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Sommario

Nel campo del Reinforcement Learning, la possibilità di controllare la frequenza di

esecuzione delle scelte, usata dall’agente per interagire con l’ambiente circostante,

può avere significative ripercussioni sul processo di apprendimento della policy

ottima.

L’obiettivo di questo progetto consiste nell’implementazione di un metodo

adeguato per poter ottenere una frequenza di controllo dinamica. In particolare,

abbiamo sfruttato la persistenza delle azioni, un meccanismo che vincola l’agente

a ripetere la stessa azione più volte. Con questa tecnica all’agente è permesso

operare a diverse frequenze, che sono multiple della frequenza di controllo base.

Inoltre, abbiamo cercato un sistema per sfruttare le informazioni collezionate

a varie persistenze per poter avere una sample complexity inferiore rispetto agli

algoritmi classici. Per questa ragione abbiamo sviluppato un nuovo operatore

di Bellman composto da due parti. La prima utilizza i sample collezionati per

stimare la policy ottima, mentre la seconda stima la policy per persistenze più alte

utilizzando le informazioni parziali precedentemente raccolte.

Dopo aver implementato il sistema ipotizzato tramite l’impiego delle reti neu-

rali, abbiamo eseguito vari esperimenti su diversi videogiochi di vecchia generazione

(Atari 2600). I risultati ottenuti hanno evidenziato come la persistenza dinamica

delle azioni permetta non solo di poter esplorare un insieme più ampio di stati del

nostro ambiente, ma anche di ridurre la sample complexity con cui l’agente riesce

ad imparare la rappresentazione del modello richiesto.

Parole Chiave: Apprenimento tramite Rinforzo, Deep Learning, Persistenza delle

Azioni, Frequenza di Controllo, DQN, Deep Q-learning, Atari
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Abstract

In Reinforcement Learning, adopting a good control frequency, i.e. the frequency used

by the agent to choose the action during the interaction process with the environment,

may significantly affect the process of learning the optimal policy.

The aim of this project is to propose the implementation of a new method to obtain

a dynamic control frequency. Especially, we exploited the action persistence mechanism,

that is to say binding the agent to repeat the same action more than once. With this

technique the agent is allowed to operate at different frequencies that are multiple of the

base control frequency.

Moreover, we sought a manner to exploit the information collected with different

persistences in order to obtain a lower sample complexity compared to the classical

methods. Indeed, we developed a new Bellman operator consisting of two parts. The

first part uses collected samples to estimate directly the optimal policy, meanwhile,

the second one estimates the policy with higher persistence starting from the partial

information previously collected.

After a neural network implementation of the proposed method, we have tested

our algorithms with different environments and old-gen video-games (Atari 2600). The

results obtained point out how the dynamic persistence of the actions allows not only to

be able to explore a wider set of states of our environment, but also to reduce the sample

complexity, used by the agent to learn the representation of the requested model.

Keywords: Reinforcement Learning, Deep Learning, Action Persistence, Control

Frequency, DQN, Deep Q-learning, Atari
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Chapter 1

Introduction

In recent years, the Reinforcement Learning field (RL, Richard S Sutton et al., 2018 [34])

has gone through various improvements and has eventually achieved many successes,

especially since the advent of Deep Q-Learning, developed by DeepMind Laboratory in

2015, has been introduced. Many features and better algorithms have been implemented,

but one of the aspects that barely changed is how the agent collects the samples from

the environment, a process usually called exploration. Depending on the exploration

method chosen, we can modify the set of collected samples and, subsequently, the model

built by our agent. The model pursues a given task, an abstract objective concerning

our environment (e.g. finding the exit in a maze). Effectively, from our task we can

naturally devise a set of rewards for our environment (numerical values gained by our

agent in response to its actions). From the rewards collected, our agent can improve its

knowledge of the surrounding environment. Based on the model built, we are able to

complete the task in a more efficient way or not.

One of the perks of the most common exploration algorithms is generality. Indeed,

they do not specifically rely on the underlying environment and, therefore, they are easy

to implement and adapt in a wide range of tasks. Anyway, if we used the environment

features, then we could achieve better performances. When we have to deal with a sparse

reward signal, these methods don’t have an informative reward, therefore they rely on

uniformly sampling actions from the action space, independently of the history of the

agent. It is clear that with a sparse reward it becomes unlikely for our agent to choose the

correct path, especially when the environment has a very high horizon length. Imagine a

squared maze, with the initial state in the center cell and our goal is to reach any of the

borders of the maze. We can define a reward greater than zero in every border cell and

a negative reward elsewhere. With classic exploration methods, there are two ways, for

our agent, to discover the goal: it can sample a sequence of actions that lead the agent

to the goal, still this is extremely unlikely when the maze is really huge; otherwise, we



should wait the agent to progressively learn that the concentric circles, with the origin in

the center of the maze, are bad positions. An even trickier scenario is when we have zero

reward signal in the middle states, in that case our agent will iterate randomly over the

trajectory space, hoping to reach at least one goal state, but it will be probably stuck

in a limited region of the environment. Once we have reached the goal, the information

is only contained in the local area near the goal. We need to propagate this information

to the neighbour states up to the initial state. This process requires the goal state to be

reached many times. And this would result in a further problem. In this thesis we face

all of the latter problems concerning exploration and sample complexity reduction.

The aim of this project is the develop of a way to introduce in an online Reinforcement

Learning context the possibility to control the frequency of our agent. When the agent

starts to interact with the environment, it has to take decision and, in general, it choose

an action with a certain frequency f , or, equivalently, at each time step δ = 1
f . The

choice of the control frequency f of a system has a relevant impact on the ability of

reinforcement learning algorithms to learn a highly performing policy. It would be great

to have the highest possible frequency, because it allows for greater control opportunities,

but they have significant drawbacks. The most relevant one is related to the toned

down effect of the selected actions. In the limit for time δ → 0, the advantage of each

action collapses to zero, preventing the agent from finding the best action (Baird, 1994

[3]; Tallec et al., 2019 [36]). Even policy gradient methods are shown to fail in this

(near-)continuous-time setting, and the reason is related to the divergent variance of the

gradient (Park et al., 2021 [23]). The consequences of each action might be detected

if the dynamics of the environment has the time to evolve, hence an agent acting with

higher frequencies leads to higher sample complexity.

Another consequence of the use of high frequencies is related to the difficulty of

exploration. A random uniform policy played at high frequency may not be adequate,

as in some classes of environments, including the majority of real-world control problems,

tends to visit only a local neighborhood of the initial state (Amin et al., 2020 [1]; Park et

al., 2021 [23]; Yu et al., 2021 [40]). This is problematic, especially in goal-based or sparse

rewards environments, where the most informative states may never be visited. On the

other hand, higher frequency benefit from a higher probability of reaching far states, but

they also deeply modify the transition process, hence a possibly large subspace of states

may not be reachable.

1.1 Contributions

One of the solutions to achieve the advantages related to exploration and sample com-

plexity, while keeping the control opportunity loss bounded, consists in action persistence

Schoknecht et al., 2003 [30]; Braylan et al., 2015 [6]; Lakshminarayanan et al., 2017 [14];

2



Metelli et al., 2020 [19], as the possibility of our agent to repeat an action more than

one starting from a state. When the dynamics of an environment are very rapid, action

repetition is equivalent to acting at lower frequencies. Thus, the agent can achieve, in

some environments, a more effective exploration, better capture the consequences of each

action, and, as a final consequence, learn the optimal policy faster.

In particular, the present thesis is based upon the results of a previous work (Metelli

et al., 2020 [19]), of which we can consider to be a continuation. They proposed a formal-

ism to describe a fixed action persistence introducing a persistent Markovian Decision

Process and, consequentially, a persistent policy that let the agent to choose the same

action for a fixed amount of steps. They developed also the Persistent Fitted Q-Iteration,

an extension of Fitted Q-Iteration, to analyze empirically what happens with different

persistence settings, and also a heuristic method to select the best possible persistence.

The results obtained show that an higher persistence is often able to improve both the

exploration and exploitation phase.

In this work, we instead propose a value-based approach in which the agent does

not only choose the action, but also its persistence, with the goal of making the most

effective use of samples collected at different persistences. The main contribution of this

paper is a general approach in which information collected from the interaction with the

environment at one persistence is used to improve the action value function estimates

of all the considered possible persistences. On one hand, the transitions sampled with

a persistence κ can be decomposed in many sub-transitions of reduced length and used

to update lower persistence k ≤ κ value functions. On the other hand, they represent

partial information for the estimation of the effects of higher persistence k > κ actions.

Indeed, they can be employed to update the estimates by using a suitable bootstrapping

procedure of the missing information. This means that, after the interaction with the

environment, according to the action-persistence pair selected by the agent, all value

function estimates are updated simultaneously for each of the available persistences

k ∈ K.
We formalize this procedure by introducing the All-persistence Bellman Operator.

We prove that such an operator enjoys a contraction property analogous to that of

the traditional optimal Bellman operator. Consequently, we embed the All-persistence

Bellman operator into the classic Q-learning algorithm, obtaining Persistent Q-learning

(PerQ-learning). This novel algorithm, allowing for an effective use of the transitions

sampled at different persistences, displays two main advantages. First, since each indi-

vidual transition is employed to update the value function estimates at different persis-

tences, we experience a faster convergence. Second, the execution of persistent actions,

given the nature of a large class of environments, fosters exploration of the state space,

with a direct effect on the learning speed.

3



1.2 Chapter Organization

In this section we briefly describe the structure of this thesis.

Chapter 2 discusses basic Reinforcement Learning concepts used throughout our

work, from the classic methods to the most recent tools. We start from a general def-

inition of Reinforcement Learning and the description of a Markov Decision Process,

a model used to describe a Reinforcement Learning problem, and we end with the de-

scription of function approximation and Deep Q-Learning, one of the first algorithms

developed to combine Neural Networks and Reinforcement Learning.

Chapter 3 describes different works that analyze the effect of persistence in Rein-

forcement Learning and some of the solutions proposed by other authors.

Chapter 4 presents the solution proposed, with the definition of a new set of options

to include a dynamic persistence in a MDP model and a new defined pair of Bellman

Operators, used to build our agent. We also provide different properties and theorems

about the convergence of the new operators.

Chapter 5 shows the implementation of the proposed approach. We start from the

tabular version, a simple extension of the standard Q-learning algorithm. A natural

evolution of this approach consists in the adoption of Deep Neural Networks, described

at the end of the chapter.

Chapter 6 discusses some advantages induced by persistence. When the persistence

is introduced the distribution of visited states changes and our agent can cover better

the set of states of our environment and reach in a faster way the goal.

Chapter 7 analyses the obtained results of our experiments. We have used our

implementation of the tabular version in some simple grid environments and compared

both with the standard Q-learning and with the TempoRL method, another method

that propose a different solution to the same problem. After that we have analyzed the

results of our evaluation with more complex settings. We have used the classic Mountain

Car environment and different Atari 2600 games to evaluate our Deep Neural Network’s

implementation, and we have compared our solution with DQN and with TempoRL.

Chapter 8 closes with the summary of the work done and what we have discovered

during our experiments. We also talk about possible future works and ideas come out

from this project.
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Chapter 2

Background

In this chapter we will introduce the main concepts about Reinforcement Learning. We

start with the pure definition of Reinforcement Learning and what is a Markov Decision

Process. Then we proceed with the the introduction of the Bellman operator which

will be useful in a dynamic programming context. We will briefly introduce some basic

algorithms to guide the agent in an environment without knowledge of the model. Lastly

we will briefly discuss about how to use neural networks to approximate the state-action

value function introduced in model free approaches.

2.1 Reinforcement Learning

Reinforcement Learning is a branch of Machine Learning that studies the problem of

learning what to do in a context in which an agent is capable of interacting with an

environment. The following figure 2.2 explains the interaction.

Figure 2.1: Agent interaction with environment in Reinforcement Learning settings

At each time step the agent executes an action from a specific set, the environment

evolves and the first receives a reward from the environment. For example we can image



a robot trapped in a maze with the purpose to find the exit. The robot is the agent, the

maze is the environment and the possible movements of the the robot (go straight, turn

left, etc.) are the actions. Every time the robot performs an action the environment or

the agent can change (the position of the robot), after that the agent receives a reward:

a signal designed by the problem that represents the results of our action. Let’s define

a possible design for the rewards for this example. Every step gives a reward of -1 and

the step allowing to exit the maze gives a reward of 100. This last step is called goal

and leads to a terminal state. The purpose of the reward signal is to lead our agent to

the correct path.

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) are a framework widely adopted to describe the

interaction between an agent and an environment. We consider discrete time MDPs in

which at each time step the agent performs an action and observes how the environment

evolves. It is extremely useful when we have to model a Reinforcement Learning problem.

We can define an MDP (Puterman, 2014 [27]) as a tupleM := ⟨S,A, P,R, γ⟩, where:

• S is the set containing the possible states of the environment;

• A the set of possible actions;

• P : S × A → P(S) is the Markovian transition kernel, a function that provides

the probability of each state-action pair (s, a) ∈ S ×A to transit to the next state

s′ ∈ S;

• R : S × A → P(R) is the reward distribution, a function that provides the

probability of retrieving a certain reward after performing an action a ∈ A in a

state s ∈ S;

• γ ∈ [0, 1) is the discount factor. Used to modulate the importance of feature

rewards;

We can restrict the reward space and define R ∈ R. R(·|s, a) is a distribution over

state-action pair (s, a) with an expected value:

Rs,a = E
[
Rt+1 | st = s, at = a

]
=

∫

R
rR(dr | s, a),

where Rs,a is bounded by Rmax < +∞ for each s ∈ S and a ∈ A. We can also extend

R(·|s, a) to include the next state reached by the agent R(·|s, a, s′) and recover the first

by marginalization. Now, we shortly describe how the process evolves.

Given an initial distribution of the states µ over the set S, the agent starts in an initial
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state S0 ∼ µ. At each time step t the agent chooses an action a ∈ A to perform,

extracted from a policy π, a distribution that selects an action based on the state of the

environment. After that the state of the environment evolves to st+1 ∼ P (·|st, at) and

receives a reward rt ∼ R(·|st, at).
Following this procedure (showed in figure 2.2) we can collect a trajectory Ht =

(s0, a0, r0, s1, a1, r1, . . . ). This trajectory will be used by Reinforcement Learning algo-

rithms to model our problem.

Figure 2.2: MDPs representation example. Each circle is a state and each arrow represent a transition

2.2.1 Policy and Value Function

As mentioned before the agent follows a policy π, which is described in this section.

A policy πt with t ∈ N defined at each time step is a map π : Ht → P(A), where
Ht = (s0, a0, . . . , st−1, at−1, rt−1), used to chose an action to perform knowing the full

history of the environment evolution. A policy can be deterministic when for each Ht
the policy πt chooses a fixed action or stochastic when π is in general a distribution over

A. If πt depends only on the last state st ∈ H then it is also called Markovian. Moreover,

if πt does not depend on t it is stationary, in this case we remove the subscript t. We

can also define Π as the set of all possible Markovian stationary policies over an MDP.

The goal of a large part of Reinforcement Learning algorithms is to estimate the

value function for a state or a state-pair action. The value function estimates how good

is for the agent to be in a state or to perform a specific action in a state and in general

a policy induces a value function over the MDP. A first measure helpful to estimate the

value function is the cumulative reward. We can start from a state st, collect all the

feature rewards Rk with k > t and write down:

Gt =

T∑

k=t+1

Rk, (2.1)

where T can be∞ considering Rt = 0 when t is greater than the end of the episode or in

infinite-horizon environments. In general it is better to introduce discounted cumulative
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reward to deal with continuing tasks, where the cumulative rewards can diverge for

T →∞, as follow:

Gt =

∞∑

k=0

γkRt+k+1, (2.2)

where γ is the parameter defined before. Thanks to the γ and the fact that Rs,a is

bounded we can prevent Gt to diverge. γ is used to modulate how much future infor-

mation to incorporate into cumulative reward, γ = 0 means that we care only to the

immediate reward and if we increase γ we can extend our attention to the future states.

Now we can define the value function of a state s ∈ S as follows:

V π(s) = Eπ
[
Gt|st = s

]
= Eπ

[ ∞∑

k=0

γkRt+k+1

∣∣st = s
]
∀s ∈ S , (2.3)

and it represents the return that we can expect starting in a specific state and the

following the policy π. We can also define an action-value function, called Q-function,

as the expected return starting from a state s, taking an action a and then following the

policy π:

Qπ(s, a) = Eπ
[
Gt|st = s, at = a

]
= Eπ

[ ∞∑

k=0

γkRt+k+1

∣∣st = s, at = a
]
∀s ∈ S , (2.4)

In a Reinforcement Learning task we usually want to find the best policy among all

the possible ones. We can define a partial ordering over policies induced by the Value

function. A policy π is better than or equal to π′ if and only if Vπ(s) ≥ Vπ′(s) for every

s ∈ S. In the policy space we can find a policy where V π is greater or at least equal

than all others policies. We call that optimal policy, denoted π∗. For the optimal policy

we can now define an optimal value function:

V ∗(s) = max
π∈Π

V π(s), (2.5)

and an optimal Q-function:

Q∗(s, a) = max
π∈Π

Qπ(s, a). (2.6)

2.2.2 Bellman Operators

A fundamental property of value functions, exploited in most of Reinforcement Learning

algorithms, is that they satisfy recursive relationships. For any policy π and any state s

the consistency condition 2.7 holds between the value function evaluated on s and the

value function of its possible successor states. The relation is used in a recursive way to
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evaluate V π, the value function of a generic policy π, to find the optimal policy π∗ at a

later time. The relation is the following:

V π(s) = Eπ
[
Gt|st = s

]

= Eπ
[
Rt+1 + γGt+1|st = s

]

=
∑

a

π(a|s)
∑

s′,r

P (s′|s, a)R(r|s, a)[r + γV π(s′)] ∀s ∈ S ,
(2.7)

where π(a|s) is the probability of taking an action a in state s under policy π. The

property 2.7 is valid only with discrete states space S, actions space A and rewards

space R. Thanks to this property we can build a system with |S| equations and |S|
unknowns and solve it to find V π(s) (we refer to this operation as policy evaluation).

Unfortunately, in order to do this, we first need to know the environment’s dynamics,

but this is impossible or extremely tedious in most cases. It is better to solve the policy

evaluation in an iterative way. We can introduce an operator called Bellman Expectation

Operator T π : R|S| → R|S| that maps a value function to a value function as follow:

T πV π(s) = r(s, a) + γ
∑

s′∈S
P (s′|s, a)V π(s′), (2.8)

where r ∼ R(·|s, a), s′ ∼ P (·|s, a) and a ∼ π(·|s). We can also define the corresponding

operator for the optimal value function, the Bellman Optimal Operator T ∗ : R|S| → R|S|:

T ∗V ∗(s) = max
a∈A

[
r(s, a) + γ

∑

s′∈S
P (s′|s, a)V ∗(s′)

]
. (2.9)

In a similar way we can define the Bellman Expectation Operator and the Bellman

Optimal Operator for the Q function:

T πQπ(s, a) = r(s, a) + γ
∑

s′∈S
P (s′|s, a)

∑

a′∈A
π(a′|s′)Qπ(s′, a′), (2.10)

T ∗Q∗(s, a) = r(s, a) + γ
∑

s′∈S
P (s′|s, a)max

a′∈A
Q∗(s′, a′). (2.11)

Both expectation and optimal operators are γ contraction with a specific fixed point.

For the expectation operator the value function (and the state-action value function)

of the policy considered is the fixed point. Instead, the optimal value function (and

the optima state-action value function) is the fixed point of the optimal operator. This

means that, if we iterate these operators for an appropriate amount of time t (ideally for

t→∞), starting from a certain value function, we can converge to the value function of

policy π, with the Bellman Expectation Operator, or to the optimal value function π∗,
with the Bellman Optimal Operator.
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2.2.3 Dynamic programming

Dynamic programming (Bellman, 1958 [4]) is a general technique for solving problems

breaking them into simple sub-problems and then, for each one of them, computing and

storing the solution to recombine them to solve the original one. Classical Dynamic

Programming (DP) algorithms are limited in reinforcement learning because they need

to know the exact model of our environment, but they provide the foundations for the

rest of our speech.

We can distinguish two techniques that exploit dynamic programming:

• Policy Iteration

• Value Iteration

Policy iteration is an on-policy algorithm that takes advantage of the Policy improve-

ment theorem (Richard S Sutton et al., 2018 [34]), where, given a policy π and the

corresponding value function V π(s), the greedy policy π′ derived from V π(s) is always

better or equal to the original one. The greedy policy derived from a value function is

defined as follow:

π′(s) = argmax
a∈A

∑

s′,r

P (s′|s, a)R(r|s, a)[r + γV (s′)]. (2.12)

We can exploit this by iterating the procedure as showed in the figure 2.3.
4.7. E�ciency of Dynamic Programming 87

v⇤, ⇡⇤

⇡ = greed
y(v)

v, ⇡

v = v⇡

a two-dimensional space as suggested by the dia-
gram to the right. Although the real geometry is
much more complicated than this, the diagram sug-
gests what happens in the real case. Each process
drives the value function or policy toward one of
the lines representing a solution to one of the two
goals. The goals interact because the two lines are
not orthogonal. Driving directly toward one goal
causes some movement away from the other goal.
Inevitably, however, the joint process is brought closer to the overall goal of optimality.
The arrows in this diagram correspond to the behavior of policy iteration in that each
takes the system all the way to achieving one of the two goals completely. In GPI
one could also take smaller, incomplete steps toward each goal. In either case, the two
processes together achieve the overall goal of optimality even though neither is attempting
to achieve it directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods
for solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical
details, then, in the worst case, the time that DP methods take to find an optimal policy
is polynomial in the number of states and actions. If n and k denote the number of states
and actions, this means that a DP method takes a number of computational operations
that is less than some polynomial function of n and k. A DP method is guaranteed to
find an optimal policy in polynomial time even though the total number of (deterministic)
policies is kn. In this sense, DP is exponentially faster than any direct search in policy
space could be, because direct search would have to exhaustively examine each policy
to provide the same guarantee. Linear programming methods can also be used to solve
MDPs, and in some cases their worst-case convergence guarantees are better than those
of DP methods. But linear programming methods become impractical at a much smaller
number of states than do DP methods (by a factor of about 100). For the largest problems,
only DP methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started
with good initial value functions or policies.

Figure 2.3: Policy Improvement process.

The first step is the policy evaluation where we can approximate the value function

of a policy. We can call this part of the problem as policy evaluation. To approximate

the value function we can follow the next procedure:
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Algorithm 2.1 Iterative Policy Evaluation for estimating V ≈ V π

Input: Policy π. A small threshold θ > 0 determining accuracy of estimation.

Output: V π

1: Initialize: random V (s), for all s ∈ S except V (terminal) = 0

2: repeat

3: ∆ ← 0

4: for all s ∈ S do

5: v ← V (s)

6: V (s) ← ∑
a π(a|s)

∑
s′,r P (s

′|s, a)R(r|s, a)[r + γV (s′)]

7: ∆ ← max(∆, |v − V (s)|)
8: end for

9: until ∆ < θ

We can now alternate the policy evaluation and the policy improvement processes

as in the following procedure:

Algorithm 2.2 Policy Iteration for estimating π ≈ π∗

Output: A deterministic policy π ≈ π∗. A small threshold θ > 0 determining

accuracy of estimation.

1: Initialize: random V (s), for all s ∈ S except V (terminal) = 0

2: V ← evaluate(π) ▷ From Algorithm 2.1

3: repeat

4: V ′ ← V

5: π ← greedy(V ) ▷ Build the greedy policy from value function V

6: V ← evaluate(π)

7: ∆ ← max(∆, |V ′ − V |)
8: until ∆ < θ

Opposed to the previous algorithm we can find in the classical background the value

iteration procedure that exploits the Bellman optimal operator to directly approximate

the value function of the best policy.
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Algorithm 2.3 Value Iteration for estimating π ≈ π∗

Input: A small threshold θ > 0 determining accuracy of estimation.

Output: A deterministic policy π ≈ π∗

1: Initialize: random V (s), for all s ∈ S except V (terminal) = 0

2: repeat

3: ∆ ← 0

4: for all s ∈ S do

5: v ← V (s)

6: V (s) ← maxa
∑

s′,r P (s
′|s, a)R(r|s, a)[r + γV (s′)]

7: ∆ ← max(∆, |v − V (s)|)
8: end for

9: until ∆ < θ

2.3 Model-free prediction

The dynamics of the environment are very often unknown, in other cases we have to deal

with a large-dimensional spaces, these conditions make dynamic programming infeasible.

In these cases it is useful to introduce model-free algorithms. In the next sections we

will talk about two basic and simple methods for Value function approximation that do

not require a full MDP model.

2.3.1 Monte Carlo

Monte Carlo (MC) methods are a broad class of computational algorithms that rely

on repeated random sampling to obtain numerical results, so they could be useful in

Reinforcement Learning where we can learn directly from experience. MC algorithms

exploit the simple idea that the mean return is a consistent estimator for the Value

function. To estimate the value function of a state s we can start from the state itself

and follow the selected policy π and use the empirical mean return instead of the expected

return. We can develop two type of Monte Carlo’s update: first-visit and every-visit. In

Monte Carlo first-visit we average returns only for the first visit of state s. In Monte

Carlo every-visit we average returns for every visit of state s.
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Algorithm 2.4 First-visit MC prediction for estimating V ≈ V π

Input: A policy π to be evaluated

Output: V ≈ V π

1: Initialize: random V (s), for all s ∈ S
2: Returns(s) ← an empty list, for all s ∈ S
3: for all episode do

4: Collect the entire history HT = (s0, a0, . . . , sT−1, aT−1, rT ) of the episode

5: G ← 0

6: for all t = T − 1, T − 2, . . . , 0 do

7: G ← γG+ rt+1

8: if st ̸∈ (s0, s1, . . . , st−1) then

9: Append G to Returns(st)

10: V (st) ← average(Returns(st))

11: end if

12: end for

13: end for

2.3.2 Temporal Difference

One of the drawbacks of Monte Carlo methods for Reinforcement Learning is that we

need to wait the end of an episode to estimate the Value function. If the episode length

is very long or we have to face a non episodic environment we cannot use Monte Carlo

Algorithms. One possible solution is based on Temporal Difference (TD). Like Monte

Carlo methods, TD methods can learn directly from raw experience without a model

of the environment’s dynamics. Like DP, TD methods update the estimate of Value

function using both raw samples and the estimated Value function itself computed on

another state (this is usually called bootstrapping). Both TD and Monte Carlo methods

use experience to solve the prediction problem. Given some experience generated by

a policy, both methods update their estimate V of V π for the non terminal states st
occurring in that experience. The update rule is the following:

V (st) ← V (st) + α
[
rt+1 + γV (st+1)− V (st)

]
, (2.13)

where α is a parameter between 0 and 1 that tells us how we want to trust new values for

value function estimation. In a typical scenario we want to decrease α with the increase

of time step, for example we usually have α =
1

N(st)
, where N(st) is the number of

times that state st has been visited.
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Algorithm 2.5 Tabular TD for estimating V ≈ V π

Input: A policy π to be evaluated. Learning rate α

Output: V ≈ V π

1: Initialize: random V (s), for all s ∈ S except V (terminal) = 0

2: for all episode do

3: repeat

4: a ← action given by π for state s

5: Take action a, observe r, s′

6: V (s) ← V (s) + α
[
r + γV (s′)− V (s)

]

7: s ← s′

8: until s is terminal

9: end for

2.4 Model-free control

We can subdivide the main approaches to learn optimal policy in two categories. On one

hand, Value based approaches attempt to learn π∗ through a representation of Q, trying

to improve the policy at each iteration, similarly to what we have seen previously. On

the other hand, policy based methods do not pose their focus on learning Q, but instead

policy π is directly parametrized and can be learnt by gradient descent with respect to

the expected return. In this work we will focus on Value based approaches.

The part of Reinforcement Learning with the aim of learning an optimal policy is

called control and we can identify two types of algorithms:

• On-policy algorithms: they evaluate or improve a policy π using the policy itself

to choose the action and generate the data.

• Off-policy algorithms: they evaluate or improve a policy π using a different policy

π′ to choose the action and generate the data.

SARSA and Q-Learning are two examples of respectively on-policy and off-policy RL

algorithms. Both of them are state-action value based algorithms that estimate target

values using Temporal Difference. We are going to introduce them in the next sections.

2.4.1 SARSA

SARSA (State-Action-Reward-State-Action) 2.6 is an on-policy implementation of TD

learning where the target value for the update using the sum of the actual reward and
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the Q value, where the last is evaluated in the next state visited and in the next action

selected from the current policy π. The update rule for this algorithm is the following:

Q(s, a) ← Q(s, a) + α
[
r + γQ(s′, a′)−Q(s, a)

]
. (2.14)

The full procedure is the following:

Algorithm 2.6 Sarsa (on-policy TD control) for estimating Q ≈ Q∗
Input: step size α ∈ (0, 1], small ϵ > 0

Output: Q ≈ Q∗
1: Initialize: random Q(s, a), for all s ∈ S except Q(terminal, ·) = 0

2: for all episode do

3: Choose a from s using policy derived from Q

4: repeat

5: Take action a, observe r, s′

6: Choose a′ from s′ using policy derived from Q

7: Q(s, a) ← Q(s, a) + α
[
r + γQ(s′, a′)−Q(s, a)

]

8: s ← s′

9: a ← a′

10: until s is terminal

11: end for

2.4.2 Q-learning

Q-learning is an off-policy algorithm, where the update rule uses a policy π′ derived from

the one we want to improve. In particular we use an ε-greedy policy defined as follow:

π(a|s) =





ε

|A| + 1− ε if a = argmaxa′∈AQ(s, a′)

ε

|A| otherwise

(2.15)

Moreover, it is common to initialize ε to an high value in the range [0, 1] and then

decrease it at each episodes. It is important to point out that the expression 2.15 is

valid only with a discrete set of actions.

Now, we can define the update rule used with Q-learning:

Q(s, a) ← Q(s, a) + α
[
r + γmaxQ(s′, a)−Q(s, a)

]
. (2.16)

The algorithm of Q-learning is the following:
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Algorithm 2.7 Q-learning (off-policy TD control) for estimating π ≈ π∗
The pseudo code of the algorithm is the following:

Input: step size α ∈ (0, 1], small ϵ > 0

Output: Q ≈ Q∗

1: Initialize: random Q(s, a), for all s ∈ S except Q(terminal, ·) = 0

2: for all episode do

3: repeat

4: Choose a from s using policy derived from Q

5: Take action a, observe r, s′

6: Q(s, a) ← Q(s, a) + α
[
r + γmaxQ(s′, a)−Q(s, a)

]

7: s ← s′

8: until s is terminal

9: end for

In theory, both methods Q-learning and SARSA converge to an exact estimate of

Q∗(s, a) when every pair state-action is visited an infinite number of times. However, in

practice, the learners reach optimal performance despite not meeting these requirements.

2.5 Function approximation

In the previous sections we presented some of the basic algorithms for reinforcement

learning, anyway those algorithms do not suit real applications. In general they cannot

be used when the state-action space is continuous, for obvious reasons, or when it is too

large to manage, due to memory and time limitations. Instead it is useful to introduce

function approximation to represent the Value function or the policy itself. We have to

introduce the model of functions Q(s, a;θ) depending on vector parameter θ and inputs

s and a. Moreover, Q needs to be differentiable with respect θ. Varying the values of

θ we can obtain a good approximation of the optimal Q-function. To find the optimal

parameters we have first to introduce a loss function:

L(θ) = Es,a∼π
[
(Q̃(s, a)−Q(s, a;θ))2

]
. (2.17)

Where L(θ) is the mean squared error (MSE) used commonly in a lot of Machine Learn-

ing problems. Q̃(s, a) is the target value, calculated from the samples collected directly

from the policy π. The basic online approach to minimize L(θ) is to periodically update

the parameters using Stochastic Gradient Descent (SGD) with the following equation:

θt+1 = θt + α(Q̃(s, a)−Q(s, a;θt))∇Q(s, a;θt)
]
. (2.18)
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When approximation is used, convergence properties are not guaranteed, especially with

off-policy methods. Function approximation is extremely useful when we combine it with

Deep Learning (LeCun et al., 2015 [16]), a learning paradigm which is characterized by

the use of neural networks to represent Value function.

2.6 Neural Networks

Neural networks, also known as artificial neural networks (ANNs), are a subset of ma-

chine learning area and the main tools used in deep learning algorithms (Lippmann,

1987 [17]). It is a mathematical model where the simplest computational unit is called

neuron. A neuron is characterized by n input xi with i = 0, 1, · · · , n − 1 and a weight

wi, corresponding to each input (Figure 2.4). Each neuron calculates the sum of each

value multiplied by its respective weight and adds a bias value b. After that, it applies

an activation function a and produces an output y, that constitutes the output of the

neuron.

Figure 2.4: Neuron representation.

A single neuron has a limited expression power, so multiple neurons are usually

organized in layers and we can build complex networks connecting layers in series. This

structure is called Multi Layer Perceptron (MLP). One of the main properties of the

MLP is that it is an universal function approximator. This means that, even using a

simple three-layers structure, a MLP is able to approximate any possible function, given

that the hidden layer features a sufficient number of nodes. While this is a theoretical

guarantee, finding the right set of weights using only one layer of abstraction might

require indefinitely long time. For this reason, it is common to use MLPs with a higher

number of hidden layers, which guarantees a progressively deeper level of abstraction.

For example, one of the main structures to build a MLP is composed by Fully Connected
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Layer. In this type of structure, each neuron receives as input all the outputs produced

by the previous layer. We can stack Fully Connected Layers with different sizes together

to build a more complex networks (example in Figure 2.5). Neural networks like this are

commonly used as function approximators in a wide range of problems, for example with

reinforcement learning. As mentioned before, after the output of a neuron, a function

approximation a is applied. We need to remark that a needs to be a non linear function.

With a linear activation function in the network, no matter how many layers it had,

the neural network would behave just like a single-layer perceptron. An example of

activation function is the ReLU (Rectified Linear Unit), defined as:

ReLU(x) = max(0, x) (2.19)

The SGD technique is performed through back-propagation (Rumelhart et al., 1986

[28]). The network is trained over a set of data points of the function they are supposed

to approximate. These data points contain the function input, used to compute the

network output, and the known function output. The two outputs, the real one and

the one computed by the network, are compared; then the back-propagation algorithm

computes the gradient of the network, starting from the output of the last layer and going

back to the input layer, based on the magnitude of the error between the prediction,

output of the network, and the real value. Among the main problems of this technique

we have vanishing gradient. At each step of the back-propagation, the gradient may

became smaller and smaller as it is propagated back to the start of the network, in this

case only the final part of the network is trained.

Input Layer Hidden Layer Output Layer

Figure 2.5: Fully connected network structure example.

We also have Convolutional Neural Networks (CNNs), which are particularly suitable

for dealing with images. They use another type of layer called convolutional layer,

typically used to recognize spatial patterns present in the input. The main operation of

this type of network is the mathematical operation called convolution. This operation
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is performed between two matrices (see Figure 2.6), an input matrix, representing for

example a two dimensional image, and a kernel matrix, usually smaller than the input

one, representing the filter. Formally, the convolution operation can be expressed as

follows:

Yi,j = [X ⊗W ](i, j) + b =

f∑

α=1

f∑

β=1

X(s× i+ α, s× j + β)W (α, β) + b,

with (i, j) ∈ {0, 1, · · · , L}, and L =
L0 + 2p− f

s
+ 1

where X is the input matrix , W is the convolutional parameters matrix of the kernel

filter, b is the bias parameter, f corresponds to convolutional kernel size, Y is the output

of the neuron, L is the dimension of the output, L0 is the dimension of the input.

Instead, s and p are two parameters called stride and padding. The stride correspond

to the number of cells by which the center of the filter is moved from one convolution to

the next one. The padding is used to add blank or empty cells to the frame of the input

matrix for a minimized reduction of size in the output layer. In a convolutional layer

the elements of the kernel matrix W and the bias parameters b are the weights that our

algorithm needs to optimize.

Figure 2.6: Example of convolution operation used by CNNs

2.6.1 Deep Learning

Deep Learning is a branch of machine learning that exploits the power of neural networks

to reduce high-dimensional data in a compact and abstract representation. This is

extremely useful when we need to recognize patterns and extract features from different

kind of data. For example it is used in different fields as image analysis, automatic

speech recognition and natural language processing. One of the first attempts to mix

Deep Learning with Reinforcement learning goes back to 2013 when DeepMind developed

the Deep Q-Learning (DQN) algorithm (Mnih, Kavukcuoglu, Graves, et al., 2013 [20]),

using the convolutional neural networks to overcome human scores in different Atari

games.
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2.6.2 Deep Q-Learning

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Figure 2.7: Deep Q-network presented by Mnih, Kavukcuoglu, Silver, et al., 2015 [21]

Deep Q-Learning is an extension of the online Q-learning algorithm with the introduction

of state-value function approximation through neural network. It exploits a replay buffer

to store the samples as tuples ⟨st, at, rt, st+1⟩ collected during the exploration. When we

have to train the network we can randomly extract the tuples from the buffer and use

them to construct the target value of our Q-function. We can write the target value as

follows:
Q̃(s, a) = r + γmax

a′
Q(s′, a′;θt). (2.20)

Where θt represents the parameters (the weight of the neural network) that we need to

train. Replay buffer is really useful to reduce correlation between samples in the same

batch, since SGD assumes the samples in a mini-batch to be statistically independent.

After the original paper of DQN, different features were added to improve performance:

• Prioritized Replay Buffer

• Target network

• Double Deep Q-network (DDQN)

• Dueling networks

With prioritized replay buffer (Schaul et al., 2015 [29]) the samples have different weights

based on the last Temporal Difference Error (TDE) computed in the previous update:

δi = ri + γmax
a′

Q(s′i, a
′;θ)−Q(si, ai;θ). (2.21)
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The key idea is to give more importance to samples with highest errors computed during

the last step of SGD.

In tabular Q-Learning algorithm, the target value of an update is an estimate computed

through bootstrapping. When we add function approximation we can have instability

caused by the oscillations of the target values, so it is helpful to use a target network, a

simple copy Q̂ of the online network, to compute the current target value. The new rule

is the following:

Q̃(s, a) = r + γmax
a

Q̂(s′, a;θ−). (2.22)

A new parameter tcopy is introduced to copy the updated Q-function to the target Q-

function every time step tcopy.

In Q-learning and DQN, the max opeartor uses the same values to both select and

evaluate an action. This can therefore lead to overoptimistic value estimates. To mitigate

this problem, Double Deep Q-network is introduced (Van Hasselt et al., 2016 [37]) as a

double estimator. We update the target value as follows:

Q̃(s, a) = r + γQ̂(s′, argmax
a′

Q(s′, a′;θt);θ−), (2.23)

where θ− represents the parameters of the target network and the Q used with the

argmax operation is the double one. Another important features is the dueling network

(Wang et al., 2016 [38]). This feature exploits the advantage function Aπ(s, a) defined

as follows:

Aπ(s, a) = Qπ(s, a)− V π(s). (2.24)

This new value represents the advantage of performing an action a in a state s compared

to the expected return by directly following π from s. The Advantage function and the

Value function are estimated separately and combined to estimate Qπ. With this method

we are able to capture more specific features. The new network structure is presented

in the bottom part of figure 2.8. The first part of the network is composed by shared

layers. The output of the shared part is then used as input for the group of layers that

evaluates A and the group that represents V . The operation computed by the network

is the following:

Qπ(s, a;θ,α,β) = V π(s;θ,β) +

(
A(s, a;θ,α)− 1

|A|
∑

a′

A(s, a′;θ,α)

)
, (2.25)

where θ represents the parameters of the shared layers, α the parameters of the layers

used to calculate A and β the parameters for the V layers.
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Figure 2.8: A popular single stream Q-network (top) and the dueling Q-network (bottom) as presented in Wang

et al., 2016 [38].
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Chapter 3

State of the Art

We recall that the aim of this project is the development of a dynamic action repetition

system with the purpose to unlock a dynamic control frequency. In this chapter we

introduce different works that discuss about action repetition. In Section 3.1 we talk

about methods that deal with a fixed action repetition settings. Going forward, we

introduce, in Section 3.2, different proposed solution to implement a dynamic action

repetition.

3.1 Static Methods

Action Repetition arises naturally in real life as well as simulated environments. The

time scale of executing an action enables agents (both humans and AI) to decide the

granularity of control during task execution. Classical methods used in most framework

use a static action repetition paradigm, wherein the action decided by the agent is

repeated for a fixed number of time steps regardless of the contextual state or action

while executing the task.

For example (Braylan et al., 2015 [6]) showed the performance of different frame skip

in Atari games through the Arcade Learning Environment (ALE). In ALE framework

games run at sixty frames per second, and agents can submit an action at every frame,

but it is also possible to introduce a frame skip parameter as the number of frames an

action is repeated before a new action is selected. As mentioned by the paper, different

implementations of common algorithm, such as HNEAT, DQN or SARSA, usually used a

different frame skip. If we increase this parameter, we can significantly decrease the time

it takes to simulate an episode, at the cost of missing opportunities that only exist at a

finer resolution. The authors implemented a variant of Enforced Sub-populations (ESP)

(Gomez et al., 2005 [11]) in which they can change the frame skip through the ALE

platform. In some games higher frame skip values lead to a very better performance.



Another work about the action repetition as an hyper-parameter useful to improve

performance in a reinforcement learning context is Metelli et al., 2020 [19]. Here authors

have introduced the notion of action persistence, defined by the parameter k, as the rep-

etition of an action for a fixed amount of steps to obtain a different control frequency.

At first they described theoretically the implication of action persistence. The execution

of a Markovian stationary policy π at persistence k > 1 produces a behavior that, in

general, cannot be represented by executing any Markovian stationary policy at persis-

tence 1, because, at each time step, the described policy needs to remember the previous

t− 1 steps and decide if it has to decide a new value or to choose the previous one (so it

is non-Markovian and non-stationary). This leads to a definition of a new k-persistent

policy induced by a classical Markovian stationary policy π as follow: πt,k is equal to π

if t mod k = 0 or it is equal to a Dirac distribution centered in the previous action. This

means that this policy has the same behavior of the original one when the time step is a

multiple of the persistence and it chooses the previous selected action otherwise. From

another point of view we can define a modified MDP that incorporates the concept of

persistence transition creating a new transition probability kernel. As shown in figure

3.1 there is a connection between the original MDP solved by a k-persistent policy and

the new k-persistent MDP solved by the original policy.

S0 S1 S2 Sk−1 Sk Sk+1

A0∼π(·|S0) A1∼π(·|S1) Ak−1∼π(·|Sk−1) Ak∼π(·|Sk)

S0 S1 S2 Sk−1 Sk Sk+1

A0∼π(·|S0) [A1=A0] [Ak−1=A0] Ak∼π(·|Sk)

A0 is persisted Ak is persisted

Figure 3.1: Agent-environment interaction without (top) and with (bottom) action persistence, highlighting

duality. The transition generated by the k-persistent MDP Mk is the cyan dashed arrow, while the actions

played by the k-persistent policy are inside the cyan rectangle.

They introduced a new Persistent Bellman Operators, constructed from the original

Bellman operator, and implemented the Persistent Fitted Q-Iteration, an extension of

Fitted Q-Iteration, able to approximate the value function at a given persistence. The

experimental results obtained in the paper shown that the introduction of persistence

could be a good choice since reducing the control frequency can lead to an improvement

when dealing with a limited number of samples. We will use deeply the notion of

persistence described by Metelli et al., 2020 [19] to introduce our work in chapter 4.

We also need to remark, as stated by authors, that persisting an action, for a fixed

amount of time, is a particular instance of a semi-Markov option, always lasting k steps.

A semi-Markov Decision Process is an extension of MDP formalism that deals with

temporally extended actions and/or continuous time. An option is a generalization of

primitive actions to include temporally extended courses of action. According to the flat

option representation, an option needs three components: a policy π : S ×A → [0, 1], a
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termination condition β : S → [0, 1], and an initiation set I ⊆ S. Given a state s, an

option {I, π, β} is available if and only if s ∈ I. Once we select an option, we follow

policy π and check at each step if the option is stochastically terminated according to

β. If the option is terminated, the agent has the possibility to select a new option.

One of the main benefits of action persistence is the exploration. The exploration

is one of the most important open problems in reinforcement learning. The most com-

monly used exploration strategies are simple methods like ϵ−greedy, Boltzmann explo-

ration and entropy regularization. These methods are general because they do not rely

on strong assumptions about the underlying domain, so they don’t require too much

implementation effort or per-domain fine tuning. Among these works, Dabney et al.,

2020 [8] introduced an ϵz-greedy exploration, with a random exploratory variable decid-

ing the duration of each action. they have replaced actions with temporally-extended

sequence of actions, described as options. They ended with a new exploration method

called temporally-extended ϵz−greedy exploration. This strategy depends on choosing

an exploration probability ϵ, a set of options Ω, and a sampling distribution p with

support Ω. Then, on each step the agent follows the current policy π for one step with

probability 1−ϵ, or with probability ϵ samples an option w ∼ p(Ω) and follows it until

termination. The authors showed, both in tabular and deep reinforcement learning, that

the new introduced method can improve exploration and performance in sparse-reward

environments.

3.2 Dynamic Methods

In this section we talk about different solutions to obtain a dynamic action repetition,

i.e. the ability of the agent to select different repetition rate in a single run.

3.2.1 Tabular Methods

There are few techniques that try to achieve a dynamic time scale in an MDP framework,

some of these use the option approach (Richard S. Sutton et al., 1999 [35]; Mankowitz

et al., 2014 [18]), some others use hierarchy of abstract machines (HAM) (Parr et al.,

1998 [24]) or the MAXQ approach (Dietterich, 1998 [10]). All these methods are based

on decomposition of actions into sub-tasks, so they need to know in advance, totally

or partially, the model and the effects of each action. One of the first attempts to

introduce action persistence, without the creation of options and sub-tasks, goes back

to 2003 (Schoknecht et al., 2003 [30]). Here the authors tried to integrate the concept

of temporal abstraction in the reinforcement learning framework to improve scalability.

One of the concerns of the authors was that standard reinforcement learning algorithms,
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like base Q-learning, scale very badly with the increase of problem size. One intuitive

reason for this is that according to the problem size, the number of decisions from

the start state to the goal state increases. If our agent is able to reduce the number of

decision that are necessary to reach the goal, learning could be accelerated. The solution

proposed, called MSA (multi-step action), extends classical RL algorithms proposing the

concept of explicitly selecting time scale by just choosing the repetition of the action

while choosing the action itself.

3.2.2 Neural Networks

More recent works tried to exploit neural networks to extend the state-action value

function, or common policy gradient methods, to include also the concept of action rep-

etition, with the goal of making the most effective use of samples collected at different

persistences. Among these works, Lakshminarayanan et al., 2017 [14] introduced the

idea of enlarging the action space, duplicating actions and paring them with a specific

repetition value. Authors implemented this framework with two well-known Deep RL

algorithms, DQN and A3C, and used them mainly on Atari games. The authors stated

that the key motivation behind the Dynamic Action Repetition paradigm is the obser-

vation that when humans execute tasks (such as playing games), the actions tend to be

temporally correlated and almost always elongated. They implemented the Augmented

DQN (shown in figure 3.2) duplicating the last layer of the network with the output rep-

resenting the Q-values for actions at two different repetition rates. The main drawback

is that repetition rates are hyper-parameters, hence there is no automatic adaptation of

frequency.
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ReLU
Conv  +
ReLU

Fully Connected +
ReLU

Fully Connected
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ReLU

64 6420
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Figure 3.2: Network used in Dynamic action repetition for deep reinforcement learning
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The new parameter introduced, called action repetition rate (ARR), denotes the

number of times an action selected by the agent is repeated. If the ARR is low, the

decision making frequency of the agent is high. This leads to policies which evolve

rapidly in space and time. On the other hand, a high ARR causes infrequent decisions,

which reduce the time to train at the cost of losing fine grained control, but on the other

hand a reduction in decision making frequency gives the agent the advantage of not

having to learn the control policy in the intermediate states. Such skills would be useful

for the agent in games where good policies require some level of temporal abstraction.

An example of this situation is Seaquest (an Atari 2600 game) where the agent has

to continually shoot at multiple enemies arriving together and at the same depth, one

behind another. In the case of Space Invaders (Atari 2600 game), the lasers are not

visible in every fourth frame and a higher action repetition could help the agent avoid

the confusion of having to decide an action in such peculiar intermediate states, where

the lasers are not visible. Another approach (Sharma et al., 2017 [31]) introduces the

concept of skip network, a second network used to choose the action repetition jointly

with the original network (authors proposed mainly policy gradient methods such A3C,

TRPO or DDPG). The main drawback of this implementation is that the second network

is not action dependent, meaning that the action repetition chosen in a specific state is

an average among all actions. This leads the agent to perform worst in states where one

action is impulsive and the other one has a really big action repetition value.

One way to differentiate actions is introduced in a similar fashion with TempoRL

(Biedenkapp et al., 2021 [5]). Here, two different networks are employed: while the

base one is a normal DQN, the skip network depends on both state and action and

approximates Q-values for different possible frequencies. The process is the following:

the first network is used to choose the action to perform in a state, the state-action pair

is then fed to the second network to choose skip value i.e. the repetition rate. To update

the Q function at each skip value they use the cumulative discounted reward. Figure 3.3

and 3.4 show the proposed architecture.

TempoRL: Learning When to Act
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Figure 2. Schematic representations of considered architectures for
learning when to make decisions, where at is the action coming
from a separate behaviour policy.

learning from is featurized, i.e., a state is a vector of indi-
vidual informative features. In this setting, the skip-policy
network can take any architecture deemed appropriate for
the environment, where the input is a concatenation of the
original state st and the chosen behaviour action at, i.e.,
s′t = (st, at), see Figure 2a. This allows the skip-policy
network to directly learn features that take into account the
chosen behaviour action. However, note that this concatena-
tion assumes that the state is already featurized.

Contextualization In deep RL, we often have to learn to
act directly from images. In this case, concatenation is not
trivially possible. Instead we propose to use the behaviour
action as context information further down-stream in the net-
work. Feature learning via convolutions can then progress
as normal and the learned high-level features can be con-
catenated with the action at and be used to learn the final
skip-value, see Figure 2b.

Shared Weights Concatenation and contextualization learn
individual policy networks for the behaviour and skip poli-
cies and do not share information between the two. To
achieve this we can instead share parts of the networks,
e.g., the part of learning higher-level features from im-
ages (see Figure 3). This allows us to learn the two
policy networks with potentially fewer weights than two
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Figure 3. Architecture with
shared feature representation
for joint learning of when to
make a decision and what
action to take.

completely independently
learned networks. In the for-
ward and backward passes,
only the shared feature rep-
resentation with the corre-
sponding output layers are
active. Similar to the con-
textualization, the output
layers for the skip-values re-
quire the selected action, i.e.
the argmax of the action out-
puts, as additional input.

4. Experiments
We evaluated TEMPORL with tabular as well as deep Q-
functions. We first give results for the tabular case. All code,
the appendix and experiment data including trained policies
are available at github.com/automl/TempoRL. For
details on the used hardware see Appendix C.

4.1. Tabular TempoRL

In this subsection, we describe experiments for a tabular Q-
learning implementation that we evaluated on various grid-
worlds with sparse rewards (see Figure 4). We first evaluate
our approach on the cliff environment (see Figure 4a) before
evaluating the influence of the exploration schedule on both
vanilla and TEMPORL Q-learning, which we refer to as Q
and t-Q, respectively.

GS

(a) Cliff
GS

(b) Bridge

G

S

(c) ZigZag

Figure 4. 6× 10 Grid Worlds. Agents have to reach a fixed goal
state from a fixed start state. Dots represent decision steps of
vanilla and TEMPORL Q-learning policies.

Gridworlds All considered environments (see Figure 4) are
discrete, deterministic, have sparse rewards and have size
6× 10. Falling off a cliff results in a negative reward (−1)
and reaching a goal state results in a positive reward (+1).
For a more detailed description of the gridworld environ-
ments we refer to Appendix D.

For this experiment, we limit our TEMPORL agent to a max-
imum skip length of J = 7; thus, a learned optimal policy
requires 4 decision points instead of 3. For evaluations using
larger skips we refer to Appendix E. Note that increasing
the skip-length improves TEMPORL up to some point, at
which it has too many irrelevant skip-actions at its disposal
which slightly decreases the performance. We compare the
learning speed, in terms of training policies, of our approach
to a vanilla Q-learning agent. Both methods are trained for
10 000 episodes using the same ε-greedy strategy, where ε
is linearly decayed from 1.0 to 0.0 over all episodes.

Figure 5a depicts the evaluation performance of both meth-
ods. TEMPORL is 13.6× faster than its vanilla counterpart
to reach a reward of 0.5, and 12.4× faster to reach a reward
of 1.0 (i.e., always reach the goal). Figure 5b shows the
number of required steps in the environment, as well as the
number of decision steps. TEMPORL is capable of find-
ing a policy that reaches the goal much faster than vanilla
Q-learning while requiring far fewer decision steps. Further-
more, TEMPORL recovers the optimal policy quicker than
vanilla Q-learning. Lastly we can observe that after having
trained for ≈ 6 000 episodes, TEMPORL starts to increase
the number of decision points. This can be attributed to skip
values of an action having converged to the same value and
our implementation selecting a random skip as tie-breaker.

Table 1 summarizes the results on all environments in terms
of normalized area under the reward curve and number of
decisions for three different ε-greedy schedules. A reward
AUC value closer to 1.0 indicates that the agent was capable

Figure 3.3: Schematic representations of considered ar-

chitectures for learning when to make decisions, where

at is the action coming from a separate behaviour pol-

icy
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Figure 2. Schematic representations of considered architectures for
learning when to make decisions, where at is the action coming
from a separate behaviour policy.

learning from is featurized, i.e., a state is a vector of indi-
vidual informative features. In this setting, the skip-policy
network can take any architecture deemed appropriate for
the environment, where the input is a concatenation of the
original state st and the chosen behaviour action at, i.e.,
s′t = (st, at), see Figure 2a. This allows the skip-policy
network to directly learn features that take into account the
chosen behaviour action. However, note that this concatena-
tion assumes that the state is already featurized.

Contextualization In deep RL, we often have to learn to
act directly from images. In this case, concatenation is not
trivially possible. Instead we propose to use the behaviour
action as context information further down-stream in the net-
work. Feature learning via convolutions can then progress
as normal and the learned high-level features can be con-
catenated with the action at and be used to learn the final
skip-value, see Figure 2b.

Shared Weights Concatenation and contextualization learn
individual policy networks for the behaviour and skip poli-
cies and do not share information between the two. To
achieve this we can instead share parts of the networks,
e.g., the part of learning higher-level features from im-
ages (see Figure 3). This allows us to learn the two
policy networks with potentially fewer weights than two
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Figure 3. Architecture with
shared feature representation
for joint learning of when to
make a decision and what
action to take.

completely independently
learned networks. In the for-
ward and backward passes,
only the shared feature rep-
resentation with the corre-
sponding output layers are
active. Similar to the con-
textualization, the output
layers for the skip-values re-
quire the selected action, i.e.
the argmax of the action out-
puts, as additional input.

4. Experiments
We evaluated TEMPORL with tabular as well as deep Q-
functions. We first give results for the tabular case. All code,
the appendix and experiment data including trained policies
are available at github.com/automl/TempoRL. For
details on the used hardware see Appendix C.

4.1. Tabular TempoRL

In this subsection, we describe experiments for a tabular Q-
learning implementation that we evaluated on various grid-
worlds with sparse rewards (see Figure 4). We first evaluate
our approach on the cliff environment (see Figure 4a) before
evaluating the influence of the exploration schedule on both
vanilla and TEMPORL Q-learning, which we refer to as Q
and t-Q, respectively.

GS

(a) Cliff
GS

(b) Bridge

G

S

(c) ZigZag

Figure 4. 6× 10 Grid Worlds. Agents have to reach a fixed goal
state from a fixed start state. Dots represent decision steps of
vanilla and TEMPORL Q-learning policies.

Gridworlds All considered environments (see Figure 4) are
discrete, deterministic, have sparse rewards and have size
6× 10. Falling off a cliff results in a negative reward (−1)
and reaching a goal state results in a positive reward (+1).
For a more detailed description of the gridworld environ-
ments we refer to Appendix D.

For this experiment, we limit our TEMPORL agent to a max-
imum skip length of J = 7; thus, a learned optimal policy
requires 4 decision points instead of 3. For evaluations using
larger skips we refer to Appendix E. Note that increasing
the skip-length improves TEMPORL up to some point, at
which it has too many irrelevant skip-actions at its disposal
which slightly decreases the performance. We compare the
learning speed, in terms of training policies, of our approach
to a vanilla Q-learning agent. Both methods are trained for
10 000 episodes using the same ε-greedy strategy, where ε
is linearly decayed from 1.0 to 0.0 over all episodes.

Figure 5a depicts the evaluation performance of both meth-
ods. TEMPORL is 13.6× faster than its vanilla counterpart
to reach a reward of 0.5, and 12.4× faster to reach a reward
of 1.0 (i.e., always reach the goal). Figure 5b shows the
number of required steps in the environment, as well as the
number of decision steps. TEMPORL is capable of find-
ing a policy that reaches the goal much faster than vanilla
Q-learning while requiring far fewer decision steps. Further-
more, TEMPORL recovers the optimal policy quicker than
vanilla Q-learning. Lastly we can observe that after having
trained for ≈ 6 000 episodes, TEMPORL starts to increase
the number of decision points. This can be attributed to skip
values of an action having converged to the same value and
our implementation selecting a random skip as tie-breaker.

Table 1 summarizes the results on all environments in terms
of normalized area under the reward curve and number of
decisions for three different ε-greedy schedules. A reward
AUC value closer to 1.0 indicates that the agent was capable

Figure 3.4: Architecture with shared feature represen-

tation for joint learning of when to make a decision

and what action to take.
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Another approach is used by Yu et al., 2021 [40], where authors have introduced

a secondary binary policy, with the main purpose of choosing whether to repeat the

previous action or to change it according to the principal agent. They have called

this method Temporally Abstract Actor-Critic (TAAC). The main network (they have

extended a policy gradient method) is used to choose a new action at each state, but

this is not taken until a second network has decided if it is more convenient to repeat

the previous action or to choose a new one (see figure 3.5 for reference).

action as a latent variable of action repeating steps, but the introduced temporal abstraction is open-
loop and lacks flexibility. One recent work close to TAAC is PIC (Chen et al., 2021) which also learns
to repeat the last action to address the action oscillation issue within consecutive steps. However, PIC
was proposed for discrete control and its extension to continuous control is unclear yet. Also, PIC
predicts whether to repeat the last action independent of a newly sampled action, which requires its
switching policy to make a decision regarding the core policy’s expected behavior. In an application
section, H-MPO (Neunert et al., 2020) explored how continuous control can benefit from a meta
binary action that modifies the overall system behavior. Again, like PIC their binary decision is
made in parallel with a newly sampled action. Different from PIC and H-MPO, TAAC only decides
“act-or-repeat” after comparing the previous action with a newly sampled action. Moreover, TAAC
employs a new compare-through Q operator to exploit repeated actions for multi-step TD backup,
and is trained by a much simpler actor gradient by absorbing the closed-form solution of the binary
policy into the continuous action objective to avoid parameterizing a discrete policy unlike H-MPO.

Our experiment design (Section 5.2) has covered most methods that consider action repetition. Table 1
provides a checklist of the differences between TAAC and these methods.

3 Preliminaries

We consider the RL problem as policy search in a Markov Decision Process (MDP). Let s ∈ RM
denote a state, where a continuous action a ∈ RN is taken. Let π(a|s) be the action policy, and
P(st+1|st, at) the probability of the environment transitioning to st+1 after an action at is taken
at st. Upon reaching st+1, the agent receives a scalar reward r(st, at, st+1). The RL objective is
to find a policy π∗ that maximizes the expected discounted return: Eπ,P [

∑∞
t=0 γ

tr(st, at, st+1)],
where γ ∈ (0, 1) is a discount factor. We also define Qπ(st, at) = Eπ[

∑∞
t′=t γ

t′−tr(st′ , at′ , st′+1)]
as the discounted return starting from st given that at is taken and then π is followed, and V π(st) =
Eat∼π Qπ(st, at) as the discounted return starting from st following π.

In an off-policy actor-critic setting with π and Q parameterized by φ and θ, a surrogate objective is
usually used (Lillicrap et al., 2016; Haarnoja et al., 2018)

max
φ

E
s∼D

V
πφ
θ (s) , max

φ
E

s∼D,a∼πφ
Qθ(s, a). (1)

This objective maximizes the expected state value over some state distribution, assuming that 1) s
is sampled from a replay buffer D instead of the current policy, and 2) the dependency of the critic
Qθ(s, a) on the policy πφ is dropped when computing the gradient of φ. Meanwhile, θ is learned
separately via policy evaluation with typical TD backup.

4 Temporally abstract actor-critic

...

...

...

...

Figure 1: TAAC’s two-stage policy during
inference. In the first stage, an action pol-
icy πφ samples a candidate action â. In
the second stage, a binary switching policy
β chooses between this candidate and the
previous action a−.

To enable temporal abstraction, we decompose the
agent’s action decision into two stages (Figure 1): 1)
sampling a new candidate action â ∼ πφ(·|s, a−) con-
ditioned on the action a− at the previous time step,
and 2) choosing between a− and â as the actual out-
put at the current step. The overall TAAC algorithm is
summarized in Algorithm 1 Appendix A.

4.1 Two-stage policy

Formally, let β(b|s, â, a−) be the binary switching policy, where b = 0/1 means choosing a−/â. For
simplicity, in the following we will denote βb = β(b|s, â, a−) (always assuming its dependency on s,
â, and a−). Then our two-stage policy πta for temporal abstraction is defined as

πta(a|s, a−) ,
∫

â

πφ(â|s, a−)
[
β0δ(a− a−) + β1δ(a− â)

]
dâ, (2)

which can be shown to be a proper probability distribution of a. This two-stage policy repeats
previous actions through a binary policy β, a decision maker that compares a− and â side by side

3

Figure 3.5: TAAC’s two-stage policy during inference. In the first stage, an action policy πϕ samples a candidate

action â. In the second stage, a binary switching policy β chooses between this candidate and the previous action

a−
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Chapter 4

Problem Formulation

In this chapter we explore what we mean with action persistence, how it is possible to

compare with existing approaches and our solution to exploit all the samples collected

during training of our agent through a new defined operator extended from the optimal

Bellman operator.

4.1 Action Persistence

As mentioned in previous chapters, by action persistence we mean the repetition of an

action a ∈ A starting from a specified space s ∈ S for a specified amount of time step

k ∈ N. The static repetition of the same action can be modeled as a k-persistent MDP

(extensively discussed in the paper Metelli et al., 2020 [19] introduced in chapter 3),

starting from the original MDP. This newly proposed MDPMk =
(
S,A, Pk, Rk, γk

)
is

characterized by the k-persistent transition model Pk and reward function Rk, defined

for any measurable sets B ⊆ S , C ⊆ R and state-action pair (s, a) ∈ S ×A as follows:

Pk(B|s, a) =
(
(P δ)k−1P

)
(B|s, a), (4.1)

Rk(C|s, a) =
k−1∑

i=0

γi
(
(P δ)iR

)
(C|s, a), (4.2)

where P δ is the state-action persistent transition probability kernel of the original MDP

P δ : S ×A →P(S ×A) defined as:

(P δ)(B|s, a) =
∫

S
P ( ds′|s, a)δ(s′,a)(B), (4.3)



where δ(s′,a)(B) is the Dirac measure centered in (s′, a). We can also define an expected

reward rk(s, a) bounded by Rmax
1−γk
1−γ :

rk(s, a) =

∫

R
xRk( dx|s, a) =

k−1∑

i=0

γi
(
(P δ)ir

)
(s, a). (4.4)

If from one side this model is easy to use and analyze, from the other side is constructed

with a fixed predefined persistence k. For this purpose we need to model the persistence

as an option, this leads us to the creation of the all-persistence Bellman operator, a new

operator used to achieve a dynamic persistence.

4.1.1 Persistence as Options

We formalize the decision process in which the agent chooses a primitive action a together

with its persistence k. To this purpose, we introduce the persistence option.

Definition 4.1.1. Let A be the space of primitive actions of an MDP M and K :=

{1, . . . ,Kmax}, where Kmax ≥ 1, be the set of persistences. A persistence option o :=

(a, k) is the decision of playing primitive action a ∈ A with persistence k ∈ K. We

denote with O(k) := {(a, k) : a ∈ A} the set of options with fixed persistence k ∈ K and

O :=
⋃
k∈KO(k) = A×K.

The decision process works at follows. At time t = 0, the agent observes s0 ∈ S,
selects a persistence option o0 = (a0, k0) ∈ O, observes the sequence of states (s1, . . . , sk0)
generated by repeating primitive action a0 for k0 times, i.e., si+1 ∼ P (·|si, a0) for i ∈
{0, . . . , k0 − 1}, and the sequence of rewards (r1, . . . , rk0) with ri+1 = r(si, a0) for i ∈
{0, . . . , k0 − 1}. Then, in state sk0 the agent selects another option o1 = (a1, k1) ∈ O
and the process repeats. During the execution of the persistence option, the agent is not

allowed to change the primitive action.

Remark 4.1.1. (Persistence and Options) The persistence option (Definition 4.1.1)

is in all regards a semi-Markov option Precup, 2001 [26], where the initiation set is

the set of all states S, the termination condition depends on time only, and the intra-

option policy is a constant policy. Indeed, the described process generates a semi-Markov

decision process (Puterman, 2014 [27]), which is fully determined by the behavior ofM,

as shown in Richard S. Sutton et al., 1999 [35].

Remark 4.1.2. (Persistence Options vs Augmented Action Space) There is an

important difference between using the persistence options O in the original MDPM and

defining an augmented MDP MK with new action space A × K and properly redefined

transition model and reward function Lakshminarayanan et al., 2017 [14]. Indeed, when
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executing a persistence option ot = (at, kt) ∈ O from time t, we observe the full sequence

of states (st+1, . . . , st+kt) and rewards (rt+1, . . . , rt+kt). Instead, in the augmented MDP

MK we only observe the last state skt and the cumulative reward rkt+1 =
∑k−1

i=0 γ
irt+i+1.

We will heavily exploit the particular option structure, re-using fragments of experience

in order to perform intra-option learning.

We now extend the policy and state-action value function definitions to consider

this particular form of options. A Markovian stationary policy over persistence options

ψ : S → P(O) is a mapping between states and probability measures over persistence

options. We denote with Ψ the set of the policies of this nature. The state-option

value function Qψ : S × O → R following a policy over options ψ ∈ Ψ is defined as

Qψ(s, a, k) := Eψ
[∑+∞

t=0 γ
trt+1|s0 = s, a0 = a, k0 = k

]
. In this context, the optimal

action-value function is defined as: Q⋆K(s, a, k) = supψ∈ΨQ
ψ(s, a, k).

4.1.2 All-Persistence Bellman Operator

We start by defining a κ-persistence transition as (s, s′, a, r1, r2, . . . , rκ) where s ∈ S is

the state where we choose action a ∈ A, s′ ∈ S is visited after our agent repeated action

a for κ time steps and (r1, r2, . . . , rκ) are all the collected rewards. When we collect a

κ-persistence transition it is important to underline that we are trying to use that κ-

persistence transition to learn Q⋆K(·, ·, k) for all the possible action-persistences in k ∈ K.
Now we have two distinguish two cases: first for any κ-persistence transition collected

with κ > 1 we can create sub-transitions of k < κ; secondly, the original transition

with all others sub-transition represent partial information used to estimate any other

persistence transition with k > κ. Now we can define the first extension of the Bellman

optimal operator for persistence k lower than the sampled κ-persistence transition as

follows:

(T ⋆f) (s, a, k) = rk(s, a) + γk
∫

S
Pk(ds

′|s, a) max
(a′,k′)∈O

f(s′, a′, k′). (4.5)

If, instead, κ < k, in order to update the value Q⋆K(·, ·, k), we partially exploit the κ-

persistent transition, but then, we need to bootstrap from a lower persistence Q-value,

to compensate the remaining k − κ steps. To this end, we introduce the bootstrapping

operator T κ : B(S ×O)→ B(S ×O) with f ∈ B(S ×O):
(
T κf

)
(s, a, k) = rκ(s, a) + γκ

∫

S
Pκ(ds

′|s, a)f(s′, a, k − κ). (4.6)

It is important to observe that:

Lemma 4.1.1 (Decomposition of rk). Let rk(s, a) the expected k-persistent reward. Let

k′ < k, then it holds that:

rk(s, a) = rk′(s, a) + γk
′
∫

S
Pk′(ds

′|s, a)rk−k′(s′, a) ∀(s, a) ∈ S ×A.
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Proof. From the definition of rk, it holds that rk(s, a) =
∑k−1

i=0 γ
i
(
(P δ)ir

)
(s, a). Hence:

rk(s, a) =

k−1∑

i=0

γi
(
(P δ)ir

)
(s, a)

=

k′−1∑

i=0

γi
(
(P δ)ir

)
(s, a) +

k−1∑

i=k′

γi
(
(P δ)ir

)
(s, a)

= rk′(s, a) +
k−1∑

i=k′

γi
∫

S
Pi(ds

′|s, a)r(s′, a)

= rk′(s, a) +

k−1∑

i=k′

γi
∫

S
Pk′(ds

′′|s, a)
∫

S
Pi−k′(ds

′|s′′, a)r(s′, a)

= rk′(s, a) + γk
′
∫

S
Pk′(ds

′′|s, a)
k−k′−1∑

j=0

γj
∫

S
Pj(ds

′|s′′, a)r(s′, a)

= rk′(s, a) + γk
′
∫

S
Pk′(ds

′′|s, a)rk−k′(s′′, a).

By combining the two operators 4.5 and 4.6, we obtain the All-Persistence Bellman

operator Hκ : B(S ×O)→ B(S ×O) defined for every f ∈ B(S ×O) as:

(Hκf)(s, a, k) =
(
(1k≤κT

⋆ + 1k>κT
κ)f
)
(s, a, k). (4.7)

Thus, given a persistence κ ∈ K, Hκ allows updating all the Q-values with k ≤ κ

by means of T ⋆, and all the ones with k > κ by means of T κ. The following result

demonstrates the soundness of the proposed operator.

Theorem 4.1.1. The all-persistence Bellman operator Hκ fulfills the following proper-

ties:

(i) Hκ is a γ-contraction in L∞ norm;

(ii) Q⋆K is its unique fixed point;

(iii) Q⋆K is monotonic in k, i.e., for all (s, a) ∈ S ×A if k ≤ k′ then Q⋆K(s, a, k) ≥
Q⋆K(s, a, k

′).

Proof. (i) First, we prove the contraction property: we consider the L∞-norm applied
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to the state-action-persistence space S ×A×K:
∥∥HκQ1 −HκQ2

∥∥
∞ =

= sup
s,a,k∈S×A×K

∣∣HκQ1(s, a, k)−HκQ2(s, a, k)
∣∣

= sup
s,a,k∈S×A×K

∣∣∣∣1k≤κ ((T ⋆Q1) (s, a, k)− (T ⋆Q2) (s, a, k))+

+ 1k≤κ
((
T κQ1

)
(s, a, k)−

(
T κQ2

)
(s, a, k)

) ∣∣∣∣

= sup
s,a,k∈S×A×K

∣∣∣∣γk1k≤κ
∫

S
Pk(ds

′|s, a)
[

sup
a′,k′∈A×K

Q1(s
′, a′, k′)− sup

a′,k′∈A×K
Q2(s

′, a′, k′)

]

+ γκ1k>κ

∫

S
Pκ(ds

′|s, a)
[
Q1(s

′, a, k − κ)−Q2(s
′, a, k − κ)

] ∣∣∣∣

≤ sup
s,a,k∈S×A×K

{
γk1k≤κ

∫

S
Pk(ds

′|s, a)
∣∣∣∣ sup
a′,k′∈A×K

Q1(s
′, a′, k′)− sup

a′,k′∈A×K
Q2(s

′, a′, k′)

∣∣∣∣

+ γκ1k>κ

∫

S
Pκ(ds

′|s, a)
∣∣∣∣Q1(s

′, a, k − κ)−Q2(s
′, a, k − κ)

∣∣∣∣
}

≤ sup
s,a,k∈S×A×K

{
γk1k≤κ

∫

S
Pk(ds

′|s, a) sup
ã,k̃∈A×K

∣∣∣∣Q1(s
′, ã, k̃)−Q2(s

′, ã, k̃)

∣∣∣∣

+ γκ1k>κ

∫

S
Pκ(ds

′|s, a) sup
s̃,ã∈A×K

∣∣∣∣Q1(s̃, ã, k − κ)−Q2(s̃, ã, k − κ)
∣∣∣∣
}

≤ sup
s,a,k∈S×A×K

{
γk1k≤κ

∫

S
Pk(ds

′|s, a) sup
s̃,ã,k̃∈S×A×K

∣∣∣∣Q1(s̃, ã, k̃)−Q2(s̃, ã, k̃)

∣∣∣∣

+ γκ1k>κ

∫

S
Pκ(ds

′|s, a) sup
s̃,ã,k̃∈S×A×K

∣∣∣∣Q1(s̃, ã, k̃)−Q2(s̃, ã, k̃)

∣∣∣∣
}

≤ sup
s,a,k∈S×A×K

{(
γk1k≤κ + γκ1k>κ

)
∥Q1 −Q2∥∞

}

= ∥Q1 −Q2∥∞ sup
k∈K

γmin{k,κ} = γ∥Q1 −Q2∥∞.

(ii): Since the contraction property holds, and being (S ×A×K, d∞) a complete

metric space (with d∞ being the distance induced by L∞ norm), the Banach Fixed-

point theorem holds, guaranteeing convergence to a unique fixed point.

We now show that Q⋆K is a fixed point of T ⋆. We first need to define the extended

Bellman expectation operators Tψ : B(S × O) → B(S × O) with f ∈ B(S × O) and
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ψ ∈ Ψ:1

(Tψf)(s, a, k) = rk(s, a) + γk
∫

S
Pk(ds

′|s, a)V (s′),

V (s) =
∑

(a,k)∈O
ψ(a, k|s)f(s, a, k).

As with standard Bellman operators, it trivially holds that TψQψ = Qψ ∀ψ ∈ Ψ. Thus,

we can take into account the definition of value function V ψ of a policy ψ and the

standard Bellman Equations:

Qψ(s, a, k) = rk(s, a) + γk
∫

S
Pk(ds

′|s, a)V ψ(s′),

V ψ(s) =
∑

(a,k)∈O
ψ(a, k|s)Qψ(s, a, k).

(4.8)

Following the same argument as in Puterman, 2014 [27], it holds that the optimal op-

erator T ⋆ improves the action-value function, i.e. T ⋆Qψ ≥ Qψ, and consequently Q⋆K is

the (unique) fixed point for T ⋆, i.e., T ⋆Q⋆K = Q⋆ by contraction mapping theorem.

Moreover, it holds that T κQψ = Qψ:

(T κQψ)(s, a, k) = rκ(s, a) + γκ
∫

S
Pκ(ds

′|s, a)Qψ(s′, a, k − κ)

= rκ(s, a) + γκ
∫

S
Pk(ds

′|s, a)
[
rk−κ(s

′, a) (4.9)

+ γk−κ
∫

S
Pk−κ(ds

′′|s′, a)V ψ(s′)
]

= rκ(s, a) + γκ
∫

S
Pk(ds

′|s, a)rk−κ(s′, a)
︸ ︷︷ ︸

rk(s,a)

(4.10)

+ γk
∫

S
Pκ(ds

′|s, a)
∫

S
Pk−κ(ds

′′|s′, a)V ψ(s′′) (4.11)

= rk(s, a) + γk
∫

S
Pk(ds

′|s, a)V ψ(s′) = Qψ(s, a, k),

where in Equation (4.11) we used Lemma 4.1.1.

In conclusion,

HκQ⋆K =

(
1k≤κT

⋆ + 1k>κT
κ

)
Q⋆K

= 1k≤κT
⋆Q⋆K + 1k>κT

κQ⋆K
= 1k≤κQ

⋆
K + 1k>κQ

⋆
K = Q⋆K.

1The following can be extended without loss of generality to a continuous action space.

34



(iii) We provide the proof of monotonic property: given (s, a) ∈ S ×A, and given

k ≤ k′, we have:

Q⋆K(s, a, k) = (T ⋆Q⋆K)(s, a, k)

= rk(s, a) + γk
∫

S
Pk(ds

′|s, a) max
a′,k′∈A×K

Q⋆K(s
′, a′, k′)

≥ rk(s, a) + γk
∫

S
Pk(ds

′|s, a)Q⋆K(s′, a, k′ − k)

= T kQ⋆K(s, a, k
′) = Q⋆K(s, a, k

′).

Thus, operator Hκ contracts to the optimal action-value function Q⋆K, which, thanks
to monotonicity, has its highest value at the lowest possible persistence. In particular,

it is simple to show that Q⋆K(s, a, 1) = Q⋆(s, a) for all (s, a) ∈ S ×A (Corollary 4.1.1),

i.e., by fixing the persistence to k = 1 we retrieve the optimal Q-function in the original

MDP, and consequently, we can reconstruct a greedy optimal policy.

Corollary 4.1.1 (Equivalence of Q⋆K and Q⋆). For all (s, a) ∈ S ×A, the optimal

action-value function Q⋆ and the optimal option-value function restricted to the primitive

actions coincide, i.e.

Q⋆K(s, a, 1) = Q⋆(s, a).

Proof. Trivially, Q⋆K, defined on Ψ, coincides with the classic Q⋆ defined on the primitive

policies π ∈ Π: in a first instance, we remark that Π ⊂ Ψ, hence all the policies defined on

the space of primitive actions belong to the set of persistent policies. Furthermore, we can

consider property (iii) of Theorem 4.1.1. As a consequence Q⋆K(s, a, 1) ≥ Q⋆(s, a, k)∀k ∈
K, i.e., for each state s ∈ S there is at least one optimal primitive action a ∈ A which

is optimal among all the option set O. Consequently, the two optimal action-value

functions coincide.

4.2 Persistent Q-learning

It may not be immediately clear what are the advantages of Hκ over traditional updates.

These become apparent with its empirical counterpart Ĥκt = 1k≤κT̂ ⋆t + 1k>κT̂
κ
t , where:

(
T̂ ⋆t Q

)
(st, at, k) = rkt+1 + γk max

(a′,k′)∈O
Q(st+k, a

′, k′),
(
T̂ κt Q

)
(st, at, k) = rκt+1 + γκQ(st+k, a

′, k − κ).

These empirical operators depend on the current partial history, which we define as:

Hκ
t := (st, at, rt+1, st+1, rt+2, . . . , st+κ), used by Algorithm 4.8 to update each persistence

35



in a backward fashion, as illustrated also in Figure 4.1. At timestep t, given a sampling

persistence κt, for all sub-transitions of Hκ
t , starting at t + i and ending in t + j, we

apply Ĥj−it to Q(st+i, at, k + d), for all d ≤ Kmax − k, where k = j − i.

st st+1 st+2

rt+1 rt+2

max
(j = 2, i = 1)

max
(j = 2, i = 0)

max

(j = 1, i = 0)

Figure 4.1: An example of the application of Algorithm 4.8 with κt = 2 and Kmax = 3. Rows from top to bottom

represent the updates in order. Updates involving the application of T̂ ⋆
t and T̂κt

t are denoted, respectively, by

magenta and blue nodes, while dashed arrows represent the bootstrap persistence.

With these tools, it is possible to obtain the Persistent Q-learning algorithm (ab-

breviated as PerQ-learning), a persistent extension of Q-learning (Watkins, 1989 [39]),

described in Algorithm 4.9. The agent follows a policy ψϵQ, which is ϵ-greedy w.r.t. the

option space and the current Q-function.

This approach extends the MSA-Q-learning algorithm presented in Schoknecht et

al., 2003 [30], by bootstrapping higher persistence action values from lower ones. More

precisely, the method developed in Schoknecht et al., 2003 [30] applies the same updates

of Algorithm 4.9 for what concerns T̂ ⋆, but does not use T̂ κ instead. As it will be shown

in the empirical analysis, in some domains this difference can be crucial to speed up

the convergence. Similarly to MSA-Q-learning, PerQ-learning performs these updates

backwards to allow for an even faster propagation of values. The proposed approach also

differs from TempoRL Q-learning Biedenkapp et al., 2021 [5], where action-persistence

is selected using a dedicated value-function, which is learned separately from the Q-

function.

The asymptotic convergence of Persistent Q-learning to Q⋆K directly follows from

the application of the results in Singh et al., 2000 [33], thanks to the fact that Hκ is a

contraction, provided that their (mild) assumptions are satisfied.
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Algorithm 4.8 All Persistence Bellman Update

Input: Sampling persistence κt, partial history H
κt
t ,

1: Q-function Q.

Output: Updated Q-function Q′

2: Q′ ← Q

3: for j = κt, κt − 1 . . . , 1 do

4: for i = j − 1, j − 2, . . . , 0 do

5: k ← j − i
6: Q′(st+i, at, k)← (1− α)Q(st+i, at, k)+
7: αT̂ ⋆t+iQ(st+i, at, k) ▷ Optimal update

8: for d = 1, 2, . . . , Kmax − k do

9: Q′(st+i, at, k + d)← (1− α)Q(st+i, a, k + d)+

10: αT̂ kt+iQ(st+i, at, k + d) ▷ Bootstrapping update

11: end for

12: end for

13: end for

Algorithm 4.9 Persistent Q-learning (PerQ-learning)

Input: Learning rate α, exploration coefficient ϵ,

1: number of episodes N

Output: Q-function

2: Initialize Q arbitrarily, Q(terminal, ·, ·) = 0

3: for episode = 1, . . . , N do

4: t← 0

5: while st is not terminal do

6: at, κt ∼ ψϵQ(st)

7: for τ = 1, . . . , κt do

8: Take action at, observe st+τ , rt+τ
9: end for

10: Store partial history Hκt
t

11: Update Q according to Alg.4.8

12: t← t+ κt
13: end while

14: end for
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Chapter 5

Algorithm Implementation

In this chapter, we present the implementation of two versions of the Persistent Q-

Learning presented in section 4.2. In section 5.2 we extend the tabular version of

Q-Learning with the new operator discussed before. In section 5.3 we introduce the

TensorFlow library and Baselines framework, used to build the neural network for our

experiment.

5.1 Language and Library

All the code created in this thesis is written in Python. Python is an interpreted, in-

teractive, object-oriented programming language. It is widely used in Machine Learning

field thanks to the simple syntax, which makes easy and fast to develop applications,

and all the libraries already created that support ML algorithms implementation and

extensions.

Gym All the environments tested in our work, presented in deep in next sections,

are taken by the Gym OpenAI framework. Gym provides a common interface used to

access the data retrieved from the underlying environment. One can also extend the

basic environment, changing the rule or adding a wrapper, to extend or process the data

exposed by the library.

TensorFlow TensorFlow is an end-to-end open source platform for machine learning.

It has a comprehensive, flexible ecosystem of tools, libraries and community resources

that lets researchers push the state-of-the-art in ML and developers easily build and

deploy ML powered applications. It is written with Python, C++ and CUDA and it is

used for tensor computation through the GPU acceleration. We will use it to create the



neural network that represents our Q-function and to implement the back-propagation

part.

Baselines Baselines (Dhariwal et al., 2017 [9]) is another useful Python framework

that provides basic implementation of common Deep Reinforcement Learning algorithms

such as DQN, A3C, PPO and so on. It uses TensorFlow to build all the networks and

to implement back propagation. We used baselines for both test DQN and to extend

already written code for DQN to produce Deep Persistence Q-Learning. It is better

defined in the section 5.3.1

Tensorboard Another tool provided by TensorFlow is Tensorboard. With this tool

it is possible to collect and plot custom data during exploration and training. We will

see Tensorboard for data visualization in section 7.1

5.2 Persistent Tabular Q-learning

The first step to prove the soundness of our new algorithm is the implementation of

the tabular version used on simple environments like a maze. We have created a class

PersistentAgent initialized with the following parameters:

• env: the gym environment used in the run.

• max persistence: it’s the main parameter of our algorithm. It represents the

maximum persistence that our agent can perform and affects Q-table dimension.

• discount factor: this is γ introduced in Chapter 2 to compute cumulative dis-

counted rewards.

• learning rate: α used during the update of our Q-function.

• exploration factor: the starting ε value for our ε-greedy exploration. During the

initialization ε = exploration factor

• exploration factor decay: a constant in range [0, 1] used to decrease ε at the end

of each episode. At each episode, the agent updates ε = εdecay

This class represents the agent used to wrap and store all data collected during explo-

ration, encapsulate the state of our environment and to perform the main task, i.e. learn

the Q-value function. During the initialization, our agent creates the model, a simple

multidimensional array with dimension (dim(s), dim(a), kmax) where dim(s) and dim(a)

are the observation space dimension and action space dimension of the Gym’s env object

and kmax is equal to max persistence parameter. It creates also persistence history to
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collect persistence trace meanwhile executing the same action in the form of a list of

tuples (st, rt). During the first phase the Q-table is initialized with small values from

a Gaussian with mean 0 and variance 1. There are two main methods exposed in this

class:

• get action(state): used to choose the next action to perform.

• train(state, action, next state, reward, done): used to train our agent given an

experience tuple.

Get action function The method get action takes the Gym environment’s state as

input and computes the next action to perform.

Algorithm 5.10 Function get action(state)

Input: Environment state s

Output: Action a and persistence k

1: if End persistence reached then

2: a, k ← derived from ε-greedy policy based on Q-table

3: else

4: a← previously chosen action

5: Decrease current persistence index

6: end if

7: return a, k

The procedure is relatively simple: if the agent has reached the end of persistence it

has to choose an action based on the current state. The agent recognizes the end of the

persistence by just saving how many times it has repeated the action. With ε-greedy

policy, with persistence extension, we mean the following:

π(a, k|s) =





ε

|A||K| + 1− ε if a, k ∈ argmaxa′∈A
k′∈K

Q(s, a′, k′)

ε

|A||K| otherwise

, (5.1)

where ε is a value in the range [0, 1] and decreased each episode. The equation 5.1 is

valid only when we have a discrete action space A and a persistence space K.

Train function After the agent chooses an action and a persistence it executes the

action for an amount of steps equal to the chosen persistence and, during the execution,

it collects the persistent transition. This will constitute the input of the train function,
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the core of our algorithm. Now we need to update our knowledge of Q-function. This

part is crucial to understand the mechanism, to simplify the process we make an example

through figure 5.1. We consider a persistent transition with dimension 3.

S0 S3S2S1 r2r0 r1

a aa
t=0, k=1

S0 S3S2S1 r2r0 r1

a aa
t=2, k=3

S0 S3S2S1 r2r0 r1

a aa
t=1, k=3

S0 S3S2S1 r2r0 r1

a aa
t=0, k=3

S0 S3S2S1 r2r0 r1

a aa
t=1, k=2

S0 S3S2S1 r2r0 r1

a aa
t=0, k=2

Figure 5.1: Train process with sub-persistence transitions. Red is the initial state and blue is the last state of the

transition.

We need to analyze all the sub persistence transitions, starting from the last transition

s2 → s3. Then we take all the transitions moving back the initial state (the red circle)

to the left one step at the time, until we reach the first state of the original persistent

transition. At that point we will consider as final state the immediately previous state

of the current final one (the blue circle). We will repeat the procedure until we process

all the sub-persistent transition. For each sub-persistent transition we have to:

• Apply the Persistent Bellman optimal operator (see procedure 4.8 at line 7) to the

transition.

• Consider the sequence of persistences value k included between the persistence of

the current sub-transition and the max persistence parameter. For each persis-

tence in the sequence we consider a fictitious transition formed by two part. The

first part is the original sub-transition and the second part is bootstrapped from
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the Q-function. We take every fictitious transition as an input of the Bellman

bootstrap operator (see procedure 4.8 at line 10).

The bootstrap part is one of the main differences with the previous algorithms.

Thanks to this we can estimate persistence greater then the one sampled with the current

value stored into the Q-function. In figure 5.2 we can see an example of bootstrap update,

where the Q value for state s1, action a and persistence k = 5 (sub-transition length

of k = 2 and the remaining persistence of 3) is updated with the 2-persistence sub-

transition and the remaining part bootstrapped from the current estimate of Q-function

Q(s3, a, 3).

S1 S3S2
r1 r2

a a a a a
t=1, k=3

Figure 5.2: Example of bootstrap update for persistence 5 starting from a sub-persistent transition of 2. Red is

the initial state and blue is the last state of the transition. The blue dotted lines represent the additional steps

of the bootstrap.

Main loop The main loop of our algorithm is represented in a schematic way in figure

5.3, in which we can see the interaction between the agent and the environment. Before

the main loop we have an initialization part for basic information. The following list

summarizes the basic parameters:

• episodes: total number of episodes to simulate.

• seed: the seed used for the pseudo number generator to initialize all the random

process. Used to guarantee the reproducibility of the experiment.

• env: the name of the environment (see the list 7.2.1).

. During the interaction, the agent collects the reward of the episodes, the mean persis-

tence chosen by the agent and the ε value at the end each episode. We save all these

information in an npy file to use them in the benchmark process to compare different

seeds, different configurations and other algorithms.
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At
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Figure 5.3: Environment and agent interaction with persistence.

5.3 Deep Persistent Q-learning

It is important to introduce how Baselines works and how it implements basic Reinforce-

ment Learning algorithms, after that we can explain how it is possible to extend it with

a new procedure.

5.3.1 Baselines

Baselines is a library provided by OpenAI to make easier for the research community to

replicate, refine, and identify new ideas, and to create good baselines to build research

on top of. The entire framework is organized inside the baselines package, with one main

entry point. We can run the learn script with different parameters, the following list

contains the main ones:

• Algorithm name: the name of the learner chosen (e.g. “deepq” for DQN, “perdq”

for our algorithm).

• Gym environment: the name of the environment (e.g. CartPole).

• Number of time steps: how many steps to simulate.

We can add personal parameters used to build our learner or the network used by the

train process. Inside the Baseline framework it is easy and fast to create and encapsulate
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a new RL algorithm. This is extremely useful because we can define our learn function

with all kind of parameters and then assign them when we run Baselines framework.

5.3.2 DeepQ Baselines

We have introduced in section 2.6.2 how how Deep Q-Learning works, now we can see

how it is implemented in Baseline library, how to use TensorFlow and how it is possible

to extend and use common code produced by OpenAI’s framework.

Replay Buffer First important element is the replay buffer, used to collect transi-

tions and sample tuples to use during the train session. The generic replay buffer is

represented by the class ReplayBuffer that takes in the constructor only the size param-

eter, the max dimension of this FIFO buffer. We have just two methods for the replay

buffer:

• add : it takes a tuple with current state, gained reward, action, next state and

if the environment has reached the end. It is used to store a transition of the

environment.

• sample: it takes the batch size, how many transitions we want to extract from the

buffer, and returns a list of transitions.

The PrioritizedReplayBuffer object is an extension of ReplayBuffer with the same inter-

face, but the transitions are not sampled uniformly, they are sampled with a distribution

based on the priority of each sample, where the priority is back-forwarded by the TD

error generated during the train step on that sample.

Base Network As we have said, in Deep Q-Learning we have to build a neural net-

work to represent the Q-function. For example we can use a fully connected network or

a convolutional network as base network. Baselines already provides the implementation

of the main well-known network, as the multi layer perceptron (MLP), a multi convo-

lutional layer network, the IMPALA network (Lasse et al., 2018 [15]) or the network

proposed by Mnih, Kavukcuoglu, Silver, et al., 2015 [21]. The last one is the most com-

mon network used with image based Reinforcement Learning in games and published in

Nature Journal. All the networks are configurable and ready to be used to build custom

models. Thanks to the utilities defined by the Baselines framework we can build a more

complex network. For the Deep Q-Learning, the network is created passing the following

parameters:

• network: the base network discussed before, we can provide a string like ”mlp”

or ”conv only” to choose one of the predefined network utilities, or we can use a

personal defined graph created with TensorFlow.
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• hiddens: an array of integer values, used to add one fully connected layer each value

with the specified hidden neurons. They are added at the end of the network, both

for the state value part and the action value (the advantage function) if dueling

is activated.

• dueling: this is a boolean parameter to use or not the dueling.

• layer norm: this is a boolean parameter to normalize each layer defined by hiddens.

• network kwargs: are passed to the utiliy of baselines to create the network, used

to setup the different netwoks, for example the number of (shared) hidden layers

and hidden neurons

Graph creation After the network definition, we need to build two parts of the

graph, defined as follows:

• build act: used to create the part of the TensorFlow graph to choose an action,

by evaluating the Q-function, selecting the max value and following an ϵ-greedy

policy based on the Q-value.

• build train: used to create the part of the TensorFlow graph to train the network,

implementing the back propagation, the target network and evaluating the loss

function.

5.3.3 Deep Persistent Q-learning Implementation

In the previous section we introduced in a very general way the common facilities of

what we have used to build our algorithm. We are now able to implement our new

TensorFlow graph and algorithm.

Replay Buffer The replay buffer is the same discussed in 5.3.2, but we have extended

the concept to the persistence. First we have just created a replay buffer for each

persistence, to be able to save each persistence transition individually. We have tested

both configuration with prioritized and not prioritized replay buffer. To generate each

sub-transition starting from a bigger one we used the following procedure:
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Algorithm 5.11 Multiple Replay Buffer Storing

Input: Maximum persistence Kmax, replay buffers (Dk)Kmax
k=1 , transition tuple

(st, at, κt, H
κt
t ).

1: for k = 1, . . . , Kmax do ▷ Separate each k-persistence transition

2:

3: for τ = 0, . . . ,max{κt − k, 0} do ▷ Transition for optimal update

4: Dk ← Dk ∪ (st+τ , at, st+τ+k, r
k
t+1+τ , k, 0)

5: end for

6:

7: for τ = 1, . . . ,min{κt, k − 1} do ▷ Transition for bootstrap update

8: Dk ← Dk ∪ (st+κt−τ , at, st+κt , r
τ
t+1+κt−τ , τ, k − τ)

9: end for

10: end for

When our agent chooses an action and a persistence, it collects all the states traversed

and rewards gained and at the end it calls the method 5.11, that accepts the transition

as a list, to split it in each individual sub-transition, for both optimal and bootstrap

update. In code 5.11 the outer loop is used to extract each k-persistence transition to

kmax. For example, we consider κ = 3, as illustrated in figure 5.1, so when k = 1 we

extract all persistence transitions with dimension one. The two inner loops are used to

extract transitions for optimal update (the first loop) and for the bootstrap update (the

second loop). For k = 1 only the first loop works, obviously there is no possibility to

bootstrap an update with dimension 1, so the second loop works only with persistence

greater than 2. The transition added to each Dk list is composed by the following

elements:

• st+τ and st+κt−τ : are the initial states, corresponding to the red state in figure

5.1.

• at: current action, the same for each transition.

• st+τ+k or st+κt : this is the last sampled state, corresponding to the blue state in

figure 5.1

• rkt+1+τ or rτt+1+κt−τ : is the discounted sum of reward, corresponding to the sum

of each reward gained from red state to blue state in figure 5.1.

• k or τ : is the number of states traversed in the actual persistence sub-transition.

Corresponds to the distance from red and blue states in figure 5.1.
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• 0 or k − τ : these are the remaining part used by bootstrap update. With 0 we

mean no bootstrap transition so the optimal updated is used. With a value greater

than 0 we specify a bootstrap transition. When the learn function extracts such

element from the replay buffer, this value represents the remaining part used to

evaluate the Q. With value of 3, like in figure 5.2, the bootstrap update uses the

value Q(st+2, at, 3).

Network The standard DQN presented in Section 5.3.2 is not suited for our purpose,

so we have extended the base network. For learning in the options space O, the standard
DQN is augmented with Kmax distinct sets of action outputs, to represent Q-value of

the options space O = A×K, while the first layers are shared, similarly to previous

works (Arulkumaran et al., 2016 [2]; Lakshminarayanan et al., 2017 [14]; Biedenkapp

et al., 2021 [5]).

In figure 5.4 we provide an example of the network constructed for the Mountain

Car environment with an MLP shared part and the dueling activated.

+ k = 16

+ k = 1

Shared part fully connected

One part for each persistence

Figure 5.4: MLP example network with shared configuration
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Graph creation As we have said in paragraph 5.3.2 we need two functions, build act

to implement the choose of an action and build train to implement the back propagation

part of the network. We first introduce the build act function used for our algorithm.

Build act function build act is called inside the build train function and the result

is returned to the main loop. It returns a Tensorflow wrapper to evaluate the graph when

needed. In figure 5.5 is shown the graph created by the function for the environment

Freeway, subdivided by logical blocks. It takes 3 input:

• observation: the state of the environment. For this example it is a tensor of size

84 × 84 × 4 × bs, where 84 × 84 × 4 is the dimension of the image of Deep mind

wrapper and bs is the batch size, the number of states in which we want to evaluate

the graph. bs it is normally one, the actual state of the environment.

• stochastic: a boolean parameter to override the random choice.

• eps: the updated value of ε. It is saved inside a Tensorflow variable and used the

next time we evaluate the graph.
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Figure 5.5: Tensorflow’s Graph created by build act function. Yellow nodes are input variables.

The argmax 2d function is used to extend the argmax to a multi dimensional func-

tion, like the Q-function created to integrate the persistence. The procedure takes a

tri-dimensional tensor as input (batch × action × persistence), reshapes it to a mono-

dimensional tensor, retrieves the argmax and then returns the unraveled index of each

element of the batch.

Build train function We need now to use build the graph used to compute the tar-

get values, both for optimal and bootstrap update, to calculate the TD-error, create the

gradients of the graph and update the weight of our networks trough back-propagation.

We have schematized the graph in figure 5.6. The procedure is the following:

1. We need first to evaluate the Q-function and the Target Q-function in the next

state (obst+1).
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2. The result of the first is used to get the action and persistence with maximum.

q-value and used both as indexes to get the value of the Target Q-function (this

part is summarized by the Double Q block).

3. The evaluation of Target Q-function with obst+1 is also used to get the q-value

with the inputs action and remainder as indexes.

4. We need to choose for the current sample if it is an optimal or a bootstrap update.

If the remainder is greater than 0, it is a bootstrap update.

5. Now the selected q-value is used to compute the target value for the update of the

Q-function for the current sample.

6. Concurrently we have to compute the current value of theQ-function in the current

sample, by evaluating it with in the current state (obst), the performed action and

persistence.

7. We can now compute the error of our network. For our implementation we have

used the Huber loss weighted for the current batch

8. Finally, we can compute the gradient for the weights of our network.

Q-Function

Target

Q-Function

obst

obst+1

Q-Function No

Double Q

remainder > 0

remainder

action

Yes

Select q-value

q-value

Optimal

or


bootstrap

cumulated

reward

Target
Error

Select q-value

action

persistence

Figure 5.6: Tensorflow’s Graph created by build train function. Yellow nodes are input variables.

At the end of this process we have a list of gradients equal to kmax. In each list we have

the gradients of the common part of our network (the convolutional network for example
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for the Atari games) and the gradients of the weights for the single part, specialized for

each persistence. Every time we need to train we just iterate over each replay buffer (one

for each persistence), extract a number of samples equal to the batch size parameter and

then update our network using just the gradients for the current persistence.
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Chapter 6

Empirical Advantages of

Persistence

In this chapter we want to discuss about the benefits of persistence. The main benefits

related to the adoption of persistence are mainly two: exploration and learning. Per-

sistence helps exploring larger regions of the state space, as we will discuss in Section

6.1; moreover, especially in environments where the reward is sparse, the related infor-

mation can be learnt faster with direct updates, hence learning is improved, as seen in

Section 6.3.

6.1 Exploration

When we adopt a persistent ε-greedy policy (defined by 5.1) we can modify the distri-

bution of trajectories generated by our agent. Hence, we study the effects of a persisted

exploratory policy on the MDP, i.e., a policy ψ ∈ Ψ over persistence options O. In dif-

ferent environments (like Mountain Car) this allows reaching faster states far from the

starting point and, consequently, propagating faster the received reward signals. The

reason is due to the increased chances of 1-persistent policies to get stuck in specific

regions. In fact, as explained in Amin et al., 2020 [1], persistence helps to achieve self-

avoiding trajectories, by increasing the expected return time in previously visited states.

In order to show what we mean when we say that an agent can get stuck in a region, we

have tested a full random policy ψ ∈ Ψ over persistence options O in Mountain Car. In

this environment, our agent can control a car in a one dimensional space. The possible

actions are, accelerate left, accelerate right and do not accelerate. The target of the car

is to drive up a steep hill (example in Figure 7.12).

We have collected all the states traversed by a full random agent with different values

of Kmax, both with a fixed persistence and a dynamic persistence. The results are shown



in figure 6.1. In each figure the x and y axes represent in order the position of the car

and its velocity, and both constitute the state space of our environment. The value in

each point represents in a logarithmic scale the counter of visited states. As we can

see, when Kmax is low our agent has less chance to reach the goal (represented by the

blue dotted line). When we increase the persistence, the distribution over the states

starts spreading in all the state space, covering a wider area than with low persistences.

Especially, with persistence 1 and 4, our agent is not able to reach the goal. It is easy

to understand why the car is stuck in the initial region when we have a low persistence,

indeed we need to increase momentum in order to climb the hill. A rapid and continuous

change in our decisions cannot bring any advantages to our momentum. This case will

always happen when we start the learning process, in fact, the agent has not got any

knowledge about the environment, so it is led to choose actions indistinctly.
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Figure 6.1: A full random policy ψ ∈ Ψ over persistence options O in Mountain Car environment. The value

represents in a logarithmic scale the counter of visited states. The x and y axes are respectively the position and

the velocity of the car. We have used different Kmax values. 10.000 episodes
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In figure 6.2 we used a fixed persistence in the same environment. First, we can

observe that, even if the goal for some values of K is almost equally visited, with a fixed

persistence we have a different distribution of visited states. In the figure it is possible

to observe different wide areas with a lower density (represented by the darkest colour).

Our agent rarely visits these regions of state space. This means that with a dynamic

persistence we can cover a wider set of trajectory from the initial point. Moreover, a

fixed persistence degrades mush faster than a dynamic one, as we can see in figure 6.2

with K = 64 compared to the dynamic version in figure 6.1.
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Figure 6.2: A full random policy with fixed persistence K in Mountain Car environment. The value represents in

a logarithmic scale the counter of visited states. The x and y axes are respectively the position and the velocity

of the car. We have used different K values. 10.000 episodes
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6.2 Kemeny’s Constant

As a further analysis, we can compute the Kemeny’s constant (Catral et al., 2010 [7];

Patel et al., 2015 [25]), which corresponds to the expected first passage time from an

arbitrary starting state s to another one s′ under the stationary distribution induced by

ψ.

First, we provide more details regarding how to obtain the transition Kernel implied

from a persistent random variable acting on the environment, and how to compute its

Kemeny’s constant. After that, we have considered four discrete tabular environments

for our evaluation: Open is a 10x10 grid with no obstacles, while the others, presented

in Biedenkapp et al., 2021 [5], are depicted in Figure 7.10.

Consider an agent where actions are sampled from a generic policy π(·|s) =: π

on the action space A, independent from the current state, and where persistence is

sampled from a discrete distribution ω with support in {1, . . . ,Kmax}, independent from
π. They jointly constitute the policy ψ over persistence options. The k-step Transition

Chain induced by π over the state space S is defined as P πk (s
′|s) =

∫
A Pk(s

′|s, a)π(da|s).
This is equivalent to the Markov chain induced by π in the k-step MDP, where the

control frequency is set to k times the base duration δ. We now consider the transition

probability induced by the joint probability distributions π and ω up to a maximum of

Kmax steps, which for simplicity will here be referred as K. In order to define it, it is

necessary to consider a fixed horizon H: when the total number of steps in the trajectory

reaches the horizon, then the (eventual) persistence is stopped. This means that, if we

start for example at the H − j step, the probability of persisting j times the sampled

action is equivalent to
∑

i≥j ωi. This assumption is necessary for the Markov condition

to hold. As a consequence, we define ω̃j =
{
ω̃i,j
}
i
as a reduced distribution of ω to

maximum j steps:

ω̃i,j :=

{
ωi if i < j
∑K

i=j ωi otherwise
.

Finally we can recursively define the transition probability in H steps, induced by π

and ω as:

Pπ,ωH :=
K∑

k=1

ω̃k,H∧KPπ,ω̃H−k

H−k P πk , (6.1)

where Pπ,ω0 = 1S×S and a ∧ b = min{a, b}. Equation (6.1) is not trivial and needs some

clarifications. Let’s consider an example, where K = 4 and H = 3. In this case the

persistence distribution is ω = {ω1, ω2, ω3, ω4}.

• With probability ω3 + ω4, the sampled persistence is equal to 3, and the related

transition is P π3 (since H = 3, sampling persistence 4 leads to repeat the action

for 3 times);
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• With probability ω2, the sampled persistence is equal to 2. The first two steps

evolve as P π2 , and the last step follows Pπ,ω̃1
1 = P π;

• With probability ω1, the action is selected only once, and at the next step it has

to be sampled again and eventually persisted for two steps w.p. ω2 + ω3 + ω4.

In other terms, denoting ω̃1 = ω1, ω̃2 = ω2, and ω̃3 = ω3 + ω4:

Pπ,ω3 =ω̃3P
π
3 + ω̃2P

πP π2 + ω̃1[ω̃1P
πP π + (ω̃2 + ω̃3)P

π
2 ]P

π

=ω̃31P
π
3 + ω̃2 [(ω̃1 + ω̃2 + ω̃3)P

π]︸ ︷︷ ︸
=Pπ,ω̃1

1

P π2 +

+ ω̃1 [ω̃1(ω̃1 + ω̃2 + ω̃3)P
πP π + (ω̃1 + ω̃2)P

π
2 ]︸ ︷︷ ︸

=Pπ,ω̃2
2

P π1

=ω̃3Pπ,ω0 P π3 + ω̃2Pπ,ω1 P π2 + ω̃1Pπ,ω2 P π1

The meaning of the modified distribution ω̃ is related to the fact that, once the trajectory

evolved for k steps, the remaining H − k are still sampled, but when the last step H is

reached, then the agent stops repeating in any case.

Kemeny’s constant computation The formula used to compute the Kemeny’s

constant from the transition Kernel Pπ,ωH can be obtain thanks to the following Proposi-

tion Kirkland, 2010 [13].

Proposition 6.2.1 (Kemeny’s constant of an irreducible Markov Chain). Consider

a Markov chain with an irreducible transition matrix P with eigenvalues λ1 = 1 and

λi, i ∈ {2, . . . , n}. The Kemeny constant of the Markov chain is given by

Kem =

n∑

i=2

1

1− λi
.

The introduction of the parameter H is necessary to retrieve an irreducible transition

matrix Pπ,ωH maintaining the Markov property.
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Figure 6.3: Normalized Kemeny’s constant and entropy in Tabular environments as function of the maximum

persistence and horizon H.

In order to compute the curves of Kemeny’s constant in Figure 6.4, we consider

Kmax as a variable, and exploration is performed by a discrete uniform random vari-

able in O =
⋃
k∈KO(k) , i.e., the distribution π is uniform over the action space

A = {left, down, right, up}, and ω uniform over K. In Figure 6.3 we show the curves

of Kemeny’s constant and entropy with different value of Kmax and H, and Figure 6.4

refers to the same Kemeny’s curves selected for H = 30.

As we can see in the figure, for each value of H there is a similar pattern: increasing

Kmax, the related values for Kemeny’s constant initially tend to decrease, indicating that

persistence helps for a faster exploration through the state space. Persisting actions for

long times does not help exploration, since agents might be more frequently standing

in front of walls. Consequently, depending on the different design of the environments,

Kemeny’s values begin to increase. In the bottom plots of Figure 6.3 we can observe also

the curves related to the entropy induced by Pπ,ωH : again, the maximum value of entropy

is attained by Kmax > 1. However, the curves soon start to decrease dramatically,

indicating that reaching distant states sooner is not strictly related to its visitation

frequency.
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Figure 6.4: Normalized Kemeny’s constant in tabular environments as function of the maximum persistenceKmax.

Bullets represent the minimum value of the constant.

In Figure 6.4, we plot the variations of Kemeny’s constant as a function of the

maximum persistence Kmax, while following a uniform policy ψ over O. We observe

that increasing Kmax promotes exploration, and highlights the different values of Kmax

attaining the minimum value of the constant, due to the different complexity of the

environments.

6.3 Sample Complexity

The second relevant effect of persistence concerns with the sample complexity. The intu-

ition behind persistence relies on the fact that the most relevant information propagates

faster through the state-action space, thanks to multi-step updates. Moreover, these up-

dates are associated to a lower discount factor, which allows for better convergence rates.

In order to evaluate the sample efficiency of PerQ-learning, separately from its effects

on exploration, we considered a synchronous setting (Kearns et al., 1999 [12]; Sidford

et al., 2018 [32]) in a deterministic 6x6 Gridworld. At each iteration t, the agent has

access to a set of independent samples for each state-action pair. In standard Q-learning

the samples are used to update the action value function Q(s, a) for each (s, a) ∈ S ×A.
In PerQ-learning, the samples are combined to obtain each possible set of κ-persistent

transitions, i.e., the tuples related to each possible (s, a, k) ∈ S × O, with Kmax = 6;

finally, the persistent action value function is updated.
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Figure 6.5: Grid environment. Red cell denote holes, green cells the goal.

The environment considered is depicted in Figure 6.5: a 6x6 deterministic Gridworld,

with holes. The set of (primitive) actions is A = {left, down, right, up}. Transitions are
deterministic. Going outside the borders and falling off a hole result in a punishment

with a negative reward, respectively equal to -100 and -10 (hence, outer borders are not

blocking the movement of the agent). The reward for reaching the goal instead is equal

to +100. In all these cases the episode terminates; all other states result in a small

negative reward (-1), to incentivize finding the shortest paths towards the goal.
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Figure 6.6: k-value function representation for different persistence values k (Kmax = 6). Red cells denote holes,

green cell the goal.

In order to exploit only the convergence properties of PerQ-learning algorithm, with-

out considering the exploration factor, we consider a synchronous learning framework:

we assume to have access to the whole transition model, in such that, at each iteration

t, we are able to collect an independent sample s′ ∼ P (·|s, a) for every state-action pair

(s, a) ∈ S ×A. Since the environment is deterministic, this means that we have access

to the whole transition matrix P . For each simulation, the value estimation for each

state-action pair (or state-option pair, in the case of PerQ-learning) is initialized sam-

pling from a standard Gaussian random variable. In each iteration of Q-learning, the

algorithm performs a full update of the Q-function estimates. In each iteration of PerQ-

learning, before performing the full update, the primitive tuples are combined together,

in order to collect a sample for each possible (s, a, k) pair in S ×A×K.
The representations of the k−step value functions V ⋆

k are shown in Figure 6.6, where

V ⋆
k (s) = maxa∈AQ⋆(s, a, k). It is useful to remark that this value function do not coin-
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cide with the optimal value function in the k−persistent MDPMk, as V
⋆
k (s) represent

the value function at the state s restricted to persist k times only the first action, and

the following the optimal policy π⋆.

Parameters used for experiments:

• Initial estimation: Q(s, a, k) ∼ N (0, 1) ∀(s, a, k) ∈ S ×A×K;
• Discount factor: γ = 0.99;

• Learning rate: α = 0.1;

• Maximum number of iterations: 400 (plots truncated at 200).
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Figure 6.7: L∞ error on 6x6 grid-world between synchronous Q-learning and PerQ-learning (left) and for different

persistence options k ∈ {1, ..., 6} of PerQ-learning (right). (100 runs, avg ± 95 % c.i.)

In Figure 6.7 left, we compare the L∞ error of Q-learning estimating Q⋆(s, a), i.e.,

maxs,a∈S×A |Qt(s, a) − Q⋆(s, a)|, and that of PerQ-learning estimating Q⋆K(s, a, k), i.e.,
maxs,a,k∈S×O |Qt(s, a, k) −Q⋆K(s, a, k)|, as a function of the number of iterations t. We

observe that, although estimating a higher-dimensional function (as Q⋆K(s, a, k) is a

function of the persistence k too), PerQ-learning converges faster than Q-learning. In

Figure 6.7 right, we plot the L∞ error experienced by PerQ-learning for the different

persistence options O(k), i.e., Error∞(k) := maxs,a∈S×A |Qt(s, a, k)−Q⋆(s, a, k)| for k ∈
K. We note that, as expected, higher values of k lead to faster convergence; consequently,

the persistent Bellman operator helps improving the estimations also for the lower option

sets. Indeed, we can see that also Qt(·, ·, 1), which represents the action value function

for the primitive actions, converges faster than classic Q-learning.

Conclusion In this chapter we analysed many of the advantages introduced with

dynamic persistence. First of all, we have seen how we can improve exploration by
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changing the distribution of probability over trajectories in the state space. As a result,

in some environments the possibility of avoiding stuck regions is increased, but it is also

possible to reach the goal states in a minor amount of time.

The second problem is instead related to sample complexity, and therefore to the

number of samples needed by the agent to be able to learn the model. Dynamic per-

sistence theoretically guarantees a reduction of sample complexity, in such a way the

model will eventually converge to an optimal solution in a brief time.

In the next Chapter we will see whether the mainly theoretical analyses, exposed in

the latter paragraphs, will be confirmed by the experiments.
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Chapter 7

Experimental Evaluation

In this chapter we will report the main experimental results of our work. We start with

the description of the tools used to collects and analyze the data with the chosen key

performance indicators (KPI). After that, we show our results compared with the classic

DQN and then the comparison with the TempoRL algorithm.

7.1 Methodologies

As mentioned in Section 5.1, Tensorboard is a great tool provided in the Tensorflow

package used to collect and show data in real time. It provides a Python library and a

stand alone executable that implements a local server and a web page to visualize all the

chart and other useful information. Thanks to Tensorboard we can save different type

of information during the train of our agent. The data saved are the following:

• Text data: useful to distinguish different run (results showed in figure 7.2)

• Scalar data: used to create charts, like mean reward or persistence frequency.

• Graph: created by Tensorflow, from which we can debug what we have created.

After the execution of the local server we can navigate through the data. In figure 7.1

we can see the loaded page.



Figure 7.1: Main page for the local server of Tensorboard.

In the left panel we have different options. For example we can enable and disable

different runs to compare the charts that we want. We can also modify the smoothing

parameter to smooth the chart. To select a different type of data we have to use the

panel above, for example we can choose “text”.

Figure 7.2: Text parameter saved by Tensorboard.

It is also possible to visualize a margin chart, with a mean and a boundary, through

the definition of three scalar values. The results is the following:
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Figure 7.3: Margin chart with mean and standard deviation.

Another very important tool is the graph visualization. It is useful to analyze and

debug the network creation. We can see different part of the network in figure 7.4 and

7.5

(a) Root visualization of the TensorFlow graph. (b) Part of the train component of the graph.

Figure 7.4
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Figure 7.5: Q function for for the environment Freeway with persistence 3.

Through our work we have collected the following metrics:

• Exploration percentage for each episodes (figure 7.6a)

• Mean persistence of last 10 episode to understand the agent’s behaviour (figure

7.6b)

• Chosen frequency for each persistence to analyze how many times our agents

choose each persistence (figure 7.7)

• Mean reward in the last 100 episodes as main key performance indicator to com-

pare each run with different parameters (figure 7.8)

(a) Exploration percentage (b) Mean persistence of last 10 episodes

Figure 7.6: Exploration percentage and mean persistence collected by Tensorboard
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(a) Persistence frequency k = 1 (b) Persistence frequency k = 4

Figure 7.7: Persistence frequency collected by Tensorboard

Figure 7.8: Mean reward of last 100 episodes.

After the collection and analysis of results, we have evaluated the mean and the

confidence interval through each seed of the same run. The data are collected each

episode, so we have aligned the data for the time step, through step interpolation of the

mean reward of the last 100 episodes. We have finally saved the data and plotted it

(figure 7.9).

67



Figure 7.9: Example plot with mean and standard deviation through seeds of the same run (MountainCar

environment).

7.2 Details on Experimental Evaluation

We can show now the details of our experiments. First we will show the results of the

tabular version (PerQ-learning algorithm) and then the results of the Deep Reinforce-

ment Learning version (PerDQN algorithm), both for the Mountain Car and the Atari

games environments. First we need to describe the machine used during our research.

Infrastructure The experiments have been run on a machine with two GPUs: a

Nvidia Tesla K40c and a Nvidia Titan Xp with a Intel(R) Core(TM) i5-4570 CPU @

3.20GHz (4 cores, 4 thread, 6 MB cache ) and 32 GB RAM.

7.2.1 Tabular Environments

For Persistent Q-learning we have used the following environments:

• FrozenLake, with different dimension.

• Cliff.

• Bridge.

• ZigZag.

They are all toy environments used to evaluate in a fast and simple way the performance

of our algorithm, particularly suited for our work because of the sparsity of rewards.
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They are an extension of FrozenLake environment found in Gym library. FrozenLake is

just a simple maze, implemented as grid-world, with 4 type of blocks:

• Start block: where our agent starts.

• Frozen block: the safe block, where the agent can walk. This block can be ei-

ther slippery or not, this means that there is some probability to succeed in our

action, otherwise, a random direction is chosen. It is used to have a stochastic

environment.

• Hole block: if the agent steps in this block the run finishes and we have to reset

our environment.

• Goal block: the goal of our environment is to reach this block.

The accepted actions of our agent are simply go left, go right, go up and go down. The

rewards are +1 if we reach the goal, 0 in other cases. Another parameter of these

environments is the boolean is slippery : if it is equal to True our agent will move in

intended direction with probability of 1/3 and in either perpendicular direction with

equal probability of 1/3 in both directions. For example, if the action is go left, then:

• P(move left)=1/3

• P(move up)=1/3

• P(move down)=1/3

Another important parameter is desc, a list with a textual representation of our envi-

ronment, used to build a specified map as shown in 7.1.

1 map = [

2 ”SFFFFFFF” ,

3 ”FFFFFFFF” ,

4 ”FFFHFFFF” ,

5 ”FFFFFHFF” ,

6 ”FFFHFFFF” ,

7 ”FHHFFFHF” ,

8 ”FHFFHFHF” ,

9 ”FFFHFFFG” ,

10 ]

Code 7.1: Map textual example. S: start, F: frozen, H: hole, G: goal

We have extended this environment with a slightly different one. First of all we have

disabled the is slippery parameter, and we have added a negative reward for the holes.

We have also added a parameter dim to specify the dimension of a square map if we
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don’t directly provide desc. If we provide this parameter as an integer, the environment

produces a random map with dimensions dim×dim and probability of 85% that a block

is a safe block. We have simply called this version of FrozenLake as MyFrozenLake. Cliff,

bridge and ZigZag are just an instance of MyFrozenLake with a fixed 6x10 grids map

(in figure 7.10) described in Biedenkapp et al., 2021 [5].

(a) Cliff (b) Bridge (c) Zigzag

Figure 7.10: Tabular Gridworlds. Red cells denote the starting state and blue cells the goal state.

These fixed environments have the purpose to represent common pattern found in maze,

to test how agents react to these obstacles. We have also tested our tabular version with

different seeds of a general random MyFrozenLake with dimension 8 and 16. An instance

of these environments is provided in figure 7.11

(a) FroznLake 8 (b) FroznLake 16

Figure 7.11: Generated MyFroznLake example. Red cells denote the starting state and blue cells the goal state.

These environments are deterministic, and the outer borders block the agent from moving

outside the grid (for example, an agent being at the top left cell will not move with an

Up action). All the environments have a maximum step limit of 100 steps. For all the

environments we have used the following parameters.

70



Parameters:

• Initial estimation: Q(s, a, k) ∼ N (0, 1) ∀(s, a, k) ∈ S ×A×K;
• Discount factor: γ = 0.99;

• Learning rate: α = 0.01;

• Maximum number of iterations: 6000 for FrozenLake, otherwise 600;

• Random policy probability: Exponentially decreasing: ϵt = 0.99t.

7.2.2 Mountain Car

Mountain Car (Moore, 1991 [22]) is a well known environment in the Reinforcement

learning landscape. Our agent can control a car in a one dimensional space. The

possible actions are, accelerate left, accelerate right and do not accelerate. The target

of the car is to drive up a steep hill (Figure 7.12).

Figure 7.12: Mountain Car OpenAI Gym implementation.

The architecture chosen is a MLP: the first two hidden layers, consisting of 128

rectifier linear units, are shared among all persistences. The third hidden layer instead

is diversified for each persistence value k, and each one is composed of 64 rectifier neurons

and connected to three outputs, one for each action with its own persistence value.

The parameters adopted for the experiments are the following.

Parameters:

• Discount factor: γ = 1;

• Maximum number of iterations: 6× 105 (truncated to 5× 105 in the plots);

• Batch size: 32 for each persistent value;
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• Random policy probability: linearly decreasing, starting from ϵ0 = 1, to a final

value ϵf = 0.01, reached at 15% of the total number of iterations;

• Target update frequency: every 1000 steps;

• Prioritized replay buffers, of size 5 × 104 for each persistence value, and default

prioritization coefficients αp = 0.6, βp = 0.4;

7.2.3 Atari

We will introduce all Atari environments used during our tests. They are all Atari 2600

games simulated through the Arcade Learning Environment.

Freeway We have to control a chicken up and down and our purpose is to cross ten

lanes of an highway where cars drive horizontally across the map, they are our enemy.

Every time we successfully cross the street we get a point. If a car hits the chicken, it

is forced to go back some steps. The game lasts 2 minutes and the winner is the player

that has scored the most points in the slot time.

Enduro It is a racing video game. The target is simple, every day during the race we

have to surpass a certain number of cars to be able to continue the next day. The player

can accelerate and steer left and right.

Qbert The main character of the game is Q*bert trapped in a pyramidal grid com-

posed by cubes. He has to jump above one cube to change its color. Our goal is to

change the color of each cube, but the rules change every match. Sometimes if we jump

in the same cube two times the color returns to the original one or we have to jump

twice in every block. There are also enemies that are able to kill the player.

Kangaroo We are a kangaroo and we need to save our child. The player can walk

left and right, can climb the stairs and kick the enemies.

MsPacman This is the classic Pacman game, a maze arcade game. The player needs

to collect all the sphere and avoid ghosts. Every match the ghosts’ speed increase.

Seaquest We are under the sea with a submarine. The player needs to rescue every

divers and avoid sharks and enemies’ submarine. He can also shoot enemies. The

submarine has an oxygen bar and all the time it needs to fill the tank again by reaching

the surface.
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For Atari games, the architecture chosen is based on that presented in (Mnih,

Kavukcuoglu, Silver, et al., 2015 [21]), with three convolutional layers. the first hid-

den layer takes as input an 84×84×4 image and convolves 32 filters of 8×8 with stride

4, with the application of rectifier nonlinearities. The second has 32 input channels,

64 output channels, a kernel size of 4 and a stride of 2, again with ReLu activations,

as well as the third convolutional layer, with kernel size of 3 and a stride of 1, and 64

output channels. The convolutional structured is shared among all persistences, while

the fully-connected hidden layer, consisting of 128 rectifier units, is differentiated for

each persistence value k. Each one of these layers is fully-connected with the output

layer, with a single output for each possible action.

All the OpenAi Gym environments used are in in the deterministic-v0 version (e.g.

FreewayDeterministic-v0 ), which does not make merging operations among the 4 input

frames, but considers only the last one.

The parameters adopted are the following.

Parameters:

• Discount factor: γ = 0.99;

• Maximum number of iterations: 2.5× 106;

• Batch size: 32 for each persistent value;

• Random policy probability: linearly decreasing, starting from ϵ0 = 1, to a final

value ϵf = 0.01, reached at 17% of the total number of iterations;

• Target update frequency: every 500 steps;

• Prioritized replay buffers, of size 5× 104 from each persistence value, and default

prioritization coefficients αp = 0.6, βp = 0.4.
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7.3 Results

We will present now the results of our experiments. We have launched our algorithm

with different Kmax to see how the persistence parameter influences the convergence of

our agent. We have also compared our method with classic Q-learning and DQN, for

Mountain Car and Atari games, and also with TempoRL (Biedenkapp et al., 2021 [5])

discussed in section 3.2.2.

7.3.1 Tabular

In figure 7.13 are shown the performances of Persistent Q-learning with different Kmax ∈
{4, 8, 16}. We can detect a faster convergence when passing from Kmax = 4 to 8.

However, the largest value of Kmax is not always the best one: while Bridge and Cliff

show a slight improvement, performances in ZigZag and FrozenLake degrade. This is

probably due to the nature of the environment. When there are many obstacles, high

persistences might be inefficient, as the agent can get stuck or reach holes more easily.
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Figure 7.13: Comparison of Persistent Q-learning with different persistences in all tabular environments. In the

legend, parenthesis denote the selected Kmax. 50 runs (avg± 95% c.i.).
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In figure 7.14 we present the comparison between Q-learning, PerQ-learning, with

Kmax = 8 and TempoRL, with skip-length J = 8. With this configuration our method

outperform others algorithms, especially Q-learning.
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Figure 7.14: Comparison of Q-learning, Persistent Q-learning and TempoRL. PerQ-learning and TempoRL with

persistence 8. 50 runs (avg± 95% c.i.).

However, increases the Kmax parameters is not always the best solution. As we

can see in figure 7.15 and 7.16, our method shows faster rates of improvements than

TempoRL, especially in first learning iterations, but this advantage may not be consistent

for every value ofKmax. TempoRL is more robust with higher persistences, as in complex

environments such as ZigZag and FrozenLake, the performance does not degrade as

Persistent Q-learning.
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Figure 7.15: Results of Q learning, TempoRL, PerQ with and without bootstrap in different tabular environments

and maximum persistences. On each row, a different maximum persistence is selected for both algorithms. 50

runs (avg± 95% c.i.).
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Figure 7.16: Results of Q learning, TempoRL, PerQ with and without bootstrap in different tabular environments

and maximum persistences. On each row, a different maximum persistence is selected for both algorithms. 50

runs (avg± 95% c.i.).
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7.3.2 Mountain Car

Our algorithm is well suited for this environment, in fact, as shown in Metelli et al.,

2020 [19], 1-step explorative policies usually fail to reach the goal because of their low

probability to commit to an action for long times. As we can see in figure 7.17 both

DQN and TempoRL are not able to converge, in the time step window considered, to the

optimal policy, while PerDQN can reach the optimal solution in a fast way compared to

the others methods. To show the effectiveness of our bootstrapping methods, we have

also compared PerDQN with different Kmax and bootstrap feature disabled. As shown

in figure 7.18, bootstrap is an essential feature for PerDQN to converge rapidly to the

optimal policy and to be robust.
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Figure 7.17: MountainCar results for DQN, PerDQN and TempoRL. Parenthesis in the legend denote Kmax. 20

runs (avg± 95% c.i.).
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Figure 7.18: PerDQN additional results on MountainCar. Return comparison of PerDQN with and without

bootstrap and TempoRL. 20 runs (avg ± 95%c.i.)

7.3.3 Atari

In Figure 7.19 we compare PerDQN, with Kmax = 4 and Kmax = 8, and classic DQN. In

five games out of six, our PerDQN displays a faster learning curve thanks to its ability

of reusing experience, although in some cases (e.g. Kangaroo) PerDQN seems to inherit

the same instability issues of DQN, we conjecture due to the overestimation bias (Van

Hasselt et al., 2016 [37]). Moreover, we notice that, surprisingly, in Seaquest (figure

7.19 the last chart), persistence seems to be detrimental for learning, as DQN clearly

outperforms PerDQN. In this task, agents have to choose either to move or to shoot some

moving targets. Persisting the shooting action, thus, may force the agent to stay still

for a long time, hitting nothing. A possible solution could consist in the introduction of

interrupting persistence, in a similar fashion to interrupting options (Richard S. Sutton

et al., 1999 [35]; Mankowitz et al., 2014 [18]), which is an interesting future research

direction.

79



0 0.25 0.5 0.75 1
·106

0

10

20

30

R
et

ur
n

Freeway

0 0.5 1 1.5 2 2.5
·106

0

200

400

600

800

1,000
Qbert

0 0.5 1 1.5 2 2.5
·106

0

200

400

600

800

1,000

R
et

ur
n

MsPacman

0 0.5 1 1.5 2 2.5
·106

0

100

200

300

400
Enduro

0 0.5 1 1.5 2 2.5
·106

0

200

400

600

800

1,000

1,200

Step

R
et

ur
n

Kangaroo

0 0.5 1 1.5 2 2.5
·106

0

100

200

300

400

Step

Seaquest

PerDQN(4) PerDQN(8) DQN

Figure 7.19: Atari games results for DQN and PerDQN, with Kmax = 4 and 8. 5 runs (avg± 95% c.i.).

In order to better understand which beneficial effects are provided by action persis-

tence alone and which ones derive from the use of bootstrap operator, we run an ablation

experiment. The results, reported in Figure 7.21 and 7.20 as well, show that PerDQN

always dominates over its counterpart without bootstrap. The latter one performs sim-

ilarly to standard DQN on different environments, without reaching the outstanding

performance of PerDQN with bootstrap, and it even obtains an average lower perfor-

mance w.r.t. to the classic DQN on the other tasks.
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Figure 7.20: Freeway games results for DQN and PerDQN, comparing the version with bootstrapping disabled,

with Kmax = 4. 5 runs (avg± 95% c.i.).
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Figure 7.21: Atari games results for DQN and PerDQN, comparing the version with bootstrapping disabled, with

Kmax = 4. 5 runs (avg± 95% c.i.).
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We have also compared our method with the one described by TempoRL (Biedenkapp

et al., 2021 [5]). Their code is implemented with Pytorch (https://github.com/

automl/TempoRL). The results are shown in Figures 7.23 and 7.22. As we can see,

PerDQN outperforms TempoRL in all the environments evaluated.
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Figure 7.22: Freeway games results for DQN, PerDQN and TempoRL, with Kmax = 4 and Kmax = 8. 5 runs

(avg± 95% c.i.).
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Figure 7.23: Atari games results for DQN, PerDQN and TempoRL, with Kmax = 4. 5 runs (avg± 95% c.i.).
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Chapter 8

Conclusions and Future Work

The last chapter provides a summary of the results obtained and some suggestions about

possible future research.

8.1 Conclusion

This thesis aimed to find a way to include a control frequency mechanism inside a

Reinforcement Learning context. Starting from a previous work (Metelli et al., 2020

[19]) about a deep analysis of action persistence in a batch Reinforcement Learning

settings and is advantages compared to a classical settings, we have developed an agent

able to choose, in an online context, the right persistence.

We have presented a general discussion about the basic tools in the Reinforcement

Learning field, after that, we have briefly explained techniques developed by other au-

thors to take into account persistence.

We have developed a formalism that implements the action persistence as persistence

options. Thanks to this, our agent is able to select at the same time both a primitive

action and its duration. After that we have defined a new operator, the all-persistence

Bellman operator, which allows for an effective use of the experience collected from the

interaction with the environment at any time scale. Thanks to this operator, action-

value function estimates can be updated simultaneously on the selected persistence set.

In particular, low persistences (and primitive actions) can be updated by splitting the

samples in their sub-transitions; action value functions for high persistences can instead

be improved by bootstrap, a procedure that takes into account the estimation of the

partial missing information.

After proving that the new operator is a contraction, we applied it to extend classic

Q-learning and DQN with their persistent version. We performed an empirical analysis

to underline the benefits of the new operator for exploration and estimation. Further-



more, the experimental campaign on tabular and deep RL settings demonstrated the

effectiveness of our approach and the importance of considering temporal extended ac-

tions, as well as some limitations.

8.2 Future work

Future research directions include:

Other exploration methods We have used an extension of the ε-greedy explo-

ration that include persistence. It would be interesting to extend other exploration

methods.

Policy gradient methods One limitation of value-based approaches is that they

cannot operate with continuous state and action spaces. One possible future work can be

the development of an extension of gradient-based method, like Actor-critic algorithms,

to incorporate the persistence.

Persistence interruption When we introduce the persistence in Reinforcement

Learning, we renounce to the ability of selecting action in the middle states. Our agent

chooses the action and a persistence and it executes the first for an amount of time steps

equal to the persistence. If from one side we have the benefit to travel between different

regions of state space, from the other side we can get stuck in some states. For example,

if our agent chooses an high persistence in front of a wall, it is forced to go on for a long

time, without the ability to change idea. It would be great to implement a mechanism

to recognize a blocked region and, eventually, stop the persistence.

Separate persistence If some actions have a low intrinsic persistence, for example

the shot action in Seaquest Atari game, it would be great to incorporate this prior

information into our model. A possible solution is to separate these actions from the

original model, using a second one with a lower max persistence parameter.

Persistence Advantage function With dueling in Deep Q-network settings we

use an Advantage function to capture more specific feature. A possible improvement

is the creation of an advantage function that include also the persistence, mixing, for

example, the Q-function or the Value function with different persistence.
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