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Abstract

The numerical approximation of partial differential equations (PDEs) posed on compli-
cated geometries represents a challenging computational problem. Indeed, the use of
mesh generators employing elements of standard shape, i.e. simplices or tensor product
elements, can lead to very fine finite element meshes. Hence, the computational effort
required to numerically approximate the underlying PDE problem may be prohibitively
expensive. An alternative approach is to solve the PDE problem by using polytopic
(polygonal or polyhedral) elements. The main advantage of choosing polytopic element
shapes over classical simplicial/hexahedral elements is that the average number of ele-
ments needed to discretize complicated domains is substantially smaller and this allows
to reduce the complexity of the given computational geometry. In this work of thesis
we focus on discontinuous Galerkin methods on polytopic grids (PolyDG) to discretize
differential problems. After recalling some numerical aspects on the polytopic meshes
and some theoretical results on the PolyDG method, we develop a new library called
LYMPH3D written in Fortran. The library can be used to solve PDE problems by using
the PolyDG method in three-dimensions. We perform a convergence analysis on a simple
geometry of a cube, employing first a tetrahedral and then a polyhedral mesh of the cube.
The latter is obtained via agglomeration of a tetrahedral mesh. Finally, we demonstrate
the capabilities of LYMPH3D considering the solution of a PDE problem on a challenging
geometry, namely a human brain.

Keywords: Complicated geometries, Numerical approximation, Partial Differential Equa-
tions, Discontinuous Galerkin methods, Polytopic elements, Tetrahedral mesh, Computa-
tional complexity, three-dimensional mesh, New library, Fortran





Abstract in lingua italiana

L’approssimazione numerica delle equazioni alle derivate parziali (in breve EDP) poste
su geometrie complicate rappresenta un problema di costo computazionale elevato. In-
fatti, l’uso di generatori di mesh che impiegano elementi di forme classiche, come ad
esempio tetraedri o esaedri, può portare nella generazione di mesh agli elementi finiti
che sono molto raffinate. Pertanto, lo sforzo computazionale richiesto per approssimare
numericamente un problema di EDP può essere talmente costoso da essere proibitivo.
Un approccio alternativo consiste nel risolvere un problema di EDP utilizzando elementi
politopici (poligonali o poliedrici). Un vantaggio di scegliere elementi politopici rispetto
ai classici elementi simpliciali/esaedrici è che il numero medio di elementi necessari per
discretizzare domini complicati è sostanzialmente minore. Ciò permette di ridurre la com-
plessità della geometria computazionale data. In questo lavoro di tesi ci focalizziamo sui
metodi Discontinuous Galerkin su mesh politopiche (PolyDG, in breve) per discretizzare
problemi differenziali. Dopo aver richiamato alcuni aspetti numerici sulle mesh politopiche
ed alcuni risultati teorici sul metodo PolyDG, sviluppiamo una nuova libreria chiamata
LYMPH3D scritta in Fortran. La libreria può essere utilizzata per risolvere un problema
EDP utilizzando il metodo PolyDG in tre dimensioni. Analizziamo la convergenza della
soluzione numerica su una semplice geometria di un cubo, utilizzando prima una mesh
tetraedrica e poi poliedrica del cubo. Quest’ultima è ottenuta agglomerando la mesh
tetraedrica. Infine dimostriamo le potenzialità di LYMPH3D considerando la soluzione di
un problema di EDP su una geometria complicata, trattando il caso di un cervello umano.

Parole chiave: Geometria complicata, Approssimazione numerica, Equazioni alle derivate
parziali, Metodi Discontinuous Galerkin, Elementi politopici, Mesh tetraedrica, Comp-
lessità computazionale, Mesh tridimensionale, Nuova libreria, Fortran
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Introduction

Finite element methods (FEMs) are an indispensable computational tool for the accurate,
efficient, and rigorous numerical approximation of continuum models arising in engineer-
ing, physics, biology, and many other disciplines.

However, a key underlying issue for all classes of finite element methods is the design of
a suitable computational mesh upon which a generic PDE problem is discretized.

On one hand, the mesh should provide a good description of the given computational
geometry with sufficient resolution for the computation of accurate numerical approxima-
tions to within desired accuracy constraints. On the other hand, if the mesh is too fine
the computational time required to compute the solution is too high for practical appli-
cations. This issue is particularly pertinent when high order methods are employed since
in this setting we would like to employ relatively coarse meshes, so that the polynomial
degree may be suitably enriched.

Many engineering applications, such as fluid-structure interaction, or flow in fractured
porous media, are characterized by a strong complexity of the physical domain. In the
context of discretizing a differential model on a complex domain, whenever classical finite
element methods are employed, the process of the mesh generation can potentially lead
to very high computational costs.

Indeed, the classical finite element methods typically only support computational grids
composed of standard element shapes; triangular or quadrilateral elements in two-dimensions
(2D) and tetrahedral, hexahedral, prismatic or pyramidal elements in three-dimensions
(3D). The use of these kind of elements necessitates the exploitation of very fine com-
putational meshes when the geometry is complicated, if it includes for example a large
number of small geometrical features or microstructures. In Figure 1, taken from [4], we
can see an example of complicated geometry arising in biological applications. The image
shows a finite element mesh of a porous scaffold employed for in vitro bone tissue growth,
cf. [8, 9]. In such situations, for a given mesh generator, a large number of elements
is required to produce even a ‘coarse’ mesh which adequately describes the underlying
geometry. Thereby, the solution of the system of equations resulting, for example, from a
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finite element discretization of the underlying PDE on a coarse mesh, may be impractical
due to the large numbers of degrees of freedom involved.

Figure 1: Example of a porous scaffold used for in vitro bone tissue growth, cf. [8, 9].
Figure taken from [4].

To overcome this problem in the last decade numerical methods that support computa-
tional meshes composed of polytopic elements (polygonal or polyhedral) have gained a
lot of relevance. Indeed, one of the advantages of choosing polytopic element shapes over
standard simplicial/hexahedral elements is that the average number of elements needed
to discretize complicated domains is substantially smaller and this allows to reduce the
complexity of the given computational geometry. This advantage becomes even more
evident whenever the domain contains complex geometrical features; polytopic elements
are naturally suited to applications in complicated/moving domains, for example, in solid
mechanics, fluid-structure interaction, geophysical problems including earthquake engi-
neering and flows in fractured porous media, and mathematical biology, cf. [40, 45].

Therefore, in the last few years intensive research has been undertaken on employing FEMs
based on computational meshes consisting of polytopic elements and many methods have
been presented in the literature. In the conforming setting, we mention the Composite
Finite Element Method, see, e.g., [38, 39], the Mimetic Finite Difference Method, see,
e.g., [15, 16, 30], the Polygonal Finite Element Method, see, e.g., [47], and the Extended
Finite Element Method [37]. Moreover we mention the more recent Virtual Element
Method [10] and the Hybrid High-Order method [1, 11–13, 22, 23, 32–35]. In the setting
of non-conforming/discontinuous polygonal methods, we mention, for example, Compos-
ite Discontinuous Galerkin Finite Element methods [2, 3], Hybridizable Discontinuous
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Galerkin methods [25–28], non-conforming Virtual Element methods [6, 21, 31], and Gra-
dient Schemes [36].

In this thesis we implement and validate a new general-purpose library called LYMPH3D,
written in Fortran, implementing discontinuous Galerkin methods on polytopic grids
(PolyDG) in 3D, which is the natural extension of the classical discontinuous Galerkin
methods on standard element shape grids to meshes composed of polytopic elements. Due
to the fact that the discrete space is constructed based on employing piecewise discontinu-
ous polynomials, DG methods are naturally suited to robustly support polytopic meshes.
We will consider the three-dimensional case so we will deal with tetrahedra as standard
elements and polyhedra as polytopes.

The general idea is to generate an initial mesh, based on employing standard mesh gen-
erators; then the elements of the initial mesh are suitably agglomerated, thus generating
polyhedra. In this way we can obtain computational polyhedral grids with a smaller
number of elements and therefore the total number of degress of freedom is substantially
reduced.

In the following we provide a brief description of the contents of each of the next chapters.
In Chapter 1, we recall some concepts about polytopic meshes introduced in [19], starting
from the generalization of the standard shape-regularity property to polytopic elements
and we recall some trace and inverse inequalities together with some polynomial approx-
imation properties of the underlying discrete spaces. In Chapter 2, we introduce the no-
tation and the key theoretical results needed to analyze PolyDG approximations together
with some implementation aspects. In Chapter 3 we describe the library LYMPH3D fol-
lowing the implementation of PolyDG method in the three-dimensional case. In Chapter
4 we present some numerical examples and the convergence analysis relative to the test
done and in Chapter 5 we do some final considerations and we see possible future devel-
opments. Finally, in Appendix A we report a selection of some of the most important
functions of the library.
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1| Numerical aspects of polytopic

meshes

We begin by introducing a general class of computational meshes consisting of polytopic
elements, together with some technical assumptions. Then we report hp-version inverse
estimates and approximation results that can be derived under these assumptions. These
results are needed for the stability and convergence analysis of the PolyDG method.

We will use the following notation. For an open, bounded domain Ω ⊂ Rd, d = 2, 3, we
denote by Hs(Ω) the standard Sobolev space of order s, for s real number, s ≥ 0. For
s = 0 we will write L2(Ω) instead of H0(Ω). The norm on Hs(Ω) is denoted by || · ||Hs(Ω)

and the seminorm by | · |Hs(Ω). Given a decomposition of the domain into a computational
mesh Th, we denote by Hs(Th) the standard broken Sobolev space, equipped with the
broken norm || · ||s,Th

. Moreover, for v ∈ H1(Th), the broken gradient ∇hv is defined
by (∇hv)|E = ∇(v|E), E ∈ Th. The symbols ≲ and ≳ will signify that the inequalities
hold up to multiplicative constants that are independent of the discretization parameters,
but might depend on the physical parameters of the underlying problem. We refer to
[7] and [20] for the details of the following theoretical contents about polytopic meshes.
We introduce the subdivision of the computational domain Ω on Rd, d = 2, 3, by means
of polytopic meshes following the notation in [7]. The same notation will be employed
throughout the all work.

Let Th be a subdivision of the computational domain Ω ⊂ Rd, d = 2, 3, into disjoint open
polygonal/polyhedral elements E. For each element we denote by |E| its measure, hE its
diameter and we set h = maxE∈Th

hE.
We introduce the concept of mesh interfaces, which are defined as the intersection of the
(d − 1)-dimensional facets of two neighbouring elements. We need now to distinguish
between the case when d = 3 and d = 2.

• For d = 3 each interface consists of a general polygon which we assume may be
decomposed into a set of co-planar triangles. We refer to these (d− 1)-dimensional
simplices, whose union forms the interfaces of Th as the faces of the computational
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mesh. We denote the set of all the triangles by Fh.

• For d = 2 the interfaces of Th are simply piecewise linear line segments, i.e they
consist of a set of (d− 1)-dimensional simplices. The concepts of face and interface
are in this case coincident; we will still call faces the line segments and denote by
Fh the set of all faces.

Notice that Fh is always defined as a set of (d − 1)-dimensional simplices. With this
notation, we assume that the sub-tessellation of element interfaces into (d−1)-dimensional
simplices is given. We point out that this assumption is not very restrictive; indeed, if
the underlying mesh Th stems from the agglomeration of a given simplicial mesh T fine

h ,
then the set of faces may be directly determined from the faces present in T fine

h which
form part of the interface of an agglomerated element E ∈ Th. We introduce a partition
of the set Fh into two subsets

Fh = F I
h ∪FB

h ,

where F I
h is the set of interior faces and FB

h is the set of faces on the boundary of the
domain ∂Ω.

Moreover, if ∂Ω is split into the Dirichlet boundary ∂ΩD and the Neumann boundary
∂ΩN , we will further decompose the set FB

h = FD
h ∪FN

h , where FD
h and FN

h are the
boundary faces contained in ΓD and ΓN , respectively. In this definition it is implicit the
assumption that the mesh Th conforms to the partition of ∂Ω.
Finally, given an element E ∈ Th, for any face F ⊂ ∂E, with F ∈ Fh, we define nF as
the unit normal vector on F which points outwards from E.
We denote by SF

E a d-dimensional simplex contained in E which shares with E a specific
face F ⊂ ∂E, F ∈ Fh. We need this notation to delineate the key assumptions that
need to be satisfied by the polytopic mesh Th in order to derive inverse inequalities and
approximation results. To do this, we introduce the following definition.

Definition 1.0.1. A mesh Th is said to be polytopic-regular if, for any E ∈ Th, there
exists a set of non-overlapping (not necessarily shape-regular) d-dimensional simplices
{SF

E}F⊂∂E contained in E, such that for all faces F ⊂ ∂E, the following condition holds

hE ≲
d|SF

E |
|F |

,

where the hidden constant is independent of the discretization parameters, the number of
faces of the element, and the face measure.

In Figure 1.1a, taken from [7], we have two examples of polytopic-regular elements, while
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Figure 1.1b shows an example of element that does not satifsy Definition 1.0.1, c.f. [7].
Moreover, in Figure 1.1a, there is an example where the union of the simplices {SF

E}F⊂∂E

does not cover the whole element E. We note that this, in general might happen for
elements that are polytopic-regular. We also remark that this definition does not require
any restriction on either the number of faces per element or their relative measure.

(a) Figure taken from [7]. Two examples of
polytopic-regular elements as in Definition 1.0.1.
On the right there is an example of element that is
not convered by the union of the simplices.

(b) Example of element
that is not polytopic regu-
lar. Figure taken from [7].

Assumption 1.1. We assume that the mesh Th is polytopic-regular.

Definition 1.1.1. A covering T# = {TE} related to the polytopic mesh Th is a set of
shape-regular d-dimensional simplices TE, such that for each E ∈ Th, there exists a TE ∈
T# such that E ⊊ TE.

Assumption 1.2. There exist a covering T# of Th and a positive constant OΩ, indepen-
dent of the mesh parameters, such that

max
E∈Th

card{E ′ ∈ Th : E ′ ∩ TE ̸= ∅, TE ∈ T# s.t. E ⊂ TE} ≤ OΩ ,

and hTE
≲ hE for each pair E ∈ Th and TE ∈ T#, with E ⊂ TE.

Assumption 1.2 implies that when the computational mesh Th is refined, the amount of
overlap present in the covering T# remains bounded. We remark that Assumption 1.2
requires shape-regularity of the mesh covering T# , but not shape-regularity of the com-
putational mesh Th itself.

1.0.1. Discrete spaces and trace operators

Let us consider a polytopic mesh partition Th of the domain Ω and for each element
E ∈ Th we associate a local polynomial degree pE ≥ 1. We collect the pE in the vector
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p := {pE : E ∈ Th}. With this notation we introduce the following spaces.

V p(Th) = {vh ∈ L2(Ω) : v|E ∈ PpE(E) ∀E ∈ Th},

Wp(Th) = {w ∈ [L2(Ω)]d : w|E ∈ [PpE(E)]
d ∀E ∈ Th}

Wp(Th) = {w ∈ [L2(Ω)]d×d
sym : w|E ∈ [PpE(E)]

d×d
sym ∀E ∈ Th}

(1.1)

We recall that Pp(E) denotes the space of polynomials of total degree p on E.
In order to efficiently deal with discontinuous functions, we now introduce average and
jump operators on a face. Let F ∈ F I

h be an interior face shared by the elements E±.
We define n± to be the unit normal vectors on F pointing exterior to E±, respectively.
Then, for sufficiently regular scalar-valued, vector valued and tensor-valued functions q,
v, τ respectively, we define the standard average {·} and jump J·K operators on F as

{q} = 1

2
(q+ + q−), JqK = q+n+ + q−n−,

{v} = 1

2
(v+ + v−), JvK = v+ · n+ + v− · n−,

{τ} = 1

2
(τ+ + τ−), Jτ K = τ+n+ + τ−n−,

(1.2)

where the subscript ± on q, v,τ denote the traces of the functions on F restricted to E±,
respectively.

On a boundary face F ∈ FB
h , we set analogously {q} = q, JqK = qn, {v} = v, JvK =

v · n, {τ} = τ , Jτ K = τn, where n is the outward normal vector on ∂Ω. We remark two
important identities:

JqvK = JvK{q}+ {v} · JqK ,∑
E∈Th

∫
∂E

qv · nE =

∫
Fh

{v} · JqK +
∫

F I
h

JvK{q} , (1.3)

where we used the compact notation
∫

Fh
· =

∑
F∈Fh

∫
F
· .

1.0.2. Trace inverse estimate on polytopic elements

Among the key tools employed to study the stability and error analysis of DG-methods
we find the trace inverse estimates. They consist in using the norm of a polynomial on
the element itself to bound the norm on the element’s face/edge. Trace inverse estimates
on polytopic elements are obtained under the polytopic-regular Assumption 1.1.

Lemma 1.3. Let E be a polytope satisfying Assumption 1.1 and let q ∈ PpE(E). Then,
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we have
||q||2L2(∂E) ≲

p2E
hE
||q||2L2(E) , (1.4)

where the hidden constant depends on the dimension d, but it is independent of the dis-
cretization parameters and the number of faces that the element possesses.

The proof of Lemma 1.3 can be found in [7].

1.0.3. Polynomial approximation over polytopic elements

Hp-interpolation estimates are another fundamental mathematical tool needed to study
the a priori error analysis of PolyDG methods. Following [7], we report the results of
[4, 20] where the standard estimates for simplices are extended to polytopic elements
by considering appropriate coverings and submeshes consisting of d-dimensional simplices
(where standard results can be applied). In [18] these results are further extended in order
to be successfully applied also in the case when the number of edges/faces is unbounded.
In order to state these results we need to define an appropriate extension operator.

Let E : Hm(E) → Hm(Rd), for any E ∈ Th and m ≥ 0, be the continuous extension
operator introduced by Stein in [46] such that:

E (q)|Ω = q, ||E q||Hm(Rd) ≲ ||q||Hm(Ω), ∀q ∈ Hs(E).

Based on the existance of a suitable covering of the polytopic mesh (see Definition 1.1.1),
we can state the following approximation result.

Lemma 1.4. [4, 18, 20] Assume that Assumptions 1.1 and 1.2 are satisfied. Given E ∈
Th, let TE ∈ T# be the corresponding simplex such that E ⊂ TE (see Definition 1.1.1).
For q ∈ L2(Ω), such that E q|TE

∈ HrE(TE), for some rE ≥ 0, there exists a sequence of
approximations ΠpE

E q ∈ PpE(E), pE = 0, 1, 2, . . . , of q satisfying

||q − ΠpE
E q||Hm(E) ≲

hsE−m
E

prE−m
E

||E q||HrE (TE), 0 ≤ m ≤ rE. (1.5)

Moreover, if rE ≥ 1 + d/2, then we have

||q − ΠpE
E q||L2(∂E) ≲

h
sE−1/2
E

p
rE−1/2
E

||E q||HrE (TE). (1.6)

Here, sE = min(pE + 1, rE) and the hidden constants depend on the shape-regularity of
TE, but are independent of q, hE, pE and the number of faces per element.
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See [20] for a detailed proof of (1.5) and [18] for the proof of (1.6). We notice that the
inequalities (1.4) and (1.6) hold not only on one of its edges/faces but on the whole
boundary of E; this is important when we consider elements that contain an arbitrary
number of faces in the error analysis.
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2| Discontinuous Galerkin

methods on polytopic meshes

In this chapter, following [20] we introduce a generic second-order PDE with nonnegative
characteristic form together with some notation. Next, we focus on a diffusion reaction
problem, and we describe its PolyDG discretization. Finally, we discuss some implemen-
tation aspects. That will be necessary to understand the description of the library, central
topic of Chapter 3.

2.1. PDEs with nonnegative characteristic form

Throughout this section, we introduce a linear second-order PDE problem with nonneg-
ative characteristic form. Indeed, we stress that this class of equations includes a wide
range of PDEs. Given Ω an open bounded, Lipschitz domain in Rd, d ≥ 1 with boundary
∂Ω, consider the following PDE problem:

find u : Ω→ R such that

−∇ · (a∇u) +∇ · (bu) + cu = f in Ω, (2.1)

where a = {aij}di,j=1, with aij ∈ L∞(Ω) and aij = aji for i, j = 1, . . . , d,

b = (b1, . . . , bd)
T ∈ [W 1,∞(Ω)]d, c ∈ L∞(Ω), c ≥ 0 and f ∈ L2(Ω).

Notice that ∈ Wm,p(Ω) is the Sobolev space defined as

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ m} .

Problem (2.1) is referred to as an equation with nonnegative characteristic form on the
set Ω ∈ Rd if, at each x ∈ Ω̄,

d∑
i,j=1

aij(x)ξiξj ≥ 0 (2.2)
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for any vector ξ = (ξ1, . . . , ξd) in Rd. To add suitable boundary conditions to the problem
(2.1), we first subdivide the boundary ∂Ω of the computational domain Ω into appropriate
subsets. To this end, let

∂0Ω =
{
x ∈ ∂Ω :

d∑
i,j=1

aij(x)ninj > 0
}
,

where n = (n1, . . . , nd)
T denotes the unit outward normal vector to ∂Ω.

On the ’hyperbolic’ portion of the boundary ∂Ω\∂0Ω we define the inflow and outflow
boundaries ∂−Ω and ∂+Ω, respectively, by

∂−Ω = {x ∈ ∂Ω\∂0Ω : b(x) · n(x) < 0},

∂+Ω = {x ∈ ∂Ω\∂0Ω : b(x) · n(x) ≥ 0}.

If ∂0Ω is nonempty, we shall further divide it into two disjoint subsets ∂ΩD and ∂ΩN ,
with ∂ΩD nonempty and relatively open in ∂Ω. From these definitions we have that ∂Ω =

∂ΩD ∪ ∂ΩN ∪ ∂−Ω∪ ∂+Ω. Assuming the (physically reasonable) hypothesis that b ·n ≥ 0

on ∂ΩN , whenever ∂ΩN is nonempty, we impose the following boundary conditions:

u = gD on ∂ΩD ∪ ∂−Ω, n · (a∇u) = gN on ∂ΩN . (2.3)

For an extension of this setting, allowing also for b · n < 0 on ∂ΩN , we refer to [17].
The well-posedness of the boundary value problem (2.1), (2.3), in the case of homogeneous
boundary conditions, has been studied in [41].

2.2. PolyDG discretization of diffusion reaction prob-

lems

We now consider the PolyDG discretization of a diffusion reaction PDE problem. Then
we will see some convergence results related to this problem.

Given an open bounded Lipschitz domain Ω in Rd, d = 2, 3, with boundary ∂Ω, we
consider the following PDE boundary-value problem subject to a Dirichlet boundary
condition (∂ΩD = ∂Ω and ∂ΩN = ∅):

find u such that {
−∇ · (a∇u) + cu = f in Ω,

u = gD on ∂Ω.
(2.4)
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Here, f ∈ L2(Ω), c ∈ L∞(Ω), a = {aij}di,j=1, with aij ∈ L∞(Ω) and aij = aji, for i, j =

1, . . . , d, and, at each x ∈ Ω̄,

d∑
i,j=1

aij(x)ξiξj ≥ Cd|ξ|2 > 0, (2.5)

where Cd is a positive constant, for any vector ξ = (ξ1, . . . , ξd) in Rd.

The well-posedness of the boundary value problem (2.4), under the uniform ellipticity
condition (2.5) can be deduced, based on employing the Lax-Milgram Theorem. See, for
example, [14, 24].

Given the partition Th of the domain Ω we recall the definition of the finite element space
V p(Th) that we introduced in Chapter 1:

V p(Th) = {v ∈ L2(Ω) : v|E ∈ PpE(E) ∀E ∈ Th}.

By construction, the local elemental polynomial spaces employed within the definition of
V p(Th) are defined in the physical space, without the need to map from a given reference
or canonical frame, as it typically the case for classical FEMs.

With this notation and with the boundary conditions imposed weakly we introduce the
following DG formulation.

Find uh ∈ V p(Th) such that∫
Ω

a∇huh · ∇hvh dx+

∫
Ω

c uhvh dx+

∫
Fh

(−{a∇huh} · JvhK + θ{a∇hvh} · JuhK)ds

+

∫
Fh

σJuhK · JvhK ds =
∫
Ω

fvh dx+

∫
FB

h

gD(θa∇hvh · n+ σvh) ds
(2.6)

for all vh ∈ V p(Th), where ∇hvh denotes the broken gradient of vh, θ ∈ {−1, 0, 1},
σ : Fh 7→ R is referred to as the discontinuity-penalization function; the precise definition
of σ depends on the local mesh size and the local polynomial degree. For the derivation of
this formualation we need Definitions 1.2 and the identities (1.3) introduced in Chapter 1.
For the details of this derivation see [20].

Notice that here we consider one popular family of schemes, referred to as interior penalty
(IP) methods. The discrete formulation of these kind of methods sees the presence of two
integral terms, one on the left and the other on the right hand side, multiplied by a
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constant θ ∈ {−1, 0, 1}:

θ

∫
Fh

{a∇hvh} · JuhKds, θ

∫
FB

h

gD a∇hvh · n ds .

Choosing θ = −1 the method preserves the symmetry and the resulting formulation is
called Symmetric Interior Penalty (SIP) method. Instead, setting θ = 1 gives rise to the
so-called Nonsymmetric Interior Penalty (NIP) method while θ = 0 yelds the Incomplete
Interior Penalty (IIP) method. Here we consider the Symmetric Interior Penalty PolyDG
method, meaning choosing θ = −1 in the previous discrete formulation (2.6). With this
choice we write the following definitions.

• Bd : V
p × V p → R is the bilinear form such that

Bd(wh, vh) =
∑
E∈Th

∫
E

a∇wh · ∇vh dx

−
∫

Fh

({a∇wh} · JvhK + {a∇vh} · JwhK− σJwhK · JvhK) ds .
(2.7)

• Br : V
p × V p → R is the bilinear form such that

Br(wh, vh) =
∑
E∈Th

∫
E

cwhvh dx . (2.8)

• Bh : V p × V p → R is the bilinear form such that

Bh(wh, vh) = Bd(wh, vh) +Br(wh, vh) . (2.9)

• F : V p → R is the linear functional such that

F (vh) =
∑
E∈Th

∫
E

fvh dx−
∫
FB
h

gD(a∇vh · n− σvh) ds . (2.10)

Thereby, using these definitions we obtain the following (SIP) PolyDG discrete formula-
tion.

Find uh ∈ V p(Th) such that

Bh(uh, vh) = F (vh) (2.11)

for all vh ∈ V p(Th). The well-posedness and stability properties of the above method
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depend on the choice of the discontinuity-penalization σ. We expect that the choice of σ
will be sensitive to the size of each face F ∈ Fh, relative to the size of the element(s) which
form F . In [20] we can find the convegence analysis for two cases based on employing
different assumptions on the elements present in the computational mesh Th, assuming
that the entries of a are constant on each element E, E ∈ Th, i.e., a ∈ [V 0(Th)]

d×d
sym . Then,

the extension to general positive (semi)-definite diffusion tensors is treated in [19].

Here, for semplicity we report the results of the analysis of the problem in the case of
a polytopic-regular computational mesh and choosing c = 0 and a = Id where Id is the
d× d identity matrix. Therefore, we refer to the bilinear form Bh(·, ·) as

Bh(w, v) = Bd(w, v) ∀ v, w ∈ V p,

where Bd(·, ·) is defined as in (2.7) with a = Id. We consider the linear functional F (·) is
defined as in (2.10) with a = Id.

The penalization function σ is face-wise defined as σ : Fh → R+ such that

σ = α


p2E
hE

on F ∈ FB
h

max{p2
E+ , p2

E−}
min{hE+ , hE−} on F ∈ F I

h

, (2.12)

where α is a constant to be chosen large enough.

2.2.1. Well-Posedness of the PolyDG method and a priori error
estimates

In this section, we report the stability results and the a priori estimates of the PolyDG
method under the assumption of a polytopic-regular mesh Th.

We define the space V = H1(Ω) ⊕ V p(Th) and we introduce the associated DG norm
given by:

||v||2DG =
∑
E∈Th

||∇v||2L2(E) + ||σ
1
2 JvK||2L2(Fh)

∀v ∈ V ,

where we used the notation || · ||L2(Fh) =
∑

F∈Fh
|| · ||L2(F ).

We also introduce ΠL2 : [L2(Ω)]d → [V p(Th)]
d to denote the orhogonal L2-projection onto

the finite element space [V p(Th)]
d. With this notation, we define the suitable extensions
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of the bilinear form Bh(·, ·):

B̃h(w, v) =
∑
E∈Th

∫
E

∇w · ∇v dx

−
∫

Fh

({ΠL2(∇w)} · JvK + {ΠL2(∇v)} · JwK− σJwK · JvK) ds,
(2.13)

and of the linear functional F (·):

F̃ (v) =
∑
E∈Th

∫
E

fv dx−
∫
FB
h

gD(ΠL2(∇v) · n− σv) ds, (2.14)

for all v, w ∈ V .

Then the PolyDG formulation may be rewritten in the following equivalent manner:

find uh ∈ V p(Th) such that

B̃h(uh, vh) = F̃ (vh), (2.15)

for all vh ∈ V p(Th).

For all w, v ∈ V p(Th), we have B̃d(w, v) = Bd(w, v) and F̃ (v) = F (v), i.e., the two
formulations give rise to the same PolyDG method. This formulation enables us to pursue
the analysis without requiring W 1,∞-norm approximation estimates, as we shall see below.
Assuming that Assumption 1.1 holds and recalling the results of Section 1, we write below
the coercivity and continuity bounds for the (extended) bilinear form B̃h(·, ·) over V ×V .

Lemma 2.1. Given that Assumption 1.1 holds and that the constant α appearing in the
Definition 2.12 of the penalization function is chosen sufficiently large. Then, the bilinear
form B̃h(·, ·) is coercive and continuous over V × V , i.e.,

B̃h(v, v) ≳ ||v||2DG for all v ∈ V , (2.16)

and

B̃h(w, v) ≲ ||w||DG||v||DG for all w, v ∈ V . (2.17)

Proof. The proof is based on writing the following identity:

B̃h(v, v) = ||v||2DG − 2

∫
Fh

{ΠL2(∇v)} · JvK ds. (2.18)
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Now, bounding the second term on the right hand side of (2.18) using the trace inverse
estimate stated in Lemma (1.3) and the stability of the L2-projector ΠL2 in the L2-norm,
namely ||ΠL2v||L2(E) ≤ ||v||L2(E), for v ∈ [V ]d, E ∈ Th, we obtain the coercivity and the
continuity of the bilinear form B̃h(·, ·). See [20] for the details.

Hence, we report the following a priori error estimate assuming that Assumption 1.1 holds.

Theorem 2.2. Let Th = {E} be a subdivision of Ω ⊂ Rd, d = 2, 3 consisting of general
polytopic elements satisfying Assumptions 1.1 and 1.2, with T# = {TE} the associated
covering of Th, cf. Definition 1.1.1. Let uh ∈ V p(Th), with pE ≥ 1 for all E ∈ Th be
the corresponding PolyDG solution defined by (2.11), where the discontinuity-penalization
function σ is given by (2.12) with a penalty parameter α sufficiently large. If the analytical
solution u ∈ H1(Ω) of (2.1) satisfies u|E ∈ HrE(E), rE > 3/2, for each E ∈ Th, such that
E u|TE

∈ HrE(TE), where TE ∈ T#, with E ⊂ TE, then

||u− uh||2DG ≲
∑
E∈Th

h
2(sE−1)
E

p
2(rE− 3

2
)

E

||E u||2HrE (TE), (2.19)

with sE = min {pE + 1, rE} for all E ∈ Th. The hidden constants depend on the material
parameters and the shape-regularity of T#, but is independent of hE, pE and the number
of element faces.

We refer to [20] for the proof of this result considering a more general definition of σ. To
prove this result we need Lemma 1.4, in particular the esimate (1.6) to bound the integral
term defined on the faces of the elements.

Now we report an a priori error estimate in the L2-norm obtained by using a duality
argument. In the following, we assume uniform orders, pE = p for all E ∈ Th, p ≥ 1 and
h = maxE∈Th

hE. Moreover we assume that Ω is sufficiently regular so that u possesses
the following regularity, u ∈ Hr(Ω) for some r ≥ 2. Since we are using a duality argument,
we also assume that Ω is sufficiently regular so that, for g ∈ L2(Ω) the problem

−∇z = g in Ω, z = 0 on ∂Ω (2.20)

is well posed and its unique solution z satisfies the following elliptic regularity: z ∈ H2(Ω)

and ||z||H2(Ω) ≲ ||g||L2(Ω). Then, the following holds.

Theorem 2.3. Let Th = {E} be a subdivision of Ω ⊂ Rd, d = 2, 3 consisting of general
polytopic elements satisfying Assumptions 1.1 and 1.2 , with T# = {TE} the associated
covering of Th, cf. Definition 1.1.1. Let uh ∈ V p(Th) be the corresponding PolyDG
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solution defined by (2.11), where the discontinuity-penalization function σ is given by
(2.12) with with a penalty parameter α sufficiently large. Then,

||u− uh||L2(Ω) ≲
hs

pr−1
||u||Hs(Ω), (2.21)

where with s = min {p+ 1, r}. The hidden constants depend on the material parameters
and the shape-regularity of T#, but is independent of h, p.

For c ̸= 0 we have to make the assumption that there exists a positive constant γ0 such
that c(x) ≥ γ0 a.e. x ∈ Ω. In this case we refer to the general bilinear form Bh(·, ·) as

Bh(w, v) = Bd(w, v) +Br(w, v) ∀ v, w ∈ V p,

where Bd(·, ·) is defined as in (2.7) with a = Id. We introduce the following modified DG
norm:

||v||2DG = ||v||2d + ||v||2r ∀v ∈ V ,

where the norm || · ||d is defined as

||v||2d =
∑
E∈Th

||∇v||2L2(E) + ||σ
1
2 JvK||2L2(Fh)

∀v ∈ V ,

and the norm || · ||r is defined as

||v||2r =
∑
E∈Th

||c
1
2v||2L2(E) ∀v ∈ V .

It is easy to see that Br(v, v) = ||v||2r. The coercivity and the continuity of Bd(·, ·) on
V × V with respect to the norm || · ||d follows from Lemma 2.1. The error estimates
in norm DG (2.19) and in norm L2 (2.21) holds also in this case, where || · ||DG is the
modified DG norm. See [20] for the details.



2| Discontinuous Galerkin methods on polytopic meshes 19

2.3. Implementation aspects

2.3.1. Basis functions

In this section we recall the approach to construct the discrete space proposed in [20]
and in [19]. This approach is based on first employing polynomial spaces over a chosen
bounding box of each element E ∈ Th; then the element basis is simply constructed by
restricting this space to E. More precisely, given an element E ∈ Th, we write BE to
denote its corresponding bounding box; selecting, for example, BE to be the Cartesian
bounding box, i.e., the sides of BE are aligned with the Cartesian axes, then BE can be
easily constructed, such that Ē ⊆ B̄E. In Figure 2.1 there is an example of a polygonal
element E in R2 with its Cartesian bounding box BE. On this Cartesian bounding box BE

we may define a standard polynomial space PpE(BE) spanned by a set of basis functions
ϕi,E, i, . . . , NpE = dim(PpE(BE)).

Figure 2.1: Cartesian bounding box for a polygon

Writing BE = I1 ×I2 × . . . ×Id, where Ij, j = 1, . . . , d and selecting B̂ = (−1, 1)d to
be the reference hypercube, the bounding box BE may be affinely mapped to B̂, via the
mapping GE : B̂ → BE such that

x = GE(x̂) = JEx̂+ c, (2.22)

where JE = diag(h1, . . . , hd), c = (m1, . . . ,md)
T, and x̂ is a generic point in B̂. We have

that hj is half of the length of the jth-side of BE and mj is the midpoint of Ij, i.e
respectively hj = (xj2 − x

j
1)/2, j = 1, . . . , d and mj = (xj2 + xj1)/2, j = 1, . . . , d.

On B̂ we may define employ tensor-product Legendre polynomials; to this end, writing
{L̂i(x̂)}∞i=0 to denote the family of L2(−1, 1)-orhogonal Legendre polynomials, for example,
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the space of polynomials PpE(B̂) of total degree pE over B̂ is given by

PpE(B̂) = span{ϕ̂i,E}
dim(PpE

(B̂))

i=1 ,

where

ϕ̂i,E(x̂) = L̂i1(x̂1)L̂i2(x̂2) . . . L̂id(x̂d), i1 + i2 + . . .+ id ≤ pE, iE ≥ 0, k = 1, . . . , d ,

and x̂ = (x̂1, x̂2, . . . , x̂d) ∈ [−1, 1]. Moreover we recall that

L̂i(x) =
Li(x)

||Li||L2(−1,1)

, with Li(x) =
1

2ni!

d

dx
[(x2 − 1)n] .

Writing Li(x) = L̂i((x −mj)/hj), under the transformation (2.22), the space of polyno-
mials PpE(BE) of total degree pE over BE is given by

PpE(BE) = span{ϕi,E}
NpE
i=1 ,

where

ϕi,E(x) = Li1(x1)Li2(x2) . . . Lid(xd), i1 + i2 + . . .+ id ≤ pE, iE ≥ 0, k = 1, . . . , d

and x = (x1, x2 . . . , xd). Thereby, the polynomial basis over the general polytopic element
E may be defined by simply restricting the support of {ϕi,E}, i = 1, . . . , NpE to E; i.e.,
the polynomial basis defined over E is given by {ϕi,E|E}, i = 1, . . . , NpE .

2.3.2. Quadrature rules

The design of efficient and accurate quadrature rules for general polytopes is a challenging
task; while several approaches have been proposed within the literature, this still remains
an open and active area of research. Below we report only one approach that is the
one that has been implemented in the library LYMPH3D. Again we refer to [20] for the
description of this approach.

Sub-Tessellation

The simplest approach is to simply construct a sub-tessellation of each polytopic ele-
ment into standard element shapes, upon which standard quadrature rules may be em-
ployed. More precisely, given E ∈ Th, we first construct a non-overlapping sub-tessellation
EI = {τk} consisting of standard element shapes, i.e. tetrahedra. Here, a general hybrid
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sub-tessellation consisting of quadrilateral and triangular elements in R2, or tetrahedral,
hexahedral, prismatic, and pyramidal elements in R3, may be constructed. On agglom-
erated meshes, the sub-tessellation will already be available; however, for reasons of effi-
ciency, one may still wish to construct an alternative sub-tessellation that has a minimal
number of elements. As an example, if we consider computing the PolyDG mass matrix,
restricted to E ∈ Th, then we have that

∫
E

wv dx =
∑

τk∈EI

∫
τk

wv dx ≈
∑

τk∈EI

nq3∑
q=1

w(Fk(ξq))v(Fk(ξq))det(JFk
(ξq))wq , (2.23)

where Fk : ER → τk is the mapping from the reference element ER to τk, with Jacobi
matrix JFk

, and (ξq, wq)
nq3
q=1 denotes the quadrature rule defined on ER. We point out

that while quadrature schemes based on employing a subtessellation of each polytopic
element are straightforward to implement, they tend to be computationally expensive,
in the sense that, depending on the cardinality of the sub-tessellation, the number of
required function evaluations may be very large. This is particularly the case when the
sub-tessellation employed is simply the background fine mesh T fine

h used to construct a
coarse agglomerated grid. For this reason more sophisticated quadrature free approaches
have been proposed, see [5], however this is not considered in this work and will be the
subject of future research.

2.3.3. Assembling of the algebraic linear system

We now cosider a second-order elliptic PDE problem with a = Id,b = 0 and c ∈ R,
subject to a Dirichlet boundary condition (∂ΩD and ∂ΩN = ∅), given by:
find u ∈ H1(Ω) such that {

−∆u+ cu = f in Ω ,

u = gD on ∂Ω .
(2.24)

The PolyDG formulation of the problem is reported in (2.11) with a = Id in the definition
of the bilinear form Bd(·, ·) and of the linear functional F (·).
For simplicity we consider gD = 0. At the end of the section we will present the case
of gD ̸= 0. By fixing a basis {ϕi}Nh

i=1, Nh denoting the dimension of the discrete space
V p(Th), (2.11) can be rewritten as:
find u ∈ RNh

(A+ cM)u = f , (2.25)

where u contains the expansion coefficients of uh ∈ V p(Th),
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• f is the right hand side vector given by

fi =

∫
Ω

fϕi dx, i = 1, . . . , Nh. (2.26)

• M is the mass matrix given by

Mi,j =

∫
Ω

ϕi ϕj dx, i, j = 1, . . . , Nh, (2.27)

• A is the stiffness matrix given by

A = V − IT − I+ S , (2.28)

where

Vi,j =

∫
Ω

∇ϕj · ∇ϕi dx, (2.29)

and

Ii,j =

∫
Fh

JϕjK · {∇hϕi} ds Si,j =

∫
Fh

σJϕjK · JϕiK ds, (2.30)

for any i, j = 1, . . . , Nh.

In Section 2.3.1 we introduced the polynomial basis over a general polytopic element
E, {ϕi,E|E}, i = 1, . . . , NpE . For the sake of notation we omit the symbol specifying
the support, meaning we just write ϕi,E. We consider the case in which pE = p for all
E ∈ Th and Ω ⊂ R3. We call Np the number of degrees of freedom for any E ∈ Th.
Therefore, if we choose Pp(BE) as discrete space we have that Np = dim(Pp(BE)) =

(p+1)(p+2)(p+3)/6. We call Npoly the number of polyhedra in the mesh Th. Moreover,
we choose the penalization function according to (2.12) where hE is the diameter of the
bounding box BE of the element E. With this notation we describe how we compute the
entries in the local mass and element-based stiffness matrices. The local mass matrix is
defined as the mass matrix restricted to E ∈ Th, i.e.,

ME
i,j =

∫
E

ϕi,E ϕj,E dx i, j = 1, . . . , Np. (2.31)

If we use the quadrature formulas that we introduced in (2.23) to approximate this inte-
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gral, we obtain the following:

ME
i,j =

∑
τk∈EI

∫
τk

ϕi,E ϕj,E dx ≈
∑

τk∈EI

nq3∑
q=1

ϕi,E(Fk(ξq))ϕj,E(Fk(ξq)) det(JFk
(ξq))wq,

(2.32)

where EI is the tetrahedral sub-tessellation of E ∈ Th, Fk : ER → τk is the mapping
from the reference tetrahedron ER to the physical tetrahedron τk, with Jacobi matrix JFk

,
and (ξq, wq)

nq3
q=1 denotes the quadrature rule defined on ER.

The local element-based stiffness matrix is the component Vi,j of the stiffness matrix Ai,j

restricted to E ∈ Th, i.e.,

VE
i,j =

∫
E

∇ϕj,E · ∇ϕi,E dx. (2.33)

In the three-dimensional case if we employ tensor-product Legendre polynomials we have
that

ϕi,E(x) = Li1(x)Li2(y)Li3(z) i1 + i2 + i3 ≤ p, (2.34)

where Li is obtained from L̂i through the transformation GE in (2.22).

If we compute the gradient of ϕi,E we obtain:

∇ϕi,E(x) =


d
dxLi1(x)Li2(y)Li3(z)

Li1(x)
d
dyLi2(y)Li3(z)

Li1(x)Li2(y)
d
dzLi3(z)

 . (2.35)

The term VE
i,j becomes:

VE
i,j =

∫
E

d
dx
Li1(x)Li2(y)Li3(z)

d
dx

Lj1(x)Lj2(y)Lj3(z) dx

+

∫
E

Li1(x)
d
dy
Li2(y)Li3(z)Lj1(x)

d
dy
Lj2(y)Lj3(z) dx

+

∫
E

Li1(x)Li2(y)
d
dz
Li3(z)Lj1(x)Lj2(y)

d
dz
Lj3(z) dx.

Then, the approximation of this integral is performed by using the quadrature formulas
in (2.23). Following the same steps as we did above for the local mass matrix, we obtain:
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VE
i,j =

∑
τk∈EI

∫
τk

∇ϕi,E · ∇ϕj,E dx

≈
∑

τk∈EI

nq3∑
q=1

∇ϕi,E(Fk(ξq)) · ∇ϕj,E(Fk(ξq)) det(JFk
(ξq))wq.

(2.36)

Now we consider the terms on the interfaces. From the definition of the jump and average
operators, cf. (1.2), recalling that each face F ∈ F I

h is shared by the elements E±, we
expand the terms Si,j and Ii,j as the sum of the integrals on the interior faces and on the
boundary faces, i.e.,

Si,j = SI
i,j + SB

i,j, Ii,j = IIi,j + IBi,j,

where

SI
i,j =

∑
F∈F I

∫
F

σJϕj,EK · Jϕi,EK ds =
∑
F∈F I

∫
F

σ(ϕ+
j,En

+ + ϕ−
j,En

−) · (ϕ+
i,En

+ + ϕ−
i,En

−) ds

=
∑
F∈F I

∫
F

σϕ+
i,E(ϕ

+
j,E − ϕ

−
j,E) ds+

∑
F∈F I

∫
F

σϕ−
i,E(ϕ

−
j,E − ϕ

+
j,E) ds,

IIi,j =
∑
F∈F I

h

∫
F

Jϕj,EK · {∇hϕi,E} ds =
∑
F∈F I

h

∫
F

1

2
(∇hϕ

+
i,E +∇hϕ

−
i,E) · (ϕ

+
j,En

+ + ϕ−
j,En

−) ds

=
∑
F∈F I

h

1

2

∫
F

∇hϕ
+
i,E · n

+(ϕ+
j,E − ϕ

−
j,E) ds+

∑
F∈F I

h

1

2

∫
F

∇hϕ
−
i,E · n

−(ϕ−
j,E − ϕ

+
j,E) ds,

while on the boundary we have

SB
i,j =

∑
F∈FB

∫
F

σJϕj,EK · Jϕi,EK ds =
∑

F∈FB

∫
F

σϕ+
i,Eϕ

+
j,E ds,

and
IBi,j =

∑
F∈FB

h

∫
F

∇hϕ
+
i,E · n

+ϕ+
j,E ds.

Now we define the local interface integrals SF
i,j and IFi,j in the following way:

SF
i,j =

∫
F

σJϕj,EK · Jϕi,EK ds, IFi,j =

∫
F

Jϕj,EK · {∇hϕi,E} ds. (2.37)
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We write the expansion of the term SF,I
i,j on the interior faces:

SF,I
i,j =

∫
F

σϕ+
i,E(ϕ

+
j,E − ϕ

−
j,E) ds+

∫
F

σϕ−
i,E(ϕ

−
j,E − ϕ

+
j,E) ds = (I) + (II).

We see how to compute the integral (I) with the two-dimensional quadrature formulas.
First, we divide the integral in two terms:

(I) =
∫
F

σϕ+
i,E(ϕ

+
j,E − ϕ

−
j,E) ds = SF,D

i,j + SF,N
i,j ,

where,

SF,D
i,j =

∫
F

σϕ+
i,Eϕ

+
j,E ds SF,N

i,j = −
∫
F

σϕ+
i,Eϕ

−
j,E ds.

Now we consider the tetrahedral sub-tessellation EI = {τk} of the element E such that
F ⊂ ∂E. We call fl, l = 1, . . . , 4 the triangular faces of the tetrahedron τk. We define
TF as the set of all tetrahedra that belongs to the polyhedron E such that at least one of
their faces fl belongs to F :

TF = {τk ∈ EI : ∃ l ∈ 1, . . . , 4 : fl ⊂ ∂τk ∩ F}.

We define the maps ψl : TR → ER, l = 1, . . . , 4, from the two-dimensional reference trian-
gle TR to the faces of the three-dimensional reference tetrahedron ER. The approximation
of the integral SF,D

i,j is computed as:

SF,D
i,j =

∑
τk∈TF

∫
fl

σϕ+
i,Eϕ

+
j,E ds

≈
∑
τk∈TF

nq2∑
q=1

σϕ+
i,E(Fk(ψl(ηq)))ϕ

+
j,E(Fk(ψl(ηq))) det(JFk

(ψl(ηq))) ŵq,

(2.38)

where Fk : ER → τk is the mapping from the reference tetrahedron ER to the physi-
cal tetrahedron τk, with Jacobi matrix JFk

, and (ηq, ŵq)
nq2
q=1 denotes the two-dimensional

quadrature rule defined on TR.

The same holds for the local term SF,B
i,j on the boundary faces. In a similar way, the
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approximation of the integral SF,N
i,j is computed as:

SF,N
i,j = −

∑
τk∈TF

∫
fl

σϕ+
i,Eϕ

−
j,E ds

≈ −
∑
τk∈TF

nq2∑
q=1

σϕ+
i,E(Fk(ψl(ηq)))ϕ

−
j,E(Fk(ψl(ηq))) det(JFk

(ψl(ηq))) ŵq,

(2.39)

Notice that we considered the integral (I) in the sum because we are going to implement
only this term. Indeed, suppose that E+ and E− are the two elements that share the face
F . When we perform the loop on the elements to compute the integrals, we will assemble
only term (I) when the current element is E+. In this way the term (II) will be computed
when the current element will be E−. This allows us to consider the face F only once
in the loop on the elements. The same reasoning holds for the term IFi,j. We are going
to implement only the first term of the sum written in the expansion written below. We
write the expansion of the term IF,Ii,j on the interior faces:

IIi,j =
1

2

∫
F

∇hϕ
+
i,E · n

+(ϕ+
j,E − ϕ

−
j,E) ds+

1

2

∫
F

∇hϕ
−
i,E · n

−(ϕ−
j,E − ϕ

+
j,E) ds = (I) + (II),

and on the boundary faces:

IBi,j =

∫
F

∇hϕ
+
i,E · n

+ϕ+
j,E ds.

The computation of IFi,j follows the same steps of SF
i,j. The components of the local right

hand side vector fE defined as
fEi =

∫
E

fϕi,E dx

are computed with the quadrature formulas in the following way:

fEi =
∑

τk∈EI

∫
τk

fϕi,E dx ≈
∑

τk∈EI

nq3∑
q=1

f(Fk(ξq))ϕi,E(Fk(ξq)) det(JFk
(ξq))wq. (2.40)

In the case of gD ̸= 0, Dirichlet boundary conditions can be enforced by penalization, i.e.,

fi =
∑
E∈Th

∫
E

fϕi,E dx−
∑
F∈Fh

∫
F

gD∇hϕ
+
i,E · n ds+

∑
F∈Fh

∫
F

σgDϕ
+
i,E ds. (2.41)
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library

In this chapter we present LYMPH3D, the library that has been developed in this thesis.

LYMPH3D is a library written in Fortran. In LYMPH3D we can find the implementa-
tion of PolyDG method to discretize a PDE problem on a computational mesh made of
polytopic elements. In this way this library it is perfectly suited to deal with problems
featuring complicated geometries.

The code uses the open-source libraries, METIS for mesh agglomeration, MPI for message
passing, and PETSc, for solving the linear system.

In this chapter we describe in detail the structure of the library, all the files and mod-
ules and what they are used for. Figure 3.1 shows the basic structure of the main file
Lymph3D.

In Section 3.1 we describe the part of the library related to the mesh. Considering that
we already have a file .mesh containing all the information about the mesh, we will see
how we read the mesh and store the information needed to solve the equations.

In Section 3.2 we describe the part of the library related to the computation of the
necessary tools to assemble the linear system, meaning the construction of the bounding
box, the basis functions and the quadrature formulas.

In Section 3.3 we describe how we assemble the matrices and the term on the right and
side and in Section 3.4 we will see how we actually solve the linear system.

In Section 3.5 we can find the description of the functions related to the post-processing
part, the creation of the .vtk files necessary to visualize the solution and the computation
of the errors in L2-norm and in DG-norm.

In Section 3.6, we provide a brief user guide, and in Section 3.7 we will see how to generate
the mesh in a simple case of a cube.
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A selection of some of the most important functions that are used to perform the described
steps is reported in Appendix A.

Call INITIALIZATION

Call READ_INPUT_FILES

Call MAKE_PARTITION_AND_MPI_FILES

Declaration of Petsc and Fortran variables 

Call SET_PETSC_MATRICES 

Call MAKE_MATRICES

Call SET_PETSC_VECTORS 

Call MAKE_RHS

Call SOLVER_SETTINGS

Call KSP_Solve

Call PETSC_SCATTER_VECTOR

Call EXPORT_SOLUTION

Figure 3.1: Basic structure of the main program Lymph3D. First, we have the dec-
laration of the PETSc environment and the PETSc and Fortran variables. Next, we
call the subroutine READ_INPUT_FILES to read the input file and the subroutine
MAKE_PARTITION_AND_MPI_FILES to make the partition and to store the mesh
information, then we define and assemble the PETSc matrices and vectors by call-
ing SET_PETSC_MATRICES, MAKE_MATRICES, SET_PETSC_VECTORS and
MAKE_RHS. We set the algebraic solver and finally solve the linear system by calling
the PETSc function KSPSolve and then export the solution.
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3.1. Reading input files and store mesh structure

The starting point of a finite element discretization consists in reading the mesh file
and store the key information about the geometry of the problem. We provide here a
schematic description of the modules and files related to these tasks that are present in the
library. The main feature is given by the introduction of the structure Polyhedron stor-
ing the key properties of the polyhedral mesh. The significant changes can be seen in the
Poly_mesh.f90 module, in the subroutine MAKE_PARTITION_AND_MPI_FILES.f90,
and the implementation of the module Poly_geom.f90.

• Poly_setup_MPI.f90 where we can find the definition of the MPI variables as
mpi_id, mpi_np, mpi_ierr and the subroutine INITIALIZATION.f90. This sub-
routine performs the initialization of the MPI and the Petsc MPI envinronments.

• The file Poly_mesh.f90 contains the definition of the Mesh_Structure, the Ele-
ment structure and the Polyhedron structure.

1. The struct Element is reported in Table 3.1.
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Name field type Description

el_type string
Type of the element (tetrahedra in our
case)

mat_prop integer Id for heterogeneous materials

num_vert integer
Number of vertices of the element (4 in
our case)

num_faces integer
Number of faces of the element (4 in
our case)

Degree integer
Local degree of the basis function for
this element

NDof_loc integer Local number of degrees of fredom

vert
vector of integers of
size(num_vert)

Indexes of the vertices of the element

faces
matrix of integers of size
(num_faces,3)

Indexes of the vertices for every face of
the element

neigh_el
matrix of integers of size
(num_faces,4)

Properties of the neighbor elements

normal
matrix of real of size
(num_faces,3)

Coordinates of the normal to each face

area
vector of real of size
(num_faces)

Area of each face

Table 3.1: Fields of the structure Element

For example if we consider a tetrahedral mesh composed of only two tetrahedra,
and we take the first tetrahedron we will have as Element structure fields the
followings

– el_type −→ TETRA

– mat_prop −→ 1

– num_vert −→ 4

– num_faces −→ 4

– vert −→
[
1 2 3 4

]
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– faces −→


3 2 1

1 2 4

2 3 4

3 1 4



– normal −→


0 −0.71 0.71

−0.71 0.71 0

1 0 0

0 0 −1



– area −→


0.35

0.35

0.25

0.25


– neigh_el −→ The tetrahedra shares a face with just one neighbour within

the same process and in this case, made by the same material; the other
faces are boundary faces.

mpi-proc mat_id el_id face_id
0 1 2 4
0 0 0 0
0 0 0 0
0 0 0 0

2. The struct Polyhedron contains the properties of a single polyhedron. In
Table 3.2 we can see the description of its fields.
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Name field type Description

num_tet_in_poly integer
Number of tetrahedra contained in the
polyhedron

tet_in_poly
vector of integers of size
(num_tet_in_poly,1)

Global indexes of the tetrahedra con-
tained in the polyhedron

b_box
matrix of real numbers of
size (3,2)

Coordinates in the three different di-
rections of the bounding box of the
polyhedron

hk real number
Diameter of the bounding box of the
polyhedron

neigh_bbox
matrix of real numbers size
(num_tet_in_poly,3,2)

Coordinates of the bounding box of a
neighbouring polyhedron

neigh_hk
vector of real numbers of
size (num_tet_in_poly)

Diameter of the bounding box of a
neighboring polyhedron

Table 3.2: Fields of the structure Polyhedron

3. Mesh_Structure is a struct that contain the key information on the standard-
shape elements of the mesh (tethraedra in our case), on the boundary faces
(triangles) as the number of these kind of elements and their connettivity (ex.
con_tet that contains the connettivity of a tethraedra). New additional fields
were added to this structure to store the properties of the polyhedra. In the
Table 3.3 below we report the fields of the Mesh_Structure, where we have
highlighted in colour the new additional fields for the polyhedra.
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Name field type Description

num_node integer Total number of vertices

num_tet integer Total number of tetrahedra

num_elem integer Total number of elements

num_poly integer Total number of polyhedra

con_tet
matrix of integers of size
(num_tet,5)

Connettivity matrix of the tetrahedra

con_tria
matrix of integers of size
(num_tria,4)

Connettivity matrix of the triangles

part_elem
vector of integers of size
(num_tet)

For each tetrahedron it stores the id
of the processor it belongs to after the
partition

elem_in_poly
vector of integers of size
(num_tet)

For each tetrahedron it stores the index
of polyhedron it belongs to

elem_in_poly_loc
vector of integers of size
(num_elem_loc)

For each local tetrahedron it stores the
global index of polyhedron it belongs to

coord_x, coord_y,
coord_z

vectors of size (num_nodes)
Coordinates of the vertices in direction
x,y and z

num_elem_loc integer Local number of elements

num_node_loc integer Local number of vertices

num_poly_loc integer Local number of polyhedra

elem_loc2glo
vector of integers of size
(num_elem_loc)

Local to global maps to go from the
local enumeration to the global one for
the elements

node_loc2glo
vector of integers of size
(num_node_loc)

Local to global maps to go from the
local enumeration to the global one for
the nodes

poly_loc2glo
vector of integers of size
(num_poly_loc)

Local to global maps to go from the
local enumeration to the global one for
the polyhedra

Elem_loc

vector of structures of
type Element of length
(num_elem_loc)

For each element it stores all the prop-
erties listed in Table 3.1

Poly

vector of structures of
type Polyhedron of length
(num_poly)

For each polyhedron it stores the prop-
erties listed in Table 3.2

Table 3.3: Fields of the structure Mesh_Structure
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In Figure 3.2 we can see an example of a polyhedral mesh of a cube made of a
number of polyhedra num_poly=10 (Figure 3.2b), and the respective tetrahedral
subtassellation of the polyehdra with num_tet=48 (Figure 3.2a). In the Table 3.4
we report the first ten elements of the vector elem_in_poly for this particular mesh.
The module Poly_mesh.f90 also contains the subroutines

1. allocate_Mesh_Structure to allocate the Mesh Structure

2. print_Dime_Mesh_Structure to print the Mesh Structure

3. print_Local_Mesh_Structure_VTK to create the file mesh_partition.vtk to
visualize the mesh partitioned into different processors. In Figure 3.3 there is
an example of output of this subroutine, where we have a tetrahedral mesh
with 48 tetrahedra and the partition is done within 3 processors.

(a) Example of tetrahedral mesh
with Ntet = 48.

(b) Example of agglomerated polyhedral
mesh with Npoly = 10.

Figure 3.2: Polyhedral mesh (right) and relative tetrahedral sub-tessellation (left). The
polyhedral mesh in Figure 3.2b is obtained via agglomeration of the tetrahedral mesh in
Figure 3.2a.
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Tetrahedra id Polyhedra id

1 7

2 6

3 6

4 3

5 3

6 7

7 7

8 6

9 6
10 8

Table 3.4: The table refers to the polyhedral mesh in Figure 3.2b with Npoly = 10,
obtained via agglomeration of the tetrahedral mesh with Ntet = 48 in 3.2a. The table
shows how the agglomeration works. To each tetrahedron we associate an index from
1 to Npoly = 10 that refers to the polyhedron that contains that tetrahedron. The first
coloumn contains the indices of the tetrahedra, while the second coloumn contains the
indices of the associated polyhedron. We report here only the first 10 tetrahedra. The
second coloumn represents the first 10 elements of the vector elem_in_poly for the mesh
in Fig 3.2b.

Figure 3.3: Example of a tetrahedral mesh partitioned into np = 3 processors

• The file Poly_global.f90 contains a module of the same name, which stores some
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useful variables as head_file the name of the input file stored in the variable,
mate_file the name of the file containing information on the materials and some
variables related to the output and the measuring of the computational time. In this
file we can also find other modules, in particular three of them Poly_exit_codes,
Poly_fail_codes, Poly_default_codes are related to error and fail codes if some-
thing goes wrong reading the .input and the .mate file, and additional useful mod-
ules, the qsort algorithm for sorting elements of an array, the local_search module
useful for parallel programs and the find_poly module. The local_search contains
the subroutine GET_EL_LOC_FROM_EL_GLO that we need in order to find
the local index of an element of the mesh. It takes as input the local to global map
relative to a particular processor and the global index of the element and returns the
local index of the element if the element is stored in that processor, zero otherwise.
The new module find_poly contains the function FIND_TET_IN_POLY, needed
to find all the tetrahedra contained in a single polyhedra. The function takes as
input the vector elem_in_poly, the index of the polyhedron we are considering and
it returns a vector that has the dimension of the number of tetrahedra contained in
each polyhedron and it stores the indeces of these tetrahedra.

• The file Poly_readfile.f90 contains the subroutines that actually go through all the
input files, reading the files line by line.

• Poly_geom.f90 contains the module Poly_geom where we can find the subroutine
REFERENCE_MAP that perform the computation of the matrices of the refer-
ence map Fk from the reference simplex (0,0,0), (1,0,0),(0,1,0) (0,0,1) to to
the physical tetrahedron, and the corresponding determinant Jdet, see [44]. This
subroutine takes as input the coordinates of the vertices of the physical tetrahedron
x,y,z and returns as output the followings.

– Fk a matrix, size (3,4) containing the mappings from the reference tetrahedron
to the physical tetrahedron

– Jinv a matrix, size (3,3) containing the inverse of the jacobian of Fk

– Jdet a scalar, determinant of the jacobian

• The READ_INPUT_FILES subroutine is called directly from the main file Lymph3D
and it calls all the modules we saw above in order to set the header and the material
files and to define and initialize the structure Mesh_Structure.

• The file MAKE_PARTITION_AND_MPI_FILES.F90 contains a subroutine with
the same name that performs the partition of the mesh into the different proces-
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sors and stores the local properties of the mesh into the correspondent fields of
the Mesh_Structure. Moreover this subroutine creates output files in the folder
FILES_MPI and writes the mesh infomation in the suitable output files. Each file
contains the mesh information relative to a specific processor. For example if we use
two processor, after calling this subroutine we will see in the folder FILES_MPI
the files

1. mesh_000000.mpi, mesh_000001.mpi
containing the mesh properties for the elements contained in processor 0 and
processor 1 respectively

2. elem4proc.mpi
containing two coloumns, the first coloumn is for the indexes of the tetrahedra
and the second one for the id of the processor it belongs to

3. con_tet_000000.mpi,con_tet_000001.mpi
containing the connettivity of the tetrahedra respectively for processor 0 and
processor 1

4. con_tri_000000.mpi,con_tri_000001.mpi
containing the connettivity of the triangles respectively for processor 0 and
processor 1.

The subroutine MAKE_PARTITION_AND_MPI_FILES.f90 calls the following sub-
routines.

• MESH_PARTITIONING
performs the partition of the mesh into different processors by using METIS and
write the mpi file elem4proc.mpi.

• WRITE_PARTITION
writes the partition in the mpi files storing the connettivity of tetrahedra and tri-
angles.

• MESH_AGGLOMERATION
generates the polyhedral mesh by agglomerating the tetrahedral mesh read from the
.mesh file.

• MESH_CORRECTION
ensures that each polyhedron contains at least one tetrahedron.

• CREATE_GLOBAL_POLY_MAP
allocates and stores the field elem_in_poly.
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• CREATE_LOCAL_MESH
stores the local properties of the tetrahedral mesh into the correspondent fields of
the Mesh_Structure.

• CREATE_VERT_LIST
stores the coordinates of the vertices of the tetrahedra locally.

• CREATE_POLY_LIST
stores the map poly_loc2glo to go from local polyhedron to the global one and
initializes the other fields of the structure Polyhedron.

• CREATE_NORMAL_FACE
performs the computation of the coordinates of the normal and the area to each
face.

• CREATE_BBOX_EL
performs the computation of the bounding box for each polyhedron. The key steps
of this subroutine can be seen in Algorithm 3.2.

• CREATE_NEIGH_EL_TRIA
stores the information of the neighbouring tetrahedra and polyhedra. Few changes
were made to this subroutine to add the storage of the properties of the neighbouring
polyhedra. These changes can be seen in Algorithm 3.3.

• WRITE_MESH_INFO writes the mesh information in suitable mpi files.

We focus on the subroutine MESH_AGGLOMERATION to see how we generate the
polyhedral mesh by agglomerating the tetrahedral mesh. The agglomeration is performed
based on employing the METIS library for graph partitioning, cf., for example, [42, 43].
METIS is a state-of-the-art graph partitioning algorithm. We note that for METIS to
partition the fine mesh Th , the logical structure of Th is first stored in the form of
a graph, where each node represents an element domain of Th, and each link between
two nodes represents a face shared by the two elements represented by the graph nodes.
The resulting partition of Th constructed by METIS is produced with the objective of
minimizing the number of neighbours among each of the resulting partitions, or more
precisely, the resulting polygonal elements. In Algorithm 3.1 we can find the lines of
pseudocode needed do create the agglomerate mesh of polyhedra.
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Algorithm 3.1 Generate an agglomerated mesh
1: Store number of polyhedra in variable num_part

2: Extract the connettivity matrix con_tet and the number of vertices of the tetrahedra
num_nodes

3: Set options to have Fortran-style numbering and to force contigous partition
4: Call METIS_PartMeshDual function giving as input ncommon=4, num_part,

con_tet, num_elem_loc and num_nodes

5: Store the output of METIS into the file ’elem_in_poly_loc.mpi’
6: Allocate and store elem_in_poly_loc

Note that if we want to solve the problem with the tetrahedral mesh we just have to set
num_parts=num_elem_loc.

Notice that the mesh that we obtain as output of this agglomeration algorithm can present
some issues. For instance, since we provide to the algorithm the number of polyhedra that
we want num_part, we can have the problem of some empty polyhedra, meaning polyhedra
that don’t contain any tetrahedron. The role of the subroutine MESH_CORRECTION
is to correct this problem if it presents. In this subroutine we read the agglomerated mesh
and reduce the number of polyhedra until we have that each polyhedra contains at least
one tetrahedron.

In Algorithm 3.2 there is a summary of the subroutine CREATE_BBOX_EL where
we describe how we create the bounding box BE for each E ∈ Th. Then, in Algo-
rithm 3.3 we can see a schematic description of the few changes made to the subroutine
CREATE_NEIGH_EL_TRIA. Indeed, as we will see later in Section 3.3, in order to
assemble the stiffness matrix we need to access to the bounding box of the polyhedron
we are considering, but also the bounding box of the neighboring polyhedron. When two
neighbouring polyhedra belong to the same processor we can easily retrieve the bounding
box of the neighbour. However, when the two neighboring polyhedra have neighboring
tetrahedra in different processors, we need to save the coordinates of the bounding box
of the neighboring polyhedra in a structure that is accessible by all processors.
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Algorithm 3.2 Create Bounding Box
1: for i := 1 , num_poly_loc do
2: Allocate xx, yy, zz of size num_tet_in_poly * num_vert

3: t←− 1

4: for ie = 1 , num_tet_in_poly do
5: xx(t)←− coord_x

6: yy(t)←− coord_y

7: zz(t)←− coord_z

8: t←− t+ 1

9: end for
10: b_box(1,1) ←− min(xx); b_box(1,2) ←− max(xx);
11: b_box(2,1) ←− min(yy); b_box(2,2) ←− max(yy);
12: b_box(3,1) ←− min(zz); b_box(3,2) ←− max(zz);
13: hk ←− diameter of b_box
14: end for

Algorithm 3.3 Create Neighboring Bounding Box
1: . . .

2: Allocate containing the coordinates of the bounding boxes to send x1_send_mpi,
x2_send_mpi, y1_send_mpi, y2_send_mpi, z1_send_mpi, z2_send_mpi

3: Allocate diameters to send hk_send_mpi

4: Send coordinartes of bounding boxes and diameters to all processors
5: for i = 1,num_tria_loc do
6: . . .

7: if ( Neighbouring tetrahedra sharing face i are in different processors ) then
8: . . .

9: if ( The tetrahedra don’t belong to the same polyhedron ) then
10: Recover the global index of the face iface

11: neigh_bbox(iface,1,1:2) ←− [x1_send_mpi ; x2_send_mpi]
12: neigh_bbox(iface,2,1:2) ←− [y1_send_mpi ; y2_send_mpi]
13: neigh_bbox(iface,3,1:2) ←− [z1_send_mpi ; z2_send_mpi]
14: neigh_hk ←− hk_send_mpi

15: end if
16: . . .

17: end if
18: end for
19: Deallocate coordinates and diameters sent
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3.2. Basis functions and quadrature formulas

In this section we detail the module basis_function contained in basis_function.f90.
Note that we call p the total degree of the basis functions and Np the number of basis
functions, denoted before as Degree and NDof_loc, respectively, see Table 3.1. The
module basis_function contains the following subroutines:

• blist

This subroutine returns the list of the degrees of monomials of the Np basis functions
up to a total degree p. The subroutine takes as input Np and p and returns a matrix
blist of size (Np,3).

• quadrature

This subroutine computes quadrature nodes and weights over the simplex tetrahe-
dron (ξq, wq)

nq3
q=1 and triangle (ηq, wq)

nq2
q=1. It computes also the maps ϕl, l = 1, . . . , 4,

from the two-dimensional reference triangle to the faces of the three-dimensional
reference tetrahedron. These maps are stored in the matrix node_maps. We remark
that we are using the quadrature formulas for the tetrahedra since we are consid-
ering the Sub-Tessellation method explained in Section 2.3.2. Below we report the
old and the new notation for the quadrature nodes, both in three-dimensions and
two-dimensions.

– Number of 3D quadrature nodes: nq3 → nq3

– Number of 2D quadrature nodes: nq2 → nq2

– Weights of the 3D quadrature nodes: w → wei3

– Weights of the 2D quadrature nodes: ŵ → wei2

– Nodes of the 3D quadrature nodes: ξ → nod3

– Nodes of the 2D quadrature nodes: η → nod2

• LegendreP

Here we evaluate the scaled Legendre Polynomial Ln(x) and its derivative L′
n(x) in

one dimension on the interval int, which corresponds to the edge of the bounding
box BE in one particular direction, at points x, of order given by blist considering
that the total degree must be p. In order to compute the evaluations of the Legendre
Polynomials we use the recursive formulas

(n+ 1)Ln+1(x)− (2n+ 1)xLn(x) + nLn−1(x) = 0,
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L′
n+1(x)− xL′

n(x) = (n+ 1)Ln(x),

where n = 1, . . . , p− 1 and Lo(x) = 1. The subroutine takes as input p, int, x that
is the vector of points we want to evaluate the polynomials in and nq, that is the
length of this vector. It returns as output P and Pder.

• basis

This subroutine evaluates the basis functions and their partial derivatives at the
three-dimensional quadrature nodes nod3 for every element by calling the previous
subroutine LegendreP. The subroutine takes as input Np, Fk, nod3, the number
of the quadrature nodes nq3, b_box, blist and it returns phi and dphi that cor-
respond respectively to {ϕi,E}Np

i=1 and {∇ϕi,E}Np

i=1, see (2.34) and (2.35). We need
phi and dphi in order to compute the volume integrals (2.27) and (2.29) using the
quadrature formulas. See for example (2.32) where we use ϕi,E for the computation
of the entries of the mass matrix.

• basis_boundary

Here we can find the evaluation of the basis functions for every face f of the two
neighbouring tratrahedra E+ and E−, that we call respectively E1 and E2, at the
two-dimensional quadrature nodes nod2. The subroutine takes as input E1 and
E2, Np, Fk, nod2 , the number of the two-dimensional quadrature nodes nq2, the
maps from the three-dimensional tetrahedron to the two dimensional faces of the
tetrahedron node_maps, the bounding boxes b_box1 and b_box2 respectively of
the polyhedron that contains the tetrahedron E1 and of the polyhedron containing
the neighbouring tetrahedron E2, blist and e_E1, the index of the face numbered
from 1 to 4 according to the tetrahedron E1. The subroutine returns {ϕ+

i,f}
Np

i=1 and
{ϕ−

i,f}
Np

i=1 both contained in phi_b and {∇ϕ+
i,f}

Np

i=1, {∇ϕ+
i,f}

Np

i=1 as grad_b. We need
phi_b and grad_b in order to compute the integrals on the interface according to
the quadrature formulas. See for example (2.38) and (2.39) where we use ϕ+

i,f and
ϕ−
i,f for the computation of the entries of the matrix S on the internal faces.

3.3. Assembling of the algebraic linear system

The focus of this section is on the assembly part. Here we can find the subroutines that
contain the assembly of the matrices and of the right hand side vector needed to solve
the linear system. For now, this library can be used to solve diffusion reaction problems,
therefore, beside the right hand side, we need to assemble the stiffness matrix A and the
mass matrix M. To solve the linear system we use an open source library called PETSc.
PETSc, see https://petsc.org/release/overview/, the Portable, Extensible Toolkit

https://petsc.org/release/overview/
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for Scientific Computation, is for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. Since PETSc requires the definition of its own
matrices and vectors we have two files where we create and initialize the PETSc matrices
and vectors.

• SET_PETSC_VECTORS.f90
In this subroutine we create and initialize the two PETSc vectors, the right hand
side and the solution.

• SET_PETSC_MATRICES.f90
Here we can find a subroutine called SET_PETSC_MATRICES where we create
and initialize the two PETSc matrices, the stiffness matrix and the mass matrix.

The real assembly part is performed with the following routines.

• assemble_local.f90
In this module we assembly the local matrices and the right hand side vector. In
particular, this module contains the following 5 subroutines.

1. MAKE_STIFF_TET_LOC
In this subroutine we assemble V_loc, the local term of the stiffness matrix
approximating the integral on the tetrahedron by performing the loop on the
three-dimensional quadrature nodes, see (2.36). It takes as input Np, Jdet, the
weighths in three-dimensions wei3, nq3, the evaluations of the gradients of the
basis functions at the quadrature nodes dphi and returns V_loc.

2. MAKE_STIFF_FACE
In this subroutine we assemble I_loc, S_loc, the terms of the stiffness matrix
approximating the integrals on the faces of the tetrahedron and IN_loc and
SN_loc on the faces of the neighbouring tetrahedron. See for example (2.38)
and (2.39) for the details of the computation of the entries of the matrices S_loc
and SN_loc. The subroutine takes as input θ, σ, p, Np, the neighbouring tetra-
hedra E2, hk1 the diameter of the bounding box of the polyhedra containing
the tetrahedra and hk2 the diameter of the bounding box of the neighbouring
polyhedra containing tetrahedra E2, the normal to the face normal, the area of
the face A, the weights in two-dimensions wei2, nq2 and the evaluations of the
basis functions and their gradients at the quadrature nodes, phi_b, grad_b. It
returns the matrices that we listed above.

3. MAKE_RHS_TET
Here we assemble rhs_tet_loc, the local right hand side term approximating
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the integral on the tetrahedron, see (2.40). This subroutine takes as input
Np, Jdet, the weighths in three-dimensions wei3, nq3, and the evaluations
of the basis functions at the quadrature nodes phi and it returns the vector
rhs_tet_loc.

4. MAKE_RHS_FACE
In this subroutine we assemble rhs_bd_loc, the local right hand side term that
approximates the integral on the faces of the tetrahedron that are boundary
faces. Indeed, in the case of gD ̸= 0 we have also an integral term on the
boundary faces in the definition of the right hand side vector, see (2.41). The
subroutine takes as input θ, σ, p, Np, the neighbouring tetrahedra E2, the
reference map Fk, hk1 the diameter of the bounding box of the polyhedra
containing the tetrahedra and hk2 the diameter of the bounding box of the
neighbouring polyhedra containing tetrahedra E2, the index of the face e the
normal to the face normal, the area of the face A, the weights in two-dimensions
wei2, the two-dimensional quadrature nodes nod2, nq2, the maps node_maps

and phi_b,grad_b. It returns rhs_bd_loc.

5. MAKE_MASS_LOC
In this subroutine we find the assembly of M_loc the local term of the mass
matrix that approximates the integral on the tetrahedron, see (2.32). The
subroutine takes as input Np, Jdet, the weighths wei3, nq3, phi and returns
M_loc.

• MAKE_MATRICES.f90
In this file there is a subroutine with the same name where we assemble the two
PETSc matrices, the stifness matrix A and the mass matrix M by performing a
loop on the elements. MAKE_MATRICES takes as input Np, the total number of
degrees of freedom Np(num_poly), the Mesh_ Structure and it returns the Petsc
matrices petsc_stiff, petsc_mass assembled.

• MAKE_RHS.f90
Here we can find a subroutine called MAKE_RHS where we assemble the term
on the right hand side f by performing a loop on the elements. MAKE_RHS
takes as input Np, the total number of degrees of freedom Np(num_poly), the
Mesh_Structure and it returns the vector petsc_rhs assembled.
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3.4. Solving the linear system

We have assembled the Petsc matrices and vectors that we need to solve the linear sys-
tem. Now we set the solver, direct or iterative, and optionally the preconditioner in the
subroutine SOLVER_SETTINGS and finally we solve the linear system by calling the
PETSc function KSPSolve. However, this can be done only after creating the object KSP.
Directly from https://petsc4py.readthedocs.io/en/stable/manual/ksp/, the KSP
object is the heart of PETSc, because it provides uniform and efficient access to all of
the package’s linear system solvers, including parallel and sequential, direct and iterative.
KSP is intended for solving systems of the form:

Ax = f

where A denotes the matrix representation of a linear operator, f is the right hand side
vector, and x is the solution vector. KSP uses the same calling sequence for both direct
and iterative solution of a linear system.

To solve a linear system with KSP, we first create a solver context with the command
KSPCreate, then we call the following routine to set the matrices associated with the linear
system KSPSetOperators. For further details see manual of PETSc https://petsc4py.

readthedocs.io/en/stable/manual/. Now that we have the solution as PETSc vec-
tor, we copy the solution into a vector. This task is performed by the subroutine
PETSC_SCATTER_VECTOR. In addition, this routine collects the values of the so-
lution from the different processors and stores them in the right locations of the final
solution vector.

3.5. Post-processing

Once we solved the linear system, the program Lymph3D performs the post-processing
by calling two subroutines contained in the module post_processing

• export_solution

In this subroutine we evaluate the solution function at the vertices of the tetrahe-
dra and then we write these values on a .vtk file in order to visualize them on a
suitable software, as for example Paraview. This is done by calling the subroutines
VTK_WRITE contained in the module MOD_VTK

• errors

Here, starting from the known exact solution of the problem, if available, and the

https://petsc4py.readthedocs.io/en/stable/manual/ksp/
https://petsc4py.readthedocs.io/en/stable/manual/
https://petsc4py.readthedocs.io/en/stable/manual/
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approximated solution, we perform the computation of the errors in norm L2 and
DG.

3.6. User-Guide

In this section we provide a tutorial to use the library to solve a problem. We list here
the steps to follow.

1. Build a mesh of tetrahedra of the desired geometry with a suitable software

2. Launch the file exoToMesh.m on Matlab that returns the file .mesh

3. Use this file .mesh to agglomerate the mesh with METIS

4. Change the file ’Poly.input’ by changing the name of the mesh file

5. Modify the file test.f90 to modify the forcing term

6. Modify the file test.f90 to change α the coefficient in the definition of the penalty
function or θ to change the method (to IIP or NIP)

7. Modify the file test1.mate to modify the total degree of basis function

8. Compile the program with the command make and then to run it with the command
mpirun -np 2 ../Lymph3D. Here Lymph3D is the executable file and the number
of processors is set to two.

3.7. Mesh Generation

In this thesis we used the software CUBIT to generate the mesh. From https://cubit.

sandia.gov/, CUBIT is a full-featured software toolkit for robust generation of two-
dimensional and three-dimensional finite element meshes and geometry preparation. Its
main goal is to reduce the time required to generate meshes, particularly large meshes of
complicated, interlocking assemblies.

We generate for example the mesh of a cube with Ntet = 4496 by implementing the lines
of code on Cubit that we can see in Algorithm 3.4.

https://cubit.sandia.gov/
https://cubit.sandia.gov/
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Algorithm 3.4 Generate tetrahedral mesh of cube
1: brick x 1
2: vol 1 scheme tetmesh
3: mesh vol 1 size 0.2
4: block 1 vol 1
5: block 2 surface 1 2 3 4 5

We have to export the file into format .e, then convert it into .txt, and finally we launch
the file exToMesh.m in order to obtain the file .mesh that is going to be read by the
proper functions in the library. In Figure 3.4 we can see the mesh that is generated with
this lines of code. In order to visualize the mesh we created the file .vtk.

Figure 3.4: Tetrahedral mesh of a cube with Ntet = 4496.

In the Figure 3.5 we can see the mesh that is generated by METIS algorithm. In order to
visualize the mesh we created the file .vtk. The different colours represent the polyhedra
obtained with the agglomeration.
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Figure 3.5: Example of the agglomerated mesh of a cube generated by METIS with 720
polyhedra giving as input the tetrahedral mesh in Figure 3.4.
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4| Numerical Tests

The aim of this chapter is to present some numerical results to test the convergence of
the method and to test the performance of the LYMPH3D library.

4.1. Test case 1

Consider the following diffusion reaction problem introduced in Section 2.3.3.

Find u such that {
−∆u+ cu = f in Ω ,

u = gD on ∂Ω .
(4.1)

where Ω = (0, 1)3, uex(x, y, z) = exyz and gD = uex on ∂Ω.

First, we consider a pure diffusion equation, i.e., choosing c = 0 in problem (4.1). The
forcing term is f(x, y, z) = −exyz((xy)2 + (xz)2 + (yz)2).

We solve this problem with the algorithm previously described on a succesively finer mesh,
first using a tetrahedral mesh, and then a polyhedral mesh. As we already discussed in
Chapter 3, the polyhedral grids are obtained by agglomeration starting from a tetrahedral
mesh.

We solve the problem with the SIP method, meaning setting θ = −1 in (2.6). The
penalty discontinuity function is defined in (2.12) with penalty coefficient α = 10, p is the
polynomial approximation order assuming pE = p ≥ 1 ∀E ∈ Th and hE is the diameter
of the element E.

In Figure 4.1 we can see the numerical solution of the problem computed in the vertices
of the tetrahedra obtained with the software Paraview.
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Figure 4.1: Test case 1. Numerical solution

In Figure 4.3 we investigate the convergence of the PolyDG on sequences of finer cube and
tetrahedral meshes for different values of the polynomial degrees p between 1 and 3. We re-
fine the mesh of the cube by varying the number of tetrahedra Ntet ∈ {48, 384, 1296, 3072}
and for each Ntet we solve the linear system.

In Figure 4.5 we investigate the convergence results of the PolyDG method applied to the
same problem on a polyhedral mesh obtained by METIS starting from the tetrahedral
meshes we used for the previous analysis. We consider in this case a varying number
of polyhedra Npoly ∈ {10, 100, 400, 700}. For each Npoly we solve the linear system for
p = 1, 2, 3, 4.

For each fixed p we plot the errors, measured in terms of both the L2(Ω) norm and DG

norm, versus the diameter of the elements, tetrehedra in the first case and polyhedra in
the second one. In both cases we clearly observe that ||u − uh||L2(Ω) and ||u − uh||DG

converge to zero at the optimal rates O(hp+1) and O(hp), respectively, as the mesh size h
tends to zero for each fixed p. The numerical results confirm the optimality of the PolyDG
method for pure diffusion problems in accordance with the theoretical convergence results,
see Theorem 2.2 and Theorem 2.3.
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Figure 4.2: Test case 1. Computed errors in the L2 norm for p = 1, 2, 3 (tetrahedral
meshes)

0.3 0.4 0.5 0.6 0.7 0.8

h

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Equation - Tetrahedral Mesh

p = 1

Order1

p = 2

Order2

p = 3

Order3

Figure 4.3: Test case 1. Computed errors in the DG norm for p = 1, 2, 3 (tetrahedral
meshes)



52 4| Numerical Tests

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Equation - Polyhedral Mesh

p = 1

Order2

p = 2

Order3

p = 3

Order4

p = 4

Order5

Figure 4.4: Test case 1. Computed errors in the L2 norm for p = 1, 2, 3, 4 (polyhedral
meshes)
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Figure 4.5: Test case 1. Computed errors in the DG norm for p = 1, 2, 3, 4 (polyhedral
meshes)
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4.2. Test case 2

We consider the diffusion reaction PDE problem (4.1) reported in Section 4.1 with c = 0.5,
Ω = (0, 1)3, uex(x, y, z) = exyz and gD = uex on ∂Ω. The forcing term, in this case is
f(x, y, z) = −exyz((xy)2 + (xz)2 + (yz)2 − 0.5).

As in the previous example, we discretize the problem with the SIP method and we solve
this problem with the algorithm previously described on a succesively finer mesh, using
firstly a type of mesh composed of tetrahedra, and secondly a polyhedral mesh.

In Figure 4.6 we can see the numerical solution of the problem computed in the vertices of
the tetrahedra obtained with the software Paraview. Notice that the solution is the same
as before, which is coherent with our problem since we only changed the forcing term.

Figure 4.6: Numerical solution of the diffusion reaction equation

We consider the same refined meshes of the cube as before, composed of tetrahedra
for the first case with the number of tetrahedra varying in Ntet ∈ {48, 384, 1296, 3072}
and polyhedra for the second case with the number of polyhedra varying in Npoly ∈
{10, 100, 400, 700}.

We plot the errors for p = 1, 2, 3, measured in terms of both the L2(Ω) norm and DG

norm versus the diameter of the elements, tetrehedra in Figure 4.8 and polyhedra in
Figure 4.10. For the polyhedral mesh we report also the errors for p = 4. Again we
observe that ||u−uh||L2(Ω) and ||u−uh||DG converge to zero at the optimal rates O(hp+1)

and O(hp) respectively, as the mesh size h tends to zero for each fixed p confirming the
optimality of the PolyDG method for diffusion-reaction problems in accordance with the
theoretical convergence results, see Theorem 2.2 and Theorem 2.3.
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Figure 4.7: Test case 2. Computed errors in the L2 norm for p = 1, 2, 3 (tetrahedral
meshes)
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Figure 4.8: Test case 2. Computed errors in the DG norm for p = 1, 2, 3 (tetrahedral
meshes)
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Figure 4.9: Test case 2. Computed errors in the L2 norm for p = 1, 2, 3, 4 (polyhedral
meshes)
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Figure 4.10: Test case 2. Computed errors in the DG norm for p = 1, 2, 3, 4 (polyhedral
meshes)
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4.3. Test case 3

We already mentioned that one of the advantages of choosing polytopic element shapes
over standard simplicial/hexahedral elements is that the average number of elements
needed to discretize complicated domains is smaller and this allows to reduce the com-
plexity of the given computational geometry and that this advantage becomes even more
evident whenever the domain contains complex geometrical features. In this section we
present a numerical test in which we solve the PDE problem (4.1) in Section 4.1 with
c = 0. We solve the diffusion problem with the SIP PolyDG method on the agglomerated
mesh of a human brain with f(x, y, z) = −exyz((xy)2 + (xz)2 + (yz)2) and gD = exyz.

The three-dimensional mesh of a human brain is one example of a very complicated
geometry and the PolyDG method is perfectly suited to be employed in the context of
brain modelling. In a recent work, [29] they discretize multiple networks poroelastic model
of the human brain in space by using the PolyDG method.

If we consider the tetrahedral mesh in Figure 4.11a, we cannot solve the numerical problem
on this kind of mesh because the number of degrees of freedom is too high for p ≥ 2. For
this reason we solve the numerical problem on the polyhedral mesh in Figure 4.11b and
on the tetrahedral mesh in Figure 4.11a for p = 1. The polyhedral mesh is obtained with
METIS by agglomerating the tetrahedral mesh in Figure 4.11a and by choosing a number
of polyhedra Npoly = 2000. In Figure 4.12 we can see a plot of the numerical solution.
We report in Table 4.1 the errors in the L2 norm and in the DG norm for p = 1 solving
the problem with the tetrahedral (Ntet = 127824) and polyhedral mesh (Npoly = 2000),
respectively. We notice that solving the problem on the polyhedral mesh, we reduce the
number of elements and the computed errors (both in L2 and DG norm) are even lower
than the errors obtained by solving the problem employing the tetrahedral mesh.
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(a) Tetrahedral mesh of
the brain with Ntet =

127824 .

(b) Agglomerated mesh of the brain
with Npoly = 2000 .

Figure 4.11: Mesh of the human brain. In Figure 4.11a we have the tetrahderal mesh
composed of Ntet = 127824. In Figure 4.11b we have the agglomerated polyhedral mesh
with Npoly = 2000 obtained with METIS from the tetrahderal mesh in Figure 4.11a.

Figure 4.12: Test case 3. Numerical solution of the diffusion equation with f(x, y, z) =

−exyz((xy)2 + (xz)2 + (yz)2) and gD = exyz solved on the agglomerated mesh of the brain
with Npoly = 2000.
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Element type L2 norm DG norm h

tetrahedra 1.21 10−6 1.66 10−3 1.08 10−2

polyhedra 3.47 10−8 1.39 10−5 3.52 10−2

Table 4.1: Test case 3. Computed errors in norm L2 and DG for p = 1 solving the problem
with the tetrahedral (Ntet = 127824) and polyhedral mesh (Npoly = 2000), respectively.

4.4. Test case 4

Now we investigate the numerical solution of a problem for which there is not a known
analytical solution. We consider again the diffusion problem (4.1) with c = 0 and we
choose f(x, y, z) = e−(x2+y2+z2) and gD = 0. We solve this problem with the SIP PolyDG
method on the agglomerated mesh of the brain in Fig 4.11b with Npoly = 2000 and
choosing p = 1. In Figure 4.13 we can see the numerical solution of the diffusion problem
with this new function f .
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Figure 4.13: Test case 4. Numerical solution of the diffusion problem with f(x, y, z) =

e−(x2+y2+z2) and gD = 0 solved on the agglomerated mesh of the brain with Npoly = 2000.
In the first image there is the three-dimensional numerical solution of the brain. The other
two images show the numerical solution on two different sections of the human brain.
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5| Conclusions and future

developments

In this work of thesis we recalled the main theoretical results on the discontinuous Galerkin
methods on polytopic mesh. We introduced the library LYMPH3D to solve diffusion-
reaction problems with the PolyDG method in three-dimensions. We described in detail
the main functions of the library and we presented two numerical tests of a pure diffusion
equation and of a diffusion reaction equation on a simple mesh of a cube. These tests
confirmed the known theoretical results on the discontinuous Galerkin methods on tetra-
hedral and polyhedral meshes. Therefore, we confirm the possibility to use this library
to solve these kind of problems on agglomerated polyhedral meshes. Then we solved the
diffusion equation on a complicated geometry of the human brain. There are many pos-
sible future developments of this work in order to make the library as general as possible.
We recall that in the library we compute the integrals using the Sub-Tessellation method,
see Section 2.3.2. This method always requires a tetrahedral mesh T fine

h . Here, this is
not an issue since we create the polyhedral mesh via agglomeration of a tetrahedral mesh.
Therefore, we already have at our disposal the mesh T fine

h . However, in order to compute
the integrals to assemble the linear system we need to perform a loop on the tetrahedral
elements, and this is computationally expensive. One possible improvement of this work
is to introduce in the library the Quadrature Free algorithm (see [5]) to compute the
integrals without the need of the tetrahedral mesh T fine

h . It has been shown that this
integration approach leads to a considerable improvement in the computational perfor-
mance compared to classical quadrature algorithms based on sub-tessellation, in both two
and three-dimensions.

Moreover, for now the library can be used to solve diffusion equations on tetrahedral
meshes and polyhedral meshes obtained as agglomeration of tetrahedral meshes. One
idea could be to expand the library in order to read generic hybrid grids based on a
convenient combination of hexahedral/tetrahedral/prysmatic/polytopic elements. These
computational hybrid grids are easy to be generated. The idea is to generate an initial
(hexahedral/tetrahedral in three dimensions) mesh, based on employing standard mesh
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generators; then elements intersecting the irregularities in the geometry are suitably cut
and/or agglomerated, thus generating polytopes, while keeping a regular structure else-
where.

Another possible development of the library is to implement the algorithms to solve more
complicated problems, first introducing also the transport term in a general elliptic PDE,
then trying to solve a dynamic equation. The idea is that this library is the starting
point in order to have an efficient open source library to solve heterogeneous differential
problems.
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A| Appendix A

In Chapter 3, we have described how the library LYMPH3D works. Notice that in Section
3.1 we focused on the part of the library relative to the mesh. We have seen in detail the
structures Element, Polyhedron and Mesh_Structure and how we perform the ag-
glomeration of the tetrahedral mesh in the function MESH_AGGLOMERATION. More-
over, we have also seen how we compute the key properties of the polyhedra necessary to
solve the problem, in the functions CREATE_POLY_LIST and CREATE_BBOX_EL
(see Algorithm 3.2). In this Appendix we show the implementation in Fortran of some of
the most important functions of the library. Below we can see the implementation of the
following functions, in this order:

1. Lymph3D that is the main program

2. basis and basis_boundary from the module basis_function, see Section 3.2

3. MAKE_MATRICES briefly described in Section 3.3

4. MAKE_RHS briefly described in Section 3.3

5. test where we set the forcing term, the Dirichlet boundary conditions and the
analytical solution, if available, to compute the errors.
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Lymph3D.f90

1 !    Author: Nicoletta De Giosa

2 !    This file is part of the library LYMPH3D

3 !

4 !> @brief Lymph3D (Discontinuous Galerkin methods on polyhedral meshes for PDE problems) 

5  

6 ! Here starts the code Lymph3D

7  

8       program Lymph3D

9  

10 #include<petsc/finclude/petscksp.h>

11  

12       use petscksp

13       use petscmat

14       use mpi

15       use Poly_setup_mpi

16       use test

17       use Poly_global

18       use Poly_data

19       use Poly_mesh

20       use post_processing

21  

22       implicit none

23  

24 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

25 !     DEFINITION OF PETSC VARIABLES

26 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

27  

28       Mat :: petsc_stiff,petsc_mass ! stiffness and mass matrices

29       Vec :: petsc_sol !solution vector for the algebraic system

30       Vec petsc_rhs ! Right hand side vector for the algebraic system

31  

32       KSP :: ksp

33       PC :: pc

34  

35       integer (kind=4) :: i,j

36       real(kind=8), dimension(:,:), ALLOCATABLE :: u

37       real(kind=8), dimension(:), ALLOCATABLE :: u_loc

38       integer(kind=4) :: total_dof,ndof,ndof_loc

39       integer(kind=4) :: Np,p,Npoly

40       integer(kind=4),dimension(:),allocatable :: petsc_num

41       integer(kind=4),dimension(:),allocatable :: nnod_num

42       real(kind=8), pointer:: sol_ptr(:)

43       integer(kind=4) :: ip,iter

44       real(kind=8) :: err_L2,err_L2_mpi

45       real(kind=8) :: err_DG,err_DG_mpi

46       real(kind=8) :: hmax,hmax_mpi

47  

48       logical :: IsPoly

49  

50       type(Data_Structure) :: PolyData

51       type(Mesh_Structure) :: PolyMesh 

52  

53 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

54       

55       allocate(mpi_stat(MPI_STATUS_SIZE))

56  

57       call INITIALIZATION()

58  

59       start = MPI_WTIME()

60       

61       if (mpi_id.eq.0) then

62          write(*,'(A)')''

63          write(*,'(A)')'<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>'

64          write(*,'(A)')'<                                                     >'

65          write(*,'(A)')'<                        Lymph3D                      >'

66          write(*,'(A)')'<                                                     >'

67          write(*,'(A)')'<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>'

68          write(*,'(A)')''

69       endif

70  

71 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
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72 !     READ INPUT FILES AND ALLOCATE VARIABLES

73 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

74  

75       call READ_INPUT_FILES(PolyData,PolyMesh)

76  

77 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

78 !     CHOOSE TO SOLVE WITH TETRAHEDRA

79 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

80  

81       IsPoly=.false.

82       Npoly=PolyMesh%num_elem;

83  

84 !*!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

85 !     CHOOSE TO SOLVE WITH POLYHEDRA

86 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

87  

88       Npoly=500;

89       if (Npoly/=PolyMesh%num_elem) IsPoly=.true.

90      

91 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

92 !     PARTITION OF THE GRID AND GENERATION OF LOCAL CONNECTIVITY 

93 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

94  

95       call MAKE_PARTITION_AND_MPI_FILES(PolyData,PolyMesh,Npoly)

96  

97       print *,'Done reading mesh'

98  

99       Np=PolyMesh%Elem_loc(1)%NDof_loc;

100       p=PolyMesh%Elem_loc(1)%Degree

101  

102       total_dof=PolyMesh%num_poly*Np;

103       ndof=PolyMesh%num_poly_loc*Np;

104  

105       allocate(petsc_num(total_dof))

106  

107       do i=1,total_dof

108           petsc_num(i)=i-1

109       end do

110  

111 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      

112 !     SET PETSC VECTORS AND MATRICES 

113 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

114  

115       print *,'SET PETSC MATRICES AND VECTORS'

116  

117       call SET_PETSC_MATRICES(total_dof,ndof,petsc_stiff,petsc_mass)

118  

119       call SET_PETSC_VECTORS(total_dof,ndof,petsc_rhs,petsc_sol)

120  

121 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      

122 !     ASSEMBLE MATRICES 

123 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  

124  

125       print *,'ASSEMBLE PETSC MATRIX'

126  

127       call MAKE_MATRICES(PolyMesh,petsc_num,total_dof,Np,petsc_stiff,petsc_mass)

128  

129 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        

130 !     ASSEMBLE RIGHT HAND SIDE

131 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    

132  

133       print *,'ASSEMBLE RHS'

134       

135       call MAKE_RHS(PolyMesh,petsc_num,total_dof,Np, petsc_rhs)

136  

137       call MPI_BARRIER(MPI_COMM_WORLD, mpi_ierr)

138  

139 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  

140       !     SETTING SOLVER

141 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

142  

143       print *,'SETTING SOLVER'

144  

145       call SOLVER_SETTINGS(petsc_stiff,ksp,pc)

146  
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147 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

148 !     DEALLOCATING PETSC MATRICES

149 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

150  

151       PetscCallA(MatDestroy(petsc_stiff,mpi_ierr))

152       PetscCallA(MatDestroy(petsc_mass,mpi_ierr))

153  

154 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

155 !     CALLING SOLVER

156 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  

157  

158       print *,'Calling solver: '

159       

160       PetscCallA(KSPSolve(ksp, petsc_rhs, petsc_sol, mpi_ierr))

161  

162 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      

163 !     DESTROYING KSP SOLVER AND RIGH HAND SIDE

164 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  

165  

166       PetscCallA(KSPDestroy(ksp, mpi_ierr))

167       PetscCallA(VecDestroy(petsc_rhs,mpi_ierr))

168  

169 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

170 !     STORE LOCAL NUMERATION TO RECONSTRUCT THE SOLUTION

171 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       

172  

173       allocate(nnod_num(ndof))

174  

175       call CREATE_LOCAL_NODE_NUM(nnod_num,ndof)

176  

177 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

178 !     SCATTER PETSC SOLUTION AND STORE IN A FORTRAN ARRAY

179 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

180       

181       allocate(u_loc(ndof))

182  

183       if (IsPoly) then

184             print *,'NO SCATTER SOLUTION'

185             PetscCallA(VecGetArrayF90(petsc_sol,sol_ptr,mpi_ierr))

186             u_loc(1:ndof) = sol_ptr

187       else

188             PRINT *,'SCATTER SOLUTION'

189             call PETSC_SCATTER_VECTOR(ndof,total_dof,nnod_num,petsc_sol,u_loc)

190       endif

191  

192 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

193 !     DESTROY PETSC_SOL

194 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  

195  

196       PetscCallA(VecDestroy(petsc_sol,mpi_ierr))

197  

198 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      

199 !     RECONSTRUCT SOLUTION MATRIX FOR POST-PROCESSING

200 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

201  

202       ndof_loc=PolyMesh%num_poly_loc

203       allocate(u(Np,ndof_loc))      

204       u=RESHAPE(u_loc, (/Np, ndof_loc /))

205       deallocate(u_loc)

206  

207       print *,'Done with the solution'

208  

209 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

210 !     POST-PROCESSING: COMPUTING THE ERRORS

211 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

212       

213       err_L2=0

214       err_DG=0

215       

216       call ERRORS(PolyMesh, u,err_L2_mpi, err_DG_mpi)

217  

218       call MPI_BARRIER(MPI_COMM_WORLD,mpi_ierr)

219       

220       call MPI_REDUCE( err_L2_mpi, err_L2, 1, MPI_DOUBLE_PRECISION, MPI_SUM, &

221                         0, MPI_COMM_WORLD, mpi_ierr)
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222  

223       call MPI_REDUCE( err_DG_mpi, err_DG, 1,MPI_DOUBLE_PRECISION , MPI_SUM, &

224                         0, MPI_COMM_WORLD, mpi_ierr)

225  

226       if (mpi_id==0) then

227             err_L2 = sqrt(err_L2);

228             err_DG = sqrt(err_DG)

229             print *,'Done with the errors!'

230       endif

231       call MPI_BARRIER(MPI_COMM_WORLD,mpi_ierr)

232       

233       if (mpi_id==0) then

234             print *,'ERROR IN NORM L2: ',err_L2

235             print *,'ERROR IN NORM DG: ',err_DG

236       endif

237  

238       hmax_mpi=compute_hmax(PolyMesh)

239  

240       call MPI_REDUCE( hmax_mpi, hmax, 1,MPI_DOUBLE_PRECISION , MPI_MAX, &

241                         0, MPI_COMM_WORLD, mpi_ierr)

242  

243       call MPI_BARRIER(MPI_COMM_WORLD,mpi_ierr)

244  

245       if(mpi_id==0) print *,hmax

246  

247       if (mpi_id==0) call WRITE_ERRORS(p,err_DG,err_L2,hmax)

248  

249 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

250 !     POST-PROCESSING:EXPORTING THE SOLUTION

251 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   

252  

253       call EXPORT_SOLUTION(PolyMesh,u,mpi_id)

254  

255 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

256 !    END SETUP 

257 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

258        

259       finish = MPI_WTIME()

260       call calc_time(time_hour, time_min, time_sec, int(finish-start))

261       

262       if (mpi_id.eq.0) then

263          write(*,'(A)') 

264          write(*,'(A)')'-------------------------------------------------------'

265          write(*,'(A,I2,A,I2,A,I2,A)') &

266                    'Set-up time = ',time_hour,' h ' ,time_min,' m ' ,time_sec,' s'

267          write(*,'(A)')'-------------------------------------------------------'

268          write(*,'(A)')

269       endif

270  

271 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      

272 !     FINALIZE MPI AND PETSC

273 !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

274  

275       call PetscFinalize(mpi_ierr)

276       call MPI_FINALIZE(mpi_ierr)

277  

278       end program Lymph3D

279       

280       

281       

282       

283  
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371     subroutine basis(phi, dphi, b_box ,Np, blist, Fk, nod3 , nq3)

372     implicit none

373  

374     !> This function evaluates the basis functions at the 3D quadrature nodes 

375     !  for every polyhedral element.

376  

377         integer(kind=4) :: nq3,Np

378         real(kind=8), dimension(3,2) :: b_box

379         real(kind=8),dimension(3,4) :: Fk

380         integer (kind=4), dimension(Np,3) :: blist

381         real(kind=8),dimension(4,nq3) :: nod3

382         real(kind=8), dimension(Np,nq3) :: phi

383         real(kind=8), dimension(3,Np,nq3) :: dphi

384         real(kind=8),dimension(nq3) :: x_p,y_p,z_p

385         real(kind=8),dimension(2) :: intx,inty,intz

386         real(kind=8),dimension(3,nq3) :: pt

387         real(kind=8), dimension(nq3) :: valx,valy,valz

388         real(kind=8), dimension(nq3) :: dvalx,dvaly,dvalz

389  

390         integer(kind=4)::j,q,f,l

391  

392         do j=1,Np

393             do q=1,nq3

394                 phi(j,q)=0.0

395                 do l=1,3

396                     dphi(l,j,q) = 0.0

397                 end do

398             end do

399         end do

400  

401         do j=1,3

402             do q=1,nq3

403                 pt(j,q)=0.0

404                 do l=1,4

405                     pt(j,q) = pt(j,q)+Fk(j,l)*nod3(l,q)

406                 end do

407             end do

408         end do

409  

410         do q=1,nq3

411             x_p(q)=pt(1,q)

412             y_p(q)=pt(2,q)

413             z_p(q)=pt(3,q)

414         end do

415             

416         do j=1,2

417             intx(j)=b_box(1,j)

418             inty(j)=b_box(2,j)

419             intz(j)=b_box(3,j)

420         end do

421         do f = 1,Np

422             do q=1,nq3

423                 valx=0.0

424                 dvalx(q)=0.0

425                 valy=0.0

426                 dvaly(q)=0.0

427                 valz=0.0

428                 dvalz(q)=0.0

429             end do

430  

431             call LegendreP(valx, dvalx, x_p, blist(f,1), intx, nq3)

432             call LegendreP(valy, dvaly, y_p, blist(f,2), inty, nq3)

433             call LegendreP(valz, dvalz, z_p, blist(f,3), intz, nq3)

434             do q=1,nq3

435                 phi(f,q) = valx(q)*valy(q)*valz(q)

436                 dphi(1,f,q) = dvalx(q)*valy(q)*valz(q)

437                 dphi(2,f,q) = valx(q)*dvaly(q)*valz(q)

438                 dphi(3,f,q) = valx(q)*valy(q)*dvalz(q)

439             end do

440         end do

441  

442     end subroutine basis

443  

444  

445     subroutine basis_boundary(phi_b,grad_b,e_E1,E2,b_box1,b_box2,blist,Np, &

446                               Fk, node_maps, nod2, nq2)

447  

448         !> This function evaluates for every face the basis functions both of the

449         !  two sharing tratrahedra E1 and E2 at the 2D quadrature nodes. 

450  



6/21/23, 5:27 PM basis_function.f90

localhost:43821/af4f7f42-deb7-4faf-82e2-af66cf4da20e/ 7/8

451         integer(kind=4) :: nq2,Np

452         real(kind=8), dimension(3,2) :: b_box1

453         real(kind=8), dimension(3,2) :: b_box2

454         integer(kind=4),dimension(Np,3) :: blist

455         real(kind=8), dimension(3,4) :: Fk

456         real(kind=8), dimension(4,nq2) :: nod2

457         real(kind=8), dimension(4,4,4) :: node_maps

458         real(kind=8), dimension(Np,nq2,2) :: phi_b

459         real(kind=8), dimension(3,Np,nq2,2) :: grad_b

460         real(kind=8), dimension(3,nq2) :: pt

461         real(kind=8), dimension(3,4) :: temp

462  

463         real(kind=8),dimension(nq2) :: x_p,y_p,z_p

464         real(kind=8),dimension(2) :: intx,inty,intz

465         

466         real(kind=8), dimension(nq2) :: valx,valy,valz

467         real(kind=8), dimension(nq2) :: dvalx,dvaly,dvalz

468         integer(kind=4) :: j,q,l,f

469         integer(kind=4) :: e_E1,E2

470  

471         do j=1,Np

472             do q=1,nq2

473                 phi_b(j,q,1)=0.0

474                 phi_b(j,q,2)=0.0

475                 do l=1,3

476                     grad_b(l,j,q,1) = 0.0

477                     grad_b(l,j,q,2) = 0.0

478                 end do

479             end do

480         end do

481  

482         do j=1,3

483             do q=1,4

484                 temp(j,q)=0.0

485                 do l=1,4

486                     temp(j,q) = temp(j,q)+Fk(j,l)*node_maps(l,q,e_E1)

487                 end do

488             end do

489         end do

490  

491         do j=1,3

492             do q=1,nq2

493                 pt(j,q)=0.0

494                 do l=1,4

495                     pt(j,q)=pt(j,q)+temp(j,l)*nod2(l,q)

496                 enddo

497             enddo

498         enddo

499  

500         do q=1,nq2

501             x_p(q)=pt(1,q)

502             y_p(q)=pt(2,q)

503             z_p(q)=pt(3,q)

504         end do

505  

506         do j=1,2

507             intx(j)=b_box1(1,j)

508             inty(j)=b_box1(2,j)

509             intz(j)=b_box1(3,j)

510         end do

511  

512         do f = 1,Np

513  

514             do q=1,nq2

515                 valx=0.0

516                 dvalx(q)=0.0

517                 valy=0.0

518                 dvaly(q)=0.0

519                 valz=0.0

520                 dvalz(q)=0.0

521             end do

522             

523             call LegendreP(valx, dvalx, x_p, blist(f,1), intx, nq2)

524             call LegendreP(valy, dvaly, y_p, blist(f,2), inty, nq2)

525             call LegendreP(valz, dvalz, z_p, blist(f,3), intz, nq2)

526                 

527             do q=1,nq2

528                 phi_b(f,q,1) = valx(q)*valy(q)*valz(q)

529                 grad_b(1,f,q,1) = dvalx(q)*valy(q)*valz(q)

530                 grad_b(2,f,q,1) = valx(q)*dvaly(q)*valz(q)
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531                 grad_b(3,f,q,1) = valx(q)*valy(q)*dvalz(q)

532             end do

533         end do

534         

535         if (E2 .ne. 0) then

536             do j=1,2

537                 intx(j)=b_box2(1,j)

538                 inty(j)=b_box2(2,j)

539                 intz(j)=b_box2(3,j)

540             end do

541             do f = 1,Np

542                 do q=1,nq2

543                     valx=0.0

544                     dvalx(q)=0.0

545                     valy=0.0

546                     dvaly(q)=0.0

547                     valz=0.0

548                     dvalz(q)=0.0

549                 end do

550                 call LegendreP(valx, dvalx, x_p, blist(f,1), intx, nq2)

551                 call LegendreP(valy, dvaly, y_p, blist(f,2), inty, nq2)

552                 call LegendreP(valz, dvalz, z_p, blist(f,3), intz, nq2)

553                 do q=1,nq2

554                     phi_b(f,q,2) = valx(q)*valy(q)*valz(q)

555                     grad_b(1,f,q,2) = dvalx(q)*valy(q)*valz(q)

556                     grad_b(2,f,q,2) = valx(q)*dvaly(q)*valz(q)

557                     grad_b(3,f,q,2) = valx(q)*valy(q)*dvalz(q)

558                 end do

559                 

560             end do

561         end if

562  

563     end subroutine basis_boundary

564  

565  

566 end module basis_function
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MAKE_MATRICES.f90

1 !    Author: Nicoletta De Giosa

2 !    This file is part of the library LYMPH

3 !

4 !> @brief MAKE_MATRICES (Assemble of the petsc stiffness and mass matrices)

5  

6 subroutine MAKE_MATRICES(PolyMesh,local_petsc_num,Np,total_dof, &

7                          petsc_stiff,petsc_mass)

8 #include<petsc/finclude/petscksp.h>

9  

10     use petscksp

11     use Poly_mesh

12     use mpi

13     use Poly_setup_mpi

14     use test

15     use basis_function

16     use assemble_local

17     use local_search

18  

19     implicit none

20  

21     Mat :: petsc_stiff,petsc_mass

22     PetscScalar :: val(1),val1(1),val2(1),val3(1),val4(1)

23     PetscInt :: irow(1), jcol(1),irow2(1),jcol2(1)

24  

25     type(Mesh_Structure) :: PolyMesh

26  

27     integer(kind=4) :: nq3,nq2,Np,N,total_dof

28     integer(kind=4) :: ie_loc,ie_glob

29     integer(kind=4) :: ivert,id_node

30     integer(kind=4) :: ipoly_loc,ipoly_glob,ipoly2_loc,ipoly2_glob

31     integer(kind=4) :: n_tet_in_poly,iface_poly

32     integer(kind=4) :: beg,beg2

33     integer(kind=4) :: q,i,j,k,l

34     integer(kind=4) :: e,E1,E2

35     integer(kind=4), dimension(total_dof) :: local_petsc_num

36     integer(kind=4), dimension(:,:), allocatable ::blist

37     real(kind=8), dimension(4,4,4) :: node_maps

38     real(kind=8), dimension(2,3,4) :: node_maps_inv

39     real(kind=8), dimension(:,:), allocatable :: nod3,nod2

40     real(kind=8), dimension(:), allocatable :: wei3,wei2

41     real(kind=8), dimension(:,:), allocatable :: phi

42     real(kind=8), dimension(:,:,:), allocatable :: dphi

43     real(kind=8), dimension(:,:,:), allocatable :: phi_b

44     real(kind=8), dimension(:,:,:,:), allocatable :: grad_b

45     real(kind=8), dimension(3,4) :: Fk

46     real(kind=8), dimension(4) :: x,y,z

47     real(kind=8), dimension(3,3) :: Jinv

48     real(kind=8) :: Jdet

49         

50     real(kind=8),dimension(Np,Np) :: V_loc,M_loc

51     real(kind=8),dimension(Np,Np) :: S_loc,I_loc,IN_loc,SN_loc

52     

53     real(kind=8),dimension(Np,Np) :: temp1

54     real(kind=8),dimension(3) :: temp2

55     real(kind=8),dimension(Np) :: temp3,temp4

56  

57     real(kind=8),dimension(3) :: nn

58     real(kind=8) :: theta,sigma,c

59     integer(kind=4),dimension(4) :: face_flag

60  

61     ! Set the properties

62     call set_properties(sigma,theta,c)

63     

64     N=PolyMesh%Elem_loc(1)%Degree;

65  

66     ! Compute the quadrature nodes in 3D and 2D

67     call quadrature(nod2,wei2,nod3,wei3,node_maps,node_maps_inv,N,nq3,nq2)

68     

69     allocate (blist(Np,3))

70     call basis_list(blist,N,Np)

71     

72     allocate(phi(Np,nq3))

73     allocate(dphi(3,Np,nq3))

74     allocate(phi_b(Np,nq2,2))

75     allocate(grad_b(3,Np,nq2,2))

76  
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77     ! Begin loop on the tetrahedra

78     do ie_loc = 1, PolyMesh%num_elem_loc

79         

80         ! Initialize volume matrices

81  

82         do i=1,Np

83             do  j=1,Np

84                 V_loc(i,j)=0.0

85             enddo

86         enddo

87  

88         do i=1,Np

89             do  j=1,Np

90                 M_loc(i,j)=0.0

91             enddo

92         enddo

93         

94         ! Compute coordinates of the tetrahedron

95  

96         do ivert = 1, PolyMesh%Elem_loc(ie_loc)%num_vert

97         

98             call FIND_POS_LOC_NODE(PolyMesh%node_loc2glo,PolyMesh%num_node_loc, &

99                                    PolyMesh%Elem_loc(ie_loc)%vert(ivert),id_node)      

100             

101             x(ivert)=PolyMesh%coord_x(id_node)

102             y(ivert)=PolyMesh%coord_y(id_node)

103             z(ivert)=PolyMesh%coord_z(id_node)

104  

105         enddo

106  

107         ! Compute reference map for the tetrahedron

108         call jacobians(x , y, z, Fk , Jinv , Jdet)

109         

110         ie_glob=PolyMesh%elem_loc2glo(ie_loc)

111  

112         ! Find the polyhedron that contains the tetrahedron

113         ipoly_glob=PolyMesh%elem_in_poly(ie_glob)

114  

115         call GET_EL_LOC_FROM_EL_GLO(PolyMesh%poly_loc2glo, &

116                                     PolyMesh%num_poly_loc, &

117                                     ipoly_glob,ipoly_loc)

118  

119         ! Evaluate basis functions on the edges of the Bounding Box of the polyhedron

120         call basis(phi, dphi, PolyMesh%Poly(ipoly_loc)%b_box, Np, blist, &

121                   Fk, nod3 , nq3)

122         

123         ! Compute the local volume stiffness matrix V_loc

124         call MAKE_STIFF_TET_LOC(Np,Jdet,wei3,nq3,dphi,V_loc)

125  

126         ! Compute the local volume mass matrix M_loc

127         call MAKE_MASS_LOC(Np,Jdet,wei3,nq3,phi,M_loc)

128  

129         ! Insert the values of V_loc in the entries of the global stiffness matrix 

130         beg=(ipoly_glob-1)*Np+1

131         do i=1,Np

132             do j=1,Np

133                 val(1)  = V_loc(i,j)

134                 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

135                 jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

136                 if (val(1) .ne. 0) then

137                     PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol, val, ADD_VALUES, mpi_ierr))

138                 endif

139             enddo

140         enddo

141  

142         ! Insert the values of M_loc in the entries of the global mass matrix 

143         do i=1,Np

144             do j=1,Np

145                 val(1)  = M_loc(i,j)

146                 irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

147                 jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

148                 if (val(1) .ne. 0) then

149                     PetscCall(MatSetValues(petsc_mass, 1, irow, 1, jcol, val, ADD_VALUES, mpi_ierr))

150                 endif

151             enddo

152         enddo

153         

154         E1=ie_loc

155  

156         ! Begin loop on the faces of the tetrahedron E1 
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157  

158         do e=1,PolyMesh%Elem_loc(ie_loc)%num_faces

159  

160             face_flag(e)=0

161  

162             ! Initialize face matrices

163  

164             do i=1,Np

165                 do j=1,Np

166                     I_loc(i,j)=0.0

167                     S_loc(i,j)=0.0

168                     IN_loc(i,j)=0.0

169                     SN_loc(i,j)=0.0

170                 enddo

171             enddo

172  

173             ! Find neighbouring tetrahedron E2

174             E2=PolyMesh%Elem_loc(ie_loc)%neigh_el(e,2)

175  

176             ! If E2 is not on the boundary, find the polyhedron in which 

177             ! it is contained

178             if (E2 /=0) then

179                 ipoly2_glob=PolyMesh%elem_in_poly(E2)

180                 call GET_EL_LOC_FROM_EL_GLO(PolyMesh%poly_loc2glo, &

181                             PolyMesh%num_poly_loc, &

182                             ipoly2_glob,ipoly2_loc)

183             endif

184             

185             ! If E2 is not on the boundary, check if the two neighbouring 

186             ! tetrahedra belong to the same polyhedron

187             if  (E2 /=0) then

188                 if (ipoly_glob == ipoly2_glob) then

189                     face_flag(e)=1

190                 endif

191             end if

192  

193             if ( face_flag(e) ==0 ) then

194                 nn(1)=PolyMesh%Elem_loc(ie_loc)%normal(e,1)

195                 nn(2)=PolyMesh%Elem_loc(ie_loc)%normal(e,2)

196                 nn(3)=PolyMesh%Elem_loc(ie_loc)%normal(e,3)

197  

198                 ! If the two polyhedra belong to the same processor compute 

199                 ! the basis functions on the faces and the local matrices 

200                 ! on the faces

201                 ! If not, retrieve bbox of neighbouring element from 

202                 ! neigh_bbox and compute the basis functions on the faces 

203                 ! and the local matrices on the faces

204  

205                 if (ipoly2_loc==0) then

206  

207                     n_tet_in_poly=PolyMesh%Poly(ipoly_loc)%num_tet_in_poly

208  

209                     do j=1,n_tet_in_poly

210                         if (PolyMesh%Poly(ipoly_loc)%tet_in_poly(j)==ie_glob) then

211                             iface_poly=PolyMesh%Elem_loc(ie_loc)%num_faces*(j-1)+e

212                         endif

213                     enddo

214  

215                     call basis_boundary(phi_b,grad_b,e,E2, PolyMesh%Poly(ipoly_loc)%b_box,&

216                                         PolyMesh%Poly(ipoly_loc)%neigh_bbox(iface_poly,:,:),&

217                                         blist, Np, Fk, node_maps, nod2, nq2)

218  

219                     call MAKE_STIFF_FACE(theta,sigma,N,Np,E2,PolyMesh%Poly(ipoly_loc)%hk, &

220                                         PolyMesh%Poly(ipoly_loc)%neigh_hk(iface_poly), nn, &

221                                         PolyMesh%Elem_loc(ie_loc)%area(e),wei2,nq2,phi_b,&

222                                         grad_b,S_loc,I_loc,IN_loc,SN_loc)

223                 else

224                     call basis_boundary(phi_b,grad_b,e,E2,PolyMesh%Poly(ipoly_loc)%b_box,&

225                                             PolyMesh%Poly(ipoly2_loc)%b_box,blist, Np, &

226                                             Fk, node_maps, nod2, nq2)

227  

228                     call MAKE_STIFF_FACE(theta,sigma,N,Np,E2,PolyMesh%Poly(ipoly_loc)%hk, &

229                                         PolyMesh%Poly(ipoly2_loc)%hk, nn, &

230                                         PolyMesh%Elem_loc(ie_loc)%area(e),wei2,nq2,phi_b,&

231                                         grad_b,S_loc,I_loc,IN_loc,SN_loc)

232  

233                 endif

234             endif

235  

236             ! Insert the values of S_loc in the entries 
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237             ! of the global stiffness matrix 

238             do i=1,Np

239                 do j=1,Np

240                     val(1) = S_loc(i,j)

241                     irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

242                     jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

243                     if (val(1) .ne. 0.0) then

244                         PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol, val, ADD_VALUES, mpi_ierr))

245                     endif

246                 enddo

247             enddo

248  

249             ! Insert the values of I_loc,SN_loc and IN_loc in the entries 

250             ! of the global stiffness matrix 

251             if (E2==0) then

252                 do i=1,Np

253                     do j=1,Np

254                         val(1) = I_loc(i,j)

255                         irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

256                         jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

257                         if (val(1) .ne. 0.0) then

258                             PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol, val, ADD_VALUES, mpi_ierr))

259                         endif

260                         if (val(1) .ne. 0.0) then

261                             PetscCall(MatSetValues(petsc_stiff, 1, jcol, 1, irow, val, ADD_VALUES, mpi_ierr))

262                         endif

263                     enddo

264                 enddo

265             else

266                 beg2 = (ipoly2_glob-1)*Np+1

267                 do i=1,Np

268                     do j=1,Np

269                         val1(1) = I_loc(i,j)

270                         val2(1) = IN_loc(i,j)

271                         val3(1) = SN_loc(i,j)

272                         irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

273                         jcol(1) = local_petsc_num(beg+j-1) !(ip_petsc)

274                         irow2(1) = local_petsc_num(beg2+i-1) !(in_petscc)

275                         jcol2(1) = local_petsc_num(beg2+j-1) !(ip_petsc)

276  

277                         if (val1(1) .ne. 0) then

278                             PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol, val1, ADD_VALUES, mpi_ierr))

279                         endif

280                         if (val1(1) .ne. 0) then

281                             PetscCall(MatSetValues(petsc_stiff, 1, jcol, 1, irow, val1, ADD_VALUES, mpi_ierr))

282                         endif

283                         if (val2(1) .ne. 0) then

284                             PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol2, val2, ADD_VALUES, mpi_ierr))

285                         endif

286                         if (val2(1) .ne. 0) then

287                             PetscCall(MatSetValues(petsc_stiff, 1, jcol2, 1, irow, val2, ADD_VALUES, mpi_ierr))

288                         endif

289                         if (val3(1) .ne. 0) then

290                             PetscCall(MatSetValues(petsc_stiff, 1, irow, 1, jcol2, val3, ADD_VALUES, mpi_ierr))

291                         endif

292                     enddo

293                 enddo

294  

295             endif

296         enddo 

297     enddo

298  

299     call MPI_BARRIER(MPI_COMM_WORLD, mpi_ierr)

300  

301     ! Assembly of petsc stiffness matrix and mass petsc matrix

302     PetscCall(MatAssemblyBegin(petsc_stiff, MAT_FINAL_ASSEMBLY, mpi_ierr))

303     PetscCall(MatAssemblyEnd(petsc_stiff, MAT_FINAL_ASSEMBLY, mpi_ierr))

304  

305     PetscCall(MatAssemblyBegin(petsc_mass, MAT_FINAL_ASSEMBLY, mpi_ierr))

306     PetscCall(MatAssemblyEnd(petsc_mass, MAT_FINAL_ASSEMBLY, mpi_ierr))

307     

308     ! Compute the total matrix (A+cM)     

309     PetscCall(MatAXPY(petsc_stiff,c,petsc_mass, DIFFERENT_NONZERO_PATTERN,mpi_ierr))

310  

311     deallocate(phi)

312     deallocate(dphi,phi_b)

313     deallocate(grad_b)

314     

315 end subroutine MAKE_MATRICES
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MAKE_RHS.f90

1 !    Author: Nicoletta De Giosa

2 !    This file is part of the library LYMPH

3 !

4 !> @brief MAKE_RHS (Assemble of the petsc right hand side)

5  

6 subroutine MAKE_RHS(PolyMesh,local_petsc_num,Np,total_dof,petsc_rhs)

7  

8 #include<petsc/finclude/petscksp.h>

9     

10     use petscksp

11     use Poly_mesh

12     use mpi

13     use Poly_setup_mpi

14     use test

15     use basis_function

16     use assemble_local

17     use local_search

18  

19     implicit none

20  

21     Vec petsc_rhs

22     PetscScalar :: val(1)

23     PetscInt :: irow(1)

24  

25     type(Mesh_Structure) :: PolyMesh

26  

27     integer(kind=4) :: nq3,nq2,Np,N,total_dof

28     integer(kind=4) :: ie_loc,ie_glob,ivert,id_node,ipoly_glob,ipoly_loc,ipoly2_glob,ipoly2_loc

29     integer(kind=4) :: n_tet_in_poly,iface_poly

30     integer(kind=4) :: e,E1,E2

31     integer(kind=4) :: q,i,j,k,t,l

32     integer(kind=4) :: beg,beg1

33     integer(kind=4), dimension(4) :: face_flag

34     integer(kind=4),dimension(total_dof) :: local_petsc_num

35     integer(kind=4),dimension(:,:), allocatable::blist

36     real(kind=8),dimension(4,4,4) :: node_maps

37     real(kind=8),dimension(2,3,4) :: node_maps_inv

38     real(kind=8),dimension(:,:), allocatable :: nod3,nod2

39     real(kind=8),dimension(:), allocatable :: wei3,wei2

40     real(kind=8), dimension(:,:), allocatable :: phi

41     real(kind=8), dimension(:,:,:), allocatable :: dphi

42     real(kind=8), dimension(:,:,:), allocatable :: phi_b

43     real(kind=8), dimension(:,:,:,:), allocatable :: grad_b

44     real(kind=8), dimension(3,4) :: Fk

45     real(kind=8), dimension(4) :: x,y,z

46     real(kind=8),dimension(3,3) :: Jinv

47     real(kind=8),dimension(3) :: temp2

48     real(kind=8),dimension(Np) :: temp3

49     real(kind=8),dimension(3) :: nn

50     real(kind=8),dimension(Np) :: rhs_tet_loc

51     real(kind=8),dimension(Np) :: rhs_face_bd_loc

52     real(kind=8) :: Jdet

53     real(kind=8) :: theta,sigma,c

54  

55     ! Set the properties

56     call set_properties(sigma,theta,c)

57  

58     N=PolyMesh%Elem_loc(1)%Degree;

59  

60     ! Compute the quadrature nodes in 3D and 2D

61     call quadrature(nod2,wei2,nod3,wei3,node_maps,node_maps_inv,N,nq3,nq2)

62  

63     allocate (blist(Np,3))

64     call basis_list(blist,N,Np)

65  

66     allocate(phi(Np,nq3))

67     allocate(dphi(3,Np,nq3))

68     allocate(phi_b(Np,nq2,2))

69     allocate(grad_b(3,Np,nq2,2))

70  

71     ! Begin loop on the tetrahedra

72  

73     do ie_loc = 1, PolyMesh%num_elem_loc

74  

75         ! Initialize rhs term on the volume

76  
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77         do i=1,Np

78             rhs_tet_loc(i)=0.0;

79         enddo

80  

81         ! Compute coordinates of the tetrahedron

82  

83         do ivert = 1, PolyMesh%Elem_loc(ie_loc)%num_vert

84         

85             call FIND_POS_LOC_NODE(PolyMesh%node_loc2glo,PolyMesh%num_node_loc, &

86                                 PolyMesh%Elem_loc(ie_loc)%vert(ivert),id_node)      

87             

88             x(ivert)=PolyMesh%coord_x(id_node)

89             y(ivert)=PolyMesh%coord_y(id_node)

90             z(ivert)=PolyMesh%coord_z(id_node)

91  

92         enddo  

93  

94         ! Compute reference map for the tetrahedron

95         call jacobians(x , y, z, Fk , Jinv , Jdet) 

96  

97         ie_glob=PolyMesh%elem_loc2glo(ie_loc)

98  

99         ! Find the polyhedron that contains the tetrahedron

100         ipoly_glob=PolyMesh%elem_in_poly(ie_glob)

101  

102         call GET_EL_LOC_FROM_EL_GLO(PolyMesh%poly_loc2glo, &

103                             PolyMesh%num_poly_loc, &

104                             ipoly_glob,ipoly_loc)

105  

106         ! Evaluate basis functions on the edges of the 

107         !Bounding Box of the polyhedron

108         call basis(phi, dphi, PolyMesh%Poly(ipoly_loc)%b_box,&

109                    Np, blist, Fk, nod3 , nq3)

110  

111         ! Compute the local volume rhs term rhs_tet_loc

112         call MAKE_RHS_TET(Np,Fk,Jdet,nod3,wei3,nq3,phi,rhs_tet_loc)

113  

114         ! Insert the values of rhs_tet_loc in the entries of the 

115         ! global right hand side vector petsc_rhs 

116  

117         beg=(ipoly_glob-1)*Np+1

118         do i=1,Np

119             val(1)  = rhs_tet_loc(i)

120             irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

121             if (val(1) .ne. 0.0) then

122                 PetscCall(VecSetValues(petsc_rhs, 1, irow, val, ADD_VALUES, mpi_ierr))

123             endif

124         enddo

125         

126         E1=ie_loc

127  

128         ! Begin loop on the faces of the tetrahedron E1 

129  

130         do e=1,PolyMesh%Elem_loc(ie_loc)%num_faces

131             face_flag(e)=0;

132  

133             ! Initialize face right hand side term

134  

135             do i=1,Np

136                 rhs_face_bd_loc(i)=0.0;

137             enddo

138  

139             ! Find neighbouring tetrahedron E2

140             E2=PolyMesh%Elem_loc(ie_loc)%neigh_el(e,2)

141  

142             ! If E2 is not on the boundary, find the 

143             ! polyhedron in which it is contained

144             if (E2 /=0) then

145                 ipoly2_glob=PolyMesh%elem_in_poly(E2);

146                 call GET_EL_LOC_FROM_EL_GLO(PolyMesh%poly_loc2glo, &

147                             PolyMesh%num_poly_loc, &

148                             ipoly2_glob,ipoly2_loc)

149             endif

150  

151             ! If E2 is not on the boundary, check if the two neighbouring 

152             ! tetrahedra belong to the same polyhedron

153             if  (E2 /=0) then

154                 if (ipoly_glob == ipoly2_glob) then

155                     face_flag(e)=1;

156                 endif
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157             end if

158         

159             if ( face_flag(e) == 0 ) then            

160  

161                 nn(1)=PolyMesh%Elem_loc(ie_loc)%normal(e,1)

162                 nn(2)=PolyMesh%Elem_loc(ie_loc)%normal(e,2)

163                 nn(3)=PolyMesh%Elem_loc(ie_loc)%normal(e,3)

164  

165                 ! If the two polyhedra belong to the same processor 

166                 ! compute the basis functions on the faces 

167                 ! and the local right hand side term on the faces

168                 ! If not, retrieve bbox of neighbouring element from 

169                 ! neigh_bbox and compute the basis functions on the 

170                 ! faces and the local right hand side term on the faces

171  

172                 if (ipoly2_loc == 0) then 

173                     

174                     n_tet_in_poly=PolyMesh%Poly(ipoly_loc)%num_tet_in_poly

175  

176                     do j=1,n_tet_in_poly

177                         if (PolyMesh%Poly(ipoly_loc)%tet_in_poly(j)==ie_glob) then

178                             iface_poly=PolyMesh%Elem_loc(ie_loc)%num_faces*(j-1)+e

179                         endif

180                     enddo

181  

182                     call basis_boundary(phi_b,grad_b,e, E2, &

183                                         PolyMesh%Poly(ipoly_loc)%b_box,&

184                                         PolyMesh%Poly(ipoly_loc)%neigh_bbox(iface_poly,:,:),&

185                                         blist,Np, Fk, node_maps, nod2, nq2)

186  

187                     call MAKE_RHS_FACE(theta,sigma,N,Np,e,E2,&

188                                         PolyMesh%Poly(ipoly_loc)%hk,&

189                                         PolyMesh%Poly(ipoly_loc)%neigh_hk(iface_poly),&

190                                         nn,PolyMesh%Elem_loc(ie_loc)%area(e),Fk,&

191                                         nod2,wei2,nq2,node_maps,phi_b,grad_b,rhs_face_bd_loc)

192  

193                 else

194                     call basis_boundary(phi_b,grad_b,e, E2, &

195                                         PolyMesh%Poly(ipoly_loc)%b_box,&

196                                         PolyMesh%Poly(ipoly2_loc)%b_box, &

197                                         blist, Np, Fk, node_maps, nod2, nq2)

198  

199                     call MAKE_RHS_FACE(theta,sigma,N,Np,e,E2,&

200                                         PolyMesh%Poly(ipoly_loc)%hk,&

201                                         PolyMesh%Poly(ipoly2_loc)%hk,&

202                                         nn,PolyMesh%Elem_loc(ie_loc)%area(e),&

203                                         Fk,nod2,wei2,nq2,node_maps,phi_b,grad_b,rhs_face_bd_loc)

204                 endif

205  

206                 ! If the neighbouring tetrahedra is on the boundary,

207                 ! insert the values of rhs_face_bd_loc in the entries 

208                 ! of the global rhs vector 

209                 if (E2==0) then

210                     do i=1,Np

211                         val(1)  = rhs_face_bd_loc(i)

212                         irow(1) = local_petsc_num(beg+i-1) !(in_petsc)

213                         if (val(1) .ne. 0.0) then

214                             PetscCall(VecSetValues(petsc_rhs, 1, irow, val, ADD_VALUES, mpi_ierr))

215                         endif

216                     enddo

217                 endif

218  

219             endif

220         enddo

221     enddo

222  

223     call MPI_BARRIER(MPI_COMM_WORLD, mpi_ierr)

224  

225     ! Aseembly petsc rhs

226     PetscCall(VecAssemblyBegin(petsc_rhs,mpi_ierr))

227     PetscCall(VecAssemblyEnd(petsc_rhs,mpi_ierr))

228             

229     end subroutine MAKE_RHS
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test.f90

1 module test

2     implicit none

3     contains

4  

5     ! definition of the forcing term f

6  

7     function f(p)result(r)

8         implicit none

9             real(kind=8) r

10             real(kind=8),dimension(3) :: p

11             real(kind=8) :: c,sigma,theta

12  

13             call set_properties(sigma,theta,c)

14             

15             r = -EXP(p(1)*p(2)*p(3))*((p(1)*p(2))**2+(p(1)*p(3))**2+ &

16                 (p(2)*p(3))**2-c)

17             !r = -EXP(p(1)*p(2)*p(3))*((p(1)*p(2))**2+(p(1)*p(3))**2+ &

18             !    (p(2)*p(3))**2)

19             !r = EXP( - (p(1)*p(1))**2 - (p(2)*p(2))**2 - (p(3)*p(3))**2)

20         

21     end function f

22           

23     ! Definition of the Dirichlet boundary condition

24     function gd(p)result(r)

25     implicit none

26         real(kind=8) r

27         real(kind=8),dimension(3) :: p

28         r = EXP(p(1)*p(2)*p(3)) 

29         !r=0*EXP(p(1)*p(2)*p(3));   

30     end function gd

31     

32     ! Definition of the analytical solution, if available

33     ! (to compute the errors)

34     function uex(p)result(r)

35         real(kind=8) r

36         real(kind=8),dimension(3) :: p

37         r = EXP(p(1)*p(2)*p(3))

38     end function uex

39     

40         

41     ! Definition of the gradient of the analytical solution, if available

42     ! (to compute the errors)

43  

44     function uex_grad(p)result(r)

45         real(kind=8),dimension(3) :: r

46         real(kind=8),dimension(3) :: p

47         real(kind=8) :: u 

48         u=uex(p)

49         r(1) = u * p(2) * p(3)

50         r(2) = u * p(1) * p(3)

51         r(3) = u * p(1) * p(2)

52     

53     end function uex_grad

54  

55     ! Set the properties of the numerical method

56     subroutine set_properties(sigma,theta,c)

57         implicit none

58         real(kind=8) :: sigma,theta

59         real(kind=8) :: c

60         

61         sigma = 10 ! penalty coefficient

62         theta = -1 ! IP method

63         c=0.5; ! reacgtion coefficient

64         

65     end subroutine set_properties

66     

67 end module test
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