward functionRo. At each episode k ∈ [K], the configurator selects
a configuration Pk ∈ P and observes a trajectory of H steps generated by
the agent’s best response policy π∗Pk . In this chapter we study two types of
feedback from the agent:

• Action-feedback (Af). The configurator observes the states and the actions
played by the agent (s1, a1, . . . , sH−1, aH−1, sH), where ah = π∗Pk,h(sh).

• Reward-feedback (Rf). The configurator observes the states, the actions
played by the agent, and a noisy feedback of the agent reward function
(s1, r̃1, a1, . . . , sH−1, r̃H−1, aH−1, sH , r̃H), where ah ∼ π∗pk,h(sh) and r̃h
is sampled from a distribution with meanRo(sh) and support [0, 1].2

The Rf tries to model situations in which the agent’s reward is either known
under uncertainty or it is obtained in an approximate way through IRL [Osa
et al., 2018].

From an online learning perspective, the goal of the configurator is to
minimize the expected regret:

E[Regret(K)] = E

[
K∑

k=1

max
P∈P

V
π∗P ,P
c − V π∗Pk

,Pk
c

]
. (9.1)

We assume that the configuration space P is a finite set made ofM stochastic
transition models P = {P1, . . . ,PM}. To lighten the notation, in the
following, we will denote with πi the agent’s best response policy to the
configuration Pi, i.e., π∗Pi and with V i the configurator expected return

attained with configuration Pi and π∗Pi , i.e., V
π∗Pi ,Pi
c . Finally, we denote with

V ∗ = maxi∈[M ] V
i. This setting is quite similar to the one presenting in the

previous chapter where, instead of a configurator and an agent, we have two
agents. As in the setting defined in Chapter 8 we can control only one of the
entities of the game (in this case the configurator).

2Clearly, the results we present can be directly extended to subgaussian distributions on the reward.

120



9.4. Action-feedback Optimistic Configuration Learning

On the optimality of the agent’s policy In our setting, we assume that the
agent’s policy at every episode is an optimal policy. It might be argued
that the agent, whenever experiencing a modification of the environment
configuration, needs some time to adjust its policy before reaching optimal-
ity. However, in real-world situations, environment configuration and agent
learning typically happen on different time scales. Indeed, the configuration
changes slowly, giving the agent the time to converge to an optimal policy.
For instance, in the supermarket example, the time interval between two
changes of product disposition might be more than one month; instead,
a buyer takes less time (few visits) to learn the disposition and their best
policy.

In the next section, we present two algorithms for the online learning
problem introduced above. The first algorithm uses only the collected agent
decisions to optimistically learn the best configuration (Section 9.4). In
the second algorithm, we also use the noisy reward feedback to construct
an algorithm that leverages the structure that links together all the transi-
tion probability models: the agent’s reward function Ro. We show that,
under suitable assumptions, the regret of the second algorithm removes the
dependencies on the number of configurations (Section 9.5).

9.4 Action-feedback Optimistic Configuration Learning

We start with the action-feedback (Af) setting in which the configurator
observes the agent’s actions only. The idea at the basis of the algorithm we
propose, Action-feedback Optimistic Configuration Learning (AfOCL), is to
maintain, for each configuration, a set of plausible policies that contains the
agent’s best response policy. The configurator plays the transition model that
maximizes an optimistic approximation of its value function. Specifically,
for every i ∈ [M ], k ∈ [K], and h ∈ [H] we denote withAik,h(s) ⊆ A the set
of plausible actions in state s at step h for configuration Pi at the beginning
of episode k. Since the agent’s best response policy πi is deterministic, if
state s is visited at step h before episode k, we know the agent’s action in
the current model Pi and therefore we set Aik,h(s) = {πi,h(s)}, otherwise
we have no knowledge and we set Aik,h(s) = A.

Based on this, we can compute an optimistic approximation Ṽ i
k,h of the

configurator value function V i
h :

Ṽ i
k,h(s) = Rc(s) + max

a∈Aik,h(s)

∑

s′∈S

pi(s
′|s, a)Ṽ i

k,h+1(s′), (9.2)

121



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

Algorithm 11 Action-feedback Optimistic Configuration Learning (AfOCL).

1: Input: S, A, H , P = {P1, . . . ,PM}
2: Initialize Ai1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]
3: for episodes 1, 2, . . . ,K do
4: Compute Ṽ ik for all i ∈ [M ]

5: Play PIk with Ik ∈ arg maxi∈[M ] Ṽ
i
k

6: Observe (sk,1, ak,1, . . . , sk,H−1, ak,H−1, sk,H)
7: Compute the plausible actions for all s ∈ S and h ∈ [H]:

Aik+1,h(s) =

{
{ak,h} if i = Ik and s = sk,h

Aik,h(s) otherwise

8: end for

and Ṽ i
k,H(s) = Rc(s). For visited pairs (s, h) the maximization over the

actions reduces to the evaluation of the transition model in the agent’s action
πi,h(s). Clearly, we have that Ṽ i

k,h(s) ≥ V i
h(s) for all s ∈ S, h ∈ [H], and

i ∈ [M ]. Thus, at each episode k ∈ [K] the configurator plays the transition
model PIk maximizing the optimistic approximation Ṽ i

k :

Ik ∈ arg max
i∈[M ]

Ṽ i
k .

The pseudocode of AfOCL is reported in Algorithm 11. The computation
of the optimistic approximation Ṽ i

k,h can be simply performed applying a
value-iteration-like algorithm [Puterman, 2014] that employs the iterate as
in Equation (9.2). Notice that the computational complexity decreases as
the number of visited states increases and, in any case, is bounded by that
of value iteration O (HS2A). Therefore, the time complexity of AfOCL is
O (KMHS2A).

9.4.1 Regret Guarantees

In this section, we provide an expected regret bound for the AfOCL al-
gorithm. Since the policy is deterministic, in every episode k ∈ [K], we
acquire the information about which action the agent plays, in the chosen
model PIk , for every visited state. So the main effort is to estimate the
agent’s policies for every model. In fact, after that, the algorithm will be
able to compute the correct expected return for each transition model. How-
ever, due to the models’ stochasticity Pi for i ∈ [M ], some states might be
visited with low frequency. The following result exploits the determinism of

122



9.4. Action-feedback Optimistic Configuration Learning

the agent’s best response policy to prove that the regret AfOCL suffers is
constant, independent on the number of episodes K.

Theorem 9.4.1 (Regret of AfOCL). Let NCM = (S,A,P, µ,Rc,Ro, H)
with P = {P1, . . . ,PM} be the M finite-horizon MDPs of the problem. The
expected regret of AfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤ 3MH3S2. (9.3)

Discussion on the AfOCL regret bound The result might be surprising as the
regret is constant and independent of the suboptimality gaps between the
configurations, i.e., ∆i = V ∗ − V i for every i ∈ [M ]. As supported by
intuition, we need to spend more time to discard MDPs that are more similar
in performance to the optimal one. Formally, the maximum number of
times a suboptimal configuration Pi is played is proportional to 1

∆i
(and not

proportional to 1
∆2
i

as in standard bandits). This is because the policies are
deterministic and, to learn them, we just need one visit to the state. Then,
since playing the sub-optimal i-th configuration costs exactly ∆i immediate
expected regret, we have that the toal regret does not scale with ∆i.

Proof To prove the result of Theorem 9.4.1 we start by bounding the dif-
ference between the optimistic expected discounted return Ṽ i

k and the true
expected return V i for every configuration Pi ∈ P. We define with dih(s)
the visitation probability of state s at step h under the transition model Pi.
Lemma 9.4.1. For every episode k ∈ [K] and configuration Pi ∈ P, the
difference between the optimistic expected return Ṽ i

k and the true expected
return V i is bounded by:

Ṽ i
k − V i ≤ 2H

∑

s∈S

H−1∑

h=1

dih(s)1
{
N i
k,h(s) = 0

}
. (9.4)

where N i
k,h(s) is the number of times the state s ∈ S is visited at step

h ∈ [H] with the configuration Pi ∈ P up to episode k − 1.

Proof. First of all, we denote with d̃ih(s) the visitation probability of visiting state s at step h under
transition model Pi and playing the estimated agent’s best response policy π̃i,k (we will omit the
subscript k in the following). Moreover, the visitation probabilities satisfy the following equalities for
all h ≥ 2:

dih(s) =
∑
s′∈S
Pi(s|s′, πi,h(s′))dih−1(s′)

d̃ih(s) =
∑
s′∈S
Pi(s|s′, π̃i,h(s′))d̃ih−1(s′),

(9.5)

123



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

with dih(s) = d̃ih(s) = µ(s). Thus, we have:

Ṽ ik − V i =
∑
s∈S

[
µ(s)R(s)− µ(s)R(s) +

H∑
h=2

(d̃ih(s)− dih(s))R(s)

]
(9.6)

≤
∑
s∈S

H∑
h=2

∣∣∣d̃ih(s)− dih(s)
∣∣∣ (9.7)

=
∑
s∈S

H−1∑
h=1

∣∣∣∣∣∑
s′∈S

d̃ih(s′)Pi(s|s′, π̃i,h(s′))− dih(s′)Pi(s|s′, πi,h(s′))

∣∣∣∣∣ (9.8)

=
∑
s∈S

H−1∑
h=1

∑
s′∈S

∣∣∣d̃ih(s′)− dih(s′)
∣∣∣Pi(s|s′, π̃i,h(s′))

+ dih(s′)
∣∣Pi(s|s′, π̃i,h(s′))− Pi(s|s′, πi,h(s′))

∣∣
=
∑
s′∈S

H−1∑
h=2

∣∣∣d̃ih(s′)− dih(s′)
∣∣∣

+
∑
s∈S

∑
s′∈S

H−1∑
h=1

dih(s′)
∣∣Pi(s|s′, π̃i,h(s′))− Pi(s|s′, πi,h(s′))

∣∣ (9.9)

=

H∑
H′=2

∑
s∈S

∑
s′∈S

H′−1∑
h=1

dih(s′)
∣∣Pi(s|s′, π̃i,h(s′))− Pi(s|s′, πi,h(s′))

∣∣ (9.10)

≤ H
∑
s′∈S

H−1∑
h=1

dih(s′)
∑
s∈S

∣∣Pi(s|s′, π̃i,h(s′))− Pi(s|s′, πi,h(s′))
∣∣ (9.11)

≤ 2H
∑
s′∈S

H−1∑
h=1

1
{
N i
k,h(s) = 0

}
dih(s′), (9.12)

where in line (9.6) we use the definition of expected return. In line (9.7) we bound the value of every

reward with its maximum value 1. In line (9.8) we expanded the probability distribution of visiting

states using Equations (9.5). In line (9.9) we observe that d̃i1(s′) − di1(s′) = µ(s) − µ(s) = 0 to

make the first summation starting from h = 2. In line (9.10), we apply the recursion with line (9.7).

In line (9.11), we bound H ′ ≤ H and observe that the outer summation has less than H terms.

Finally, in line (9.12) we upper bound the differences between the two probabilities with 2, and we

use the fact that when we have seen a state s at step h with a configuration Pi we have learned its

policy (that is deterministic).

Given the previous lemma we can now assess when the configurator stops
playing a suboptimal configuration Pi 6= P∗. Then we will use this stopping
criteria to derive our regret bound.

Lemma 9.4.2. A configuration Pi ∈ P is no longer played after episode
k ∈ [K] if for every state s ∈ S and h ∈ [H], with dih(s) ≥ ∆i−c

2H2S
, we have

N i
k,h(s) > 0, where c > 0 is arbitrary and ∆i = V ∗ − V i.

124



9.4. Action-feedback Optimistic Configuration Learning

Proof. It suffices to prove that the optimistic expected return satisfies Ṽ ik < V ∗, that, in turn, will
satisfy V ∗ ≤ Ṽ i∗k where i∗ ∈ arg maxi∈[M ] V

i (this way configuration i will no longer be played):

Ṽ ik = V i + Ṽ ik − V i

≤ V i + 2H
∑
s∈S

H−2∑
h=1

dih(s)1
{
N i
h,k(s) = 0

}
(9.13)

≤ V i + 2H2S
∆i − c
2H2S

(9.14)

= V i + ∆i − c < V ∗, (9.15)

where in line (9.13) we apply Lemma 9.4.1. In line (9.14) we bound the state visitation probabilities

of the (s, h) pairs with N i
h,k(s) > 0 with their maximum value, as in the statement hypothesis. In

line (9.15) we use the fact that ∆i = V ∗ − Vi.

Having defined in the above lemma 9.4.2 how many times the configura-
tor has to play suboptimal configurations, we can now derive the regret of
the proposed algorithm.

Theorem 9.4.1 (Regret of AfOCL). Let NCM = (S,A,P, µ,Rc,Ro, H)
with P = {P1, . . . ,PM} be the M finite-horizon MDPs of the problem. The
expected regret of AfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤ 3MH3S2. (9.3)

Proof. We rephrase the regret as:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni],

where Ni is the number of times that the algorithm plays model Pi which is not the optimal
configuration Pi∗ . We start bounding for every configuration Pi s.t. ∆i > 0 the expected value of
Ni. We denote with kil the round at which model i is selected for the l-th time:

E[Ni] ≤
K∑
l=0

Pr(Ni ≥ l)

≤
∞∑
l=0

Pr(Ni ≥ l) (9.16)

≤
∞∑
l=0

Pr
(
Ṽ iki

l
− V ∗ ≥ 0

)
, (9.17)

(9.18)

where in line (9.16) we extend the sum to∞. In line (9.17) we exploit the fact that if configuration i
is selected then it must be Ṽ i

ki
l
≥ Ṽ i∗

ki
l

and, because of optimism Ṽ i
∗
ki
l
≥ V ∗. Then, we observe that

for Lemma 9.4.2, if configuration i is played at time kil , then there must exists s ∈ S and h ∈ [H]

125



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

with dih(s) ≥ ∆i−c
2H2S

that is not played yet. Formally:

E[Ni] ≤
∞∑
l=0

Pr
(
Ṽ iki

l
− V ∗ ≥ 0

)
≤ 1 +

∞∑
l=1

Pr

(
∃s ∈ S, ∃h ∈ [H] s.t. dih(s) ≥ ∆i − c

2H2S
: N i

ki
l
,h(s) = 0

)
(9.19)

≤ 1 +

∞∑
l=1

∑
s∈S,h∈[H]:di

h
(s)≥∆i−c

2H2S

Pr
(
N i
ki
l
,h(s) = 0

)
(9.20)

≤ 1 + SH

∞∑
l=1

(
1− ∆i − c

2H2S

)l−1

(9.21)

= 1 + SH
1

∆i−c
2H2S

≤ 1 +
2H3S2

∆i − c
, (9.22)

where, in line (9.19) we use Lemma 9.4.2. In line (9.20) we use the union bound over the set employed
for existential quantification. In line (9.21) we bound the probability as Pr

(
N i
ki
l
,h

(s) = 0
)

=

(1− dih(s))l−1, thanks to the independence of the rounds. In line (9.22) we use the geometric series
properties.

So the expected regret is bounded by:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni] ≤
∑

i∈[M ]:∆i>0

∆i

(
2H3S2

∆i − c
+ 1

)
≤ 3MH3S2,

having taken the infimum over c > 0.

9.5 Reward-feedback Optimistic Configuration Learning

The main drawback of AfOCL is that every transition model is treated
separately, preventing from employing the underlying structure of the envi-
ronment. Such a structure is represented by the agent reward functionRo,
which is completely ignored in AfOCL. Indeed, if the configurator knew
Ro, it could find the optimal configuration with no need for interaction by
simply computing the agent’s best response policies.

The algorithm we propose in this section, Reward-feedback Optimistic
Configuration Learning (RfOCL), employs the reward feedback (Rf), i.e., at
every interaction, the configurator can see also a noisy version of the agent’s
reward function. The crucial point is thatRo is the same regardless of the
chosen configuration, and, for this reason, it provides a link between them.

Specifically, for every k ∈ [K] and s ∈ S , RfOCL maintains a confidence
interval for the agent reward functionRk(s) = [Ro,k(s),Ro,k(s)] obtained
using the samples collected up to episode k − 1 regardless of the played
configuration. We apply Höeffding’s concentration inequality to build the

126



9.5. Reward-feedback Optimistic Configuration Learning

confidence intervals obtaining:

R̂o,k(s)±
√

log(2SHk2)

max{Nk(s), 1}
, (9.23)

where Nk(s) is the number of visits of state s in the first k− 1 episodes, and
R̂o,k(s) is the sample mean of the observed rewards for state s up to episode
k.

Given the estimated reward, for every configuration i ∈ [M ], we can com-
pute a confidence interval for the corresponding agent’s Q-valuesQk,h(s, a) =

[Qi

o,k,h
(s, a), Q

i

o,k,h(s, a)], by simply applying the Bellman equation:

Qi

o,k,h
(s, a) = Ro,k(s) +

∑

s′∈S

Pi(s′|s, a) max
a′∈A

Qi

o,k,h+1
(s′, a′),

Q
i

o,k,h(s, a) = Ro,k(s) +
∑

s′∈S

Pi(s′|s, a) max
a′∈A

Q
i

o,k,h+1(s′, a′),

and Qi

o,k,H
(s, a) = Ro,k(s) and Q

i

o,k,H(s, a) = Ro,k(s). If the true reward
function belongs to the confidence interval, i.e., Ro ∈ Rk, then the true
Q-value belongs to the corresponding confidence interval, i.e., Qi

h ∈ Qk,h.
Consequently, we can use Qk,h to restrict the set of plausible actions in a
state without actually observing the agent playing the action in that state.
Indeed, the plausible actions are those that have a Q-value upper bound
larger than the maximum Q-value lower bound:

Ãik,h(s) =

{
a ∈ A : Q

i

o,k,h(s, a) ≥ max
a′∈A

Qi

o,k,h
(s, a′)

}
. (9.24)

In other words, if the upper Q-value of an action is smaller than the largest
lower Q-value, it cannot be the greedy action, and it is discarded. Clearly,
whenever we observe the agent playing an action in (s, h) we can reduce the
plausible actions to the singleton {πi,h(s)}, as in the action-feedback setting
(Section 9.4). Based on this refined definition of plausible actions, we can
compute the optimistic estimate Ṽ i

k,h of the configurator value function V i
h

as in Equation (9.2) and proceed playing the optimistic configuration.
The pseudocode of RfOCL is reported in Algorithm 12. It is worth

noting that we need to keep track of the states that have been already visited
because for those, we know the agent’s action, and there is no need to apply
Equation (9.24). This is why we introduce the counts Nk,h(s). The compu-
tational complexity of an individual iteration of RfOCL is dominated by the
value iteration (steps 5 and 9) leading, as for AfOCL, to O (KMHS2A).

127



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

Algorithm 12 Reward-feedback Optimistic Configuration Learning (RfOCL)

1: Input: S, A, H , P = {P1, . . . ,PM}
2: Initialize Ai1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]

3: InitializeRo,1(s) = 1,Ro,1(s) = 0, and N1,h(s) = 0 for all s ∈ S and h ∈ [H]
4: for episodes 1, 2, . . . ,K do
5: Compute Ṽ ik for all i ∈ [M ]

6: Play PIk with Ik ∈ arg maxi∈[M ] Ṽ
i
k

7: Observe
(sk,1, r̃k,1, ak,1, . . . , sk,H−1, r̃k,H−1, ak,H−1, sk,H , r̃k,H)

8: Compute Ro,k+1(s), Ro,k+1(s), and Nk+1,h(s) for all s ∈ S and h ∈ [H] using
r̃k,1 · · · r̃k,H as in Equation (9.23)

9: Compute Qi
o,k+1,h

(s, a) and Q
i

o,k+1,h(s, a) for all s ∈ S, a ∈ A, h ∈ [H], and
i ∈ [M ]

10: Compute the plausible actions for all s ∈ S and h ∈ [H]:

Aik+1,h(s) =





{ak,h} if i = Ik and s = sk,h

Aik,h(s) if Nk,h(s) > 0

Ãik+1,h(s) otherwise

with Ãik+1,h(s) as in Equation (9.24).
11: end for

9.5.1 Regret Guarantees

In this section, we give a regret bound for the RfOCL algorithm. Obviously,
the same arguments for AfOCL can also be applied for this extended version,
and then the regret bound of Theorem 9.4.1 is valid for RfOCL. Moreover,
for this algorithm, we prove that the regret, under certain conditions, does
not depend on the number of configurations. In order to prove the result, we
have to make the following assumption on the NConf-MDP.

Assumption 9.5.1. There exists ε > 0 such that:

min
i∈[M ]

min
s∈S

max
h∈[H]

dih(s) ≥ ε,

where dih(s) is the probability of visiting the state s ∈ S at time h ∈ [H] in
configuration Pi under the agent’s best response policy πi.

This assumption involves that in every model Pi ∈ P the agent has
non-zero probability, in some step h, to visit every state s. This allows
shrinking the confidence intervals for the reward of every state in order to
estimate correctly the agent’s policy, regardless the played configuration.

128



9.5. Reward-feedback Optimistic Configuration Learning

Notice that this assumption is less strict than requiring the ergodicity of the
Markov process induced by any policy.

In the following theorem we will show how the algorithm exploits this
information under Assumption 9.5.1.

Theorem 9.5.1 (Regret of RfOCL). Let NCM = (S,A,P , µ,Rc,Ro, H)
with P = {P1, . . . ,PM} be the M finite-horizon MDPs of the problem.
Under Assumption 9.5.1, the expected regret of RfOCL at every episode
K > 0 is bounded by:

E[Regret(K)] ≤ min

{
3MH3S2, K∆ +

π2

3

}
,

where K is the smallest integer solution of the inequality

K ≥ 1 +
(2H2S2 log(2SHK

2
)

2∆2
Q

+

√
K − 1

2
log(SHK

2
)
)1

ε
,

∆ = maxi∈[M ] ∆i, i.e. the maximum suboptimality gap, and ∆Q is the
minimum positive gap of the agent’s Q-values.

Discussion on the regret of RfOCL The regret bound removes the dependence
on the number of models M , as K is clearly independent of M , but it
introduces, as expected, a dependence on the minimum visitation probability
ε. Since RfOCL exploits additional information compared to AfOCL and
the set of plausible actions Aik,h of RfOCL are subsets of those of AfOCL,
the regret bound AfOCL (Theorem 9.4.1) also holds for RfOCL. Thus, we
can take as regret bound for RfOCL the minimum between K∆ + π2

3
and

3MH3S2.

Proof To prove the result of Theorem 9.5.1 we start defining the good events
Gk for k ∈ [K]:

Gk =

{
∀s ∈ S,

∣∣∣R̂o,k(s)− ro(s)
∣∣∣ ≤

√
log(2SHk2)

2Nk(s)

}

This event means that, at episode k ∈ [K], the estimated rewards of each
state s ∈ S are inside the confidence intervals.

In the following two lemmas we bound the difference between the opti-
mistic (pessimistic) action-value function and the true optimal state-action
value function.

129



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

Lemma 9.5.1. For every configurationPi ∈ P and state action pair (s, a) ∈
S × A, the difference between the optimistic state-action value function
Q
i

o,k,1(s, a) and the true optimal state-action value function Qi
o,1(s, a) is

bounded by:

Q
i

o,k,1(s, a)−Qi
o,1(s, a) ≤ Ro,k(s)−Ro(s)

+
∑

s′∈S

H∑

h=2

d
i

k,h(s
′)
(
Ro,k(s

′)−Ro(s
′)
)
,

where d
i

k,h the visitation distribution induced by a greedy policy πi,k w.r.t.

Q
i

o,k. Similarly, the difference between the true optimal state-action value
functionQi

o,1(s, a) and the pessimistic state-action value functionQi

o,k,1
(s, a)

is bounded by:

Qi
o,1(s, a)−Qi

o,k,1
(s, a) ≤ Ro(s)−Ro,k(s)

+
∑

s′∈S

H∑

h=2

dik,h(s
′)
(
Ro(s

′)−Ro,k(s
′)
)
.

Proof. The proof is basically taken from [Azar et al., 2013, Zanette et al., 2019, Tirinzoni et al.,
2020]:

Q
i

o,k,1(s, a)−Qio,1(s, a) ≤ Qio,k,1(s, a)−Qπi,ko,1 (s, a) (9.25)

= Ro,k(s)−Ro(s) +
∑
s′∈S

H∑
h=2

d
i
k,h(s′)

(
Ro,k(s′)−Ro(s′)

)
.

(9.26)

where line (9.25) is due toQio,1(s, a) ≥ Qπi,ko,1 (s, a), recalling thatQio,1 is the optimal Q-value for the

agent, under configuration Pi and the optimal agent’s policy. Line (9.25) derives form the application

of the simulation lemma since Q
i

o,k,1(s, a) and Q
πi,k
o,1 (s, a) are under the same policy πi,k. For the

second statement, we proceed analogously by simply observing thatQi
o,k,1

(s, a) ≥ Qπi
o,1

(s, a) where

πi is a greedy policy w.r.t. Qio,k(s, a).

Lemma 9.5.2. If for all k ∈ [K], the good events Gk hold, for all state-
action pairs (s, a) ∈ S × A, h ∈ [H], and configuration Pi ∈ P it holds
that:

Q
i

o,k,1(s, a)−Qi
o,1(s, a) ≤ SH

√
log(2SHk2)

2Nk(s)
,

Qi
o,1(s, a)−Qi

o,k,1
(s, a) ≤ SH

√
log(2SHk2)

2Nk(s)
.

130



9.5. Reward-feedback Optimistic Configuration Learning

Proof. We apply Lemma 9.5.1, recall that Ro,k(s) = R̂o,k(s) +
√

log(2SHk2)
2Nk(s)

and Ro,k(s) =

R̂o,k(s) −
√

log(2SHk2)
2Nk(s)

, and make use of the definition of the events Gk. Then, we bound the

visitation distribution with 1.

Then we bound the number of state visitation given its visitation proba-
bility. This bound is necessary to ensure that we have enough visitation of
every state to have a good estimation of the agent’s reward function.

Lemma 9.5.3. Let s ∈ S be a state with minimum visitation probability
d(s) := mini∈[M ] maxh∈[H] d

i
h(s) > 0. Then, at episode k ∈ [K], for every

δk ∈ (0, 1), with probability at least 1− δk it holds that:

Nk(s) ≥ (k − 1)d(s)−
√
k − 1

2
log

(
1

δk

)
.

Proof. First of all, we define the random variable Nu
k (s) as the count of the visits to state s, where

multiple visits in the same episode are considered just once:

Nu
k (s) =

k−1∑
i=1

1 {∃h ∈ [H] : sk,h = s} .

Clearly, Nu
k (s) ≤ Nk(s) and, consequently, E[Nu

k (s)] ≤ E[Nk(s)]. The expectation of E[Nu
k (s)]

can be bounded as:

E[Nu
k (s)] = E

[
k−1∑
i=1

1 {∃h ∈ [H] : sk,h = s}
]

=

k−1∑
i=1

Pr (∃h ∈ [H] : sk,h = s|PIk , πIk ) (9.27)

=

k−1∑
i=1

Pr

 ⋃
h∈[H]

{sk,h = s}|PIk , πIk

 (9.28)

≥
k−1∑
i=1

max
h∈[H]

Pr (sk,h = s|PIk , πIk ) (9.29)

=

k−1∑
i=1

max
h∈[H]

d
Ik
h (s) (9.30)

≥ (k − 1) min
i∈[M ]

max
h∈[H]

dih(s) = (k − 1)d(s), (9.31)

where line (9.27) and line (9.28) we simply rewrite the expectation as probability. In line (9.29) we
bound the probability of the union with just one term. In line (9.30) we employ the definition of
d
Ik
h (s). Finally, in line (9.31), we take the minimum over Ik. Since 0 ≤ Nu

k (s) ≤ k − 1, by using
Höeffding’s inequality, we have that with probability at least 1− δk it holds that:

Nu
k (s) ≥ E[Nu

k (s)]−
√
k − 1

2
log

1

δk
≥ (k − 1)d(s)−

√
k − 1

2
log

1

δk
,

131



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

having used the lower bound on E[Nu
k (s)]. The result follows from recalling thatE[Nu

k (s)] ≤
E[Nk(s)].

Previously to give the regret bound we have to bound the number of time
a state is visited to have correctly recover the agent’s response policy.

Lemma 9.5.4. If for all k ∈ [K], the good events Gk hold, and for all s ∈ S
it holds that

√
log(2SHk2)

2Nk(s)
≤ ∆Q−c

2SH
, with arbitrary c > 0, then for every

configuration Pi ∈ P we have that π̃i,k = πi.

Proof. Let ∆Q be the minimum gap between the Q-function in the optimal action and a different
action in all transition probabilities Pi ∈P:

∆Q = min
i∈[M ]

min
s∈S

min
h∈[H]

{
max
a∈A

Qio,h(s, a)− max
a′∈A\arg maxa∈A Qio,h(s,a)

Qio,h(s, a′)

}
.

For all s ∈ S and h ∈ [H], we denote with a∗ = arg maxa∈AQ
i
o,h(s, a) and we have for all

a ∈ A \ {a∗}:

Q
i

o,k,h(s, a)−Qi
o,k,h

(s, a∗) = Q
i

o,k,h(s, a)−Qi
o,k,h

(s, a∗)±Qio,h(s, a)±Qio,h(s, a∗)

= Q
i

o,k,h(s, a)−Qio,h(s, a)︸ ︷︷ ︸
(A)

+Qio,h(s, a∗)−Qi
o,k,h

(s, a∗)︸ ︷︷ ︸
(B)

+Qio,h(s, a)−Qio,h(s, a∗)︸ ︷︷ ︸
(C)

≤ 2SH

√
log(2SHk2)

2Nk(s)
−∆Q

≤ 2SH
∆Q − c
2SH

−∆Q ≤ −c,

where for (A) and (B) we applied Lemma 9.5.2 and for (C) we used the definition of ∆Q. We have

proved that the lower bound on the Q-value of the optimal action Qi
o,k,h

(s, a∗) falls above the upper

bound on the Q-value of all other actions Q
i

o,k,h(s, a). Consequently, the greedy action will be

properly identified and π̃i,k = πi.

Finally we derive the regret of the proposed algorithm RfOCL (see
Theorem 9.5.1).

Proof. We rewrite the expected regret as follows:

E[Regret(K)] =

K∑
k=1

(E[∆Ik1 {Gk}] + E[∆Ik1 {¬Gk}])

≤
K∑
k=1

E[∆Ik |Gk]︸ ︷︷ ︸
(A)

+H
K∑
k=1

Pr(¬Gk)︸ ︷︷ ︸
(B)

,

132



9.5. Reward-feedback Optimistic Configuration Learning

where we bounded Pr(Gk) ≤ 1 in term (A) and ∆Ik with its maximum value H in term (B). We
start bounding the (B) term:

H

K∑
k=1

Pr(¬Gk) = H

K∑
k=1

Pr

(
∃s ∈ S s.t. |R̂o,k(s)−R(s)| >

√
log(2SHk2)

2Nk(s)

)
(9.32)

≤ H
K∑
k=1

∑
s∈S

Pr

(
|R̂o,k(s)−R(s)| >

√
log(2SHk2)

2Nk(s)

)
(9.33)

≤ H
K∑
k=1

∑
s∈S

1

SHk2
≤ π2

6
, (9.34)

where line (9.32) follows from the definition of the good event Gk. Line (9.33) is a union bound on
the states. Line (9.34) comes from Höeffding’s inequality.

For the first term (A) we define the event Ek for all k ∈ [K]:

Ek =

{
∀s ∈ S : Nk(s) ≥ (k − 1)d(s)−

√
k − 1

2
log (SHk2)

}
.

If this event holds then every state s ∈ S is visited at least (k − 1)d(s) −
√

k
2

log (SHk2) times,
where d(s) is defined as in Lemma 9.5.3.

Considering the term (A), we have:

K∑
k=1

E[∆Ik |Gk] ≤
K∑
k=1

E[∆Ik |Gk, Ek]︸ ︷︷ ︸
(C)

+H

K∑
k=1

Pr(¬Ek)︸ ︷︷ ︸
(D)

,

where we bound the in the second term ∆Ik ≤ H .
We start bounding the second term (D). We apply Lemma 9.5.3 after a union bound over the

states:

H

K∑
k=1

Pr(¬Ek) = H

K∑
k=1

Pr

(
∃s ∈ S : Nk(s) < (k − 1)d(s)−

√
k − 1

2
log (SHk2)

)

≤ H
∑
s∈S

K∑
k=1

Pr

(
Nk(s) < (k − 1)d(s)−

√
k − 1

2
log (SHk2)

)

≤ H
∑
s∈S

K∑
k=1

1

SHk2
≤ π2

6
.

Now it remains to bound the term (C) that, using Lemma 9.5.4, is zero whenever
√

log(2SHk2)
2Nk(s)

≤
∆Q−c
2SH

. Thus, under the events Ek and recalling that under Assumption 9.5.1 we have d(s) ≥ ε, we
obtain: √

log(2SHk2)

2Nk(s)
≤
√

log(2SHk2)

2(k − 1)ε−
√

2(k − 1) log (SHk2)
.

From which, we derive the condition:

K ≥ 1 +

2H2S2 log(2SHK
2
)

2(∆Q − c)2
+

√
K − 1

2
log(SHK

2
)

 1

ε
.

133



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

Then, we take the infimum over c. Thus, for the term (C), we consider the decomposition:

K∑
k=1

E[∆Ik |Gk, Ek] ≤
K∑
k=1

E[∆Ik |Gk, Ek] +

∞∑
k=K+1

E[∆Ik |Gk, Ek] = K∆ + 0,

where we bounded ∆Ik ≤ ∆ with ∆ = maxi∈[M ] ∆i. Then the total regret is given by:

E[Regret(K)] ≤ K∆ +
π2

3
.

9.6 Comparison between the two algorithms

The two proposed algorithms use different types of feedback acquired by the
configurator when interacting with the agent. The second algorithm allows
eliminating the dependence on the number of configurations, assuming that
the MDP, for each configuration, is ergodic under the agent’s optimal policy.
On the other hand, RfOCL is heavier than AfOCL (although the asymptotic
complexity is the same) as it requires to compute, for each episode, the
optimistic values of the agent Q functions for each model.

It is important to notice that the two algorithms suffer constant regret;
this is due to the assumption that the agent’s optimal policy is determinis-
tic. In fact, if we remove this assumption and allow the agent’s policy to
be stochastic,3 it is reasonable to believe that the regret AfOCL, suitably
modified to maintain confidence intervals for the policy, would scale log-
arithmically with K, as in unstructured bandits. We cannot conclude the
same for the corresponding adaptation of RfOCL. We conjecture that, under
Assumption 9.5.1, RfOCL continues to suffer constant regret because it
exploits the underlying structure given by the agent’s reward function that
allows linking together the different transition models. Thus, when playing
any configuration, we acquire a finite piece of information that can be shared
among all configurations. We leave the investigation of this case as future
work.

The online problem that we are facing can be seen as a stochastic multi-
armed bandit [Lattimore and Szepesvári, 2020], in which the arms are
configurations, and the configurator receives a random realization of its
expected return at every episode. Thus, in principle, it can be solved by
standard algorithms for bandit problems, such as UCB1 [Auer et al., 2002].
These algorithms are computationally less demanding than ours but suf-
fer regret that grows logarithmically, i.e., indefinitely, with the number of

3For example, the agent might optimize an entropy-regularized objective [Haarnoja et al., 2018].

134



9.7. Discussion on the related works

episodes. Indeed, they do not exploit either the fact that the agent’s policy is
deterministic or the structure induced by the agent’s reward function.

9.7 Discussion on the related works

More recently, it has been observed that environment configuration can be
actuated even by an external entity, opening new opportunities for the appli-
cation of environment configurability, including settings in which the con-
figurator’s interest conflict with those of the agent. For instance, in [Metelli
et al., 2019b] the configurator acts on the environment to induce the agent re-
vealing its capabilities in terms of perception and actuation. Instead, in [Gal-
lego et al., 2019] a threatener entity can change the transition probabilities
either in a stochastic or adversarial manner. More generally, environment
configuration carried out by an external entity has been studied in the field
of planning as a form of environment design [Zhang et al., 2009]. Thus,
our NConf-MDP unifies these settings, allowing for arbitrary agent’s and
configurator’s reward functions. An interesting connection is established
with the robust control literature [Nilim and Ghaoui, 2003, Iyengar, 2005].
Whenever the two reward functions are opposite, i.e., the interaction between
the agent and the configuration is fully competitive, the resulting equilibrium
corresponds to a robust policy. Indeed, while the agent tries to maximize
its expected return, the configurator places the agent in the worst possible
environment.

The design of our approaches is inspired by classic algorithms based on
the OFU principle for stochastic multi-armed bandits (e.g. [Lai and Robbins,
1985, Auer et al., 2002, Garivier and Cappé, 2011, Lattimore and Szepesvári,
2020]) and MDPs (e.g. [Auer et al., 2009, Bartlett and Tewari, 2009b]).
Moreover, our learning setting with reward feedback is related to structured
bandits or bandits with correlated arms.4 Interestingly, for certain structures,
it is known that bounded regret is achievable [Bubeck et al., 2013, Lattimore
and Munos, 2014], a property that is enjoyed by both our algorithms. Our
setting is also close to the Stochastic Games model, in which two or more
agents act in an MDP to maximize their own reward functions. Recently, the
stochastic game’s framework gains growing interest [Bai et al., 2020, Bai
and Jin, 2020, Zhang et al., 2020b], especially in the offline setting i.e., we
can control all the agents. For this reason, these approaches do not apply to
our setting, where we have the control of the configurator only. Although
some works tract the online setting [Wei et al., 2017, Xie et al., 2020a, Tian

4In our case, playing a single configuration provides information about the opponent’s reward, which, in turns,
provides information about the value of all configurations.

135



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

et al., 2020], where we can control only one agent, all of these algorithms
works in the zero-sum setting only.

9.8 Experiments

In this section, we provide the experimental evaluation of our algorithms on
three different domains: Configurable Gridworld (Section 9.8.1), Student-
Teacher (Section 9.8.3), and Configurable Market (Section 9.8.2). We
compare the algorithms with the standard implementation of UCB1 [Auer
et al., 2002].

9.8.1 Configurable Gridworld

Configuration #1 Configuration #2 Configuration #3

Figure 9.1: Configurable Gridworld: from left to right the 3 configurations represent
increasing “power” of the obstacle.

The Configurable Gridworld is a configurable version of a classic 3× 3
Gridworld (a graphical representation is shown in Figure 9.1). The agent’s
starting state is in the cell (0, 1), and its goal is to minimize the number
of steps required to reach the exit located in the cell (2, 1). Instead, the
configurator takes reward 1 when the agent occupies the central cell (1, 1)
and 0 otherwise. In a classic Gridworld, the optimal policy would be
trivial, as the agent would proceed straight to the exit. In this Configurable
Gridworld, instead, the configurator can set the “power” p of a stochastic
obstacle located in the cell (1, 1). In particular, when the agent is in that cell
and performs action “go right” to reach the exit, it will hit the obstacle, and it
will remain in the same position with probability p. The configurator’s goal is
to tune this probability to keep the agent in the central cell for the maximum
number of steps. In practice, this means raising the probability p as much
as possible. However, it is easy to prove that if p is too large, the agent
will learn to avoid the obstacle by passing close to the boundaries, leading
to unsatisfactory performance for the configurator. The M configurations

136



9.8. Experiments

0 1000 2000 3000

0

200

400

600

Episode

C
um

ul
at

iv
e

re
gr

et
M = 10

0 1000 2000 3000

0

500

1000

Episode

M = 30

0 0.5 1×104

0

1000

2000

3000

Round

M = 50

UCB1 AfOCL RfOCL

Figure 9.2: Cumulative regret as a function of the episodes for the Gridworld experiment.
50 runs, 98% c.i.

0 500 1000

0

50

100

150

Episode

C
um

ul
at

iv
e

re
gr

et

UCB1 AfOCL RfOCL

Figure 9.3: Cumulative regret as a function of the episodes for the Gridworld experiment
in the extreme setting. 50 runs, 98% c.i.

differ in the probability p and are obtained by a regular discretization of
[0, 1].

The results of the experiments are shown in Figures 9.2 and 9.3. In the
first experiment (Figure 9.2), we considered 10 and 30 configurations with
a number of episodes K = 3000 and horizon H = 10. We can see that the
two algorithms, AfOCL and RfOCL, suffer constant regret, whereas UCB1
displays a logarithmic regret, as expected. Specifically, RfOCL outperforms
AfOCL and stops playing suboptimal configuration in less than 500 episodes
in both cases. This can be explained because, being Assumption 9.5.1
fulfilled (in fact, the agent has the probability 0.1 of failing its action),
RfOCL is able to exploit the underlying structure of the problem more
effectively. Figure 9.3 presents a more extreme case in which we have only
three configurations, designed so that the optimal agent’s policy generates
a non-ergodic Markov chain. In such a case, we violate Assumption 9.5.1
and consequently, we observe that AfOCL and RfOCL display very similar
behavior, but still significantly better than UCB1.

137



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

9.8.2 Configurable Market

Configuration #1 Configuration #2 Configuration #3

Figure 9.4: Market: the figure shows a 5 × 5 market. The red state is the starting state,
instead the green state is the “end” state. The stars are the product and the orange star
is the only product the agent is interested in.

A Configurable Market is a simplified model for a marketplace. The
agent, namely the customer, wants to buy a given set of products QA in the
minimum number of steps. Instead, the configurator has the role in placing
all the products Q ⊃ QA in the marketplace to maximize the market’s
revenue inducing the agent to buy other products in addition to those it
would buy. The configurator’s reward is 1 any time the agent passes over
a state where a product is placed and 0 in all the other states. Whereas the
agent’s reward is −1 everywhere and gains a bonus of 0.9 when it passes
over a state with a product in QA. In other words, the products remain fixed
in the market, and the configurator can change the transition model within
a set of random transition models. In Figure 9.4 the market domain with 3
different configurations is shown. The market domains consists in K ×K
states, where every product is assigned to a specific state. The configurator
can change the transition matrix for all the states except for the starting state
and the “exit" state. Each different configuration can be thought of as a

0 1 2 ×104

0

500

1000

1500

2000

Episode

C
um

ul
at

iv
e

re
gr

et

UCB1 AfOCL RfOCL

Figure 9.5: Cumulative regret as a function of the episodes for the Configurable Market
experiment. 50 runs, 98% c.i.

138



9.8. Experiments

different positioning of the products. So, from an abstract point of view,
changing configuration is equivalent to moving products into the Gridworld.

In Figure 9.5, AfOCL and RfOCL are compared against UCB1. The
number of configurations is 10, the horizon 15, and the Gridworld size is
4×4. In every run, we construct 10 different transition models, which specify
the 10 configurations. Also, in this experiment, the trend is confirmed since
AfOCL and RfOCL outperform UCB1. We observe that the two algorithms,
in this environment, behave similarly, and this is due to the small number of
configurations. However, we can notice RfOCL at the end of the considered
episodes approaches the constant regret.

9.8.3 Student-Teacher

1

2 3

1

2 3

1

2 3

Configuration #1 Configuration #2 Configuration #3

Figure 9.6: Teacher Student environment.

The Student-Teacher environment models a simple interaction between
a student and a teacher. The teacher has several exercises available with
different difficulty levels and wants to find the optimal sequence of exercises
in order to make the student acquire as much knowledge as possible. On
the other hand, the student perceives the exercises’ level of difficulties in a
different way. The student’s goal is to maximize the number of exercises
that he/she knows how to solve, and we model this information with an
integer between [0, S]. The student decides whether to answer or not the
exercise. In the case, he/she answers, he/she receives a reward equal to
the level of “correctness” of the exercise, the teacher receives a reward
corresponding to the level of exercise’s “hardness”, and they end up to the
next exercise. If the student does not answer, the student and the teacher
will receive −1, and with a probability of 0.7, the next exercise will be
easier to solve. In Figure 9.6 we reported an illustrative example of the
Teacher-Student domain: right arrows correspond to answer “No”, and green
arrows to answer “Yes”. The transparency is due to the transition probability
distribution. The configurator can change the transition probability for the

139



Chapter 9. Non-Cooperative Configurable Markov Decision Processess

0 2000 4000

0

1000

2000

3000

4000

Episode

C
um

ul
at

iv
e

re
gr

et
M = 40

0 2000 4000

0

1000

2000

3000

4000

Episode

C
um

ul
at

iv
e

re
gr

et

M = 60

0 2000 4000

0

1000

2000

3000

4000

Episode

C
um

ul
at

iv
e

re
gr

et

M = 100

UCB1 AfOCL RfOCL

Figure 9.7: Cumulative regret as a function of the episodes for the Student-Teacher
experiment. 50 runs, 98% c.i.

action “Yes”.
In Figure 9.7, we compare our algorithms with UCB1 for different num-

ber of configurations M ∈ {40, 60, 100} and horizon H = 10. In every run,
we construct M random different configurations that represent the distribu-
tion over the next exercise, given the current exercise and a positive answer.
Moreover, in every run, we change the mildness of an exercise from the
agent’s point of view. We observe that both AfOCL and RfOCL suffer sig-
nificantly less regret compared to UCB1 and tend to converge to a constant,
especially with a small number of configurations. It is interesting to observe
that, in line with our analysis, the gap between AfOCL and RfOCL appears
more evident as the number of configurations grows.

140



CHAPTER10
Online Learning in General-sum

Turn-based Stochastic Games

In this chapter, we analyze the online setting introduced in Section 8.1 for
General-sum Stochastic games. We would like to mention that these are
preliminary results original for this thesis. Unlike what we have done in the
previous chapter, we consider the problem of learning in Stochastic games,
where there is one agent that we can control and that acts in an environment
observing the actions taken by the other agent. We have to underline that
this chapter addresses an open-question left in [Xie et al., 2020a]:

“How to achieve optimal regret guarantees exploiting a weak opponent?”

In the paper with the notion of weak opponent, the authors mean that we are
facing an opponent that is not totally adversarial (as in zero-sum games). As
the authors suggested, in this case, the guarantee involves a stronger notion
of the regret with respect to the minimax ones (see Section 8.1); in Section
8.1 we have formalized this stronger regret as the regret achieved by the
Stackelberg Equilibrium policy, under the assumption that we are restricted
to the setting of Markov policies.

In this chapter, we start with a formal introduction to the problem. In
section 10.2, we derive a lower bound on the expected regret of any “good”

141



Chapter 10. Online Learning in General-sum Turn-based Stochastic Games

learning strategy that captures the exploration challenges in this context.
In particular, the lower bound clearly shows that regret minimization in
Stochastic Games is significantly more complex than in standard MDPs.
Then, we propose an algorithm that nearly-matches the proposed lower-
bound.

10.1 Problem statement

In this section, we introduce the online learning problem in Turn-based
General-sum Stochastic Games. We have already formally introduced the
Turn-based Stochastic Games in Chapter 4. In these games, at each step
h only one player takes an action. In fact, the state space S is partitioned
in S = S1 ∪ S2, where S1 ∩ S2 = ∅. For each state s ∈ S, we denote by
I(s) ∈ {1, 2} the function that indicates if a state belongs to S1 or S2, i.e.,
which player has to play in the current state s. At each step h, the agent
I(sh) has to decide the action ah to be taken and the two players receive
respectively rewardsR1(sh, ah) andR2(sh, ah); then, the system transitions
to the next state sh+1 ∼ P(·|sh, ah).

In the online setting, we can control only the agent 1. In this chapter, we
analyze the special case described in [Xie et al., 2020a], where the second
agent is omniscient and always plays the best response. So, the agent 2,
given the policy πi1 ∈ Π1, follows the policy π∗,i2 such that:

π∗,i2 ∈ arg max
π2∈Π2

V
πi1,π2

2 ,

i.e. it plays its best response.
As in the previous chapter this creates an inherently asymmetric inter-

action: the first agent can be seen as a leader, which decides the policy to
be played in an episode and the second agent can be seen as a follower,
which can see the leader’s policy and adapts its response to it. As is com-
monly done in the game-theory literature [Balcan et al., 2015, Peng et al.,
2019, Sessa et al., 2020] we make the following assumption:

Assumption 10.1.1. For every policy π1 ∈ Π1 the second uncontrollable
agent will always play the same best response policy br(π1), where br :
Π1 → Π2. Furthermore, br(π1) is deterministic.

Under this assumption the goal of our agent is well-defined and consists
in finding the policy π1 ∈ Π1 that is optimal under the second agent’s best
response policy:

π?1 ∈ arg max
π1∈Π1

V
π1,br(π1)

1 ,

142



10.2. Lower bound on the regret

where it corresponds to finding the Stackelberg Equilibrium of the game.
In our setting we do not know the policies that the second agent will play,

i.e., the br function is unknown. From an online learning perspective, we
are interested in minimizing the expected regret:

E[Regret(K)] = K max
π1∈Π1

V
π1,br(π1)

1 −
K∑

k=1

V
π1,k,br(π1,k)

1 . (10.1)

Obviously, this problem can be seen as solving a stochastic multiarmed
bandit problem [Lattimore and Szepesvári, 2020]. In this case, the arms
are the policies, and the agent at each episode receives a random realization
of its expected return. So, this problem can be solved with standard bandit
algorithms such as UCB1 [Auer et al., 2002]. However, as we will explain in
the next section, this is not the best that we can do. In fact, the regret would
not scale sublinearly with the number of possible policies, as it happens
with standard bandit algorithms (where the regret is O(

√
|Π1|K). On the

other hand, for our setting, we will derive lower and upper bounds on the
expected regret with only a constant dependence on the number of policies
(i.e., not multiplicative of K).

Comparison between Nash Equilibrium and Stackelberg Equilibrium In this chap-
ter, we use the notion of Stackelberg Equilibrium (SE) rather than the Nash
Equilibrium (NE) to formalize the regret. There are two reasons to adopt
the SE concept, one more philosophical and the other more practical. The
SE, differently from the NE, models the asymmetric interaction between the
two agents and, moreover, models many real-world problems (e.g., in the
security domain and network routing) that cannot be modeled with the NE.
Moreover, from a practical viewpoint, at every stage game, the computation
of the NE is also PPAD complete for two agents with |A| > 2 [Papadim-
itriou, 1992]; on the other hand, computing the SE requires polynomial
complexity [Coniglio et al., 2020].

10.2 Lower bound on the regret

We start by proposing a lower bound on the expected regret for the online
Turn-based Stochastic Game problem that we have defined above. In the
following result, we consider the case in which our player can see the actions
taken by the second agent as well as its rewards. We start by considering the
TSG shown in Figure 10.1. This TSG is composed of N + 3 states and A

143



Chapter 10. Online Learning in General-sum Turn-based Stochastic Games

.

.

.

δ
1− δ

sf

s0

δ

δ

δ + ε

1− δ

1− δ − ε

.

.

.

δ

δ

δ + ε

1− δ

1− δ − ε

. . . . . .
sNsN−1s1 s2

1− δ − ε

1− δ

1− δ − ε

sp1− δ

Figure 10.1: The composite Turn-based Stochastic Game for the lower bound. The states
belonging to S2 are in orange, the ones belonging to S1 in blue. The dashed lines
corresponds to the transition probabilities taking action a?, the others taking any other
action a ∈ A with a 6= a?. The dots indicate the chain composed by N states.

actions where N and A are two positive integers. The agent 2 controls the
starting state s0, S2 = {s0}, identified in the figure with the orange color.
The state-space of agent 1, instead, is equal to S1 = {sf , sp, s1, . . . , sN}, i.e.
it controls the blue states in Figure 10.1. The reward functions of the two
agents are:

R1(s, a) =

{
1 if s = sN

0 otherwise
,

R2(s, a) =





R if s = sN

Rf if s = sf

0 otherwise
.

The transition model of the TSG is defined as follows. In state s0 the
agent can choose only two actions a? and af , so P(s1|s0, a

?) = 1 and
P(sf |s0, af ) = δ, P(s0|s0, af ) = 1− δ. From the state sf with any action
we continue to stay in state sf . From all the other states si with i ∈ [N ]:
P(si+1|si, a?) = δ + ε and P(sf |si, a?) = 1− δ − ε; instead, for any other
action a ∈ A, P(si+1|si, a) = δ and P(sf |si, a) = 1 − δ. Moreover we
assume that H = N + 1.

The second agent has only two response functions: in s0 it can choose
action a? and continue to state s1 or it can choose af . Obviously, it depends

144



10.2. Lower bound on the regret

on the policy that we decide to take at the beginning of the episode.

Proposition 10.2.1. If Rf = (δ+ε)H−2(δ+c)R∑H−1
h=1 (H−h)δ(1−δ)h−1

, there exists a constant
0 < c < ε such that the only policy that induces the second agent to play a?

is π1(a?|·) = 1 for all s ∈ S1.

Proof. We start by calling πa
?

2 and π
af
2 the policies of the second agent that choose respectively

a? and af in s0. To be π?1 the only policy that induces the second agent to play a? two things have to
happen:

1. V π
?
1 ,π

a?

2
2 > V

π?1 ,π
af
2

2 ,

2. V π1,π
a?

2
2 < V

π?1 ,π
af
2

2 ,

where π1 ∈ Π1 is every policy in Π1 such that π1 6= π?1 . We now show that using the proposed
two proposed rewards R and Rf fulfills these two conditions. We start by evaluating the two value
functions. We remind that H = N + 1.

V
π?1 ,π

a?

2
2 = (δ + ε)H−1R,

V
π1,π

a?

2
2 ≤ (δ + ε)H−2δR,

V
π?1 ,π

af
2

2 = V
π1,π

af
2

2 =

H−1∑
h=1

(H − h)δ(1− δ)h−1Rf ,

where the second equation is due the fact that the policy that achieves the greatest expected return is
the one that chooses the action a? in all the states except to state s1.

We now show that the first condition holds.

(δ + ε)H−1R >

H−1∑
h=1

(H − h)δ(1− δ)h−1Rf

(δ + ε)H−1R∑H−1
h=1 (H − h)δ(1− δ)h−1

> Rf

(δ + ε)H−1R∑H−1
h=1 (H − h)δ(1− δ)h−1

>
(δ + ε)H−2(δ + c)R∑H−1
h=1 (H − h)δ(1− δ)h−1

.

And it is always true if ε > c.
It is easy to see that the second condition also holds since:

(δ + ε)H−2δR <

H−1∑
h=1

(H − h)δ(1− δ)h−1Rf

(δ + ε)H−2δR∑H−1
h=1 (H − h)δ(1− δ)h−1

< Rf

(δ + ε)H−2δR∑H−1
h=1 (H − h)δ(1− δ)h−1

<
(δ + ε)H−2(δ + c)R∑H−1
h=1 (H − h)δ(1− δ)h−1

.

Then, for an appropriate value Rf the second agent will choose the action
a? only if we choose the optimal policy that always takes the correct action
a? at each step.

145



Chapter 10. Online Learning in General-sum Turn-based Stochastic Games

Intuition on lower bound In all the cases where the agent 1 plays a policy
different from the optimal one, we cannot acquire any information about
the transition model since we will visit only state sf until the end of the
episode. Intuitively, we can notice that, in the worst case, we have to play
all the policies in Π1 before finding the best policy that takes us to acquire
information about all the states in the chain. In fact, only with the optimal
policy the agent 2 permits us to visit states different from sf . In the following
theorem, we will formally prove this intuition.

Theorem 10.2.1 (Lower bound for online Turn-based Stochastic Game).
Let A be a“good” learning algorithm, where with “good” we indicate
an algorithm such that its expected regret is upper bounded by O (CKα)
with α < 1 in all Turn-based Stochastic Games 1. Then we can create a
Turn-based Stochastic Game such that the expected regret is lower bounded
by:

E[RegretA(K)] ≥ Ω
(
H
√
SAK

)
. (10.2)

Moreover, we can create a Turn-based Stochastic Game with S states, A
actions and horizon H = S − 2, and a specific initial distribution µ such
that the expected regret of A after K steps:

E[RegretA(K)] ≥ Ω
(
AS
)
. (10.3)

Proof. In this part we will prove the lower bound for the online Turn-based Stochastic Game
problem. We start by stating that a Markov Decision Process is a special case of a Turn-based
Stochastic Game, in which the state space of the second agent S2 = ∅. Then from this consideration
we can state that the worst-case lower bound for MDPs can be also applied for TSGs [Jaksch et al.,
2010, Domingues et al., 2020]:

E[RegretA(K)] ≥ Ω
(
H
√
SAK

)
.

So we have now to prove the lower bound in equation 10.3. In order to achieve that we rely
on standard information-theoretic methods to prove lower bounds in episodic MDP and bandit
problems. We start by stating a lemma taken from [Simchowitz and Jamieson, 2019]. Since the proof
is analogous we omitted it here.

Lemma 10.2.1. Let T SG = (S,A, H,R, µ,P) and T SG′ = (S,A, H,R, µ,P ′) be two TSGs
with the same state space S , action spaceA, initial state distribution µ and horizon H . Fix a number
of episodes K ≥ 1 and let FK be the filtration generated by all rollouts up to episode K. Then for
any FK -measurable random variable Z ∈ [0, 1],∑

s,a

EA
T SG [NK(s, a)]KL(P(·|s, a),P ′(·|s, a)) ≥ kl(EA

T SG [Z],EA
T SG′ [Z]) (10.4)

where kl(x, y) = x log
(
x
y

)
+ (1−x) log

(
1−x
1−y

)
is the binary KL-divergence and KL(·, ·) denotes

the KL-divergence between two probability laws.

1We note that algorithms that satisfy this assumption exist. For instance, applying UCB over the set of policies
Π1 yields regretO

(√
|Π1|K

)
146



10.2. Lower bound on the regret

We apply this lemma as follows. For the fixed state-action pair (s0, af ), we define an alternative
T SG′ to be the TSG that coincides with T SG except that:

P(sf |s0, af ) = δ + ε P(s0|s0, af ) = 1− δ − ε.

For this game there are no policies that induces the second agent to play a? since it always gains
more by playing af and taking Rf .

By construction the two games T SG and T SG′ differ only at s0, a. Thus:

EA
T SG [NK(s0, a)]KL(P(·|s0, a),P ′(·|s0, a)) ≥ kl(EA

T SG [Z],EA
T SG′ [Z]).

We define NK(a) =
∑K
k=1 1 {ak,1 = a}. We define the following two events:

EaK = {NK(af ) ≥ K}, EsfK = {
K∑
k=1

1 {s2 = sf} ≥ K}

i.e. at episode K the number of times the second agent has played action af at time step 1 and
sf is visited at time step 2 is greater than K, where K̄ is a constant to be chosen later. We define
1
{
EaK , E

sf
K

}
as the indicator random variable that is 1 if event EaK and EsfK happens and 0 otherwise.

We are going to evaluate now the expectation EA
T SG [1

{
EaK , E

sf
K

}
]. We start by stating that:

EA
T SG [1

{
EaK , E

sf
K

}
] ≤ EA

T SG [1 {EaK}].

Then we note that we have assumed that the algorithm A is “good” in the sense that its regret is
bounded by O (CKα). From this assumption and considering that we do not pay regret only if the
second agent plays a? in state s0, we can say that:

EA
T SG [1

{
EaK , E

sf
K

}
] ≤ EA

T SG [1 {EaK}] ≤
CKα

K
,

applying the Markov inequality.
Then we evaluate EA

T SG′ [1
{
EaK , E

sf
K

}
]. We start considering the fact that in the modified T SG′

the second agent always plays the action a, so:

EA
T SG′ [1

{
EaK , E

sf
K

}
] = EA

T SG′ [1
{
EsfK
}

],

or equivalently to lower bound the value EA
T SG′ [1

{
EsfK
}

]

EA
T SG′ [1

{
EsfK
}

] = 1− EA
T SG′ [1

{
¬EsfK

}
].

Where ¬EsfK = {∑K
k=1 1 {s2 = sf} < K}. Noting that the random variable

∑K
k=1 1 {s2 = sf}

has a binomial distribution with probability of success δ, we upper bound EA
T SG′ [1

{
¬EsfK

}
] with:

EA
T SG′ [1

{
¬EsfK

}
] ≤ (K −K)(δ + ε)

(K(δ + ε)−K)2
,

applying the upper bound from [Feller, 1957] for the pdf of the binomial distribution.
It is easy to see that for small ε we have:

KL(P(·|s0, a),P ′(·|s0, a)) ' ε

147



Chapter 10. Online Learning in General-sum Turn-based Stochastic Games

Then applying lemma 10.2.1, where we call Z = 1
{
EaK , E

sf
K

}
:

EA
T SG [NK(s0, a)] ε ≥ EA

T SG [Z] log

(
EA
T SG [Z]

EA
T SG′ [Z]

)
+ (1− EA

T SG [Z]) log

(
1− EA

T SG [Z]

1− EA
T SG′ [Z]

)

≥ (1− EA
T SG [Z]) log

(
1

1− EA
T SG′ [Z]

)
− log(2)

≥
(

1− CKα

K

)
log

 1

1−
(

1− (K−K)(δ+ε)

(K(δ+ε)−K)2

)
− log(2)

=

(
1− CKα

K

)
log

(
(K(δ + ε)−K)2

(K −K)(δ + ε)

)
− log(2)

≥
(

1− CKα

K

)
log

(
K2(δ + ε)−K

K −K

)
− log(2)

Setting K = C2Kα:

E
T SG

[NK(s0, a)] ε ≥ 1

2
log

(
K2(δ + ε)− C2Kα

K − C2Kα

)
− log(2)

Then setting ε = 1
2AS

.

E
T SG

[NK(s0, a)] ≥ AS log

(
K2(δ + ε)− C2Kα

K − C2Kα

)
− log(2),

and if δ > 2K−C2Kα

K2 then the logarithm is always greater than log(2) then:

E
T SG

[NK(s0, af )] ≥ AS log(2)− log(2).

Then since every time the action af is taken in state s0, we cannot reach state sN in H steps and we
pay a regret equal to 1, the expected regret is bounded by:

E[Regret(K)] ≥ E
T SG

[NK(s0, af )] ≥ Ω
(
AS
)
.

Then the result follows.

10.2.1 Discussion on the lower bound

The lower bound implicitly says that we can create very small suboptimality
gaps for the second agent, and that the regret must scale with the inverse
of them regardless of the suboptimility gaps of the first agent. This can
happen since our agent does not pay for the small suboptimality gap of the
uncontrallable agent but for our gap that can be potentially very large. This
lower bound is the first one that states the difficulties in learning in general-
sum Stochastic Games with the possibility to see the other agent’s reward
function and actions. Other lower bounds were derived for the general-sum
setting. In [Bai et al., 2020] the authors proposed a lower bound to underline

148



10.3. TSG Optimistic Policies Value Iteration

the difficulties to learn against an adversarial opponent. In [Tian et al., 2020],
instead, the authors show the statistical hardness of learning with only bandit
feedback. However, these two settings are harder than the one proposed in
this section, and, for this reason, cannot be applied.

10.3 TSG Optimistic Policies Value Iteration

In this section, we propose an algorithm, called TSG Optimistic Policies
Value Iteration (TSG-OPVI), that nearly-matches the lower bound proposed
in the previous section. The algorithm, given the set of policies Π1 for the
first agent, stores a table recording the policy that is played by the second
player. We assume that Π1 is any set of policies (similarly to [Abbasi-
Yadkori et al., 2013]), not necessarily corresponding to the full set of all
deterministic policies More formally, let M be the cardinality of the policy
set Π1. Similarly to what we have done before in Chapter 9, for every
i ∈ [M ], k ∈ [K], h ∈ [H] we denote with Aik,h(s) ⊆ A the set of plausible
actions in state s at step h for policy πi ∈ Π1 at the beginning of episode
k. Since, given a agent 1 policy, the response policy of the other agent is
deterministic and unique, when we play the policy πi and we observe in state
s ∈ S2, at time step h, the policy π2,h(s), we can set Aik,h(s) = {π2,h(s)}.

As common in optimisitic value iteration algorithms [Azar et al., 2013],
we shall build upper confidence bounds to the value function of each policy
by adding bonus terms based on confidence intervals on the rewards and
transition probabilities. Formally, for every k ∈ [K], state s ∈ S and
action a ∈ A we derive the bonus term, based on Hoeffding’s concentration
inequality, for the reward function and the expected value function:

brk(s, a) =

√
2 log

(
4SAHk

δ

)

Nk(s, a)
bPk (s, a) = H

√
2S log

(
4SAHk

δ

)

Nk(s, a)
.

Moreover we indicate with R̂1,k(s, a) and P̂1,k(s
′|s, a) the sample means of

respectively the observed rewards and transitions up to (and not including)
episode k.

Based on this, at the beginning of each episode k ∈ [K] we can compute
for each policy πi1 with i ∈ [M ] an optimistic approximation Ṽ i

1,k,h of the
value function V i

1,h:

Ṽ i1,k,h(s) =

{
R̂(s, πi1,h(s)) +

∑
s′∈S P̂(s′|s, πi1,h(s))Ṽ i1,k,h+1(s′) + bk(s, πi1,h(s)) if I(s) = 1

maxa∈Ai
k,h

(s) R̂(s, a) +
∑
s′∈S P̂(s′|s, a)Ṽ i1,k,h+1(s′) + bk(s, a) if I(s) = 2

,

(10.5)

149



Chapter 10. Online Learning in General-sum Turn-based Stochastic Games

Algorithm 13 TSG-OPVI

1: Input: S, A, H , Π1 = {π1
1 , . . . , π

M
1 }

2: Initialize Ai1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]
3: for episodes 1, 2, . . . ,K do
4: Compute Ṽ i1,k (Equation 10.5) for all i ∈ [M ]

5: Play πIk1 with Ik ∈ arg maxi∈[M ] Ṽ
i
1,k

6: Observe (sk,1, ak,1, . . . , sk,H−1, ak,H−1, sk,H)
7: Compute the plausible actions for all s ∈ S, h ∈ [H] and i ∈ [M ]:

Aik+1,h(s) =

{
{ak,h} if i = Ik and s = sk,h

Aik,h(s) otherwise

8: end for

where bk(s, πi1,h(s)) = brk(s, π
i
1,h(s))+bPk (s, πi1,h(s)). Note that we use two

levels of optimism: one for the unknown transition probabilities and rewards,
and one for the unknown actions of the second agent. More precisely, if we
have already seen the action that the second agent will play in a state s with
a policy πi1 we use this information to estimate the value function, otherwise
we act optimistically by taking the maximum over all plausible actions. The
pseudocode of TSG-OPVI is reported in Algorithm 13.

10.3.1 Regret Guarantees

In this section, we give a regret bound for the proposed algorithm. The result
exploits the determinism of the other agent’s policies in order to match the
lower bound derived in the previous section. The main idea behind the proof
is that after having played a finite number of time every policy, we know in
every state that is reachable what action the agent 2 will play. At this point
we have reduced our problem to an MDP. In fact when we know the best
response function of agent 2, for every policy we can create a policy that is
the union of the policy of agent 1 and agent 2. At this point the uncertainty
comes only from the transition model and the reward function.

Theorem 10.3.1. Let TSG = (S,A,P , µ,R1,R2, H) with S = S1 ∪ S2

and S1∩S2 = ∅ be the finite-horizon TSG of our problem. Then the expected
regret of TSG-OPVI at every episode K > 0 is bounded by:

E[Regret(K)] ≤ O
(
MSHK + SH

√
AHK log (SAK2H)

)
,

where where K̄ is the first integer such that K >
log
(
MSK

2
)

− log(1−d)
.

150



10.3. TSG Optimistic Policies Value Iteration

Discussion on Theorem 10.3.1 The following regret nearly-matches the pro-
posed lower bound. In fact, if we instantiate the set of policies of agent 1
equal to all the possible deterministic policies, then M = AS where A is
the cardinality of the action space and S the cardinality of the state space.
Instead, the second term of the regret is near to the worst-case lower bound
for MDPs.

Proof of Theorem 10.3.1

Proof. We start by defining for every state s ∈ S, policy πi1 with i ∈ [M ], opponent’s policy
br(πi1), and time step h ∈ H , dih(s) as the probability of visiting s under these policies. Then we
define:

S+,i
2,h = {s ∈ S2 such that dih(s) > 0}.

We define as d = mini∈[M ] minh∈[H] min s ∈ S+,idih(s), i.e., the minimum probability of visiting
a “reachable” state.

Moreover, we define N i
k,h(s) as the number of time a state s ∈ S is visited playing policy πi1 up

to iteration k − 1 ≤ K and time step h.
Then we define for each policy πi1 with i ∈ [M ] the following event:

Ei = {∀h ∈ [H] ∀s ∈ S+,i
2,h such that N i

k,h(s) > 0},

i.e. under the event Ei every opponent’s state is visited at least one time. Then we introduce the
indicator random variable 1 {Ei} which is equal to one if the event Ei is verified and 0 otherwise.

We can then decompose the regret as:

Regret =

K∑
k=1

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1

=
K∑
k=1

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 1 {¬EIk}︸ ︷︷ ︸
A

+

K∑
k=1

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 1 {EIk}︸ ︷︷ ︸
B

We start by bounding the A part. We rewrite the regret making explicit its dependence on the
policy i.

K∑
k=1

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 1
{
¬Eπ1,k

}
=

K∑
k=1

∑
i∈[M ]

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 1
{
¬Eπ1,k

}
1 {π1,k = πi} . (10.6)

151



Chapter 10. Online Learning in General-sum Turn-based Stochastic Games

Fixing a policy πi we can say that:

K∑
k=1

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 1
{
¬Eπ1,k

}
1 {π1,k = πi}

≤
K∑
k=1

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 1
{
¬Eπ1,k , π1,k = πi, Nk(πi) ≤ K

}
+
∞∑
k=K

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 1
{
¬Eπ1,k , π1,k = πi, Nk(πi) > K

}
≤ K

where we use lemma 10.3.1 and K is the first K such that it fulfills the inequality K >
log(MSH2K)

log( 1
1−d )

.

Then we can bound equation 10.6.

∑
i∈[M ]

K∑
k=1

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 1
{
¬Eπ1,k

}
1 {π1,k = πi} ≤MHK.

Then we bound the term B. When the event Ei is verified we know what is the policy br(πi1)
that the opponent will play in every state s ∈ S+,i

2 . Then, in practice, we are facing a single-agent
problem where the single-agent policy is derived by the union of the two policies of the agents, i.e.,
the policy that we use is equal to:

πi(s) =

{
πi1(s) if I(s) = 1

Aik,h(s) if I(s) = 2
, (10.7)

where in this case Aik,h(s) is a singleton for every state s ∈ S2 and policy πi1 with i ∈ [M ].

K∑
k=1

V
π?1 ,br(π

?
1 )

1 − V π1,k,br(π1,k)

1 ≤
K∑
k=1

Ṽ
π1,k,br(π1,k)

1 − V π1,k,br(π1,k)

1

with probability 1− δ, since we used the optimism to bound the regret and the confidence intervals
must be verified. In lemma 10.3.2 we proved that the confidence intervals are verified with probability
1− δ. Then, for a specific episode k ≤ K and time step h ≤ H:

Ṽ
πk
1,k,h(sk,h)− V πk1,k,h(sk,h)

= R̂1(sk,h, ak,h) + brk,h −R1(sk,h, ak,h) + P̂(·|sk,h, ak,h)Ṽ
πk
1,k,h + bPk,h − P(·|sk,h, ak,h)V

πk
1,k,h

= brk,h + R̂1(sk,h, ak,h)−R1(sk,h, ak,h)︸ ︷︷ ︸
∆R
k,h

+ bPk,h + (P̂(·|sk,h, ak,h)− P(·|sk,h, ak,h))Ṽ
πk
1,k,h︸ ︷︷ ︸

∆P
v,k

+ P(·|sk,h, ak,h)(Ṽ
πk
1,k,h − V

πk
1,k,h)− (Ṽ

πk
1,k,h+1(sk,h+1)− V πk1,k,h+1(sk,h+1))︸ ︷︷ ︸

∆V
k,h

+ Ṽ
πk
1,k,h+1(sk,h+1)− V πk1,k,h+1(sk,h+1)

We are going to bound the different ∆s terms. We call ∆S
k,h+1(s) = Ṽ

πk
1,k,h+1(s) − V πk1,k,h+1(s),

152



10.3. TSG Optimistic Policies Value Iteration

and we can say that with probability 1− δ:

K∑
k=1

H∑
h=1

∆V
k,h =

K∑
k=1

H∑
h=1

E
s∼P(·|sk,h,ak,h)

[∆S
k,h+1(s)]−∆S

k,h+1(sk,h+1)

≤
√

2KH log

(
1

δ

)
where we apply Azuma-Hoeffding inequality since it is a martingale difference sequence.

For the second term ∆R
k,h we apply the confidence intervals on the reward function:

K∑
k=1

H∑
h=1

∆R
k,h ≤

K∑
k=1

H∑
h=1

2bRk,h =

K∑
k=1

H∑
h=1

∑
s,a∈S×A

2bRk,h1 {sk,h = s}1 {ak,h = a}

=

K∑
k=1

H∑
h=1

∑
s,a∈S×A

2

√
2 log( 4SAHk

δ
)

Nk(s, a)
1 {sk,h = s}1 {ak,h = a}

≤ 2

√
2 log(

4SAHK

δ
)
∑

s,a∈S×A

K∑
k=1

H∑
h=1

√
1

Nk(s, a)
1 {sk,h = s}1 {ak,h = a}

≤ 2

√
2 log

(
4SAHK

δ

) ∑
s,a∈S×A

NK(s,a)∑
i=1

√
1

i


= 4

√
2SAKH log

(
4SAHK

δ

)
,

with probability 1− δ.
The term ∆P s can be bounded:

K∑
k=1

H∑
h=1

∆P
k,h ≤

K∑
k=1

H∑
h=1

2bPk,h = 2H

K∑
k=1

H∑
h=1

√
2S log

(
4SAHk

δ

)
Nk(s, a)

≤ 4HS

√
2AKH log

(
4SAHK

δ

)
,

with probability 1− δ.
Putting everything together, and including the regret suffered on the events where the confidence

intervals do not hold (which occur with probability at most δ):

E[Regret(K)] ≤MHK + (1− δ)8SH
√

2AHK log

(
4SAHK

δ

)

+ 2δKH + (1− δ)
√

2KH log

(
1

δ

)
+ δKH

Setting δ = 1
3KH

the result follows.

Auxiliar lemmas In the following lemma we prove that if for every policy
πi with i ∈ [M ], every state s ∈ S+,i

2 , at each time step h ∈ [H] has the
probability to be visited equal at least to d then after “enough” times the
policy is played then every state reachable is visited at least one time.

153



Chapter 10. Online Learning in General-sum Turn-based Stochastic Games

Lemma 10.3.1. For each policy πi with i ∈ [M ] if Nk(πi) ≥ K̄, where

K̄ ≥ log(MSH
δ )

log( 1
1−d)

, then every state s ∈ S+,i
2 is visited at least one time with

probability 1− δ.
Proof. We start by bounding the probability that there is at least one state reachable that is not
already visited at least one policy:

P{∃s ∈ S+,i
2 , ∃πi1 with i ∈ [M ] such that Nk,h(s) = 0 and Nk(πi1) ≥ K} ≤∑

i∈[M ]

∑
s∈S+,i

2

∑
h∈[H]

P{Nk,h(s) = 0 and Nk(πi1) ≥ K} ≤MSH(1− d)K .

Since we want to say that this probability is less than δ:

MSH(1− d)K ≤ δ

K log

(
1

1− d

)
≥ log

(
MSH

δ

)
K ≥ log

(
MSH
δ

)
log
(

1
1−d

) .
Then the result follows.

Then we provide the lemma for the confidence intervals:

Lemma 10.3.2. The confidence intervals derived by the bonus br and bP

are verified with probability 1− δ.
Proof. We recall that the bonus terms used are respectively:

brk(s, a) =

√
2 log

(
4SAHk

δ

)
Nk(s, a)

bPk,h(s, a) = h

√
2S log

(
4SAHk

δ

)
Nk(s, a)

.

The bonus term are directly derived by Hoeffding concentration inequality and union bound.

10.4 Discussion

In this Chapter, we propose the first insights to the online learning problem
in general-sum Stochastic Games. Although there are some recent results
in solving the problem in the zero-sum (aka competitive) setting, there are
no works that take into account that we could face a weaker opponent. We
have shown that the problem is much more complicated then in a zero-sum
game and an MDP. The main problems arise from the limited control on the
environment’s exploration. We underline this difficulties in our lower bound
(Section 10.2) and we show how to build a provably efficient algorithm in
Section 10.3.

154



Part IV

Policy Optimization in
Multi-Agent Reinforcement

Learning

155





When approaching the MARL problem from an optimization point of view,
the objective is to provide efficient algorithms that, based on the system’s
dynamics, can converge to interesting solutions concepts (e.g., Nash Equi-
librium points). For the single-agent setting, many policy-gradient algo-
rithms [Deisenroth et al., 2013] were proposed to solve the RL problem.
On the other hand, it was shown that the usage of these algorithms in the
multi-agent setting is unsuccessful (e.g., they may not converge) [Mescheder
et al., 2017, Mertikopoulos et al., 2018b, Adolphs et al., 2019, Mazumdar
et al., 2019].

In Chapter 11 we introduce the setting, formalizing the solution concepts
and extensively reviewing the state of the art. We start by introducing the
Continuous Games and then we establish the connection with MARL and
the relative policy (first order and second order) gradient estimators. Then,
in Chapter 12 we propose a new algorithm [Ramponi and Restelli, 2021],
called Newton Optimization on Helmholtz Decomposition, to solve the
MARL problem. The algorithm is based on the classical Helmholtz decom-
position. Initially, we propose two algorithms based on Newton optimization
respectively for (exact) Potential Games and Hamiltonian Games. Then we
propose an algorithm for General Games that approximates the game, at
each step of the learning process, to its Potential or Hamiltonian component.
For this algorithm, we provide an extensive experimental evaluation.

157





CHAPTER11
Continuous games and gradient-based

approaches

Thanks to their ability to learn in the stochastic policy space and their effec-
tiveness in solving high-dimensional, continuous state and action problems,
policy-gradient algorithms [Deisenroth et al., 2013] are natural candidates
for adoption in MARL problems. Nonetheless, the interaction between
multiple policy-gradient agents has proven unsuccessful in learning a set
of policies that converges to a (local) Nash Equilibrium [Mertikopoulos
et al., 2018b, Papadimitriou and Piliouras, 2016]. This problem is more
general than MARL and includes learning in continuous games. Learning in
continuous games is interesting not only from a MARL point of view but
also for optimization problems with multiple loss functions. Examples are in
Generative Adversarial Networks (GANs) [Goodfellow et al., 2014], which
achieve successful results in Computer Vision [Isola et al., 2017, Ledig
et al., 2017] and Natural Language Generation [Nie et al., 2018, Yu et al.,
2017]; robust supervised learning [Madry et al., 2018, Tramèr et al., 2018]
to contrast adversarial attacks to neural networks; and hyperparameter opti-
mization [Maclaurin et al., 2015, Ravi and Larochelle, 2016] to tuning the
hyperparameters of machine learning algorithms.

159



Chapter 11. Continuous games and gradient-based approaches

In this chapter, we start by formally introducing Continuous Games and
the Helmholtz Decomposition for games [Candogan et al., 2011, Balduzzi
et al., 2018], that we shall use in the next chapter to construct a learning
algorithm for multi-agent problems. Then, we revise the related work on
continuous games, and, finally, we expose how to cast MARL problems in
the continuous game’s setting.

11.1 Continuous Games

In this section, after introducing Continuous Games [Ratliff et al., 2013,
Ratliff et al., 2016], we describe the desired convergence solutions. Then we
recall the Hamiltonian game decomposition. The definitions are intended to
be close to literature and remain close to the notation used in this thesis.

Definition 11.1.1 (Continuous Games). A n-agents continuous game is
defined by (Θ, C1, . . . , Cn) where Θ = (Θ1, . . . ,Θn) are the parameters’
space of each agent and Ci : Θ → R, with Ci ∈ Cq q ≥ 2, is the cost
function of the agent i.

Moreover is usually assumed that Ci is globally Lipschitz continuous
and all the derivatives in all its arguments are globally Lipschitz continuous.

We define the simultaneous gradient as the concatenation of the gradient
of each cost function respect to the parameters of each agent:

ξ(θ) = (∇θ1C
T
1 (θ), . . . ,∇θnCn(θ)T )T , (11.1)

where with θ we intend the concatenation of every agent’s parameter, i.e.,
θ ∈ Θ. Performing gradient descent on a stochastic game implies following
the simultaneous gradient, as every player i updates its parameters with the
component∇θiCi(θ).

The game Jacobian [Ratliff et al., 2013] J 1 is an nd × nd matrix,
where n is the number of agents and d the number of policy parameters for
each agent. The game Jacobian describes the dynamics of the game. J is
composed by the matrix of the gradients of the simultaneous gradient, i.e.,
for each player i the i-th row of its hessian:

J = ∇θξ(θ) =




∇2
θ1
C1(θ) ∇θ1,θ2C1(θ) · · · ∇θ1,θnC1(θ)

∇θ2,θ1C2(θ) ∇2
θ2
C2(θ) · · · ∇θ2,θnC2(θ)

...
... . . . ...

∇θn,θ1Cn(θ) ∇θn,θ2Cn(θ) · · · ∇2
θn
Cn(θ)



.

1We indicate the game Jacobian with J instead of J to be not confused with the expected discounted return.

160



11.1. Continuous Games

Figure 11.1: Dynamics of gradient de-
scent on a Potential game.

Figure 11.2: Dynamics of gradient de-
scent on an Hamiltonian game.

11.1.1 Helmhotz game decomposition

The game Jacobian J (θ) is a square matrix, not necessarily symmetric.
The antisymmetric part of J (θ) is caused by each agent’s different cost
functions and can cause cyclical behavior in the game (even in simple cases
as bimatrix zeros-sum games, see Figure 11.2). On the other hand, the
symmetric part represents the “cooperative” part of the game. The Jacobian
J (θ) can be decomposed into its symmetric and antisymmetric component
using the Generalized Helmholtz decomposition [Wills, 1958] 2.

Proposition 11.1.1. The Jacobian of a game decomposes uniquely into two
components J (θ) = S(θ) + A(θ), where S(θ) = 1

2
(J (θ) + J (θ)T ) and

A(θ) = 1
2
(J (θ)− J (θ)T ).

Components S(θ) and A(θ) represent the irrotational (Potential), S(θ),
and the solenoidal (Hamiltonian), A(θ), part of the game, respectively. The
irrotational component is its curl-free component, and the solenoidal one is
the divergence-free one. This decomposition naturally generates two classes
of games: the one with the componentA(θ) = 0 and the one with S(θ) = 0.
We explain more in details these two classes below.

Potential games Potential games are a class of games introduced by [Mon-
derer and Shapley, 1996]. A game is a potential game if there exists a
potential function φ : Rn×d → R, and a scalar α > 0 such that: φ(θ

′
i,θ−i)−

φ(θ
′′
i ,θ−i) = α(C(θ

′
i,θ−i) − C(θ

′′
i ,θ−i)). A potential game is an exact

potential game if α = 1; exact potential games have A = 0. In these games,
J is symmetrical and it coincides with the hessian of the potential function.

2The Helmholtz decomposition applies to any vector field [Wills, 1958].

161



Chapter 11. Continuous games and gradient-based approaches

This class of games is widely studied because in these games gradient de-
scent converges to a Nash Equilibrium [Rosenthal, 1973, Lee et al., 2016].
In the rest of the document when we refer to potential games we refer to
exact potential games.

Hamiltonian games Hamiltonian games are games with S = 0. A Hamil-
tonian game is described by a Hamiltonian function, which specifies the
conserved quantity of the game. Formally, a Hamiltonian system is fully
described by a scalar function,H(p,q) : Rn×d → R. The state of a Hamil-
tonian system is represented by the generalized coordinates, i.e, momentum
q and position p, which are vectors of the same size. The evolution of
the system is given by Hamilton’s equations: dp

dt
= −∂H

∂q ,
dq
dt

= +∂H
∂p . The

gradient ofH corresponds to (S +AT )ξ [Balduzzi et al., 2018]. In bimatrix
games, Hamiltonian games coincide with zero-sum games, but this is not
true in general games.

Discussion on previous works on Game dynamics decomposition As far as we
know, the first work that proposed a decomposition for games is the work
by [Candogan et al., 2011]. In this paper, the authors introduce how to
apply the Hodge decomposition to finite games3. The paper shows that the
game’s flow can be decomposed into three components: the potential, the
harmonic, and the non-strategic ones. Similar to what we have explained
in the previous sections, the potential component represents the common
interests between the players. The harmonic part, on the other hand (similarly
to the hamiltonian), represents the conflicts of the players. Interestingly the
authors obtain explicit expressions for the projection of games into their
potential and hamiltonian components. Then in [Balduzzi et al., 2018] the
authors propose to decompose a continuous game into its potential and
hamiltonian components and exploit this decomposition to propose a novel
algorithm that adjusts the gradient with the hamiltonian component of the
game. In [Chasnov et al., 2020b] the authors propose a method to learn in
two-players continuous games. In this paper, the authors decompose the
game Jacobian to reflect the dynamic interaction between the two players.
The idea is to decompose the matrix into two components, such that they
perform a change of coordinates. The alternative coordinates more directly
assess the conditions for stability of a Nash Equilibrium.

3The Hodge decomposition is related to the Helmholtz decomposition since it generalized the Helmholtz
decomposition to differential forms on Riemannian manifold. However, it is not a real generalization since the
Hodge decomposition requires that the manifold is compact.

162



11.1. Continuous Games

11.1.2 Desired convergence points

In classic game theory, the standard solution concept is the Nash Equilib-
rium [Nash et al., 1950]4. Since we focus on gradient-based methods and
make no assumptions about the convexity of the cost functions, we consider
the concept of local Nash Equilibrium [Ratliff et al., 2013].

Definition 11.1.2 (Local Nash Equilibrium). A point θ∗ is a local Nash
Equilibrium if, for each agent 1 ≤ i ≤ n, there is a neighborhood Bi

of θ∗i such that Ci(θ∗i ,θ
∗
−i) ≤ Ci(θi,θ

∗
−i) for any θi ∈ Bi. If the above

inequalities are strict, then we say θ∗ is a strict local Nash equilibrium.

Gradient-based methods can reliably find local (not global) optima even
in single-agent non-convex problems [Lee et al., 2016, Lee et al., 2017], but
they may fail to find local Nash equilibria in non-convex games.

Another important solution concept is the concept of stability of the
learning process. In this manuscript we adapt the concept of stability in
dynamical system theory to stability of the learning process. The (local)
stability is defined as follows [La Salle, 1976, Hespanha, 2018, Mazumdar
et al., 2020b].

Definition 11.1.3 (Stable points). A fixed point θ is locally (asymptotically)
stable if and only if all the eigenvalues of J (θ) have strictly positive real
parts, i.e., all the eigenvalues live in the open right-half complex plane.

We introduce now another desirable solution concept, used previously
in the Machine Learning community [Balduzzi et al., 2018, Letcher et al.,
2018, Letcher et al., 2019], that in this manuscript we call symmetric stable
fixed points.

Definition 11.1.4 (Symmetric stable, symmetric unstable and saddle point).
A fixed point θ∗ with ξ(θ∗) = 0 is symmetric stable if S(θ∗) � 0, and S(θ∗)
is invertible, symmetric unstable if S(θ∗) ≺ 0 and a saddle if S(θ∗) has an
eigenvalue with negative real part, but not all.

It is important to notice that this notion of (local) symmetric stability
is only a restrictive sufficient condition to the notion of (local) stability in
dynamical system theory defined before. When considering only the sym-
metric stable points we are possibly removing many stable points. However,
since this is an open active research area, considering the convergence also
to these points can be of interest.

4We review basic solution concepts in appendix A

163



Chapter 11. Continuous games and gradient-based approaches

Lemma 11.1.1. If θ? is a symmetric stable point then θ? is a local strict
Nash Equilibrium.

It is important, to notice that the symmetric stable points are a (possible
very small) subset of all the local Nash Equilibria of a game.

11.2 Related work

In this section, we revise the literature on gradient-based learning algorithms
for continuous games. We would like to mention that this is a research area
that started to be of interest to the Machine Learning community in the last
years, but the study of the dynamic property of continuous games is not
new. In fact, the majority of the results in this area were achieved by the
optimization, control and game theory community.

Convex and convex-concave continuous games The study of convergence in
classic convex multi-player games has been extensively studied and an-
alyzed [Rosen, 1965, Facchinei and Kanzow, 2007, Facchinei and Pang,
2007]. These algorithms are based on extragradient methods [Facchinei and
Pang, 2007]. More recently, in [Bravo et al., 2018] the authors studied the
learning behavior under the bandit feedback. The paper shows that no-regret
learning based on mirror descent with bandit feedback converges to Nash
equilibrium if the game is concave. In [Zhou et al., 2018] the authors study
a setting where the feedback can be lost during the learning process and
propose an algorithm based on online gradient descent that converges to the
set of Nash Equilibrium points. Other recent works consider the problem
of learning in convex or convex-concave games with different assumptions
on the game [Héliou et al., 2020, Wan et al., 2021, Hsieh et al., ]. A very
recent work [Hsieh et al., 2021] propose a new no-regret algorithm based
on optimistic mirror descent, that in variationally stable games (so also in
convex-concave zero-sum games) converges to Nash equilibrium with O(1)
individual regret. Unfortunately, the same algorithms cannot be used with
neural networks due to the non-convexity of the objective functions.

Linear quadratic games There are many works that study linear-quadratic
(LQ) continuous games. In LQ games, the particularity is that the cost
function is quadratically dependent on the states and joint control actions.
This games are particularly interesting since there are applications of them
in robust control synthesis [Başar and Bernhard, 2008, Zhang et al., 2020a,
Zhang et al., ], and risk-sensitive control [Jacobson, 1973, Whittle, 1981]. It
was shown that even asymptotically, basic gradient-based approaches may

164



11.2. Related work

not converge to (local) Nash equilibria or stationary points [Mazumdar et al.,
2019, Mazumdar et al., 2020a]. In [Zhang et al., 2019b] the authors develop
a projected nested-gradient-based algorithm that converges to the Nash
Equilibrium of the game. In [Gravell et al., 2020] the authors analyze policy
iteration algorithms to compute equilibrium strategies and value functions.
In [Bu et al., 2019] Bu et al. propose a projection-free sequential algorithm
to solve LQ games. The idea is to use the Stackelberg leadership model
where the leader follows the natural gradient.

Zero-sum games Due to the great success of Generative Adversarial Net-
works [Goodfellow et al., 2014] many works on continuous games optimiza-
tion are concentrated to two-player zero-sum continuous games setting. In
this case the problem becomes a nonconvex-nonconcave saddle-point prob-
lem in general [Gemp and Mahadevan, 2018, Heusel et al., 2017, Adolphs
et al., 2019,Mazumdar et al., 2019,Schäfer and Anandkumar, 2019,Bu et al.,
2019], and various techniques to solve this problem were proposed [Adolphs
et al., 2019, Mertikopoulos et al., 2018a, Mescheder et al., 2017, Yang et al.,
2020, Diakonikolas et al., 2021]. In [Schäfer and Anandkumar, 2019] the
authors provide an algorithm that, using second-order gradients, converges
exponentially for convex-concave zero-sum games. Consensus Optimiza-
tion [Mescheder et al., 2017] and Optimistic Mirror Descent [Mertikopoulos
et al., 2018a] study methods to adjust the oscillatory dynamic. [Adolphs
et al., 2019] and [Mazumdar et al., 2019] exploit the curvature of the func-
tions to converge to local Nash Equilibria. In [Fiez and Ratliff, 2020] it
was shown that gradient descent-ascent with finite timescale separation con-
verges to local Minmax Equilibria. Moreover, algorithms for convergence
in GANs were studied: [Heusel et al., 2017] use a two-timescale procedure
to converge to local NE; [Gemp and Mahadevan, 2018] rely on variational
inequalities to guarantee global convergence properties; [Nagarajan and
Kolter, 2017] study the convergence properties of gradient descent, showing
that it could find stable points. In [Lin et al., 2020] the authors study the
dynamics of two-time-scale GDA for solving nonconvex-concave minimax
games. It is an interesting result for training GANs. Instead, in [Jin et al.,
2020b] the authors propose interesting insights into what is locally optimal
for nonconvex-nonconcave minimax games (e.g, for GANs). In the paper, it
is proposed the concept of local minimax, a proper mathematical definition
of local optimality. Other recent works propose methods to learn in partic-
ular classes of zero-sum games: smooth-markets [Balduzzi et al., 2020],
sequential imperfect information games [Perolat et al., 2020], zero-sum
linear-quadratic games [Zhang et al., 2019b].

165



Chapter 11. Continuous games and gradient-based approaches

General sum games Recently there was a great interest in study gradient-
optimization algorithms for non-convex games. This setting is also very
challenging in the single-agent optimization case. However, the complexity
increases in the multi-agent setting. In fact, it was proved that success-
ful single-optimization techniques such as gradient-descent cannot always
converge to a Local Nash Equilibrium due to the cyclic behavior of the
dynamics around the NE points [Mescheder et al., 2017, Daskalakis et al.,
2009, Mertikopoulos et al., 2018b, Adolphs et al., 2019, Mazumdar et al.,
2020a, Letcher, 2020]. In [Chasnov et al., 2020a] using dynamic system the-
ory tools, the authors study the converge properties to local Nash Equilibria
of multi-agent gradient-based algorithms, also with non-uniform learning
rates. Some recent works have developed learning algorithms also for gen-
eral sum continuous games. The first example in literature is the Iterated
Gradient Ascent Policy Prediction (IGA-PP) algorithm, renamed LookA-
head [Zhang and Lesser, 2010]. In [Letcher et al., 2018] it is proved that
IGA-PP converges to local Nash Equilibria not only in two-player two-
action bimatrix games but also in general games. Learning with opponent
learning awareness (LOLA) [Foerster et al., 2018] is an attempt to use the
other agents’ costs to account for the impact of one agent’s policy on the
anticipated parameter update of the other agents. The empirical results
show the effectiveness of LOLA, but no convergence guarantees are pro-
vided. Indeed, [Letcher et al., 2018] has shown that LOLA may converge
to non-fixed points and proposed Stable Opponent Shaping [Letcher et al.,
2018], an algorithm that maintains the theoretical convergence guarantees
of IGA-PP, also exploiting the opponent dynamics like LOLA. In [Balduzzi
et al., 2018, Letcher et al., 2019] the authors studied game dynamics by
decomposing a game into its Potential and Hamiltonian components using
the generalized Helmholtz decomposition. The authors propose Symplectic
Gradient Adjustment (SGA), an algorithm for general games, which con-
verges locally to symmetric stable fixed points, using the Hamiltonian part
to adjust the gradient update. [Fiez et al., 2020b] considered a two-timescale
algorithm that converges to local Stackelberg Equilibrium points in general
games, providing finite-time convergence analysis and stochastic conver-
gence analysis. In [Mazumdar et al., 2020b] the authors propose a general
framework for competitive gradient-based learning, such that it includes
many multi-agent learning algorithms. In [Chasnov et al., 2019] the same
authors report in an useful table many multi-agent learning updates rules.

166



11.3. MARL and policy-gradient algorithms

11.3 MARL and policy-gradient algorithms

The described algorithms can be used as policy-gradient methods for MARL
problems, casting the problems as a Continuous Stochastic Game.

Definition 11.3.1 (Continuous Stochastic Game). A n-Continuous Stochas-
tic Game is a tuple CSG = (S,A,P ,R, γ1, . . . , γn) where:

• n is the number of agents,

• Ai, 1 ≤ i ≤ n, is the set of actions of agent i and A = A1 × · · · × An
is the joint action set;

• S is the set of states;

• P : S ×A → ∆(A) is the state transition probability function,

• R = (R1, . . . ,Rn) is the set of cost (reward) functions for each agent,
whereRi : S ×A → R is the reward function of agent i 5,

• γ = (γ1, . . . , γn), where γi ∈ [0, 1) is the discount factor for the agent
i.

The agent’s behavior is described by means of a parametric twice dif-
ferentiable policy πθi : S → ∆(Ai), where θi ∈ Θi ⊆ Rd and πθi(·|s)
specifies for each state s a distribution over the action space Ai.6 We denote
by θ the vector of length nd obtained by stacking together the parameters of
all the agents: θ = (θT1 , . . . ,θ

T
n )T .

In continuous stochastic games, all agents try to minimize their expected
discounted cost separately. It is defined for the i-th agent as:

Ci(θ) = E

[
H−1∑

h=0

γhR(sh, ah)

]
= E

[
H−1∑

h=0

γhR(sh, (a1,h, . . . , an,h))

]

where the expectation is taken with respect to s0 ∼ µ, sh+1 ∼ P(·|sh, ah),
ai,h ∼ πi(·|sh) for each i ∈ [N ]. The continuous stochastic cost is the
expected discounted return defined before in Chapter 2. However in this part
we define it as expected discounted cost because the objective of the agent is
to minimize it, instead of maximize it. We do not assume the convexity of
the functions Ci(θ).

Usually, agents do not have access to the full gradient or the Jacobian, and
we need to estimate them as for single-agent RL (see Chapter 2). Following

5We call the cost function of each agentRi since then we define the expected discounted cost with Ci.
6To ease the notation, we will drop θ (e.g., πi instead of πθi ) when not necessary.

167



Chapter 11. Continuous games and gradient-based approaches

the derivation of G(PO)MDP [Peters and Schaal, 2008b], we estimate the
gradient of the expected cost function∇θiCi(θ):7

Proposition 11.3.1. Given a differentiable parametric policy πθi the pol-
icy gradient of the expected discounted cost of agent i respect to its own
parameters θi can be estimated by:

∇̂M
θi
Ci(θ) =

1

M

M∑

m=1

H−1∑

h=0

(
h∑

h′=0

∇θi log πθi(a
m
i,h′|smh′)γhRi(s

m
h , a

m
h )

)
.

(11.2)

Proof. We derive the second order gradient when there are only two agents to ease readability.
The extension to n players is trivial. We define with πi(τ) =

∏H−1
h=0 πi(ah|sh) and P(τ) =

µ(s0)×∏H−1
h=1 P(sh, ah).

∇θ1C1(θ) = ∇θ1 E
τ

[R1(τ)]

= ∇θ1

∫
τ

π1(τ)π2(τ)P(τ)R1(τ)dτ

=

∫
τ

∇θ1π1(τ)π2(τ)P(τ)R1(τ)dτ

=

∫
τ

π1(τ)

π1(τ)
∇θ1π1(τ)π2(τ)P(τ)R1(τ)dτ (11.3)

=

∫
τ

π1(τ)π2(τ)P(τ)∇θ1 log(π1(τ))R1(τ)dτ

= E
τ

[∇θ1 log(π1(τ))R1(τ)]

=

∫
s0

µ(s0)· · ·
∫
sH−1

P(sH−1|sH−2, a1,H−2, a2,H−2)

∫
a1,H−1

π(a1,H−1|sH−1)

×
∫
a1,H−1

π(a1,H−1|sH−1)

(
H−1∑
h=0

∇θ1 log(π1(a1,h|sh))

)

×
(
H−1∑
t=0

γtR1(st, a1,t, a2,t)

)
ds0 × . . . da2,H−1

=

H−1∑
t=0

(∫
s0

µ(s0)· · ·
∫
sH−1

P(sH−1|sH−2, a1,H−2, a2,H−2)

∫
a1,H−1

π(a1,H−1|sH−1)

×
∫
a2,H−1

π(a2,H−1|sH−1)

(
H−1∑
h=0

∇θ1 log(π1(a1,h|sh))

)
× γtR1(st, a1,t, a2,t)ds0 × . . . da2,H−1

)
, (11.4)

where in line 11.3 we use the log trick, in line 11.4 we write explicitly the expectation. Then, picking

7With ∇̂M,θi we intend the estimator of∇θi over M samples.

168



11.3. MARL and policy-gradient algorithms

the inner equation and selecting a specific 0 ≤ t ≤ H − 1:∫
s0

µ(s0)· · ·
∫
sH−1

P(sH−1|sH−2, a1,H−2, a2,H−2)

∫
a1,H−1

π(a1,H−1|sH−1)

×
∫
a2,H−1

π(a2,H−1|sH−1)

(
H−1∑
h=0

∇θ1 log(π1(a1,h|sh))

)
R1(st, a1,t, a2,t)ds0 × . . . da2,H−1

=

∫
s0

µ(s0)· · ·
∫
st

P(st|st−1, a1,t−1, a2,t−1)

∫
a1,t

π(a1,t|st)

×
∫
a1,t

π(a1,t|st)γtR1(st, a1,t, a2,t)· · ·
∫
a2,H−1

π(a2,H−1|sH−1)

×
(
H−1∑
h=0

∇θ1 log(π1(a1,h|sh))

)
ds0 × . . . da2,H−1

Now the reader can verify that the integrals from t+1 toH−1 (multiplied by the log policy gradients
in the same range) evaluate to 1. So the result follows.

Then, to estimate the Jacobian J , we have to compute the second-order
gradient ∇θi∇θjCi, with 1 ≤ i ≤ n, 1 ≤ j ≤ n and i 6= j. We derive,
as in [Foerster et al., 2018], the second-order gradient, exploiting the
independence of agents’ policies.

Proposition 11.3.2. Given two diffentiable parametric policies πθi , πθj the
second-order policy gradient of the expected discounted cost of agent i
respect to θi and θj can be estimated by:

∇̂M
θi,θj

h∑

h′=0

Ci =
1

M

M∑

m=1

H−1∑

h=0

(
∇̂M
θi

log(πθi(a
m
i,h′|smh′))

)(
∇̂M
θj

log(πθj(a
m
j,h′ |smh′))

)T

× γh (Ri(s
m
h , a

m
h )) .

Proof. We derive the second order gradient when there are only two agents to ease readability.
The extension to n players is trivial. We define with πi(τ) =

∏H−1
h=0 πi(ah|sh) and P(τ) =

µ(s0)×∏H−1
h=1 P(sh, ah).

∇θ1,θ2C1(θ) = ∇θ1,θ2 E
τ

[R1(τ)]

= ∇θ1,θ2

∫
τ

π1(τ)π2(τ)P(τ)R1(τ)dτ

=

∫
τ

∇θ1π1(τ)∇θ1π2(τ)P(τ)R1(τ)dτ

=

∫
τ

π1

π1
∇θ1π1(τ)

π1

π1
∇θ2π2(τ)P(τ)R1(τ)dτ

169



Chapter 11. Continuous games and gradient-based approaches

=

∫
τ

π1(τ)π2(τ)P(τ) (∇θ1 log(π1(τ)))T ∇θ2 log(π2(τ))R1(τ)dτ

= E
τ

[
(∇θ1 log(π1(τ)))T ∇θ2 log(π2(τ))R1(τ)

]
=

∫
s0

µ(s0)· · ·
∫
sH−1

P(sH−1|sH−2, a1,H−2, a2,H−2)

∫
a1,H−1

π(a1,H−1|sH−1)

×
∫
a1,H−1

π(a1,H−1|sH−1)

(
H−1∑
h=0

∇θ1 log(π1(a1,h|sh))

)T (H−1∑
h=0

∇θ2 log(π2(a2,h|sh))

)

×
(
H−1∑
t=0

γtR1(st, a1,t, a2,t)ds0 × . . . da2,H−1

)

=

H−1∑
t=0

(∫
s0

µ(s0)· · ·
∫
sH−1

P(sH−1|sH−2, a1,H−2, a2,H−2)

∫
a1,H−1

π(a1,H−1|sH−1)

×
∫
a1,H−1

π(a1,H−1|sH−1)

(
H−1∑
h=0

∇θ1 log(π1(a1,h|sh))

)T (H−1∑
h=0

∇θ2 log(π2(a2,h|sh))

)
× γtR1(st, a1,t, a2,t)ds0 × . . . da2,H−1

)
picking the inner equation and selecting a specific 0 ≤ t ≤ H − 1:∫
s0

µ(s0)· · ·
∫
sH−1

P(sH−1|sH−2, a1,H−2, a2,H−2)

∫
a1,H−1

π(a1,H−1|sH−1)

×
∫
a2,H−1

π(a2,H−1|sH−1)

(
H−1∑
h=0

∇θ1 log(π1(a1,h|sh))

)T (H−1∑
h=0

∇θ2 log(π2(a2,h|sh))

)
× γtR1(st, a1,t, a2,t)ds0 × . . . da2,H−1

=

∫
s0

µ(s0)· · ·
∫
sH−1

P(st|st−1, a1,t−1, a2,t−1)

∫
a1,t

π(a1,t|st)

×
∫
a1,t

π(a1,t|st)γtR1(st, a1,t, a2,t)· · ·
∫
a2,H−1

π(a2,H−1|sH−1)

(
H−1∑
h=0

∇θ1 log(π1(a1,h|sh))

)T

×
(
H−1∑
h=0

∇θ2 log(π2(a2,h|sh))

)
ds0 × . . . da2,H−1

Now the reader can verify that the integrals from t+1 toH−1 (multiplied by the log policy gradients

in the same range) evaluate to 1. So the result follows.

When i = j we are evaluating the second-order gradient of πθi . To
evaluate this part we derive the second-order gradient as done for the single-
agent case [Shen et al., 2019].

Proposition 11.3.3. Given a twice differentiable parametric policy πθ1 the
second-order policy gradient of the expected discounted cost function of
agent i respect to its own parameters θi can be estimated by:

170



11.3. MARL and policy-gradient algorithms

∇̂2,M
θi

Ci =
1

M

M∑

m=1

∇θigi(θi, τm)

(
H−1∑

h=0

∇θi log πθi(a
m
h |smh )

)T

+∇2
θi
gi(θi, τm)

where gi(θi, τ) =
∑H−1

h=0 ∇θi log(πθi(sh, ai,h))
∑H−1

h′=hR(sh′ , ai,h′).

Proof. We derive the second order gradient when there are only two agents to ease readability. The
extension to n players is trivial. The derivation follow similar steps of [Shen et al., 2019].

As we have shown previously in Proposition 11.3.1:

∇θ1C1(θ) = E
τ

[(
H−1∑
h=0

log(π1(ah|sh))

)(
H−1∑
h=0

γhR1(sh, ah)

)]

We start calling:

g1(θ1, τ) =

H−1∑
h=0

log(π1(a1,h|sh)

H−1∑
h′=h

γhγhR1(sh′ , a1,h′)

Using this notation we can rewrite the gradient of the expected discounted cost as:

∇θ1C1(θ) = E
τ

[∇θ1g1(θ1, τ)] =

∫
τ

P(τ)π1(τ)π2(τ)∇θ1g1(θ1, τ)dτ

So we can compute the second order gradient as:

∇2
θ1
C1(θ) =

∫
τ

P(τ)π2(τ)∇θ1g1(θ1, τ)(∇θ1π1(τ))T + P(τ)π1(τ)π2(τ)∇2
θ1
g1(θ1, τ)dτ

= E
τ

[
g1(θ1, τ)(∇θ1π1(τ))T +∇2

θ1
g1(θ1, τ)

]

Convergence results for MARL The convergence result of the algorithms de-
scribed in Section 11.2 are in general developed for general continuous
games, where the functions can have various forms, as long as they are
differentiable and in most of the cases Lipschitz continuous with respect to
agent’s policy parameters. In a MARL context this means that the expected
discounted cost has to have these differentiability/continuity properties.
These properties are very restrictive in general, e.g. even the smoothness
assumption fails to hold for LQ games [Zhang et al., 2019b, Mazumdar
et al., 2020a, Bu et al., 2019]. For LQ games in some works [Zhang et al.,
2019b, Bu et al., 2019] are convergence results are proved working on the
particular structure of the game. Moreover, the most of the results are proved
for the exact setting and do not study the stochastic one. However [Fiez
et al., 2020b] provide convergence results also in the stochastic framework
leveraging on stochastic approximation and dynamic system theory [Borkar,
2009].

171





CHAPTER12
Newton Optimization On Helmhotz

Decomposition

In this chapter, we study how to build a Newton-based algorithm for learning
policies in multi-agent problems. First of all, we start by analyzing two
specific game classes: Potential Games and Hamiltonian Games. Then
we propose a Newton-based update for these two classes of games, for
which linear-rate algorithms that guarantee convergence are known, proving
quadratic convergence rates. Then, we extend the algorithm to the general
case, neither Hamiltonian nor Potential. We show that the proposed algo-
rithm, called Newton Optimization on Helmhotz Decomposition (NOHD),
fulfills some desiderata, similar to those proposed in [Balduzzi et al., 2018]:
the algorithm has to guarantee convergence to (local) Nash Equilibria in
(D1) Potential and (D2) Hamiltonian games; (D3) the algorithm has to be
attracted by symmetric stable fixed points and (D4) repelled by symmetric
unstable fixed points. Finally, in Section 12.3, we analyze the empirical
performance of NOHD when agents optimize either a linear policy or a
Boltzmann policy, in three bimatrix games: Prisoner’s Dilemma, Matching
Pennies, and Rock-Paper-Scissors. Then we study the learning performance
of NOHD in two continuous gridworld environments. Finally, we show

173



Chapter 12. Newton Optimization On Helmhotz Decomposition

how the algorithm performs in a simple GAN problem. In all experiments,
NOHD achieves great results confirming the quadratic nature of the update.

12.1 Newton method for non-convex functions

Newton’s method [Nocedal and Wright, 2006] guarantees, under mild as-
sumptions, a quadratic convergence rate to the root of a function. In opti-
mization this technique is used to obtain a quadratic convergence rate to
a fixed point of a function. Obviously, if the function is convex, it corre-
sponds to converge to the global minimum of the function. The Newton
method is based on a second-order approximation of the twice differentiable
function g(θ) that we are optimizing. Starting from an initial guess θ0,
Newton’s method updates the parameters θ by setting the derivative of the
second-order Taylor approximation of g(θ) to 0:

θt+1 = θt −∇2g(θt)
−1∇g(θt). (12.1)

For non-convex functions, the hessian ∇2g(θ) is not necessarily positive
semidefinite and all fixed points are possible solutions for Newton’s method.
So Newton’s update in non-convex functions may converge to a local mini-
mum, a saddle, or a local maximum. A possible way to avoid this shortcom-
ing is to use a modified version of the inverse of the hessian, called Positive
Truncated inverse (PT-inverse) [Nocedal and Wright, 2006, Paternain et al.,
2019]:

Definition 12.1.1 (PT-inverse). Let H ∈ Rn×n be a symmetric matrix, Q ∈
Rn×n a basis of orthogonal eigenvectors of H , and Λ ∈ Rn×n a diagonal
matrix of corresponding eigenvalues. The |Λ|m ∈ Rn×n is the positive
definite truncated eigenvalue matrix of Λ with parameter m:

(|Λ|m)ii =

{|Λii| if |Λii| ≥ m,

m otherwise.
(12.2)

The PT-inverse of H with parameter m is the matrix |H|−1
m = Q|Λ|−1

m QT .

The PT-inverse flips the sign of negative eigenvalues and truncates small
eigenvalues by replacing them with m. Then the usage of the PT-inverse,
instead of the real one, guarantees convergence to a local minimum even in
non-convex functions [Paternain et al., 2019]. These properties are necessary
to obtain a convergent Newton-like method for non-convex functions.

174



12.2. Newton for Games

12.2 Newton for Games

In this section, we describe how to apply Newton-based methods to Contin-
uous Games. We start by showing how Newton’s method can be applied to
two-game classes, which we extensively described in section 11.1: Potential
games and Hamiltonian Games. Then we describe an algorithm to extend
Newton’s method in general games.

12.2.1 Newton’s method for Potential games

In this section, with the word Potential games, we are indicating Exact
Potential games. Potential games are a class of games characterized by the
existence of a potential function φ : Rn×d → R which describes the dy-
namics of the system. In these games, gradient descent on the simultaneous
gradient or the potential function converges to a (local) Nash Equilibrium
as shown in Figure 11.1. The Jacobian of a Potential game is equal to its
symmetric component, i.e, J (θ) = S(θ), since the anti-symmetric compo-
nent A(θ) = 0. Considering the existence of the potential function φ (see
Chapter 11), it is sufficient to apply the Newton PT-inverse method (see
Definition 12.1.1) on it to guarantee a quadratic convergence rate to a local
Nash Equilibrium (see Figure 11.1). Therefore, the Newton’s update for
Potential games is:

θt+1 = θt − αSm(θ)−1ξ(θt), (12.3)

where α is a learning rate and m is the parameter of the PT-inverse (see
Section 12.1). So, in Potential games, we have the same convergence
properties as in single-function optimization. The convergence into the local
minima follows Newton’s convergence proofs for non-convex functions
[Paternain et al., 2019].

12.2.2 Newton’s method for Hamiltonian games

Hamiltonian games are characterized by an Hamiltonian functionH(p,q) :
Rn×d → R. In these games, the gradient descent does not converge to a
symmetric stable fixed point but causes cyclical behavior. Instead, the gradi-
ent descent on the Hamiltonian function converges to a Nash equilibrium.
Figure 11.2 shows the dynamics of gradient descent w.r.t. ξ and ∇H on a
Hamiltonian game: the figure points out that a gradient descent on ξ cycles.

Example 12.2.1. Take a two-player bilinear game with agents with pa-
rameters θ1 and θ2 minimizing respectively f(θ) : Rn×d → R and g(θ) :

175



Chapter 12. Newton Optimization On Helmhotz Decomposition

Rn×d → R respectively. A point in this class of games is a Nash Equilib-
rium if ξ(θ) = 0, i.e., ∇θ1f = 0 and ∇θ2g = 0, because ∇2

θ1
f = 0 and

∇2
θ2
g = 0. Considering this, the Nash Equilibrium can be calculated in

closed form (if the inverse exists1 ) by setting the gradient equal to zero:
[∇θ1f

∇θ2g

]
+

[
0 ∇θ1,θ2f

∇θ2,θ1g 0

] [
θ1

θ2

]
= 0

[
θ1

θ2

]
= −

[
0 ∇θ1,θ2f

∇θ2,θ1g 0

]−1 [∇θ1f

∇θ2g

]
.

The example above provides the intuition that the solution to quadratic
Hamiltonian games is achieved by the following update rule (in Hamiltonian
games S = 0):

θk+1 = θk − αA(θk)
−1ξ(θk). (12.4)

In the following theorem, we state that even in this class of games the
local convergence to a local Nash Equilibrium (using the above update) is
quadratic (see Figure 11.2).

Theorem 12.2.1. Suppose that ξ is twice continuosly differentiable and that
A is invertible in the (local) Nash Equilibrium θ∗. Then, there exists ε > 0
such that iterations starting from any point in the ball θ0 ∈ B(θ∗, ε) with
center θ∗ and ray ε converge to θ∗. Furthermore, the convergence rate is
quadratic.

Proof. The proof is the standard proof of convergence for Newton’s methods. We report here the
steps for completeness.

In the following derivations with ‖M‖ we indicate the operator norm of a matrix M defined as:

‖M‖ := max
x
{‖Mx‖ such that ‖x‖ = 1}

Since ξ is twice differentiable, its Taylor series expansion in θ0 is:

ξ(θ) = ξ(θ0) +A(θ0)(θ − θ0) +O(‖θ − θ0‖2) (12.5)

Because A is continuously differentiable then ∃ε1,M > 0 s.t. if we take θ0,θ ∈ B(θ∗, ε1) then we
have that:

‖ξ(θ)− ξ(θ0)−A(θ0)(θ − θ0)‖ ≤M ‖θ − θ0‖2 . (12.6)

Since A is twice continuously differentiable and by assumption it is invertible in θ∗ then there exists
ε2, N s.t. ∀θ ∈ B(θ∗, ε2) A−1 exists and

∥∥A−1(θ)
∥∥ ≤ N (see lemma 5.3 in [Chong and Zak,

2004]).
Let ε = min(ε1, ε2). Now, we substitute θ with θ∗ in 12.6 and we use the assumption that

ξ(θ∗) = 0:
‖A(θ0)(θ0 − θ∗)− ξ(θ0)‖ ≤M ‖θ − θ0‖2 . (12.7)

1If the inverse does not exist and a Nash Equilibrium exists, the system is indeterminate. Using the Moore-
Penrose inverse we find an approximate Nash Equilibrium (the one with the smallest Euclidean norm).

176



12.2. Newton for Games

Algorithm 14 NOHD
input: discounted costs C = {C}ni=1, PT inverse parameter m
output: update rule

Compute ξ,J , S,A, S−1
m

if cos νS ≥ 0 then
if cos νS ≥ cos νA then (12.3) else (12.4)

else
if cos νS ≤ cos νA then (12.3) else (12.4)

end if

If we use the update rule and we take θ1 ∈ B(θ∗, ε) we have that:

‖θ1 − θ∗‖ =
∥∥θ0 − θ∗ −A−1(θ0)ξ(θ0)

∥∥
=
∥∥A(θ0)−1(A(θ0)(θ0 − θ∗)− ξ(θ0))

∥∥
≤
∥∥A(θ0)−1

∥∥ ‖(A(θ0)(θ0 − θ∗)− ξ(θ0))‖ , (12.8)

where in the last step we used the triangular inequality. If we used the inequalities 12.6 we have that:

‖θ1 − θ∗‖ ≤MN ‖θ0 − θ∗‖2 . (12.9)

If we suppose that ‖θ0 − θ∗‖ ≤ α
MN

with α ∈ (0, 1), then:

‖θ1 − θ∗‖ ≤ α ‖θ0 − θ∗‖2 . (12.10)

Then by induction we obtain that:

‖θk+1 − θ∗‖ ≤ α ‖θk − θ∗‖2 . (12.11)

Hence limk→∞ ‖θk − θ∗‖ = 0 and therefore the sequence θk converges to θ∗ if we take ε ≤ α
MN

,

and the order of convergence is at least 2.

12.2.3 Newton’s method for General games

In general games, it is not yet known whether and how the system’s dynamics
can be reduced to a single function as for Potential and Hamiltonian games.
Thus, finding a Newton-based update is more challenging: if we apply
Newton’s Method with the Jacobian PT-transformation, we can alter the
Hamiltonian dynamics of the game. Instead, applying the inverse of the
Jacobian as in the Hamiltonian games can lead to local maxima. In this
section, we show how to build a Newton-based learning rule that guarantees
desiderata similar to those considered in [Balduzzi et al., 2018]:

(D1): the update rule has to be compatible with Potential dynamics if the
game is a Potential game;

(D2): the update rule has to be compatible with Hamiltonian dynamics if the
game is a Hamiltonian game;

177



Chapter 12. Newton Optimization On Helmhotz Decomposition

(D3): the update rule has to be attracted by symmetric stable fixed points;

(D4): the update rule has to be repelled by symmetric unstable ones.

With compatible we mean that given two vectors u, v then uTv > 0.
The algorithm that we propose (see Algorithm 14) chooses the update to

perform between the two updates in (12.3) and (12.4). The choice is based
on the angles between the gradient of the Hamiltonian functionH and the
two candidate updates’ directions. In particular, we compute

cos νS =
(S−1

m (θ)ξ(θ))T∇H(θ)

‖S−1
m (θ)ξ(θ)‖2 ‖∇H(θ)‖2

, cos νA =
(A−1(θ)ξ(θ))T∇H(θ)

‖A−1(θ)ξ(θ)‖2 ‖∇H(θ)‖2

.

When the cosine is positive, the update rule follows a direction that reduces
the value of the Hamiltonian function (i.e., reduces gradient norm), other-
wise the update rule points in an increasing direction of the Hamiltonian
function. This is an important fact since there is a connection between the
positive/negative definiteness of S(θ) and the sign of cos νS .

Lemma 12.2.1. Given the Jacobian J (θ) = S(θ) + A(θ) and the simul-
taneous gradient ξ, if S(θ) � 0 then cos νS ≥ 0; instead if S(θ) ≺ 0 then
cos νS < 0.

Proof. We know that cos νS =
(S−1
m (θ)ξ(θ))T∇J

‖S−1
m (θ)ξ(θ)‖

2
‖∇J (θ)‖2

; then the sign of cos νS depends on

(S−1
m (θ)ξ(θ))T∇J (θ). Suppose that S(θ) � 0. We show that if S(θ) � 0 then S−1

m (θ)(ST (θ)+
AT (θ)) � 0:

S−1
m (θ)(S(θ) +A(θ)T ) = S

− 1
2

m (θ)S
− 1

2
m (θ)(S(θ) +A(θ)T )

= S
− 1

2
m (θ)(S

− 1
2

m (θ)(S(θ) +A(θ)T )S
− 1

2
m )(θ)S

1
2
m(θ).

We use the fact that S−1
m (θ) is positive definite by construction. So there exists a unique square

root matrix S−1/2
m (θ) that is symmetric. Then the matrix S−1

m (θ)(S(θ) + A(θ)T ) is similar to
S
−1/2
m (θ)(S(θ) +A(θ)T )S

−1/2
m (θ). For every vector u ∈ Rn×d:

uTS−1/2
m (θ)(S(θ) +A(θ)T )S−1/2

m (θ)u = z(S(θ) +A(θ)T )z ≥ 0,

where z = uTS
−1/2
m (θ) = S

−1/2
m (θ)u because S−1/2

m (θ) is symmetric. Using the same reasoning

it is shown that if S(θ) ≺ 0 then S−1
m (θ)(ST (θ) +AT (θ)) ≺ 0.

The idea of NOHD is to use the sign of cos νS to decide whether to move
in a direction that reduces the Hamiltonian function (aiming at converging to
a symmetric stable fixed point) or not (aiming at getting away from unstable
points), since the angles indicate also if S(θ) is positive semidefinite or not.
In case cos νS is positive, the algorithm chooses the update rule with the
largest cosine value (i.e., which minimizes the angle with ∇H), otherwise,

178



12.2. Newton for Games

NOHD tries to point in the opposite direction by taking the update rule that
minimizes the cosine. In the following theorem, we show that the update
performed by NOHD satisfies the desiderata described above.

Theorem 12.2.2. The NOHD update rule satisfies requirements (D1), (D2),
(D3), and (D4).

Proof. D1 NOHD has to be compatible with Potential game dynamics if the game is a Potential
game: (S−1

m (θ)ξ(θ))T∇φ > 0 and (A−1(θ)ξ(θ))T∇φ > 0, φ is the potential function. We notice
that∇φ = ξ(θ) and that A(θ) = 0 because the game is a Potential game. ξ(θ)TS−1

m (θ)ξ(θ) > 0
for every ξ(θ) 6= 0 since S−1

m (θ) is positive definite by construction.
D2 NOHD has to be compatible with Hamiltonian game dynamics if the game is a Hamiltonian

game: (S−1
m (θ)ξ(θ))T∇H(θ) > 0 and (A−1ξ)T (θ)∇H(θ) > 0. We know that ∇H(θ) =

(S(θ)T + A(θ)T )ξ(θ) and that S(θ) = 0 because the game is a Hamiltonian game. Then
ξ(θ)T (A−1(θ))T (A(θ)T )ξ(θ) = ‖ξ(θ)‖2.

D3 NOHD has to be attracted to symmetric stable fixed points. It means that if S(θ) + A(θ)
is positive definite, and so, ξ(θ)T (S(θ) +A(θ))ξ(θ) > 0. Then S(θ) � 0. From Lemma 12.2.1
we know that also ξ(θ)TS(θ)−1

m (S(θ) + A(θ)T )ξ > 0 so cosνS > 0. The update rule takes the
max(cosνS , cosνA) that from the previous consideration is always positive.

D4 NOHD has to be repelled by symmetric unstable fixed points. It means that if S(θ) +A(θ)

is negative definite, and so, ξ(θ)T (S(θ) +A(θ))ξ(θ) ≤ 0. Then S(θ) ≺ 0. From Lemma 12.2.1

we know that also ξ(θ)TS−1
m (θ)(S(θ) + A(θ)T )ξ ≤ 0 so cosνS < 0. The update rule take the

min(cosνS , cosνA) that from the previous consideration is always strictly negative.

Given the results from Theorem 12.2.2 and Lemma 12.2.1, we can argue
that if ξ(θ) points at a symmetric stable fixed point then NOHD points also
to the symmetric stable fixed point otherwise if ξ(θ) points away from the
fixed point also NOHD points away from it.
Then we prove that NOHD converges only to fixed points and, under mild
conditions, it converges locally to symmetric stable fixed points.

Lemma 12.2.2. If NOHD converges to a θ∗ then ξ(θ∗) = 0.

Proof. Suppose that θ∗ is not a fixed point, so ξ(θ∗) 6= 0. The process is stopped in θ∗ if and only
if S−1

m (θ)ξ(θ) = 0 and A(θ)−1ξ(θ) = 0, because if ξ(θ)TA−1(θ) = 0 and ξ(θ)TS−1
m (θ) 6= 0

we always take −S−1
m (θ)ξ(θ) as update since ‖cosνS‖ ≥ ‖cosA‖. ξ(θ)TS−1

m (θ) = 0 only if
ξ(θ) = 0 because S−1

m (θ) is positive definite by construction, then we contradict the hypothesis.

We have to mention that with this lemma we prove only that the convergence points of the game

are fixed points, i.e. ξ(θ) = 0.

Theorem 12.2.3. Suppose θ∗ is a symmetric stable fixed point, and suppose
A, S,J are bounded and Lipschistz continuous with modulus respectively
MA,MS,MJ in the region of attraction of the symmetric stable fixed point
ξ(θ∗). Furthermore assume that A(θ∗) is invertible. Then there exists ε > 0
such that the iterations starting from any point θ0 ∈ B(θ∗, ε) converge to
θ∗.

179



Chapter 12. Newton Optimization On Helmhotz Decomposition

Proof. Since ξ is differentiable by assumption we can write:

ξ(θ)− ξ(θ∗) =

∫ 1

0

[J (θn + t(θ∗ − θn))](θ∗ − θn)dt.

Since for construction, S(θ0)−1
m always exists, we can say that there exists a constant NS such that

S(θ)−1
m ≤ NS . Moreover, since A is twice continuously differentiable and by assumption it is

invertible in θ∗ then there exists ε,NA s.t. ∀θ ∈ B(θ∗, ε) A(θ)−1 exists and
∥∥A−1(θ)

∥∥ ≤ NA
(see lemma 5.3 in [Chong and Zak, 2004]). So we have:

θ1 − θ∗ = θ0 − S(θ0)−1
m ξ(θ0)− θ∗

= θ0 + S(θ0)−1
m (ξ(θ0)− ξ(θ∗))− θ∗

= θ0 − θ∗S(θ0)−1
m

∫ 1

0

(J (θ0 + t(θ∗ − θ0))) (θ∗ − θ0)dt

= S(θ0)−1
m

∫ 1

0

(J (θ0 + t(θ∗ − θ0))− S(θ0)) (θ∗ − θ0)dt.

Taking the norm and supposing that the current update is with S(θ)−1
m

‖θ1 − θ∗‖ ≤
∥∥S(θ0)−1

m

∥∥ ∫ 1

0

‖J (θ0 + t(θ∗ − θ0))− S(θ0)‖ ‖θ∗ − θn‖ dt

=
∥∥S(θ0)−1

m

∥∥∫ 1

0

‖J (θ0 + t(θ∗ − θ0))− J (θ0) +A(θ0)‖ ‖θ∗ − θ0‖ dt

≤
∥∥S(θ0)−1

m

∥∥(∫ 1

0

‖J (θ0 + t(θ∗ − θ0))− J (θ0)‖ ‖θ∗ − θ0‖ dt+

+

∫ 1

0

‖[A(θ0)]‖ ‖θ∗ − θ0‖ dt
)

≤
∥∥S(θ)−1

m

∥∥ ‖θ∗ − θ0‖
(∫ 1

0

Lt ‖θ∗ − θ0‖ dt+

∫ 1

0

MAdt

)
≤ NSL ‖θ∗ − θ0‖2 +NAMA ‖θ∗ − θ0‖ ≤ (NSL+NAMA) ‖θ∗ − θ0‖ .

If we suppose that ‖θ∗ − θ0‖ ≤ α
(NSL+NAMA)

with α ∈ (0, 1), then:

‖θ∗ − θ1‖ ≤ α ‖θ∗ − θ0‖ .

Then by induction:
‖θ∗ − θn‖ ≤ α ‖θ∗ − θn−1‖ .

Hence, limn→∞ ‖θ∗ − θn‖ = 0, so if we take ε ≤ α
max (NSL+NAMA,NAL+NSMS)

the sequence

converges.

12.2.4 Discussion on desired convergence points

In this paper, we focus our attention on convergence towards symmetric
stable fixed points. As we have discussed in Chapter 11, these points are
only a subset of the stable fixed points of the learning dynamics. On the
other hand, the field of policy optimization methods for MARL is an active
research area that is far from being completely understood. We think that

180



12.3. Experiments

analyzing the dynamics of the system and providing an algorithm with
interesting (although limited) convergence properties and solid empirical
results is a step forward. Moreover, symmetric stable fixed points are an
interesting solution concept since in two-player zero-sum games (e.g., GANs
[Goodfellow et al., 2014]), all local Nash Equilibria are also symmetric
stable fixed points [Balduzzi et al., 2018].

In the following experiments, we show that NOHD achieves a fast con-
vergence to equilibrium also in the General games setting. Motivated by
the empirical successes, we think that the analysis can be improved to show
better convergence rates.

Estimation of jacobians The proposed algorithm uses estimations of second-
order statistics, which have, as it is well known, the problem of high variance.
However, in the experimental evaluation, we do not see significant damage
due to the variance (also in the continuous gridworld environment, which is
stochastic), maybe because every algorithm for policy optimization in games
uses second-order quantities. However, reducing the variance of gradient
and jacobians estimation acquires great importance in the MARL context.

12.3 Experiments

This section is devoted to the experimental evaluation of NOHD. The pro-
posed algorithm is compared with Consensus Optimization (CO) [Mescheder
et al., 2017], Stable Opponent Shaping (SOS) [Letcher et al., 2018], Learn-
ing with Opponent-Learning Awareness (LOLA) [Foerster et al., 2018],
Competitive Gradient Descent (CGD) [Schäfer and Anandkumar, 2019],
Iterated Gradient Ascent Policy Prediction (IGA-PP) [Zhang and Lesser,
2010] and Symplectic Gradient Adjustment (SGA) [Balduzzi et al., 2018].
We start comparing the algorithm in simple matrix games. Then we show the
behavior of all the algorithms in two continuous Gridworlds. After having
empirically compared the approaches also from a computational point of
view, we show an experiment using Generative Adversarial Networks.

12.3.1 Matrix games

We consider three matrix games: two-agent two-action Matching Pennies
(MP), and Dilemma and two-agent three-action Rock Paper Scissors (RPS)
(games’ rewards are reported in tables 12.1,12.2,12.3). Considering a linear
parameterization of the agents’ policies, MP and RPS are Hamiltonian
games, while Dilemma is a Potential game. The Nash equilibria of MP,

181



Chapter 12. Newton Optimization On Helmhotz Decomposition

Head Tail
Head 1 -1 -1 1
Tail -1 1 1 -1

Table 12.1: Matching pennies rewards for
the two agents.

Head Tail
Head -1 -1 -3 0
Tail 0 -3 -2 -2

Table 12.2: Dilemma rewards for the two
agents.

Rock Paper Scissors
Rock 0 0 -1 -1 1 -1
Paper 1 -1 0 0 -1 1

Scissors -1 1 1 -1 0 0

Table 12.3: RPS rewards for the two agents.

Dilemma, and RPS are respectively 0.5, 0, 0.333 regarding the probability
of taking action 1.

Matching pennies linear parametrization We start by reporting in Figures 12.1
the behavior of NOHD and the other benchmarks in a linear parametrization
of Matching Pennies game. As you can see NOHD, as CGD, converges to
the Nash Equilibrium in only one step. We show the best results searching
between learning rates 1.0, 0.5, 0.1, 0.05.

Boltzmann parametrization exact gradients Then we used a Boltzmann
parametrization for the agents’ policies and exact computation of gradients
and Jacobian. In this setting, games lose their Hamiltonian or Potential
property, making the experiment more interesting and the behavior of NOHD
not trivial. The results are shown in Figure 12.9. For each game, we perform
experiments with learning rates 0.1, 0.5, 1.0. In the plots are reported only
the best performance for each algorithm. In Matching Pennies and Dilemma
we initialize probabilities to [0.86, 0.14] for the first agent and to [0.14, 0.86]
for the second agent; instead in Rock Paper Scissors to [0.66, 0.24, 0.1]. The
figure shows that each algorithm is able to converge to the Nash equilibrium.
In MP, CO converges with a learning rate of 0.1 and takes more than 1000
iterations. In Dilemma, all algorithms except NOHD converge in a similar
number of steps, so the lines overlap. NOHD converges in less than 50
iterations across all games, outperforming other algorithms. In Table 12.4
we reported the ratio between the number of steps each algorithm takes to
converge and the maximum number of steps in which the slowest algorithm
converges. For this simulation, we sampled 50 random initializations of
the parameters from a normal distribution with zero mean and standard

182



12.3. Experiments

NOHD CGD LOLA IGA-PP CO SOS SGA
MP 0.49 0.84 1.00 0.99 0.99 0.99 0.99
RPS 0.38 0.97 0.88 1.00 0.81 0.80 0.96

Table 12.4: Ratio between the mean convergence steps to Nash Equilibrium and the
maximum mean convergence steps. 50 runs, sampling from a normal distribution
N (0, 0.52).

|θ| NOHD IGAPP LOLA SOS SGA CGD CO
4 0.7205 0.6979 0.6983 0.7186 0.7302 0.7265 0.7006

16 0.7898 0.7787 0.7735 0.7906 0.8358 0.8051 0.7758
36 1.1416 1.0625 1.0874 1.0705 1.1992 1.1444 1.1066
64 1.9486 1.6342 1.6162 1.6735 1.9555 1.8955 1.8850
100 3.4070 2.7734 2.6905 2.8169 3.4799 3.3126 3.2977
144 5.9191 4.6260 4.4351 4.8438 6.5164 5.8440 5.7876

Table 12.5: Computation time of one learning update of each algorithm with increasing
parameter space size. 20 runs.

deviation 0.5. These results show that NOHD significantly outperforms
other algorithms even when starting from random initial probabilities. Then
we perform another experiment on Matching pennies 12.4 and Rock Paper
Scissors with 20 different starting probabilities. It demonstrates how all the
algorithms converge to the Nash Equilibrium but NOHD takes less than 100
iterations.

Boltzmann parametrization estimated gradients In the second experiment, the
gradients and the Jacobian are estimated from samples. The starting proba-
bilities are the same as in the previous experiment. We performed 20 runs
for each setting. In each iteration, we sampled 300 trajectories of length
1. Figures 12.9 shows that NOHD also in this experiment converges to the
equilibrium in less than 100 iterations. Instead, the other algorithms exhibit
oscillatory behaviors. Then we perform another experiment on Matching
pennies 12.6 and Rock Paper Scissors 12.7 with 20 different starting prob-
abilities, sampled from a Normal distribution with mean 0 and standard
deviation 1. In this case we estimate the gradient and the Jacobian using 300
sampled trajectories. The results show how all the algorithms succeed in
converging to the Nash Equilibrium, but NOHD converges in less than 100.
It demonstrates how all the algorithms converge to the Nash Equilibrium but
NOHD takes less than 100 iterations.

183



Chapter 12. Newton Optimization On Helmhotz Decomposition

12.3.2 Continuous gridworlds

This experiment aims at evaluating the performance of NOHD in two contin-
uous Gridworld environments. The first Gridworld is the continuous version
of the Gridworld 2 proposed in [Hu and Wellman, 2003]: the two agents are
initialized in the two opposite lower corners and have to reach the same goal;
when one of the two agents reaches the goal, the game ends, and this agent
gets a positive reward. Each agent has to keep a distance of no less than 0.5
with the other agent and, if they decide to move to the same region, they
cannot perform the action. In the second Gridworld the agents are initialized
in the two lower corners and have to reach the same goal, but they have to
reach the goal with a ball. An agent can take the opponent’s ball if their
distance is less than 0.5; the ball is randomly given to one of the two agents
at the beginning of each episode. The agents’ policies are Gaussian policies,
linear in a set of respectively 72 and 68 radial basis functions, which gener-
ate the ν angle for the step’s direction. For each experiment, we perform 10
runs with random initialization. The learning rate is settled at 0.01, the batch
size is 100, the horizon is 30 and the discount factor is 0.96. In Figure 12.10
we compare the performance of NOHD with CO, IGA-PP, LOLA, SOS, and
CGD in the two gridworlds. The figure shows the mean average win of the
two players at each learning iteration of the algorithms. In figure 12.10, at
the top, we can see how NOHD outperforms the other algorithms in the first
gridworld, converging in less than 30 steps to the equilibrium. At the bottom,
results for the second gridworld are shown: NOHD converges quickly than
the other algorithms, but Consensus has comparable performance. Then
we report the second experiment where the second player is always NOHD.
Figure 12.11 shows that all algorithms converge to a stable policy against
NOHD or NOHD learn a winner policy against the algorithm.

12.3.3 Generative Adversarial Network

Finally, compare NOHD with SGA in an experiment adapted from the one
in [Balduzzi et al., 2018]. In this simple experiment data are sampled from
a mixture of 4 bi-variate Gaussians with means: (1.5,−1, 5), (1.5, 1, 5),
(−1.5, 1.5), (−1.5,−1.5). The generator and discriminator networks are
both with two ReLu layers with 10 neurons per layer. The output of the
discriminator has size 1 and the output of the generator has size 2. The
learning rate is 0.01. We report that NOHD finds all the modes in 400 steps
and we compare these results with SGA. The results shown below are for
random seed 25.

184



12.3. Experiments

12.3.4 Computational time

In Table 12.5 we report the computation time of an update of each algorithm
with increasing policy parameter sizes |θ|, from 4 to 144. As we can
see, the computation time of NOHD is comparable to that of the other
algorithms. Obviously, the time to compute the inverse of the Jacobian is
highly demanding. However we can approximate this computation using
iterative methods as [Schäfer and Anandkumar, 2019, Nocedal and Wright,
2006] or conjugate gradient techniques [Hestenes et al., 1952]. We leave the
exploration of these methods as future work.

185



Chapter 12. Newton Optimization On Helmhotz Decomposition

CGD

0 2 4 6 8
0

0.5

1

Iterations

p
a
1

Consensus

0 2 4 6 8
0

0.5

1

Iterations

p
a
1

LOLA

0 2 4 6 8
0

0.5

1

Iterations

p
a
1

IGAPP

0 2 4 6 8
0

0.5

1

Iterations

p
a
1

SOS

0 2 4 6 8
0

0.5

1

Iterations

p
a
1

NOHD

0 2 4 6 8
0

0.5

1

Iterations

p
a
1

SGA

0 2 4 6 8

0.2

0.4

0.6

0.8

Iterations

p

Figure 12.1: Agents’ probabily to perform action 1 in Matching Pennies. The initial
probabilities are settled to 0.8 and 0.2.

186



12.3. Experiments

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 200 400 600 800 1,000

0.4

0.5

0.6

Iterations

p
a
1

1 0.5 0.1

Figure 12.2: Agent 1’s probabily to perform action 1 in Matching Pennies. From top right
to bottom left: CGD, consensus, LOLA, IGAPP, SOS, NOHD, and SGA. Exact gradients.
20 random sampled initial probabilities. Learning rate 0.1, 0.5, 1.0. 95% c.i.

187



Chapter 12. Newton Optimization On Helmhotz Decomposition

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 200 400 600 800 1,000

0.2

0.3

0.4

0.5

Iterations

p
a
1

1 0.5 0.1

Figure 12.3: Agent 1’s probabily to perform action 1 in Rock Paper Scissors. From top
right to bottom left: CGD, consensus, LOLA, IGAPP, SOS, NOHD, and SGA. Exact
gradients batch size 300. 20 random sampled initial probabilities. Learning rate
0.1, 0.5, 1.0. 95% c.i.

188



12.3. Experiments

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 200 400 600 800 1,000

0.4

0.5

0.6

Iterations

p
a
1

1 0.5 0.1

Figure 12.4: Agent 1’s probabily to perform action 1 in Matching Pennies. From top right
to bottom left: CGD, consensus, LOLA, IGAPP, SOS, NOHD, and SGA. Exact gradients.
20 random sampled initial probabilities. Learning rate 0.1, 0.5, 1.0. 95% c.i.

189



Chapter 12. Newton Optimization On Helmhotz Decomposition

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

1.0 0.5 0.1

0 200 400 600 800 1,000

0.2

0.3

0.4

0.5

Iterations

p
a
1

1 0.5 0.1

Figure 12.5: Agent 1’s probabily to perform action 1 in Rock Paper Scissors. From top
right to bottom left: CGD, consensus, LOLA, IGAPP, SOS, NOHD, and SGA. Exact
gradients batch size 300. 20 random sampled initial probabilities. Learning rate
0.1, 0.5, 1.0. 95% c.i.

190



12.3. Experiments

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

Iterations

p
a
1

1.0 0.5 0.1

0 200 400 600 800 1,000

0.4

0.5

0.6

Iterations

p
a
1

1 0.5 0.1

Figure 12.6: Agent 1’s probabily to perform action 1 in Matching Pennies. From top right
to bottom left: CGD, consensus, LOLA, IGAPP, SOS, NOHD, and SGA. Estimated
gradients batch size 300. 20 random sampled initial probabilities. Learning rate
0.1, 0.5, 1.0. 95% c.i.

191



Chapter 12. Newton Optimization On Helmhotz Decomposition

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

0.5 0.1

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.3

0.4

0.5

Iterations

p
a
1

0.5 0.1

0 200 400 600 800 1,000

0.2

0.4

0.6

Iterations

p
a
1

0.5 0.1

Figure 12.7: Agent 1’s probabily to perform action 1 in Rock Paper Scissors. From top
right to bottom left: CGD, consensus, LOLA, IGAPP, SOS, NOHD, and SGA. Estimated
gradients. 20 random sampled initial probabilities. Learning rate 0.1, 0.5. 95% c.i.

192



12.3. Experiments

0 200 400

0.2

0.4

0.6

0.8

Iterations

p
a
1

0 200 400

0.2

0.4

0.6

0.8

Iterations

0 50 100

0

0.2

0.4

0.6

0.8

Iterations

p
a
1

0 50 100

0

0.5

Iterations

0 200 400

0.2

0.4

0.6

0.8

Iterations

p
a
1

0 200 400

0.2

0.4

0.6

0.8

Iterations

CGD SOS IGAPP LOLA CO NOHD SGA

Figure 12.8: Matching Pennies, Dilemma and Rock Paper Scissors (on the rows): probabil-
ities of agent 1 to perform first action with a Boltzmann parametrization of the policies
with exact gradients. Every algorithm with its best learning rate between 0.1, 0.5, 1.0.

193



Chapter 12. Newton Optimization On Helmhotz Decomposition

0 200 400

0.2

0.4

0.6

0.8

Iterations

p
a
1

0 200 400
0

0.2

0.4

0.6

0.8

1

Iterations

0 50 100

0

0.2

0.4

Iterations

p
a
1

0 50 100

0

0.2

0.4

Iterations

0 500 1,000

0.2

0.4

0.6

0.8

Iterations

p
a
1

0 500 1,000

0.2

0.4

0.6

0.8

Iterations

CGD SOS IGAPP LOLA CO NOHD SGA

Figure 12.9: Matching Pennies, Dilemma and Rock Paper Scissors (on the rows): probabil-
ities of agent 1 to perform first action with a Boltzmann parametrization of the policies
with approximated gradients. Every algorithm with its best learning rate between
0.1, 0.5, 1.0. c.i. 95. %

194



12.3. Experiments

0

0.2

0.4

0.6

0.8

1

A
ve
ra
ge

w
in

ra
ti
o

NOHD CGD SOS CONSENSUS

0 100 200
0

0.2

0.4

0.6

0.8

1

A
v
er
a
g
ew

in
ra

ti
o

NOHD

0 100 200

Iterations

IGAPP

0 100 200

Iterations

SGA

0 100 200

Iterations

LOLA

Player 1 Player 2

0

0.2

0.4

0.6

0.8

1

A
ve
ra
ge

w
in

ra
ti
o

NOHD CGD SOS CONSENSUS

0 100 200 300
0

0.2

0.4

0.6

0.8

1

A
ve
ra
ge

w
in

ra
ti
o

NOHD

0 100 200 300

Iterations

IGAPP

0 100 200 300

Iterations

SGA

0 100 200 300

Iterations

LOLA

Player 1 Player 2

Figure 12.10: Average wins for player 1 and player 2 in two gridworld environments. 10
runs, c.i. 98%

195



Chapter 12. Newton Optimization On Helmhotz Decomposition

CGD SOS CONSENSUS

0 100 200

Iterations

IGAPP

0 100 200

Iterations

SGA

0 100 200

Iterations

LOLA

Player 1 Player 2

Figure 12.11: Average wins for player 1 and player 2 in the second gridworld environments,
where the second player is always NOHD. 10 runs, c.i. 98%

NOHD

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

SGA

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 12.12: Generator’s learnt distribution for iterations 0, 100, 200, 300, 400.

196



CHAPTER13
Conclusions and Future works

This thesis addressed different problems in MARL from an algorithmic
and theoretical point of view. The presence of multiple agents creates new
challenges and opportunities in the RL field. The main opportunity that
comes out is the possibility to model more complex environments than in
RL; moreover, the multi-agent setting provides new possibilities, as we have
shown in the IRL about Multiple Intentions setting (Chapter 6). On the
other hand, the challenges with learning in multi-agent are various: the RL
problem becomes non-stationary, the solution concept changes, and standard
algorithms from single-agent RL cannot be applied in the MARL setting.

This thesis studied the MARL framework into three sub-settings: IRL
in Multi-Agent Systems, Online Learning in MARL, and Optimization in
MARL. These three fields are basically taken from the single-agent literature
and analyzed in this thesis from the multi-agent perspective. We introduce
the main concerns for all of them and propose new algorithms with (strong)
theoretical guarantees. However, many problems remain unsolved, and also
from our work, new open questions, practical and theoretical, come out. This
(final) chapter describes the main contributions and discusses the interesting
and promising future directions.

197



Chapter 13. Conclusions and Future works

13.1 Inverse Reinforcement Learning in Multi-Agent Systems

Part II of this thesis is focused on Inverse Reinforcement Learning in Multi-
Agent Systems. This field addressed the new opportunities and challenges
that arise from switching from single agent to multi-agent problems. We
identify three main new sub-problems: Inverse Reinforcement Learning
about Multiple Intentions, i.e., the access to a dataset of demonstrations
from a group of experts; Inverse Reinforcement Learning from a learning
agent, i.e., recovering a reward function observing the agent’s learning
process; Multi-agent Inverse Reinforcement Learning, i.e., learning the
reward functions that explain a certain equilibrium of a system. We then
propose algorithms to solve the first two sub-problems. Regarding Inverse
Reinforcement Learning about Multiple Intentions, we start by presenting
a novel fully batch model-free IRL algorithm called Σ-GIRL. The algo-
rithm accounts for the uncertainty in the gradient estimation and provides
the reward function that maximizes the likelihood of the estimated policy
gradient. Then, we extended our algorithm to the MI-IRL setting to simulta-
neously recover the agent-cluster assignment and the reward weights, using
an Expectation-Maximization alternating process. In Chapter 7 we propose
a novel algorithm for IRL from a learning agent setting. The proposed
method, called LOGEL, relies on the assumption that the learner updates her
policy along the direction of the gradient of the expected discounted return.
For both the algorithms (Σ-GIRL and LOGEL), we provide finite-sample
bounds on the algorithm performance in recovering the reward weights, and
we tested the proposed approach both in simulated and real domains.

13.1.1 Future directions

The future directions in this field are several. From the MI-IRL setting,
our approach presents some limitations. First of all, we have to specify the
number of existing clusters, so a first (easy) extension could be to extend the
approach to a non-parametric setting. Obviously, this leads to an increase in
computation overhead. In the IRL from a Learner setting, the main challenge
arises from the assumption that we know when the agent changes its policy.
An extension could be the automatic detection of the policy change. From
the learning from a learner perspective, obviously, the task becomes harder
when we are in a non-stationary environment. A simple method that an agent
can use if the other agent is unaware of being in a multi-agent environment
is to wait without changing its policy parameter to make the environment
stationary. However, if the interest is to play simultaneously and/or the
other agents are not rational, it is necessary to build different algorithms to

198



13.2. Online Learning in Stochastic Games

recover the reward function. In fact, another interesting future direction is
certainly how to construct an IRL algorithm that learns from an agent that
is optimizing a multi-agent objective. As we have shown in Part IV, the
algorithms that are constructed for the MARL setting can, sometimes, be
not rationally and so they could go in a direction different from the gradient
one. An exciting and not straightforward problem is recovering the learning
direction as well as the reward function of the observed agent. Obviously,
this double-objective makes the problem “more” ill-posed, but we think
it can be solved under suitable assumptions (for example, a finite-set of
learning algorithms). Finally, an interesting goal to pursue is constructing
IRL algorithms to learn from a dataset of multiple experts, which are, for
example, in a Nash Equilibria. There are some algorithms that go in this
direction [Lin et al., 2019a,Wang and Klabjan, 2018,Yu et al., 2019,Hadfield-
Menell et al., 2016, Gruver et al., 2020]; however, there are no algorithms
for batch-setting as far as we know.

13.2 Online Learning in Stochastic Games

In Part III we analyze the problem of online learning in Stochastic Games.
In Chapter 8 we provide an introduction to the problem setting, and we
underline the novel difficulties that come out from the presence of more
than one agent. Then in the next two chapters (Chapter 9 and Chapter
10), we analyze the online learning problem in two different contexts: the
Configurable Markov Decision Process and Turn-based Stochastic Games.
For both frameworks, we consider the setting in which we can control only
one entity. In Chapter 9, we generalize the Configurable MDP framework to
account for possible non-cooperative interaction between the agent and the
configurator. We consider an online learning problem, where we can control
only the configurator. We propose two regret minimization algorithms for
identifying the best environment configuration within a finite set based on
the principle of optimism in the face of uncertainty. We proved that when
the agent’s policy is deterministic (but the configuration may not) and the
configurator observes the agent’s actions, it is possible to achieve finite regret
that depends linearly on the admissible number configurations. Furthermore,
we illustrated that it is possible to remove this dependence if the configurator
observes a possibly noisy version of the agent’s reward and under sufficient
regularity conditions on the environment. In Chapter 10, we provide, as
far as we know, the first theoretical insights on the online learning problem
in the general-sum Stochastic Games. We consider the online setting in
two-player Turn-based Stochastic Games, i.e., where we can control only

199



Chapter 13. Conclusions and Future works

one agent of the game. We propose a new lower bound for this setting that
shows that the regret has to scale constantly with the policies’ space size
considered. Then we provide a regret minimization algorithm based on
the principle of optimism in the face of uncertainty. We proved that our
algorithm nearly-matches the presented lower bound.

13.2.1 Future directions

There are many future directions in the online learning problem in Stochastic
Games. From our work in Non-cooperative Configurable MDPs, a direct
follow-up will be extending the setting to the case of stochastic agent’s
policy and the derivation of specific confidence intervals for the reward
function, based on IRL. Another future direction is to extend the approach
to deal with continuous state and action spaces using, for example, function
approximation. Currently, there is a need for a formal understanding of the
online MARL problem to construct provably-efficient learning algorithms
for this context. As our result suggested, the MARL setting poses novel
challenges, especially in the well-known exploration-exploitation dilemma,
i.e., the trade-off between gathering new information and exploiting it: in a
multi-agent environment, the agent needs to explore not only to understand
the underlying environment but also to learn the other agents’ behaviors.
Moreover, from our findings, it is clear that the algorithm design and the
resulting performance guarantees heavily depend on any knowledge about
the opponents, either known as a priori or obtainable during the learning
process. Indeed there are many open problems in the agnostic setting,
presented in [Tian et al., 2020], as it is possible to achieve better theoretical
(regret) guarantees and construct algorithms with optimal sample complexity.
This scenario, having no assumptions on the opponents, is widely applicable
to capture real-world problems. On the other hand, assuming to have the
possibility to observe other agents’ interactions with the environment or
having some previous knowledge about the other agents (as having access
to a finite set of opponents [Balcan et al., 2015] or considering a larger set
of opponents’ classes with some regularity assumptions [Sessa et al., 2020])
we could hope to obtain better theoretical guarantees.

13.3 Optimization methods for Multi-Agent Reinforcement
Learning

Part IV is devoted to the policy search approaches for MARL. We start by
casting the MARL problem in a more general setting called Continuous

200



13.3. Optimization methods for Multi-Agent Reinforcement
Learning

Games. Then we provide the necessary background to understand the
optimization difficulties that multiple functions create, and we broadly revise
the literature for this setting. We underline the importance of accounting for
the dynamics of the system to construct provably efficient algorithms. In
Chapter 12, we have shown how to apply Newton-based methods to optimize
Continuous Games. We started by proposing an approach to adapt Newton’s
optimization to two classes of games: Potential and Hamiltonian games. We
then presented a novel algorithm called NOHD, which applies a Newton-
based optimization approach to general games. The algorithm considers that
agents can also act against their own interests to achieve a balance as quickly
as possible. Then we showed that NOHD avoids unstable fixed points and is
attracted to stable ones. We performed an extensive experimental evaluation
of the proposed method showing that the algorithm outperforms (when it
was submitted at AAAI 2021) state-of-the-art baselines in all experiments.

13.3.1 Future directions

The landscape of continuous games and their application in the policy
optimization methods for MARL is far from being completely understood.
The local Nash Equilibrium seems to be a hard objective to be optimized
efficiently, especially in general games. Moreover, there are some cases
where we could be interested also in converging to other game-theoretic
solutions as, for example, Correlated, Minimax, or Stackelberg equilibrium
points. Recently some works go in this direction. In [Celli et al., 2020] the
authors propose exciting results for extensive-form games to converge to
Correlated equilibria. In [Fiez et al., 2020b] the authors propose a second-
order optimization algorithm to converge to local differentiable Stackelberg
equilibrium solution. These equilibria are of interest, especially in zero-sum
games, where they coincide with the Nash ones. In [Kamalaruban et al.,
2020] the authors take their previous results on GANs [Hsieh et al., 2019]
and optimize over the set of probability distributions over pure strategies
to solve the robust RL. Their results are interesting also for continuous
competitive games in general. In [Mangoubi and Vishnoi, 2021] the authors
propose min-max problems a new solution concept, called greedy adversarial
equilibrium. Providing a connection between these equilibria, studying
algorithms to converge to them is undoubtedly an important future direction.
Moreover, there is a current research line that considers different solutions
concepts going beyond equilibria. For example, in [Papadimitriou and
Piliouras, 2019, Omidshafiei et al., 2019] the authors consider the learning
dynamics itself as a solution concept. Instead, in [Duvocelle et al., 2018,

201



Chapter 13. Conclusions and Future works

Cardoso et al., 2019,Skoulakis et al., 2021] the authors study a setting where
both the agents and the games they play evolve strategically over time.

The majority of the proposed approaches deal only with exact gradients
and exact Jacobians. On the other hand, in RL, it is crucial to have conver-
gence guarantees for the approximated (stochastic) setting since the gradient
of the expected discounted return can be learned only by interactions. Only
some recent works [Fiez et al., 2020a, Mazumdar et al., 2020b] propose
theoretical guarantees in the stochastic setting.

Finally, an interesting future direction could be to adapt the theoretical
finding in continuous games to construct actor-critic algorithms for MARL
and investigate, as in [Zheng et al., 2021], the applications of optimiza-
tion methods in different contexts. An example could be Non-cooperative
Configurable MDPs, where we can cast the problem as a continuous game
between the configurator and the RL agent.

202



Bibliography

[Abbasi-Yadkori et al., 2013] Abbasi-Yadkori, Y., Bartlett, P. L., Kanade,
V., Seldin, Y., and Szepesvári, C. (2013). Online learning in markov
decision processes with adversarially chosen transition probability distri-
butions. In Proceedings of the 26th International Conference on Neural
Information Processing Systems-Volume 2, pages 2508–2516.

[Abbeel and Ng, 2004] Abbeel, P. and Ng, A. Y. (2004). Apprenticeship
learning via inverse reinforcement learning. In Proceedings of the twenty-
first international conference on Machine learning, page 1.

[Adolphs et al., 2019] Adolphs, L., Daneshmand, H., Lucchi, A., and Hof-
mann, T. (2019). Local saddle point optimization: A curvature exploita-
tion approach. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pages 486–495. PMLR.

[Agrawal and Jia, 2017] Agrawal, S. and Jia, R. (2017). Optimistic poste-
rior sampling for reinforcement learning: worst-case regret bounds. In
Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 1184–1194.

[Almingol and Montesano, 2015] Almingol, J. and Montesano, L. (2015).
Learning multiple behaviours using hierarchical clustering of rewards.
In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4608–4613. IEEE.

203



Bibliography

[Argall et al., 2009] Argall, B. D., Chernova, S., Veloso, M., and Browning,
B. (2009). A survey of robot learning from demonstration. Robotics and
autonomous systems, 57(5):469–483.

[Arulkumaran et al., 2017] Arulkumaran, K., Deisenroth, M. P., Brundage,
M., and Bharath, A. A. (2017). A brief survey of deep reinforcement
learning. arXiv preprint arXiv:1708.05866.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Machine learning, 47(2-
3):235–256.

[Auer et al., 2009] Auer, P., Jaksch, T., and Ortner, R. (2009). Near-optimal
regret bounds for reinforcement learning. In Advances in neural informa-
tion processing systems, pages 89–96.

[Aumann, 1987] Aumann, R. J. (1987). Correlated equilibrium as an expres-
sion of bayesian rationality. Econometrica: Journal of the Econometric
Society, pages 1–18.

[Azar et al., 2013] Azar, M. G., Munos, R., and Kappen, H. J. (2013). Min-
imax pac bounds on the sample complexity of reinforcement learning
with a generative model. Machine learning, 91(3):325–349.

[Babes et al., 2011] Babes, M., Marivate, V. N., Subramanian, K., and
Littman, M. L. (2011). Apprenticeship learning about multiple intentions.
In ICML.

[Bai and Jin, 2020] Bai, Y. and Jin, C. (2020). Provable self-play algorithms
for competitive reinforcement learning. In International Conference on
Machine Learning, pages 551–560. PMLR.

[Bai et al., 2021] Bai, Y., Jin, C., Wang, H., and Xiong, C. (2021). Sample-
efficient learning of stackelberg equilibria in general-sum games. arXiv
preprint arXiv:2102.11494.

[Bai et al., 2020] Bai, Y., Jin, C., and Yu, T. (2020). Near-optimal reinforce-
ment learning with self-play. Advances in Neural Information Processing
Systems, 33.

[Bain and Sammut, 1995] Bain, M. and Sammut, C. (1995). A framework
for behavioural cloning. In Machine Intelligence 15, pages 103–129.

[Balakrishna et al., 2020] Balakrishna, A., Thananjeyan, B., Lee, J., Li, F.,
Zahed, A., Gonzalez, J. E., and Goldberg, K. (2020). On-policy robot

204



Bibliography

imitation learning from a converging supervisor. In Conference on Robot
Learning, pages 24–41. PMLR.

[Balcan et al., 2015] Balcan, M.-F., Blum, A., Haghtalab, N., and Procaccia,
A. D. (2015). Commitment without regrets: Online learning in stackelberg
security games. In Proceedings of the sixteenth ACM conference on
economics and computation, pages 61–78.

[Balduzzi et al., 2020] Balduzzi, D., Czarnecki, W. M., Anthony, T. W.,
Gemp, I. M., Hughes, E., Leibo, J. Z., Piliouras, G., and Graepel, T.
(2020). Smooth markets: A basic mechanism for organizing gradient-
based learners. arXiv preprint arXiv:2001.04678.

[Balduzzi et al., 2018] Balduzzi, D., Racaniere, S., Martens, J., Foerster, J.,
Tuyls, K., and Graepel, T. (2018). The mechanics of n-player differen-
tiable games. In International Conference on Machine Learning, pages
354–363. PMLR.

[Bartlett and Tewari, 2009a] Bartlett, P. and Tewari, A. (2009a). Regal: a
regularization based algorithm for reinforcement learning in weakly com-
municating mdps. In Uncertainty in Artificial Intelligence: Proceedings
of the 25th Conference, pages 35–42. AUAI Press.

[Bartlett and Tewari, 2009b] Bartlett, P. and Tewari, A. (2009b). Regal: a
regularization based algorithm for reinforcement learning in weakly com-
municating mdps. In Uncertainty in Artificial Intelligence: Proceedings
of the 25th Conference, pages 35–42. AUAI Press.

[Başar and Bernhard, 2008] Başar, T. and Bernhard, P. (2008). H-infinity
optimal control and related minimax design problems: a dynamic game
approach. Springer Science & Business Media.

[Baxter and Bartlett, 2001] Baxter, J. and Bartlett, P. L. (2001). Infinite-
horizon policy-gradient estimation. Journal of Artificial Intelligence
Research, 15:319–350.

[Bellman, 1957] Bellman, R. (1957). A markovian decision process. Jour-
nal of mathematics and mechanics, pages 679–684.

[Bertsekas et al., 1995] Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P.,
and Bertsekas, D. P. (1995). Dynamic programming and optimal control,
volume 1. Athena scientific Belmont, MA.

[Bilmes et al., 1998] Bilmes, J. A. et al. (1998). A gentle tutorial of the em
algorithm and its application to parameter estimation for gaussian mixture

205



Bibliography

and hidden markov models. International Computer Science Institute,
4(510):126.

[Börgers and Sarin, 1997] Börgers, T. and Sarin, R. (1997). Learning
through reinforcement and replicator dynamics. Journal of economic
theory, 77(1):1–14.

[Borkar, 2009] Borkar, V. S. (2009). Stochastic approximation: a dynamical
systems viewpoint, volume 48. Springer.

[Boularias et al., 2011] Boularias, A., Kober, J., and Peters, J. (2011). Rela-
tive entropy inverse reinforcement learning. In Gordon, G., Dunson, D.,
and Dudík, M., editors, Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics, volume 15 of Proceedings
of Machine Learning Research, pages 182–189, Fort Lauderdale, FL,
USA. JMLR Workshop and Conference Proceedings.

[Boutilier, 1996] Boutilier, C. (1996). Planning, learning and coordination
in multiagent decision processes. In TARK, volume 96, pages 195–210.
Citeseer.

[Bowling and Veloso, 2002] Bowling, M. and Veloso, M. (2002). Mul-
tiagent learning using a variable learning rate. Artificial Intelligence,
136(2):215–250.

[Brafman and Tennenholtz, 2002] Brafman, R. I. and Tennenholtz, M.
(2002). R-max-a general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research, 3(Oct):213–
231.

[Bravo et al., 2018] Bravo, M., Leslie, D. S., and Mertikopoulos, P. (2018).
Bandit learning in concave n-person games. In NIPS 2018-Thirty-second
Conference on Neural Information Processing Systems, pages 1–24.

[Breton et al., 1988] Breton, M., Alj, A., and Haurie, A. (1988). Sequential
stackelberg equilibria in two-person games. Journal of Optimization
Theory and Applications, 59(1):71–97.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schnei-
der, J., Schulman, J., Tang, J., and Zaremba, W. (2016). Openai gym.
CoRR, abs/1606.01540.

[Brown et al., 2019] Brown, D., Goo, W., Nagarajan, P., and Niekum, S.
(2019). Extrapolating beyond suboptimal demonstrations via inverse

206



Bibliography

reinforcement learning from observations. In International Conference
on Machine Learning, pages 783–792.

[Bu et al., 2019] Bu, J., Ratliff, L. J., and Mesbahi, M. (2019). Global
convergence of policy gradient for sequential zero-sum linear quadratic
dynamic games. arXiv preprint arXiv:1911.04672.

[Bubeck et al., 2013] Bubeck, S., Perchet, V., and Rigollet, P. (2013).
Bounded regret in stochastic multi-armed bandits. In Conference on
Learning Theory, pages 122–134.

[Buşoniu et al., 2010] Buşoniu, L., Babuška, R., and De Schutter, B. (2010).
Multi-agent reinforcement learning: An overview. Innovations in multi-
agent systems and applications-1, pages 183–221.

[Candogan et al., 2011] Candogan, O., Menache, I., Ozdaglar, A., and Par-
rilo, P. A. (2011). Flows and decompositions of games: Harmonic and
potential games. Mathematics of Operations Research, 36(3):474–503.

[Cardoso et al., 2019] Cardoso, A. R., Abernethy, J., Wang, H., and Xu,
H. (2019). Competing against nash equilibria in adversarially changing
zero-sum games. In International Conference on Machine Learning,
pages 921–930. PMLR.

[Casella and Berger, 2002] Casella, G. and Berger, R. L. (2002). Statistical
inference, volume 2. Duxbury Pacific Grove, CA.

[Castro et al., 2019] Castro, P. S., Li, S., and Zhang, D. (2019). Inverse
reinforcement learning with multiple ranked experts. arXiv preprint
arXiv:1907.13411.

[Celli et al., 2020] Celli, A., Marchesi, A., Farina, G., and Gatti, N. (2020).
No-regret learning dynamics for extensive-form correlated equilibrium.
Advances in Neural Information Processing Systems, 33.

[Cesa-Bianchi and Lugosi, 2006] Cesa-Bianchi, N. and Lugosi, G. (2006).
Prediction, learning, and games. Cambridge university press.

[Chasnov et al., 2019] Chasnov, B., Fiez, T., and Ratliff, L. J. (2019). Gra-
dient conjectures for strategic multi-agent learning.

[Chasnov et al., 2020a] Chasnov, B., Ratliff, L., Mazumdar, E., and Burden,
S. (2020a). Convergence analysis of gradient-based learning in continuous
games. In Uncertainty in Artificial Intelligence, pages 935–944. PMLR.

207



Bibliography

[Chasnov et al., 2020b] Chasnov, B. J., Calderone, D., Açıkmeşe, B., Bur-
den, S. A., and Ratliff, L. J. (2020b). Stability of gradient learning
dynamics in continuous games: Scalar action spaces. In 2020 59th IEEE
Conference on Decision and Control (CDC), pages 3543–3548. IEEE.

[Chen et al., 2009] Chen, X., Deng, X., and Teng, S.-H. (2009). Settling
the complexity of computing two-player nash equilibria. Journal of the
ACM (JACM), 56(3):1–57.

[Chen and Caramanis, 2013] Chen, Y. and Caramanis, C. (2013). Noisy
and missing data regression: Distribution-oblivious support recovery. In
International Conference on Machine Learning, pages 383–391.

[Choi and Kim, 2012] Choi, J. and Kim, K.-E. (2012). Nonparametric
bayesian inverse reinforcement learning for multiple reward functions.
Advances in Neural Information Processing Systems, 25:305–313.

[Chong and Zak, 2004] Chong, E. K. and Zak, S. H. (2004). An introduction
to optimization. John Wiley & Sons.

[Christiano et al., 2017] Christiano, P. F., Leike, J., Brown, T., Martic, M.,
Legg, S., and Amodei, D. (2017). Deep reinforcement learning from hu-
man preferences. In Advances in Neural Information Processing Systems,
pages 4299–4307.

[Chung et al., 2020] Chung, H.-M., Maharjan, S., Zhang, Y., and Eliassen,
F. (2020). Distributed deep reinforcement learning for intelligent load
scheduling in residential smart grid. IEEE Transactions on Industrial
Informatics.

[Coniglio et al., 2020] Coniglio, S., Gatti, N., and Marchesi, A. (2020).
Computing a pessimistic stackelberg equilibrium with multiple followers:
The mixed-pure case. Algorithmica, 82(5):1189–1238.

[Conitzer and Sandholm, 2007] Conitzer, V. and Sandholm, T. (2007). Awe-
some: A general multiagent learning algorithm that converges in self-play
and learns a best response against stationary opponents. Machine Learn-
ing, 67(1-2):23–43.

[Da Silva and Costa, 2019] Da Silva, F. L. and Costa, A. H. R. (2019). A
survey on transfer learning for multiagent reinforcement learning systems.
Journal of Artificial Intelligence Research, 64:645–703.

208



Bibliography

[Daskalakis et al., 2009] Daskalakis, C., Goldberg, P. W., and Papadim-
itriou, C. H. (2009). The complexity of computing a nash equilibrium.
SIAM Journal on Computing, 39(1):195–259.

[Daskalakis et al., 2020] Daskalakis, C., Skoulakis, S., and Zampetakis, M.
(2020). The complexity of constrained min-max optimization. arXiv
preprint arXiv:2009.09623.

[Deisenroth et al., 2013] Deisenroth, M. P., Neumann, G., Peters, J., et al.
(2013). A survey on policy search for robotics. Foundations and trends
in Robotics, 2(1-2):388–403.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B.
(1977). Maximum likelihood from incomplete data via the em algo-
rithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22.

[Diakonikolas et al., 2021] Diakonikolas, J., Daskalakis, C., and Jordan, M.
(2021). Efficient methods for structured nonconvex-nonconcave min-max
optimization. In International Conference on Artificial Intelligence and
Statistics, pages 2746–2754. PMLR.

[Dick et al., 2014] Dick, T., Gyorgy, A., and Szepesvari, C. (2014). Online
learning in markov decision processes with changing cost sequences. In
International Conference on Machine Learning, pages 512–520. PMLR.

[Domingues et al., 2020] Domingues, O. D., Ménard, P., Kaufmann, E.,
and Valko, M. (2020). Episodic reinforcement learning in finite mdps:
Minimax lower bounds revisited.

[Dorato et al., 2000] Dorato, P., Cerone, V., and Abdallah, C. (2000). Linear
quadratic control: an introduction. Krieger Publishing Co., Inc.

[Duvocelle et al., 2018] Duvocelle, B., Mertikopoulos, P., Staudigl, M., and
Vermeulen, D. (2018). Learning in time-varying games. arXiv preprint
arXiv:1809.03066.

[Even-Dar et al., 2009] Even-Dar, E., Kakade, S. M., and Mansour, Y.
(2009). Online markov decision processes. Mathematics of Operations
Research, 34(3):726–736.

[Facchinei and Kanzow, 2007] Facchinei, F. and Kanzow, C. (2007). Gen-
eralized nash equilibrium problems. 4or, 5(3):173–210.

209



Bibliography

[Facchinei and Pang, 2007] Facchinei, F. and Pang, J.-S. (2007). Finite-
dimensional variational inequalities and complementarity problems.
Springer Science & Business Media.

[Feller, 1957] Feller, W. (1957). An introduction to probability theory and
its applications.

[Fiez et al., 2020a] Fiez, T., Chasnov, B., and Ratliff, L. (2020a). Implicit
learning dynamics in stackelberg games: Equilibria characterization,
convergence analysis, and empirical study. In III, H. D. and Singh, A.,
editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research,
pages 3133–3144. PMLR.

[Fiez et al., 2020b] Fiez, T., Chasnov, B., and Ratliff, L. (2020b). Implicit
learning dynamics in stackelberg games: Equilibria characterization,
convergence analysis, and empirical study. In International Conference
on Machine Learning, pages 3133–3144. PMLR.

[Fiez and Ratliff, 2020] Fiez, T. and Ratliff, L. (2020). Gradient descent-
ascent provably converges to strict local minmax equilibria with a finite
timescale separation. arXiv preprint arXiv:2009.14820.

[Flet-Berliac et al., 2021] Flet-Berliac, Y., Ouhamma, R., Maillard, O.-A.,
and Preux, P. (2021). Learning value functions in deep policy gradients
using residual variance. In ICLR 2021-International Conference on
Learning Representations.

[Foerster et al., 2018] Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson,
S., Abbeel, P., and Mordatch, I. (2018). Learning with opponent-learning
awareness. In Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, pages 122–130. International
Foundation for Autonomous Agents and Multiagent Systems.

[François-Lavet et al., 2018] François-Lavet, V., Henderson, P., Islam, R.,
Bellemare, M. G., and Pineau, J. (2018). An introduction to deep rein-
forcement learning. Foundations and Trends R© in Machine Learning,
11(3-4):219–354.

[Fruit et al., 2018] Fruit, R., Pirotta, M., and Lazaric, A. (2018). Near op-
timal exploration-exploitation in non-communicating markov decision
processes. In 32nd Conference on Neural Information Processing Sys-
tems.

210



Bibliography

[Fudenberg et al., 1998] Fudenberg, D., Drew, F., Levine, D. K., and Levine,
D. K. (1998). The theory of learning in games, volume 2. MIT press.

[Fudenberg and Tirole, 1991] Fudenberg, D. and Tirole, J. (1991). Perfect
bayesian equilibrium and sequential equilibrium. journal of Economic
Theory, 53(2):236–260.

[Gallego et al., 2019] Gallego, V., Naveiro, R., and Insua, D. R. (2019).
Reinforcement learning under threats. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages 9939–9940.

[Garivier and Cappé, 2011] Garivier, A. and Cappé, O. (2011). The kl-ucb
algorithm for bounded stochastic bandits and beyond. In Proceedings of
the 24th annual conference on learning theory, pages 359–376.

[Gemp and Mahadevan, 2018] Gemp, I. and Mahadevan, S. (2018). Global
convergence to the equilibrium of gans using variational inequalities.
arXiv preprint arXiv:1808.01531.

[Gergely Neu et al., 2010] Gergely Neu, A. G., Szepesvári, C., and Antos,
A. (2010). Online markov decision processes under bandit feedback. In
Proceedings of the Twenty-Fourth Annual Conference on Neural Informa-
tion Processing Systems.

[González-Sánchez and Hernández-Lerma, 2013] González-Sánchez, D.
and Hernández-Lerma, O. (2013). Discrete–time stochastic control and
dynamic potential games: the Euler–Equation approach. Springer Sci-
ence & Business Media.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu,
B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative adversarial nets. Advances in Neural Information Processing
Systems, 27:2672–2680.

[Goyal and Grand-Clement, 2019] Goyal, V. and Grand-Clement, J. (2019).
A first-order approach to accelerated value iteration. arXiv preprint
arXiv:1905.09963.

[Gravell et al., 2020] Gravell, B., Ganapathy, K., and Summers, T. (2020).
Policy iteration for linear quadratic games with stochastic parameters.
IEEE Control Systems Letters, 5(1):307–312.

[Gruver et al., 2020] Gruver, N., Song, J., Kochenderfer, M. J., and Ermon,
S. (2020). Multi-agent adversarial inverse reinforcement learning with

211



Bibliography

latent variables. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, pages 1855–1857.

[Gupta and Nagar, 2018] Gupta, A. K. and Nagar, D. K. (2018). Matrix
variate distributions. Chapman and Hall/CRC.

[Haarnoja et al., 2018] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S.
(2018). Soft actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861–1870. PMLR.

[Hadfield-Menell et al., 2016] Hadfield-Menell, D., Dragan, A., Abbeel, P.,
and Russell, S. (2016). Cooperative inverse reinforcement learning. In
Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 3916–3924.

[Hart and Mas-Colell, 2003] Hart, S. and Mas-Colell, A. (2003). Uncou-
pled dynamics do not lead to nash equilibrium. American Economic
Review, 93(5):1830–1836.

[Héliou et al., 2020] Héliou, A., Mertikopoulos, P., and Zhou, Z. (2020).
Gradient-free online learning in continuous games with delayed rewards.
In International Conference on Machine Learning, pages 4172–4181.
PMLR.

[Hernandez-Leal et al., 2019] Hernandez-Leal, P., Kartal, B., and Taylor,
M. E. (2019). A survey and critique of multiagent deep reinforcement
learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797.

[Hespanha, 2018] Hespanha, J. P. (2018). Linear systems theory. Princeton
university press.

[Hestenes et al., 1952] Hestenes, M. R., Stiefel, E., et al. (1952). Methods
of conjugate gradients for solving linear systems, volume 49. NBS
Washington, DC.

[Heusel et al., 2017] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,
and Hochreiter, S. (2017). Gans trained by a two time-scale update rule
converge to a local nash equilibrium. In Advances in neural information
processing systems, pages 6626–6637.

[Ho and Ermon, 2016] Ho, J. and Ermon, S. (2016). Generative adversarial
imitation learning. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, pages 4572–4580.

212



Bibliography

[Hofbauer et al., 1998] Hofbauer, J., Sigmund, K., et al. (1998). Evolution-
ary games and population dynamics. Cambridge university press.

[Hoffman and Karp, 1966] Hoffman, A. J. and Karp, R. M. (1966). On
nonterminating stochastic games. Management Science, 12(5):359–370.

[Hsieh et al., 2021] Hsieh, Y.-G., Antonakopoulos, K., and Mertikopoulos,
P. (2021). Adaptive learning in continuous games: Optimal regret bounds
and convergence to nash equilibrium. arXiv preprint arXiv:2104.12761.

[Hsieh et al., ] Hsieh, Y.-G., Iutzeler, F., Malick, J., and Mertikopoulos, P.
Optimization in open networks via dual averaging.

[Hsieh et al., 2019] Hsieh, Y.-P., Liu, C., and Cevher, V. (2019). Finding
mixed nash equilibria of generative adversarial networks. In International
Conference on Machine Learning, pages 2810–2819. PMLR.

[Hu and Wellman, 2003] Hu, J. and Wellman, M. P. (2003). Nash q-learning
for general-sum stochastic games. Journal of machine learning research,
4(Nov):1039–1069.

[Hussein et al., 2017] Hussein, A., Gaber, M. M., Elyan, E., and Jayne,
C. (2017). Imitation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2):21.

[Ibarz et al., 2018] Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S.,
and Amodei, D. (2018). Reward learning from human preferences and
demonstrations in atari. In Advances in Neural Information Processing
Systems, pages 8011–8023.

[Isola et al., 2017] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversarial networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1125–1134.

[Iyengar, 2005] Iyengar, G. N. (2005). Robust dynamic programming.
Mathematics of Operations Research, 30(2):257–280.

[Jacobson, 1973] Jacobson, D. (1973). Optimal stochastic linear systems
with exponential performance criteria and their relation to deterministic
differential games. IEEE Transactions on Automatic control, 18(2):124–
131.

[Jacq et al., 2019] Jacq, A., Geist, M., Paiva, A., and Pietquin, O. (2019).
Learning from a learner. In International Conference on Machine Learn-
ing, pages 2990–2999. PMLR.

213



Bibliography

[Jaderberg et al., 2016] Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul,
T., Leibo, J. Z., Silver, D., and Kavukcuoglu, K. (2016). Rein-
forcement learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397.

[Jain et al., 2019] Jain, V., Doshi, P., and Banerjee, B. (2019). Model-free
irl using maximum likelihood estimation.

[Jaksch et al., 2010] Jaksch, T., Ortner, R., and Auer, P. (2010). Near-
optimal regret bounds for reinforcement learning. Journal of Machine
Learning Research, 11(4).

[Jaynes, 1957] Jaynes, E. T. (1957). Information theory and statistical
mechanics. Physical review, 106(4):620.

[Jin et al., 2018] Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. (2018).
Is q-learning provably efficient? arXiv preprint arXiv:1807.03765.

[Jin et al., 2020a] Jin, C., Jin, T., Luo, H., Sra, S., and Yu, T. (2020a).
Learning adversarial markov decision processes with bandit feedback and
unknown transition. In International Conference on Machine Learning,
pages 4860–4869. PMLR.

[Jin et al., 2020b] Jin, C., Netrapalli, P., and Jordan, M. (2020b). What
is local optimality in nonconvex-nonconcave minimax optimization?
In International Conference on Machine Learning, pages 4880–4889.
PMLR.

[Johnson and Zhang, 2013] Johnson, R. and Zhang, T. (2013). Accelerating
stochastic gradient descent using predictive variance reduction. Advances
in neural information processing systems, 26:315–323.

[Kakade, 2001] Kakade, S. M. (2001). A natural policy gradient. Advances
in neural information processing systems, 14.

[Kamalaruban et al., 2020] Kamalaruban, P., Huang, Y.-T., Hsieh, Y.-P.,
Rolland, P., Shi, C., and Cevher, V. (2020). Robust reinforcement learn-
ing via adversarial training with langevin dynamics. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in
Neural Information Processing Systems, volume 33, pages 8127–8138.
Curran Associates, Inc.

[Kartal et al., 2019] Kartal, B., Hernandez-Leal, P., and Taylor, M. E.
(2019). Terminal prediction as an auxiliary task for deep reinforcement

214



Bibliography

learning. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 15, pages 38–44.

[Kearns et al., 2013] Kearns, M., Mansour, Y., and Singh, S. (2013). Fast
planning in stochastic games. arXiv preprint arXiv:1301.3867.

[Kearns and Singh, 1999] Kearns, M. and Singh, S. (1999). Finite-sample
convergence rates for q-learning and indirect algorithms. Advances in
neural information processing systems, pages 996–1002.

[Klein et al., 2012] Klein, E., Geist, M., Piot, B., and Pietquin, O. (2012).
Inverse reinforcement learning through structured classification. In Ad-
vances in Neural Information Processing Systems, pages 1007–1015.

[Klein et al., 2013] Klein, E., Piot, B., Geist, M., and Pietquin, O. (2013).
A cascaded supervised learning approach to inverse reinforcement learn-
ing. In Joint European conference on machine learning and knowledge
discovery in databases, pages 1–16. Springer.

[Knyazev et al., 2010] Knyazev, A., Jujunashvili, A., and Argentati, M.
(2010). Angles between infinite dimensional subspaces with applica-
tions to the rayleigh–ritz and alternating projectors methods. Journal of
Functional Analysis, 259(6):1323–1345.

[Ko and Lin, 1995] Ko, K.-I. and Lin, C.-L. (1995). On the complexity of
min-max optimization problems and their approximation. In Minimax
and Applications, pages 219–239. Springer.

[Konda and Tsitsiklis, 2000] Konda, V. R. and Tsitsiklis, J. N. (2000).
Actor-critic algorithms. In Advances in neural information processing
systems, pages 1008–1014. Citeseer.

[Lã et al., 2016] Lã, Q. D., Chew, Y. H., and Soong, B.-H. (2016). Potential
game theory. pringer International Publishing.

[La Salle, 1976] La Salle, J. P. (1976). The stability of dynamical systems.
SIAM.

[Lagoudakis and Parr, 2002] Lagoudakis, M. G. and Parr, R. (2002). Value
function approximation in zero-sum markov games. pages 283–292.

[Lai and Robbins, 1985] Lai, T. L. and Robbins, H. (1985). Asymptotically
efficient adaptive allocation rules. Advances in applied mathematics,
6(1):4–22.

215



Bibliography

[Lambert Iii et al., 2005] Lambert Iii, T. J., Epelman, M. A., and Smith,
R. L. (2005). A fictitious play approach to large-scale optimization.
Operations Research, 53(3):477–489.

[Lattimore and Munos, 2014] Lattimore, T. and Munos, R. (2014).
Bounded regret for finite-armed structured bandits. In Advances in Neural
Information Processing Systems, pages 550–558.

[Lattimore and Szepesvári, 2020] Lattimore, T. and Szepesvári, C. (2020).
Bandit algorithms. Cambridge University Press.

[Lauer and Riedmiller, 2000] Lauer, M. and Riedmiller, M. (2000). An al-
gorithm for distributed reinforcement learning in cooperative multi-agent
systems. In In Proceedings of the Seventeenth International Conference
on Machine Learning. Citeseer.

[Ledig et al., 2017] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunning-
ham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.
(2017). Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4681–4690.

[Ledoit and Wolf, 2004] Ledoit, O. and Wolf, M. (2004). A well-
conditioned estimator for large-dimensional covariance matrices. Journal
of multivariate analysis, 88(2):365–411.

[Lee et al., 2017] Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M.,
Jordan, M. I., and Recht, B. (2017). First-order methods almost always
avoid saddle points. arXiv preprint arXiv:1710.07406.

[Lee et al., 2016] Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht,
B. (2016). Gradient descent converges to minimizers. University of
California, Berkeley, 1050:4.

[Letcher, 2020] Letcher, A. (2020). On the impossibility of global conver-
gence in multi-loss optimization. arXiv preprint arXiv:2005.12649.

[Letcher et al., 2019] Letcher, A., Balduzzi, D., Racaniere, S., Martens, J.,
Foerster, J. N., Tuyls, K., and Graepel, T. (2019). Differentiable game
mechanics. Journal of Machine Learning Research, 20(84):1–40.

[Letcher et al., 2018] Letcher, A., Foerster, J., Balduzzi, D., Rocktäschel,
T., and Whiteson, S. (2018). Stable opponent shaping in differentiable
games. In International Conference on Learning Representations.

216



Bibliography

[Levine et al., 2011] Levine, S., Popovic, Z., and Koltun, V. (2011). Non-
linear inverse reinforcement learning with gaussian processes. Advances
in neural information processing systems, 24:19–27.

[Li et al., 2020] Li, J., Zhou, Y., Ren, T., and Zhu, J. (2020). Exploration
analysis in finite-horizon turn-based stochastic games. In Conference on
Uncertainty in Artificial Intelligence, pages 201–210. PMLR.

[Li, 2017] Li, Y. (2017). Deep reinforcement learning: An overview. arXiv
preprint arXiv:1701.07274.

[Likmeta et al., 2021] Likmeta, A., Metelli, A. M., Ramponi, G., Tirinzoni,
A., Giuliani, M., and Restelli, M. (2021). Dealing with multiple experts
and non-stationarity in inverse reinforcement learning: an application to
real-life problems. Machine Learning, pages 1–36.

[Lillicrap et al., 2015] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N.,
Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

[Lim et al., 2013] Lim, S. H., Xu, H., and Mannor, S. (2013). Reinforce-
ment learning in robust markov decision processes. Advances in Neural
Information Processing Systems, 26:701–709.

[Lin et al., 2020] Lin, T., Jin, C., and Jordan, M. (2020). On gradient de-
scent ascent for nonconvex-concave minimax problems. In International
Conference on Machine Learning, pages 6083–6093. PMLR.

[Lin et al., 2019a] Lin, X., Adams, S. C., and Beling, P. A. (2019a). Multi-
agent inverse reinforcement learning for certain general-sum stochastic
games. Journal of Artificial Intelligence Research, 66:473–502.

[Lin et al., 2019b] Lin, X., Baweja, H. S., Kantor, G., and Held, D. (2019b).
Adaptive auxiliary task weighting for reinforcement learning. Advances
in neural information processing systems, 32.

[Littman, 1994] Littman, M. L. (1994). Markov games as a framework for
multi-agent reinforcement learning. In Machine learning proceedings
1994, pages 157–163. Elsevier.

[Littman, 2001] Littman, M. L. (2001). Value-function reinforcement learn-
ing in markov games. Cognitive systems research, 2(1):55–66.

[Liu et al., 2020] Liu, Q., Yu, T., Bai, Y., and Jin, C. (2020). A sharp
analysis of model-based reinforcement learning with self-play. arXiv
preprint arXiv:2010.01604.

217



Bibliography

[Lykouris et al., 2019] Lykouris, T., Simchowitz, M., Slivkins, A., and Sun,
W. (2019). Corruption robust exploration in episodic reinforcement
learning. arXiv preprint arXiv:1911.08689.

[Maclaurin et al., 2015] Maclaurin, D., Duvenaud, D., and Adams, R.
(2015). Gradient-based hyperparameter optimization through reversible
learning. In International conference on machine learning, pages 2113–
2122. PMLR.

[Madry et al., 2018] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. (2018). Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning Representations.

[Mangoubi and Vishnoi, 2021] Mangoubi, O. and Vishnoi, N. K. (2021).
Greedy adversarial equilibrium: An efficient alternative to nonconvex-
nonconcave min-max optimization.

[Mannor et al., 2012] Mannor, S., Mebel, O., and Xu, H. (2012). Lightning
does not strike twice: robust mdps with coupled uncertainty. In Proceed-
ings of the 29th International Coference on International Conference on
Machine Learning, pages 451–458.

[Mannor et al., 2016] Mannor, S., Mebel, O., and Xu, H. (2016). Robust
mdps with k-rectangular uncertainty. Mathematics of Operations Re-
search, 41(4):1484–1509.

[Manton et al., 2003] Manton, J. H., Mahony, R., and Hua, Y. (2003). The
geometry of weighted low-rank approximations. IEEE Transactions on
Signal Processing, 51(2):500–514.

[Mazumdar et al., 2020a] Mazumdar, E., Ratliff, L. J., Jordan, M. I., and
Sastry, S. S. (2020a). Policy-gradient algorithms have no guarantees
of convergence in linear quadratic games. In Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems,
pages 860–868.

[Mazumdar et al., 2020b] Mazumdar, E., Ratliff, L. J., and Sastry, S. S.
(2020b). On gradient-based learning in continuous games. SIAM Journal
on Mathematics of Data Science, 2(1):103–131.

[Mazumdar et al., 2019] Mazumdar, E. V., Jordan, M. I., and Sastry, S. S.
(2019). On finding local nash equilibria (and only local nash equilibria)
in zero-sum games. arXiv preprint arXiv:1901.00838.

218



Bibliography

[McWilliams et al., 2014] McWilliams, B., Krummenacher, G., Lucic, M.,
and Buhmann, J. M. (2014). Fast and robust least squares estimation in
corrupted linear models. In Advances in Neural Information Processing
Systems, pages 415–423.

[Melo et al., 2008] Melo, F. S., Meyn, S. P., and Ribeiro, M. I. (2008).
An analysis of reinforcement learning with function approximation. In
Proceedings of the 25th international conference on Machine learning,
pages 664–671.

[Mertikopoulos, 2019] Mertikopoulos, P. (2019). Online optimization and
learning in games: Theory and applications. PhD thesis, Grenoble 1
UGA-Université Grenoble Alpes.

[Mertikopoulos et al., 2018a] Mertikopoulos, P., Lecouat, B., Zenati, H.,
Foo, C.-S., Chandrasekhar, V., and Piliouras, G. (2018a). Optimistic
mirror descent in saddle-point problems: Going the extra (gradient) mile.
arXiv preprint arXiv:1807.02629.

[Mertikopoulos et al., 2018b] Mertikopoulos, P., Papadimitriou, C., and Pil-
iouras, G. (2018b). Cycles in adversarial regularized learning. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2703–2717. SIAM.

[Mescheder et al., 2017] Mescheder, L., Nowozin, S., and Geiger, A.
(2017). The numerics of gans. In Advances in Neural Information
Processing Systems, pages 1825–1835.

[Metelli et al., 2019a] Metelli, A. M., Ghelfi, E., and Restelli, M. (2019a).
Reinforcement learning in configurable continuous environments. In
International Conference on Machine Learning, pages 4546–4555.

[Metelli et al., 2019b] Metelli, A. M., Manneschi, G., and Restelli, M.
(2019b). Policy space identification in configurable environments. arXiv
preprint arXiv:1909.03984.

[Metelli et al., 2018] Metelli, A. M., Mutti, M., and Restelli, M. (2018).
Configurable markov decision processes. In International Conference on
Machine Learning, pages 3491–3500. PMLR.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. nature, 518(7540):529–533.

219



Bibliography

[Monderer and Shapley, 1996] Monderer, D. and Shapley, L. S. (1996). Po-
tential games. Games and economic behavior, 14(1):124–143.

[Morgenstern and Von Neumann, 1953] Morgenstern, O. and Von Neu-
mann, J. (1953). Theory of games and economic behavior. Princeton
university press.

[Morimoto and Doya, 2005] Morimoto, J. and Doya, K. (2005). Robust
reinforcement learning. Neural computation, 17(2):335–359.

[Munk et al., 2016] Munk, J., Kober, J., and Babuška, R. (2016). Learning
state representation for deep actor-critic control. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 4667–4673. IEEE.

[Myerson, 2013] Myerson, R. B. (2013). Game theory. Harvard university
press.

[Nagarajan and Kolter, 2017] Nagarajan, V. and Kolter, J. Z. (2017). Gra-
dient descent gan optimization is locally stable. In Advances in neural
information processing systems, pages 5585–5595.

[Namkoong and Duchi, 2017] Namkoong, H. and Duchi, J. C. (2017).
Variance-based regularization with convex objectives. In Proceedings
of the 31st International Conference on Neural Information Processing
Systems, pages 2975–2984.

[Nash et al., 1950] Nash, J. F. et al. (1950). Equilibrium points in n-person
games. Proceedings of the national academy of sciences, 36(1):48–49.

[Natarajan et al., 2010] Natarajan, S., Kunapuli, G., Judah, K., Tadepalli, P.,
Kersting, K., and Shavlik, J. (2010). Multi-agent inverse reinforcement
learning. In 2010 Ninth International Conference on Machine Learning
and Applications, pages 395–400. IEEE.

[Neu et al., 2012] Neu, G., Gyorgy, A., and Szepesvári, C. (2012). The
adversarial stochastic shortest path problem with unknown transition
probabilities. In Artificial Intelligence and Statistics, pages 805–813.
PMLR.

[Ng et al., 2000] Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for
inverse reinforcement learning. In Icml, volume 1, page 2.

[Nguyen et al., 2020] Nguyen, T. T., Nguyen, N. D., and Nahavandi, S.
(2020). Deep reinforcement learning for multiagent systems: A review of
challenges, solutions, and applications. IEEE transactions on cybernetics,
50(9):3826–3839.

220



Bibliography

[Nie et al., 2018] Nie, W., Narodytska, N., and Patel, A. (2018). Relgan:
Relational generative adversarial networks for text generation.

[Nilim and El Ghaoui, 2005] Nilim, A. and El Ghaoui, L. (2005). Robust
control of markov decision processes with uncertain transition matrices.
Operations Research, 53(5):780–798.

[Nilim and Ghaoui, 2003] Nilim, A. and Ghaoui, L. E. (2003). Robust-
ness in markov decision problems with uncertain transition matrices. In
Thrun, S., Saul, L. K., and Schölkopf, B., editors, Advances in Neural
Information Processing Systems 16 [Neural Information Processing Sys-
tems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British
Columbia, Canada], pages 839–846. MIT Press.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. (2006). Numerical
optimization. Springer Science & Business Media.

[Omidshafiei et al., 2019] Omidshafiei, S., Papadimitriou, C., Piliouras, G.,
Tuyls, K., Rowland, M., Lespiau, J.-B., Czarnecki, W. M., Lanctot, M.,
Perolat, J., and Munos, R. (2019). -rank: Multi-agent evaluation by
evolution. Scientific reports, 9(1):9937.

[OroojlooyJadid and Hajinezhad, 2019] OroojlooyJadid, A. and Ha-
jinezhad, D. (2019). A review of cooperative multi-agent deep
reinforcement learning. arXiv preprint arXiv:1908.03963.

[Osa et al., 2018] Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A.,
Abbeel, P., and Peters, J. (2018). An algorithmic perspective on imi-
tation learning. CoRR, abs/1811.06711.

[Osband and Van Roy, 2017] Osband, I. and Van Roy, B. (2017). Why
is posterior sampling better than optimism for reinforcement learning?
In International Conference on Machine Learning, pages 2701–2710.
PMLR.

[Osband et al., 2013] Osband, I., Van Roy, B., and Russo, D. (2013). (more)
efficient reinforcement learning via posterior sampling. Advances in
Neural Information Processing Systems.

[Ota et al., 2020] Ota, K., Oiki, T., Jha, D., Mariyama, T., and Nikovski, D.
(2020). Can increasing input dimensionality improve deep reinforcement
learning? In International Conference on Machine Learning, pages
7424–7433. PMLR.

221



Bibliography

[Papadimitriou and Piliouras, 2016] Papadimitriou, C. and Piliouras, G.
(2016). From nash equilibria to chain recurrent sets: Solution con-
cepts and topology. In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pages 227–235.

[Papadimitriou and Piliouras, 2019] Papadimitriou, C. and Piliouras, G.
(2019). Game dynamics as the meaning of a game. ACM SIGecom
Exchanges, 16(2):53–63.

[Papadimitriou, 1992] Papadimitriou, C. H. (1992). On inefficient proofs
of existence and complexity classes. In Annals of Discrete Mathematics,
volume 51, pages 245–250. Elsevier.

[Papini et al., 2018] Papini, M., Binaghi, D., Canonaco, G., Pirotta, M.,
and Restelli, M. (2018). Stochastic variance-reduced policy gradient.
In International Conference on Machine Learning, pages 4026–4035.
PMLR.

[Papoudakis et al., 2019] Papoudakis, G., Christianos, F., Rahman, A., and
Albrecht, S. V. (2019). Dealing with non-stationarity in multi-agent deep
reinforcement learning. arXiv preprint arXiv:1906.04737.

[Paternain et al., 2019] Paternain, S., Mokhtari, A., and Ribeiro, A. (2019).
A newton-based method for nonconvex optimization with fast evasion of
saddle points. SIAM Journal on Optimization, 29(1):343–368.

[Peng et al., 2019] Peng, B., Shen, W., Tang, P., and Zuo, S. (2019). Learn-
ing optimal strategies to commit to. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 2149–2156.

[Perkins and Precup, 2003] Perkins, T. J. and Precup, D. (2003). A con-
vergent form of approximate policy iteration. In Advances in neural
information processing systems, pages 1627–1634. Citeseer.

[Perolat et al., 2020] Perolat, J., Munos, R., Lespiau, J.-B., Omidshafiei, S.,
Rowland, M., Ortega, P., Burch, N., Anthony, T., Balduzzi, D., De Vylder,
B., et al. (2020). From poincaré recurrence to convergence in imperfect
information games: Finding equilibrium via regularization. arXiv preprint
arXiv:2002.08456.

[Perolat et al., 2018] Perolat, J., Piot, B., and Pietquin, O. (2018). Actor-
critic fictitious play in simultaneous move multistage games. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 919–928.
PMLR.

222



Bibliography

[Perolat et al., 2015] Perolat, J., Scherrer, B., Piot, B., and Pietquin, O.
(2015). Approximate dynamic programming for two-player zero-sum
markov games. In Bach, F. and Blei, D., editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pages 1321–1329, Lille, France.
PMLR.

[Pérolat et al., 2017] Pérolat, J., Strub, F., Piot, B., and Pietquin, O. (2017).
Learning nash equilibrium for general-sum markov games from batch
data. In Artificial Intelligence and Statistics, pages 232–241. PMLR.

[Peters et al., 2010] Peters, J., Mulling, K., and Altun, Y. (2010). Rela-
tive entropy policy search. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 24.

[Peters and Schaal, 2008a] Peters, J. and Schaal, S. (2008a). Natural actor-
critic. Neurocomputing, 71(7-9):1180–1190.

[Peters and Schaal, 2008b] Peters, J. and Schaal, S. (2008b). Reinforcement
learning of motor skills with policy gradients. Neural networks, 21(4):682–
697.

[Pirotta, 2016] Pirotta, M. (2016). Reinforcement learning: from theory to
algorithms.

[Pirotta and Restelli, 2016] Pirotta, M. and Restelli, M. (2016). Inverse rein-
forcement learning through policy gradient minimization. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 30.

[Pirotta et al., 2013] Pirotta, M., Restelli, M., and Bascetta, L. (2013). Adap-
tive step-size for policy gradient methods. In Advances in Neural Infor-
mation Processing Systems, pages 1394–1402.

[Pomerleau, 1989] Pomerleau, D. A. (1989). Alvinn: An autonomous land
vehicle in a neural network. In Advances in neural information processing
systems, pages 305–313.

[Powell, 2007] Powell, W. B. (2007). Approximate Dynamic Programming:
Solving the curses of dimensionality, volume 703. John Wiley & Sons.

[Puterman, 2014] Puterman, M. L. (2014). Markov decision processes:
discrete stochastic dynamic programming. John Wiley & Sons.

[Rabinowitz et al., 2018] Rabinowitz, N., Perbet, F., Song, F., Zhang, C.,
Eslami, S. A., and Botvinick, M. (2018). Machine theory of mind. In
International Conference on Machine Learning, pages 4218–4227.

223



Bibliography

[Rajasekaran et al., 2017] Rajasekaran, S., Zhang, J., and Fu, J. (2017).
Inverse reinforce learning with nonparametric behavior clustering. arXiv
preprint arXiv:1712.05514.

[Rajeswaran et al., 2017] Rajeswaran, A., Lowrey, K., Todorov, E., and
Kakade, S. (2017). Towards generalization and simplicity in continuous
control. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 6553–6564.

[Ramachandran and Amir, 2007] Ramachandran, D. and Amir, E. (2007).
Bayesian inverse reinforcement learning. In IJCAI, volume 7, pages
2586–2591.

[Ramponi et al., 2020a] Ramponi, G., Drappo, G., and Restelli, M. (2020a).
Inverse reinforcement learning from a gradient-based learner. 33:2458–
2468.

[Ramponi et al., 2020b] Ramponi, G., Likmeta, A., Metelli, A. M., Tir-
inzoni, A., and Restelli, M. (2020b). Truly batch model-free inverse
reinforcement learning about multiple intentions. In International Confer-
ence on Artificial Intelligence and Statistics, pages 2359–2369. PMLR.

[Ramponi et al., 2021] Ramponi, G., Metelli, A. M., Concetti, A., and
Restelli, M. (2021). Online learning in non-cooperative configurable
markov decision process. AAAI Workshop on Reinforcement Learning in
Games.

[Ramponi and Restelli, 2021] Ramponi, G. and Restelli, M. (2021). New-
ton optimization on helmholtz decomposition for continuous games.
Thirty-Fifth AAAI conference on artificial intelligence.

[Rao et al., 1973] Rao, S. S., Chandrasekaran, R., and Nair, K. (1973).
Algorithms for discounted stochastic games. Journal of Optimization
Theory and Applications, 11(6):627–637.

[Ratliff, 2021] Ratliff, L. (2021). An introduction to learning in games.

[Ratliff et al., 2013] Ratliff, L. J., Burden, S. A., and Sastry, S. S. (2013).
Characterization and computation of local nash equilibria in continuous
games. In 2013 51st Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 917–924. IEEE.

[Ratliff et al., 2016] Ratliff, L. J., Burden, S. A., and Sastry, S. S. (2016).
On the characterization of local nash equilibria in continuous games.
IEEE Transactions on Automatic Control, 61(8):2301–2307.

224



Bibliography

[Ratliff et al., 2007] Ratliff, N., Bradley, D., Bagnell, J. A., and Chestnutt,
J. (2007). Boosting structured prediction for imitation learning.

[Ratliff et al., 2006] Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A.
(2006). Maximum margin planning. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages 729–736.

[Ravi and Larochelle, 2016] Ravi, S. and Larochelle, H. (2016). Optimiza-
tion as a model for few-shot learning.

[Rigollet, 2015] Rigollet, P. (2015). High-dimensional statistics. spring
2015. Massachusetts Institute of Technology: MIT OpenCourseWare.

[Robinson, 1951] Robinson, J. (1951). An iterative method of solving a
game. Annals of mathematics, pages 296–301.

[Rosen, 1965] Rosen, J. B. (1965). Existence and uniqueness of equilib-
rium points for concave n-person games. Econometrica: Journal of the
Econometric Society, pages 520–534.

[Rosenberg and Mansour, 2019] Rosenberg, A. and Mansour, Y. (2019).
Online convex optimization in adversarial markov decision processes.
In International Conference on Machine Learning, pages 5478–5486.
PMLR.

[Rosenthal, 1973] Rosenthal, R. W. (1973). A class of games possessing
pure-strategy nash equilibria. International Journal of Game Theory,
2(1):65–67.

[Rummery and Niranjan, 1994] Rummery, G. A. and Niranjan, M. (1994).
On-line Q-learning using connectionist systems, volume 37. University
of Cambridge, Department of Engineering Cambridge, UK.

[Russell, 1998] Russell, S. (1998). Learning agents for uncertain environ-
ments. In Proceedings of the eleventh annual conference on Computa-
tional learning theory, pages 101–103.

[Schäfer and Anandkumar, 2019] Schäfer, F. and Anandkumar, A. (2019).
Competitive gradient descent. In Advances in Neural Information Pro-
cessing Systems, pages 7623–7633.

[Schulman et al., 2017a] Schulman, J., Chen, X., and Abbeel, P. (2017a).
Equivalence between policy gradients and soft q-learning. arXiv preprint
arXiv:1704.06440.

225



Bibliography

[Schulman et al., 2015] Schulman, J., Levine, S., Abbeel, P., Jordan, M.,
and Moritz, P. (2015). Trust region policy optimization. In International
conference on machine learning, pages 1889–1897. PMLR.

[Schulman et al., 2017b] Schulman, J., Wolski, F., Dhariwal, P., Radford,
A., and Klimov, O. (2017b). Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

[Sehnke et al., 2008] Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A.,
Peters, J., and Schmidhuber, J. (2008). Policy gradients with parameter-
based exploration for control. In International Conference on Artificial
Neural Networks, pages 387–396. Springer.

[Sessa et al., 2020] Sessa, P. G., Bogunovic, I., Kamgarpour, M., and
Krause, A. (2020). Learning to play sequential games versus unknown
opponents. Advances in Neural Information Processing Systems 33.

[Shalev-Shwartz et al., 2016] Shalev-Shwartz, S., Shammah, S., and
Shashua, A. (2016). Safe, multi-agent, reinforcement learning for au-
tonomous driving. arXiv preprint arXiv:1610.03295.

[Shapley, 1964] Shapley, L. (1964). Some topics in two-person games.
Advances in game theory, 52:1–29.

[Shapley, 1953] Shapley, L. S. (1953). Stochastic games. Proceedings of
the national academy of sciences, 39(10):1095–1100.

[Shen et al., 2019] Shen, Z., Ribeiro, A., Hassani, H., Qian, H., and Mi, C.
(2019). Hessian aided policy gradient. In International Conference on
Machine Learning, pages 5729–5738. PMLR.

[Shteingart and Loewenstein, 2014] Shteingart, H. and Loewenstein, Y.
(2014). Reinforcement learning and human behavior. Current Opin-
ion in Neurobiology, 25:93–98.

[Shum et al., 2019] Shum, M., Kleiman-Weiner, M., Littman, M. L., and
Tenenbaum, J. B. (2019). Theory of minds: Understanding behavior in
groups through inverse planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6163–6170.

[Sidford et al., 2020] Sidford, A., Wang, M., Yang, L., and Ye, Y. (2020).
Solving discounted stochastic two-player games with near-optimal time
and sample complexity. In International Conference on Artificial Intelli-
gence and Statistics, pages 2992–3002. PMLR.

226



Bibliography

[Silver et al., 2014] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra,
D., and Riedmiller, M. (2014). Deterministic policy gradient algorithms.
In International conference on machine learning, pages 387–395. PMLR.

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.
(2017). Mastering the game of go without human knowledge. nature,
550(7676):354–359.

[Simchowitz and Jamieson, 2019] Simchowitz, M. and Jamieson, K.
(2019). Non-asymptotic gap-dependent regret bounds for tabular mdps.
arXiv preprint arXiv:1905.03814.

[Singh et al., 2000] Singh, S., Jaakkola, T., Littman, M. L., and Szepesvári,
C. (2000). Convergence results for single-step on-policy reinforcement-
learning algorithms. Machine learning, 38(3):287–308.

[Skoulakis et al., 2021] Skoulakis, S., Fiez, T., Sim, R., Piliouras, G., and
Ratliff, L. (2021). Evolutionary game theory squared: Evolving agents in
endogenously evolving zero-sum games.

[Song et al., 2019] Song, X., Wang, T., and Zhang, C. (2019). Convergence
of multi-agent learning with a finite step size in general-sum games. In
Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, pages 935–943. International Foundation for
Autonomous Agents and Multiagent Systems.

[Sorin, 2020] Sorin, S. (2020). Replicator dynamics: Old and new. Journal
of Dynamics & Games, 7(4):365.

[Spokoiny et al., 2012] Spokoiny, V. et al. (2012). Parametric estimation.
finite sample theory. The Annals of Statistics, 40(6):2877–2909.

[Sutton et al., 1998] Sutton, R. S., Barto, A. G., et al. (1998). Introduction
to reinforcement learning, volume 135. MIT press Cambridge.

[Sutton et al., 2000] Sutton, R. S., McAllester, D. A., Singh, S. P., and Man-
sour, Y. (2000). Policy gradient methods for reinforcement learning with
function approximation. In Advances in Neural Information Processing
Systems, pages 1057–1063.

[Sutton et al., 1999] Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour,
Y., et al. (1999). Policy gradient methods for reinforcement learning with
function approximation. In NIPs, volume 99, pages 1057–1063. Citeseer.

227



Bibliography

[Szepesvári, 2010] Szepesvári, C. (2010). Algorithms for reinforcement
learning. Synthesis lectures on artificial intelligence and machine learn-
ing, 4(1):1–103.

[Szepesvári et al., 1997] Szepesvári, C. et al. (1997). The asymptotic
convergence-rate of q-learning. In NIPS, volume 10, pages 1064–1070.
Citeseer.

[Szepesvári and Littman, 1996] Szepesvári, C. and Littman, M. L. (1996).
Generalized markov decision processes: Dynamic-programming and
reinforcement-learning algorithms. In Proceedings of International Con-
ference of Machine Learning, volume 96.

[Szepesvári and Littman, 1999] Szepesvári, C. and Littman, M. L. (1999).
A unified analysis of value-function-based reinforcement-learning algo-
rithms. Neural computation, 11(8):2017–2060.

[Taslaman, 2014] Taslaman, L. (2014). The principal angles and the gap.

[Tateo et al., 2017] Tateo, D., Pirotta, M., Restelli, M., and Bonarini, A.
(2017). Gradient-based minimization for multi-expert inverse reinforce-
ment learning. In 2017 IEEE Symposium Series on Computational Intelli-
gence (SSCI), pages 1–8. IEEE.

[Tessler et al., 2019] Tessler, C., Efroni, Y., and Mannor, S. (2019). Action
robust reinforcement learning and applications in continuous control.
In International Conference on Machine Learning, pages 6215–6224.
PMLR.

[Tian et al., 2020] Tian, Y., Wang, Y., Yu, T., and Sra, S. (2020). Prov-
ably efficient online agnostic learning in markov games. arXiv preprint
arXiv:2010.15020.

[Tirinzoni et al., 2020] Tirinzoni, A., Poiani, R., and Restelli, M. (2020).
Sequential transfer in reinforcement learning with a generative model.
In International Conference on Machine Learning, pages 9481–9492.
PMLR.

[Tramèr et al., 2018] Tramèr, F., Boneh, D., Kurakin, A., Goodfellow, I.,
Papernot, N., and McDaniel, P. (2018). Ensemble adversarial training:
Attacks and defenses. In 6th International Conference on Learning
Representations, ICLR 2018-Conference Track Proceedings.

228



Bibliography

[Tseng, 2001] Tseng, P. (2001). Convergence of a block coordinate descent
method for nondifferentiable minimization. Journal of optimization
theory and applications, 109(3):475–494.

[Tsitsiklis, 1994] Tsitsiklis, J. N. (1994). Asynchronous stochastic approxi-
mation and q-learning. Machine learning, 16(3):185–202.

[Van Der Wal, 1978] Van Der Wal, J. (1978). Discounted markov games:
Generalized policy iteration method. Journal of Optimization Theory and
Applications, 25(1):125–138.

[Vanderbei et al., 2015] Vanderbei, R. J. et al. (2015). Linear programming,
volume 3. Springer.

[Von Neumann and Morgenstern, 2007] Von Neumann, J. and Morgen-
stern, O. (2007). Theory of games and economic behavior (commemora-
tive edition). Princeton university press.

[Von Stackelberg, 2010] Von Stackelberg, H. (2010). Market structure and
equilibrium. Springer Science & Business Media.

[Vroman, 2014] Vroman, M. C. (2014). Maximum likelihood inverse rein-
forcement learning. PhD thesis, Rutgers University-Graduate School-New
Brunswick.

[Wan et al., 2021] Wan, Y., Tu, W.-W., and Zhang, L. (2021). Online
strongly convex optimization with unknown delays. arXiv preprint
arXiv:2103.11354.

[Wang and Klabjan, 2018] Wang, X. and Klabjan, D. (2018). Competitive
multi-agent inverse reinforcement learning with sub-optimal demonstra-
tions. In International Conference on Machine Learning, pages 5143–
5151. PMLR.

[Wang and Sandholm, 2002] Wang, X. and Sandholm, T. (2002). Reinforce-
ment learning to play an optimal nash equilibrium in team markov games.
Advances in neural information processing systems, 15:1603–1610.

[Watkins and Dayan, 1992] Watkins, C. J. and Dayan, P. (1992). Q-learning.
Machine learning, 8(3-4):279–292.

[Wedin, 1973] Wedin, P. (1973). Perturbation theory for pseudo-inverses.
BIT Numerical Mathematics, 13(2):217–232.

229



Bibliography

[Wei et al., 2017] Wei, C.-Y., Hong, Y.-T., and Lu, C.-J. (2017). Online
reinforcement learning in stochastic games. In Proceedings of the 31st
International Conference on Neural Information Processing Systems,
pages 4994–5004.

[Whittle, 1981] Whittle, P. (1981). Risk-sensitive linear/quadratic/gaussian
control. Advances in Applied Probability, pages 764–777.

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256.

[Wills, 1958] Wills, A. P. (1958). Vector analysis with and introduction to
tensor analysis. Technical report.

[Xie et al., 2020a] Xie, Q., Chen, Y., Wang, Z., and Yang, Z. (2020a). Learn-
ing zero-sum simultaneous-move markov games using function approxi-
mation and correlated equilibrium. In Conference on Learning Theory,
pages 3674–3682. PMLR.

[Xie et al., 2020b] Xie, Q., Yang, Z., Wang, Z., and Minca, A. (2020b).
Provable fictitious play for general mean-field games. arXiv preprint
arXiv:2010.04211.

[Yang et al., 2020] Yang, J., Kiyavash, N., and He, N. (2020). Global
convergence and variance-reduced optimization for a class of nonconvex-
nonconcave minimax problems. arXiv preprint arXiv:2002.09621.

[Yoshikawa, 1978] Yoshikawa, T. (1978). Decomposition of dynamic team
decision problems. IEEE Transactions on Automatic Control, 23(4):627–
632.

[Yu and Mannor, 2009] Yu, J. Y. and Mannor, S. (2009). Arbitrarily mod-
ulated markov decision processes. In Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, pages 2946–2953. IEEE.

[Yu et al., 2019] Yu, L., Song, J., and Ermon, S. (2019). Multi-agent ad-
versarial inverse reinforcement learning. In International Conference on
Machine Learning, pages 7194–7201. PMLR.

[Yu et al., 2017] Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan:
Sequence generative adversarial nets with policy gradient. In Thirty-First
AAAI Conference on Artificial Intelligence.

230



Bibliography

[Yu et al., 2018] Yu, Y., Wang, T., and Liew, S. C. (2018). Deep-
reinforcement learning multiple access for heterogeneous wireless net-
works. In 2018 IEEE International Conference on Communications
(ICC), pages 1–7. IEEE.

[Zanette et al., 2019] Zanette, A., Kochenderfer, M. J., and Brunskill, E.
(2019). Almost horizon-free structure-aware best policy identification
with a generative model. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32, pages 5625–5634. Curran Associates,
Inc.

[Zhang et al., 2018] Zhang, A., Satija, H., and Pineau, J. (2018). De-
coupling dynamics and reward for transfer learning. arXiv preprint
arXiv:1804.10689.

[Zhang and Lesser, 2010] Zhang, C. and Lesser, V. (2010). Multi-agent
learning with policy prediction. In Twenty-fourth AAAI conference on
artificial intelligence.

[Zhang et al., 2009] Zhang, H., Chen, Y., and Parkes, D. C. (2009). A
general approach to environment design with one agent.

[Zhang et al., 2020a] Zhang, K., Hu, B., and Basar, T. (2020a). Policy
optimization for H2 linear control with H2 ∞ robustness guarantee:
Implicit regularization and global convergence. In Learning for Dynamics
and Control, pages 179–190. PMLR.

[Zhang et al., 2020b] Zhang, K., Kakade, S., Basar, T., and Yang, L.
(2020b). Model-based multi-agent rl in zero-sum markov games with
near-optimal sample complexity. Advances in Neural Information Pro-
cessing Systems, 33.

[Zhang et al., 2020c] Zhang, K., Sun, T., Tao, Y., Genc, S., Mallya, S., and
Basar, T. (2020c). Robust multi-agent reinforcement learning with model
uncertainty. Advances in Neural Information Processing Systems, 33.

[Zhang et al., 2019a] Zhang, K., Yang, Z., and Başar, T. (2019a). Multi-
agent reinforcement learning: A selective overview of theories and algo-
rithms. arXiv preprint arXiv:1911.10635.

[Zhang et al., 2019b] Zhang, K., Yang, Z., and Basar, T. (2019b). Policy
optimization provably converges to nash equilibria in zero-sum linear
quadratic games. In Advances in Neural Information Processing Systems,
pages 11602–11614.

231



Bibliography

[Zhang et al., ] Zhang, K., Zhang, X., Hu, B., and Başar, T. Derivative-free
policy optimization for risk-sensitive and robust control design: Implicit
regularization and sample complexity. arXiv preprint arXiv:2101.01041.

[Zhao et al., 2016] Zhao, T., Niu, G., Xie, N., Yang, J., and Sugiyama, M.
(2016). Regularized policy gradients: direct variance reduction in policy
gradient estimation. In Asian Conference on Machine Learning, pages
333–348. PMLR.

[Zheng et al., 2021] Zheng, L., Fiez, T., Alumbaugh, Z., Chasnov, B., and
Ratliff, L. J. (2021). Stackelberg actor-critic: A game-theoretic perspec-
tive.

[Zhou et al., 2018] Zhou, Z., Mertikopoulos, P., Athey, S., Bambos, N.,
Glynn, P., and Ye, Y. (2018). Learning in games with lossy feedback. In
NIPS 2018-Thirty-second Conference on Neural Information Processing
Systems, pages 1–11.

[Ziebart et al., 2010] Ziebart, B. D., Bagnell, J. A., and Dey, A. K. (2010).
Modeling interaction via the principle of maximum causal entropy. In
ICML.

[Ziebart et al., 2008] Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey,
A. K. (2008). Maximum entropy inverse reinforcement learning. In Aaai,
volume 8, pages 1433–1438. Chicago, IL, USA.

[Zimin and Neu, 2013] Zimin, A. and Neu, G. (2013). Online learning in
episodic markovian decision processes by relative entropy policy search.
In Neural Information Processing Systems 26.

[Zinkevich et al., 2006] Zinkevich, M., Greenwald, A., and Littman, M.
(2006). Cyclic equilibria in markov games. Advances in Neural Informa-
tion Processing Systems, 18:1641.

232



APPENDIXA
Learning in Continuous Games: a (brief)

introduction

In this appendix, we would like to revise the basic concepts of learning in
games. In the main manuscript, we provide the necessary background to
read and follow the proposed algorithms and theoretical results; however,
we would like to give the interested reader a brief introduction to learning
in continuous games. Some concepts are also explained in Chapter 11.
Obviously, this appendix is not sufficient to completely learn this wide topic,
and if the reader is excited about this argument, we would like to suggest
reading [Fudenberg et al., 1998] and also the notes of [Ratliff, 2021] as well
as the manuscript of [Mertikopoulos, 2019].

A.1 Continuous Games

In continuous games, the players act on continuous action spaces. However,
every normal-form finite game can be cast as a continuous game if we
consider the set of possible actions of the mixed strategies. We introduce
the continuous games using the definition used in Chapter 11.

Definition A.1.1 (Continuous Games). A n-agents continuous game is de-

233



Appendix A. Learning in Continuous Games: a (brief) introduction

fined by (Θ, C1, . . . , Cn) where Θ = (Θ1, . . . ,Θn), with Θi ∈ Rd, are the
parameters’ space of each agent and Ci : Θ→ R is the cost function of the
i-th agent.

Since the cost function might not be convex, it is necessary to introduce
the concept of Local Nash Equilibrium.

Definition A.1.2 (Local Nash Equilibrium). A point θ∗ is a local Nash
Equilibrium if, for each agent 1 ≤ i ≤ n, there is a neighborhood Bi of θ∗i
such that Ci(θi,θ∗−i) ≥ Ci(θ

∗
i ,θ

∗
−i) for any θi ∈ Bi.

If the relation is strictly greater than then, the point is a strict local Nash
Equilibrium. From an optimization viewpoint in [Ratliff et al., 2013] the
authors introduced the concept of differential Nash Equilibrium.

Definition A.1.3 (Differential Nash Equilibrium). A point θ∗ is a differential
Nash Equilibrium if, for each agent 1 ≤ i ≤ n, if∇θiCi = 0 and∇2

θi
Ci > 0.

Every differential Nash Equilibrium is also a strict local Nash Equilibria
[Ratliff et al., 2013]. Moreover for every local Nash Equilibria it is true that
∇θiCi = 0 and ∇2

θi
Ci ≥ 0 for every 1 ≤ i ≤ n. It is important to notice

that it is only a necessary condition.
In continuous games, there are many classes of games: potential games,

hamiltonian games, convex games, and non-convex games. We refer the
reader to Chapter 11 where we introduce the Potential Games and Hamilto-
nian Games.

Convex games Convex games are games where the cost functions are convex,
and the strategy spaces are convex and compact. For these games, many
interesting results were derived. The most important is the existence of pure
Nash Equilibria for this class of games [Rosen, 1965]. Moreover, in [Rosen,
1965] it was showed that under suitable assumptions, the Nash equilibrium
is unique.

Non-convex games Non-convex games are games that have non-convex cost
functions. Nash equilibria in non-convex games are NP-hard to compute
in general, even in zero-sum settings [Ko and Lin, 1995, Daskalakis et al.,
2020]. In zero-sum setting the problem is connected to min-max games, i.e.,
games where there is a minimizer player and a maximizer player.

A.2 Classical learning dynamics

In this section, we briefly introduce some classical learning dynamics.

234



A.2. Classical learning dynamics

Best response and gradient dynamics The best response dynamics are given
at each step considering as updating rule for each player its best response
to the current strategies of the other players. The gradient dynamics are
an approximation of the best response dynamics. The players follow the
gradient of their cost functions. These learning dynamics converge to Nash
Equilibrium solutions only in a certain class of games, as for example,
Potential games (in this class of games, we are optimizing a single loss
function, called potential function (see Chapter 11)). In other games, such
as zero-sum games, following this dynamic exhibit cyclic behaviors [Hart
and Mas-Colell, 2003, Mertikopoulos et al., 2018b].

Fictitious play Fictitious play is one of the first learning rules studied in
literature [Robinson, 1951, Fudenberg et al., 1998, Lambert Iii et al., 2005,
Perolat et al., 2018,Xie et al., 2020b]. In this learning dynamic, every player
plays the best response to the historical average of the other player. Also,
this learning dynamics converges only for some games, as for example,
potential games. However, in [Shapley, 1964] it is showed that in some
games, the learning dynamic will cycle indefinitely.

Replicator dynamics Another famous class of algorithms for learning in
games is replicator dynamics, and in the discrete-time multiplicative weights
[Börgers and Sarin, 1997, Hofbauer et al., 1998, Cesa-Bianchi and Lugosi,
2006]. This dynamic is mostly studied in evolutionary game theory [Hof-
bauer et al., 1998]. In the context of a game, it has been mostly studied for
bimatrix games [Sorin, 2020]. In this case, the dynamic does not converge
to equilibrium solutions for every game.

As we have seen, constructing dynamics that converge to the Nash Equi-
librium solution is really challenging, and this is a currently active research
area.

235





APPENDIXB
Supporting lemmas for Chapter 6

Lemma B.0.1. Let A ∈ Rd×dq and B ∈ Rdq×dq symmetric positive definite.
Then, it holds that:

∥∥∥AT
(
ABAT

)−1
A
∥∥∥
F
≤

√
d

smin(B)
.

Proof. First recall that for a symmetric positive definite matrix the following identity involving the
square root holds: (

B
1
2

)T
=
(
BT
) 1

2
= B

1
2 .

Consider now the following derivation:∥∥∥∥AT
(
ABAT

)−1

A

∥∥∥∥
F

=

∥∥∥∥B− 1
2 B

1
2 AT

(
ABAT

)−1

AB
1
2 B−

1
2

∥∥∥∥
F

≤
∥∥∥B− 1

2

∥∥∥2

2

∥∥∥∥B 1
2 AT

(
ABAT

)−1

AB
1
2

∥∥∥∥
F

=
1

smin(B)

∥∥∥∥B 1
2 AT

(
ABAT

)−1

AB
1
2

∥∥∥∥
F

,

where we exploited the inequality ‖XY‖F ≤ ‖X‖2 ‖Y‖F and fact that
∥∥∥B− 1

2

∥∥∥
2

1√
smin(B)

. Let

237



Appendix B. Supporting lemmas for Chapter 6

us bound the second term.∥∥∥∥B 1
2 AT

(
ABAT

)−1

AB
1
2

∥∥∥∥2

F

= tr

(
B

1
2 AT

(
ABAT

)−1

AB
1
2 B

1
2 AT

(
ABAT

)−1

AB
1
2

)
= tr

(
ABAT

(
ABAT

)−1

ABAT
(
ABAT

)−1
)

= tr (IdId) = d,

where we exploited the identity ‖X‖2F = tr
(
XTX

)
and the cyclic property of the trace.

Lemma B.0.2. Let A,B ∈ Rdq×dq be two symmetric positive semidefinite
matrices. Then, for any ω ∈ Rq

+ it holds that:
∣∣lA(ω)− l smin(Q)vB(ω)

∣∣

≤
∥∥∥∥(ω ⊗ Id)

[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

(ω ⊗ Id)
T

∥∥∥∥
F

×
∥∥∥∥(ω ⊗ Id)

[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

(ω ⊗ Id)
T

∥∥∥∥
F

∥∥∥∇̂θψ(θ)
∥∥∥

2

F
‖B−A‖F .

Proof. We explicitly write down the expression of lA(ω) and lB(ω) and perform a sequence of
algebric manipulations:

lA(ω)− lB(ω) =
∥∥∥∇̂θψ(θ)ω

∥∥∥2

[(ω⊗Id)TA(ω⊗Id)]−1
−
∥∥∥∇̂θψ(θ)ω

∥∥∥2

[(ω⊗Id)TB(ω⊗Id)]−1

= ωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

∇̂θψ(θ)ω −ωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

∇̂θψ(θ)ω

= ωT ∇̂θψ(θ)T
{[

(ω ⊗ Id)
T A (ω ⊗ Id)

]−1

−
[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1
}
∇̂θψ(θ)ω

= ωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

{
Idq −

[
(ω ⊗ Id)

T A (ω ⊗ Id)
] [

(ω ⊗ Id)
T B (ω ⊗ Id)

]−1
}
∇̂θψ(θ)ω

= ωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1 {

(ω ⊗ Id)
T B (ω ⊗ Id)− (ω ⊗ Id)

T A (ω ⊗ Id)
}

×
[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

∇̂θψ(θ)ω

= ωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

(ω ⊗ Id)
T {B−A} (ω ⊗ Id)

[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

∇̂θψ(θ)ω

= tr

(
ωT ∇̂θψ(θ)T

[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

(ω ⊗ Id)
T {B−A} (ω ⊗ Id)

[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

∇̂θψ(θ)ω

)
= tr

(
(ω ⊗ Id)

[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

∇̂θψ(θ)ωωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

(ω ⊗ Id)
T {B−A}

)
= vec

(
(ω ⊗ Id)

[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

∇̂θψ(θ)ωωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

(ω ⊗ Id)
T

)
× vec (B−A)

≤
∥∥∥∥vec

(
(ω ⊗ Id)

[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

∇̂θψ(θ)ωωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

(ω ⊗ Id)
T

)∥∥∥∥
2

× ‖vec (B−A)‖2

=

∥∥∥∥(ω ⊗ Id)
[
(ω ⊗ Id)

T B (ω ⊗ Id)
]−1

∇̂θψ(θ)ωωT ∇̂θψ(θ)T
[
(ω ⊗ Id)

T A (ω ⊗ Id)
]−1

(ω ⊗ Id)
T

∥∥∥∥
F

‖B−A‖F ,

where we applied the trace since the quantity is scalar, we exploited the cyclic property of the
trace, we used the inequality tr(XTY) = vec(X)T vec(Y), Cauchy-Swartz inequality and finally

238



observed that ‖vec(X)‖2 = ‖X‖F . To conclude consider:

∇̂θψ(θ)ω = vec
(
∇̂θψ(θ)ω

)
= vec

(
Id∇̂θψ(θ)ω

)
=
(
ωT ⊗ Id

)
vec
(
∇̂θψ(θ)

)
= (ω ⊗ Id)

T vec
(
∇̂θψ(θ)

)
.

Using the properties of the Frobenious norm, the result follows.

Lemma B.0.3. Let x, y ∈ Rd any pair of vectors, then it holds that:
∥∥∥∥

x

‖x‖2

− y

‖y‖2

∥∥∥∥
2

≤ 2 ‖x− y‖2

max {‖x‖2 , ‖y‖2}
.

Proof. The result follows from the following sequence of algebraic manipulations:∥∥∥∥ x

‖x‖2
− y

‖y‖2

∥∥∥∥
2

=

∥∥∥∥ x

‖x‖2
− y

‖y‖2
± y

‖x‖2

∥∥∥∥
2

≤ ‖x− y‖2
‖x‖2

+

∣∣‖x‖2 − ‖y‖2∣∣
‖x‖2

≤ 2
‖x− y‖2
‖x‖2

,

where we applied the triangular inequality in the second line and the reverse triangular inequality in

the last one, i.e.
∣∣‖x‖2 − ‖y‖2∣∣ ≤ ‖x− y‖2. By observing that, for symmetry reasons, the same

derivation can be performed getting ‖y‖2 at the denominator, we get the result.

Lemma B.0.4. Let A = (a1| . . . |aq), B = (b1| . . . |bq) ∈ Rd×q be two ma-
trices of rank q−1 such that sq−1(B) > 0, where sq−1 denotes the (q−1)-th
singular value. Let A = span ({a1, . . . , aq}) and B = span ({b1, . . . ,bq})
be the vector spaces generated by the columns of A and B respectively. Then,
the cosine of the (principal) angle α between the corresponding orthogonal
complements A⊥ and B⊥ is lower bounded by:

cosα = cos^
(
A⊥,B⊥

)
≥ 1− 2

sq−1(A)2
min

Π∈Permq

‖A−BΠ‖2
F ,

where Permq is the set of all permutation matrices of order q and ‖ · ‖F
denotes the Frobenius norm.

Proof. Since both matrices A and B have rank q − 1, the orthogonal complements A⊥ and B⊥
have dimension 1. Since the principal angles (which in this case is just one) of the orthogonal
complements are essentially the same as those of the correponding spaces [Knyazev et al., 2010], we

239



Appendix B. Supporting lemmas for Chapter 6

reduce the problem to the computation of ^ (A,B). In particular, we are interested in the maximum
(and only non-zero) principal angle α, whose cosine can be conveniently defined as [Taslaman, 2014]:

cosα = min
x∈Rq
‖Ax‖2=1

max
y∈Rq
‖By‖2=1

(Ax)TBy = 1− 1

2
max
x∈Rq
‖Ax‖2=1

min
y∈Rq
‖By‖2=1

‖Ax−By‖22 ,

where the identity follows from recalling that ‖a− b‖22 = ‖a‖22 + ‖b‖22 − 2aTb. Consider now
the set X =

{
x ∈ Rq : ‖Ax‖2 = 1

}
. Since A is not full rank, the set X will contain vectors with

non-zero projection onto the null-space of A. Thus, for any x ∈ X we can write x = x⊥ + x‖,
where x⊥ ∈ null(A) and x‖ ⊥ null(A). Furthermore, we have that Ax = A(x⊥ + x‖) = Ax‖,
by definition of null space. Therefore, for the computation of the min, we can limit our search of x to
the set

{
x ∈ Rq : ‖Ax‖2 = 1 ∧ x ⊥ null(A)

}
. Let Π be a permutation matrix, we now consider

the following sequence of inequalities:

max
x∈Rq
‖Ax‖2=1
x⊥null(A)

min
y∈Rq
‖By‖2=1

‖Ax−By‖2 ≤ max
x∈Rq
‖Ax‖2=1
x⊥null(A)

min
Π∈Permq

∥∥∥∥Ax− BΠx

‖BΠx‖2

∥∥∥∥2

2

(B.1)

≤ 2 max
x∈Rq
‖Ax‖2=1
x⊥null(A)

min
Π∈Permq

‖Ax−BΠx‖2
max

{
1, ‖BΠx‖2

} (B.2)

≤ 2 max
x∈Rq
‖Ax‖2=1
x⊥null(A)

min
Π∈Permq

‖Ax−BΠx‖2 (B.3)

≤ 2 max
x∈Rq
‖Ax‖2=1
x⊥null(A)

min
Π∈Permq

∥∥∥∥∥
q∑
i=1

xi
(
ai − bπ(i)

)∥∥∥∥∥
2

(B.4)

≤ 2 max
x∈Rq
‖Ax‖2=1
x⊥null(A)

min
Π∈Permq

q∑
i=1

|xi|
∥∥ai − bπ(i)

∥∥
2

(B.5)

≤ 2 max
x∈Rq
‖Ax‖2=1
x⊥null(A)

‖x‖2 min
Π∈Permq

√√√√ q∑
i=1

∥∥ai − bπ(i)

∥∥2

2
(B.6)

≤ 2 max
x∈Rq
‖Ax‖2=1
x⊥null(A)

‖x‖2 min
Π∈Permq

‖A−BΠ‖F , (B.7)

where line (B.1) follows from bounding the min over y with a specific choice of y = Πx. Line (B.2)
is obtained from Lemma B.0.3 and line (B.3) derives from bounding the maximum at the denominator
with its first argument. Line (B.4) follows from the definition of permutation matrix, having denoted
with π : {1, . . . , q} → {1, . . . , q} the permutation realized by Π. Line (B.5) follows from expanding
the expression at the previous line, while line (B.6) is an application of Cauchy-Swartz inequality.
Finally, line (B.7) is obtained from the definition of Frobenius norm. To conclude, we bound the
norm ‖x‖2 under the constraints ‖Ax‖2 = 1 and x ⊥ null(A). For this purpose, we consider the
singular value decomposition of A = USVT , where S = diag(s1, . . . , sq−1, 0) and sq−1 > 0 for
the hypothesis. Moreover, let V = (v1| . . . |vq), we know that null(A) = span({vq}). Therefore,

240



our chosen x is orthogonal to xTvq = 0. We now consider the matrix-vector product norm:

‖Ax‖22 =
∥∥∥USVTx

∥∥∥2

2
= xTVSUTUSVTx = xTVS2VTx =

q−1∑
i=1

s2
i (x

Tvi)
2

≥ s2
q−1

q−1∑
i=1

(xTvi)
2 = s2

q−1 ‖x‖22 ,

where we exploited the fact that U is a unitary matrix and the fact that
∑q−1
i=1 (xTvi)

2 = ‖x‖22, being

the vectors of V an orthonormal basis. Using this result, and recalling that ‖Ax‖2 = 1, we can upper

bound the value of ‖x‖2, to get the result.

Lemma B.0.5. Let M(ω̂) be the approximate Jacobian recovered by Σ-
GIRL run with the covariance matrix Σ, starting from the sample Jacobian
∇̂θψ(θ). Let∇θψ(θ) be the true Jacobian. Then, it holds that:

‖vec (M(ω̂)−∇θψ(θ))‖2
2 ≤ 4‖Σ‖2

∥∥∥vec
(
∇̂θψ(θ)−∇θψ(θ)

)∥∥∥
2

Σ−1
.

(B.8)

Proof. Given a vector x, we upper bound the norm ‖x‖2 with ‖x‖Σ−1 :

‖x‖2Σ−1 = xTΣ−1x ≥ smin

(
Σ−1)xTx = smin

(
Σ−1) ‖x‖22 ,

where smin (·) is the minimum singular value of a matrix. Now, since smin

(
Σ−1

)
= 1

smax(Σ)
=

1
‖Σ‖2

, we have that ‖x‖22 ≤ ‖Σ‖2 ‖x‖
2
Σ−1 . Additionally, if Σ is the covariance matrix that is used

for recovering M(ω̂) it follows that the distance between M(ω̂) and ∇̂θψ(θ) cannot be larger than
twice the distance between ∇̂θψ(θ) and∇θψ(θ):

‖vec (M(ω̂)−∇θψ(θ))‖Σ−1 ≤ 2
∥∥∥vec

(
∇̂θψ(θ)−∇θψ(θ)

)∥∥∥
Σ−1

. (B.9)

Putting these two inequalities together, we get the result.

241





APPENDIXC
Supporting lemmas and additional results

for Chapter 7

C.1 Matrix perturbation and linear least square problems

Definition C.1.1. The condition number of a matrix A ∈ Rm×q A 6= 0 is:

κ = ‖A‖2

∥∥A+
∥∥

2
=
σ1

σr
,

where 0 < r = rank(A) ≤ min(m, q), and σ1 ≥ · · · ≥ σr > 0 are the
nonzero singular values of A.

A least-squares problem is defined as:

min
x
‖Ax− b‖2 , (C.1)

where the solution is x = A+b. We denote with A+ the pseudoinverse of
A, the perturbed A as Â = A + δA and the pertubed b̂ = b + δb and the
perturbed solution x̂ = Â

+
b̂ = x + δx. Finally, we denote with AH the

adjoint of the matrix A.
We define as χ =

‖δA‖2
‖A‖2

and y = A+Hx.

243



Appendix C. Supporting lemmas and additional results for Chapter 7

Lemma C.1.1 (Perturbation on Least Square Problems [Wedin, 1973]).
Assume that rank(A + δA) = rank(A) and χκ < 1 then:

‖x− x̂‖2 ≤
κ

(1− χκ) ‖A‖2

(χ ‖x‖2 ‖A‖2+χκ ‖r‖2+‖δb‖2)+χ ‖y‖2 ‖A‖2 .

Proof. The proof can be find in [Wedin, 1973].

We adapt the lemma 6 in [Chen and Caramanis, 2013] to our context
where ω̂ are the reward weights recovered with lemma 7.2.1.

Lemma C.1.2 (From lemma 6 in [Chen and Caramanis, 2013]). Let Σ =

(∇̂θψ
T
∇̂θψ) and suppose the following strong convexity condition holds:

λmin(Σ) ≥ λ > 0. Then the estimation error satisfies:

∥∥ω̂ − ωL
∥∥

2
≤ O

(
1

λ

∥∥∇θψT∆− ΣωL
∥∥

2

)
.

Lemma C.1.3 (Revised from lemma 11 in [McWilliams et al., 2014]).
Suppose X ∈ Rm×q and W ∈ Rn×M are zero-mean sub-gaussian matrices
with parameters ( 1

n
Σx,

1
n
σ2
x), (

1
n
Σw,

1
n
σ2
w) respectively. Then for any fixed

vectors v1, v2, we have:

P[|vT1 (WTX − E[WTW ])v2| ≥ t ‖v1‖2 ‖v2‖2] ≤ 3exp

(
−cnmin

{
t2

σ2
xσ2

w

,
t

σxσw

})
,

in particular if n & log p we have that:

|vT1 (W TX − E[W TW ])v2| ≤ σxσw ‖v1‖2 ‖v2‖2

√
log p

n
.

Setting v1 to be the first standard basis vector and using a union bound over
j = 1, · · · , p we have:

∥∥(W TX − E[W TX])v
∥∥
∞ ≤ σxσw ‖v‖2

√
log p

n
,

with probability 1 − c1exp(−c2 log p) where c1, c2 are positive constants
which are independent from σx, σw, n, p.

Theorem C.1.1 (from Chapter 2 [Rigollet, 2015]). Assume that the least-
squares model:

min
x
‖Ax− b+ ε‖

holds where ε ∼ subGn(σ2). Then, for any δ > 0, with probability 1− δ it
holds:

‖x− x̂‖2 ≤ σ

√
r + log(1

δ
)

nσmin

,

244



C.2. Additional results

where σmin = ATA
n

is the minimum singular value of ATA and r is the
rank(ATA).

C.2 Additional results

In this section we give give additional results for Chapter 7.
First, we will provide a finite sample analysis on the difference in norm

between the reward vector of the learner ωL and the reward vector recoverd
using (7.3), with a single learning step. This result was omitted in the
Chapter as we can see this as a special case of Theorem 7.2.1, but with
a different technique. We add it here as it provides a first insight on how,
having enough demonstrations, we can recover the correct weights. In the
demonstration, without loss of generality, we assume that the learning rate
is 1.

Lemma C.2.1. Let ∇θψ be the real Jacobian and ∇̂θψ the estimated
Jacobian from n trajectories {τ1, · · · , τn}. Assume that ∇̂θψ is uniformly
bounded by M . Then with probability 1− δ

∥∥∥∇̂θψ −∇θψ
∥∥∥

2
≤M

√
qd

√
log(2

δ
)

2n
.

Proof. We use Hoeffding’s inequality:

P
[∥∥∥∇̂θψ −∇θψ∥∥∥

2
≥ t
]
≤ P

[√
qd
∥∥∥∇̂θψ −∇θψ∥∥∥

∞
≥ t
]
≤ 2 exp

(−2t2n

dqM2

)
The result follows by setting δ = 2 exp

(
−2t2n
dqM2

)
.

Theorem C.2.1. Let ∇θψ be the real Jacobian and ∇̂θψ the estimated
Jacobian from n trajectories {τ1, · · · , τn}. Assume that ∇̂θψ is uniformly
bounded byM , rank(∇̂θψ) = rank(∇θψ) and

∥∥∥∇̂θψ −∇θψ
∥∥∥

2
·κ∇θψ <

‖∇θψ‖2. Then with probability 1− δ:

∥∥ωL − ω̂
∥∥

2
≤M

√
qd

√
log(2

δ
)

2n

(
κ∇θψ

∥∥ωL
∥∥

2

c ‖∇θψ‖2

+ ‖y‖2

)
,

where ωL are the real reward parameters and ω̂ are the parameters recovered

with Equation (7.3), c = 1− ‖∇̂θψ−∇θψ‖2

‖∇θψ‖2
κ∇θψ > 0, and y = ∇θψ+Hω.

245



Appendix C. Supporting lemmas and additional results for Chapter 7

Proof. We need to bound the difference in norm between ωL and ω̂ that are the true parameters
and the parameters that we recovered solving the minimization problem (7.2).∥∥∥ωL − ω̂∥∥∥

2

≤ κ(
1− κ ‖δ∇θψ‖2‖∇θψ‖2

)
‖∇θψ‖2

( ‖δ∇θψ‖2
‖∇θψ‖2

∥∥∥ωL∥∥∥
2
‖∇θψ‖2

)
+
‖δ∇θψ‖2
‖∇θψ‖2

‖y‖2 ‖∇θψ‖2

(C.2)

≤ κ

c ‖∇θψ‖2

( ‖δ∇θψ‖2
‖∇θψ‖2

∥∥∥ωL∥∥∥
2
‖∇θψ‖2

)
+
‖δ∇θψ‖2
‖∇θψ‖2

‖y‖2 ‖∇θψ‖2 (C.3)

= ‖δ∇θψ‖2

(
κ
∥∥ωL∥∥

2

c ‖∇θψ‖2
+ ‖y‖2

)
(C.4)

≤M
√
qd

√
log( 2

δ
)

2n

(
κ
∥∥ωL∥∥

2

c ‖∇θψ‖2
+ ‖y‖2

)
, (C.5)

where line C.2 is obtained by using Lemma C.1.1, lines C.2-C.4 by rearranging the terms, and line

C.5 by using Lemma C.2.1. We can observe that the last term vanishes when the rank(∇θψ)= q

(see [Wedin, 1973]).

246


	I Introduction and Preliminaries
	Introduction
	Overview
	Contributions

	Reinforcement Learning
	Markov Decision Processes
	Returns and Episodes
	Policies and Value functions
	Bellman operators
	Characteristics of Reinforcement Learning algorithms

	Exact Algorithms
	Policy evaluation
	Policy iteration
	Value Iteration

	Value-based algorithms
	SARSA
	Q-learning

	Policy Gradient Approaches
	REINFORCE
	G(PO)MDP
	Policy Gradient Theorem

	Actor-critic algorithms

	Inverse Reinforcement Learning
	Problem statement
	Model-based Inverse Reinforcement Learning
	Feature Expectation Matching
	Maximum Entropy Inverse Reinforcement Learning
	Maximum Likelihood Inverse Reinforcement Learning

	Model-free Inverse Reinforcement Learning
	Relative Entropy Inverse Reinforcement Learning
	Cascaded Supervised Learning Approach to Inverse Reinforcement Learning
	Gradient Inverse Reinforcement Learning


	Multi-agent Reinforcement Learning
	Normal-form Games
	Stochastic Games
	Cooperative stochastic games
	Competitive stochastic games
	General-sum stochastic games


	II Inverse Reinforcement Learning in Multi-Agent Systems
	Inverse Reinforcement Learning for multi-agent systems
	Preliminaries
	Related work
	Inverse Reinforcement Learning about Multiple Intentions
	Inverse Reinforcement Learning from a Learner


	Inverse Reinforcement Learning about Multiple Intentions
	Problem statement
	-Gradient Inverse Reinforcement Learning
	Theoretical analysis of -GIRL
	Approximation of  as in Corollary 6.2.1
	Correctness of the recovered weights

	Multiple-Intention -GIRL
	Computational Complexity Analysis

	Discussion on the related work
	Experiments
	Single-IRL experiments
	Multiple-intentions experiments
	Twitter experiment


	Inverse Reinforcement Learning from a Learner
	Problem statement
	Learning from a learner following the gradient
	Exact gradient
	Approximate gradient

	Learning from improvement trajectories
	Recovering learning rates and reward weights
	Theoretical result

	Discussion on the related works
	Experiments
	Gridworld
	MuJoCo environments
	Autonomous driving scenario



	III Online Learning in Multi-Agent Reinforcement Learning
	Online Learning in Stochastic Games
	Problem setting
	Related works

	Non-Cooperative Configurable Markov Decision Processess
	Configurable MDPs
	Non-Cooperative Configurable MDPs
	Problem Formulation
	Action-feedback Optimistic Configuration Learning
	Regret Guarantees

	Reward-feedback Optimistic Configuration Learning
	Regret Guarantees

	Comparison between the two algorithms
	Discussion on the related works
	Experiments
	Configurable Gridworld
	Configurable Market
	Student-Teacher


	Online Learning in General-sum Turn-based Stochastic Games
	Problem statement
	Lower bound on the regret
	Discussion on the lower bound

	TSG Optimistic Policies Value Iteration
	Regret Guarantees

	Discussion


	IV Policy Optimization in Multi-Agent Reinforcement Learning
	Continuous games and gradient-based approaches
	Continuous Games
	Helmhotz game decomposition
	Desired convergence points

	Related work
	MARL and policy-gradient algorithms

	Newton Optimization On Helmhotz Decomposition
	Newton method for non-convex functions
	Newton for Games
	Newton's method for Potential games
	Newton's method for Hamiltonian games
	Newton's method for General games
	Discussion on desired convergence points

	Experiments
	Matrix games
	Continuous gridworlds
	Generative Adversarial Network
	Computational time


	Conclusions and Future works
	Inverse Reinforcement Learning in Multi-Agent Systems
	Future directions

	Online Learning in Stochastic Games
	Future directions

	Optimization methods for Multi-Agent Reinforcement  Learning
	Future directions


	Bibliography
	Learning in Continuous Games: a (brief) introduction
	Continuous Games
	Classical learning dynamics

	Supporting lemmas for Chapter 6
	Supporting lemmas and additional results for Chapter 7
	Matrix perturbation and linear least square problems
	Additional results



