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1. Introduction
Glioblastoma multiforme (GBM) is one of the
most complex and deadly types of brain can-
cer. In addition to the typical characteristics of
cancer (e.g., uncontrolled cellular proliferation,
intense resistance to apoptosis, and rife genomic
instability ), GBM has a high invasive potential
and grows along white matter fibres or vessels,
imitating the physical structures of the brain ex-
tracellular environment. The resulting diffuse
infiltration and the inability of many conven-
tional drugs to penetrate the blood-brain barrier
make GBM particularly aggressive and difficult
to treat: even after extensive surgery and thera-
pies, the median patient survival does not exceed
10 to 16 months and the five-year survival rate is
approximately 5%. For this reason, mathemati-
cal models able to describe its proliferation are
of fundamental importance. Indeed, they rep-
resent an in in silico counterpart of the patient,
which can be used to predict the evolution of the
disease and the effects of treatments.
To describe the tumour spreading, in this work,
we have coupled a Cahn-Hilliard type equation
, added with a growth term and coupled with a
reaction-diffusion equation describing its nutri-
ment behaviour [1]. This lead to a highly non-

linear PDE system that takes a non-trivial com-
putational effort if we want to solve the problem
over a realistic 3D domain.
This can be a huge issue if we consider in ad-
dition that the tumour development, and conse-
quently the parameter of the model are strongly
patient-specific. So without further elaboration,
the usefulness of the model itself remains limited
for clinical applications.
To overcome this computational bottlneck, we
use Proper Orthogonal Decomposition (POD) to
reduce the computational complexity. In a nut-
shell, the idea of this method is to build up from
the model, here the Full Order Model (FOM),
a reduced version, the Reduced Order Model
(ROM), that keeps all the most relevant infor-
mation needed to describe the evolution of the
tumour over time. Indeed, it is possible to prop-
erly construct a basis of much fewer elements
than the one of the FOM and still reconstruct
the solution,in the following referred to as snap-
shot, approximately well.
This simplification is of primary importance es-
pecially for performing parameters estimation
from patient-specific data. Indeed many op-
timization algorithms and other mathematical
methods need the solution to be computed mul-
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tiple times in order to retrieve the optimal pa-
rameters.
Here, we exploit artificial neural networks to
provide the required results in a negligible time
once the networks are sufficiently trained. Both
the problem of finding the coefficient of the
ROM solution at each time-step and the follow-
ing parameter estimation from acouple of snap-
shots retrieved from Magnetic Resonance Imag-
ing (MRI) are mapped through a neural net-
work.
The computational effort of the simulations,
which can start as soon as we get information
on the actual status of the patient and which in-
cludes enough simulation to train the neural net-
works, is balanced by the rapidity of a patient-
specific prediction once we collect a second infor-
mation on the evolution of the tumour growth.
For this reason, the method presented in this
work makes it possible in a realistic case to pre-
dict the future growth of the tumour making the
therapy more effective.

2. A diffuse interface model of
GBM growth

In this work, we assume that the brain tissue
can be assimilated as a mixture of a cellular
phase, representing the tumour, and a liquid
phase, which describes the health host tissue.
According to mixture theory, the space in a mix-
ture may be co-occupied at every location by
its components, each of which can be seen as
a continuum in its own right [3]. So, at each
point, we can define the spatial concentration
of each constituent, i.e. the volume fraction of
the tumour ϕc(x, t) and the volume fraction of
the healthy tissue ϕl(x, t). We assume that the
mixture is fully saturated, so that ϕc + ϕl = 1
at each point of the mixture and at any time
t ∈ [0, T ]. From this, it is possible to define a
new variable ϕ := ϕc − ϕl that assumes value
1 where there are only tumour cells and -1 on
completely healthy areas.
The resulting system of partial differential equa-
tions describing the dynamics of GBM growth
is composed of a Cahn-Hilliard equation and a
reaction-diffusion equation for the nutrient con-

centration n [5]:

∂ϕ

∂t
= ∇ ·

( 1

M0
T∇µ

)
+ ν(n− δ)h(ϕ),

µ = κΨ′(ϕ)− ϵ2∆ϕ,

∂n

∂t
= Sn

(
1− n

ns

)
ns

3
(2− ϕ)

+∇ · (D∇n)− δnnh(ϕ).

(1a)

(1b)

(1c)

In these equations, the auxiliary variable µ rep-
resents the chemical potential while the param-
eters are: the tumour cells proliferation rate ν,
the tumour inter-phase friction M0, the brain
Young modulus κ, the diffuse interface thickness
ϵ, the oxygen concentration in vessels ns, the
hypoxia threshold δ, the oxygen consumption
rate δn and the oxygen supply rate Sn. Further-
more, T denotes the preferential mobility tensor
that takes into account the spatial anisotropy
in the diffusion of tumour cells, while D is the
diffusivity tensor of the nutrient that embod-
ies the preferential direction for oxygen diffu-
sion. Finally, Ψ(ϕ) is the cell-cell interaction
potential, a function with a double-well shape,
such that its minima are attained in ϕ = 1
and ϕ = −1, corresponding to the two pure
phases. A simple admissible choice is given by
Ψ(ϕ) = 1

4(1−ϕ2)2. Eventually, is a function that
should turn off tumour cell proliferation when
ϕ = −1, i.e. where the tumour concentration
vanishes. A possible choice for h is given by
h(ϕ) = max(min(1, 12(1 + ϕ)), 0). Homogeneous
Neumann boundary condition are imposed for
each physical variable.

3. Reduced Order Model via
Proper Orthogonal Decom-
position

In this section, we focus on a possible re-
duction of the Full Order Model that is re-
quired for improving computational time effi-
ciency. Starting from the system Eq. (1), we
perform a Proper Orthogonal Decomposition
(POD). The construction of a basis for the fi-
nal reduced-order space consists of two similar
phases. We first perform a Singular Value De-
composition (SVD) over the snapshot matrix as-
sociated with the variable f = {ϕ , µ , n} asso-
ciated with a particular choice of the parame-
ters Pk = [νk,M0l, κk, δk, δnk, Snk]. The matrix
columns are the nodal values of the solution at a

2



Executive summary Donato Cerrone

specific time-step F 1
f = [f0

k , ..., f
N
k ], where N+1

is the number of time-steps. From this, we ob-
tain a basis

{
ξfkl

}
l=1,...,Nk

POD

from each set of pa-

rameters Pk, where NPODk is chosen such that
information that the POD basis should cover,
indicated as ic ∈ (0, 1], is about ic = 0.95 for
each variable. Until this point, the bases con-
tain most of the information on the evolution of
the tumour through time for a singular set of pa-
rameters each. Then, we perform another SVD,
this time starting from the matrix collecting the
M bases obtained in the previous step, i.e.

F 2
f =

[
ξf11, ..., ξ

f
1N1

POD
, ..., ξfM1, ..., ξ

f

MNM
POD

]
.

The final result is a basis
{
ξfl

}
l=1,...,NPOD

of

the reduced-order space for each variable f =
{ϕ , µ , n}. NPOD is chosen such that informa-
tion that the POD basis should cover ic ∈ (0, 1]
is about ic = 0.95 for each variable.
To sum up, the steps that we perform for each
phase are [2]:
• prescribe the amount of required informa-

tion that the POD basis should cover ic ∈
(0, 1];

• compute the trace tr(F t
fFf ) of the correla-

tion matrix F t
fFf = (fm, f l)ml;

• evaluate the pair eigenvalues-eigenvectors
{λfi, ν

i
f}i=1,...,NPOD

f
of F t

fFf ;

• NPOD
f = min

{
m,

(∑
i≤m λi

)
/tr(F tF ) ≤ ic

}
,

that is the number of elements in the basis,
is set;

• NPOD = max
{
NPOD

ϕ , NPOD
µ , NPOD

n

}
• set ξfs = 1√

λfs

∑
j(ν

s
f )jf

j where (1 ≤ s ≤

NPOD).
Physical variables can be written as:

ϕt
h =

NPOD∑
i=1

atϕiξ
ϕ
i , µ

t
h =

NPOD∑
i=1

atµiξ
µ
i , n

t
h =

NPOD∑
i=1

atniξ
n
i .

To construct a Reduced Order Model the pro-
jection of the non-linear operators is required.
When a general non-linearity is present, the cost
to evaluate the projected nonlinear function still
depends on the dimension of the original sys-
tem, resulting in simulation times that hardly
improve over the original system. A possible
approach to overcome this issue is the usage of a
greedy algorithm using DEIM interpolation. In
this work, an alternative approach, exploiting
neural networks is preferred in order to reduce

the computational cost significantly.
Indeed, the reduction of the problem to a few
degrees of freedom, equal to the dimensionality
of the reduced space NPOD and corresponding
to the coefficient of the ROM basis, makes it
possible to train a simple neural network which
maps the parameters space onto the space of the
ROM coefficients.

4. Surrogate of POD with the
usage of Neural Network

As introduced in the previous section, we rely
on a Neural Network for solving the ROM
[4]. Indeed, given a set of parameters P =
[ν,M0, κ, δ, δn, Sn] of cardinality NP , in addition
with a temporal step t, we train the neural net-
work NNϕ : RNP+1 → R

NPOD to compute the
coefficients {atϕi} ∈ RNPOD for the ROM basis of
the tumor concentration variable ϕ. Thus, NNϕ

is an approximation of the function that map
points [ν,M0, κ, δ, δn, Sn, t], that correspond to
a tumour distribution at a given instant t, to the
space of coefficients {atϕi}i=1,...,NPOD of the pro-
jected solution in the ROM space at the same
time instant. We choose not to make ϵ vary
since it related to the thickness of the diffusive
interface that is fixed a priori, while the ten-
sors T and D are extracted from the used imag-
ing technique. For training the neural network
we draw parameters out of the biological range
exhibited in Tab. 1. For all the cases we ex-
hibit, we choose the weighted sum as the prop-
agation function, the LeakyReLU as the activa-
tion function and just the identity for the out-
put function. Moreover, the loss function used
is the mean squared error e. The minimization
algorithm is L-BFGS. To obtain adequate ac-
curacy the training is performed on a data set
of NData = 45000 input-output pair, compre-
hensive of 750 set parameters, that is split into
a train set with NTrain = 33000 elements and
a test set with NTest = 12000 elements. Each
simulation comprises 60 temporal steps, each of
them representing 0.5 days. The absolute mean
square error obtained during the training phase
is shown in Fig. 1a. Once the Reduced Order
Model is properly set, it is possible to obtain a
virtual solution from a factitious set of parame-
ters via NNϕ in a negligible amount of time (see
Tab. 2).
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Parameter description Range of values

M0 Tumour inter-phase friction 1377.9 − 5032.2
(Pa day)

mm2

ν Tumour cells proliferation rate 0.012 − 0.5 day −1

Sn Oxygen supply rate 103 − 105 day −1

δn Oxygen consumption rate 103 − 105 day −1

κ Brain Young modulus 106.66 − 1533.3 Pa

δ Hypoxia threshold 0.1 − 0.33

Table 1: Biological range found in literature for the
parameters of the model.

Simulation Elapsed time
Full Order Model 920 s

Reduced Order Model 5190 s
ROM - Neural Network 5 s

Table 2: Computational time for the different used
techniques.

5. Parameters Estimation
A proper construction of a Reduced Order
Model is of primary importance when we want
to perform an estimation of patient-specific pa-
rameters. The reduction of the degrees of free-
dom is, in fact, essential to the construction
of a second simple neural network that allows
predicting the parameters from a pair of snap-
shots distant in time. By simulating various sce-
narios, we can build up a dataset for the in-
verse problem (the estimation of the parame-
ters) that is big enough. The trained neural
network is a map NNinv : R2NPOD → R

NP

that goes from a couple of snapshots, iden-
tified with their projection coefficients, to a
set of parameters, i.e. (ν,M0, κ, δ, δn, Sn) =

NNinv

(
at0ϕ1, ..., a

t0
ϕNPOD

, at1ϕ1, ..., a
t1
ϕNPOD

)
where

(t0, t1) ∈ [0, T ] . Instant t1 and t0 represent
the time interval that elapses from the first and
the second MRI. The mean square error over
epochs obtained in the training phase is shown
in Fig. 1b. Rearranging the data set used for
the training of reducing map NNϕ, we obtain
NData = 15000 input-output pair, that is split
into a train set with NTrain = 11000 elements
and a test set with NTest = 4000 elements.

6. Numerical Results
This section is devoted to the presentation of
the numerical results in a realistic geometry.
We compute numerical simulations over a re-

(a)

(b)

Figure 1: Mean square error e over the epochs in the
training of the neural network NNϕ (a) and of the
neural network NNinv (b). The error over the train
set is coloured in blue while the error over the test
set is coloured in orange. The error for the neural
network NNinv is computed from a normalized val-
ues for parameters upon the chosen biological range.

alistic brain-shaped mesh with 32293 vertices
and 196778 tetrahedral elements. A sagittal
section of brain mesh is represented in Fig. 2.
This domain represents a real clinical case ob-
tained via MRI. A refinement of the mesh is
performed in the neighbourhood of the tumour
initial placement. For each simulation, a piece-
wise linear basis function is chosen, so that the
degrees of freedom of the solution correspond
to the number of vertices. The overall imple-
mentation framework exploits the functionali-
ties given by the platform FEniCSx, a popular
open-source environment for solving partial dif-
ferential equations. The implementation of the
used code heavily relies on two of its compo-
nents: Dolfinx, a C++/Python library pro-
viding data structures and algorithms for finite
element meshes, automated finite element as-
sembly, and numerical linear algebra, and Uni-
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fied Form Language UFL which is a domain-
specific language for declaration of finite element
discretizations of variational forms. The con-
struction of the ROM basis is obtained through
RBniCSx, a library useful to implement reduced-
order modelling techniques.
All codes are parallelized and the time specifics
showed in Tab. 2 rely on a multi-thread CPU
with 20 cores. Supposing a patient is related to

Figure 2: Sagittal section of the brain refined geo-
metrical mesh. On the top, a view of the refinement
applied in the neighbourhood of the tumour place-
ment. At the bottom, the mesh labelled according
to the different occupation zones. The area in blue
(1.0) is that occupied by the tumour, in light blue
(2.0) by the white matter, in ochre (3.0) by the grey
matter and in red (4.0) by the cerebrospinal fluid.

this specific set of parameters:

(ν,M0, κ, δ, δn, Sn) = (0.356, 3860.7, 700.4,

0.24, 21041, 41978).

(2)

with unit measure that can be found in Tab. 1
. We perform several FOM computations, with
M = 64 different sets of parameters, to build up
an adequate basis that can retain most of the
energy present in all of the original variables. In
this case, a basis with NPOD = 40 elements is

big enough to have a restrained error between
the FOM solution and the ROM one (Fig. 5).
From this, it is possible to create a data set
for the neural networks for the map of the di-
rect problem NNϕ that relies on 750 differ-
ent possible evolution of the tumour starting
from the same initial condition ϕ0(x, y, z) =

2e−100((x−193)2+(y−308)2+(z−30)2)
2

− 1 where spa-
tial quantities are measured in mm. The results
of the training in terms of mean square error over
epochs are exhibited in Fig. 1a. Since the ROM
solution using POD without the neural network
variation takes much more time to be computed,
as can be seen in Tab. 2, we prefer to simulate
the FOM and then project over the reduced ba-
sis. Once the training is performed, the gain is of
getting the reduced solution in about 100 times
less computational time.
Coupling a pair of snapshots in the reduced
space, that is enough distant in time in other to
discriminate between different possible evolutive
scenarios with more accuracy, it is then possible
to set up a data set whose input-output pair is
formed by the vector containing the pair of coef-
ficients for the reduced solution and the patient-
specific parameters. The mean square errors
over epochs for the neural network NNinv, com-
puted for normalized over the biological range
parameters, are shown in Fig. 1b. Although
this result appears to be non-optimal in order
to catch the exact parameter of a patient (the
computed error is about 15%), the simulations
performed show that the specific behaviour is
actually well captured.
Giving as input the snapshots of the evolution of
the tumour starting from the parameters speci-
fied in Eq. (2), we obtain the following result:

(ν,M0, κ, δ, δn, Sn) = (0.369, 3950.4, 776.8,

0.25, 25142, 36982).

(3)

In Fig. 4 the evolution of the tumour with the
actual set of parameters and the evolution with
the predicted set is exhibited. As we can see in
Fig. 3, the volume fraction is well-tracked over
time entailing a good estimation both in terms
of tumour morphology. The elapsed time for the
estimation of the parameters is of the order of
seconds (Tab. 2) since it only requires the evalu-
ation of the trained map at a specific point given
by the projected couple of snapshots onto the
ROM space.
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Figure 3: The volume fraction of tumour over time.
In blue, the actual evolution starting from param-
eters Eq. (2); in orange, the predicted one starting
from parameters Eq. (3).

7. Conclusion
Although discrete, hybrid, and continuous mod-
els of GBM growth have been proposed in the
mathematical literature, they are not yet clin-
ically applicable due to the difficulty of con-
structing a patient-specific model that is ac-
curate and predictive enough to aid clinical
decision-making.
In this work, we presented a continuous physics-
based model and its computational application
for simulating the personalized growth and pro-
gression of GBM. The diffuse–interface model
consists of a Cahn–Hilliard equation with a
double-well potential for the volume fraction of
cancer cells coupled with a reaction-diffusion
equation for the nutrient. Starting from med-
ical images, it is possible to model the evolution
of GBM through this partial differential system.
The Cahn-Hilliard type equation contains non-
linear terms that make the Full Order Model
(FOM) expansive from a computational point
of view.
To reduce the degrees of freedom of the problem
it is possible to find in the mathematical litera-
ture different techniques. Here, we have studied
the impact of the Proper Orthogonal Decompo-
sition method in the construction of the Reduced
Order Model (ROM), which reduces the dimen-
sionality of a system by transforming the original
variables into a new set of uncorrelated variables
(called POD modes, or principal components).
In this way, the first few modes ideally retain
most of the energy present in all of the original

Figure 4: Evolution of a GMB. The solutions for
the physical variable ϕ at t=30 days are shown. At
the top, the solution computed starting from ac-
tual parameters Eq. (2); at the bottom, the solution
computed from the predicted parameters Eq. (3) ob-
tained in the inverse problem.

variables. Thus, it is possible to cut down the
number of degrees of freedom (d.o.f) from thou-
sands d.o.f (32293 for the brain mesh presented
here) to tens d.o.f (40 as shown in Sec. 6).
As we can see from the results, without the us-
age of a discrete empirical interpolation method,
which has to be appropriately adapted in order
to deal with highly nonlinear parabolic partial
differential equations, the resolution of a ROM is
actually more demanding from a computational
standpoint, taking almost 7-8 times more com-
putational effort in terms of elapsed time (see
Tab. 2).
In this work, we propose an alternative approach
that relies on the power of the Neural Networks
(NN) to cut computational costs after proper
training. Indeed coupling the POD method for
constructing the basis with a neural network
(POD-NN) to map the space of the parameters
into the space of the coefficient for the reduced
order basis, we move all the computational ef-
fort at the starting analysis of the tumour evo-
lution. In such a way, we have built up a net-
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(a) t=0 days (b) t=15 days (c) t=30 days

Figure 5: Evolution of a GMB. Plot of the solution ϕ along a straight line intersecting the tumour. From left
to right, the plot for each used method at t= 0, 15, 30 days is shown. In black, the solution computed via the
Full Order Model; in orange, the solution computed via the classical Proper Orthogonal Decomposition; in red,
the solution computed via the Neural Network variation of the POD; in blue, the solution computed via FOM
starting from the parameter obtained in the inverse problem. FOM solution is indistinguishable from the one
obtained via the inverse problem, entailing a good estimation of the parameter.

work that predicts all the possible evolutions
from a physiological point of view. The gain,
in terms of computational time, is about 100:1
when we compare the elapsed time for comput-
ing the reduced solution using POD and its NN-
based variation, once the training is performed.
This simplification is of primary importance
when we want to perform an estimation of
patient-specific parameters. The reduction of
the degrees of freedom is, in fact, essential to
the construction of a second simple neural net-
work that allows predicting the parameters from
a pair of snapshots distant in time. Indeed, we
train a map that goes from the space of the
pairs of reduced coefficients of the solution to the
space of parameters. From the training phase of
this network, we obtain a relative mean square
error of about 15% on the parameters predic-
tion, for the realistic domain case. This result
seems not to affect the difference between the
actual and predicted evolution.
The computational effort of the simulations
phase, which can start as soon as we get infor-
mation on the actual status of the patient and
which includes enough simulation to train the
neural networks, is balanced by the rapidity of a
patient-specific prediction once we collect a sec-
ond piece of information on the evolution of the
tumour growth. The elapsed time for the esti-
mation of the parameters is, indeed, of the order
of seconds (5 s in our simulations) since it only
requests the evaluation of the trained map at a
specific point given by the projected couple of
snapshots onto the ROM space.

In a real clinical case, thus, starting from a first
image of the actual status of the patient, we can
retrace all the steps previously described in order
to set a predicted growth, specific to the patient,
once a second image is obtained.
Future developments in the approach presented
in this work can be the addition in the mathe-
matical model of factors taking into account the
adjuvant therapy. Moreover, since this method
is heavily dependent on the initial conditions
and on the used mesh geometry, another inter-
esting evolution could be the creation of a data
set able to map the patient-specific parameters
over different initial conditions and mesh geome-
tries without re-training networks for each pa-
tient.
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