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1. Introduction
In the process of setting up a control system and
assessing its behaviour via analysis and simula-
tion, several models of the controlled object may
come into play. Some of these are based on the
laws of physics, and we name these first prin-
ciple; others come from prying correlations out
of measured inputs and outputs, and – neglect-
ing some nuances inessential at this point – we
denote these as data based.
Besides the above partition, a parallel one is rel-
evant. In any application of engineering inter-
est, first principle models contain parameters for
which only nominal or design values are known,
and this is particularly true when those parame-
ters in fact pertain to a somehow simplified ver-
sion of the encountered physics — such as when,
to obtain a compact model, a very coarse spa-
tial discretization is applied to some distributed-
parameter phenomenon. In such cases, iden-
tification techniques need applying in order to
obtain values for the above parameters, either
from physical I/O data or from data generated
by simulating a complex model. Given the mix-
ture of physics and data we name these grey box
models, as opposite to black box ones, where no

attempt is made to tie the model structure to
any physics, and on the contrary the said struc-
ture itself is often selected on the basis of the
identification data.
This thesis aims for initiating a wider research,
targeted to combining grey and black-box mod-
els so that either of the two has the most appro-
priate amount of authority according to the pur-
pose of the compound model and to the available
(design and/or I/O) data. The ultimate purpose
is to use the so obtained compound models for
control design and assessment, and as such, the
research is geared toward the technological as-
pect of the addressed matter.

2. Research question
The idea of joining grey and black box
modelling, quite intuitively, is not new
[9][11][14][1][6][5][13][8]. As such, we briefly out-
line the peculiarities of our research with respect
to the vast literature already available on the
subject, thereby also formulating the particular
research question of this thesis.
First, as testified by many works such
[12][10][4][3][2], a significant problem is how to
distribute authority between the grey and the
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black box part of the compound model. We at-
tempt to circumvent this problem by a crisp sep-
aration between the parametrization of the for-
mer and the identification of the latter (note the
two different terms used).
Second, and somehow consequent to the above,
we aim for model combination techniques that
are totally agnostic about the origin of the grey
box part. This allows for example to employ
both first principle models in the strict sense
of the term, and models of structure dictated
by the observed process dynamics but not con-
strained to abide by tightly to any conservation
law. The reason for this is to permit the use
of models conceived for controller (auto)tuning,
which besides widening the applicability of our
proposal, paves the way to using the black box
part of the compound model as a “fake un-
certainty” source and help exploit robust con-
trol techniques in the tuning domain — a long
debated issue in the field of industrial con-
trollers [7].
The above said, the purpose of this thesis is to

• outline the procedure we envisage for com-
bining a grey and a black box model,

• provide and analyse examples with different
kinds of grey box models,

• employing the above as proof of concept
material, discuss the viability of our pro-
posal and outline the sequel of the research.

3. Procedure outline

GBM 
Grey Box Model

(1st principle or tuning-centred)

input(s) output(s)

BBM 
Black Box Model 

(possibly ML-based)

+

+

Figure 1: Compound of a grey box and a black
box model.

The grey and black box model compound we
consider is depicted in Figure 1, and the as-
sumptions we make throughout the thesis can
be summarised as follows.
First, GBM is either a “simplified physics”
model, or a model geared to controller tuning.
In the first case it will be in general nonlin-
ear, and contain parameters with a clear phys-
ical meaning but not a direct relationship with

the construction of the modelled object. For ex-
ample, a parameter can be a heat capacity but
not correspond to that of any particular com-
ponent, being rather interpreted as contributing
to the inertia of a certain temperature; such a
parameter can of course be obtained by suitably
combining/averaging strictly physical ones, and
this exemplifies the role of grey box parametriza-
tion when applied to GBM. In the second case
GBM will be generally linear, as this is preferred
for controller tuning, and of structure chosen by
taking an even more abstracted viewpoint on the
observed dynamics. For example, it can be of a
certain order because the corresponding number
of major mass/energy storages are recognised;
the parameters of such a model are typically ob-
tained by simple experiments and fitting tech-
niques, like the method of areas applied to a
step response. In any case, to conclude, GBM is
most frequently a continuous-time model, either
because so is physics, or because so is required
by the typical controller tuning rules.
Second, GBM is expected to not capture the en-
tire behaviour of the modelled object for two
basic reasons, namely structural mismatch with
the real process (owing to simplified physics or a
priori assumed structure) and imperfections in
the parametrization procedure (owing to imper-
fections in data if these are real measurements,
and in any case to numerical facts even if they
come from simulations).
Third and most critical, the above mismatch in
GBM produces a residual error that a BBM of
sufficiently rich structure can effectively recover.
Given the above, our proposed procedure is ar-
ticulated in the following steps.

1. Decide the structure of GBM with synthetic
considerations as sketched above, that how-
ever are not the focus of this thesis as they
stem primarily from knowledge of the ob-
ject to control.

2. Perform experiments and get data to
parametrise GBM. As these experiments
can be simulated but also physical when
possible/convenient, apply here only stim-
uli that could be actually used on the real
object.

3. Parametrise GBM with the fit-
ting/optimisation technique of choice,
check the consistency of physical parame-
ters wherever this applies, and obtain the
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residual error by comparing the output of
GBM to data.

4. Employ the said residual as the desired out-
put to identify BBM, applying here struc-
ture and order selection techniques freely
as this model is not bound to any physics-
originated constraint.

Doing so, we expect that the authority left to
BBM comes naturally from how much of the
data GBM could not explain. We expect as
a consequence that, with respect to the main-
stream tendency to identify the two jointly, the
authority of BBM decreases if the fidelity of
GBM is increased. All in all, therefore, we ar-
gue that operating as we propose could lead to
an effective use of modern techniques like ma-
chine learning, in that they come to target only
what physical intuition could not explain.

4. Application and results
We applied the proposed procedure in some
cases we deem representative of relevant sce-
narii, described below.
• A distributed-parameter thermal system

where the simplified model is a first-
order with delay one parametrised with the
method of areas and a more detailed imple-
mentation involving the addition of a poly-
nomial function to describe the static input-
output characteristic.

• The same thermodynamic application
where the simplified system is composed
of differential equations describing the
evolution of temperature as a function of
time. The parameters of the GBM model
were identified through the Trust-Region-
Reflective optimisation algorithm.

• An RC electrical system consisting of non-
linear resistors and linear capacitors param-
eterized by polynomial curve fitting algo-
rithm.

Therefore the methodology has been applied two
case studies with different characteristics in the
time and frequency domains in order to provide
a complete picture, also analysing borderline
cases in which the implementation of a black box
model with high acquired authority can lead to
disadvantages in the replication of a real process
as it introduces spurious correlations (not physi-
cally explainable). More deeply, we will observe
that in the first example (thermodynamic case

study) the implementation of a more or less com-
plex grey box model will be able to identify the
main heat transfer dynamics and the addition of
an ARX model will allow to mimic the residual
dynamics always improving the fit of the over-
all model with respect to the real system. The
variable that will most affect the accuracy of the
overall model is the complexity assigned to the
grey box model. In other words, the complexity
of a grey box model used to tune a controller will
give a worse contribution to the combined model
than a more complex model used to accurately
simulate the case study.
In the second example (electrical case study)
the conclusions obtained in the first example are
valid but the study of the above application will
allow to validate the approach also on a pro-
cess that shows a different behaviour in the fre-
quency domain compared to the first case study.
The applicability of the proposed procedure in
two different areas with different characteristics
enhances its possible generalisability. Detailed
results can be found in the thesis but here we
report just a sample for the convenience of the
reader (Fig.2 and Fig.3).

Figure 2: Time response comparison of the first
case study

5. Conclusions
The advantage of our proposed procedure is
its extreme versatility and its ability to com-
bine the merits of a first-principle model with
an data-based one. The flexibility translates
into the possibility of implementing a combined
structure of the two models which can fulfil the
needs of both synthesising a controller and de-
tailed simulation based on the authority im-
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Figure 3: Time response comparison of the sec-
ond case study

posed/acquired by the two structures respec-
tively. On the one hand the implementation of
a physics-based model guarantees interpretabil-
ity and generalisability of the identified model;
on the other hand the inclusion of a black box
model ensures accuracy by identifying both dy-
namics that are too complex to depict in a de-
terministic manner and stochastic relationships
among the data. Future work will behaved at
identify possible classes of models that allows for
a formal analysis to corroborate their conclusion
here throw from case studies.
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