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Abstract

The last decade of technological developments saw the spread of Machine Learning tech-
niques in numbers of different applications. Their enhancement, led by years of deep re-
searches, allowed the building of high performance models empowering Artificial Intelligence
systems. This allowed to automate operations that once were supervised by humans, with
high accuracy. In Guidance Navigation and Control field, the chance to automate a process
of navigation would let the satellite take a decision on its own in risk conditions, where
an immediate operation is asked when communications are off, or distances are too high.
The automation processes have been highly tested in the past years with standard Optical
Navigation methods, relying on Image Processing techniques to perform state estimations of
the satellites.
The high rate of growth of accuracy and complexity of Machine Learning methods, such
as Neural Networks, provided to research community an alternative way to the standard
techniques in OpNav. A way that must be properly studied and applied to space navigation
to achieve a faster and reliable approach along with better performance than standard ap-
proaches provide.
The current work will carry out a comparison of a standard Image Processing techniques for
Optical Navigation based on Center and Apparent Diameter (CAD) estimation of the Moon
by making use of two algorithms: an ellipse fitting algorithm, and a Convolutional Neural
Network that performs a regression task providing the center of mass and the radius of the
Moon. The processes will be performed in the environment of the LUMIO mission. By
making use of a rendering software, the images coherent with the mission will be generated
and used for the comparison, in order to provide a test set, as similar as possible to the real
mission scenario, and a training set of 34940 images for the deep learning method. As such,
8935 images of the Moon, rendered accordingly to the mission scenario will be used as object
of comparison between the two algorithms. A final chapter will provide to the reader the
results, highlighting the strength and weaknesses of the different methods.



Sommario

Gli ultimi decenni di sviluppo tecnologico sono stati caratterizzati da una notevole e
rapida diffusione di tecniche di Machine Learning in differenti settori e applicazioni. Tale
sviluppo, portato in auge da anni di meticolosa ricerca, ha permesso di definire modelli alta-
mente performanti e sofisticati che hanno agito da base per sistemi di intelligenza artificiale.
In particolare, nel settore della Guidance Navigation and Control, la possibilitá di autom-
atizzare processi di navigazione permette a sistemi quali satelliti di agire autonomamente
sulla base dei dati ricevuti dall’esterno, come immagini, in condizioni ad elevata criticità,
quando è richiesta un’azione immediata in casi di failure dei sistemi di comunicazione o ad
elevata distanza dalla terra. Tuttavia, i processi di automazione sono stati altamente stu-
diati e testati negli anni con sistemi di Optical Navigation standard, sulla base di algoritmi
di Image Processing per definire una stima della posizione del satellite stesso.
L’elevato tasso di crescita dell’accuratezza e complessità dei metodi di Machine Learning,
come Reti Neurali, fornisce ai ricercatori una soluzione alternativa ai metodi standard di
OpNav. Una via e una soluzione che deve essere accuratamente studiata e sperimentata nel
settore della navigazione spaziale, con lo scopo di ottenere un metodo sì veloce, ma ancora
più accurato delle tecniche standard.
Il presente lavoro ha lo scopo di presentare un confronto tra un metodo standard di Image
Processing per navigazione ottica basato sulla stima del centro di massa e del raggio della
Luna utilizzando un algoritmo di ellipse fitting, con una Rete Neurale Convoluzionale per
un processo di regressione per il calcolo del centro di massa e del raggio. Gli approcci, ver-
rano sperimentati e valutati nel contesto della missione LUMIO. A tal fine, utilizzando un
software di rendering, le immagini relative alla missione stessa verranno generate e utilizzate
come mezzo di confronto, per fornire sia un test set coerente con l’orbita, sia un training
set di 34940 immagini per l’approccio di deep learning. Per tal motivo, 8935 immagini della
luna verranno utilizzate e fornite come input ai due approcci. Un capitolo finale, fornirà al
lettore i risultati, evidenziando i punti di forza e debolezza dei due metodi.



Chapter 1

Introduction

The space economy is living one the best moments since the first man on the Moon. The
last decades saw an exponential growth of interest in space exploration, which provided the
perfect environment for increasing businesses and prolific ground for innovations. The efforts
that scientists made in developing technologies that allowed the first satellites to navigate
in deep space, grew along with new softwares and algorithm techniques that spread in civil
applications. The huge amount of tools in computer science, and the appealing growth rate
of space economy, attracted numbers of companies that well established themselves in the
market. Clear are the examples of SpaceX, Virgin Galactic and Blue Origin that are acting
as pioneers in the private space exploration shifting to next level the technological environ-
ment and opening new scenarios for the space exploration.
The opening of the space market to privates, grew along with the interest of reducing the
costs for space missions. Among the uncountable examples, there is the contribution given
by CubeSats, small satellites cube fashioned introduced in 1999, that aimed to drastically
reduce the building cost of satellites, allowing smaller companies and universities to work on
their own solutions for space missions, democratizing, therefore, the access to space explo-
ration.
Such a democratization of access to space is still growing but it has the right tools for an
outstanding future. In such a challenging environment, men and women, passionate about
space, started to develop their own ideas, founding new companies with innovative solutions
for space systems, but also proposing new tools and techniques.

The design of a space mission requires a detailed and scrupulous understanding and
evaluation of numbers of phenomena that may interact with the spacecraft. The success
of the mission is therefore led by a high cooperation strategy between different teams of
scientists. Among the parts that act a fundamental role in achieving the mission results,
the navigation methods had important advancements throughout the past years. Spacecraft
navigation comprises mainly three parts1: the mission design where a reference trajectory
is designed, describing the planned flight path of the spacecraft; the orbit determination
that keeps track of the actual position of the spacecraft while the mission is in flight; and
the flight path control that creates maneuvers to bring back the spacecraft to the reference
trajectory.

1https://solarsystem.nasa.gov/basics/chapter13-1/. Last accessed: 21-11-2021



CHAPTER 1. INTRODUCTION

The information and the measurement of the spacecraft state, defining its angular quan-
tities (e.g. right ascension and declination) and its velocity have always been provided by
the well established Deep Space Network (DSN), a worldwide network of spacecraft ground
segment facilities. Through ranging pulse and the study of Doppler effect, it has been always
possible to have therefore an estimation of the spacecraft’s state. Along with this technique,
spacecrafts were, and still are, also equipped with imaging instruments, used to observe the
spacecraft’s destination planet and to carry navigation maneuvers in the context of Optical
Navigation.

Images of planets or bodies have been used for years in deep space navigation. Typically,
the images are downlinked from the spacecraft and analysts on ground apply several image
processing techniques to localize the observed object in each image that, combined with
radiometric tracking, are input in a filter which provides the spacecraft state [1, 2]. On the
basis of the results, the navigation solution is uplinked back to the spacecraft.
Methods such this have become reliable in the results throughout the years, providing pre-
cise solutions. Nevertheless, recent advancements in on-board computing capabilities and
technological improvements, along with new and efficient image processing algorithms, may
allow the spacecrafts to rely on methods for complete autonomous navigation.

While the mission plans for sending humans beyond low Earth orbit are proposed in
an increasing number, the need to develop improved methods for autonomous navigation
is becoming largely important and essential. Although the combination of radiometric and
optical navigation data are well understood, solutions of such this nature for crewed missions
in the future may be undesirable for several reasons. The lack of communications, due to
a failure in the relative systems, may present a critic scenario in space navigation for both
expert and civil passengers. If needed, the vehicle shall be capable to return back to Earth
without any command from the ground or simply navigate guiding the passengers. Likewise,
for robotic missions, flyby events at high speed, when the Sun is between the Earth and the
spacecraft, may result in a drastic scenario. Consequently, the time delays that radio signals
introduce in navigation in deep space present a relevant problem that needs to be solved,
and full autonomous systems can provide a solution.

1.1 The state of the art

Historically, OpNav methods have been widely used since the early 70s, since when
Mariner 9 [3] incorporated firstly OpNav measurements into mission orbit determination
process [2]. In that case, the radiometric tools where combined with a limb detection algo-
rithm to determine the relative location of the spacecraft with respect to Mars. In 1979, the
Voyager 1 and Voyager 2 spacecrafts [4] used OpNav to meet the principal mission objectives,
too. The mission around Jupyter relied on the use of the image as complementary tool for
the corrupted data obtained from the radiometric measurements. The images of the planet’s
satellites, were obtained against a star background; the position of the satellite along with
star locations, helped in retrieving the Jupiter-relative spacecraft orbit estimate by making
use of filters, like the well proven and used Kalman filter.

5



CHAPTER 1. INTRODUCTION

In the 1990s, a particular interesting case was provided by the Galileo mission, that
consisted of an orbiter and a probe that entered Jupiter’s atmosphere. During the transit
of Jupiter, in 1991, the deployment of the high-gain antenna failed, forcing Galileo to use
its low-gain antenna for communication throughout the mission, reducing the communica-
tion bandwidth [2]. The reduction to 160 bps presented a problem for the OpNav, since
the images needed to be downlinked to Earth for processing [5]. This forced to study and
develop OpNav method that dealt with reduced data rate, providing advancements in image
processing.
In 1998, the Deep Space 1 (DS1) mission was launched as part of the NASA New Millen-
nium Program [6]. It introduced a new AutoNav system that was required to used optical
images for asteroids for interplanetary orbit determination, to use the ion propulsion system
to maintain and control the orbit and to provide the updates of the target position after
flyby [2]. This approach was designed to make DS1 the first planetary mission capable of
autonomously navigating all post-injection mission phases.

The reliable techniques developed for hundreds of missions, based on limb fitting or star
localization have been used for recent missions. The success they had in the years and so-
lutions they proposed, made them an essential approach to optical navigation and created
with no doubt the basis for future advancements.
New Horizons OpNav was performed by processing images of the targets in front of a back-
ground field of catalogued stars [7]. Among the applied solutions, the star-based approach,
allowed to compute the centers of the stars and minimize their differences in a least-squares
sense against the predicted star centers provided by the catalogue. The inertial attitude
of the camera was determined and along with the computed centers, passed to the orbit
determination filter.

Other solutions, again, have been implemented for AIDA, the Asteroid Impact and De-
flection Assessment mission, a joint mission between ESA and NASA for demonstrating the
kinetic impactor technique for planetary defense [8]. The spacecraft HERA aims to be a
highly autonomous system for space navigation, in a particularly challenging environment
about a binary asteroid system. Here, the image processing techniques were developed on
the basis of centroiding and feature tracking approaches, using the maximum correlation
with a Lambertian sphere to determine the position of the asteroid in the field of view of the
camera and features extraction, to estimate features between consecutive images to estimate
the displacements of different relevant points [8].

The navigation systems based on limb scanning techniques spread with particular suc-
cess since the first use in the Voyager mission [9, 1]. It worked by "taking an assumed body
center and then generating a handful of scan direction emanating from this center point"
[1]. In particular the length of the scan were based on the body’s apparent size showed in
the image. From each scan an intensity profile was generated. Then, it was compared to
an expected intensity profile based on a relative state and body model, allowing to update
iteratively the relative state, defining a more accurate state of the spacecraft.

When the spacecraft approaches the body target in short distances, however, solutions
like limb fitting or star horizon-based become undoubtedly no more reliable. In this case,
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feature tracking may present a solid solution. The Origins, Spectral Interpretation, Re-
source Identification, Security-Regolith Explorer OSIRIS-REx spacecraft was launched on
September 8, 2016 for the Bennu asteroid sample return mission. After reliability issues
with hardware and test program of LIDAR system, an alternative backup solution to the
LIDAR, based on Natural Feature Tracking (NFT) was introduced [10]. This optical navi-
gation system compared observed images to a set of terrain models of the asteroid rendered
in real-time from a catalog stored in memory. Among all the options for a backup solution
to the LIDAR, the optical navigation, once again, was the most promising and mature tech-
nique to implement to achieve the Touch-and-Go requirements of the mission. The NFT
system was designed to estimate the orbital state of the spacecraft by a matching process of
the features. The images from the camera were matched against the predicted appearance
of the features, rendered on-board. The approach predicted which features it was expected
to be seen in the image, rendered the expected appearance of the feature, and matched
the prediction to the actual image. The information of the location of the features were fi-
nally used to update the knowledge of the camera position and orientation by a Kalman filter.

However, the feature detection and matching algorithm, did not only spread in the space
field. Along with these applications, more algorithms were introduced in robotic and civil
applications enabling sophisticated vision-based relative navigation algorithms for robotic
spacecrafts. The approaches introduced by ORB, SIFT and SURF methods resulted in be-
ing a viable solution for feature detection in SLAM algorithms. Cho et al. [11] proposed a
relative navigation scheme in the space, based on these models. In particular, two different
features detectors, the Shi-Tomasi corner detector and the SURF blob detector, followed by
selection and filtering steps were used for feature detection over different scale of distances
to the target. A robust-pattern matching method based on Gaussian Mixture Model was
applied with the aim to enable target re-acquisition to provide fault-tolerant and automated
relative navigation. The authors finally applied a fixed-lag smoothing SLAM algorithm to
obtain pose, linear and angular velocity estimated with high accuracy.

The success Machine Learning had in the past years, made this new field an interesting
solution for the image processing techniques in optical navigation. Among the methods that
ML provides, one of the most interesting is Deep Learning, largely applied for image process-
ing tasks. Taking advantage of the capabilities of neural networks to extract relations from
images, uncountable are the solutions that space scientists have tried to apply for navigation
purposes.
In [12, 13], a CNN with U-Net style, called LunaNet, was developed as image processing
method. It visually detected craters in a simulated camera frame, and the detections were
matched to known lunar craters in the region of the estimated spacecraft position. The
model was developed on the idea of the already existing network DeepMoon [14], that ap-
plied a CNN to detect craters from a digital elevation map (DEM). To make the approach
sensible to shadow variations, LunaNet used camera images to accommodate shadows or
different forms of noises. The model output a gray-scale image with bright values indicating
the pixels that were predicted to be part of crater rim. These outputs were then processed
to fit an ellipse to the detected craters. Overall, the combination of LunaNet and an EKF
produced interesting results in final position and velocity estimation error with respect to a
standard image processing crater detection method.
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On the basis of Natural Feature Tracking, Campbell and Furfaro [15] presented a CNN,
that trained with a series of images rendered from digital terrain map (DTM) of lunar sur-
face, returned the position of the observer relatively to the DTM. Here, the simplest problem
of relative terrain navigation was considered, constraining the motion to one dimension. Tak-
ing advantage of the Lunar Reconnaissance Orbiter (LRO) digital terrain maps availability,
a small 1024⇥ 1024 pixel section was selected to provide the raw data for image generation.
Each pixel location along the direction of motion was treated as a class, providing 1024
classes. Each of the train image was labeled by where along this line the center lied. The
images of 128⇥ 128 were sampled from the nadir base image every 8 pixel horizontally. Ba-
sically, the CNN received a 128⇥ 128 image labeled with a 1024 element one-hot vector that
provided the center location. The image was then processed by three convolutional layers
each followed by a max pooling layer to provide in the end the estimate center position in
the image.

The flexibility of neural networks to deal with images, made their application not nec-
essarily related to the picture of a planet or a moon. Sharma and D’Amico [16], proposed
a neural network based method for on-board pose estimation of a known noncooperative
spacecraft using monocular vision. This approach, used a CNN with three branches to solve
the problem of relative attitude estimation. One branch performed a state-of-the-art object
detection algorithm providing a bounding box around the target spacecraft. The region in-
side the bounding box was then input into the other two branches to determine the attitude
by classifying the input region into discrete coarse attitude labels before regressing the a
final estimate. The method then performed an estimation of the relative position by using
the bounding box and the estimated relative attitude.

The state of the art the the optical navigation methods proposes is solid and well proven.
Uncountable are the methods that had success in the past and acted as guideline for the
future solutions. Among them, methods based on center and apparent diameter (CAD)
finding, were deeply studied and proven through the years. An explanation of the analytic
details behind a CAD method for both standard image processing and neural network will
be presented later in dedicated chapters.

1.2 The case study: LUMIO mission

The Lunar Meteoroid Impact Observer (LUMIO) mission aims "to observe, quantify,
and characterize the meteoroid impacts by detecting their flashes on the lunar farside"2.
The spacecraft LUMIO is a 12U CubeSat with a mass of approximately 20kg, that is deployed
into a quasi-polar selenocentric orbit. From a lunar high-inclination orbit, the spacecraft will
autonomously determine its trajectory to reach a Moon-Earth L2 point, performing the cruise
phase. When the lunar disk illumination will be less than 50%, it will perform autonomously
the scientific task without direct coordination from the ground through the camera. Addi-
tionally, as a secondary application of the scientific investigation, the LUMIO-Cam will be

2https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/lumio . Last access:
17-11-2021
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also used to prove the autonomous navigation by making use of an horizon-based naviga-
tion algorithm, allowing to estimate the spacecraft state without relying on ground station
tracking.

The scientific relevance Impacts due to Near Earth Objects (NEOs), may cause crit-
ical events on Earth, potentially leading to humanity extinction. Although the probabilities
of these events happening are low, they require to be studied. In particular, meteoroids
are small fragments of asteroids and comets with masses reaching 104 kg. Their detection
may be hard, even with dedicated studies. Nevertheless, they may be observed indirectly by
studying the impacts and the light flashes from the solid surfaces like the Moon’s one.
The detection of the light flashes at the Moon, are typically observed by detecting a local
spike of the luminous energy in the visible spectrum, pointing at the lunar night side. For
this purpose, a dedicated camera LUMIO-Cam has been design to record the flashes. The
camera consists of a 1024⇥1024 pixel detector, with pixel size of 13⇥13µm2, with a readout
frequency of around 15 MHz. To take into account the maximum and the minimum ranges
presented in Tab. 1.1, the optics behind this system has been designed to have a 6� FoV, a
focal length of 127mm, and an aperture of 55mm.

To perform the scientific objective, the spacecraft will fly on a quasi-halo orbit around the
L2 point of the Earth-Moon system. Considering two consecutive orbits, LUMIO will perform
engineering operations in one of them, dedicating the second orbit to science investigation.

Figure 1.1: Sketch of LUMIO mission phases. Courtesy of [17].
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Min range
to moon

Max range
to moon

Halo
period

Earth-moon
synodic period

Jacobi
constant

35,525 km 86,551 km 14,74 days 29,84 days 3.09

Table 1.1: LUMIO halo orbit properties. Courtesy of [18].

The Optical Navigation System According to [18], in this case, a trade-off has been
carried out between radiometric tracking, x-ray pulsar navigation, celestial triangulation,
and the horizon-based navigation techniques. Undoubtedly, the objective of demonstrat-
ing the feasibility of autonomous on-board navigation, could not include the ground-based
radiometric solutions. Considering the sensor miniaturization constraints for x-ray pulsar
navigation and minor accuracy of celestial triangulation with an almost full field of view of
LUMIO-cam, the horizon-based techniques turned out to be the best solution for the prob-
lem [18].

In particular, the navigation system was inspired by the methods proposed by Chris-
tian et al. in the Noniterative Horizon-Based Optical Navigation by Cholesky Factorization
[19]. Proceeding with such a method, it is possible to estimate the camera-to-object relative
position vector in the camera frame by relying on the estimation of the full ellipse of the
moon, by ellipse fitting, and the retrieving of the range vector by a noniterative and novel
approach presented by Christian et al. [19]. Once the range camera-to-moon is retrieved,
an Extended Kalman Filter is applied to estimate the spacecraft state, that is the position
along with the velocity.

The mission is one of the two winners of the ESA General Studies Program SysNova
contest to design a CubeSat mission to the Moon. It has been proposed by a consortium
composed by Politecnico di Milano, TU Delft, EPFL, S[&]T Norway, Leonardo S.p.A and
the University of Arizona.

1.3 Research question

In the framework of the LUMIO mission, the objective of this work is to carry out a
performance comparison between a standard CAD image processing based on ellipse fitting
of the illuminated arc of the Moon, and a Neural Network architecture designed for a re-
gression task, that provides the radius and the center of mass of the Moon. Therefore, the
following main research question can be stated:

“Can a Convolutional Neural Network based architecture improve the ac-
curacy of a standard CAD image processing technique? ”

As such, the main purpose is to understand how and if a neural network can improve the
results of a well established standard CAD method for optical navigation. The capability
of deep learning to retrieve relations between inputs and outputs, only on the basis of the
pixel arrays of images, may outperform the weakness of standard image processing tech-
niques when dealing with poorly illuminated images. Consequently, the sub-questions can
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be investigated:

“How do the different approaches deal with different illumination condi-
tions of the Moon? ”

Regarding, instead, the optimization of the network, it must be capable to generalize the
mapping between input and output:

“What kind of Neural Network architecture can lead to the best test er-
ror? ”

1.4 Description of the Document

The previous chapters have been used to introduce the reader to the environment of the
navigation in space, presenting a descriptive survey of the main methods that have been
used in the past and that have built the road for the future algorithms.

After having acquired a general picture of what has been done for space navigation, a
more detailed description of the more used approaches will be presented to the reader. In
the second chapter, a survey of different approaches used in OpNav is analyzed, presenting
the setting of the reference frames for operations and a dedicated section for the Image Pro-
cessing algorithm used for the standard CAD approach.
In the third chapter, the reader will be introduced to the innovative and appealing world
of Artificial Intelligence, by presenting the Machine Learning techniques and some of the
Supervised Learning methods, considering the supervised task of this work. A dedicated
section will be presented for the Neural Networks and Residual Network on which the cur-
rent thesis relies on.
The chapter four will explain how the environment work has been setup, from the need of
generating a dataframe for the image generation and the relative labels, to the camera set-
ting in the rendering software. The choices made to carry out the image generation and the
algorithms of standard CAD and Convolutional Neural Networks will be introduced to the
reader. The chapter will therefore explain how the algorithms have been applied to obtain
the desired results.

In the end, a comparison of the results will be presented, showing how and when the
algorithms performed well or not. The reader will approach finally to the last chapter, where
the results will be summed up and the future works described.
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Chapter 2

Optical Navigation

Optical Navigation is the use of imaging data to aid in spacecraft navigation. A camera
takes picture of the nearby target body and the spacecraft’s attitude determination system
provides an estimation of the attitude of the camera during the exposure. Then an accurate
measurement of the image coordinates of the body becomes a measurement of the inertial
direction from the camera to the target [20]. Interplanetary robotic missions have relied
on a combination of radiometric tracking and optical observations for navigation for years.
However, to improve the estimate of the spacecraft state, relative to the planet, the optical
observations were all processed on the ground.

Overall, the optical navigation methods may be summarized in three main problems [20]:
• Given the position and the velocity of the spacecraft and the target, the camera at-

titude, and the camera’s optical properties, where should the image target appear
withing a picture?

• Given a digital picture of stars/targets, what are the measured coordinates of these
images?

• After the image processing is done, the obtained measurements must be fed into the
orbit determination filtering process.

The main core of an OpNav system is therefore represented by Image Processing, an en-
semble of techniques aiming to extract the coordinates of the pixels of an image of a target
within a picture.

Why to use OpNav? Having an increasing number of missions planning to send human
on missions beyond low Earth orbit, the idea of having methods for autonomous spacecraft
navigation has become a requirement, and a compelling need. Although previous missions
in the past relied on a combination of radiometric and optical measurements, typically fused
on ground to estimate the state of the vehicle, today, for future crewed exploration missions,
these kind of solution are undesirable. In the condition of a communication failure, it is
vital that the vehicle be capable of autonomous navigation for the safety of the crew. For
robotic missions, autonomous navigation may be necessary for high-speed flybys of a planet
or for flybys occurring when the sun is between Earth and the planet, helping to reduce the
tracking requirements on ground-based infrastructures. These objectives must be achieved
at the minimum computational and time cost.



CHAPTER 2. OPTICAL NAVIGATION

2.1 Reference frames

To properly apply the image processing technique to the OpNav system, the reference
frames must be accurately defined to provide the fundamental tools for orbit and state
estimation. One of the conventional celestial reference frames, later applied for the purpose
of the work (section 4.1.1), is the Body Fixed Reference Frame. As the name explicates itself,
it is defined such that it is fixed accordingly to a certain orientation of the body’s surface and
rotate and translate with the body itself. A slight variation is the Principal Axis BFRF (In
Fig. 2.1 an explanatory picture from NAIF1), where the xyz axes of the system are aligned
with the principal axes of the body.

Figure 2.1: Body fixed reference frame.

2.1.1 Pinhole camera model
For a complete development of an image processing technique, the camera model must

be defined. The simplest camera model available, and largely discussed in the literature
[21], is the pinhole camera model, which describes the relationship of the projection of points
in 3D space onto an image plane. The fundamental idea of this model is that the rays of
light passing through the lens optical center are undistorted by the lens and continue until
they intersect the focal plane array. The aperture of the camera model is approximated as
an infinitesimal point, making the diffraction dominant and the purely refractive thin lens
model not holding anymore[21].

To accomplish the OpNav task, here it must be defined the camera reference frame,
centered in the pinhole point O and the image plane reference frame, which is placed along
the z direction (corresponding to camera axis) on z = f to avoid to reverse the image
coordinates.

1https://naif.jpl.nasa.gov/pub/naif/toolkit_docs
/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf . Last accessed: 23-11-2021
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Figure 2.2: Basic pinhole camera model geometry. Courtesy of [22].

Therefore, given a generic point p of coordinates X=[Xp, Yp, Zp] relative to the camera
reference frame, with the z being the optical axis, through triangles similarity it is possible
to recover the p projection on the image plane through the mapping:

2

4
x
y
f

3

5 =
f

Zp

2

4
Xp

Yp

Zp

3

5 (2.1.1.1)

The coordinates will be then transformed to be expressed in the Image Plane Coordinate
Frame in uv axes (Fig. 2.2) by making use of the camera calibration matrix accordingly to
the properties of the system.

2.2 Standard Optical Navigation techniques: an Overview

The need to solve the issues due to latency of telecommunications signals for the space-
craft maneuvers, has been successfully satisfied in past years with different space proven
techniques for optical navigation. Their application can vary depending of the phase of the
mission. This translates in applying a method accordingly to how large is the image signal
that is resolved in terms of amount of pixels.
By making use of the pixels of interest in the image plane, and by extracting features from
the picture itself, it has been possible to retrieve the state of the spacecraft by using different
tools like filters.
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2.2.1 Moment algorithm or Center of Brightness
Moment algorithm is the the most primitive of the centerfindng techniques [20], based

on the computation of the center of brightness of an array2:

sc =

P
i

P
j iDNi,jP

i

P
j jDNi,j

; (2.2.1.1)

lc =
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j jDNi,jP

i

P
j jDNi,j

; (2.2.1.2)

with DNi,j the intensity value of the pixel in (i,j ). This method, however, must be used
carefully, considering particular image fixes. Indeed, the presence of non zero background
values will move the computed (sc, lc) to move toward the center of the DN array. A filter
must be therefore applied to deal with noises due to stars or lenses imperfections. A common
procedure may also be to exclude from the sums all the pixels whose DN value is less than
some minimum percentage of the brightest pixel in the image [20].

2.2.2 Analytic Function Fitting
Analytic Function Fitting was developed as a way to estimate the center of bodies in the

image which are less than a couple of pixel across. Here, a point spread function (PSF) is fit
to the DN values of the image to identify the center of the point source in the image [20].
A fit is carried out, usually with a linear least-squares estimation or iterative least-squares
estimation, where the point spread function is such that to minimize the residuals between
the predicted DN from the PSF and their actual values in the image. A typical example
of PSF model is the 2D Gaussian function or the Lorentzian one. Any function capable to
describe how a point source is blurred by the lens of the camera can be applied.
Using a 2D Gaussian, following the steps in [20], the brightness function becomes:
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h
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◆
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�

◆
+ b

⌘ hN(⇠(s))N(⌘(l)) + b

(2.2.2.1)

where (sc, lc) are the coordinates of the peak of the Gaussian, � is the standard deviation in
pixels, h is the amplitude in DN, and b the constant background in DN. Then, N(z) is the
normal probability distribution function, with zero mean and unit standard deviation; ⇠(s)
and ⌘(l) convert s and l into units of standard deviations away from the mean.
In addition, the modeled DN is the integral of the brightness function is Eq. (2.2.2.1),

DN(s, l) =

Z s+1/2

x=s�1/2

Z l+1/2

y=l�1/2

B(x, y) dy dx (2.2.2.2)

2An image consists of tiny areas, arranged in regular rows and arrays, called pixels. Each pixel has
coordinate values and a digital number DN that records the intensity of electromagnetic energy measured
for the ground resolution cell represented by that pixel.

15



CHAPTER 2. OPTICAL NAVIGATION

Being the fitting function not linear, the process is iterative. Therefore, considering the
model parameters as {sc, lc, h, b, �}, beginning with their a priori values computed from the
image, the Eq. (2.2.2.2) is used to compute the expected DN values in each pixel. The
spatial derivatives of DN(s,l) are the calculated with respect to the solution parameters and
the residual are formed to construct each equation of condition. Data weight are applied
according to the expected noise in DN, and results are fed into a least square algorithm: the
process is iterated until convergence is achieved.

2.2.3 Normalized Cross-Correlation
In Normalized Cross-Correlation, the center of figure of the body in the image is found

by correlating a template3 of the predicted brightness values with the actual image. The
process of correlation is performed as

⇢(�s,�l) =
X

i

X

j

(DNi,j � D̄N)(Ti+�s,j+�l � T̄ )

n�DN�T
(2.2.3.1)

with T the template, D̄N is the average of the DN values over the considered pixels, T̄ the
average of the template values over the pixels and the � the standard deviations of the DN
from the image and the template over the pixels. The correlation is carried out for a number
of (�s,�l) and results in a correlation surface, the peak of which corresponds to the location
of the center of the body.

2.3 Centroid and Apparent Diameter Optical Navigation

When satellite is approaching a moon or a planet, not only landmark navigation may
be applied, particularly when the field of view of the camera is not completely saturated.
Manifold are the methods that rely on the horizon. Centroid and apparent diameter (CAD)
methods tend to be simpler in implementation since they do not require particular or specific
landmarks to be found and matched to a catalog.
If the sizes of the body are completely known, then its apparent dimensions inside the image
are related to the distance between the camera and the planet, accordingly to what explained
in section 2.1.1, for the pinhole model. Moreover, if the center of the planet is also found
in the image, the line-of-sight (LOS) direction from the camera to the planet is retrievable,
too. Overall, this can easily provide a good estimation of the camera location.
The projection of a smooth ellipsoidal planet or moon on the image plane will be typically
an horizon arc ellipse fashioned. Other sections are possible (e.g. hyperbolic or parabolic)
if the satellites is at low altitudes, where horizon based OpNavs are not viable anymore. In
any case, the observed horizon in the image will be obtained by slicing a cone with the image
plane and solving a conic section problem for the horizon finding.

3The template used in cross-correlation is generated by rendering the view of the body using a priori
knowledge of the scene.
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Figure 2.3: The cone tightly bounding the planet is sliced by the image plane, resulting in an
ellipse arc. Courtesy of [1].

2.3.1 Geometry of planet observations
The shape of numbers of planets/moons of interest for OpNav can be easily and well

approximated by a triaxial ellipsoid. Therefore, the surface of the modeled body follows the
constraint

pp
TAppp = 1 (2.3.1.1)

that is the vector form of the implicit equation of a triaxial ellipsoid, with p a 3⇥ 1 vector
describing a point on the body’s surface with respect to the body’s principal axis frame4,
and Ap a 3⇥ 3 symmetric positive definite matrix that describes the shape of the body

Ap =

2

4
1/a2 0 0
0 1/b2 0
0 0 1/c2

3

5 (2.3.1.2)

with {a, b, b} the lengths of the planet’s principal axis. To accomplish the tasks of the
OpNav, it is preferable to express all the data in terms of the coordinate system aligned
with the camera frame. Therefore, defining TC

p the rotation matrix from the camera frame
to the planet’s principal axis frame and applying the transformation such that pp = TC

ppC,
and letting AC = Tp

CApTC
p it is possible to recover

pT
CACpC = 1 (2.3.1.3)

4The p subscript defines a term in function of the principal axis frame of the body.
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where AC is the 3⇥3 symmetric positive definite matrix describing the planet’s shape but in
the camera frame. In this way, the points in the image that belong to the apparent horizon
will correspond to the rays that start at the camera frame origin and go out tangent to the
ellipsoidal planet’s surface.
If the camera views an ellipsoidal planet form a relative position of r, expressed in the camera
frame, any ray si belonging to the cone that tightly bounds the triaxial ellipsoid, obeys to
the constraint:

sTi [ArrTA� (rTAr� 1)A]si = 0 (2.3.1.4)

or simply
sTi Msi = 0 (2.3.1.5)

with M a symmetric matrix of full rank given by

M = ArrTA� (rTAr� 1)A (2.3.1.6)

Choosing a vector sTi = [xi yi 1] and substituting it into Eq. (2.3.1.5), what is obtained is
simply the implicit equation for any conic section.

2.3.2 Ellipse Fitting
Given all the parameters of the camera involved for a mission, and considering the

relations for pinhole model section 2.1.1, it is always possible to recover the body’s size
in the image plane, if the real dimension of the planet are known. In particular, the most
fundamental task is to reconstruct the hypothetical ellipse that best fits the arc of the horizon
detected from the body’s image. This is more feasible the more the planet’s shape is regular
(e.g. spherical or ellipsoidal fashioned).

Figure 2.4: A straightforward example of an ellipse fitting on the image of a planet/moon. Cour-
tesy of [22].

Specifically, any conic section can be represented by an implicit quadratic equation:

F (x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (2.3.2.1)

where a point (x , y) lies on the conic section. If B2
� 4AC < 0 is satisfied, the equation
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will provide an ellipse. If all these parameters are known, it is possible to retrieve the ellipse
coordinates center (x0, y0) in the image plane and the values of the semi-axes {a, b}. These
values are easily achievable from classical geometry, and given by

x0 =
2CD � BE

B2 � 4AC
y0 =

2AE � BD

B2 � 4AC
(2.3.2.2)

a =

s
2[AE2 + CD2 � BDE + F (B2 � 4AC)]

(B2 � 4AC)[
p
(A� C)2 +B2 � A� C]

(2.3.2.3)

b =

s
2[AE2 + CD2 � BDE + F (B2 � 4AC)]

(B2 � 4AC)[�
p
(A� C)2 +B2 � A� C]

(2.3.2.4)

For locating the planet or the moon in the image, the image must be searched for an ellipse.
Once the candidate edge points are found, the ellipse must be fit to this data set.

Basic Ellipse fitting with Direct Least-Squares Estimation

One of the most efficient approaches for ellipse fitting is described by the direct least-
squares algorithm introduced by Fitzgibbon, Pilu, and Fisher [23]. The first advantages with
respect to other more robust noise techniques, are the less amount of memory required to
carry out the operations, along with less time-consuming computations.
Recalling the ellipse in the form of Eq. (2.3.2.1), in the matrix form, it becomes

F (a,xi) = a xi = 0 (2.3.2.5)

where (xi, yi) is a point of the conic section, a = [A B C D E F ]T and xi = [x2
i xiyi y2i xi yi 1]T .

The form in Eq. (2.3.2.5) allows to arbitrarily rescale the the constants to transform the in-
equality constraint in an equality one

4AC � B2 = 1 (2.3.2.6)

However, due to noises, a point may not lie exactly on the ellipse, leading to F (a,xi) 6= 0.
Therefore, Fitzgibbon et al., proposed an optimization problem based on the square of the
model fit residuals in algebraic distance [23]:

min J =
nX

i1

[F (a,xi)]
2 = aTDTDa (2.3.2.7)

with D = [x1 x2 . . . xi].
Additionally, if the equality constraint is rewritten in matrix shape 4AC � B2 = aTCa = 1
and adjoined with Eq. (2.3.2.7) with a Lagrange multiplier, then

min J = aTDTDa+ �(1� aTCa) (2.3.2.8)

The solution to the optimization problem is therefore a rank-deficient generalized eigenvalue
problem

(DTD)a = �Ca (2.3.2.9)
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Substituting the solution into the objective function

J = aTDTDa = �aTCa = � (2.3.2.10)

leads to the optimal solution at the minimal positive eigenvalue.

Improved Ellipse Fitting with Direct Least-Squares Estimation

The Fitzgibbon’s method, however, suffers from some practical difficulties [2]. Solving
the eigenvalue problem previously presented in Eq. (2.3.2.9) leads to several issues with
numerical instability. In addition, it works only on noisy data. Therefore, given a point
lying exactly on an ellipse, the matrix DTD becomes singular and no solution is obtained.
In the 1998, Halir and Flusser [24], presented a different approach overcoming the issues
from the previous method. The structure of C and D was modified to simplify the eigenvalue
problem. The new set of matrices were therefore defined as

a =


a1

a2

�
a1 =

2

4
A
B
C

3

5 a2 =

2

4
D
E
F

3

5 (2.3.2.11)

C =


C1 03⇥3

03⇥3 03⇥3

�
C1 =

2

4
0 0 2
0 �1 0
2 0 0

3

5 (2.3.2.12)

D =
⇥
D1 D2

⇤
(2.3.2.13)

D1 =

2

6664

x2
1 x1y1 y21

x2
2 x2y2 y22
...

...
...

x2
n xnyn y2n

3

7775
D2 =

2

6664

x1 y1 1
x2 y2 1
...

...
...

xn yn 1

3

7775
(2.3.2.14)

Moving to a more compact notation, the scatter matrix is defined as S = DTD with

S =


S1 S2

S2
T S3

�
(2.3.2.15)

S1 = D1
TD1 S2 = D1

TD2 S3 = D2
TD2 (2.3.2.16)

If these partitioned matrices are inserted into the equations obtained in Eq. (2.3.2.9), the
solution reduces to two equations

S1a1 + S2a2 = �C1a1 (2.3.2.17)

S2
Ta1 + S3a2 = 03⇥1 (2.3.2.18)

Being the S3 generally invertible (it is singular when the points lie on a line, when no ellipse
can be fitted), a2 is found as

a2 = �S3
�1S2

Ta1 (2.3.2.19)
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Moreover, inserting Eq. (2.3.2.19) into Eq. (2.3.2.17), a1 is found solving the eigenvalue
problem

Ma1 = �a1 (2.3.2.20)

with
M = C�1[S1 � S2S3

�1S2
T ] (2.3.2.21)

According to [24], even though Eq. (2.3.2.20) admits three possible solutions, only one el-
liptical solution is possible, and this is found for the eigenvalue that allows the constrain
4AC � B2 > 0 to be satisfied. This eigenvalue is the only solution for the eigenvector a1.
Following such a procedure, all the parameters of the ellipse can be determined on the basis
of the detected horizon points. Given the parameters, the estimated position of the center
of body and its average diameter can be retrieved from the equations shown in Eq. (2.3.2.2).

This technique provides an efficient and accurate model for ellipse fitting. In the case
noisy values were in the images, robust model fitting may be applied, like RANSAC models
or its variation of MSAC, as presented in [2], largely studied in the computer vision field.

By making use of the geometric formulation shown in section 2.3.1 and the ellipse fitting
methods, several ways have been developed to determine the relative position vector r of the
body with respect to the camera frame, like the novel method of Noniterative Horizon-Based
Optical Navigation by Cholesky Factorization that makes use of Cholesky factorization to
map any shape into a sphere, simplifying the problem and recovering the range vector by a
noniterative approach [19].
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Chapter 3

Artificial Intelligence

First approaches to Artificial Intelligence in computer science come from the 1950s,
when some pioneers of technological renaissance started asking if computers could be made
to "think" [25]. Today, many and controversial are the definitions of AI, but they may
mostly converge in defining it as the effort to automate intellectual tasks normally performed
by humans [25]. AI is a field in the computer science that involves Machine Learning and
Deep Learning techniques. In its initial formulation, it included approaches that did not
involve learning at all: in chess programs, hardcoded rules were defined by programmers,
trying to reach a sufficiently large set of explicit rules for manipulating knowledge. These
led to the idea of symbolic AI.
The development of new technologies, that improved the computational power of processing
units, allowed researchers to figure out new rules capable to solve even more complex prob-
lems such as image classification, speech recognition, object detection, and more. There,
machine learning took symbolic AI ’s place.

Figure 3.1: Artificial Intelligence structure.

3.1 Machine Learning techniques

More than 65 years ago, Alan Turing, in the famous essay Computing machinery and
intelligence [26], asked if a machine could do the same things humans could do. Turing
proposed that instead of writing programs that behaved like a human from scratch, it was
needed a computer which learned from past experience. A machine capable to translate
between two languages, will do so by learning from past examples and not from hardcoded
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rules [25]. This means that a computer should perform a specific task by learning rules from
data observation: that is Machine Learning.
The goal of machine learning is therefore to use past experience to learn how to accomplish
a certain task such that the learned ability generalizes to future similar situations. This
changes the paradigm of programming, as explained by Francois Chollet in [25], where the
outputs of the process are no more the answers, but the rules.

Figure 3.2: Machine Learning: a new programming paradigm. Courtesy of [25].

The success of a machine learning technique is, therefore, the capability to predict the
best model that better maps the input-output relation. Given a set of models M, it is
therefore necessary to define an objective way to state which of them performs and generalizes
better the model. Considering the same train set of data, it is possible to fit on them several
models. Looking at the three of them in red curves in the Fig. 3.3, it is possible to notice
how they differently behave:

Figure 3.3: A small dataset of nine observations generated from the true curve shown with the
black line. The three red lines defines three different regression models M1, M2, M3 fitted to the
dataset. Courtesy of [27].

It is easy to see how well the M2 fits the data, surely better than M1, but worse than
M3, the most complicated one. However, remembering the task of creating a model capable
to better predict the input-output relation, it is fundamental to observe that M3 will not
generalize well to new data. This, is commonly known in ML field as overfitting. Considering
a new test set of data, testing the models on these new values will provide a better estimation
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of how well the models generalize to new data. A test error 1 can be defined as:

Etest
Ms

=
1

N test

X
(yi � fMs

(xi,w))2 (3.1.0.1)

where fMs is the model fitted to the training data. The test error will provide a better way
to estimate the generalization of the models. However, to generalize it with respect to any
new possible test set, the cross-validation method could be applied. The cross-validation
method takes the training set and divide it into new train Dtrain and test Dtest set, and uses
these two to select the appropriate model.
Indeed, considering a supervised machine learning problem with a given data set D, and
different models Mi to be compared, it is possible to collect for each of them a loss function L
that quantifies the prediction error. In general, the loss function can be different according to
the purpose of the task. Then, the different models will be evaluated on different partitions
of train and test sets, and the errors will be used to compute the generalization error, the
fairest estimate of how well the model performs:

Egen
M = E(x,y)[L(y,fM(x))] (3.1.0.2)

Figure 3.4: The test error for each of the three models M1, M2, M3 computed on the test data
set. The test error correctly singles out the M2 as the best model. Courtesy of [27].

When Machine Learning fails

The purpose of machine learning is therefore to find the best model that better gener-
alizes a certain problem, and this is found by the generalization error. A model may have
a high generalization error for several reasons. It may be misapplied or too weak, that is
inflexible to learn a rich representation to solve a problem, or the model may focus on the
wrong thing. Very flexible models, with little data, will learn any number of representations
and then will fail: they will overfit. Increasing the number of data, the more flexible model

1The choice of the error can vary, generally depending on the type of the task or also type of data.
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will be capable to learn a more sophisticated and accurate representation of the problem [25].

The choice of the models to be applied depends on numbers of boundary conditions such
as the task, the type of data to be processed, the execution time needed, or the outputs.
However, the methods can be divided in different categories, helping in the final choice
of family of methods. It is possible to distinguish different approaches of how tasks are
accomplished: supervised learning, unsupervised learning and reinforcement learning.

3.1.1 Supervised learning
Among the possible tasks that machine learning aims to solve, it is possible to distinguish

three different learning approaches:

• in supervised learning the task is to learn a function that maps an input to an output
based on known input-output pairs, commonly named training data;

• in unsupervised learning, given only input data X, the objective is to infer structure in
X such as a clustering, outlier detection, density estimation, and association mining;

• reinforcement learning is a learning approach used for making a sequence of decisions.
The computer faces a game-like situation, employing trial and error to come up with
the solution on the basis of rewards and penalties received for the action it performs.

A training set of observations x and targets y are given and the task is to come up with
a model capable to map an input to an output with a function:

y = f(x ,w) + ✏ (3.1.1.1)

where w is a vector of tunable parameters and ✏ a noise term. Therefore, learning consists in
defining values of parameters w that better estimate the model on the basis of the training
data. If y is continuous, the model is a regression model. On the other hand, if the output
is a discrete one, the model will be a classification model.

A description of some of the Machine Learning techniques will be presented in the next
sections, showing the insights behind their success in predicting rules. A dedicated section
for Neural Networks will be presented later (section 3.2) to explore more in detail how this
method works. For the purpose of this work, some of the main supervised learning tech-
niques will be introduced.

Linear regression

Between the mathematical techniques, the linear model simply maps an input x to an
output y through a linear function:

f(x, w) = w0 + w1x1 + ...+ wmxm (3.1.1.2)

The model is therefore a linear function of input x. The purpose of learning is estimating
the coefficients wi, given the (xi, yi) pairs. One of the most common approaches involves the
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minimization of least square. Considering the output y and its prediction ŷ it is possible to
compute the residual e = y - ŷ. The residual sum of squares (RSS) is:

RSS = e21 + e22 + ...+ e2n (3.1.1.3)

The least squares approach chooses the learned coefficients, considering the sample means,
as minimizers, that are the least squares coefficients for a simple linear regression.

Logistic Regression

Even though regression and classification appear very different, the linear regression
can be easily extended to classification by making use of probabilities. In case of binary
qualitative response, the task is to classify an output y as a negative class 0, or positive 1.
For this purpose a general probability problem may be defined:

p(y|x,w) (3.1.1.4)

Being y binary, the leading idea is to model its density as Bernoulli variable. Since the
output of a linear model is generally a continuous number, and the ✓ of Bernoulli distribution
belongs to [0, 1], the Bernoulli distribution can be re-parameterized using a sigmoid function
and written as:

p(b|z) = Bernoulli(b|✓ = �(z)) = �(x)b(1� �(z)1�b, �(z) =
1

1 + e�z
(3.1.1.5)

with �(z) the logistic sigmoid Fig. 3.5.

Figure 3.5: The logistic sigmoid fucnction �(z) = (1 + e�z)�1. Courtesy of [27]

Therefore, the probability density of a given observation yi is:

p(yi|xi) (3.1.1.6)

The problem turns out to be solved in the maximum likelihood framework. In the problem
formulation stated in Eq. (3.1.1.4), w are the parameters in the model and they can be
learnt by letting them equal to w* found in this case by:

w⇤ = argmin{E(w)} (3.1.1.7)
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However, it is not possible to solve such a formulation analytically for w* : a viable approach,
called gradient descent, can be applied and it will be presented later for Neural Network.

K-nearest neighbour (KNN)

Different approaches try to estimate the conditional distribution of Y given X, and then
classify a given observation to the class with the highest estimated probability. Given a
positive integer K and a test observation x0, a KNN classifiers identifies in the training data
the K closest points to x0, represented by N0. The conditional probability for class j is then
estimated as the fraction of points in N0 whose response values equal j :

p(Y = j|X = x0) =
1

K

X

i2N0

I(yi = j) (3.1.1.8)

The Bayes rule (Eq. (3.1.1.9) is then applied and the test observation x0 is then classified to
the class with largest probability.

p(y|x) =
p(x|y)p(y)Pc

y0=1 p(x|y
0)p(y0)

(3.1.1.9)

Figure 3.6: The KNN approach using K = 3. On the left a test observation to classify is shown in
black cross. The three closest points to the test observation are identified, and the test is classified
according to the most occurring class in blue, with a rate of 2/3. On the right, the decision boundary
is shown in black. The blue grid region tells where a test observation will be classified as blue class.
The same is applied for the yellow class. Courtesy of [28]

3.2 Deep Learning and Neural Networks

Deep learning is a specific subfield of machine learning that puts emphasis on learning
successive layers of increasingly meaningful representations. The concept of deep comes from
the idea of successive layers of representations where, their number, indeed, defines the depth
of the model. The layered representations are learned via models called neural networks, a
name that references to neurobiology and the structure of neurons in the brain. The need
of adopting Neural Networks increased in the last decade thanks to the increase of amount
of data available and computational power.
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Figure 3.7: Qualitative comparison of the accuracy of a typical machine learning algorithm with
that of a large neural network. Deep learning methods become more attractive when sufficient
data/computational power is available. Courtesy of [29]

In a Neural Network architecture it is possible to define a set of information processing
units, called neurons, and each of them is connected to other neurons by weighted con-
nections. They are collected into layers with connections from one layer feeding into the
next.

Figure 3.8: A simple neural network with 6 weights and one hidden layer with 2 neurons. Courtesy
of [27]

The process of learning in a neural network, consists of defining the set of weights that
better estimate the model mapping an input to an output. Two are the main phases of
learning:

• Forward propagation: the input data for a training sample are fed into the network. A
cascade of computations across the layers is carried out, using the actual values of the
weights. The weighted sum of the value of each neuron is fed into the next layers and
then activated. The final output is computed and compared to the real target with a
loss function. The loss function and the weights will be stored for the next phase.

• Backward propagation: the objective is to learn the gradient of the loss function with
respect to the different weights using the chain rule of differential calculus, allowing to
determine the influence of the weights on the loss. The derivative of the loss will be
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then used to update the weights to properly minimize the loss score: in this phase the
learning happens.

Given the loss function f, typically a differentiable one, it is theoretically possible to find its
minimum. The objective is therefore to analytically find the combination of weights that
yields the smallest possible loss score. This is done by solving the rf = 0 for w. To deal
with the large amount of weights a neural network may present, an alternative is obtained
by updating the weights in the opposite direction from the gradient, reducing the loss step
by step every time applying therefore the gradient descent method.

Figure 3.9: On the top-left: error function E(w) for 1D example. Weights at w’ should move
right and w” to left in order to approach the minimum. On the top-right: the gradient descent
algorithm is applied for three steps starting at w(0). On the bottom: value of the error function in a
2D dimensional example as a contour plot along with three steps of the gradient descent algorithm.
The step size slows down when approaching the minimum of the function. Courtesy of [27].

The weights may be assigned in different ways, randomly, equal to zero or in other ways
like following the Xavier initialization. Therefore, the output will be initially far from what
it should really be, with a high loss value. However, every example the network processes,
allows the weights to be adjusted, achieving a better loss score. The training loop, repeated
a sufficient number of times over thousands of examples, will lead to the right weights values
for loss decrease.

3.2.1 Activation functions
Activation functions are a central part of the design of a neural network. The choice of

the right activation function defines how well a certain network will perform and learn. For
what concerns the output layer, the choice of the activation function will define also the type
of prediction the model can make. They define basically how the weighted sum of the input
is transformed into an output from nodes in a layer, allowing the construction of a model
capable to deal with non-linear input-output relations. Different may be the functions:
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• ReLU Rectified linear activation function is probably the most common function used
for hidden layers. It is less susceptible to vanishing gradients that prevent models from
being trained, but may suffer however of saturated units problem. It is presented in
the form of f(x) = max{0, x};

• Logistic function It is the same function used in logistic classification algorithm. It
is usually fast in classifying unknown records being prone, however, to construct on
linear boundaries. In addition it would face saturated gradient since it ranges only
between 0 and 1;

• tanh The hyperbolic tangent activation function has a similar shape to LogReg’s one.
It takes any input and outputs it into [-1,1], being centered on 0. However, like sigmoid,
its activation may saturate;

• Leaky-ReLU Leaky-ReLU tries to fix "dying ReLU" for saturated units. For x < 0
the function will have a small slope. It is in the form f(x) = max{↵x, x}, with ↵
tipically 0.01;

• maxout The maxout neuron, introduced by Goodfellow et al. [30] computes the func-
tion f(x) = max{wT

1 x+b1, wT
2 x+b2}, getting the advantages of a ReLU (linear regime

of operation) and not the disadvantages of dying ReLU. It, however, leads to a high
total number of parameters.

Figure 3.10: Some of the most used activation functions.

3.3 Neural Networks for Image Processing

The strong success neural networks had in the years, dealing with higher amount of
data, allowed researchers to develop different variations and architectures to deal with cer-
tain types of data. In particular, Convolutional Neural Networks (CNN) had important
results in the field of image recognition, ranging from object and features detection and
localization, up to text processing. A CNN is capable to successfully capture the spatial
and temporal dependencies in an image through the application of particular filters. Its
role is therefore to reduce the images into an easier form to process without loosing the fea-
tures that are critical for achieving a good prediction, learning local patterns. The main idea
of convolutional networks, therefore, relies on convolution step involving application of filters.

The motivation for the convolutional networks was introduced by Hubel and Wiesel ’s
understanding of the workings of the cat’s visual cortex [31]. The first basic architecure
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based on this biological inspiration was the neocognitron, generalized later to the LeNet-5
architecture [32], introduced by Yan LeCun from Bell Labs. The idea was applied to the
problem of handwritten digits classification. Considering its success and accuracy in the
task, the model was then used by USA Postal Service in the 90s to automate the reading of
ZIP codes on mail envelopes. However, the CNNs did not spread at the time: they needed
lots of data and computational resources to work efficiently for large images.
In the 2000s, the increasing spread of personal computers and internet as data source,
and the availability of more powerful computation tools like parallel computing offered by
GPUs, allowed the development of more sophisticated and accurate networks. In 2012, Alex
Krizhevsky et al. introduced a deep CNN, called AlexNet [33], that successfully competed in
the ImageNet Large Scale Visual Recognition Challenge, making use of a GPU to allow the
implementation of a 8 layer model. It showed that time had come to revisit deep learning.

3.3.1 Convolution layer
The convolution layer is the core block of the CNN. It performs a dot product between

two matrices, where one matrix is composed by the learnable set of parameters, also known
as kernel, typically smaller than the input, and the other is the restricted portion of the
receptive field. During the forward pass, the kernel slides across the height and the width
of the image. This produces a 2D representation of the image that gives the response of
the kernel at each spatial position of the image, called activation map. The idea on which
a CNN relies on is to use the kernel properly as a filter capable to map particular features
in the image, starting from the simplest ones like vertical or horizontal edges reaching more
complex structure moving deeper in the network.

Figure 3.11: On the left: applying two different filters to get two different feature maps. Courtesy
of [34]. On the right: images can be broken in local patterns such as edges, textures, and so on.
Courtesy of [25].

Operating such a way, allows CNN to get interesting properties. Firstly, the patterns
they learn are translation invariant. A learnt pattern in the lower corner of a picture, will
be recognised anywhere. A densely connected layer would have to learn anew if it appeared
in a new location. This allows the CNN to be efficient in image processing, requiring fewer
training examples. Secondly, they learn hierarchies of patterns. As previously said, the first
layer will learn small local patterns like edges, the second will learn larger patterns made
of the features of the first layers and so on. CNN learn therefore increasingly complex and
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abstract visual concepts.

In the forward propagation, the filter, typically of size 5 ⇥ 5 or 3 ⇥ 3, with the same
depth of the input, slides onto the input image. The convolution operation reduces the size
of the input matrix because of the size F of the filter and the stride S, the spatial step of the
sliding kernel on the input. To not to lose information, the zero-padding strategy is involved:
a certain number of rows and columns of zeros is added to the input matrix in order to not
to lose the information on the image’s edges due to the application of the kernel.
A CNN therefore requires an accurate choice of the hyperparameters defined as the kernel
size F, the number of filters K, the stride S and the padding P.

3.3.2 Pooling layer
Being the convolution step a linear process, the convoluted output is usually fed into

an activation function (already presented in section 3.2.1) to introduce non-linearity to the
activation map. Then, a pooling layer replaces the output of the network at certain locations
by deriving a summary statistics of the nearby outputs, helping reducing the spatial size of
the representation, decreasing the number of computations and weights. Among the different
poolings the most common ones are the max pool (Fig. 3.12) and the average pool.

Figure 3.12: Max pooling operation: it returns the maximum value from the portion of the image
covered by the kernel. It performs also as a noise suppressant. Average pooling operation: it returns
the average of all the values from the portion of the image covered by the kernel.

3.3.3 Fully connected layer
Neurons in this layer have a full connectivity with all the neurons in the preceding and

succeeding layer like in a FCNN. It helps in mapping the representation between the input
and the output.

After data are processed by the FC, they are ready to be read by other functions to
accomplish the task of the model (e.g. a softmax for multi-classification). The procedure of
learning is similar to the one explained section 3.2: a loss function will be used as metric for
learning and its gradient used for updating weights in the backpropagation. The Fig. 3.132

2https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d .
Last accessed: 24-11-2021.
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shows a typical structure of a CNN for multiclassification purpose:

Figure 3.13: A typical structure of a Convolutional Neural Network. The image is input into
the network. The pixel matrix is convolved by a a kernel that provides the activation map. Non-
linearity are the introduced in the network by a ReLU function. The output matrix is fed into a
pooling operation. The scheme may be repeated such that the next convolution layer will learn
more high level features. The output is then flattened and a fully connected layer is introduced. A
softmax operation is applied to perform a classification task.

3.4 Residual Networks

The success AlexNet [33] obtained in the classification task was accredited to its addi-
tional layers, made by 5 convolutional layers and 3 fully-connected ones. This led a period of
development of deeper networks following the success of Krizhevsky et al. [33]. The intuition
behind it was that the layers progressively learned more complex features: the depth of a
network seemed to be of crucial importance for the performance of a model. In 2016, He
et al. from Microsoft [35] tried to answer a question: Is learning better networks as easy as
stacking more layers? They plotted a comparison of training and test errors of a 20 and
56-layers models (Fig. 3.14):

Figure 3.14: Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer
plain networks. The deeper network has higher training error, and thus test error. Courtesy of [35].

The plots showed that deeper networks presented higher train and test errors. The fail-
ure of the deeper network was neither due to vanishing/exploding gradients, since this would
have been easily addressed via normalized initialization and intermediate normalization lay-
ers, nor to overfitting, easily solved by L2-norms or dropouts: adding more layers simply led
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to higher training errors.

To address the issue observed into Fig. 3.14, He et al. presented the idea of Residual
Network (ResNet):

Figure 3.15: Residual learning: a building block. Courtesy of [35].

Instead of having each few stacked layers directly fitting an underlying mapping, they fit
a residual mapping. Considering the desired underlying mapping, namely H(x), the stacked
non-linear layers fit another mapping of F(x) := H(x) � x. The original mapping is recast
into F(x) + x. What He et al. [35] obtained was that it was easier to optimize the residual
mapping instead of the unreferenced mapping. The formulation of F(x) + x is realized by a
feedforward neural network with a shortcut connection that skips one ore more layers. This
could be simply an identity mapping. With the idea of learning not the real mapping but its
residual, introducing this novel model, He et al. obtained successful results:

Figure 3.16: Thin curves denote training error, and bold curves denote validation error of the
center crops. Left: plain networks of 18 and 34 layers without skip connections. Right: ResNets of
18 and 34 layers. Courtesy of [35].

Using skip connections, it was possible to easily train even deeper networks, obtaining
better training and test error with an increased number of layers (e.g. He et al. obtained
excellent results for 152-layers network), allowing the model to learn more sophisticated
features and not loosing performances.
The high performances of such a model allows ResNets to be actually applied for number of
tasks like semantic segmentations, Generative Adversial Networks and more.
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3.4.1 Convolutional Neural Network for Centroiding: MarsNet
The huge impact Artificial Intelligence had on the modern technologies spread through-

out different fields, maturing into well proved industrial products. The techniques behind
machine learning engaged the attention of scientists in the last decades.
In particular, also space sector has been trying to align to the development of such tech-
nologies, incorporating in its products the concepts related to AI. Today, applications of
interest range from preliminary spacecraft design to guidance and control algorithms over
navigation and the prediction of the dynamics of perturbed motion, and even classification
of astronomical objects.

Differently from the solutions and the applications that have been presented in the intro-
ductory chapter of this work, a different method, based on Convolutional Neural Networks
model, has been presented by Thibaud F. Theil in the work Optical Navigation using Near
Celestial Bodies for Spacecraft Autonomy [36]. By making use of a CNN model modified
as a ResNet, the work focuses on navigation in proximity to a known celestial body. In
particular, the author chose a spacecraft orbiting around Mars as working scenario. The ob-
jective was to investigate the capabilities of a CNN model to perform Center and Apparent
Diameter measurements. Therefore, through a regression method, the model outputs the
two coordinates of the center and the radius of Mars in the pictures by reading the input
image.
The higher level architecture represents a series of down convolutions, where not every pixel
is sampled in order to decrease the dimensional size of the image while increasing the per-
ceptive field of each feature pixel. Then, the convolutions are input to the ResNet Blocks,
which are then followed by a linear output layer that provides the prediction. In particular:

• the first layer applied is a 2D-Convolutional layer which takes in 3 channels, output
16, with a 3⇥ 3 kernel, 1⇥ 1 stride and padding;

• A set of five ResNet sequence blocks are then defined each followed by a 2D, down
sampling convolution;

• the ouptut is then flattened, linearized and activate by a Leaky-ReLU function.

Figure 3.17: The MarsNet architecture applied in the work of Thibaud F. Theil. Courtesy of [36].
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The author preferred an adaptive optimization algorithm such as the Adam over the
Stochastic Gradient Descent. Even though the Adam tends to perform well in the initial
part of training, it is usually outperformed by SGD at later stages. Nevertheless, the Adam
was chosen for the training to achieve fast training along with high performances, using, in
addition a Leaky-ReLU as activation function.
The author, used the Huber loss, being less sensitive to outlier predictions from the network,
allowing, in addition, to use even larger learning rates avoiding exploding gradients
For each dimension size, three ResNet block were applied, each repeating twice the following
operations:

• Apply a 2D-Convolution to the input;

• Activates the convolved input with a Leaky-ReLU;

• Batch-normalization of the activated layer;

• A 0.5 dropout, zeroing each neuron with probability one-half;

The model was trained for 40 epochs with a batch size of 14 using a learning scheduler
that reduced the learning rate after 5 epochs without improvements to perform a regression
task for the center and radius estimation.

Figure 3.18: MarsNet CNN model evaluated on Mars images. Courtesy of [36].
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Chapter 4

Center and Apparent Diameter

techniques

The previous chapters presented an overview of the main techniques that have been ap-
plied in the past but also still under development. The objective of the work is to understand
how and if a Neural Network architecture can outperform the classical approaches of Image
Processing for Optical Navigation.
Among the solutions, the Center and Apparent Diameter (CAD) techniques have been chosen
to be compared. More in detail, the comparison will be carried out between:

• the CAD technique presented in section 2.3.2, involving the improved ellipse fitting
with direct least-squares estimation to retrieve the average radius and the center of
the ellipse of the Moon’s body in the image, relying on a method robust in numerical
instability;

• the CAD technique performed by a convolutional neural network based on the idea of
MarsNet, to carry out a regression task for radius and center prediction.

To be coherent with the LUMIO mission, it has been necessary to develop an image
dataset that could be as realistic as possible with respect to the mission environment.

4.1 Image Dataset Generation

The development of the images of the Moon has been carried out by making use of
Blender1, an open-source 3D rendering software supporting Python scripting, helpful for
automating processes. Moreover, it provides the option to work on different internal render-
ing engines like Eevee, Workbench and Cycles or external ones, achieving different quality
solutions. The chance of using Python in the software, allows to automate image capturing
processes, in different positions of the camera with respect to the Moon, and with different
illumination conditions accordingly to the official orbit coordinates.

1https://www.blender.org . Last accessed: 11-11-2021
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4.1.1 Dataframe setting
To take advantage of the Python scripting in Blender, it has been necessary to create

the dataframe documentation containing the coordinates of LUMIO spacecraft. Firstly, a
reference frame has been chosen to describe the position of the spacecraft with respect to the
Moon. A suitable solution was a Body Fixed Reference Frame aligned with Moon’s Principal
Axis which allowed to ease the tracking process of the camera and the Sun in Blender. The
official coordinates values for the mission were provided in EME2000 for the Sun, the Moon
and LUMIO. Therefore, the rotation matrices have been computed for each epoch, expressed
in seconds, available in the datasheets, to perform a transformation from EME2000 to PA.
SPICE2 has been used in the MatLab environment to perform the computations and to
obtain the matrices for the transformation to MOON_PA_DE440.
By triangulation, firstly, the position of the Sun and LUMIO have been retrieved and ex-
pressed with respect to the Moon position. Secondly, the obtained vectors have been trans-
formed in the MOON_PA reference frame to retrieve the correct camera view and illumi-
nation condition of the Moon.
All the coordinates information have been stored in a new dataframe in .csv format, provid-
ing the needed data to be passed to Blender to automate the rendering. For this purpose,
the csv and pandas packages have been used to create and modify the datasheets in Jupyter
Notebooks3.

Figure 4.1: Datasheet generation.

2https://naif.jpl.nasa.gov/naif/ . Last accessed: 11-11-2021
3https://jupyter.org . Last accessed: 23-11-2021
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Figure 4.2: LUMIO orbit in Moon Principal Axis Reference Frame.

4.1.2 Camera and Environment Setting
To simulate a scenario as similar as possible to the one of the mission, the camera and

the environment in Blender have been accordingly set up. The volume of the Moon has
been created as UV Sphere on Blender. To achieve a realistic model, the sphere has been
modified in the dimensions to obtain an ellipsoid rather than a simple sphere, on the basis of
the Moon’s sizes4. This allowed to perform the image processing techniques on a pseudo-real
mission scenario.

Polar diameter [km] Equatorial diameter [km]
3472.0 3476.2

Table 4.1: Moon physical parameters.

4https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html . Last Accessed: 11-11-2021
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The colormap and the displacement map have been retrieved and applied from the
CGI MOON KIT of NASA Scientific Visualization Studio5 and oriented accordingly to the
MOON_PA_DE440. A good trade-off between resolution quality and rendering speed has
been achieved with an 8K colormap and unsigned 16-bit TIFF displacement map. A number
of samples to render for each pixel has been selected to be equal to 32 allowing a fast and
accurate rendering.
The camera parameters have been set up accordingly to the official values provided by [18],
allowing to render 1024⇥ 1024 gray-scale squared images centered on the Moon.

Resolution Field of View Focal length Pixel size
1024 ⇥ 1024 pixels 6.0 deg 127 mm 13 µm

Table 4.2: LUMIO-Cam properties.

Illumination Blender allows to choose between four possible options of light settings:
the point light that is an omni-directional point of light, a point radiating the same amount
of light in all directions; spot lights that emit a cone-shaped beam of light from the tip of
the cone, in a given direction; area light simulating light originating from a surface emitter;
sun light that provides light of constant intensity emitted in a single direction from infinitely
far away2. Considering the nature of the case study, the sun light object has been chosen
to illuminate the surface of the Moon. In this case, its position does not count but only the
direction of the emitting rays.

Render engine The choice of the render engine has been done between Cycles and
Eevee. Cycles is Blender ’s physical-based path tracer for production rendering, that creates
an image by tracing the paths of rays through the scene, providing highly detailed results
coming at cost of the time-processing. On the other hand, Eevee is a real-time render engine
focused on speed and interactivity, achieving the goal of rendering PBR materials. Instead
of computing each ray of light, it uses rasterization, that estimates the way light interacts
with object through combination of algorithms2. It produces, however, less accurate images
but rendered in almost real-time.
Despite the time consuming process, Cycles has been chosen for rendering, to achieve better
and more accurate images, especially for detailed terminator in the Moon’s picture.

4.1.3 Image dataset
Given the coordinates of LUMIO and the Sun in the Moon PA, the images have been

accordingly rendered. As objects of comparison between the two algorithms, a test set D
test

has been generated on the basis of the official LUMIO coordinates. It consists of 8935 gray-
scale .png 1024 ⇥ 1024 squared images centered on the Moon. To emulate the scenario of
the camera motion on the orbit, both the Sun and the camera itself have been set to track
the Moon object in Blender accordingly to the coordinates in principal axis.

5https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4720 . Last accessed: 11-11-2021

40



CHAPTER 4. CENTER AND APPARENT DIAMETER TECHNIQUES

Figure 4.3: 4 samples from the Moon Data Set.

To provide the images for training for the neural network, a fictitious toroid of points
has been built around the test set. For each point of Dtest a sphere of random range has
been created upon which 14 other points have been randomly distributed. Therefore, the
final train set D

train made by 125090 new images has been obtained.

Figure 4.4: Train set coordinates points. It has been built as a fictitious toroid around the test
set points. The Moon in the picture is scaled up for better visualization.
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Figure 4.5: Projections of the position vectors on the Moon’s surface. The coordinates have been
normalized for this visualization. The farside of the satellite is the main viewed surface.

Figure 4.6: Range distributions in the test and train set.

The rendering has been performed on a MacBook Pro 2020 M1 with 8 GB of RAM,
with Blender 2.93.0 run natively on Apple Silicon. The average times of rendering and the
total time required are reported in the Tab. 4.3.
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Test set Train set
Average Rendering Time per image [s ] 5.52 5.49
Total Rendering Time [h] 13.7 190
Data Size [GB] 3.08 43.03

Table 4.3: Rendering times and data size for test set and train set.

4.2 Standard OpNav CAD

When the Moon appears to be sufficiently larger than a blob of pixels, Centroid and
Apparent Diameter techniques can provide a good estimation of the line-of-sight and the
distance of the satellite to the Moon. The process of CAD estimation has been performed
on the basis of the improved ellipse fitting with direct least-squares estimation presented
in section 2.3.2 to achieve an accurate estimation of the center of mass and radius of the
displayed Moon.

4.2.1 Moon Image Processing
To perform an ellipse fitting, it is necessary to provide to the model the points in the

image plane forming an arc of the horizon. However, the distinction between the horizon and
the terminator of the Moon is a critical problem that has to be dealt with care. An intuitive
approach to distinguish the two arcs would be to identify the direction of the sun light. A
solution may be provided by the sun sensor, which would give the direction of the incoming
light of the sun. However, a different approach can be used. Considering the picture of
the Moon on the image plane, if the distance of the satellite to the moon is neglected with
respect to the one of LUMIO-Sun, it is possible to retrieve the direction of the sun light and
the axis of symmetry of the illuminated surface directly from the picture [37]. Additionally,
if the process is completely based on the image, it may help in reducing the issues of task
prioritization for the on-board processing unit and copying data from other sensors in the
memory pool.

Eigenvalue analysis

Given the image of the Moon, it is possible to compute the principal axes of the illu-
minated area. Following the steps proposed by Mortari et al. [37], for this purpose, the
image is firstly binarized by choosing a threshold gray-tone value, chosen on the basis of the
image by making use of the Otsu’s method [38]. The binarized image pixel matrix allows to
compute the center of mass of the illuminated area as:

rb =

P
i IriP
i Ii

cb =

P
i IciP
i Ii

(4.2.1.1)

where [ri, ci] are the coordinates of a generic pixel and Ii is the lumped-mass binary value
with the index spanning from 1 to 1024. Accordingly, it is possible to recover the inertia
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tensor associated to the pixel matrix:

T =

 P
i Ii(ri � rb)2 �

P
i Ii(ri � rb)(ci � cb)

�
P

i Ii(ri � rb)(ci � cb)
P

i Ii(ci � cb)2

�
(4.2.1.2)

The largest positive eigenvalue of T, �max, allows to compute the inclination ✓sym of the axis
of symmetry of the illuminated area as:

✓sym = atan2(!̂max(1), !̂max(2)) (4.2.1.3)

with !̂max the eigenvector associated to �max.
The axis of symmetry is obtained as the line passing throught the center of mass [rb, cb] with
slope m = tan ✓sym. In addition, the ratio between the eigenvalues (�min/�max) provides
an approximated measure of how much the target surface is illuminated: a ratio close to
one indicates an almost full illuminated Moon, while a ratio close to zero indicates a barely
illuminated surface.

Figure 4.7: On the left: a picture of the Moon is taken by the camera. On the right: the image
is binarized and the eigenanalysis step is performed and the axis of symmetry is retrieved.

Image Rotation and Horizon Detection

After the eigenanalysis is performed, the horizon and the terminator can be distinguished.
Intuitively, as suggested by Christian et al. [2], rather than scanning the original image
diagonally across discrete pixel locations, the image can be rotated and scanned horizontally
row by row or vertically columns by columns in an easier and faster way. In this case the
rotation of the image is performed to obtain always the lit horizon on the most up part
of the picture. This has been done by bilinear interpolation through the MatLab’s Image
Processing Toolkit.
From the eigenanalysis, the slope of the axis of symmetry m, the angle ✓sym and the center of
mass of the image are then used to compute the rotation angle needed to rotate the image.
This is done by distinguishing different possible combinations of these values, studying the
sign of ✓sym, the sign of m and the position of the center of mass that, together, give
information about where the sun is coming from, allowing to perform the image rotation.
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After the binarized and rotated image has been computed, it is firstly closed by a simple
closing operation with a sequential operation of erosion and dilation algorithms to ease the
detection processes with smooth edges in the nearby of horizon-terminator corner. Therefore,
the Canny method is applied to distinguish the edges of the illuminated surface, identifying
the horizon and the terminator. A scan of the pixel is performed column by column: every
time an illuminate pixel is encountered for the first time at the column j, all the rows below
at that j are set at 0 value. In this way all the points belonging to the lit horizon are saved
and back rotated to the initial orientation. In addition, the closing algorithm allowed to
have the certainty to delete any possible pixel below the horizon.

Figure 4.8: On the left: the binarized image of the Moon is rotated. On the right: the horizon
points are computed and back rotated to the original image orientation.

Ellipse Fitting and Range Estimation

After the horizon has been detected, the coordinates of the illuminated pixels are used to
perform the improved ellipse fitting with least-squares estimation (section 2.3.2). In this way
the eigenvalue problem is solved for the ai vectors and the coefficients of the ellipse equation
are retrieved. The whole ellipse is then obtained from the implicit equation F (x, y) =
Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.
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Figure 4.9: On the left: the ellipse is reconstructed on the basis of the arc. On the right: the
computed ellipse is superimposed to the original image of the Moon.

After the coordinates center of the ellipse and its semi-axes are computed by appli-
cation of the classical geometry formulation (Eq. (2.3.2.2), Eq. (2.3.2.3)), the radius of a
circumference is retrieved from the average values of the semi-axis of the ellipse:

ravg =
a+ b

2
(4.2.1.4)

This allows to compute the values of the radius and the center in number of pixels for the
CAD algorithm.

Considering the focal length f = 0.127m of the camera, the pixel size of 13µm and the
average radius of the Moon of R = 1738000 m, the range d of LUMIO from the Moon is
estimated from the pin-hole model as:

d =
f R

ravg pxsize
(4.2.1.5)

4.3 Convolutional Neural Network

The idea behind the MarsNet approach, to estimate the radius and the center of the
planet, in this case the Moon, has been applied here as comparison method in the deep
learning framework.
However, particular operations have been needed before the application of the network to
the generated dataset. As previously said, the image data are 1024 ⇥ 1024 pixels sized.
With such dimensions, no network would be capable to provide good performances in terms
of accuracy prediction in a limited amount of time. In addition, being the train images a
representation of a Moon centered in the picture, the model would have learned always a
constant position of (512, 512) during the training step. Therefore, it has been needed to
modify the images, introducing a shift of the center of the Moon and a resizing of the image
itself to a proper dimension. As such, all the known values of the center coordinates and the
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radius seen in the image needed to be transformed accordingly to the new output image. A
padding and a resizing have been therefore applied.

4.3.1 Data preparation
Given an image of the Moon in 1024 ⇥ 1024, a bounding box that contours only the

illuminated surface is applied. To properly achieve a good estimation of the bounding box,
the image has been firstly binarized and then a closure algorithm has been applied. This
has been necessary due to the presence of some small portions of illuminated pixels that
could act as outliers in the binarized image, letting the bounding algorithm to retrieve more
regions to contour. This is more true the more the image is poorly illuminated. In that case,
a sparse distribution of illuminated pixels would have led to tens of spread bounding boxes.
Subsequently, the image is cropped on the basis of the bounding output and the initial center
coordinates are related to a new origin placed in the upper left corner of the cropped image.

Figure 4.10: The image of the Moon is processed to retrieve the bounding box that contours the
illuminated surface of the Moon. Then, the image is cropped accordingly to the bounding box.

After the image is cropped, to have different distribution of centers in the dataset, a
random padding of 0 values is applied. Between the two sides of the bounding box, the
longer one has been used to increase the sides to the nearest multiple of 128 (e.g. if the
largest side is less than 256 but larger than 128, a padding is applied until a square image
of 256 ⇥ 256 is reached6). This procedure allowed to rely on a random process that added
rows or columns of zeroes in different positions, providing different distributions of centers.

6The same procedure has been applied for other possible combinations of sizes in the intervals 512-1024,
256-512, 128-256 and values smaller than 128.
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Figure 4.11: Given the image, a padding operation is performed. The position of the padding
columns or rows is randomly chosen. This is applied on the top, on the bottom or in both positions
until the desired size is reached. The same is randomly applied for the left and right positions.

Once the padded image is obtained, it is then resized as 128 ⇥ 128 pixels. Considering
the scale factor obtained by diving 128 by the size of the padded image, the final radius
rresized is immediately recovered as:

rresized = rinitial
128

padded image size
(4.3.1.1)

The Fig. 4.13 shows the the correctness of the transformations applied during the whole
resizing problem, highlighting the new center of mass and the radius.

Figure 4.12: The padded image of the Moon. The initial picture of the Moon is processed to
obtain a random shifted position of the center of mass of the satellite.
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Figure 4.13: On the left: the resized image of the Moon to 128 ⇥ 128 pixels. On the right:
the contour of the Moon and its center of mass are highlighted to check the correctness of the
transformations applied both to the radius and to the center. It is possible to notice the reduction
in quality of the image.

The transformation processing of the image has been applied to the entire dataset of
125090 images. Then, all the new values of the coordinates of the center and the value of
the radius seen in the 128 squared pixel images have been added to the train datasheet. For
what concerns the test set, in that case, the image processing required simply to scale the
image to 128 ⇥ 128, by a factor of 8, and set the new coordinates center as (64, 64). The
output value of the CNN for the radius, will be simply multiplied by 8 to retrieve finally the
range estimation.

Figure 4.14: Some samples of resized and shifted images of the Moon after cropping and padding
process.

4.3.2 Network implementation
Inspired by the architecture of the MarsNet network, a different model has been devel-

oped to better suit the environment of this work, still aiming to good performances and fast
training.
The input image of size 128⇥ 128 is input to a first convolution layer that performs:

• a 2D convolution, with padding 1 ⇥ 1 and stride 1 ⇥ 1 with a kernel of size 3 ⇥ 3,
receiving 1 channel and outputting 16 channels;
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• an activation via Leaky-ReLU, with slope ↵ = 0.01;

• a Batch-Normalization with ✏ = 0.1 and momentum 0.1;

A max pooling is then applied, with a kernel dimension of 2 ⇥ 2 that helped in halving the
width and the height from 128 to 64. It has been preferred as method for dimension halving
to a convolution step with stride 2⇥ 2, since, overall it performed better.
After this first convolution layer, a block of ResNet is applied. It is composed by:

• a 2D convolution with kernel size 3⇥ 3, stride 1⇥ 1, and padding 1⇥ 1;

• an activation Leaky-ReLU with slope ↵ = 0.01;

• a Batch-Normalization with ✏ = 0.1 and momentum 0.1.

All the three points are repeated twice in the ResNet block. Then, the output of the ResNet
block is added to the one of the initial convolution layer and passed to a second convolution
block that performs a size halving of the volume thanks to a max-pooling operation. Overall,
the ResNet + Conv2D + MaxPool block is repeated 4 times in the network. As such, after
each pooling, the depth is doubled and the width and the depth halved.
After the data have been processed by the fourth max-pool, the final volume of 256⇥ 4⇥ 4
is flattened into 4096 ⇥ 1. Subsequently, a dropout operation with probability p = 0.2 is
applied, since it was observed during training it helped in guaranteeing a better convergence,
preventing the overfitting. The values are the linearized to provide finally 3 output and ac-
tivated by a Leaky-ReLU.

Figure 4.15: A representation of the ResNet for the regression task.

An optimal learning rate has been found to be lr = 0.001 during the training as trade-off
between speed and accuracy. Between Adam and SGD optimizer, the SGD has been chosen,
which provided overall a better learning with a momentum = 0.9. The Huber loss has been
kept from the original model, providing overall a better convergence and a suitable solution
for the architecture involved. In addition, with such this structure, the model worked with
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798, 723 trainable parameters.

The network has been developed and trained by making use of PyTorch7 framework in
Google Colaboratory8, which allowed to the parallel computations provided by the GPUs.

4.3.3 Training phase
Despite the 125090 image data rendered for the training set, it has been necessary to

finally define a smaller batch of images, mainly to operate in the time limits defined by Google
Colab’s GPUs. Therefore, a trade-off has been carried out to identify the best number of
data needed to perform an accurate but still fast training along with suitable data samples.
In this case, a training set of 34940 images has been used for the learning. Each of the
images came along with three labels, namely the two coordinates of the center of mass, and
the radius in pixels of the Moon in the image that were used by the network for the learning
process.
In addition, for the training process and parameter tuning, a validation set has been created,
containing the 10% of the training set. Moreover, the training set was shuffled in the batches,
allowing to train the network on different type of images, involving different possible moments
around the Moon.
During the training, the hyperparameters of the network, along with the optimizers, have
been changed with respect to the original MarsNet configuration. Firstly, the Stochastic
Gradient Descent optimizer has been chosen, with a momentum of 0.9. During the training it
was observed that it allowed to generalize slightly better than the adaptive Adam optimizer.
Additionally, to train the model within an acceptable amount of time, providing a good
learning, after some iterations, and making a trade-off between time costs/accuracy, a batch
size of 200 images has been finally chosen, trained for 100 epochs. The optimal learning
rate that allowed an accurate convergence has been chosen finally to be equal to 0.001, and
the Huber loss function has been used like in the original model. The train, validation and
test accuracy have been evaluated by making use of the Mean Squared Error, suitable for a
regression process

Class imbalance

The application of the random padding along with the resizing, created a dataset of
images in which high values of radius of the Moon were preferred. This was mainly due to
the random and not controlled nature of the padding method applied to bounding box of
the Moon, rather than to a slightly extended area. As such a class imbalance derived from
the the final rendering, with the labels of the radius skewed more to values larger the 40. As
such, it has been needed to modify the train set, partitioning it in 70% of the images with
shifted center of mass, and 30% of only resized images. In this way, the network could be
capable to train also on smaller values of radius.

7https://pytorch.org . Last accessed: 22-11-2021
8https://colab.research.google.com . Last accessed: 22-11-2021
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Figure 4.16: The balanced train set. The radius values ranges from about 20 pixels up to more
than 60.
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Chapter 5

Results

The following chapter will present the results that have been obtained by performing the
two algorithms for the center and apparent diameter finding on the images of the Moon. As
comparison data, the test set of 8935 images has been used for the evaluations.
The computations have been carried out on MatLab R2020b for the standard CAD algorithm
and ellipse fitting and on Google Colaboratory for the neural network training.

5.1 Standard CAD

The ellipse fitting based CAD algorithm provided interesting and accurate solutions in
different illumination conditions and at different LUMIO-Moon ranges. As it can be ob-
served, the approach dealt with good accuracy the distinction between the lit horizon and
the terminator, allowing to recover the fictitious direction of the sun in the image plane and
to reconstruct the missing part of the ellipse, even in extreme conditions with little illumi-
nated surface.
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Figure 5.1: Samples of the images of the Moon processed by the standard image processing
CAD. The algorithm processes the images in every condition of illumination, estimating the ellipse
highlighted in white and the center of mass of the Moon.

54



CHAPTER 5. RESULTS

In particular it is possible to observe how well the algorithm estimated the position of
the center and the radius of the scanned Moon by looking at the graph below.
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Figure 5.2: The estimated position of the center of mass of the whole image test set. The x and
y coordinates are plotted considering the amount of surface illumination.

It is immediately noticed that the algorithm performed not perfectly when the illumina-
tion condition given by ⇢ is low for the center estimation.
As stated previously in the eigenvalue analysis section 4.2.1 the illumination condition was
computed by using the ratio of the eigenvalues of the problem. For values near to 0, the sur-
face of the Moon is largely shadowed, providing the algorithm a smaller arc on which fit the
ellipse. However, by looking at the Fig. 5.4, it is worth noticing that the radius estimation
performed well even for the low light conditions. Indeed, almost all the points estimated
independently from the illumination condition, form a linear behaviour with respect to the
real radius value.
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Figure 5.3: On top: the relative error distribution for the x coordinates; On bottom: the relative
error distribution for the y coordinates for the ellipse fitting method.

56



CHAPTER 5. RESULTS

100 200 300 400 500 600

Radius Estimation [m]

150

200

250

300

350

400

450

500

R
e
a
l R

a
d
iu

s 
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Im
a

g
e

 m
o

o
n

 il
lu

m
in

a
tio

n

Figure 5.4: The estimated radius is plotted against the real values of the radius of the Moon in
the image. The estimations are influenced by the ⇢ illumination parameter.

As such, the range estimation is straightforward by making use of the pinhole model
relation (Eq. (4.2.1.5)).
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Figure 5.5: The estimated range is plotted against the real values of the radius of the Moon in
the image. The estimations are influenced by the ⇢ illumination parameter.

As expected, the linear behaviour was certainly respected. Overall, the model succeeded
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in the ellipse fitting even for extremely poor illuminated images. An example is shown here
below:

Figure 5.6: An image of the Moon in extreme poor illumination conditions. A blue box is used
to highlight the illuminated arc of the horizon

Figure 5.7: The same image of the Moon is processed by the CAD algorithm and the ellipse is
fitted. On the right a zoomed view of the same image is presented for better visualization. A radius
of 355 pixels is predicted against the real 370 pixels.

Although the algorithm succeeded in retrieving an ellipse from low illuminated surfaces,
it could not deal with images where no pixels were illuminated. In particular, 26 images of
data set did not provide any illuminated surface. For those cases, the binarization algorithm
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could no be applied and, as such, the image processing not performed. Among these sam-
ples, there are some poor illuminated images where, even though the method succeeded in
the binarization step, the high sparsity of the points did not allow to retrieve an accurate
prediction of the ellipse.

The points in the Fig. 5.5 that stand outside from the average behaviour, are instead
due to really small illuminated arc that could no be representative of the real size of the
Moon.

Figure 5.8: An example of poorly illuminated surface. the illuminated arc is not representative of
the real radius of the Moon in the picture. A blue box is used to highlight the illuminated arc. On
the right, the ellipse fitting is applied.

Figure 5.9: The distribution of relative errors for the radii estimation from ellipse fitting.
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Overall, the CAD image processing method provided on average a relative error for the x
coordinates equals to about 1.04% and 0.78% for the y coordinates. Instead a mean relative
error of 1.60% has been obtained for the radius estimation. For what concerns the range
estimation, the average relative error has been found to be equal to 1.70%.
The highest relative error for the radius has been obtained for the Moon in the Fig. 5.8,
equals to 76%. For the same image the worst relative error for both the x and y coordinates
estimations was equal to 42% and 280% for the range estimation of the same picture. More-
over, the Fig. 5.9 shows how the errors are more skewed towards low values. The same is
observed for the coordinates estimations.

X Y Radius Range
Mean relative error 1.04% 0.78% 1.60% 1.70%

Highest relative error 42% 42% 76% 280%

Table 5.1: Ellipse fitting relative errors

The method allowed to compute the range, the center of mass and the radius of the
Moon with a good estimation error. The images where no surfaces were presented or with
not representative arcs of the horizon, acted as the main elements for poor estimations.

5.2 Convolutional Neural Network

The model explained previously in section 4.3.2, has been here applied for the deep
learning approach. In particular, the training has been carried out by making use of 34940
images of 128 ⇥ 128 pixels. However, to show a comparison with the standard CAD image
processing, the figures below will present how the two algorithms performed on the same
image, after scale transformation to 1024⇥ 1024 pixel size.

Figure 5.10: Some samples of Moon images in 1024 ⇥ 1024 pixels. In green the output of the
CNN, in white the output of ellipse fitting method.
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Even though the network presented interesting and accurate outputs, like the ones pre-
sented here above, overall it related the x and y coordinates with a linear behaviour. As
such, the y predictions seems to increase with the values of the correspondent x.
However, the mean relative error for the x and y coordinates predictions are respectively
equal to 2.31% and 2.26%. Indeed, even though the model related x and y linearly, it is
worth noticing that only the 7% of the whole test set has been predicted to have a center of
mass standing 5 pixels away from (64, 64), for both x and y directions, corresponding to a
6% of relative error.
This can be observed in the Fig 5.1: in the upper image, a dense representation of points has
been estimated to lie near (64, 64) with an error less than 6%; moving far from the ground
truth values, the predictions are more sparse, representing only the 7% of the whole test set.
Moreover, it is possible to notice that the network dealt the images almost independently
from the illumination condition, not skewing better estimation neither for high ⇢ nor for low
⇢ values.
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Figure 5.11: On top: the x estimations are plotted against the y estimations. The colorbar defines
the illumination conditions; on bottom: a representation of the estimated points for relative errors
larger than 6%.
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The low value of relative errors obtained for the center estimation are presented in the
histograms in Fig. 5.12: the majority of the errors are obtained for values less than the 5%
for both the coordinates.

Figure 5.12: On top: the relative error distribution for the x coordinates; On bottom: the relative
error distribution for the y coordinates.

For what concerns the radius estimation, the model performed worse than the center
of mass evaluation. Indeed, an average relative error of about 25% has been obtained.
Even though the figure shows a poor linear behaviour for different samples, it outputs not
accurate estimations for some radii. In particular, the model was prone to overestimate the
radii values. In addition, it is also possible to notice that the model failed for the majority
to estimate small values of radii.
The Fig. 5.15 shows, indeed, how the relative errors for the radii estimation are present in
large quantities for values larger then 10%.

X Y Radius Range
Mean relative error 2.31% 2.26% 25% 18.87%

Highest relative error 45.53% 46.84% 81% 68.25%

Table 5.2: Ellipse fitting relative errors for CNN.
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Figure 5.13: The estimated radii are plotted against the real values considering the illumination
condition.
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Figure 5.14: The estimated ranges are plotted against the real values considering the illumination
condition.
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Figure 5.15: The distribution of relative errors for the radii estimation.

The training of the network has been performed over 100 epochs considering a batch
size of 200 images. The model did not show overfit, presenting a lower value for both test
accuracy and test loss. The values for the training, validation and test set are reported here
in the Tab. 5.3:

Training loss Validation loss Validation accuracy [MSE]
6.13 6.05 93.8

Table 5.3: Final loss and accuracy values.

Test loss Test accuracy [MSE]
3.35 34.23

Table 5.4: Final loss and accuracy values for test set.
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Figure 5.16: The train loss and the validation loss (Huber loss) for 100 epochs. Batch size of 200
images; SGD optimizer; lr=0.001, momentum=0.9
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Chapter 6

Conclusions and Future Work

The aim of this work was to understand and verify if a machine learning technique,
namely a convolutional neural network, could outperform a consolidated and highly space
proven centroiding technique. To achieve the results, the reader has been guided during
the path, starting from a general survey of the state of the art of image processing in the
space environment. The different methods have been presented to provide an idea of what
image processing means for autonomous navigation, historically travelling from the initial
approaches of Mariner IX up to the last machine learning based methods. In the chap-
ter 2, some analytical insights have been presented for different methods, highlighting in
particular the CAD method based on ellipse fitting on which this work relied on. Then,
through the chapter 3, the techniques and the approaches used in machine learning have
been detailed, showing the MarsNet approach as centroiding technique. Then in chapter 4
and in chapter 5 the methods have been applied and finally compared, trying to understand
which was the method that dealt better with centroiding, in different illumination conditions.

The world of machine learning and image processing is one of the most attractive and
interesting in computer science and specifically in computer vision, in the actual technological
era. The current work allowed to delve into innovative techniques, understanding the insights
behind them through a deep research over the initial months. In this way it has been possible
to discover different methods, learning their advantages and disadvantages, depending on the
aim of the work, and developing idea and intuitions. Numerous have been the solutions that
have been studied, and different the capabilities earned during the path, delving into Python
and its packages concerning about image processing like OpenCV or the Image Processing
Toolbox for MatLab. At the same time, it has been possible to work and specialize in
dataframes using pandas and csv modules. The rendering methods presented a deep and
fascinating world that presents room for innovations and more understanding, allowing to
discover softwares like Blender, delving into its automation processes.
Along with it, the PyTorch framework and the Colab tool allowed to investigate the better
solutions for dealing with artificial intelligence, in numerous and manifold ways.

6.1 Conclusions

As it has been possible to notice from the results presented in the chapter 5, the center
and apparent diameter finding based on the ellipse fitting method succeeded in its task,
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confirming to be well proven. In particular, it worked with high accuracy, trying to retrieve
the center and the fitting ellipse in many different illumination conditions.
Overall, the illumination of the surface of the Moon was fundamental for the center estima-
tion. As observed, the large deviations from the real CoM happened mainly for low light
condition, presenting a sparsity of centers but still with low relative error values. On the
other side, the illumination conditions did non influenced as much the radius and range dis-
tribution. The linear relation that has been found between the estimated values and the real
ones confirmed the success of the algorithm for the radius prediction task, independently
from the ⇢ values that where almost perfectly distributed. To confirm this trend, the his-
tograms for the relative errors distribution showed a shift toward really small values.
For poor illuminated image, fundamental was the distribution of the illuminated pixels over
the arc, particularly when few shadows (like the ones due to craters) were displayed along the
terminator. In that case even for hard conditions, the model provided interesting solutions.
However, it has been possible to notice that, for very low illumination conditions, the small
arcs from the lit horizon were not sufficient for an accurate estimation.
Overall, the ellipse fitting allowed to reach really low values of relative errors, proving its
success in the task.

On the other hand, the Convolutional Neural Network model, did not always provide
the expected results. Even though it succeeded in retrieving the needed information from
the image in different cases (e.g. Fig. 10), overall, it was highly biased by the distribution
of values in the target labels, highly influenced by the the generally high modules of the
coordinates centers. However, it has been possible to notice during training how this bias
could be reduced increasing the number of images for the train, coming at the cost of a time
expensive solutions that was not viable.
The method, as such, worked well on the coordinates estimation, not being influenced by the
illumination condition. Indeed in Fig. 5.11, it was possible to notice a good distribution of
illumination conditions along the predictions. The model performed almost a linear relation
between the two coordinates. However, the prediction were still good and accurate, provid-
ing an estimation error of about 2% for x and y. The error distributions, indeed, showed how
the model succeeded overall in predicting the coordinates of the center, not outperforming,
however, the ellipse fitting algorithm.
Differently were the solutions for the radius estimation and for the range. As such, in that
case, an almost linear and general behaviour between the estimated and real values was de-
fined. In particular, the model was more prone to over estimate the solutions for the radius,
and this was particularly true for the low illumination condition. Indeed, the worst accuracy
in terms of relative error came for the radius and range estimations.
However, the model that was found during the training to perform overall better, was the
one previously presented in section 4.3. It was obtained by recursively changing the param-
eters, the layers and the functions involved. Indeed, to achieve a fast training, along with a
good accuracy, the structure has been changed to be adapted to the problem. As such, the
max-pooling operations have been preferred to a convolution with stride 2⇥ 2, and a com-
plete convolution layer involving both activation a batch-normalization used starting from
the very beginning of the network. The ResNet block where reduced to four and a dropout
with probability of 0.2 was placed only after the flattened output.
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Overall, the ellipse fitting model succeeded in its task performing with high accuracy
in different illumination conditions, proving its stability in image processing environment,
outperforming the convolutional neural network.

6.2 Future works

The work that has been carried out up to now, showed the weaknesses and the strengths
of both the two models. The main problem with the ellipse fitting method was found to be
the approach to poorly illuminated images of the Moon.
In the case of sparse illuminated pixels, the ellipse fitting method did not properly succeeded,
particularly when the identified arc was too short.
Therefore, a refinement of the model could be achieved by studying different approaches that
could highlight sparse pixels that are zeroed during the threshold and binarization process.
In this way it would be possible retrieve more pixels belonging to the same arc of the horizon,
which may provide a better estimation for the CAD.
At the same time, even other approaches could be carried out, based on different ellipse fit-
ting methods. Different datasets could be also generated, introducing distortion phenomena
due to lenses to emulate an even more realistic scenario.

For what concerns the convolutional neural network, the solutions are even more and
manifold. Different are models that could be used for performing a multi-output regression
task.
The main weakness observed for the deep learning approach, has been that it was prone to
overestimate the radius values. It was observed, however, that the training was more accu-
rate the more the training dataset was large in number of items. However, such a approach
should be observed with care, depending on the amount of resources that are available, like
GPUs and frameworks used for the model building. In that case, it would be recommended
to apply different solutions for augmenting data to shift the center of mass. The random
nature of the padding and resizing method influenced the output, by preferring a final size of
the radius that is, on average, shifted towards high values, neglecting images of the moon at
high distances. This could be also due to the choice of the bounding box of the illuminated
surface of the moon as starting point of the padding.
As such, apart from this solution, it could be suggested to carry out a random padding start-
ing from a random variation in the bounding box’s sizes. Therefore, it would be possible to
build an image starting from a high bounding surface, helping in reaching a more manifold
dataset.
The data orientation of this approach, could be also compared with a solution in which a
normalization of the outputs is carried, reducing the influence of the center of mass coordi-
nates on the radius.
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Therefore, the solution that deep learning presents are uncountable. The approach could
be more model oriented, where the optimization of the model is highly preferred to a large
amount of different data. In that case, it could be possible to work on the different parame-
ters involved, changing the learning rate, on the basis of lr finders and Fit-1-Cycle approach,
or even working with different optimizers, coming up with a better solution.

The world of image processing, using standard approaches or deep learing ones, presents
uncountable solutions, providing room for improvements and space for innovation.
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