
LYMPH3D: A new library to solve
PDE problems with Discontinu-
ous Galerkin methods on three-
dimensional polytopic meshes

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Author: Nicoletta De Giosa

Student ID: 969084
Advisor: Prof. Paola F. Antonietti
Co-advisors: Prof. Ilario Mazzieri
Academic Year: 2022-2023

i

Abstract

The numerical approximation of partial differential equations (PDEs) posed on compli-
cated geometries represents a challenging computational problem. Indeed, the use of
mesh generators employing elements of standard shape, i.e. simplices or tensor product
elements, can lead to very fine finite element meshes. Hence, the computational effort
required to numerically approximate the underlying PDE problem may be prohibitively
expensive. An alternative approach is to solve the PDE problem by using polytopic
(polygonal or polyhedral) elements. The main advantage of choosing polytopic element
shapes over classical simplicial/hexahedral elements is that the average number of ele-
ments needed to discretize complicated domains is substantially smaller and this allows
to reduce the complexity of the given computational geometry. In this work of thesis
we focus on discontinuous Galerkin methods on polytopic grids (PolyDG) to discretize
differential problems. After recalling some numerical aspects on the polytopic meshes
and some theoretical results on the PolyDG method, we develop a new library called
LYMPH3D written in Fortran. The library can be used to solve PDE problems by using
the PolyDG method in three-dimensions. We perform a convergence analysis on a simple
geometry of a cube, employing first a tetrahedral and then a polyhedral mesh of the cube.
The latter is obtained via agglomeration of a tetrahedral mesh. Finally, we demonstrate
the capabilities of LYMPH3D considering the solution of a PDE problem on a challenging
geometry, namely a human brain.

Keywords: Complicated geometries, Numerical approximation, Partial Differential Equa-
tions, Discontinuous Galerkin methods, Polytopic elements, Tetrahedral mesh, Computa-
tional complexity, three-dimensional mesh, New library, Fortran

Abstract in lingua italiana

L’approssimazione numerica delle equazioni alle derivate parziali (in breve EDP) poste
su geometrie complicate rappresenta un problema di costo computazionale elevato. In-
fatti, l’uso di generatori di mesh che impiegano elementi di forme classiche, come ad
esempio tetraedri o esaedri, può portare nella generazione di mesh agli elementi finiti
che sono molto raffinate. Pertanto, lo sforzo computazionale richiesto per approssimare
numericamente un problema di EDP può essere talmente costoso da essere proibitivo.
Un approccio alternativo consiste nel risolvere un problema di EDP utilizzando elementi
politopici (poligonali o poliedrici). Un vantaggio di scegliere elementi politopici rispetto
ai classici elementi simpliciali/esaedrici è che il numero medio di elementi necessari per
discretizzare domini complicati è sostanzialmente minore. Ciò permette di ridurre la com-
plessità della geometria computazionale data. In questo lavoro di tesi ci focalizziamo sui
metodi Discontinuous Galerkin su mesh politopiche (PolyDG, in breve) per discretizzare
problemi differenziali. Dopo aver richiamato alcuni aspetti numerici sulle mesh politopiche
ed alcuni risultati teorici sul metodo PolyDG, sviluppiamo una nuova libreria chiamata
LYMPH3D scritta in Fortran. La libreria può essere utilizzata per risolvere un problema
EDP utilizzando il metodo PolyDG in tre dimensioni. Analizziamo la convergenza della
soluzione numerica su una semplice geometria di un cubo, utilizzando prima una mesh
tetraedrica e poi poliedrica del cubo. Quest’ultima è ottenuta agglomerando la mesh
tetraedrica. Infine dimostriamo le potenzialità di LYMPH3D considerando la soluzione di
un problema di EDP su una geometria complicata, trattando il caso di un cervello umano.

Parole chiave: Geometria complicata, Approssimazione numerica, Equazioni alle derivate
parziali, Metodi Discontinuous Galerkin, Elementi politopici, Mesh tetraedrica, Comp-
lessità computazionale, Mesh tridimensionale, Nuova libreria, Fortran

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Numerical aspects of polytopic meshes 5
1.0.1 Discrete spaces and trace operators 7
1.0.2 Trace inverse estimate on polytopic elements 8
1.0.3 Polynomial approximation over polytopic elements 9

2 Discontinuous Galerkin methods on polytopic meshes 11
2.1 PDEs with nonnegative characteristic form 11
2.2 PolyDG discretization of diffusion reaction problems 12

2.2.1 Well-Posedness of the PolyDG method and a priori error estimates 15
2.3 Implementation aspects . 19

2.3.1 Basis functions . 19
2.3.2 Quadrature rules . 20
2.3.3 Assembling of the algebraic linear system 21

3 Description of the LYMPH3D library 27
3.1 Reading input files and store mesh structure 29
3.2 Basis functions and quadrature formulas 41
3.3 Assembling of the algebraic linear system 42
3.4 Solving the linear system . 45
3.5 Post-processing . 45
3.6 User-Guide . 46
3.7 Mesh Generation . 46

4 Numerical Tests 49
4.1 Test case 1 . 49
4.2 Test case 2 . 53
4.3 Test case 3 . 56
4.4 Test case 4 . 58

5 Conclusions and future developments 61

Bibliography 63

A Appendix A 69

List of Figures 85

List of Tables 87

1

Introduction

Finite element methods (FEMs) are an indispensable computational tool for the accurate,
efficient, and rigorous numerical approximation of continuum models arising in engineer-
ing, physics, biology, and many other disciplines.

However, a key underlying issue for all classes of finite element methods is the design of
a suitable computational mesh upon which a generic PDE problem is discretized.

On one hand, the mesh should provide a good description of the given computational
geometry with sufficient resolution for the computation of accurate numerical approxima-
tions to within desired accuracy constraints. On the other hand, if the mesh is too fine
the computational time required to compute the solution is too high for practical appli-
cations. This issue is particularly pertinent when high order methods are employed since
in this setting we would like to employ relatively coarse meshes, so that the polynomial
degree may be suitably enriched.

Many engineering applications, such as fluid-structure interaction, or flow in fractured
porous media, are characterized by a strong complexity of the physical domain. In the
context of discretizing a differential model on a complex domain, whenever classical finite
element methods are employed, the process of the mesh generation can potentially lead
to very high computational costs.

Indeed, the classical finite element methods typically only support computational grids
composed of standard element shapes; triangular or quadrilateral elements in two-dimensions
(2D) and tetrahedral, hexahedral, prismatic or pyramidal elements in three-dimensions
(3D). The use of these kind of elements necessitates the exploitation of very fine com-
putational meshes when the geometry is complicated, if it includes for example a large
number of small geometrical features or microstructures. In Figure 1, taken from [4], we
can see an example of complicated geometry arising in biological applications. The image
shows a finite element mesh of a porous scaffold employed for in vitro bone tissue growth,
cf. [8, 9]. In such situations, for a given mesh generator, a large number of elements
is required to produce even a ‘coarse’ mesh which adequately describes the underlying
geometry. Thereby, the solution of the system of equations resulting, for example, from a

2 | Introduction

finite element discretization of the underlying PDE on a coarse mesh, may be impractical
due to the large numbers of degrees of freedom involved.

Figure 1: Example of a porous scaffold used for in vitro bone tissue growth, cf. [8, 9].
Figure taken from [4].

To overcome this problem in the last decade numerical methods that support computa-
tional meshes composed of polytopic elements (polygonal or polyhedral) have gained a
lot of relevance. Indeed, one of the advantages of choosing polytopic element shapes over
standard simplicial/hexahedral elements is that the average number of elements needed
to discretize complicated domains is substantially smaller and this allows to reduce the
complexity of the given computational geometry. This advantage becomes even more
evident whenever the domain contains complex geometrical features; polytopic elements
are naturally suited to applications in complicated/moving domains, for example, in solid
mechanics, fluid-structure interaction, geophysical problems including earthquake engi-
neering and flows in fractured porous media, and mathematical biology, cf. [40, 45].

Therefore, in the last few years intensive research has been undertaken on employing FEMs
based on computational meshes consisting of polytopic elements and many methods have
been presented in the literature. In the conforming setting, we mention the Composite
Finite Element Method, see, e.g., [38, 39], the Mimetic Finite Difference Method, see,
e.g., [15, 16, 30], the Polygonal Finite Element Method, see, e.g., [47], and the Extended
Finite Element Method [37]. Moreover we mention the more recent Virtual Element
Method [10] and the Hybrid High-Order method [1, 11–13, 22, 23, 32–35]. In the setting
of non-conforming/discontinuous polygonal methods, we mention, for example, Compos-
ite Discontinuous Galerkin Finite Element methods [2, 3], Hybridizable Discontinuous

| Introduction 3

Galerkin methods [25–28], non-conforming Virtual Element methods [6, 21, 31], and Gra-
dient Schemes [36].

In this thesis we implement and validate a new general-purpose library called LYMPH3D,
written in Fortran, implementing discontinuous Galerkin methods on polytopic grids
(PolyDG) in 3D, which is the natural extension of the classical discontinuous Galerkin
methods on standard element shape grids to meshes composed of polytopic elements. Due
to the fact that the discrete space is constructed based on employing piecewise discontinu-
ous polynomials, DG methods are naturally suited to robustly support polytopic meshes.
We will consider the three-dimensional case so we will deal with tetrahedra as standard
elements and polyhedra as polytopes.

The general idea is to generate an initial mesh, based on employing standard mesh gen-
erators; then the elements of the initial mesh are suitably agglomerated, thus generating
polyhedra. In this way we can obtain computational polyhedral grids with a smaller
number of elements and therefore the total number of degress of freedom is substantially
reduced.

In the following we provide a brief description of the contents of each of the next chapters.
In Chapter 1, we recall some concepts about polytopic meshes introduced in [19], starting
from the generalization of the standard shape-regularity property to polytopic elements
and we recall some trace and inverse inequalities together with some polynomial approx-
imation properties of the underlying discrete spaces. In Chapter 2, we introduce the no-
tation and the key theoretical results needed to analyze PolyDG approximations together
with some implementation aspects. In Chapter 3 we describe the library LYMPH3D fol-
lowing the implementation of PolyDG method in the three-dimensional case. In Chapter
4 we present some numerical examples and the convergence analysis relative to the test
done and in Chapter 5 we do some final considerations and we see possible future devel-
opments. Finally, in Appendix A we report a selection of some of the most important
functions of the library.

5

1| Numerical aspects of polytopic

meshes

We begin by introducing a general class of computational meshes consisting of polytopic
elements, together with some technical assumptions. Then we report hp-version inverse
estimates and approximation results that can be derived under these assumptions. These
results are needed for the stability and convergence analysis of the PolyDG method.

We will use the following notation. For an open, bounded domain Ω ⊂ Rd, d = 2, 3, we
denote by Hs(Ω) the standard Sobolev space of order s, for s real number, s ≥ 0. For
s = 0 we will write L2(Ω) instead of H0(Ω). The norm on Hs(Ω) is denoted by || · ||Hs(Ω)

and the seminorm by | · |Hs(Ω). Given a decomposition of the domain into a computational
mesh Th, we denote by Hs(Th) the standard broken Sobolev space, equipped with the
broken norm || · ||s,Th

. Moreover, for v ∈ H1(Th), the broken gradient ∇hv is defined
by (∇hv)|E = ∇(v|E), E ∈ Th. The symbols ≲ and ≳ will signify that the inequalities
hold up to multiplicative constants that are independent of the discretization parameters,
but might depend on the physical parameters of the underlying problem. We refer to
[7] and [20] for the details of the following theoretical contents about polytopic meshes.
We introduce the subdivision of the computational domain Ω on Rd, d = 2, 3, by means
of polytopic meshes following the notation in [7]. The same notation will be employed
throughout the all work.

Let Th be a subdivision of the computational domain Ω ⊂ Rd, d = 2, 3, into disjoint open
polygonal/polyhedral elements E. For each element we denote by |E| its measure, hE its
diameter and we set h = maxE∈Th

hE.
We introduce the concept of mesh interfaces, which are defined as the intersection of the
(d − 1)-dimensional facets of two neighbouring elements. We need now to distinguish
between the case when d = 3 and d = 2.

• For d = 3 each interface consists of a general polygon which we assume may be
decomposed into a set of co-planar triangles. We refer to these (d− 1)-dimensional
simplices, whose union forms the interfaces of Th as the faces of the computational

6 1| Numerical aspects of polytopic meshes

mesh. We denote the set of all the triangles by Fh.

• For d = 2 the interfaces of Th are simply piecewise linear line segments, i.e they
consist of a set of (d− 1)-dimensional simplices. The concepts of face and interface
are in this case coincident; we will still call faces the line segments and denote by
Fh the set of all faces.

Notice that Fh is always defined as a set of (d − 1)-dimensional simplices. With this
notation, we assume that the sub-tessellation of element interfaces into (d−1)-dimensional
simplices is given. We point out that this assumption is not very restrictive; indeed, if
the underlying mesh Th stems from the agglomeration of a given simplicial mesh T fine

h ,
then the set of faces may be directly determined from the faces present in T fine

h which
form part of the interface of an agglomerated element E ∈ Th. We introduce a partition
of the set Fh into two subsets

Fh = F I
h ∪FB

h ,

where F I
h is the set of interior faces and FB

h is the set of faces on the boundary of the
domain ∂Ω.

Moreover, if ∂Ω is split into the Dirichlet boundary ∂ΩD and the Neumann boundary
∂ΩN , we will further decompose the set FB

h = FD
h ∪FN

h , where FD
h and FN

h are the
boundary faces contained in ΓD and ΓN , respectively. In this definition it is implicit the
assumption that the mesh Th conforms to the partition of ∂Ω.
Finally, given an element E ∈ Th, for any face F ⊂ ∂E, with F ∈ Fh, we define nF as
the unit normal vector on F which points outwards from E.
We denote by SF

E a d-dimensional simplex contained in E which shares with E a specific
face F ⊂ ∂E, F ∈ Fh. We need this notation to delineate the key assumptions that
need to be satisfied by the polytopic mesh Th in order to derive inverse inequalities and
approximation results. To do this, we introduce the following definition.

Definition 1.0.1. A mesh Th is said to be polytopic-regular if, for any E ∈ Th, there
exists a set of non-overlapping (not necessarily shape-regular) d-dimensional simplices
{SF

E}F⊂∂E contained in E, such that for all faces F ⊂ ∂E, the following condition holds

hE ≲
d|SF

E |
|F |

,

where the hidden constant is independent of the discretization parameters, the number of
faces of the element, and the face measure.

In Figure 1.1a, taken from [7], we have two examples of polytopic-regular elements, while

1| Numerical aspects of polytopic meshes 7

Figure 1.1b shows an example of element that does not satifsy Definition 1.0.1, c.f. [7].
Moreover, in Figure 1.1a, there is an example where the union of the simplices {SF

E}F⊂∂E

does not cover the whole element E. We note that this, in general might happen for
elements that are polytopic-regular. We also remark that this definition does not require
any restriction on either the number of faces per element or their relative measure.

(a) Figure taken from [7]. Two examples of
polytopic-regular elements as in Definition 1.0.1.
On the right there is an example of element that is
not convered by the union of the simplices.

(b) Example of element
that is not polytopic regu-
lar. Figure taken from [7].

Assumption 1.1. We assume that the mesh Th is polytopic-regular.

Definition 1.1.1. A covering T# = {TE} related to the polytopic mesh Th is a set of
shape-regular d-dimensional simplices TE, such that for each E ∈ Th, there exists a TE ∈
T# such that E ⊊ TE.

Assumption 1.2. There exist a covering T# of Th and a positive constant OΩ, indepen-
dent of the mesh parameters, such that

max
E∈Th

card{E ′ ∈ Th : E ′ ∩ TE ̸= ∅, TE ∈ T# s.t. E ⊂ TE} ≤ OΩ ,

and hTE
≲ hE for each pair E ∈ Th and TE ∈ T#, with E ⊂ TE.

Assumption 1.2 implies that when the computational mesh Th is refined, the amount of
overlap present in the covering T# remains bounded. We remark that Assumption 1.2
requires shape-regularity of the mesh covering T# , but not shape-regularity of the com-
putational mesh Th itself.

1.0.1. Discrete spaces and trace operators

Let us consider a polytopic mesh partition Th of the domain Ω and for each element
E ∈ Th we associate a local polynomial degree pE ≥ 1. We collect the pE in the vector

8 1| Numerical aspects of polytopic meshes

p := {pE : E ∈ Th}. With this notation we introduce the following spaces.

V p(Th) = {vh ∈ L2(Ω) : v|E ∈ PpE(E) ∀E ∈ Th},

Wp(Th) = {w ∈ [L2(Ω)]d : w|E ∈ [PpE(E)]
d ∀E ∈ Th}

Wp(Th) = {w ∈ [L2(Ω)]d×d
sym : w|E ∈ [PpE(E)]

d×d
sym ∀E ∈ Th}

(1.1)

We recall that Pp(E) denotes the space of polynomials of total degree p on E.
In order to efficiently deal with discontinuous functions, we now introduce average and
jump operators on a face. Let F ∈ F I

h be an interior face shared by the elements E±.
We define n± to be the unit normal vectors on F pointing exterior to E±, respectively.
Then, for sufficiently regular scalar-valued, vector valued and tensor-valued functions q,
v, τ respectively, we define the standard average {·} and jump J·K operators on F as

{q} = 1

2
(q+ + q−), JqK = q+n+ + q−n−,

{v} = 1

2
(v+ + v−), JvK = v+ · n+ + v− · n−,

{τ} = 1

2
(τ+ + τ−), Jτ K = τ+n+ + τ−n−,

(1.2)

where the subscript ± on q, v,τ denote the traces of the functions on F restricted to E±,
respectively.

On a boundary face F ∈ FB
h , we set analogously {q} = q, JqK = qn, {v} = v, JvK =

v · n, {τ} = τ , Jτ K = τn, where n is the outward normal vector on ∂Ω. We remark two
important identities:

JqvK = JvK{q}+ {v} · JqK ,∑
E∈Th

∫
∂E

qv · nE =

∫
Fh

{v} · JqK +
∫

F I
h

JvK{q} , (1.3)

where we used the compact notation
∫

Fh
· =

∑
F∈Fh

∫
F
· .

1.0.2. Trace inverse estimate on polytopic elements

Among the key tools employed to study the stability and error analysis of DG-methods
we find the trace inverse estimates. They consist in using the norm of a polynomial on
the element itself to bound the norm on the element’s face/edge. Trace inverse estimates
on polytopic elements are obtained under the polytopic-regular Assumption 1.1.

Lemma 1.3. Let E be a polytope satisfying Assumption 1.1 and let q ∈ PpE(E). Then,

1| Numerical aspects of polytopic meshes 9

we have
||q||2L2(∂E) ≲

p2E
hE
||q||2L2(E) , (1.4)

where the hidden constant depends on the dimension d, but it is independent of the dis-
cretization parameters and the number of faces that the element possesses.

The proof of Lemma 1.3 can be found in [7].

1.0.3. Polynomial approximation over polytopic elements

Hp-interpolation estimates are another fundamental mathematical tool needed to study
the a priori error analysis of PolyDG methods. Following [7], we report the results of
[4, 20] where the standard estimates for simplices are extended to polytopic elements
by considering appropriate coverings and submeshes consisting of d-dimensional simplices
(where standard results can be applied). In [18] these results are further extended in order
to be successfully applied also in the case when the number of edges/faces is unbounded.
In order to state these results we need to define an appropriate extension operator.

Let E : Hm(E) → Hm(Rd), for any E ∈ Th and m ≥ 0, be the continuous extension
operator introduced by Stein in [46] such that:

E (q)|Ω = q, ||E q||Hm(Rd) ≲ ||q||Hm(Ω), ∀q ∈ Hs(E).

Based on the existance of a suitable covering of the polytopic mesh (see Definition 1.1.1),
we can state the following approximation result.

Lemma 1.4. [4, 18, 20] Assume that Assumptions 1.1 and 1.2 are satisfied. Given E ∈
Th, let TE ∈ T# be the corresponding simplex such that E ⊂ TE (see Definition 1.1.1).
For q ∈ L2(Ω), such that E q|TE

∈ HrE(TE), for some rE ≥ 0, there exists a sequence of
approximations ΠpE

E q ∈ PpE(E), pE = 0, 1, 2, . . . , of q satisfying

||q − ΠpE
E q||Hm(E) ≲

hsE−m
E

prE−m
E

||E q||HrE (TE), 0 ≤ m ≤ rE. (1.5)

Moreover, if rE ≥ 1 + d/2, then we have

||q − ΠpE
E q||L2(∂E) ≲

h
sE−1/2
E

p
rE−1/2
E

||E q||HrE (TE). (1.6)

Here, sE = min(pE + 1, rE) and the hidden constants depend on the shape-regularity of
TE, but are independent of q, hE, pE and the number of faces per element.

10 1| Numerical aspects of polytopic meshes

See [20] for a detailed proof of (1.5) and [18] for the proof of (1.6). We notice that the
inequalities (1.4) and (1.6) hold not only on one of its edges/faces but on the whole
boundary of E; this is important when we consider elements that contain an arbitrary
number of faces in the error analysis.

11

2| Discontinuous Galerkin

methods on polytopic meshes

In this chapter, following [20] we introduce a generic second-order PDE with nonnegative
characteristic form together with some notation. Next, we focus on a diffusion reaction
problem, and we describe its PolyDG discretization. Finally, we discuss some implemen-
tation aspects. That will be necessary to understand the description of the library, central
topic of Chapter 3.

2.1. PDEs with nonnegative characteristic form

Throughout this section, we introduce a linear second-order PDE problem with nonneg-
ative characteristic form. Indeed, we stress that this class of equations includes a wide
range of PDEs. Given Ω an open bounded, Lipschitz domain in Rd, d ≥ 1 with boundary
∂Ω, consider the following PDE problem:

find u : Ω→ R such that

−∇ · (a∇u) +∇ · (bu) + cu = f in Ω, (2.1)

where a = {aij}di,j=1, with aij ∈ L∞(Ω) and aij = aji for i, j = 1, . . . , d,

b = (b1, . . . , bd)
T ∈ [W 1,∞(Ω)]d, c ∈ L∞(Ω), c ≥ 0 and f ∈ L2(Ω).

Notice that ∈ Wm,p(Ω) is the Sobolev space defined as

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ m} .

Problem (2.1) is referred to as an equation with nonnegative characteristic form on the
set Ω ∈ Rd if, at each x ∈ Ω̄,

d∑
i,j=1

aij(x)ξiξj ≥ 0 (2.2)

12 2| Discontinuous Galerkin methods on polytopic meshes

for any vector ξ = (ξ1, . . . , ξd) in Rd. To add suitable boundary conditions to the problem
(2.1), we first subdivide the boundary ∂Ω of the computational domain Ω into appropriate
subsets. To this end, let

∂0Ω =
{
x ∈ ∂Ω :

d∑
i,j=1

aij(x)ninj > 0
}
,

where n = (n1, . . . , nd)
T denotes the unit outward normal vector to ∂Ω.

On the ’hyperbolic’ portion of the boundary ∂Ω\∂0Ω we define the inflow and outflow
boundaries ∂−Ω and ∂+Ω, respectively, by

∂−Ω = {x ∈ ∂Ω\∂0Ω : b(x) · n(x) < 0},

∂+Ω = {x ∈ ∂Ω\∂0Ω : b(x) · n(x) ≥ 0}.

If ∂0Ω is nonempty, we shall further divide it into two disjoint subsets ∂ΩD and ∂ΩN ,
with ∂ΩD nonempty and relatively open in ∂Ω. From these definitions we have that ∂Ω =

∂ΩD ∪ ∂ΩN ∪ ∂−Ω∪ ∂+Ω. Assuming the (physically reasonable) hypothesis that b ·n ≥ 0

on ∂ΩN , whenever ∂ΩN is nonempty, we impose the following boundary conditions:

u = gD on ∂ΩD ∪ ∂−Ω, n · (a∇u) = gN on ∂ΩN . (2.3)

For an extension of this setting, allowing also for b · n < 0 on ∂ΩN , we refer to [17].
The well-posedness of the boundary value problem (2.1), (2.3), in the case of homogeneous
boundary conditions, has been studied in [41].

2.2. PolyDG discretization of diffusion reaction prob-

lems

We now consider the PolyDG discretization of a diffusion reaction PDE problem. Then
we will see some convergence results related to this problem.

Given an open bounded Lipschitz domain Ω in Rd, d = 2, 3, with boundary ∂Ω, we
consider the following PDE boundary-value problem subject to a Dirichlet boundary
condition (∂ΩD = ∂Ω and ∂ΩN = ∅):

find u such that {
−∇ · (a∇u) + cu = f in Ω,

u = gD on ∂Ω.
(2.4)

2| Discontinuous Galerkin methods on polytopic meshes 13

Here, f ∈ L2(Ω), c ∈ L∞(Ω), a = {aij}di,j=1, with aij ∈ L∞(Ω) and aij = aji, for i, j =

1, . . . , d, and, at each x ∈ Ω̄,

d∑
i,j=1

aij(x)ξiξj ≥ Cd|ξ|2 > 0, (2.5)

where Cd is a positive constant, for any vector ξ = (ξ1, . . . , ξd) in Rd.

The well-posedness of the boundary value problem (2.4), under the uniform ellipticity
condition (2.5) can be deduced, based on employing the Lax-Milgram Theorem. See, for
example, [14, 24].

Given the partition Th of the domain Ω we recall the definition of the finite element space
V p(Th) that we introduced in Chapter 1:

V p(Th) = {v ∈ L2(Ω) : v|E ∈ PpE(E) ∀E ∈ Th}.

By construction, the local elemental polynomial spaces employed within the definition of
V p(Th) are defined in the physical space, without the need to map from a given reference
or canonical frame, as it typically the case for classical FEMs.

With this notation and with the boundary conditions imposed weakly we introduce the
following DG formulation.

Find uh ∈ V p(Th) such that∫
Ω

a∇huh · ∇hvh dx+

∫
Ω

c uhvh dx+

∫
Fh

(−{a∇huh} · JvhK + θ{a∇hvh} · JuhK)ds

+

∫
Fh

σJuhK · JvhK ds =
∫
Ω

fvh dx+

∫
FB

h

gD(θa∇hvh · n+ σvh) ds
(2.6)

for all vh ∈ V p(Th), where ∇hvh denotes the broken gradient of vh, θ ∈ {−1, 0, 1},
σ : Fh 7→ R is referred to as the discontinuity-penalization function; the precise definition
of σ depends on the local mesh size and the local polynomial degree. For the derivation of
this formualation we need Definitions 1.2 and the identities (1.3) introduced in Chapter 1.
For the details of this derivation see [20].

Notice that here we consider one popular family of schemes, referred to as interior penalty
(IP) methods. The discrete formulation of these kind of methods sees the presence of two
integral terms, one on the left and the other on the right hand side, multiplied by a

14 2| Discontinuous Galerkin methods on polytopic meshes

constant θ ∈ {−1, 0, 1}:

θ

∫
Fh

{a∇hvh} · JuhKds, θ

∫
FB

h

gD a∇hvh · n ds .

Choosing θ = −1 the method preserves the symmetry and the resulting formulation is
called Symmetric Interior Penalty (SIP) method. Instead, setting θ = 1 gives rise to the
so-called Nonsymmetric Interior Penalty (NIP) method while θ = 0 yelds the Incomplete
Interior Penalty (IIP) method. Here we consider the Symmetric Interior Penalty PolyDG
method, meaning choosing θ = −1 in the previous discrete formulation (2.6). With this
choice we write the following definitions.

• Bd : V
p × V p → R is the bilinear form such that

Bd(wh, vh) =
∑
E∈Th

∫
E

a∇wh · ∇vh dx

−
∫

Fh

({a∇wh} · JvhK + {a∇vh} · JwhK− σJwhK · JvhK) ds .
(2.7)

• Br : V
p × V p → R is the bilinear form such that

Br(wh, vh) =
∑
E∈Th

∫
E

cwhvh dx . (2.8)

• Bh : V p × V p → R is the bilinear form such that

Bh(wh, vh) = Bd(wh, vh) +Br(wh, vh) . (2.9)

• F : V p → R is the linear functional such that

F (vh) =
∑
E∈Th

∫
E

fvh dx−
∫
FB
h

gD(a∇vh · n− σvh) ds . (2.10)

Thereby, using these definitions we obtain the following (SIP) PolyDG discrete formula-
tion.

Find uh ∈ V p(Th) such that

Bh(uh, vh) = F (vh) (2.11)

for all vh ∈ V p(Th). The well-posedness and stability properties of the above method

2| Discontinuous Galerkin methods on polytopic meshes 15

depend on the choice of the discontinuity-penalization σ. We expect that the choice of σ
will be sensitive to the size of each face F ∈ Fh, relative to the size of the element(s) which
form F . In [20] we can find the convegence analysis for two cases based on employing
different assumptions on the elements present in the computational mesh Th, assuming
that the entries of a are constant on each element E, E ∈ Th, i.e., a ∈ [V 0(Th)]

d×d
sym . Then,

the extension to general positive (semi)-definite diffusion tensors is treated in [19].

Here, for semplicity we report the results of the analysis of the problem in the case of
a polytopic-regular computational mesh and choosing c = 0 and a = Id where Id is the
d× d identity matrix. Therefore, we refer to the bilinear form Bh(·, ·) as

Bh(w, v) = Bd(w, v) ∀ v, w ∈ V p,

where Bd(·, ·) is defined as in (2.7) with a = Id. We consider the linear functional F (·) is
defined as in (2.10) with a = Id.

The penalization function σ is face-wise defined as σ : Fh → R+ such that

σ = α


p2E
hE

on F ∈ FB
h

max{p2
E+ , p2

E−}
min{hE+ , hE−} on F ∈ F I

h

, (2.12)

where α is a constant to be chosen large enough.

2.2.1. Well-Posedness of the PolyDG method and a priori error
estimates

In this section, we report the stability results and the a priori estimates of the PolyDG
method under the assumption of a polytopic-regular mesh Th.

We define the space V = H1(Ω) ⊕ V p(Th) and we introduce the associated DG norm
given by:

||v||2DG =
∑
E∈Th

||∇v||2L2(E) + ||σ
1
2 JvK||2L2(Fh)

∀v ∈ V ,

where we used the notation || · ||L2(Fh) =
∑

F∈Fh
|| · ||L2(F).

We also introduce ΠL2 : [L2(Ω)]d → [V p(Th)]
d to denote the orhogonal L2-projection onto

the finite element space [V p(Th)]
d. With this notation, we define the suitable extensions

16 2| Discontinuous Galerkin methods on polytopic meshes

of the bilinear form Bh(·, ·):

B̃h(w, v) =
∑
E∈Th

∫
E

∇w · ∇v dx

−
∫

Fh

({ΠL2(∇w)} · JvK + {ΠL2(∇v)} · JwK− σJwK · JvK) ds,
(2.13)

and of the linear functional F (·):

F̃ (v) =
∑
E∈Th

∫
E

fv dx−
∫
FB
h

gD(ΠL2(∇v) · n− σv) ds, (2.14)

for all v, w ∈ V .

Then the PolyDG formulation may be rewritten in the following equivalent manner:

find uh ∈ V p(Th) such that

B̃h(uh, vh) = F̃ (vh), (2.15)

for all vh ∈ V p(Th).

For all w, v ∈ V p(Th), we have B̃d(w, v) = Bd(w, v) and F̃ (v) = F (v), i.e., the two
formulations give rise to the same PolyDG method. This formulation enables us to pursue
the analysis without requiring W 1,∞-norm approximation estimates, as we shall see below.
Assuming that Assumption 1.1 holds and recalling the results of Section 1, we write below
the coercivity and continuity bounds for the (extended) bilinear form B̃h(·, ·) over V ×V .

Lemma 2.1. Given that Assumption 1.1 holds and that the constant α appearing in the
Definition 2.12 of the penalization function is chosen sufficiently large. Then, the bilinear
form B̃h(·, ·) is coercive and continuous over V × V , i.e.,

B̃h(v, v) ≳ ||v||2DG for all v ∈ V , (2.16)

and

B̃h(w, v) ≲ ||w||DG||v||DG for all w, v ∈ V . (2.17)

Proof. The proof is based on writing the following identity:

B̃h(v, v) = ||v||2DG − 2

∫
Fh

{ΠL2(∇v)} · JvK ds. (2.18)

2| Discontinuous Galerkin methods on polytopic meshes 17

Now, bounding the second term on the right hand side of (2.18) using the trace inverse
estimate stated in Lemma (1.3) and the stability of the L2-projector ΠL2 in the L2-norm,
namely ||ΠL2v||L2(E) ≤ ||v||L2(E), for v ∈ [V]d, E ∈ Th, we obtain the coercivity and the
continuity of the bilinear form B̃h(·, ·). See [20] for the details.

Hence, we report the following a priori error estimate assuming that Assumption 1.1 holds.

Theorem 2.2. Let Th = {E} be a subdivision of Ω ⊂ Rd, d = 2, 3 consisting of general
polytopic elements satisfying Assumptions 1.1 and 1.2, with T# = {TE} the associated
covering of Th, cf. Definition 1.1.1. Let uh ∈ V p(Th), with pE ≥ 1 for all E ∈ Th be
the corresponding PolyDG solution defined by (2.11), where the discontinuity-penalization
function σ is given by (2.12) with a penalty parameter α sufficiently large. If the analytical
solution u ∈ H1(Ω) of (2.1) satisfies u|E ∈ HrE(E), rE > 3/2, for each E ∈ Th, such that
E u|TE

∈ HrE(TE), where TE ∈ T#, with E ⊂ TE, then

||u− uh||2DG ≲
∑
E∈Th

h
2(sE−1)
E

p
2(rE− 3

2
)

E

||E u||2HrE (TE), (2.19)

with sE = min {pE + 1, rE} for all E ∈ Th. The hidden constants depend on the material
parameters and the shape-regularity of T#, but is independent of hE, pE and the number
of element faces.

We refer to [20] for the proof of this result considering a more general definition of σ. To
prove this result we need Lemma 1.4, in particular the esimate (1.6) to bound the integral
term defined on the faces of the elements.

Now we report an a priori error estimate in the L2-norm obtained by using a duality
argument. In the following, we assume uniform orders, pE = p for all E ∈ Th, p ≥ 1 and
h = maxE∈Th

hE. Moreover we assume that Ω is sufficiently regular so that u possesses
the following regularity, u ∈ Hr(Ω) for some r ≥ 2. Since we are using a duality argument,
we also assume that Ω is sufficiently regular so that, for g ∈ L2(Ω) the problem

−∇z = g in Ω, z = 0 on ∂Ω (2.20)

is well posed and its unique solution z satisfies the following elliptic regularity: z ∈ H2(Ω)

and ||z||H2(Ω) ≲ ||g||L2(Ω). Then, the following holds.

Theorem 2.3. Let Th = {E} be a subdivision of Ω ⊂ Rd, d = 2, 3 consisting of general
polytopic elements satisfying Assumptions 1.1 and 1.2 , with T# = {TE} the associated
covering of Th, cf. Definition 1.1.1. Let uh ∈ V p(Th) be the corresponding PolyDG

18 2| Discontinuous Galerkin methods on polytopic meshes

solution defined by (2.11), where the discontinuity-penalization function σ is given by
(2.12) with with a penalty parameter α sufficiently large. Then,

||u− uh||L2(Ω) ≲
hs

pr−1
||u||Hs(Ω), (2.21)

where with s = min {p+ 1, r}. The hidden constants depend on the material parameters
and the shape-regularity of T#, but is independent of h, p.

For c ̸= 0 we have to make the assumption that there exists a positive constant γ0 such
that c(x) ≥ γ0 a.e. x ∈ Ω. In this case we refer to the general bilinear form Bh(·, ·) as

Bh(w, v) = Bd(w, v) +Br(w, v) ∀ v, w ∈ V p,

where Bd(·, ·) is defined as in (2.7) with a = Id. We introduce the following modified DG
norm:

||v||2DG = ||v||2d + ||v||2r ∀v ∈ V ,

where the norm || · ||d is defined as

||v||2d =
∑
E∈Th

||∇v||2L2(E) + ||σ
1
2 JvK||2L2(Fh)

∀v ∈ V ,

and the norm || · ||r is defined as

||v||2r =
∑
E∈Th

||c
1
2v||2L2(E) ∀v ∈ V .

It is easy to see that Br(v, v) = ||v||2r. The coercivity and the continuity of Bd(·, ·) on
V × V with respect to the norm || · ||d follows from Lemma 2.1. The error estimates
in norm DG (2.19) and in norm L2 (2.21) holds also in this case, where || · ||DG is the
modified DG norm. See [20] for the details.

2| Discontinuous Galerkin methods on polytopic meshes 19

2.3. Implementation aspects

2.3.1. Basis functions

In this section we recall the approach to construct the discrete space proposed in [20]
and in [19]. This approach is based on first employing polynomial spaces over a chosen
bounding box of each element E ∈ Th; then the element basis is simply constructed by
restricting this space to E. More precisely, given an element E ∈ Th, we write BE to
denote its corresponding bounding box; selecting, for example, BE to be the Cartesian
bounding box, i.e., the sides of BE are aligned with the Cartesian axes, then BE can be
easily constructed, such that Ē ⊆ B̄E. In Figure 2.1 there is an example of a polygonal
element E in R2 with its Cartesian bounding box BE. On this Cartesian bounding box BE

we may define a standard polynomial space PpE(BE) spanned by a set of basis functions
ϕi,E, i, . . . , NpE = dim(PpE(BE)).

Figure 2.1: Cartesian bounding box for a polygon

Writing BE = I1 ×I2 × . . . ×Id, where Ij, j = 1, . . . , d and selecting B̂ = (−1, 1)d to
be the reference hypercube, the bounding box BE may be affinely mapped to B̂, via the
mapping GE : B̂ → BE such that

x = GE(x̂) = JEx̂+ c, (2.22)

where JE = diag(h1, . . . , hd), c = (m1, . . . ,md)
T, and x̂ is a generic point in B̂. We have

that hj is half of the length of the jth-side of BE and mj is the midpoint of Ij, i.e
respectively hj = (xj2 − x

j
1)/2, j = 1, . . . , d and mj = (xj2 + xj1)/2, j = 1, . . . , d.

On B̂ we may define employ tensor-product Legendre polynomials; to this end, writing
{L̂i(x̂)}∞i=0 to denote the family of L2(−1, 1)-orhogonal Legendre polynomials, for example,

20 2| Discontinuous Galerkin methods on polytopic meshes

the space of polynomials PpE(B̂) of total degree pE over B̂ is given by

PpE(B̂) = span{ϕ̂i,E}
dim(PpE

(B̂))

i=1 ,

where

ϕ̂i,E(x̂) = L̂i1(x̂1)L̂i2(x̂2) . . . L̂id(x̂d), i1 + i2 + . . .+ id ≤ pE, iE ≥ 0, k = 1, . . . , d ,

and x̂ = (x̂1, x̂2, . . . , x̂d) ∈ [−1, 1]. Moreover we recall that

L̂i(x) =
Li(x)

||Li||L2(−1,1)

, with Li(x) =
1

2ni!

d

dx
[(x2 − 1)n] .

Writing Li(x) = L̂i((x −mj)/hj), under the transformation (2.22), the space of polyno-
mials PpE(BE) of total degree pE over BE is given by

PpE(BE) = span{ϕi,E}
NpE
i=1 ,

where

ϕi,E(x) = Li1(x1)Li2(x2) . . . Lid(xd), i1 + i2 + . . .+ id ≤ pE, iE ≥ 0, k = 1, . . . , d

and x = (x1, x2 . . . , xd). Thereby, the polynomial basis over the general polytopic element
E may be defined by simply restricting the support of {ϕi,E}, i = 1, . . . , NpE to E; i.e.,
the polynomial basis defined over E is given by {ϕi,E|E}, i = 1, . . . , NpE .

2.3.2. Quadrature rules

The design of efficient and accurate quadrature rules for general polytopes is a challenging
task; while several approaches have been proposed within the literature, this still remains
an open and active area of research. Below we report only one approach that is the
one that has been implemented in the library LYMPH3D. Again we refer to [20] for the
description of this approach.

Sub-Tessellation

The simplest approach is to simply construct a sub-tessellation of each polytopic ele-
ment into standard element shapes, upon which standard quadrature rules may be em-
ployed. More precisely, given E ∈ Th, we first construct a non-overlapping sub-tessellation
EI = {τk} consisting of standard element shapes, i.e. tetrahedra. Here, a general hybrid

2| Discontinuous Galerkin methods on polytopic meshes 21

sub-tessellation consisting of quadrilateral and triangular elements in R2, or tetrahedral,
hexahedral, prismatic, and pyramidal elements in R3, may be constructed. On agglom-
erated meshes, the sub-tessellation will already be available; however, for reasons of effi-
ciency, one may still wish to construct an alternative sub-tessellation that has a minimal
number of elements. As an example, if we consider computing the PolyDG mass matrix,
restricted to E ∈ Th, then we have that

∫
E

wv dx =
∑

τk∈EI

∫
τk

wv dx ≈
∑

τk∈EI

nq3∑
q=1

w(Fk(ξq))v(Fk(ξq))det(JFk
(ξq))wq , (2.23)

where Fk : ER → τk is the mapping from the reference element ER to τk, with Jacobi
matrix JFk

, and (ξq, wq)
nq3
q=1 denotes the quadrature rule defined on ER. We point out

that while quadrature schemes based on employing a subtessellation of each polytopic
element are straightforward to implement, they tend to be computationally expensive,
in the sense that, depending on the cardinality of the sub-tessellation, the number of
required function evaluations may be very large. This is particularly the case when the
sub-tessellation employed is simply the background fine mesh T fine

h used to construct a
coarse agglomerated grid. For this reason more sophisticated quadrature free approaches
have been proposed, see [5], however this is not considered in this work and will be the
subject of future research.

2.3.3. Assembling of the algebraic linear system

We now cosider a second-order elliptic PDE problem with a = Id,b = 0 and c ∈ R,
subject to a Dirichlet boundary condition (∂ΩD and ∂ΩN = ∅), given by:
find u ∈ H1(Ω) such that {

−∆u+ cu = f in Ω ,

u = gD on ∂Ω .
(2.24)

The PolyDG formulation of the problem is reported in (2.11) with a = Id in the definition
of the bilinear form Bd(·, ·) and of the linear functional F (·).
For simplicity we consider gD = 0. At the end of the section we will present the case
of gD ̸= 0. By fixing a basis {ϕi}Nh

i=1, Nh denoting the dimension of the discrete space
V p(Th), (2.11) can be rewritten as:
find u ∈ RNh

(A+ cM)u = f , (2.25)

where u contains the expansion coefficients of uh ∈ V p(Th),

22 2| Discontinuous Galerkin methods on polytopic meshes

• f is the right hand side vector given by

fi =

∫
Ω

fϕi dx, i = 1, . . . , Nh. (2.26)

• M is the mass matrix given by

Mi,j =

∫
Ω

ϕi ϕj dx, i, j = 1, . . . , Nh, (2.27)

• A is the stiffness matrix given by

A = V − IT − I+ S , (2.28)

where

Vi,j =

∫
Ω

∇ϕj · ∇ϕi dx, (2.29)

and

Ii,j =

∫
Fh

JϕjK · {∇hϕi} ds Si,j =

∫
Fh

σJϕjK · JϕiK ds, (2.30)

for any i, j = 1, . . . , Nh.

In Section 2.3.1 we introduced the polynomial basis over a general polytopic element
E, {ϕi,E|E}, i = 1, . . . , NpE . For the sake of notation we omit the symbol specifying
the support, meaning we just write ϕi,E. We consider the case in which pE = p for all
E ∈ Th and Ω ⊂ R3. We call Np the number of degrees of freedom for any E ∈ Th.
Therefore, if we choose Pp(BE) as discrete space we have that Np = dim(Pp(BE)) =

(p+1)(p+2)(p+3)/6. We call Npoly the number of polyhedra in the mesh Th. Moreover,
we choose the penalization function according to (2.12) where hE is the diameter of the
bounding box BE of the element E. With this notation we describe how we compute the
entries in the local mass and element-based stiffness matrices. The local mass matrix is
defined as the mass matrix restricted to E ∈ Th, i.e.,

ME
i,j =

∫
E

ϕi,E ϕj,E dx i, j = 1, . . . , Np. (2.31)

If we use the quadrature formulas that we introduced in (2.23) to approximate this inte-

2| Discontinuous Galerkin methods on polytopic meshes 23

gral, we obtain the following:

ME
i,j =

∑
τk∈EI

∫
τk

ϕi,E ϕj,E dx ≈
∑

τk∈EI

nq3∑
q=1

ϕi,E(Fk(ξq))ϕj,E(Fk(ξq)) det(JFk
(ξq))wq,

(2.32)

where EI is the tetrahedral sub-tessellation of E ∈ Th, Fk : ER → τk is the mapping
from the reference tetrahedron ER to the physical tetrahedron τk, with Jacobi matrix JFk

,
and (ξq, wq)

nq3
q=1 denotes the quadrature rule defined on ER.

The local element-based stiffness matrix is the component Vi,j of the stiffness matrix Ai,j

restricted to E ∈ Th, i.e.,

VE
i,j =

∫
E

∇ϕj,E · ∇ϕi,E dx. (2.33)

In the three-dimensional case if we employ tensor-product Legendre polynomials we have
that

ϕi,E(x) = Li1(x)Li2(y)Li3(z) i1 + i2 + i3 ≤ p, (2.34)

where Li is obtained from L̂i through the transformation GE in (2.22).

If we compute the gradient of ϕi,E we obtain:

∇ϕi,E(x) =


d
dxLi1(x)Li2(y)Li3(z)

Li1(x)
d
dyLi2(y)Li3(z)

Li1(x)Li2(y)
d
dzLi3(z)

 . (2.35)

The term VE
i,j becomes:

VE
i,j =

∫
E

d
dx
Li1(x)Li2(y)Li3(z)

d
dx

Lj1(x)Lj2(y)Lj3(z) dx

+

∫
E

Li1(x)
d
dy
Li2(y)Li3(z)Lj1(x)

d
dy
Lj2(y)Lj3(z) dx

+

∫
E

Li1(x)Li2(y)
d
dz
Li3(z)Lj1(x)Lj2(y)

d
dz
Lj3(z) dx.

Then, the approximation of this integral is performed by using the quadrature formulas
in (2.23). Following the same steps as we did above for the local mass matrix, we obtain:

24 2| Discontinuous Galerkin methods on polytopic meshes

VE
i,j =

∑
τk∈EI

∫
τk

∇ϕi,E · ∇ϕj,E dx

≈
∑

τk∈EI

nq3∑
q=1

∇ϕi,E(Fk(ξq)) · ∇ϕj,E(Fk(ξq)) det(JFk
(ξq))wq.

(2.36)

Now we consider the terms on the interfaces. From the definition of the jump and average
operators, cf. (1.2), recalling that each face F ∈ F I

h is shared by the elements E±, we
expand the terms Si,j and Ii,j as the sum of the integrals on the interior faces and on the
boundary faces, i.e.,

Si,j = SI
i,j + SB

i,j, Ii,j = IIi,j + IBi,j,

where

SI
i,j =

∑
F∈F I

∫
F

σJϕj,EK · Jϕi,EK ds =
∑
F∈F I

∫
F

σ(ϕ+
j,En

+ + ϕ−
j,En

−) · (ϕ+
i,En

+ + ϕ−
i,En

−) ds

=
∑
F∈F I

∫
F

σϕ+
i,E(ϕ

+
j,E − ϕ

−
j,E) ds+

∑
F∈F I

∫
F

σϕ−
i,E(ϕ

−
j,E − ϕ

+
j,E) ds,

IIi,j =
∑
F∈F I

h

∫
F

Jϕj,EK · {∇hϕi,E} ds =
∑
F∈F I

h

∫
F

1

2
(∇hϕ

+
i,E +∇hϕ

−
i,E) · (ϕ

+
j,En

+ + ϕ−
j,En

−) ds

=
∑
F∈F I

h

1

2

∫
F

∇hϕ
+
i,E · n

+(ϕ+
j,E − ϕ

−
j,E) ds+

∑
F∈F I

h

1

2

∫
F

∇hϕ
−
i,E · n

−(ϕ−
j,E − ϕ

+
j,E) ds,

while on the boundary we have

SB
i,j =

∑
F∈FB

∫
F

σJϕj,EK · Jϕi,EK ds =
∑

F∈FB

∫
F

σϕ+
i,Eϕ

+
j,E ds,

and
IBi,j =

∑
F∈FB

h

∫
F

∇hϕ
+
i,E · n

+ϕ+
j,E ds.

Now we define the local interface integrals SF
i,j and IFi,j in the following way:

SF
i,j =

∫
F

σJϕj,EK · Jϕi,EK ds, IFi,j =

∫
F

Jϕj,EK · {∇hϕi,E} ds. (2.37)

2| Discontinuous Galerkin methods on polytopic meshes 25

We write the expansion of the term SF,I
i,j on the interior faces:

SF,I
i,j =

∫
F

σϕ+
i,E(ϕ

+
j,E − ϕ

−
j,E) ds+

∫
F

σϕ−
i,E(ϕ

−
j,E − ϕ

+
j,E) ds = (I) + (II).

We see how to compute the integral (I) with the two-dimensional quadrature formulas.
First, we divide the integral in two terms:

(I) =
∫
F

σϕ+
i,E(ϕ

+
j,E − ϕ

−
j,E) ds = SF,D

i,j + SF,N
i,j ,

where,

SF,D
i,j =

∫
F

σϕ+
i,Eϕ

+
j,E ds SF,N

i,j = −
∫
F

σϕ+
i,Eϕ

−
j,E ds.

Now we consider the tetrahedral sub-tessellation EI = {τk} of the element E such that
F ⊂ ∂E. We call fl, l = 1, . . . , 4 the triangular faces of the tetrahedron τk. We define
TF as the set of all tetrahedra that belongs to the polyhedron E such that at least one of
their faces fl belongs to F :

TF = {τk ∈ EI : ∃ l ∈ 1, . . . , 4 : fl ⊂ ∂τk ∩ F}.

We define the maps ψl : TR → ER, l = 1, . . . , 4, from the two-dimensional reference trian-
gle TR to the faces of the three-dimensional reference tetrahedron ER. The approximation
of the integral SF,D

i,j is computed as:

SF,D
i,j =

∑
τk∈TF

∫
fl

σϕ+
i,Eϕ

+
j,E ds

≈
∑
τk∈TF

nq2∑
q=1

σϕ+
i,E(Fk(ψl(ηq)))ϕ

+
j,E(Fk(ψl(ηq))) det(JFk

(ψl(ηq))) ŵq,

(2.38)

where Fk : ER → τk is the mapping from the reference tetrahedron ER to the physi-
cal tetrahedron τk, with Jacobi matrix JFk

, and (ηq, ŵq)
nq2
q=1 denotes the two-dimensional

quadrature rule defined on TR.

The same holds for the local term SF,B
i,j on the boundary faces. In a similar way, the

26 2| Discontinuous Galerkin methods on polytopic meshes

approximation of the integral SF,N
i,j is computed as:

SF,N
i,j = −

∑
τk∈TF

∫
fl

σϕ+
i,Eϕ

−
j,E ds

≈ −
∑
τk∈TF

nq2∑
q=1

σϕ+
i,E(Fk(ψl(ηq)))ϕ

−
j,E(Fk(ψl(ηq))) det(JFk

(ψl(ηq))) ŵq,

(2.39)

Notice that we considered the integral (I) in the sum because we are going to implement
only this term. Indeed, suppose that E+ and E− are the two elements that share the face
F . When we perform the loop on the elements to compute the integrals, we will assemble
only term (I) when the current element is E+. In this way the term (II) will be computed
when the current element will be E−. This allows us to consider the face F only once
in the loop on the elements. The same reasoning holds for the term IFi,j. We are going
to implement only the first term of the sum written in the expansion written below. We
write the expansion of the term IF,Ii,j on the interior faces:

IIi,j =
1

2

∫
F

∇hϕ
+
i,E · n

+(ϕ+
j,E − ϕ

−
j,E) ds+

1

2

∫
F

∇hϕ
−
i,E · n

−(ϕ−
j,E − ϕ

+
j,E) ds = (I) + (II),

and on the boundary faces:

IBi,j =

∫
F

∇hϕ
+
i,E · n

+ϕ+
j,E ds.

The computation of IFi,j follows the same steps of SF
i,j. The components of the local right

hand side vector fE defined as
fEi =

∫
E

fϕi,E dx

are computed with the quadrature formulas in the following way:

fEi =
∑

τk∈EI

∫
τk

fϕi,E dx ≈
∑

τk∈EI

nq3∑
q=1

f(Fk(ξq))ϕi,E(Fk(ξq)) det(JFk
(ξq))wq. (2.40)

In the case of gD ̸= 0, Dirichlet boundary conditions can be enforced by penalization, i.e.,

fi =
∑
E∈Th

∫
E

fϕi,E dx−
∑
F∈Fh

∫
F

gD∇hϕ
+
i,E · n ds+

∑
F∈Fh

∫
F

σgDϕ
+
i,E ds. (2.41)

27

3| Description of the LYMPH3D

library

In this chapter we present LYMPH3D, the library that has been developed in this thesis.

LYMPH3D is a library written in Fortran. In LYMPH3D we can find the implementa-
tion of PolyDG method to discretize a PDE problem on a computational mesh made of
polytopic elements. In this way this library it is perfectly suited to deal with problems
featuring complicated geometries.

The code uses the open-source libraries, METIS for mesh agglomeration, MPI for message
passing, and PETSc, for solving the linear system.

In this chapter we describe in detail the structure of the library, all the files and mod-
ules and what they are used for. Figure 3.1 shows the basic structure of the main file
Lymph3D.

In Section 3.1 we describe the part of the library related to the mesh. Considering that
we already have a file .mesh containing all the information about the mesh, we will see
how we read the mesh and store the information needed to solve the equations.

In Section 3.2 we describe the part of the library related to the computation of the
necessary tools to assemble the linear system, meaning the construction of the bounding
box, the basis functions and the quadrature formulas.

In Section 3.3 we describe how we assemble the matrices and the term on the right and
side and in Section 3.4 we will see how we actually solve the linear system.

In Section 3.5 we can find the description of the functions related to the post-processing
part, the creation of the .vtk files necessary to visualize the solution and the computation
of the errors in L2-norm and in DG-norm.

In Section 3.6, we provide a brief user guide, and in Section 3.7 we will see how to generate
the mesh in a simple case of a cube.

28 3| Description of the LYMPH3D library

A selection of some of the most important functions that are used to perform the described
steps is reported in Appendix A.

Call INITIALIZATION

Call READ_INPUT_FILES

Call MAKE_PARTITION_AND_MPI_FILES

Declaration of Petsc and Fortran variables

Call SET_PETSC_MATRICES

Call MAKE_MATRICES

Call SET_PETSC_VECTORS

Call MAKE_RHS

Call SOLVER_SETTINGS

Call KSP_Solve

Call PETSC_SCATTER_VECTOR

Call EXPORT_SOLUTION

Figure 3.1: Basic structure of the main program Lymph3D. First, we have the dec-
laration of the PETSc environment and the PETSc and Fortran variables. Next, we
call the subroutine READ_INPUT_FILES to read the input file and the subroutine
MAKE_PARTITION_AND_MPI_FILES to make the partition and to store the mesh
information, then we define and assemble the PETSc matrices and vectors by call-
ing SET_PETSC_MATRICES, MAKE_MATRICES, SET_PETSC_VECTORS and
MAKE_RHS. We set the algebraic solver and finally solve the linear system by calling
the PETSc function KSPSolve and then export the solution.

3| Description of the LYMPH3D library 29

3.1. Reading input files and store mesh structure

The starting point of a finite element discretization consists in reading the mesh file
and store the key information about the geometry of the problem. We provide here a
schematic description of the modules and files related to these tasks that are present in the
library. The main feature is given by the introduction of the structure Polyhedron stor-
ing the key properties of the polyhedral mesh. The significant changes can be seen in the
Poly_mesh.f90 module, in the subroutine MAKE_PARTITION_AND_MPI_FILES.f90,
and the implementation of the module Poly_geom.f90.

• Poly_setup_MPI.f90 where we can find the definition of the MPI variables as
mpi_id, mpi_np, mpi_ierr and the subroutine INITIALIZATION.f90. This sub-
routine performs the initialization of the MPI and the Petsc MPI envinronments.

• The file Poly_mesh.f90 contains the definition of the Mesh_Structure, the Ele-
ment structure and the Polyhedron structure.

1. The struct Element is reported in Table 3.1.

30 3| Description of the LYMPH3D library

Name field type Description

el_type string
Type of the element (tetrahedra in our
case)

mat_prop integer Id for heterogeneous materials

num_vert integer
Number of vertices of the element (4 in
our case)

num_faces integer
Number of faces of the element (4 in
our case)

Degree integer
Local degree of the basis function for
this element

NDof_loc integer Local number of degrees of fredom

vert
vector of integers of
size(num_vert)

Indexes of the vertices of the element

faces
matrix of integers of size
(num_faces,3)

Indexes of the vertices for every face of
the element

neigh_el
matrix of integers of size
(num_faces,4)

Properties of the neighbor elements

normal
matrix of real of size
(num_faces,3)

Coordinates of the normal to each face

area
vector of real of size
(num_faces)

Area of each face

Table 3.1: Fields of the structure Element

For example if we consider a tetrahedral mesh composed of only two tetrahedra,
and we take the first tetrahedron we will have as Element structure fields the
followings

– el_type −→ TETRA

– mat_prop −→ 1

– num_vert −→ 4

– num_faces −→ 4

– vert −→
[
1 2 3 4

]

3| Description of the LYMPH3D library 31

– faces −→


3 2 1

1 2 4

2 3 4

3 1 4



– normal −→


0 −0.71 0.71

−0.71 0.71 0

1 0 0

0 0 −1



– area −→


0.35

0.35

0.25

0.25


– neigh_el −→ The tetrahedra shares a face with just one neighbour within

the same process and in this case, made by the same material; the other
faces are boundary faces.

mpi-proc mat_id el_id face_id
0 1 2 4
0 0 0 0
0 0 0 0
0 0 0 0

2. The struct Polyhedron contains the properties of a single polyhedron. In
Table 3.2 we can see the description of its fields.

32 3| Description of the LYMPH3D library

Name field type Description

num_tet_in_poly integer
Number of tetrahedra contained in the
polyhedron

tet_in_poly
vector of integers of size
(num_tet_in_poly,1)

Global indexes of the tetrahedra con-
tained in the polyhedron

b_box
matrix of real numbers of
size (3,2)

Coordinates in the three different di-
rections of the bounding box of the
polyhedron

hk real number
Diameter of the bounding box of the
polyhedron

neigh_bbox
matrix of real numbers size
(num_tet_in_poly,3,2)

Coordinates of the bounding box of a
neighbouring polyhedron

neigh_hk
vector of real numbers of
size (num_tet_in_poly)

Diameter of the bounding box of a
neighboring polyhedron

Table 3.2: Fields of the structure Polyhedron

3. Mesh_Structure is a struct that contain the key information on the standard-
shape elements of the mesh (tethraedra in our case), on the boundary faces
(triangles) as the number of these kind of elements and their connettivity (ex.
con_tet that contains the connettivity of a tethraedra). New additional fields
were added to this structure to store the properties of the polyhedra. In the
Table 3.3 below we report the fields of the Mesh_Structure, where we have
highlighted in colour the new additional fields for the polyhedra.

3| Description of the LYMPH3D library 33

Name field type Description

num_node integer Total number of vertices

num_tet integer Total number of tetrahedra

num_elem integer Total number of elements

num_poly integer Total number of polyhedra

con_tet
matrix of integers of size
(num_tet,5)

Connettivity matrix of the tetrahedra

con_tria
matrix of integers of size
(num_tria,4)

Connettivity matrix of the triangles

part_elem
vector of integers of size
(num_tet)

For each tetrahedron it stores the id
of the processor it belongs to after the
partition

elem_in_poly
vector of integers of size
(num_tet)

For each tetrahedron it stores the index
of polyhedron it belongs to

elem_in_poly_loc
vector of integers of size
(num_elem_loc)

For each local tetrahedron it stores the
global index of polyhedron it belongs to

coord_x, coord_y,
coord_z

vectors of size (num_nodes)
Coordinates of the vertices in direction
x,y and z

num_elem_loc integer Local number of elements

num_node_loc integer Local number of vertices

num_poly_loc integer Local number of polyhedra

elem_loc2glo
vector of integers of size
(num_elem_loc)

Local to global maps to go from the
local enumeration to the global one for
the elements

node_loc2glo
vector of integers of size
(num_node_loc)

Local to global maps to go from the
local enumeration to the global one for
the nodes

poly_loc2glo
vector of integers of size
(num_poly_loc)

Local to global maps to go from the
local enumeration to the global one for
the polyhedra

Elem_loc

vector of structures of
type Element of length
(num_elem_loc)

For each element it stores all the prop-
erties listed in Table 3.1

Poly

vector of structures of
type Polyhedron of length
(num_poly)

For each polyhedron it stores the prop-
erties listed in Table 3.2

Table 3.3: Fields of the structure Mesh_Structure

34 3| Description of the LYMPH3D library

In Figure 3.2 we can see an example of a polyhedral mesh of a cube made of a
number of polyhedra num_poly=10 (Figure 3.2b), and the respective tetrahedral
subtassellation of the polyehdra with num_tet=48 (Figure 3.2a). In the Table 3.4
we report the first ten elements of the vector elem_in_poly for this particular mesh.
The module Poly_mesh.f90 also contains the subroutines

1. allocate_Mesh_Structure to allocate the Mesh Structure

2. print_Dime_Mesh_Structure to print the Mesh Structure

3. print_Local_Mesh_Structure_VTK to create the file mesh_partition.vtk to
visualize the mesh partitioned into different processors. In Figure 3.3 there is
an example of output of this subroutine, where we have a tetrahedral mesh
with 48 tetrahedra and the partition is done within 3 processors.

(a) Example of tetrahedral mesh
with Ntet = 48.

(b) Example of agglomerated polyhedral
mesh with Npoly = 10.

Figure 3.2: Polyhedral mesh (right) and relative tetrahedral sub-tessellation (left). The
polyhedral mesh in Figure 3.2b is obtained via agglomeration of the tetrahedral mesh in
Figure 3.2a.

3| Description of the LYMPH3D library 35

Tetrahedra id Polyhedra id

1 7

2 6

3 6

4 3

5 3

6 7

7 7

8 6

9 6
10 8

Table 3.4: The table refers to the polyhedral mesh in Figure 3.2b with Npoly = 10,
obtained via agglomeration of the tetrahedral mesh with Ntet = 48 in 3.2a. The table
shows how the agglomeration works. To each tetrahedron we associate an index from
1 to Npoly = 10 that refers to the polyhedron that contains that tetrahedron. The first
coloumn contains the indices of the tetrahedra, while the second coloumn contains the
indices of the associated polyhedron. We report here only the first 10 tetrahedra. The
second coloumn represents the first 10 elements of the vector elem_in_poly for the mesh
in Fig 3.2b.

Figure 3.3: Example of a tetrahedral mesh partitioned into np = 3 processors

• The file Poly_global.f90 contains a module of the same name, which stores some

36 3| Description of the LYMPH3D library

useful variables as head_file the name of the input file stored in the variable,
mate_file the name of the file containing information on the materials and some
variables related to the output and the measuring of the computational time. In this
file we can also find other modules, in particular three of them Poly_exit_codes,
Poly_fail_codes, Poly_default_codes are related to error and fail codes if some-
thing goes wrong reading the .input and the .mate file, and additional useful mod-
ules, the qsort algorithm for sorting elements of an array, the local_search module
useful for parallel programs and the find_poly module. The local_search contains
the subroutine GET_EL_LOC_FROM_EL_GLO that we need in order to find
the local index of an element of the mesh. It takes as input the local to global map
relative to a particular processor and the global index of the element and returns the
local index of the element if the element is stored in that processor, zero otherwise.
The new module find_poly contains the function FIND_TET_IN_POLY, needed
to find all the tetrahedra contained in a single polyhedra. The function takes as
input the vector elem_in_poly, the index of the polyhedron we are considering and
it returns a vector that has the dimension of the number of tetrahedra contained in
each polyhedron and it stores the indeces of these tetrahedra.

• The file Poly_readfile.f90 contains the subroutines that actually go through all the
input files, reading the files line by line.

• Poly_geom.f90 contains the module Poly_geom where we can find the subroutine
REFERENCE_MAP that perform the computation of the matrices of the refer-
ence map Fk from the reference simplex (0,0,0), (1,0,0),(0,1,0) (0,0,1) to to
the physical tetrahedron, and the corresponding determinant Jdet, see [44]. This
subroutine takes as input the coordinates of the vertices of the physical tetrahedron
x,y,z and returns as output the followings.

– Fk a matrix, size (3,4) containing the mappings from the reference tetrahedron
to the physical tetrahedron

– Jinv a matrix, size (3,3) containing the inverse of the jacobian of Fk

– Jdet a scalar, determinant of the jacobian

• The READ_INPUT_FILES subroutine is called directly from the main file Lymph3D
and it calls all the modules we saw above in order to set the header and the material
files and to define and initialize the structure Mesh_Structure.

• The file MAKE_PARTITION_AND_MPI_FILES.F90 contains a subroutine with
the same name that performs the partition of the mesh into the different proces-

3| Description of the LYMPH3D library 37

sors and stores the local properties of the mesh into the correspondent fields of
the Mesh_Structure. Moreover this subroutine creates output files in the folder
FILES_MPI and writes the mesh infomation in the suitable output files. Each file
contains the mesh information relative to a specific processor. For example if we use
two processor, after calling this subroutine we will see in the folder FILES_MPI
the files

1. mesh_000000.mpi, mesh_000001.mpi
containing the mesh properties for the elements contained in processor 0 and
processor 1 respectively

2. elem4proc.mpi
containing two coloumns, the first coloumn is for the indexes of the tetrahedra
and the second one for the id of the processor it belongs to

3. con_tet_000000.mpi,con_tet_000001.mpi
containing the connettivity of the tetrahedra respectively for processor 0 and
processor 1

4. con_tri_000000.mpi,con_tri_000001.mpi
containing the connettivity of the triangles respectively for processor 0 and
processor 1.

The subroutine MAKE_PARTITION_AND_MPI_FILES.f90 calls the following sub-
routines.

• MESH_PARTITIONING
performs the partition of the mesh into different processors by using METIS and
write the mpi file elem4proc.mpi.

• WRITE_PARTITION
writes the partition in the mpi files storing the connettivity of tetrahedra and tri-
angles.

• MESH_AGGLOMERATION
generates the polyhedral mesh by agglomerating the tetrahedral mesh read from the
.mesh file.

• MESH_CORRECTION
ensures that each polyhedron contains at least one tetrahedron.

• CREATE_GLOBAL_POLY_MAP
allocates and stores the field elem_in_poly.

38 3| Description of the LYMPH3D library

• CREATE_LOCAL_MESH
stores the local properties of the tetrahedral mesh into the correspondent fields of
the Mesh_Structure.

• CREATE_VERT_LIST
stores the coordinates of the vertices of the tetrahedra locally.

• CREATE_POLY_LIST
stores the map poly_loc2glo to go from local polyhedron to the global one and
initializes the other fields of the structure Polyhedron.

• CREATE_NORMAL_FACE
performs the computation of the coordinates of the normal and the area to each
face.

• CREATE_BBOX_EL
performs the computation of the bounding box for each polyhedron. The key steps
of this subroutine can be seen in Algorithm 3.2.

• CREATE_NEIGH_EL_TRIA
stores the information of the neighbouring tetrahedra and polyhedra. Few changes
were made to this subroutine to add the storage of the properties of the neighbouring
polyhedra. These changes can be seen in Algorithm 3.3.

• WRITE_MESH_INFO writes the mesh information in suitable mpi files.

We focus on the subroutine MESH_AGGLOMERATION to see how we generate the
polyhedral mesh by agglomerating the tetrahedral mesh. The agglomeration is performed
based on employing the METIS library for graph partitioning, cf., for example, [42, 43].
METIS is a state-of-the-art graph partitioning algorithm. We note that for METIS to
partition the fine mesh Th , the logical structure of Th is first stored in the form of
a graph, where each node represents an element domain of Th, and each link between
two nodes represents a face shared by the two elements represented by the graph nodes.
The resulting partition of Th constructed by METIS is produced with the objective of
minimizing the number of neighbours among each of the resulting partitions, or more
precisely, the resulting polygonal elements. In Algorithm 3.1 we can find the lines of
pseudocode needed do create the agglomerate mesh of polyhedra.

3| Description of the LYMPH3D library 39

Algorithm 3.1 Generate an agglomerated mesh
1: Store number of polyhedra in variable num_part

2: Extract the connettivity matrix con_tet and the number of vertices of the tetrahedra
num_nodes

3: Set options to have Fortran-style numbering and to force contigous partition
4: Call METIS_PartMeshDual function giving as input ncommon=4, num_part,

con_tet, num_elem_loc and num_nodes

5: Store the output of METIS into the file ’elem_in_poly_loc.mpi’
6: Allocate and store elem_in_poly_loc

Note that if we want to solve the problem with the tetrahedral mesh we just have to set
num_parts=num_elem_loc.

Notice that the mesh that we obtain as output of this agglomeration algorithm can present
some issues. For instance, since we provide to the algorithm the number of polyhedra that
we want num_part, we can have the problem of some empty polyhedra, meaning polyhedra
that don’t contain any tetrahedron. The role of the subroutine MESH_CORRECTION
is to correct this problem if it presents. In this subroutine we read the agglomerated mesh
and reduce the number of polyhedra until we have that each polyhedra contains at least
one tetrahedron.

In Algorithm 3.2 there is a summary of the subroutine CREATE_BBOX_EL where
we describe how we create the bounding box BE for each E ∈ Th. Then, in Algo-
rithm 3.3 we can see a schematic description of the few changes made to the subroutine
CREATE_NEIGH_EL_TRIA. Indeed, as we will see later in Section 3.3, in order to
assemble the stiffness matrix we need to access to the bounding box of the polyhedron
we are considering, but also the bounding box of the neighboring polyhedron. When two
neighbouring polyhedra belong to the same processor we can easily retrieve the bounding
box of the neighbour. However, when the two neighboring polyhedra have neighboring
tetrahedra in different processors, we need to save the coordinates of the bounding box
of the neighboring polyhedra in a structure that is accessible by all processors.

40 3| Description of the LYMPH3D library

Algorithm 3.2 Create Bounding Box
1: for i := 1 , num_poly_loc do
2: Allocate xx, yy, zz of size num_tet_in_poly * num_vert

3: t←− 1

4: for ie = 1 , num_tet_in_poly do
5: xx(t)←− coord_x

6: yy(t)←− coord_y

7: zz(t)←− coord_z

8: t←− t+ 1

9: end for
10: b_box(1,1) ←− min(xx); b_box(1,2) ←− max(xx);
11: b_box(2,1) ←− min(yy); b_box(2,2) ←− max(yy);
12: b_box(3,1) ←− min(zz); b_box(3,2) ←− max(zz);
13: hk ←− diameter of b_box
14: end for

Algorithm 3.3 Create Neighboring Bounding Box
1: . . .

2: Allocate containing the coordinates of the bounding boxes to send x1_send_mpi,
x2_send_mpi, y1_send_mpi, y2_send_mpi, z1_send_mpi, z2_send_mpi

3: Allocate diameters to send hk_send_mpi

4: Send coordinartes of bounding boxes and diameters to all processors
5: for i = 1,num_tria_loc do
6: . . .

7: if (Neighbouring tetrahedra sharing face i are in different processors) then
8: . . .

9: if (The tetrahedra don’t belong to the same polyhedron) then
10: Recover the global index of the face iface

11: neigh_bbox(iface,1,1:2) ←− [x1_send_mpi ; x2_send_mpi]
12: neigh_bbox(iface,2,1:2) ←− [y1_send_mpi ; y2_send_mpi]
13: neigh_bbox(iface,3,1:2) ←− [z1_send_mpi ; z2_send_mpi]
14: neigh_hk ←− hk_send_mpi

15: end if
16: . . .

17: end if
18: end for
19: Deallocate coordinates and diameters sent

3| Description of the LYMPH3D library 41

3.2. Basis functions and quadrature formulas

In this section we detail the module basis_function contained in basis_function.f90.
Note that we call p the total degree of the basis functions and Np the number of basis
functions, denoted before as Degree and NDof_loc, respectively, see Table 3.1. The
module basis_function contains the following subroutines:

• blist

This subroutine returns the list of the degrees of monomials of the Np basis functions
up to a total degree p. The subroutine takes as input Np and p and returns a matrix
blist of size (Np,3).

• quadrature

This subroutine computes quadrature nodes and weights over the simplex tetrahe-
dron (ξq, wq)

nq3
q=1 and triangle (ηq, wq)

nq2
q=1. It computes also the maps ϕl, l = 1, . . . , 4,

from the two-dimensional reference triangle to the faces of the three-dimensional
reference tetrahedron. These maps are stored in the matrix node_maps. We remark
that we are using the quadrature formulas for the tetrahedra since we are consid-
ering the Sub-Tessellation method explained in Section 2.3.2. Below we report the
old and the new notation for the quadrature nodes, both in three-dimensions and
two-dimensions.

– Number of 3D quadrature nodes: nq3 → nq3

– Number of 2D quadrature nodes: nq2 → nq2

– Weights of the 3D quadrature nodes: w → wei3

– Weights of the 2D quadrature nodes: ŵ → wei2

– Nodes of the 3D quadrature nodes: ξ → nod3

– Nodes of the 2D quadrature nodes: η → nod2

• LegendreP

Here we evaluate the scaled Legendre Polynomial Ln(x) and its derivative L′
n(x) in

one dimension on the interval int, which corresponds to the edge of the bounding
box BE in one particular direction, at points x, of order given by blist considering
that the total degree must be p. In order to compute the evaluations of the Legendre
Polynomials we use the recursive formulas

(n+ 1)Ln+1(x)− (2n+ 1)xLn(x) + nLn−1(x) = 0,

42 3| Description of the LYMPH3D library

L′
n+1(x)− xL′

n(x) = (n+ 1)Ln(x),

where n = 1, . . . , p− 1 and Lo(x) = 1. The subroutine takes as input p, int, x that
is the vector of points we want to evaluate the polynomials in and nq, that is the
length of this vector. It returns as output P and Pder.

• basis

This subroutine evaluates the basis functions and their partial derivatives at the
three-dimensional quadrature nodes nod3 for every element by calling the previous
subroutine LegendreP. The subroutine takes as input Np, Fk, nod3, the number
of the quadrature nodes nq3, b_box, blist and it returns phi and dphi that cor-
respond respectively to {ϕi,E}Np

i=1 and {∇ϕi,E}Np

i=1, see (2.34) and (2.35). We need
phi and dphi in order to compute the volume integrals (2.27) and (2.29) using the
quadrature formulas. See for example (2.32) where we use ϕi,E for the computation
of the entries of the mass matrix.

• basis_boundary

Here we can find the evaluation of the basis functions for every face f of the two
neighbouring tratrahedra E+ and E−, that we call respectively E1 and E2, at the
two-dimensional quadrature nodes nod2. The subroutine takes as input E1 and
E2, Np, Fk, nod2 , the number of the two-dimensional quadrature nodes nq2, the
maps from the three-dimensional tetrahedron to the two dimensional faces of the
tetrahedron node_maps, the bounding boxes b_box1 and b_box2 respectively of
the polyhedron that contains the tetrahedron E1 and of the polyhedron containing
the neighbouring tetrahedron E2, blist and e_E1, the index of the face numbered
from 1 to 4 according to the tetrahedron E1. The subroutine returns {ϕ+

i,f}
Np

i=1 and
{ϕ−

i,f}
Np

i=1 both contained in phi_b and {∇ϕ+
i,f}

Np

i=1, {∇ϕ+
i,f}

Np

i=1 as grad_b. We need
phi_b and grad_b in order to compute the integrals on the interface according to
the quadrature formulas. See for example (2.38) and (2.39) where we use ϕ+

i,f and
ϕ−
i,f for the computation of the entries of the matrix S on the internal faces.

3.3. Assembling of the algebraic linear system

The focus of this section is on the assembly part. Here we can find the subroutines that
contain the assembly of the matrices and of the right hand side vector needed to solve
the linear system. For now, this library can be used to solve diffusion reaction problems,
therefore, beside the right hand side, we need to assemble the stiffness matrix A and the
mass matrix M. To solve the linear system we use an open source library called PETSc.
PETSc, see https://petsc.org/release/overview/, the Portable, Extensible Toolkit

https://petsc.org/release/overview/

3| Description of the LYMPH3D library 43

for Scientific Computation, is for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. Since PETSc requires the definition of its own
matrices and vectors we have two files where we create and initialize the PETSc matrices
and vectors.

• SET_PETSC_VECTORS.f90
In this subroutine we create and initialize the two PETSc vectors, the right hand
side and the solution.

• SET_PETSC_MATRICES.f90
Here we can find a subroutine called SET_PETSC_MATRICES where we create
and initialize the two PETSc matrices, the stiffness matrix and the mass matrix.

The real assembly part is performed with the following routines.

• assemble_local.f90
In this module we assembly the local matrices and the right hand side vector. In
particular, this module contains the following 5 subroutines.

1. MAKE_STIFF_TET_LOC
In this subroutine we assemble V_loc, the local term of the stiffness matrix
approximating the integral on the tetrahedron by performing the loop on the
three-dimensional quadrature nodes, see (2.36). It takes as input Np, Jdet, the
weighths in three-dimensions wei3, nq3, the evaluations of the gradients of the
basis functions at the quadrature nodes dphi and returns V_loc.

2. MAKE_STIFF_FACE
In this subroutine we assemble I_loc, S_loc, the terms of the stiffness matrix
approximating the integrals on the faces of the tetrahedron and IN_loc and
SN_loc on the faces of the neighbouring tetrahedron. See for example (2.38)
and (2.39) for the details of the computation of the entries of the matrices S_loc
and SN_loc. The subroutine takes as input θ, σ, p, Np, the neighbouring tetra-
hedra E2, hk1 the diameter of the bounding box of the polyhedra containing
the tetrahedra and hk2 the diameter of the bounding box of the neighbouring
polyhedra containing tetrahedra E2, the normal to the face normal, the area of
the face A, the weights in two-dimensions wei2, nq2 and the evaluations of the
basis functions and their gradients at the quadrature nodes, phi_b, grad_b. It
returns the matrices that we listed above.

3. MAKE_RHS_TET
Here we assemble rhs_tet_loc, the local right hand side term approximating

44 3| Description of the LYMPH3D library

the integral on the tetrahedron, see (2.40). This subroutine takes as input
Np, Jdet, the weighths in three-dimensions wei3, nq3, and the evaluations
of the basis functions at the quadrature nodes phi and it returns the vector
rhs_tet_loc.

4. MAKE_RHS_FACE
In this subroutine we assemble rhs_bd_loc, the local right hand side term that
approximates the integral on the faces of the tetrahedron that are boundary
faces. Indeed, in the case of gD ̸= 0 we have also an integral term on the
boundary faces in the definition of the right hand side vector, see (2.41). The
subroutine takes as input θ, σ, p, Np, the neighbouring tetrahedra E2, the
reference map Fk, hk1 the diameter of the bounding box of the polyhedra
containing the tetrahedra and hk2 the diameter of the bounding box of the
neighbouring polyhedra containing tetrahedra E2, the index of the face e the
normal to the face normal, the area of the face A, the weights in two-dimensions
wei2, the two-dimensional quadrature nodes nod2, nq2, the maps node_maps

and phi_b,grad_b. It returns rhs_bd_loc.

5. MAKE_MASS_LOC
In this subroutine we find the assembly of M_loc the local term of the mass
matrix that approximates the integral on the tetrahedron, see (2.32). The
subroutine takes as input Np, Jdet, the weighths wei3, nq3, phi and returns
M_loc.

• MAKE_MATRICES.f90
In this file there is a subroutine with the same name where we assemble the two
PETSc matrices, the stifness matrix A and the mass matrix M by performing a
loop on the elements. MAKE_MATRICES takes as input Np, the total number of
degrees of freedom Np(num_poly), the Mesh_ Structure and it returns the Petsc
matrices petsc_stiff, petsc_mass assembled.

• MAKE_RHS.f90
Here we can find a subroutine called MAKE_RHS where we assemble the term
on the right hand side f by performing a loop on the elements. MAKE_RHS
takes as input Np, the total number of degrees of freedom Np(num_poly), the
Mesh_Structure and it returns the vector petsc_rhs assembled.

3| Description of the LYMPH3D library 45

3.4. Solving the linear system

We have assembled the Petsc matrices and vectors that we need to solve the linear sys-
tem. Now we set the solver, direct or iterative, and optionally the preconditioner in the
subroutine SOLVER_SETTINGS and finally we solve the linear system by calling the
PETSc function KSPSolve. However, this can be done only after creating the object KSP.
Directly from https://petsc4py.readthedocs.io/en/stable/manual/ksp/, the KSP
object is the heart of PETSc, because it provides uniform and efficient access to all of
the package’s linear system solvers, including parallel and sequential, direct and iterative.
KSP is intended for solving systems of the form:

Ax = f

where A denotes the matrix representation of a linear operator, f is the right hand side
vector, and x is the solution vector. KSP uses the same calling sequence for both direct
and iterative solution of a linear system.

To solve a linear system with KSP, we first create a solver context with the command
KSPCreate, then we call the following routine to set the matrices associated with the linear
system KSPSetOperators. For further details see manual of PETSc https://petsc4py.

readthedocs.io/en/stable/manual/. Now that we have the solution as PETSc vec-
tor, we copy the solution into a vector. This task is performed by the subroutine
PETSC_SCATTER_VECTOR. In addition, this routine collects the values of the so-
lution from the different processors and stores them in the right locations of the final
solution vector.

3.5. Post-processing

Once we solved the linear system, the program Lymph3D performs the post-processing
by calling two subroutines contained in the module post_processing

• export_solution

In this subroutine we evaluate the solution function at the vertices of the tetrahe-
dra and then we write these values on a .vtk file in order to visualize them on a
suitable software, as for example Paraview. This is done by calling the subroutines
VTK_WRITE contained in the module MOD_VTK

• errors

Here, starting from the known exact solution of the problem, if available, and the

https://petsc4py.readthedocs.io/en/stable/manual/ksp/
https://petsc4py.readthedocs.io/en/stable/manual/
https://petsc4py.readthedocs.io/en/stable/manual/

46 3| Description of the LYMPH3D library

approximated solution, we perform the computation of the errors in norm L2 and
DG.

3.6. User-Guide

In this section we provide a tutorial to use the library to solve a problem. We list here
the steps to follow.

1. Build a mesh of tetrahedra of the desired geometry with a suitable software

2. Launch the file exoToMesh.m on Matlab that returns the file .mesh

3. Use this file .mesh to agglomerate the mesh with METIS

4. Change the file ’Poly.input’ by changing the name of the mesh file

5. Modify the file test.f90 to modify the forcing term

6. Modify the file test.f90 to change α the coefficient in the definition of the penalty
function or θ to change the method (to IIP or NIP)

7. Modify the file test1.mate to modify the total degree of basis function

8. Compile the program with the command make and then to run it with the command
mpirun -np 2 ../Lymph3D. Here Lymph3D is the executable file and the number
of processors is set to two.

3.7. Mesh Generation

In this thesis we used the software CUBIT to generate the mesh. From https://cubit.

sandia.gov/, CUBIT is a full-featured software toolkit for robust generation of two-
dimensional and three-dimensional finite element meshes and geometry preparation. Its
main goal is to reduce the time required to generate meshes, particularly large meshes of
complicated, interlocking assemblies.

We generate for example the mesh of a cube with Ntet = 4496 by implementing the lines
of code on Cubit that we can see in Algorithm 3.4.

https://cubit.sandia.gov/
https://cubit.sandia.gov/

3| Description of the LYMPH3D library 47

Algorithm 3.4 Generate tetrahedral mesh of cube
1: brick x 1
2: vol 1 scheme tetmesh
3: mesh vol 1 size 0.2
4: block 1 vol 1
5: block 2 surface 1 2 3 4 5

We have to export the file into format .e, then convert it into .txt, and finally we launch
the file exToMesh.m in order to obtain the file .mesh that is going to be read by the
proper functions in the library. In Figure 3.4 we can see the mesh that is generated with
this lines of code. In order to visualize the mesh we created the file .vtk.

Figure 3.4: Tetrahedral mesh of a cube with Ntet = 4496.

In the Figure 3.5 we can see the mesh that is generated by METIS algorithm. In order to
visualize the mesh we created the file .vtk. The different colours represent the polyhedra
obtained with the agglomeration.

48 3| Description of the LYMPH3D library

Figure 3.5: Example of the agglomerated mesh of a cube generated by METIS with 720
polyhedra giving as input the tetrahedral mesh in Figure 3.4.

49

4| Numerical Tests

The aim of this chapter is to present some numerical results to test the convergence of
the method and to test the performance of the LYMPH3D library.

4.1. Test case 1

Consider the following diffusion reaction problem introduced in Section 2.3.3.

Find u such that {
−∆u+ cu = f in Ω ,

u = gD on ∂Ω .
(4.1)

where Ω = (0, 1)3, uex(x, y, z) = exyz and gD = uex on ∂Ω.

First, we consider a pure diffusion equation, i.e., choosing c = 0 in problem (4.1). The
forcing term is f(x, y, z) = −exyz((xy)2 + (xz)2 + (yz)2).

We solve this problem with the algorithm previously described on a succesively finer mesh,
first using a tetrahedral mesh, and then a polyhedral mesh. As we already discussed in
Chapter 3, the polyhedral grids are obtained by agglomeration starting from a tetrahedral
mesh.

We solve the problem with the SIP method, meaning setting θ = −1 in (2.6). The
penalty discontinuity function is defined in (2.12) with penalty coefficient α = 10, p is the
polynomial approximation order assuming pE = p ≥ 1 ∀E ∈ Th and hE is the diameter
of the element E.

In Figure 4.1 we can see the numerical solution of the problem computed in the vertices
of the tetrahedra obtained with the software Paraview.

50 4| Numerical Tests

Figure 4.1: Test case 1. Numerical solution

In Figure 4.3 we investigate the convergence of the PolyDG on sequences of finer cube and
tetrahedral meshes for different values of the polynomial degrees p between 1 and 3. We re-
fine the mesh of the cube by varying the number of tetrahedra Ntet ∈ {48, 384, 1296, 3072}
and for each Ntet we solve the linear system.

In Figure 4.5 we investigate the convergence results of the PolyDG method applied to the
same problem on a polyhedral mesh obtained by METIS starting from the tetrahedral
meshes we used for the previous analysis. We consider in this case a varying number
of polyhedra Npoly ∈ {10, 100, 400, 700}. For each Npoly we solve the linear system for
p = 1, 2, 3, 4.

For each fixed p we plot the errors, measured in terms of both the L2(Ω) norm and DG

norm, versus the diameter of the elements, tetrehedra in the first case and polyhedra in
the second one. In both cases we clearly observe that ||u − uh||L2(Ω) and ||u − uh||DG

converge to zero at the optimal rates O(hp+1) and O(hp), respectively, as the mesh size h
tends to zero for each fixed p. The numerical results confirm the optimality of the PolyDG
method for pure diffusion problems in accordance with the theoretical convergence results,
see Theorem 2.2 and Theorem 2.3.

4| Numerical Tests 51

0.3 0.4 0.5 0.6 0.7 0.8

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Plot of the errors for Diffusion Equation - Tetrahedral Mesh

p = 1

Order2

p = 2

Order3

p = 3

Order4

Figure 4.2: Test case 1. Computed errors in the L2 norm for p = 1, 2, 3 (tetrahedral
meshes)

0.3 0.4 0.5 0.6 0.7 0.8

h

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Equation - Tetrahedral Mesh

p = 1

Order1

p = 2

Order2

p = 3

Order3

Figure 4.3: Test case 1. Computed errors in the DG norm for p = 1, 2, 3 (tetrahedral
meshes)

52 4| Numerical Tests

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Equation - Polyhedral Mesh

p = 1

Order2

p = 2

Order3

p = 3

Order4

p = 4

Order5

Figure 4.4: Test case 1. Computed errors in the L2 norm for p = 1, 2, 3, 4 (polyhedral
meshes)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

h

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Equation - Polyhedral Mesh

p = 1

Order1

p = 2

Order2

p = 3

Order3

p = 4

Order4

Figure 4.5: Test case 1. Computed errors in the DG norm for p = 1, 2, 3, 4 (polyhedral
meshes)

4| Numerical Tests 53

4.2. Test case 2

We consider the diffusion reaction PDE problem (4.1) reported in Section 4.1 with c = 0.5,
Ω = (0, 1)3, uex(x, y, z) = exyz and gD = uex on ∂Ω. The forcing term, in this case is
f(x, y, z) = −exyz((xy)2 + (xz)2 + (yz)2 − 0.5).

As in the previous example, we discretize the problem with the SIP method and we solve
this problem with the algorithm previously described on a succesively finer mesh, using
firstly a type of mesh composed of tetrahedra, and secondly a polyhedral mesh.

In Figure 4.6 we can see the numerical solution of the problem computed in the vertices of
the tetrahedra obtained with the software Paraview. Notice that the solution is the same
as before, which is coherent with our problem since we only changed the forcing term.

Figure 4.6: Numerical solution of the diffusion reaction equation

We consider the same refined meshes of the cube as before, composed of tetrahedra
for the first case with the number of tetrahedra varying in Ntet ∈ {48, 384, 1296, 3072}
and polyhedra for the second case with the number of polyhedra varying in Npoly ∈
{10, 100, 400, 700}.

We plot the errors for p = 1, 2, 3, measured in terms of both the L2(Ω) norm and DG

norm versus the diameter of the elements, tetrehedra in Figure 4.8 and polyhedra in
Figure 4.10. For the polyhedral mesh we report also the errors for p = 4. Again we
observe that ||u−uh||L2(Ω) and ||u−uh||DG converge to zero at the optimal rates O(hp+1)

and O(hp) respectively, as the mesh size h tends to zero for each fixed p confirming the
optimality of the PolyDG method for diffusion-reaction problems in accordance with the
theoretical convergence results, see Theorem 2.2 and Theorem 2.3.

54 4| Numerical Tests

0.3 0.4 0.5 0.6 0.7 0.8

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Plot of the errors for Diffusion Reaction Equation - Tetrahedral Mesh

p = 1

Order2

p = 2

Order3

p = 3

Order4

Figure 4.7: Test case 2. Computed errors in the L2 norm for p = 1, 2, 3 (tetrahedral
meshes)

0.3 0.4 0.5 0.6 0.7 0.8

h

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Reaction Equation - Tetrahedral Mesh

p = 1

Order1

p = 2

Order2

p = 3

Order3

Figure 4.8: Test case 2. Computed errors in the DG norm for p = 1, 2, 3 (tetrahedral
meshes)

4| Numerical Tests 55

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Reaction Equation - Polyhedral Mesh

p = 1

Order2

p = 2

Order3

p = 3

Order4

p = 4

Order5

Figure 4.9: Test case 2. Computed errors in the L2 norm for p = 1, 2, 3, 4 (polyhedral
meshes)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

h

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Reaction Equation - Polyhedral Mesh

p = 1

Order1

p = 2

Order2

p = 3

Order3

p = 4

Order4

Figure 4.10: Test case 2. Computed errors in the DG norm for p = 1, 2, 3, 4 (polyhedral
meshes)

56 4| Numerical Tests

4.3. Test case 3

We already mentioned that one of the advantages of choosing polytopic element shapes
over standard simplicial/hexahedral elements is that the average number of elements
needed to discretize complicated domains is smaller and this allows to reduce the com-
plexity of the given computational geometry and that this advantage becomes even more
evident whenever the domain contains complex geometrical features. In this section we
present a numerical test in which we solve the PDE problem (4.1) in Section 4.1 with
c = 0. We solve the diffusion problem with the SIP PolyDG method on the agglomerated
mesh of a human brain with f(x, y, z) = −exyz((xy)2 + (xz)2 + (yz)2) and gD = exyz.

The three-dimensional mesh of a human brain is one example of a very complicated
geometry and the PolyDG method is perfectly suited to be employed in the context of
brain modelling. In a recent work, [29] they discretize multiple networks poroelastic model
of the human brain in space by using the PolyDG method.

If we consider the tetrahedral mesh in Figure 4.11a, we cannot solve the numerical problem
on this kind of mesh because the number of degrees of freedom is too high for p ≥ 2. For
this reason we solve the numerical problem on the polyhedral mesh in Figure 4.11b and
on the tetrahedral mesh in Figure 4.11a for p = 1. The polyhedral mesh is obtained with
METIS by agglomerating the tetrahedral mesh in Figure 4.11a and by choosing a number
of polyhedra Npoly = 2000. In Figure 4.12 we can see a plot of the numerical solution.
We report in Table 4.1 the errors in the L2 norm and in the DG norm for p = 1 solving
the problem with the tetrahedral (Ntet = 127824) and polyhedral mesh (Npoly = 2000),
respectively. We notice that solving the problem on the polyhedral mesh, we reduce the
number of elements and the computed errors (both in L2 and DG norm) are even lower
than the errors obtained by solving the problem employing the tetrahedral mesh.

4| Numerical Tests 57

(a) Tetrahedral mesh of
the brain with Ntet =

127824 .

(b) Agglomerated mesh of the brain
with Npoly = 2000 .

Figure 4.11: Mesh of the human brain. In Figure 4.11a we have the tetrahderal mesh
composed of Ntet = 127824. In Figure 4.11b we have the agglomerated polyhedral mesh
with Npoly = 2000 obtained with METIS from the tetrahderal mesh in Figure 4.11a.

Figure 4.12: Test case 3. Numerical solution of the diffusion equation with f(x, y, z) =

−exyz((xy)2 + (xz)2 + (yz)2) and gD = exyz solved on the agglomerated mesh of the brain
with Npoly = 2000.

58 4| Numerical Tests

Element type L2 norm DG norm h

tetrahedra 1.21 10−6 1.66 10−3 1.08 10−2

polyhedra 3.47 10−8 1.39 10−5 3.52 10−2

Table 4.1: Test case 3. Computed errors in norm L2 and DG for p = 1 solving the problem
with the tetrahedral (Ntet = 127824) and polyhedral mesh (Npoly = 2000), respectively.

4.4. Test case 4

Now we investigate the numerical solution of a problem for which there is not a known
analytical solution. We consider again the diffusion problem (4.1) with c = 0 and we
choose f(x, y, z) = e−(x2+y2+z2) and gD = 0. We solve this problem with the SIP PolyDG
method on the agglomerated mesh of the brain in Fig 4.11b with Npoly = 2000 and
choosing p = 1. In Figure 4.13 we can see the numerical solution of the diffusion problem
with this new function f .

4| Numerical Tests 59

Figure 4.13: Test case 4. Numerical solution of the diffusion problem with f(x, y, z) =

e−(x2+y2+z2) and gD = 0 solved on the agglomerated mesh of the brain with Npoly = 2000.
In the first image there is the three-dimensional numerical solution of the brain. The other
two images show the numerical solution on two different sections of the human brain.

61

5| Conclusions and future

developments

In this work of thesis we recalled the main theoretical results on the discontinuous Galerkin
methods on polytopic mesh. We introduced the library LYMPH3D to solve diffusion-
reaction problems with the PolyDG method in three-dimensions. We described in detail
the main functions of the library and we presented two numerical tests of a pure diffusion
equation and of a diffusion reaction equation on a simple mesh of a cube. These tests
confirmed the known theoretical results on the discontinuous Galerkin methods on tetra-
hedral and polyhedral meshes. Therefore, we confirm the possibility to use this library
to solve these kind of problems on agglomerated polyhedral meshes. Then we solved the
diffusion equation on a complicated geometry of the human brain. There are many pos-
sible future developments of this work in order to make the library as general as possible.
We recall that in the library we compute the integrals using the Sub-Tessellation method,
see Section 2.3.2. This method always requires a tetrahedral mesh T fine

h . Here, this is
not an issue since we create the polyhedral mesh via agglomeration of a tetrahedral mesh.
Therefore, we already have at our disposal the mesh T fine

h . However, in order to compute
the integrals to assemble the linear system we need to perform a loop on the tetrahedral
elements, and this is computationally expensive. One possible improvement of this work
is to introduce in the library the Quadrature Free algorithm (see [5]) to compute the
integrals without the need of the tetrahedral mesh T fine

h . It has been shown that this
integration approach leads to a considerable improvement in the computational perfor-
mance compared to classical quadrature algorithms based on sub-tessellation, in both two
and three-dimensions.

Moreover, for now the library can be used to solve diffusion equations on tetrahedral
meshes and polyhedral meshes obtained as agglomeration of tetrahedral meshes. One
idea could be to expand the library in order to read generic hybrid grids based on a
convenient combination of hexahedral/tetrahedral/prysmatic/polytopic elements. These
computational hybrid grids are easy to be generated. The idea is to generate an initial
(hexahedral/tetrahedral in three dimensions) mesh, based on employing standard mesh

62 5| Conclusions and future developments

generators; then elements intersecting the irregularities in the geometry are suitably cut
and/or agglomerated, thus generating polytopes, while keeping a regular structure else-
where.

Another possible development of the library is to implement the algorithms to solve more
complicated problems, first introducing also the transport term in a general elliptic PDE,
then trying to solve a dynamic equation. The idea is that this library is the starting
point in order to have an efficient open source library to solve heterogeneous differential
problems.

63

Bibliography

[1] J. Aghili, D. A. Di Pietro, and B. Ruffini. An hp-Hybrid High-order method for vari-
able diffusion on general meshes. Computational Methods in Applied Mathematics,
17(3):359–376, 2017.

[2] P. F. Antonietti, S. Giani, and P. Houston. hp-version composite discontinuous
Galerkin methods for elliptic problems on complicated domains. SIAM Journal on
Scientific Computing, 35(3):A1417–A1439, 2013.

[3] P. F. Antonietti, S. Giani, and P. Houston. Domain decomposition preconditioners
for discontinuous Galerkin methods for elliptic problems on complicated domains.
Journal of Scientific Computing, 60:203–227, 2014.

[4] P. F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E. H. Georgoulis, S. Giani, and
P. Houston. Review of Discontinuous Galerkin Finite Element Methods for Partial
Differential Equations on Complicated Domains, pages 281–310. Springer Interna-
tional Publishing, Cham, 2016.

[5] P. F. Antonietti, P. Houston, and G. Pennesi. Fast numerical integration on polytopic
meshes with applications to discontinuous Galerkin finite element methods. Journal
of Scientific Computing, 77(3):1339–1370, 2018.

[6] P. F. Antonietti, G. Manzini, and M. Verani. The fully nonconforming virtual element
method for biharmonic problems. Mathematical Models and Methods in Applied
Sciences, 28(02):387–407, 2018.

[7] P. F. Antonietti, C. Facciolà, P. Houston, I. Mazzieri, G. Pennesi, and M. Verani.
High–order Discontinuous Galerkin Methods on Polyhedral Grids for Geophysical Ap-
plications: Seismic Wave Propagation and Fractured Reservoir Simulations, pages
159–225. Springer International Publishing, Cham, 2021.

[8] E. Baas and J. H. Kuiper. A numerical model of heterogeneous surface strains in
polymer scaffolds. Journal of biomechanics, 41(6):1374–1378, 2008.

[9] E. Baas, J. H. Kuiper, Y. Yang, M. A. Wood, and A. J. El Haj. In vitro bone growth

64 | Bibliography

responds to local mechanical strain in three-dimensional polymer scaffolds. Journal
of biomechanics, 43(4):733–739, 2010.

[10] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo.
Basic principles of virtual element methods. Mathematical Models and Methods in
Applied Sciences, 23(01):199–214, 2013.

[11] L. Botti and D. A. Di Pietro. Assessment of hybrid high-order methods on curved
meshes and comparison with discontinuous Galerkin methods. Journal of Computa-
tional Physics, 370:58–84, 2018.

[12] L. Botti, D. A. Di Pietro, and J. Droniou. A Hybrid High-Order method for the
incompressible Navier–Stokes equations based on Temam’s device. Journal of Com-
putational Physics, 376:786–816, 2019.

[13] M. Botti, D. A. Di Pietro, and P. Sochala. A Hybrid High-Order method for nonlinear
elasticity. SIAM Journal on Numerical Analysis, 55(6):2687–2717, 2017.

[14] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods,
volume 15 of Texts in Applied Mathematics. Springer New York, NY, 3 edition, 2008.

[15] F. Brezzi, A. Buffa, and K. Lipnikov. Mimetic finite differences for elliptic problems.
ESAIM: Mathematical Modelling and Numerical Analysis, 43(2):277–295, 2009.

[16] A. Cangiani, G. Manzini, and A. Russo. Convergence analysis of the mimetic finite
difference method for elliptic problems. SIAM Journal on Numerical Analysis, 47
(4):2612–2637, 2009.

[17] A. Cangiani, E. H. Georgoulis, and M. Jensen. Discontinuous Galerkin Methods for
Mass Transfer through Semipermeable Membranes. SIAM Journal on Numerical
Analysis, 51(5):2911–2934, 2013.

[18] A. Cangiani, Z. Dong, and E. H. Georgoulis. hp-Version space-time discontinuous
Galerkin methods for parabolic problems on prismatic meshes, 2017.

[19] A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston. Hp-version discontinu-
ous Galerkin methods on polytopic meshes. SpringerBriefs in Mathematics,Springer
International Publishing, 2017.

[20] A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston. Hp-Version Discontinuous
Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathemat-
ics, 2017.

[21] A. Cangiani, G. Manzini, and O. J. Sutton. Conforming and nonconforming virtual

| Bibliography 65

element methods for elliptic problems. IMA Journal of Numerical Analysis, 37(3):
1317–1354, 2017.

[22] F. Chave, D. A. Di Pietro, F. Marche, and F. Pigeonneau. A Hybrid High-Order
Method for the Cahn–Hilliard problem in Mixed Form. SIAM Journal on Numerical
Analysis, 54(3):1873–1898, 2016.

[23] F. Chave, D. A. Di Pietro, and L. Formaggia. A hybrid high-order method for
Darcy flows in fractured porous media. SIAM Journal on Scientific Computing, 40
(2):A1063–A1094, 2018.

[24] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Society for Industrial
and Applied Mathematics, 2002.

[25] B. Cockburn, B. Dong, and J. Guzmán. A superconvergent LDG-hybridizable
Galerkin method for second-order elliptic problems. Mathematics of Computation,
77(264):1887–1916, 2008.

[26] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discon-
tinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic
problems. SIAM Journal on Numerical Analysis, 47(2):1319–1365, 2009.

[27] B. Cockburn, J. Guzmán, and H. Wang. Superconvergent discontinuous Galerkin
methods for second-order elliptic problems. Mathematics of Computation, 78(265):
1–24, 2009.

[28] B. Cockburn, J. Gopalakrishnan, and F.-J. Sayas. A projection-based error analysis
of HDG methods. Mathematics of Computation, 79(271):1351–1367, 2010.

[29] M. Corti, P. F. Antonietti, L. Dede, and A. M. Quarteroni. Numerical Modelling of
the Brain Poromechanics by High-Order Discontinuous Galerkin Methods. M3AS,
2023.

[30] B. Da Veiga, J. Droniou, and G. Manzini. A unified approach for handling convection
terms in finite volumes and mimetic discretization methods for elliptic problems. IMA
journal of numerical analysis, 31(4):1357–1401, 2011.

[31] B. A. de Dios, K. Lipnikov, and G. Manzini. The nonconforming virtual element
method. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):879–904,
2016.

[32] D. Di Pietro and J. Droniou. A Hybrid High-Order method for Leray–Lions elliptic
equations on general meshes. Mathematics of Computation, 86(307):2159–2191, 2017.

66 | Bibliography

[33] D. A. Di Pietro and J. Droniou. W s, p-approximation properties of elliptic projectors
on polynomial spaces, with application to the error analysis of a Hybrid High-Order
discretisation of Leray–Lions problems. Mathematical Models and Methods in Applied
Sciences, 27(05):879–908, 2017.

[34] D. A. Di Pietro and A. Ern. Hybrid high-order methods for variable-diffusion prob-
lems on general meshes. Comptes Rendus Mathématique, 353(1):31–34, 2015.

[35] D. A. Di Pietro and S. Krell. A Hybrid High-Order method for the steady incom-
pressible Navier–Stokes problem. Journal of Scientific Computing, 74:1677–1705,
2018.

[36] J. Droniou, R. Eymard, and R. Herbin. Gradient schemes: generic tools for the
numerical analysis of diffusion equations. ESAIM: Mathematical Modelling and Nu-
merical Analysis-Modélisation Mathématique et Analyse Numérique, 50(3):749–781,
2016.

[37] T.-P. Fries and T. Belytschko. The extended/generalized finite element method: an
overview of the method and its applications. International journal for numerical
methods in engineering, 84(3):253–304, 2010.

[38] W. Hackbusch and S. A. Sauter. Composite finite elements for problems containing
small geometric details: Part ii: Implementation and numerical results. Computing
and Visualization in Science, 1(1):15–25, 1997.

[39] W. Hackbusch and S. A. Sauter. Composite finite elements for the approximation of
PDEs on domains with complicated micro-structures. Numerische Mathematik, 75:
447–472, 1997.

[40] P. Houston and N. Sime. Numerical modelling of MPA-CVD reactors with the dis-
continuous Galerkin finite element method. Journal of Physics D: Applied Physics,
50(29):295202, 2017.

[41] P. Houston and E. Süli. Stabilised hp-Finite Element Approximation of Partial
Differential Equations with Nonnegative Characteristic form. Computing, 66:99–119,
2001.

[42] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

[43] G. Karypis and V. Kumar. METIS – Unstructured Graph Partitioning and Sparse
Matrix Ordering System, version 4.0. 2009.

5| BIBLIOGRAPHY 67

[44] A. Quarteroni. Modellistica Numerica per Problemi Differenziali. Springer Milano,
2013.

[45] N. Sime. Numerical modelling of chemical vapour deposition reactors. PhD thesis,
University of Nottingham, 2016.

[46] E. M. STEIN. Singular Integrals and Differentiability Properties of Functions (PMS-
30). Princeton University Press, 1970. ISBN 9780691080796.

[47] N. Sukumar and A. Tabarraei. Conforming polygonal finite elements. International
Journal for Numerical Methods in Engineering, 61(12):2045–2066, 2004.

69

A| Appendix A

In Chapter 3, we have described how the library LYMPH3D works. Notice that in Section
3.1 we focused on the part of the library relative to the mesh. We have seen in detail the
structures Element, Polyhedron and Mesh_Structure and how we perform the ag-
glomeration of the tetrahedral mesh in the function MESH_AGGLOMERATION. More-
over, we have also seen how we compute the key properties of the polyhedra necessary to
solve the problem, in the functions CREATE_POLY_LIST and CREATE_BBOX_EL
(see Algorithm 3.2). In this Appendix we show the implementation in Fortran of some of
the most important functions of the library. Below we can see the implementation of the
following functions, in this order:

1. Lymph3D that is the main program

2. basis and basis_boundary from the module basis_function, see Section 3.2

3. MAKE_MATRICES briefly described in Section 3.3

4. MAKE_RHS briefly described in Section 3.3

5. test where we set the forcing term, the Dirichlet boundary conditions and the
analytical solution, if available, to compute the errors.

6/28/23, 6:16 PM Lymph3D.f90

localhost:34989/e9e7cbd0-c59f-4f3a-a297-8fc61a073ebb/ 1/4

Lymph3D.f90

1 ! Author: Nicoletta De Giosa

2 ! This file is part of the library LYMPH3D

3 !

4 !> @brief Lymph3D (Discontinuous Galerkin methods on polyhedral meshes for PDE problems)

5

6 ! Here starts the code Lymph3D

7

8 program Lymph3D

9

10 #include<petsc/finclude/petscksp.h>

11

12 use petscksp

13 use petscmat

14 use mpi

15 use Poly_setup_mpi

16 use test

17 use Poly_global

18 use Poly_data

19 use Poly_mesh

20 use post_processing

21

22 implicit none

23

24 !>>>

25 ! DEFINITION OF PETSC VARIABLES

26 !>>>

27

28 Mat :: petsc_stiff,petsc_mass ! stiffness and mass matrices

29 Vec :: petsc_sol !solution vector for the algebraic system

30 Vec petsc_rhs ! Right hand side vector for the algebraic system

31

32 KSP :: ksp

33 PC :: pc

34

35 integer (kind=4) :: i,j

36 real(kind=8), dimension(:,:), ALLOCATABLE :: u

37 real(kind=8), dimension(:), ALLOCATABLE :: u_loc

38 integer(kind=4) :: total_dof,ndof,ndof_loc

39 integer(kind=4) :: Np,p,Npoly

40 integer(kind=4),dimension(:),allocatable :: petsc_num

41 integer(kind=4),dimension(:),allocatable :: nnod_num

42 real(kind=8), pointer:: sol_ptr(:)

43 integer(kind=4) :: ip,iter

44 real(kind=8) :: err_L2,err_L2_mpi

45 real(kind=8) :: err_DG,err_DG_mpi

46 real(kind=8) :: hmax,hmax_mpi

47

48 logical :: IsPoly

49

50 type(Data_Structure) :: PolyData

51 type(Mesh_Structure) :: PolyMesh

52

53 !>>>

54

55 allocate(mpi_stat(MPI_STATUS_SIZE))

56

57 call INITIALIZATION()

58

59 start = MPI_WTIME()

60

61 if (mpi_id.eq.0) then

62 write(*,'(A)')''

63 write(*,'(A)')'<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>'

64 write(*,'(A)')'< >'

65 write(*,'(A)')'< Lymph3D >'

66 write(*,'(A)')'< >'

67 write(*,'(A)')'<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>'

68 write(*,'(A)')''

69 endif

70

71 !>>>

6/28/23, 6:16 PM Lymph3D.f90

localhost:34989/e9e7cbd0-c59f-4f3a-a297-8fc61a073ebb/ 2/4

72 ! READ INPUT FILES AND ALLOCATE VARIABLES

73 !>>>

74

75 call READ_INPUT_FILES(PolyData,PolyMesh)

76

77 !>>>

78 ! CHOOSE TO SOLVE WITH TETRAHEDRA

79 !>>>

80

81 IsPoly=.false.

82 Npoly=PolyMesh%num_elem;

83

84 !*!>>>

85 ! CHOOSE TO SOLVE WITH POLYHEDRA

86 !>>>

87

88 Npoly=500;

89 if (Npoly/=PolyMesh%num_elem) IsPoly=.true.

90

91 !>>>

92 ! PARTITION OF THE GRID AND GENERATION OF LOCAL CONNECTIVITY

93 !>>>

94

95 call MAKE_PARTITION_AND_MPI_FILES(PolyData,PolyMesh,Npoly)

96

97 print *,'Done reading mesh'

98

99 Np=PolyMesh%Elem_loc(1)%NDof_loc;

100 p=PolyMesh%Elem_loc(1)%Degree

101

102 total_dof=PolyMesh%num_poly*Np;

103 ndof=PolyMesh%num_poly_loc*Np;

104

105 allocate(petsc_num(total_dof))

106

107 do i=1,total_dof

108 petsc_num(i)=i-1

109 end do

110

111 !>>>

112 ! SET PETSC VECTORS AND MATRICES

113 !>>>

114

115 print *,'SET PETSC MATRICES AND VECTORS'

116

117 call SET_PETSC_MATRICES(total_dof,ndof,petsc_stiff,petsc_mass)

118

119 call SET_PETSC_VECTORS(total_dof,ndof,petsc_rhs,petsc_sol)

120

121 !>>>

122 ! ASSEMBLE MATRICES

123 !>>>

124

125 print *,'ASSEMBLE PETSC MATRIX'

126

127 call MAKE_MATRICES(PolyMesh,petsc_num,total_dof,Np,petsc_stiff,petsc_mass)

128

129 !>>>

130 ! ASSEMBLE RIGHT HAND SIDE

131 !>>>

132

133 print *,'ASSEMBLE RHS'

134

135 call MAKE_RHS(PolyMesh,petsc_num,total_dof,Np, petsc_rhs)

136

137 call MPI_BARRIER(MPI_COMM_WORLD, mpi_ierr)

138

139 !>>>

140 ! SETTING SOLVER

141 !>>>

142

143 print *,'SETTING SOLVER'

144

145 call SOLVER_SETTINGS(petsc_stiff,ksp,pc)

146

6/28/23, 6:16 PM Lymph3D.f90

localhost:34989/e9e7cbd0-c59f-4f3a-a297-8fc61a073ebb/ 3/4

147 !>>>

148 ! DEALLOCATING PETSC MATRICES

149 !>>>

150

151 PetscCallA(MatDestroy(petsc_stiff,mpi_ierr))

152 PetscCallA(MatDestroy(petsc_mass,mpi_ierr))

153

154 !>>>

155 ! CALLING SOLVER

156 !>>>

157

158 print *,'Calling solver: '

159

160 PetscCallA(KSPSolve(ksp, petsc_rhs, petsc_sol, mpi_ierr))

161

162 !>>>

163 ! DESTROYING KSP SOLVER AND RIGH HAND SIDE

164 !>>>

165

166 PetscCallA(KSPDestroy(ksp, mpi_ierr))

167 PetscCallA(VecDestroy(petsc_rhs,mpi_ierr))

168

169 !>>>

170 ! STORE LOCAL NUMERATION TO RECONSTRUCT THE SOLUTION

171 !>>>

172

173 allocate(nnod_num(ndof))

174

175 call CREATE_LOCAL_NODE_NUM(nnod_num,ndof)

176

177 !>>>

178 ! SCATTER PETSC SOLUTION AND STORE IN A FORTRAN ARRAY

179 !>>>

180

181 allocate(u_loc(ndof))

182

183 if (IsPoly) then

184 print *,'NO SCATTER SOLUTION'

185 PetscCallA(VecGetArrayF90(petsc_sol,sol_ptr,mpi_ierr))

186 u_loc(1:ndof) = sol_ptr

187 else

188 PRINT *,'SCATTER SOLUTION'

189 call PETSC_SCATTER_VECTOR(ndof,total_dof,nnod_num,petsc_sol,u_loc)

190 endif

191

192 !>>>

193 ! DESTROY PETSC_SOL

194 !>>>

195

196 PetscCallA(VecDestroy(petsc_sol,mpi_ierr))

197

198 !>>>

199 ! RECONSTRUCT SOLUTION MATRIX FOR POST-PROCESSING

200 !>>>

201

202 ndof_loc=PolyMesh%num_poly_loc

203 allocate(u(Np,ndof_loc))

204 u=RESHAPE(u_loc, (/Np, ndof_loc /))

205 deallocate(u_loc)

206

207 print *,'Done with the solution'

208

209 !>>>

210 ! POST-PROCESSING: COMPUTING THE ERRORS

211 !>>>

212

213 err_L2=0

214 err_DG=0

215

216 call ERRORS(PolyMesh, u,err_L2_mpi, err_DG_mpi)

217

218 call MPI_BARRIER(MPI_COMM_WORLD,mpi_ierr)

219

220 call MPI_REDUCE(err_L2_mpi, err_L2, 1, MPI_DOUBLE_PRECISION, MPI_SUM, &

221 0, MPI_COMM_WORLD, mpi_ierr)

6/28/23, 6:16 PM Lymph3D.f90

localhost:34989/e9e7cbd0-c59f-4f3a-a297-8fc61a073ebb/ 4/4

222

223 call MPI_REDUCE(err_DG_mpi, err_DG, 1,MPI_DOUBLE_PRECISION , MPI_SUM, &

224 0, MPI_COMM_WORLD, mpi_ierr)

225

226 if (mpi_id==0) then

227 err_L2 = sqrt(err_L2);

228 err_DG = sqrt(err_DG)

229 print *,'Done with the errors!'

230 endif

231 call MPI_BARRIER(MPI_COMM_WORLD,mpi_ierr)

232

233 if (mpi_id==0) then

234 print *,'ERROR IN NORM L2: ',err_L2

235 print *,'ERROR IN NORM DG: ',err_DG

236 endif

237

238 hmax_mpi=compute_hmax(PolyMesh)

239

240 call MPI_REDUCE(hmax_mpi, hmax, 1,MPI_DOUBLE_PRECISION , MPI_MAX, &

241 0, MPI_COMM_WORLD, mpi_ierr)

242

243 call MPI_BARRIER(MPI_COMM_WORLD,mpi_ierr)

244

245 if(mpi_id==0) print *,hmax

246

247 if (mpi_id==0) call WRITE_ERRORS(p,err_DG,err_L2,hmax)

248

249 !>>>

250 ! POST-PROCESSING:EXPORTING THE SOLUTION

251 !>>>

252

253 call EXPORT_SOLUTION(PolyMesh,u,mpi_id)

254

255 !>>>

256 ! END SETUP

257 !>>>

258

259 finish = MPI_WTIME()

260 call calc_time(time_hour, time_min, time_sec, int(finish-start))

261

262 if (mpi_id.eq.0) then

263 write(*,'(A)')

264 write(*,'(A)')'---'

265 write(*,'(A,I2,A,I2,A,I2,A)') &

266 'Set-up time = ',time_hour,' h ' ,time_min,' m ' ,time_sec,' s'

267 write(*,'(A)')'---'

268 write(*,'(A)')

269 endif

270

271 !>>>

272 ! FINALIZE MPI AND PETSC

273 !>>>

274

275 call PetscFinalize(mpi_ierr)

276 call MPI_FINALIZE(mpi_ierr)

277

278 end program Lymph3D

279

280

281

282

283

6/21/23, 5:27 PM basis_function.f90

localhost:43821/af4f7f42-deb7-4faf-82e2-af66cf4da20e/ 6/8

371 subroutine basis(phi, dphi, b_box ,Np, blist, Fk, nod3 , nq3)

372 implicit none

373

374 !> This function evaluates the basis functions at the 3D quadrature nodes

375 ! for every polyhedral element.

376

377 integer(kind=4) :: nq3,Np

378 real(kind=8), dimension(3,2) :: b_box

379 real(kind=8),dimension(3,4) :: Fk

380 integer (kind=4), dimension(Np,3) :: blist

381 real(kind=8),dimension(4,nq3) :: nod3

382 real(kind=8), dimension(Np,nq3) :: phi

383 real(kind=8), dimension(3,Np,nq3) :: dphi

384 real(kind=8),dimension(nq3) :: x_p,y_p,z_p

385 real(kind=8),dimension(2) :: intx,inty,intz

386 real(kind=8),dimension(3,nq3) :: pt

387 real(kind=8), dimension(nq3) :: valx,valy,valz

388 real(kind=8), dimension(nq3) :: dvalx,dvaly,dvalz

389

390 integer(kind=4)::j,q,f,l

391

392 do j=1,Np

393 do q=1,nq3

394 phi(j,q)=0.0

395 do l=1,3

396 dphi(l,j,q) = 0.0

397 end do

398 end do

399 end do

400

401 do j=1,3

402 do q=1,nq3

403 pt(j,q)=0.0

404 do l=1,4

405 pt(j,q) = pt(j,q)+Fk(j,l)*nod3(l,q)

406 end do

407 end do

408 end do

409

410 do q=1,nq3

411 x_p(q)=pt(1,q)

412 y_p(q)=pt(2,q)

413 z_p(q)=pt(3,q)

414 end do

415

416 do j=1,2

417 intx(j)=b_box(1,j)

418 inty(j)=b_box(2,j)

419 intz(j)=b_box(3,j)

420 end do

421 do f = 1,Np

422 do q=1,nq3

423 valx=0.0

424 dvalx(q)=0.0

425 valy=0.0

426 dvaly(q)=0.0

427 valz=0.0

428 dvalz(q)=0.0

429 end do

430

431 call LegendreP(valx, dvalx, x_p, blist(f,1), intx, nq3)

432 call LegendreP(valy, dvaly, y_p, blist(f,2), inty, nq3)

433 call LegendreP(valz, dvalz, z_p, blist(f,3), intz, nq3)

434 do q=1,nq3

435 phi(f,q) = valx(q)*valy(q)*valz(q)

436 dphi(1,f,q) = dvalx(q)*valy(q)*valz(q)

437 dphi(2,f,q) = valx(q)*dvaly(q)*valz(q)

438 dphi(3,f,q) = valx(q)*valy(q)*dvalz(q)

439 end do

440 end do

441

442 end subroutine basis

443

444

445 subroutine basis_boundary(phi_b,grad_b,e_E1,E2,b_box1,b_box2,blist,Np, &

446 Fk, node_maps, nod2, nq2)

447

448 !> This function evaluates for every face the basis functions both of the

449 ! two sharing tratrahedra E1 and E2 at the 2D quadrature nodes.

450

6/21/23, 5:27 PM basis_function.f90

localhost:43821/af4f7f42-deb7-4faf-82e2-af66cf4da20e/ 7/8

451 integer(kind=4) :: nq2,Np

452 real(kind=8), dimension(3,2) :: b_box1

453 real(kind=8), dimension(3,2) :: b_box2

454 integer(kind=4),dimension(Np,3) :: blist

455 real(kind=8), dimension(3,4) :: Fk

456 real(kind=8), dimension(4,nq2) :: nod2

457 real(kind=8), dimension(4,4,4) :: node_maps

458 real(kind=8), dimension(Np,nq2,2) :: phi_b

459 real(kind=8), dimension(3,Np,nq2,2) :: grad_b

460 real(kind=8), dimension(3,nq2) :: pt

461 real(kind=8), dimension(3,4) :: temp

462

463 real(kind=8),dimension(nq2) :: x_p,y_p,z_p

464 real(kind=8),dimension(2) :: intx,inty,intz

465

466 real(kind=8), dimension(nq2) :: valx,valy,valz

467 real(kind=8), dimension(nq2) :: dvalx,dvaly,dvalz

468 integer(kind=4) :: j,q,l,f

469 integer(kind=4) :: e_E1,E2

470

471 do j=1,Np

472 do q=1,nq2

473 phi_b(j,q,1)=0.0

474 phi_b(j,q,2)=0.0

475 do l=1,3

476 grad_b(l,j,q,1) = 0.0

477 grad_b(l,j,q,2) = 0.0

478 end do

479 end do

480 end do

481

482 do j=1,3

483 do q=1,4

484 temp(j,q)=0.0

485 do l=1,4

486 temp(j,q) = temp(j,q)+Fk(j,l)*node_maps(l,q,e_E1)

487 end do

488 end do

489 end do

490

491 do j=1,3

492 do q=1,nq2

493 pt(j,q)=0.0

494 do l=1,4

495 pt(j,q)=pt(j,q)+temp(j,l)*nod2(l,q)

496 enddo

497 enddo

498 enddo

499

500 do q=1,nq2

501 x_p(q)=pt(1,q)

502 y_p(q)=pt(2,q)

503 z_p(q)=pt(3,q)

504 end do

505

506 do j=1,2

507 intx(j)=b_box1(1,j)

508 inty(j)=b_box1(2,j)

509 intz(j)=b_box1(3,j)

510 end do

511

512 do f = 1,Np

513

514 do q=1,nq2

515 valx=0.0

516 dvalx(q)=0.0

517 valy=0.0

518 dvaly(q)=0.0

519 valz=0.0

520 dvalz(q)=0.0

521 end do

522

523 call LegendreP(valx, dvalx, x_p, blist(f,1), intx, nq2)

524 call LegendreP(valy, dvaly, y_p, blist(f,2), inty, nq2)

525 call LegendreP(valz, dvalz, z_p, blist(f,3), intz, nq2)

526

527 do q=1,nq2

528 phi_b(f,q,1) = valx(q)*valy(q)*valz(q)

529 grad_b(1,f,q,1) = dvalx(q)*valy(q)*valz(q)

530 grad_b(2,f,q,1) = valx(q)*dvaly(q)*valz(q)

6/21/23, 5:27 PM basis_function.f90

localhost:43821/af4f7f42-deb7-4faf-82e2-af66cf4da20e/ 8/8

531 grad_b(3,f,q,1) = valx(q)*valy(q)*dvalz(q)

532 end do

533 end do

534

535 if (E2 .ne. 0) then

536 do j=1,2

537 intx(j)=b_box2(1,j)

538 inty(j)=b_box2(2,j)

539 intz(j)=b_box2(3,j)

540 end do

541 do f = 1,Np

542 do q=1,nq2

543 valx=0.0

544 dvalx(q)=0.0

545 valy=0.0

546 dvaly(q)=0.0

547 valz=0.0

548 dvalz(q)=0.0

549 end do

550 call LegendreP(valx, dvalx, x_p, blist(f,1), intx, nq2)

551 call LegendreP(valy, dvaly, y_p, blist(f,2), inty, nq2)

552 call LegendreP(valz, dvalz, z_p, blist(f,3), intz, nq2)

553 do q=1,nq2

554 phi_b(f,q,2) = valx(q)*valy(q)*valz(q)

555 grad_b(1,f,q,2) = dvalx(q)*valy(q)*valz(q)

556 grad_b(2,f,q,2) = valx(q)*dvaly(q)*valz(q)

557 grad_b(3,f,q,2) = valx(q)*valy(q)*dvalz(q)

558 end do

559

560 end do

561 end if

562

563 end subroutine basis_boundary

564

565

566 end module basis_function

6/21/23, 5:56 PM MAKE_MATRICES.f90

localhost:42373/9fa3dc71-09f6-4489-bbe0-603dd6271a11/ 1/4

MAKE_MATRICES.f90

1 ! Author: Nicoletta De Giosa

2 ! This file is part of the library LYMPH

3 !

4 !> @brief MAKE_MATRICES (Assemble of the petsc stiffness and mass matrices)

5

6 subroutine MAKE_MATRICES(PolyMesh,local_petsc_num,Np,total_dof, &

7 petsc_stiff,petsc_mass)

8 #include<petsc/finclude/petscksp.h>

9

10 use petscksp

11 use Poly_mesh

12 use mpi

13 use Poly_setup_mpi

14 use test

15 use basis_function

16 use assemble_local

17 use local_search

18

19 implicit none

20

21 Mat :: petsc_stiff,petsc_mass

22 PetscScalar :: val(1),val1(1),val2(1),val3(1),val4(1)

23 PetscInt :: irow(1), jcol(1),irow2(1),jcol2(1)

24

25 type(Mesh_Structure) :: PolyMesh

26

27 integer(kind=4) :: nq3,nq2,Np,N,total_dof

28 integer(kind=4) :: ie_loc,ie_glob

29 integer(kind=4) :: ivert,id_node

30 integer(kind=4) :: ipoly_loc,ipoly_glob,ipoly2_loc,ipoly2_glob

31 integer(kind=4) :: n_tet_in_poly,iface_poly

32 integer(kind=4) :: beg,beg2

33 integer(kind=4) :: q,i,j,k,l

34 integer(kind=4) :: e,E1,E2

35 integer(kind=4), dimension(total_dof) :: local_petsc_num

36 integer(kind=4), dimension(:,:), allocatable ::blist

37 real(kind=8), dimension(4,4,4) :: node_maps

38 real(kind=8), dimension(2,3,4) :: node_maps_inv

39 real(kind=8), dimension(:,:), allocatable :: nod3,nod2

40 real(kind=8), dimension(:), allocatable :: wei3,wei2

41 real(kind=8), dimension(:,:), allocatable :: phi

42 real(kind=8), dimension(:,:,:), allocatable :: dphi

43 real(kind=8), dimension(:,:,:), allocatable :: phi_b

44 real(kind=8), dimension(:,:,:,:), allocatable :: grad_b

45 real(kind=8), dimension(3,4) :: Fk

46 real(kind=8), dimension(4) :: x,y,z

47 real(kind=8), dimension(3,3) :: Jinv

48 real(kind=8) :: Jdet

49

50 real(kind=8),dimension(Np,Np) :: V_loc,M_loc

51 real(kind=8),dimension(Np,Np) :: S_loc,I_loc,IN_loc,SN_loc

52

53 real(kind=8),dimension(Np,Np) :: temp1

54 real(kind=8),dimension(3) :: temp2

55 real(kind=8),dimension(Np) :: temp3,temp4

56

57 real(kind=8),dimension(3) :: nn

58 real(kind=8) :: theta,sigma,c

59 integer(kind=4),dimension(4) :: face_flag

60

61 ! Set the properties

62 call set_properties(sigma,theta,c)

63

64 N=PolyMesh%Elem_loc(1)%Degree;

65

66 ! Compute the quadrature nodes in 3D and 2D

67 call quadrature(nod2,wei2,nod3,wei3,node_maps,node_maps_inv,N,nq3,nq2)

68

69 allocate (blist(Np,3))

70 call basis_list(blist,N,Np)

71

72 allocate(phi(Np,nq3))

73 allocate(dphi(3,Np,nq3))

74 allocate(phi_b(Np,nq2,2))

75 allocate(grad_b(3,Np,nq2,2))

76

6/21/23, 5:56 PM MAKE_MATRICES.f90

localhost:42373/9fa3dc71-09f6-4489-bbe0-603dd6271a11/ 2/4

77 ! Begin loop on the tetrahedra

78 do ie_loc = 1, PolyMesh%num_elem_loc

79

80 ! Initialize volume matrices

81

82 do i=1,Np

83 do j=1,Np

84 V_loc(i,j)=0.0

85 enddo

86 enddo

87

88 do i=1,Np

89 do j=1,Np

90 M_loc(i,j)=0.0

91 enddo

92 enddo

93

94 ! Compute coordinates of the tetrahedron

95

96 do ivert = 1, PolyMesh%Elem_loc(ie_loc)%num_vert

97

98 call FIND_POS_LOC_NODE(PolyMesh%node_loc2glo,PolyMesh%num_node_loc, &

99 PolyMesh%Elem_loc(ie_loc)%vert(ivert),id_node)

100

101 x(ivert)=PolyMesh%coord_x(id_node)

102 y(ivert)=PolyMesh%coord_y(id_node)

103 z(ivert)=PolyMesh%coord_z(id_node)

104

105 enddo

106

107 ! Compute reference map for the tetrahedron

108 call jacobians(x , y, z, Fk , Jinv , Jdet)

109

110 ie_glob=PolyMesh%elem_loc2glo(ie_loc)

111

112 ! Find the polyhedron that contains the tetrahedron

113 ipoly_glob=PolyMesh%elem_in_poly(ie_glob)

114

115 call GET_EL_LOC_FROM_EL_GLO(PolyMesh%poly_loc2glo, &

116 PolyMesh%num_poly_loc, &

117 ipoly_glob,ipoly_loc)

118

119 ! Evaluate basis functions on the edges of the Bounding Box of the polyhedron

120 call basis(phi, dphi, PolyMesh%Poly(ipoly_loc)%b_box, Np, blist, &

121 Fk, nod3 , nq3)

122

123 ! Compute the local volume stiffness matrix V_loc

124 call MAKE_STIFF_TET_LOC(Np,Jdet,wei3,nq3,dphi,V_loc)

125

126 ! Compute the local volume mass matrix M_loc

127 call MAKE_MASS_LOC(Np,Jdet,wei3,nq3,phi,M_loc)

128

129 ! Insert the values of V_loc in the entries of the global stiffness matrix

130 beg=(ipoly_glob-1)*Np+1

131 do i=1,Np

132 do j=1,Np

133 val(1) = V_loc(i,j)

134 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

135 jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

136 if (val(1) .ne. 0) then

137 PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol, val, ADD_VALUES, mpi_ierr))

138 endif

139 enddo

140 enddo

141

142 ! Insert the values of M_loc in the entries of the global mass matrix

143 do i=1,Np

144 do j=1,Np

145 val(1) = M_loc(i,j)

146 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

147 jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

148 if (val(1) .ne. 0) then

149 PetscCall(MatSetValues(petsc_mass, 1, irow, 1, jcol, val, ADD_VALUES, mpi_ierr))

150 endif

151 enddo

152 enddo

153

154 E1=ie_loc

155

156 ! Begin loop on the faces of the tetrahedron E1

6/21/23, 5:56 PM MAKE_MATRICES.f90

localhost:42373/9fa3dc71-09f6-4489-bbe0-603dd6271a11/ 3/4

157

158 do e=1,PolyMesh%Elem_loc(ie_loc)%num_faces

159

160 face_flag(e)=0

161

162 ! Initialize face matrices

163

164 do i=1,Np

165 do j=1,Np

166 I_loc(i,j)=0.0

167 S_loc(i,j)=0.0

168 IN_loc(i,j)=0.0

169 SN_loc(i,j)=0.0

170 enddo

171 enddo

172

173 ! Find neighbouring tetrahedron E2

174 E2=PolyMesh%Elem_loc(ie_loc)%neigh_el(e,2)

175

176 ! If E2 is not on the boundary, find the polyhedron in which

177 ! it is contained

178 if (E2 /=0) then

179 ipoly2_glob=PolyMesh%elem_in_poly(E2)

180 call GET_EL_LOC_FROM_EL_GLO(PolyMesh%poly_loc2glo, &

181 PolyMesh%num_poly_loc, &

182 ipoly2_glob,ipoly2_loc)

183 endif

184

185 ! If E2 is not on the boundary, check if the two neighbouring

186 ! tetrahedra belong to the same polyhedron

187 if (E2 /=0) then

188 if (ipoly_glob == ipoly2_glob) then

189 face_flag(e)=1

190 endif

191 end if

192

193 if (face_flag(e) ==0) then

194 nn(1)=PolyMesh%Elem_loc(ie_loc)%normal(e,1)

195 nn(2)=PolyMesh%Elem_loc(ie_loc)%normal(e,2)

196 nn(3)=PolyMesh%Elem_loc(ie_loc)%normal(e,3)

197

198 ! If the two polyhedra belong to the same processor compute

199 ! the basis functions on the faces and the local matrices

200 ! on the faces

201 ! If not, retrieve bbox of neighbouring element from

202 ! neigh_bbox and compute the basis functions on the faces

203 ! and the local matrices on the faces

204

205 if (ipoly2_loc==0) then

206

207 n_tet_in_poly=PolyMesh%Poly(ipoly_loc)%num_tet_in_poly

208

209 do j=1,n_tet_in_poly

210 if (PolyMesh%Poly(ipoly_loc)%tet_in_poly(j)==ie_glob) then

211 iface_poly=PolyMesh%Elem_loc(ie_loc)%num_faces*(j-1)+e

212 endif

213 enddo

214

215 call basis_boundary(phi_b,grad_b,e,E2, PolyMesh%Poly(ipoly_loc)%b_box,&

216 PolyMesh%Poly(ipoly_loc)%neigh_bbox(iface_poly,:,:),&

217 blist, Np, Fk, node_maps, nod2, nq2)

218

219 call MAKE_STIFF_FACE(theta,sigma,N,Np,E2,PolyMesh%Poly(ipoly_loc)%hk, &

220 PolyMesh%Poly(ipoly_loc)%neigh_hk(iface_poly), nn, &

221 PolyMesh%Elem_loc(ie_loc)%area(e),wei2,nq2,phi_b,&

222 grad_b,S_loc,I_loc,IN_loc,SN_loc)

223 else

224 call basis_boundary(phi_b,grad_b,e,E2,PolyMesh%Poly(ipoly_loc)%b_box,&

225 PolyMesh%Poly(ipoly2_loc)%b_box,blist, Np, &

226 Fk, node_maps, nod2, nq2)

227

228 call MAKE_STIFF_FACE(theta,sigma,N,Np,E2,PolyMesh%Poly(ipoly_loc)%hk, &

229 PolyMesh%Poly(ipoly2_loc)%hk, nn, &

230 PolyMesh%Elem_loc(ie_loc)%area(e),wei2,nq2,phi_b,&

231 grad_b,S_loc,I_loc,IN_loc,SN_loc)

232

233 endif

234 endif

235

236 ! Insert the values of S_loc in the entries

6/21/23, 5:56 PM MAKE_MATRICES.f90

localhost:42373/9fa3dc71-09f6-4489-bbe0-603dd6271a11/ 4/4

237 ! of the global stiffness matrix

238 do i=1,Np

239 do j=1,Np

240 val(1) = S_loc(i,j)

241 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

242 jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

243 if (val(1) .ne. 0.0) then

244 PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol, val, ADD_VALUES, mpi_ierr))

245 endif

246 enddo

247 enddo

248

249 ! Insert the values of I_loc,SN_loc and IN_loc in the entries

250 ! of the global stiffness matrix

251 if (E2==0) then

252 do i=1,Np

253 do j=1,Np

254 val(1) = I_loc(i,j)

255 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

256 jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

257 if (val(1) .ne. 0.0) then

258 PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol, val, ADD_VALUES, mpi_ierr))

259 endif

260 if (val(1) .ne. 0.0) then

261 PetscCall(MatSetValues(petsc_stiff, 1, jcol, 1, irow, val, ADD_VALUES, mpi_ierr))

262 endif

263 enddo

264 enddo

265 else

266 beg2 = (ipoly2_glob-1)*Np+1

267 do i=1,Np

268 do j=1,Np

269 val1(1) = I_loc(i,j)

270 val2(1) = IN_loc(i,j)

271 val3(1) = SN_loc(i,j)

272 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

273 jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

274 irow2(1) = local_petsc_num(beg2+i-1) !(in_petscc)

275 jcol2(1) = local_petsc_num(beg2+j-1) !(ip_petsc)

276

277 if (val1(1) .ne. 0) then

278 PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol, val1, ADD_VALUES, mpi_ierr))

279 endif

280 if (val1(1) .ne. 0) then

281 PetscCall(MatSetValues(petsc_stiff, 1, jcol, 1, irow, val1, ADD_VALUES, mpi_ierr))

282 endif

283 if (val2(1) .ne. 0) then

284 PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol2, val2, ADD_VALUES, mpi_ierr))

285 endif

286 if (val2(1) .ne. 0) then

287 PetscCall(MatSetValues(petsc_stiff, 1, jcol2, 1, irow, val2, ADD_VALUES, mpi_ierr))

288 endif

289 if (val3(1) .ne. 0) then

290 PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol2, val3, ADD_VALUES, mpi_ierr))

291 endif

292 enddo

293 enddo

294

295 endif

296 enddo

297 enddo

298

299 call MPI_BARRIER(MPI_COMM_WORLD, mpi_ierr)

300

301 ! Assembly of petsc stiffness matrix and mass petsc matrix

302 PetscCall(MatAssemblyBegin(petsc_stiff, MAT_FINAL_ASSEMBLY, mpi_ierr))

303 PetscCall(MatAssemblyEnd(petsc_stiff, MAT_FINAL_ASSEMBLY, mpi_ierr))

304

305 PetscCall(MatAssemblyBegin(petsc_mass, MAT_FINAL_ASSEMBLY, mpi_ierr))

306 PetscCall(MatAssemblyEnd(petsc_mass, MAT_FINAL_ASSEMBLY, mpi_ierr))

307

308 ! Compute the total matrix (A+cM)

309 PetscCall(MatAXPY(petsc_stiff,c,petsc_mass, DIFFERENT_NONZERO_PATTERN,mpi_ierr))

310

311 deallocate(phi)

312 deallocate(dphi,phi_b)

313 deallocate(grad_b)

314

315 end subroutine MAKE_MATRICES

6/21/23, 5:55 PM MAKE_RHS.f90

localhost:42373/5c10ba43-8293-48cf-a9d5-64dc28084e84/ 1/3

MAKE_RHS.f90

1 ! Author: Nicoletta De Giosa

2 ! This file is part of the library LYMPH

3 !

4 !> @brief MAKE_RHS (Assemble of the petsc right hand side)

5

6 subroutine MAKE_RHS(PolyMesh,local_petsc_num,Np,total_dof,petsc_rhs)

7

8 #include<petsc/finclude/petscksp.h>

9

10 use petscksp

11 use Poly_mesh

12 use mpi

13 use Poly_setup_mpi

14 use test

15 use basis_function

16 use assemble_local

17 use local_search

18

19 implicit none

20

21 Vec petsc_rhs

22 PetscScalar :: val(1)

23 PetscInt :: irow(1)

24

25 type(Mesh_Structure) :: PolyMesh

26

27 integer(kind=4) :: nq3,nq2,Np,N,total_dof

28 integer(kind=4) :: ie_loc,ie_glob,ivert,id_node,ipoly_glob,ipoly_loc,ipoly2_glob,ipoly2_loc

29 integer(kind=4) :: n_tet_in_poly,iface_poly

30 integer(kind=4) :: e,E1,E2

31 integer(kind=4) :: q,i,j,k,t,l

32 integer(kind=4) :: beg,beg1

33 integer(kind=4), dimension(4) :: face_flag

34 integer(kind=4),dimension(total_dof) :: local_petsc_num

35 integer(kind=4),dimension(:,:), allocatable::blist

36 real(kind=8),dimension(4,4,4) :: node_maps

37 real(kind=8),dimension(2,3,4) :: node_maps_inv

38 real(kind=8),dimension(:,:), allocatable :: nod3,nod2

39 real(kind=8),dimension(:), allocatable :: wei3,wei2

40 real(kind=8), dimension(:,:), allocatable :: phi

41 real(kind=8), dimension(:,:,:), allocatable :: dphi

42 real(kind=8), dimension(:,:,:), allocatable :: phi_b

43 real(kind=8), dimension(:,:,:,:), allocatable :: grad_b

44 real(kind=8), dimension(3,4) :: Fk

45 real(kind=8), dimension(4) :: x,y,z

46 real(kind=8),dimension(3,3) :: Jinv

47 real(kind=8),dimension(3) :: temp2

48 real(kind=8),dimension(Np) :: temp3

49 real(kind=8),dimension(3) :: nn

50 real(kind=8),dimension(Np) :: rhs_tet_loc

51 real(kind=8),dimension(Np) :: rhs_face_bd_loc

52 real(kind=8) :: Jdet

53 real(kind=8) :: theta,sigma,c

54

55 ! Set the properties

56 call set_properties(sigma,theta,c)

57

58 N=PolyMesh%Elem_loc(1)%Degree;

59

60 ! Compute the quadrature nodes in 3D and 2D

61 call quadrature(nod2,wei2,nod3,wei3,node_maps,node_maps_inv,N,nq3,nq2)

62

63 allocate (blist(Np,3))

64 call basis_list(blist,N,Np)

65

66 allocate(phi(Np,nq3))

67 allocate(dphi(3,Np,nq3))

68 allocate(phi_b(Np,nq2,2))

69 allocate(grad_b(3,Np,nq2,2))

70

71 ! Begin loop on the tetrahedra

72

73 do ie_loc = 1, PolyMesh%num_elem_loc

74

75 ! Initialize rhs term on the volume

76

6/21/23, 5:55 PM MAKE_RHS.f90

localhost:42373/5c10ba43-8293-48cf-a9d5-64dc28084e84/ 2/3

77 do i=1,Np

78 rhs_tet_loc(i)=0.0;

79 enddo

80

81 ! Compute coordinates of the tetrahedron

82

83 do ivert = 1, PolyMesh%Elem_loc(ie_loc)%num_vert

84

85 call FIND_POS_LOC_NODE(PolyMesh%node_loc2glo,PolyMesh%num_node_loc, &

86 PolyMesh%Elem_loc(ie_loc)%vert(ivert),id_node)

87

88 x(ivert)=PolyMesh%coord_x(id_node)

89 y(ivert)=PolyMesh%coord_y(id_node)

90 z(ivert)=PolyMesh%coord_z(id_node)

91

92 enddo

93

94 ! Compute reference map for the tetrahedron

95 call jacobians(x , y, z, Fk , Jinv , Jdet)

96

97 ie_glob=PolyMesh%elem_loc2glo(ie_loc)

98

99 ! Find the polyhedron that contains the tetrahedron

100 ipoly_glob=PolyMesh%elem_in_poly(ie_glob)

101

102 call GET_EL_LOC_FROM_EL_GLO(PolyMesh%poly_loc2glo, &

103 PolyMesh%num_poly_loc, &

104 ipoly_glob,ipoly_loc)

105

106 ! Evaluate basis functions on the edges of the

107 !Bounding Box of the polyhedron

108 call basis(phi, dphi, PolyMesh%Poly(ipoly_loc)%b_box,&

109 Np, blist, Fk, nod3 , nq3)

110

111 ! Compute the local volume rhs term rhs_tet_loc

112 call MAKE_RHS_TET(Np,Fk,Jdet,nod3,wei3,nq3,phi,rhs_tet_loc)

113

114 ! Insert the values of rhs_tet_loc in the entries of the

115 ! global right hand side vector petsc_rhs

116

117 beg=(ipoly_glob-1)*Np+1

118 do i=1,Np

119 val(1) = rhs_tet_loc(i)

120 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

121 if (val(1) .ne. 0.0) then

122 PetscCall(VecSetValues(petsc_rhs, 1, irow, val, ADD_VALUES, mpi_ierr))

123 endif

124 enddo

125

126 E1=ie_loc

127

128 ! Begin loop on the faces of the tetrahedron E1

129

130 do e=1,PolyMesh%Elem_loc(ie_loc)%num_faces

131 face_flag(e)=0;

132

133 ! Initialize face right hand side term

134

135 do i=1,Np

136 rhs_face_bd_loc(i)=0.0;

137 enddo

138

139 ! Find neighbouring tetrahedron E2

140 E2=PolyMesh%Elem_loc(ie_loc)%neigh_el(e,2)

141

142 ! If E2 is not on the boundary, find the

143 ! polyhedron in which it is contained

144 if (E2 /=0) then

145 ipoly2_glob=PolyMesh%elem_in_poly(E2);

146 call GET_EL_LOC_FROM_EL_GLO(PolyMesh%poly_loc2glo, &

147 PolyMesh%num_poly_loc, &

148 ipoly2_glob,ipoly2_loc)

149 endif

150

151 ! If E2 is not on the boundary, check if the two neighbouring

152 ! tetrahedra belong to the same polyhedron

153 if (E2 /=0) then

154 if (ipoly_glob == ipoly2_glob) then

155 face_flag(e)=1;

156 endif

6/21/23, 5:55 PM MAKE_RHS.f90

localhost:42373/5c10ba43-8293-48cf-a9d5-64dc28084e84/ 3/3

157 end if

158

159 if (face_flag(e) == 0) then

160

161 nn(1)=PolyMesh%Elem_loc(ie_loc)%normal(e,1)

162 nn(2)=PolyMesh%Elem_loc(ie_loc)%normal(e,2)

163 nn(3)=PolyMesh%Elem_loc(ie_loc)%normal(e,3)

164

165 ! If the two polyhedra belong to the same processor

166 ! compute the basis functions on the faces

167 ! and the local right hand side term on the faces

168 ! If not, retrieve bbox of neighbouring element from

169 ! neigh_bbox and compute the basis functions on the

170 ! faces and the local right hand side term on the faces

171

172 if (ipoly2_loc == 0) then

173

174 n_tet_in_poly=PolyMesh%Poly(ipoly_loc)%num_tet_in_poly

175

176 do j=1,n_tet_in_poly

177 if (PolyMesh%Poly(ipoly_loc)%tet_in_poly(j)==ie_glob) then

178 iface_poly=PolyMesh%Elem_loc(ie_loc)%num_faces*(j-1)+e

179 endif

180 enddo

181

182 call basis_boundary(phi_b,grad_b,e, E2, &

183 PolyMesh%Poly(ipoly_loc)%b_box,&

184 PolyMesh%Poly(ipoly_loc)%neigh_bbox(iface_poly,:,:),&

185 blist,Np, Fk, node_maps, nod2, nq2)

186

187 call MAKE_RHS_FACE(theta,sigma,N,Np,e,E2,&

188 PolyMesh%Poly(ipoly_loc)%hk,&

189 PolyMesh%Poly(ipoly_loc)%neigh_hk(iface_poly),&

190 nn,PolyMesh%Elem_loc(ie_loc)%area(e),Fk,&

191 nod2,wei2,nq2,node_maps,phi_b,grad_b,rhs_face_bd_loc)

192

193 else

194 call basis_boundary(phi_b,grad_b,e, E2, &

195 PolyMesh%Poly(ipoly_loc)%b_box,&

196 PolyMesh%Poly(ipoly2_loc)%b_box, &

197 blist, Np, Fk, node_maps, nod2, nq2)

198

199 call MAKE_RHS_FACE(theta,sigma,N,Np,e,E2,&

200 PolyMesh%Poly(ipoly_loc)%hk,&

201 PolyMesh%Poly(ipoly2_loc)%hk,&

202 nn,PolyMesh%Elem_loc(ie_loc)%area(e),&

203 Fk,nod2,wei2,nq2,node_maps,phi_b,grad_b,rhs_face_bd_loc)

204 endif

205

206 ! If the neighbouring tetrahedra is on the boundary,

207 ! insert the values of rhs_face_bd_loc in the entries

208 ! of the global rhs vector

209 if (E2==0) then

210 do i=1,Np

211 val(1) = rhs_face_bd_loc(i)

212 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

213 if (val(1) .ne. 0.0) then

214 PetscCall(VecSetValues(petsc_rhs, 1, irow, val, ADD_VALUES, mpi_ierr))

215 endif

216 enddo

217 endif

218

219 endif

220 enddo

221 enddo

222

223 call MPI_BARRIER(MPI_COMM_WORLD, mpi_ierr)

224

225 ! Aseembly petsc rhs

226 PetscCall(VecAssemblyBegin(petsc_rhs,mpi_ierr))

227 PetscCall(VecAssemblyEnd(petsc_rhs,mpi_ierr))

228

229 end subroutine MAKE_RHS

6/21/23, 5:29 PM test.f90

localhost:43821/a2577b9b-26da-4863-9429-240c43f419b6/ 1/1

test.f90

1 module test

2 implicit none

3 contains

4

5 ! definition of the forcing term f

6

7 function f(p)result(r)

8 implicit none

9 real(kind=8) r

10 real(kind=8),dimension(3) :: p

11 real(kind=8) :: c,sigma,theta

12

13 call set_properties(sigma,theta,c)

14

15 r = -EXP(p(1)*p(2)*p(3))*((p(1)*p(2))**2+(p(1)*p(3))**2+ &

16 (p(2)*p(3))**2-c)

17 !r = -EXP(p(1)*p(2)*p(3))*((p(1)*p(2))**2+(p(1)*p(3))**2+ &

18 ! (p(2)*p(3))**2)

19 !r = EXP(- (p(1)*p(1))**2 - (p(2)*p(2))**2 - (p(3)*p(3))**2)

20

21 end function f

22

23 ! Definition of the Dirichlet boundary condition

24 function gd(p)result(r)

25 implicit none

26 real(kind=8) r

27 real(kind=8),dimension(3) :: p

28 r = EXP(p(1)*p(2)*p(3))

29 !r=0*EXP(p(1)*p(2)*p(3));

30 end function gd

31

32 ! Definition of the analytical solution, if available

33 ! (to compute the errors)

34 function uex(p)result(r)

35 real(kind=8) r

36 real(kind=8),dimension(3) :: p

37 r = EXP(p(1)*p(2)*p(3))

38 end function uex

39

40

41 ! Definition of the gradient of the analytical solution, if available

42 ! (to compute the errors)

43

44 function uex_grad(p)result(r)

45 real(kind=8),dimension(3) :: r

46 real(kind=8),dimension(3) :: p

47 real(kind=8) :: u

48 u=uex(p)

49 r(1) = u * p(2) * p(3)

50 r(2) = u * p(1) * p(3)

51 r(3) = u * p(1) * p(2)

52

53 end function uex_grad

54

55 ! Set the properties of the numerical method

56 subroutine set_properties(sigma,theta,c)

57 implicit none

58 real(kind=8) :: sigma,theta

59 real(kind=8) :: c

60

61 sigma = 10 ! penalty coefficient

62 theta = -1 ! IP method

63 c=0.5; ! reacgtion coefficient

64

65 end subroutine set_properties

66

67 end module test

85

List of Figures

1 Example of a complicated geometry . 2

2.1 Cartesian bounding box for a polygon . 19

3.1 Structure of the main program Lymph3D 28
3.2 Polyhedral mesh and tetrahedral subtassellation 34
3.3 Example of a partitioned tetrahedral mesh 35
3.4 Tetrahedral mesh of a cube . 47
3.5 Polyhedral mesh agglomerated with METIS 48

4.1 Test case 1. Numerical solution . 50
4.2 Test case 1. Computed errors in the L2 norm for p = 1, 2, 3 (tetrahedral

meshes) . 51
4.3 Test case 1. Computed errors in the DG norm for p = 1, 2, 3 (tetrahedral

meshes) . 51
4.4 Test case 1. Computed errors in the L2 norm for p = 1, 2, 3, 4 (polyhedral

meshes) . 52
4.5 Test case 1. Computed errors in the DG norm for p = 1, 2, 3, 4 (polyhedral

meshes) . 52
4.6 Numerical solution of the diffusion reaction equation 53
4.7 Test case 2. Computed errors in the L2 norm for p = 1, 2, 3 (tetrahedral

meshes) . 54
4.8 Test case 2. Computed errors in the DG norm for p = 1, 2, 3 (tetrahedral

meshes) . 54
4.9 Test case 2. Computed errors in the L2 norm for p = 1, 2, 3, 4 (polyhedral

meshes) . 55
4.10 Test case 2. Computed errors in the DG norm for p = 1, 2, 3, 4 (polyhedral

meshes) . 55
4.11 Mesh of the human brain . 57
4.12 Test case 3. Numerical solution of a diffusion equation on a polyhedral

mesh of the human brain . 57

86 | List of Figures

4.13 Test case 4. Numerical solution of a diffusion problem with no analytical
solution on a polyhedral mesh of the human brain 59

87

List of Tables

3.1 Fields of the structure Element . 30
3.2 Fields of the structure Polyhedron . 32
3.3 Fields of the structure Mesh_Structure . 33
3.4 Example of the vector elem_in_poly . 35

4.1 Test case 3. Numerical Errors . 58

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Numerical aspects of polytopic meshes
	Discrete spaces and trace operators
	Trace inverse estimate on polytopic elements
	Polynomial approximation over polytopic elements

	Discontinuous Galerkin methods on polytopic meshes
	PDEs with nonnegative characteristic form
	PolyDG discretization of diffusion reaction problems
	Well-Posedness of the PolyDG method and a priori error estimates

	Implementation aspects
	Basis functions
	Quadrature rules
	Assembling of the algebraic linear system

	Description of the LYMPH3D library
	Reading input files and store mesh structure
	Basis functions and quadrature formulas
	Assembling of the algebraic linear system
	Solving the linear system
	Post-processing
	User-Guide
	Mesh Generation

	Numerical Tests
	Test case 1
	Test case 2
	Test case 3
	Test case 4

	Conclusions and future developments
	Bibliography
	Appendix A
	List of Figures
	List of Tables

