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Abstract

In modern society, humans are completely surrounded by a frenetic and constantly chang-
ing world and individuals are subject to a collection of situations that can converge into
stressful conditions. This natural response of the body to external stimuli can cause the
onset of serious health issues or impair mental clarity.

The focus of this thesis is to build an FPGA-based embedded system for real-time stress
level estimation that could be easily widened and improved in the future, thus becoming
a development platform for further work in the field of affective computing.

The starting point of the system development was the analysis of stress-related physio-
logical signals by extracting them from datasets collected from literature. The electrocar-
diogram (ECG) and the electrodermal activity (EDA) were chosen as signals on which to
build a high-level model of the problem and develop a processing and estimation algorithm
based on Python. After a performance comparison, a three level classifier (relaxed, normal
and stressed) based on the XGBoost framework was trained on the data extracted from
the algorithm. The algorithm and the classifier were then implemented on an embedded
platform. Specifically, the choice fell on the Zynq™ 7000 SoC, consisting of an FPGA and
a dual-core CPU, so that a heterogeneous system including both hardware accelerator and
Linux application could be designed. The hardware accelerator, developed in high-level
synthesis (HLS), is dedicated to the processing of the signals and the extraction of more
significant characteristics related to stress conditions. The software application, running
on Petalinux, deals with feature extraction from the data produces by the accelerator
and performs classification using the chosen model. The work was developed using AMD
Xilinx EDA tools.

The validation process of the developed system was focused on comparing the implemen-
tation with the simulation model, so that differences in term of timing and classification
accuracy can emerge. The heterogeneous platform obtained satisfy the previous require-
ments in terms of modularity, allowing for further development and integration into more
complex monitoring systems.
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Abstract in lingua italiana

Nella società moderna, in cui l’uomo è completamente immerso in un mondo frenetico e
in costante cambianto, l’individuo è soggetto ad un assieme di situazioni che possono con-
vergere in condizioni di stress. Questa naturale risposta del corpo agli stimoli esterni può
causare l’insorgere di gravi problematiche di salute o compromettere la lucidità mentale.

L’obbiettivo di questa tesi è quello di realizzare un sistema embedded basato su FPGA
per la stima del livello di stress in tempo reale che possa poi essere facilmente espanso
e migliorato in futuro, fungendo quindi da piattaforma di sviluppo per ulteriori lavori
nell’ambito dell’affective computing.

Per realizzare il sistema si è proceduto con una prima analisi dei segnali fisiologici cor-
relati allo stress, estraendoli da dataset raccolti dalla letteratura. L’elettrocardiogramma
(ECG) e l’attività elettrodermica (EDA) sono stati scelti come segnali sui quali costru-
ire un modello ad alto livello del problema e sviluppare un algoritmo di processamento
e di stima basato su Python. Dopo un confronto delle prestazioni, un classificatore a
tre livelli (rilassato, normale e stressato) basato sul framework XGBoost è stato allenato
sui dati estratti dall’algoritmo. Si è poi proceduto all’implementazione dell’algoritmo e
del classificatore su una piattaforma embedded. In particolare la scelta è ricaduta sul
SoC Zynq™ 7000, composto da una FPGA ed una CPU dual-core, così da poter realiz-
zare un sistema eterogeneo comprensivo di un acceleratore hardware e un’applicazione
Linux. L’acceleratore hardware, sviluppato in high-level synthesis (HLS), è dedicato al
processamento dei segnali e alla conseguente estrazione di caratteristiche più significative,
riconducibili a condizioni di stress. L’applicativo software, eseguito su Petalinux, si occupa
dell’estrazione delle feature dai dati prodotti dall’acceleratore ed opera la classificazione
utilizzando il modello prescelto. Il lavoro è stato sviluppato utilizzando i tool EDA di
AMD Xilinx.

Il processo di validazione del sistema progettato si è focalizzato sul confronto fra la sua
versione simulata e quella implementata, in modo tale da far emergere differenze a livello
di timing e accuracy della classificazione. La piattaforma eterogenea ottenuta soddisfa
i requisiti di modularità prefissati e si presta a sviluppi e integrazioni in dispositivi di



monitoraggio più complessi.

Parole chiave: acceleratore hardware, stima dello stress, sistema eterogeneo, FPGA,
HLS, Petalinux
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1

Introduction

In recent decades, especially in last years due to the COVID-19 pandemic, everyday
human life is constantly surrounded by a dynamic world, always connected and full of
social media. The individual mental condition is indeed exposed to quickly changing
situations, which could lead mostly to unstable mental conditions. For those reasons
stress monitoring is an actual research activity which covers different fields as medicine,
psychology, but also engineering.

In the human being, as well as for animals but with lower intensity, the basic physiolog-
ical mechanisms which deals with the activation of the stress could be of two different
types: nervous and endocrine. The first, which involves the sympathetic (autonomous)
and parasympathetic nervous system, consists in the activation by brain of the nervous
pathways to generate a commonly response called fight or flight reaction. This prepares
the individual to cope with an immediate threat. The second one is the neuroendocrine
response which consists in the activation of a cerebro-somatic circuit called Hypothalamic-
Pituitary-Adrenal (HPA) axis.

There are multiple causes of stress in human life covering individual situations as the
presence of internal conflicts, financial instability, frustration and inadequacy sense at
the workplace or even worst the absence of an occupation, but also global critical situa-
tions as violence and crimes in society [1]. All these elements cover very different aspects
of a human being’s life and they may cause critical conditions as mental disorders, de-
pression symptoms and clinical problems. Not all stressful situations result in negative
consequences. In some special cases the individual could increase his productivity and
performance, for instance during competitive and challenging events.

A deeper investigation is therefore necessary to give the chance to predict unpleasant
consequences. From the engineering point of view is challenging and subject of research
the measuring of how stress is expressed in a more physiological sense and then construct
models to predict its presence and intensity.

The main focus of this thesis work is the design and development of a system, in both
hardware and software, which processes physiological human signals and give a real-time
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estimation of stress level.

The first chapter give a detailed analysis of the system requirements, what are the fre-
quently used measures of stress and which of them were used in this work. Then the
available free to use databases will be introduced, with the associated stimulus adopted
during the experiments. In Chapter 3 an high-level processing chain for the stress assess-
ment problem is obtained by developing a Python pipeline, and after that, in Chapter 4
to Chapter 6, an embedded-oriented implementation of the system will be designed and
explained. The proposed solution was approached with a hardware-software co-design
manner, starting from drafting of requirements, the development of the physiological sig-
nal processing core, its optimization, to the development of a Linux application dealing
with features extraction and classification functions. During the design, particular at-
tention was given in the development of a modular system which could be part of more
complex and portable devices, leaving the chance to be widened for future improvements.
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Two main objectives have been chosen for this thesis:

• The development of a system able to estimate the stress level of a person in real-time
through the use of minimally invasive sensors and an embedded hardware.

• The development of the stress estimation system as a platform which can be easily
expanded and improved in the future.

We targeted a real-time estimation of the stress level, this was chosen because a real-time
estimation allow for more application of the system in the real world when compared to
an offline stress estimation.
A real-time stress estimation system can be employed in different fields like health mon-
itoring or high-risk jobs, where having an information about the current stress level of
the individual can be helpful in detecting the onset of stress-related illnesses in subject
at risk or in increasing work safety.
Moreover, even for normal people, all the benefits of keeping the stress level under control
still apply and therefore a real-time stress estimation system could be helpful to improve
everyday life.

The development of the system as a platform, more than a specific system, was required
to allow for future development and to allow additional parts to be added. Due to the
embedded approach taken, the system architecture could become the starting point for the
creation of more complex wearable system which processes different physiological signals
and estimate health-related parameters of the individual.
A platform like this would have a lot of applications in the affective-computing industry
as well as in the medical and healthcare industries.

1.1. Signal choice

Since stress produces different changes in the human physiology, different parameters of
the body are influenced by it. Some of those can be measured and used to estimate the
level of stress a person is subjected to. The most important physiological characteristics
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which are influenced by stress and can be measured with sensors are the following:

• Cardiac rhythm (ECG): The heart-rate of a person is influenced by the stress
level in its speed and variability.

• Galvanic skin response (EDA): The conductance of the skin is related to the
activity of the sweat glands, the behaviour of which is altered by changes in the
stress level.

• Brain activity (EEG): The activity in different parts of the brain and its patterns
changes when the individual is subjected to stress.

• Muscular activity (EMG): The activity of different muscle groups can be linked
to the stress level a person is experiencing.

• Body temperature: Changes in the stress level alter the normal behaviour of the
body thermoregulatory system and produce alterations that can be measured.

• Respiration rate: The respiratory rhythm of a person is increased in the presence
of stress due to the fight of flight reaction.

• Blood pressure: As explained before the stress level is influencing the heart-rate
of an individual. The blood pressure is also altered as part of the fight of flight
response to stress.

For this work of thesis the signal choice was mainly influenced by the requirements of low
intrusiveness of the sensors, ease of use and low price. Therefore we choose to use the
cardiac signal (ECG) and the galvanic skin response (EDA) in our work because they
satisfy the requirements and a lot of studies have been conducted on their analysis.
Additional sensors could be used and added to the setup as part of future expansions of
our work.

The two signals and their measurement methods are now introduced in details.

1.1.1. ECG

The electrocardiogram (ECG) is a signal describing the electrical activity of the heart
over a period of time. It is a voltage signal obtained using multiple electrodes placed on
the patient skin to detect the small electrical changes that are a consequence of cardiac
muscle depolarization followed by re-polarization during each cardiac cycle (heartbeat).
Interpretation of the ECG is about understanding the electrical conduction system of the
heart. Normal conduction starts and propagates in a predictable pattern, and deviation
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from this pattern can be a normal variation or be pathological.
The typical ECG pattern of an healthy individual is shown in Figure 1.1.

Figure 1.1: ECG signal pattern

Different parts of this pattern have been linked to specific event in the heart cycle, in
particular:

• P wave: atrial depolarization.

• QRS complex: ventricular depolarization.

• T wave: Ventricular re-polarization.

• U wave: Papillary muscle re-polarization.

The standard ECG measuring setup is comprised of 10 electrodes used to measure 12
potential differences on the body of the subject. This is called a 12 lead ECG, here the
term lead refers to the potential difference between two electrodes.
The standard ECG measurement setup is used to monitor different pathological conditions
as well as estimate heart health, simpler setups based on just two or three electrodes can be
used to measure the ECG signal when a complete medical-grade analysis is not necessary.

From an electronic point of view the ECG signal is measured using an high impedance
differential measurement setup. The signal has a bandwidth of interest in the region
0.5Hz to 50Hz, a voltage range of 0.5mV to 5.0mV and its usually accompanied by large
DC components which act as a baseline.
The measurement setup should include different filtering (both analog and digital) to
remove all the unwanted noise components from the signal. The most important sources
of noise are the following:

• 50Hz − 60Hz power-line interferences.
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• Electrode contact noise causing baseline drift.

• Muscle contraction noise.

• Respiration process causing baseline drift.

• EMI caused by electronic devices.

For stress identification and estimation the main ECG parameter of interest is HRV Heart
Rate Variability [3]. HRV is referring to the beat-to-beat variation of the heart rate
which are deeply influenced by the stress level.
The HRV analysis can be performed in different domains [26], in this thesis we explored
the time, frequency and non-linear domain of HRV and extracted useful features in all of
them.
More information will be provided in Section 3.2.

1.1.2. EDA

First studies about Electrodermal Activity go back up to the half of the nineteenth cen-
tury when different neurologists began to make laboratory experiments measuring it as
a clinical diagnostic sign and discover its link with human psycho-physiological phenom-
ena [8]. In addition, in those years, a lot of electronics devices were built exploiting this
interesting signal, such as the E-meter, covering a wide range of applications.

For Electrodermal Activity, also known as Galvanic Skin Response (GSR), is intended
the capacity of the human skin to conduct an electrical current in response to different
types of stimuli. In response to them, the sympathetic branch of the autonomic nervous
system triggers the activity of eccrine sweat glands, located in the hypodermis of the skin,
and sweat gland duct (located in the dermis and epidermis) gets filled up and due to the
presence of ions in sweat the skin conductance increases as swell. Figure 1.2 describes the
skin layers in detail.

There are a lot of body location for EDA measurements and the right choice depends
on the specific application. For example a commonly used location is the wrist, but
the presence of low density eccrine sweat glands doesn’t ensure a reliable and stable
measurement. Nonetheless, it is largely used since the wrist represents a position which
doesn’t interfere with daily activities, becoming equivalent to a common wearable device.
The are instead other locations of the body where the density of the sweat gland is
higher, such as hands, foots and chest, but the subject under observation may be hindered
during the measurement. Since the nature of this characteristics to responds to external
stimuli, sweating could be evoked by both emotional states/arousal and temperature
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Figure 1.2: Skin layers

control mechanisms.

The measure of the electrodermal activity by the skin conductance level is commonly
achieved through the exosomatic technique, which consists into the application of a weak
electrical current or a low voltage source (which could be DC or AC) across two electrodes
places next to each other on the skin. Then by measuring respectively the voltage or
current the output of the readout circuitry can be mapped into a conductance value.
Nominally, the measured conductance range from 0µS and 30µS.

The EDA signal presents its spectral components in a very low frequency range, from
quasi-DC component up to 2 Hz components and for this reason a relatively low sampling
frequency is sufficient to analyze it. To make a better analysis it is also useful to separate
the signal into two parts, as described also in Figure 1.3:

• Skin Conductance Level (SCL), also called tonic, which corresponds to slow
spontaneous electrical fluctuations of sweat gland activity as a reaction to skin
temperature and hydration

• Skin Conductance Responses (SCRs), also referred to as phasic, which instead
deals with rapid and smooth transients responses to external events.

1.2. Stress labeling

Stress can be considered a variable whose intensity varies in a continuous and subjective
way. In our work we choose to develop a system able to distinguish the state of the
individual between three different levels:
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Figure 1.3: EDA components

• Relaxed: This state is connected to moments when the individual is not performing
any task and is not subjected to any mental workload. It can be generated when
an individual is performing meditation or similar activities.

• Normal: Connected to moments when the person is performing some tasks requir-
ing a medium mental workload. This can be considered the ideal working condition.

• Stressed: This state is linked to moments when the individual is performing some
tasks under the influence of an external pressure, this triggers the fight or flight
response and create an increase in the stress level. An example of this state can be
a task requiring an extreme mental effort or a task to be executed under a strict
time pressure.

We choose to develop our system as a stress level classifier, therefore the estimated stress
level is not provided as a continuous variable but as a discrete variable with the three
level shown above.

1.3. Workflow

The development process was divided into two main parts: an high-level part and a
low-level part.

• High-level: In this part a signal processing algorithm was developed using Python.
This allowed us to quickly analyze the data, test different data processing algorithm
and train a classifier able to estimate the variable of interest from the data.
The different steps taken in this part are the following:
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– Research and analysis of available experimental datasets.

– Dataset selection, cleaning and conversion to a common data format.

– Design of a data processing pipeline for feature extraction from the data.

– Design of a classifier training pipeline to test different classifiers on the ex-
tracted features.

– Training of different classifiers and selection of the best performing one.

• Low-level: Here, after the development of the Python algorithm, the embedded
implementation was created and the obtained results were validated.
The following steps were performed:

– Selection of a suitable embedded platform to use.

– Hardware-Software subdivision of the Python algorithm.

– Design of the Hardware-Software blocks.

– Testing and validation of the obtained system.
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To train a machine learning model able to recognize and classify patterns, experimental
data are required. For our specific task we were interested in recognizing the level of stress
of a person, therefore experimental data related to human stress were needed.

Ideally, a specific experiment would have to be engineered, a test setup prepared and test
subject hired for it. Due to the constraints of our work of thesis this was not feasible,
therefore experimental data had to be acquired from public resources.

2.1. Dataset exploration

For our work an experimental dataset containing data for both ECG, EDA and the stress
level had to be found. A reasonable stressor had to be used and a good amount of data
has to be present for the different stress levels.
Three possibile candidate datasets were identified:

• DRIVEDB [11] - Explained in details in Appendix A.1:
Multi-parameter recordings from healthy volunteers driving on a prescribed route
including city streets and highways in and around Boston, Massachusetts.
The stressor used is a driving task in different road conditions, producing different
levels of stress.

• WESAD [29] - Explained in details in Appendix A.2:
A lab study with physiological and motion data, recorded from both a wrist- and a
chest-worn device, of 15 subjects.
Different kind of stressors as well as a relaxation stimulus were used.

• SWELL-KW [17] - Explained in details in Appendix A.3:
Lab study consisting of 25 subjects doing typical office work (writing reports, making
presentations, reading e-mail and searching for information), receiving unexpected
emails interruptions and pressure to complete their work on time. The stressors
used are related to office work.
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2.1.1. Dataset comparison

The three dataset were thoroughly analyzed and compared to understand their possible
application in our work, a synthesis is shown in Table 2.1.

Dataset ECG freq EDA freq Stress levels Subjects #

DRIVEDB 496Hz 15.5Hz Relaxed/Normal/Stressed 17

WESAD 700Hz 700Hz/4Hz Relaxed/Normal/Stressed 17

SWELL-KW 2048 2048Hz Normal/Stressed 25

Table 2.1: Available datasets

The three datasets are different in terms of sampling frequencies, stress levels applied and
kind of stressor used. Furthermore the acquisition system used and the sensor placement
differ from dataset to dataset.

As can be seen the SWELL-KW dataset differs from the other two in terms of Stress Levels
applied. Only two stress levels are present and the Stressed level is applied for almost all
the time. This is not compatible with our use case where a almost equal representation
of the stress levels is needed.
The other two datasets offer a more equal representation of the different stress levels as
well as three stress levels, therefore we decided to discard the SWELL-KW dataset and
use the other two (DRIVEDB and WESAD) for the continuation of our work.

The basic assumption we did in this phase was to consider the stress intensity produced
by the two different experiment as equal. As shown in details in Appendix A the two
datasets are using different stressors (driving task vs office work) which for sure produce
a different stress level in different people; nevertheless we assumed the stress levels to be
comparable, in this way we could merge the two different datasets and produce a bigger
dataset on which a more generalized classifier can be trained.

2.1.2. Data cleaning and conversion

Due to the differences between the used datasets and the presence of corrupted data,
a cleaning and conversion step was required. This step was needed to produce a clean
merged datasets which can be used to experiment with our stress detection algorithm.
Since data are coming from different dataset which have used different sensor, different
sampling frequencies and different file formats, we decided that a common file format was
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needed to proceed.

To apply the cleaning and conversion steps a specific pipeline was created in Python, the
two steps are described in details:

Data Cleaning The different acquisition files of each dataset are loaded and checked
for signal artifacts and corruption. The acquisitions with corrupted data are discarded
from the dataset.
Different kind of artifacts were found in the signals, varying from artifact caused by elec-
trode disconnection to completely missing signals in acquisition files due to malfunction
of the acquisition setup.
In this step we discarded 2 subjects from WESAD dataset and 4 subject from DRIVEDB
dataset.

Data Conversion To simplify the data processing in later stages of our work, we de-
cided that a common file format was needed for the data. The target was creating a .csv
file of the common file format for each subject of each one of the chosen datasets.
The specific file format had to include the ECG signal, all the available EDA signals, a
timestamp and a stress label.
The sensor signals were re-sampled at 500Hz using the Scipy Python function resam-
ple_poly so that they can be treated later at the same manner even if the original fre-
quency was different. 500Hz was chosen as a frequency due to being high enough to not
interfere with the filtering operations that will be performed by our algorithm while still
keeping the data size manageable.
The chosen labelling is a three stage one (Relaxed, Normal, Stressed), the original labels
used in the datasets were remapped to those three levels and the unknown regions of the
data were flagged as unuseful. More details about label re-mapping for each dataset are
given in Appendix A.

Once the cleaning and conversion pipeline was completed we were left with the data of
15 subjects from WESAD and 13 subjects from DRIVEDB, those data have now all the
required signals and are the one on which our algorithm was developed.
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The algorithm was fully developed in the Python programming language with the help of
Jupyter notebook [13].

The Python language was chosen due to its versatility and ease of use as well as the wide
adoption of it in the machine learning industry. Since all the most important machine
learning frameworks are based on Python, this made experimenting with different libraries
and framework an easy task.
The choice of Jupyter notebook as the development environment allowed us to work on the
algorithm in an interactive fashion testing and tweaking the code easily thus speeding-up
the development process.

Figure 3.1: Overall structure

As seen in Figure 3.1 the structure is composed of two pipelines.
Each pipeline is based around a single Jupyter notebook which can be configured exter-
nally with the use of papermill [25], a Jupyter notebook tool.
For example, the Features Extraction pipeline can be configured to run only on some spe-
cific subjects instead of the two whole datasets while the Classifier Training pipeline can
be configured to try only a specific classifier instead of all the classifiers it has access to.
The parametrization introduced by the use of papermill allowed us to speed-up the de-
velopment and the exploration of different solutions.
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Features extraction pipeline The target of the Features extraction pipeline is the
creation of a feature-set on which classifiers can be trained. The pipeline accept as input
data from the two selected datasets (WESAD and DRIVEDB) stored in the common file
format, process them and apply the correct time window so that the required features
could be extracted.
The time window applied can be configure through the use of papermill but has been fixed
at the end to a duration of 60s and a shift every 1s therefore producing useful features
every 1s. More information regarding the choice of the time window are provided in
Section 3.1.
Three separate data paths are present in the pipeline: ECG, EDA and Label; the ECG
and EDA paths will be explained in details in Section 3.2 and Section 3.3.
The label processing path will look at the stress label present in the input data and discard
the windows on which the label is not constant. In this way we avoid to store features
created where a label change is happening and obtain a more reliable features set. As
explained before in Section 1.2, a 3-level label was chosen which are: Relaxed, Normal
and Stressed.
The output features set is saved as a .csv file which can be later used by the Classifier
Training pipeline.

Classifier training pipeline The Classifier training pipeline allows the training of
different classifier types on the features set. The chosen classifiers as well as the features
selection algorithm used and the number of features to retain can be configured through
papermill. All those configurations are passed as lists and the pipeline will iteratively try
them.
Once started and configured the pipeline will read the input features set and run through
all the possible permutations of the configuration lists. The classifiers are trained using the
scikit-learn framework and the performance are evaluated using 10-fold cross-validation.
The pipeline will save all the trained models as .pikle files for later use and provide
as output a .csv file with the computed performance of all the classifiers. Classifiers
performance evaluation is explained in more details in Section 3.5.

3.1. Time windowing

In order to analyze the physiological signals in real-time, a signal windowing method was
used. Data are collected and processed for the required window size, then from those
finite and constant amount of samples the necessary features are computed.
In this work, the Features extraction pipeline was exploited as a way to compare different



3| Algorithm development 17

window sizes and then choose the best segmentation comparing all the results. A lower
and upper limit was anyway fixed for several reasons, respectively to 20 and 60 seconds,
and the tests were conducted with step size of 5 seconds.

Short time window The focus of the study is to estimate the emotional state from
physiological signals that naturally have very low bandwidth. This measure is derived
from several significant characteristics which are time based but also frequency based.
Wrong assumptions could be made when trying to detect low spectral components of
around 0.05Hz in a small time window. For this reason a lower bound equal to 20s is
introduced.

Long time window On the opposite, a long time window will surely be helpful while
analyzing low frequency components, but the amount of data to be stored and processed
would inevitably increase, leading to an increase of resources utilization and time required
for computation. As the focus of the work is to implement a real-time estimation, an upper
bound is introduced at 60s.

The sampling window is shifted at intervals of 1s, this was chosen to produce a 1Hz

output signal which was deemed sufficient for our real-time requirements.

3.2. ECG processing chain

The objective of the ECG processing chain is the extraction of signals which are highly
correlated with the stress level from the cardiac signal.
The main focus is the analysis of Heart Rate Variability (HRV). HRV is the physiolog-
ical variation of the time interval between heartbeats and has been shown to be highly
correlated with emotional arousal as well as mental workload.
The ECG processing chain is composed of different blocks as shown in Figure 3.2.

Figure 3.2: Overall ECG processing Chain
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The input voltage read from the sensor is initially processed to extract the positions of
the heartbeats. This processing is done using the Pan-Tompkins algorithm [24] and will
be explained in detail in Section 3.2.1.
From those positions two signals are extracted: NN and Cardiotach; those two signals
contain information regarding heart-rate evolution between different beats and in time.
The NN signal is further processed to extract its periodogram to explore its spectral con-
tent.
From the three meaningful signals obtained 27 features can be extracted providing infor-
mation on HRV in the time, frequency and non-linear domains.

3.2.1. Pan Tompkins algorithm

The ECG signal is composed of different waves as shown in Figure 3.3.

Figure 3.3: QRS complex in ECG signal

We are interested in extracting the heartbeat position from our ECG signal, this translate
into locating the peak of the signal. This peak is located at the center of the QRS complex
which represents ventricular depolarization of the heart and is composed of three different
waves (Q, R and S).
An algorithm to locate the QRS complex and the R peak in particular was thus needed,
we have chosen to use the Pan-Tompkins algorithm [24].
This specific algorithm was firstly introduced in 1985 and is one of the most used real-time
QRS detection algorithm available due to its low computational requirements and high
noise immunity. Those features make it a perfect candidate to be used in our processing
chain firstly in Python and later in the target embedded system.
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The algorithm is divided into two three blocks: a linear filtering chain, a non-linear
transformation and a decision stage. Figure 3.4 shows the algorithm block scheme.

Figure 3.4: Pan Tompkins algorithm

Band-pass filter The first stage of the algorithm is a band-pass filter aimed at reducing
noise in the signal band of interest. The noise is mainly composed of muscle noise,
50− 60Hz interference, baseline wander, and T-wave interference.
The Band-pass filtering is obtained with the combination of a 15Hz second order low-pass
filter followed by a 5Hz first order high-pass filter which, in the original Pan-Tompkins
paper [24], were implemented using recursive filters with integer coefficients.
Due to the use of 125Hz ECG signal instead of the paper original 200Hz different recursive
filters were needed in our implementation; in particular we choose to use Butterworth
filters for both the low-pass and the high-pass filters leading to the transfer functions
shown in Figure 3.5.

(a) LP filter (b) HP filter

Figure 3.5: LP and HP filters

Derivative filter The second stage of the algorithm is composed of a derivative filter
aimed at proving the QRS complex slope information.
The original paper used a 5 point derivative providing an additional filtering at high
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frequencies. Due to the difference in sampling frequency, the original derivative filter
would interfere with the signal bandwidth and thus we moved to a more conventional
5-point derivative filter providing no attenuation at high frequencies.
The original derivator transfer function is shown in Equation (3.1) while the derivator
used here is shown in Equation (3.2)

H(z) = 1/5z2 + 1/10z − 1/10z−1 − 1/5z−2

H(z) = −1/12z2 + 2/3z − 2/3z−1 + 1/12z−2

(3.1)

(3.2)

Squarer The third stage of the algorithm is a squaring operation, this is used to apply
a nonlinear amplification to the output of the derivative, emphasizing higher frequencies
and enhancing the signal we are interested in.

Moving average filter The last filter applied to the signal is a moving average filter
which will perform an integration of the previously processed signal.
The moving average filter will produce at its output a trapezoidal signal at the position
of the QRS complex. The window size can be finely tuned to obtain a narrower output,
in our system we used a window size of 128ms (16 samples at 125Hz). This is similar to
the original paper 150ms window size and lead to good performances.

Adaptive peak detector Once the integral signal has been generated we need to
correctly detect the peaks present in it.
In general our signal will be composed of signal peaks (the ones we are interested in)
and noise peaks (fake peaks introduced by noise). Our peak detector needs to be able to
distinguish between the two.

A fixed threshold is not advised to be used as the decision criteria between the two
conditions, this is because signal and noise amplitudes can change over time. To account
for this, the Pan-Tompkins algorithm uses a dual-threshold technique: a threshold for
signal and a threshold for noise are continuously kept in memory and updated once a new
peak has been classifier as either noise of signal.
In this way the thresholds continuously adapt to the characteristics of the signal and allow
the algorithm to quickly follow changes in the signals, greatly reducing detection errors.

A search-back is also implemented to avoid skipping signal peaks with low amplitude; the
search-back override the signal threshold if no peaks has been found after 166 percent of
the current average peak-to-peak interval therefore allowing for detection of lower ampli-
tude signal peaks.
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Figure 3.6 shows the effect of the Pan-Tompkins algorithm on the signal. The green
crosses are placed where the peak is detected.

Figure 3.6: Pan Tompkins algorithm signals. Green crosses placed where peaks are
detected

3.2.2. NN and Cardiotach Extraction

Once the peaks positions have been obtained the two meaningful signals (NN and Car-
diotach) can be computed in the time window of interest. The two signals are now
described in details.
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Figure 3.7: NN and Cardiotach signals

NN The NN interval signal is a series composed of the time differences between consec-
utive signal peaks.
The NN extractor will compute the NNs by running through the peak array, keeping track
of the last found peak and calculating the new NN each time a peak is found.
The NN is expressed in ms and can vary between 300ms and 2000ms assuming a heart-
rate range of 30bpm to 200bpm.
An example of the NN signal can be seen in Figure 3.7.

Cardiotach The Cardiotach signal describe the evolution of the heart-rate in time.
It is expressed in ms and is created firstly as a stepped signal by assigning the correspond-
ing NN value to the all the data points between two peaks.
The stepped Cardiotach is then run through a filter to smooth-out its steps obtaining
a slowly varying signal describing the heart-rate in time. For this filtering a zero-phase
digital filtering approach is used to avoid delays and transient effects in the signal.
The zero-phase filtering approach is only possible because the signal is completely known
in the time window of interest. The filter used is a Butterworth filter of order 1 and
cut-off frequency of 1Hz. The zero-phase filtering is obtained by first filtering the entire
signal, reversing the resulting array, filtering the resulting array and reversing again the
new result.
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An exampled of the raw and filtered Cardiotach signals can be seen in Figure 3.7.

3.2.3. Periodogram Extraction

To analyze HRV in the spectral domain a power spectral density (PSD) needs to be
computed from the NN signal.
Since the heart-rate is changing and the NN signal is "sampled" every heart-beat, we can
consider the NN signal as a series of unevenly sampled data. For this reason computing
the spectrum is not a simple task and attention needs to be payed to the PSD estimation
method used.

Historically three different approaches [2] has been used to compute the periodogram of
NN series for HRV analysis:

• Welch method [35]

• Lomb-Scargle method [18, 28]

• Burg method [4, 6]

Welch method The Welch method [35] is the standard periodogram method, to apply
this method to a series of unevenly sampled data an interpolation step is used thus
obtaining an evenly sampled series from which the periodogram can be computed.
The now evenly sampled data points are divided into different overlapping segments, the
periodogram for each segment is computed and the overall periodogram is obtained by
averaging the single segment results.
This averaging step allow for a variance reduction in the obtained result.

Lomb-Scargle method The Lomb-Scargle method [18, 28] was originally developed
for astronomical research where observations cannot be done uniformly in time.
Due to its working principle it can be directly applied to stochastic, irregularly sampled
data and it reduces possible distortions or erroneous results induced by interpolation since
it’s working directly with the unevenly sampled data. It is based on a least-squares fit of
sinusoids to the data samples and is also called Least-squares spectral analysis.

Burg method The Burg [4, 6] estimation method differ from the other two because it
assume a specific functional form to model the signal and tries to fit the chosen model
to the data. The model parameters are then estimated using the Burg method and the
periodogram is obtained [6].
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In case of HRV the NN intervals are modeled as an auto regressive process [4], and
sometimes the PSD estimation method itself is also called Autoregressive method.

A comparison between the three PSD estimation methods for HRV has been made by
Bachler [2] and has shown superior performance of the Lomb-Scargle method in terms of
variance of the output results and absolute accuracy. For this reason we choose to use
the Lomb-Scargle periodogram as our PSD estimation method.

In our algorithm we choose to use the function lombscargle from the Python library Scipy
to compute the periodogram. The frequency range was chosen between 0.001Hz and
0.41Hz with 256 steps to provide a reasonable granularity in the spectrum of interest. In
Figure 3.8 an example of PSD extracted from the NN signal is shown.

Figure 3.8: NN and Periodogram signals

3.2.4. NN Features

Once the NN signal has been extracted for the time window of interest the required
features can be extracted from it.
The features are divided into three domains:

Time domain Those features are extracted from the NN signal directly and are mainly
composed of statistical features.
Some of those features requires the computation of an array of successive differences from
the NN signal, this is defined as:

∆Di = NNi −NNi−1 (3.3)
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Feature Formula

1 Average of NN values
1

N

N∑
i=1

xi

2 Variance of NN values σ2(NN)

3 Standard deviation of NN values σ(NN)

4 RMS value of successive differences in NN

√√√√ 1

N

N−1∑
i=1

(∆Di)2

5 Standard deviation of successive differ-
ences in NN

σ(∆Di)

6 Min-max range of the NN values max(NN)−min(NN)

7 Number of successive NN differing more
than 50ms (NN50)

−

8 The proportion of NN50 divided by total
number of NN

100 ∗ NN50

N

9 Number of successive NN differing more
than 20ms (NN20)

−

10 The proportion of NN20 divided by total
number of NN

100 ∗ NN20

N

Table 3.1: NN time features

Spectral domain Those features are extracted from the NN periodogram signal and
mainly focus on providing information regarding the distribution of power in the NN
spectrum.
Conventionally the HRV spectrum is divided into three regions:

• VLF band: 0Hz to 0.04Hz

• LF band: 0.04Hz to 0.15Hz

• HF band: 0.15Hz to 0.4Hz
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Feature Formula

11 Total power of the NN spectrum −
12 Power in the VLF band −
13 Power in the LF band (LFP) −
14 Power in the HF band (HFP) −

15 Ratio between LF and HF powers
LFP

HFP

16 Normalized power in the LF band
LFP

LFP +HFP

17 Normalized power in the LF band
HFP

LFP +HFP
18 Frequency of the peak in the HF band −

Table 3.2: NN spectral features

Non-linear domain Those features are extracted from the NN signal and explore the
presence of non-linear dynamics in the heart-rate process.
The chosen method of non-linear analysis is the Poincarè plot which is a type of recurrence
plot used to quantify self-similarity in processes.
Two additional temporary signals needs to be computed to perform the non-linear analysis.
Those signals are reported in Equation 3.4 and Equation 3.5:

X1i = NNi −NNi−1

X2i = NNi +NNi−1

(3.4)

(3.5)

Feature Formula

19 Standard deviation of X1 values (SD1) σ(X1i)

20 Standard deviation of X2 values (SD2) σ(X2i)

21 Ratio between SD1 and SD2
SD1

SD2

Table 3.3: NN non-linear features
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3.2.5. Cardiotach Features

Once the Cardiotach signal has been extracted and filtered for the time window of interest
the required features can be extracted from it.
The Cardiotach features mainly focus on the statistical distribution of the Cardiotach
values as well as the analysis of the derived heart-rate signal which is computed as shown
in Equation 3.6.

HRi =
60 ∗ 1000

Cardiotachi

(3.6)

Feature Formula

22 Mean value of HR
1

N

N∑
i=1

HRi

23 Variance of HR σ2(HRi)

24 Standard deviation of HR σ(HRi)

25 65th percentile of the Cardiotach signal
distribution

−

26 70th percentile of the Cardiotach signal
distribution

−

27 75th percentile of the Cardiotach signal
distribution

−

Table 3.4: Cardiotach features

3.3. EDA processing chain

The ElectroDermal Activity is a measure of the skin conductance of the human body,
and it has been found to be one of the most robust non-invasive physiological measures of
autonomic nervous system activity [11]. The processing chain of this signal was developed
in Python and it is organized as shown in Figure 3.9. The main objective of this chain
is to compute and extract, from a raw standardized EDA signal (see Section 2.1.2), some
characteristics that are strictly correlated with the emotional state and describe the events
to which the patient is subjected. Starting from those meaningful signals, a set of 15
features are computed, divided in statistical and syntactical features.
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Figure 3.9: Overall EDA processing Chain

3.3.1. Signal normalization

The electrodermal activity is a very sensible signal and it is not completely correct to treat
as an universal measure of the subject emotional arousal. Infact, individual-to-individual
variations are very common during analysis such as the baseline level and the amplitude
of the peaks.
As explained by different studies [8] [11], a normalization step is recommended in order to
remove interpersonal variations. In this study two types of normalization were explored:
normalization using the baseline and normalization using percentiles.

Min-Max normalization This method is one of the most common normalization tech-
niques and it is done by subtracting from the sample the minimum between the samples
acquired during the relaxed phase of the test, then the difference is normalized on the
signal baseline range [9], Equation 3.7.

xnorm =
x−minXrelaxed

maxXrelaxed −minXrelaxed

(3.7)

Percentile normalization With this technique the signal is centered at zero by sub-
tracting the median (Q2), and then scaling the sample by the Inter-Quantile Range (IQR),
which is by the definition the difference between the 75th and the 25th percentile [9],
Equation 3.8.

xnorm =
x−Q2

IQR
(3.8)

In Figure 3.10 a comparison between the two normalization methods is reported. In the
later steps of this study only the percentile normalization was used as a normalization
method, since it was discovered to be more reliable and effective on electrodermal drifts
that occur naturally during the tests.
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Figure 3.10: EDA normalization techniques comparison

3.3.2. Signal decomposition

It is possible to describe the EDA signal as composed of two main components, the tonic
and the phasic. In order to correctly separate those two components, two parallel filters
are applied, as depicted in Figure 3.11.

Figure 3.11: EDA signal decomposition chain

Tonic The tonic component, also called Skin Conductance Level (SCL), describes long
term changes and corresponds to slow spontaneous electrical fluctuations of sweat gland
activity that generate a constantly moving baseline, [5]. In order to extract those back-
ground variations a Butterworth low-pass filter of the 3rd order, designed to have a fre-
quency response that is as flat as possible in the passband [38], is applied, with a cutoff
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frequency of 0.05Hz.

Phasic The second component, the phasic, also called Skin Conductance Response
(SCR), refers to the faster changing elements of the EDA signal and represents a re-
active response compared to the tonic component. To extract this signal a filter with a
narrow pass band is applied, composed of the cascade of a 3rd order Butterworh low-pass
filter, with a cutoff frequency of 1.8Hz, and a 9th order Butterworth high-pass filter, with
a cutoff frequency of 0.05Hz.

For both components, the Python filtfilt() function of the scipy library was used, which
applies a linear digital filter twice, once forward and once backwards. The combined filter
has zero phase and a filter order twice that of the original. The filtering effect of the stage
is shown in Figure 3.12.

Figure 3.12: EDA Tonic and Phasic

3.3.3. Critical points detection

For human emotional state assessment, short term fluctuations of the phasic component
should be captured and analyzed. In order to achieve this result an algorithm was de-
veloped, composed of three main parts: a peak detector, a point of onset detector and
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an half recovery point detector. To help the detection two useful signal are computed.
The first is the zero crossing of the first derivative of the phasic signal, which was derived
by filtering with a 3 points digital differential filter described by the transfer function of
Equation 3.9. The second is the second order derivative of the phasic signal, computed
applying a 7 points digital differential filter with transfer function described in Equation
3.10. Both transfer function frequency responses are plotted in Figure 3.13.

H(z) = 1/2z − 1/2z−1

H(z) = 1/10z3 + 1/20z2 − 1/10z − 1/10− 1/10z + 1/20z−2 + 1/10z−3

(3.9)

(3.10)

Figure 3.13: First and Second order derivative frequency response

Peak detection The detailed representation of peak detection algorithm is depicted
in Figure 3.14. Event-Related Skin Conductance Responses (ER-SCR) reflect on the
electrodermal activity signal as fluctuations, but the skin may generate 1 to 3 Non-Specific
SCR (NS-SCR) per minute [8]. For this reason the algorithm analyzes 10 seconds of data
at a time, dividing the window into 2-second segments and shifting at every cycle by the
segment size [32]. First the absolute maximum point of the phasic signal is detected,
thanks to the previously computed phasic properties. If a one is detected in the zero
crossing array and if the second derivative is lower than zero, the corresponding index is
marked as a possible peak. Then a double check on the amplitude is performed. First
the phasic value at the peak is compared to a fixed threshold of 0.01µS, which is a largely
arbitrary value chosen to discard immediately NS-SCR events. Then the EDA value (tonic
plus phasic component) at the peak is compared with a threshold computed according to
Equation 3.11. If the value is higher than the threshold, the point is marked as a classified
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Figure 3.14: Peak detection algorithm

peak, otherwise the point will be discarded.

EDApeakThrd = γ ∗
[
EDAwindow +maxEDAwindow)

]
(3.11)

The parameter γ is a threshold factor to regulate the severity of the peak detection
algorithm and in this work is always equal to 0.4.

Point Of Onset detection For each peak detected, an onset must be identified, which
is by definition the point at which a change in the slope of the curve occurs. The represen-
tation of the searching procedure is depicted in Figure 3.15. The algorithm loops on the
classified peaks array, in order to find the first point, in the range of 3.2 seconds from the
pointed peak, where the zero crossing value is one and the second derivative is higher than
zero, hence a minimum point [32]. The time distance limit is chosen considering that,
starting from an external stimulus and considering the latency of the human sympathetic
nervous system, the peak related to that event should be within 1 to 4 seconds [8].
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Figure 3.15: Point of Onset detection algorithm

Half Recovery Point detection Once peaks and points of onset are detected, it is
also useful to detect the point at which the signal decreases to half of the peak value.
The reason the full recovery point is not considered is because such amplitude usually
not happens, mostly due to tonic shifts in the EDA signal and increased moisture on the
skin. The HRP detection is easily achieved by searching, from one peak to the immediately
following onset, as described in Figure 3.16. The half recovery point is not always present,
especially if a second SCR begins before conductance levels have dropped sufficiently. In
those cases, peak and point of onset are maintained, because they still describe the signal
trend.

3.3.4. Statistical features

As random signals, physiological signals have a fairly high degree of uncertainty in their
occurrence. Since in the end the focus of the work is to apply a classifier for emotional
stress estimation, recognition of possible patterns is important. For this reason five sta-
tistical features are extracted, all from the tonic component, listed in Table 3.5.
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Figure 3.16: Half Recovery Point detection algorithm

Feature Formula

28 Tonic mean over the time window (TM)
1

N

N∑
i=1

xi

29 Tonic variance over the time window
1

N

N∑
i=1

(xi − TM)2

30 Tonic energy
1

fs

N∑
i=1

x2
i

31 Tonic bandwidth
1

2π

√√√√√√√√√
N∑
i=2

(xi − xi−1)
2

N∑
i=2

x2
i

Table 3.5: EDA Statistical features



3| Algorithm development 35

3.3.5. Syntactical features

From the detected phasic critical points, a geometric description of the signal, as Figure
3.17 describes, in the time window could be made, in the form of syntactical features.
Those characteristics are listed in Table 3.6.

Figure 3.17: EDA phasic response with highlighted critical points

Feature Formula

32 Phasic peak rise time sum
∑

(tpeak − tpoo)

33 Phasic peak amplitude sum
∑

(SCRpeak − SCRpoo)

34 Normalized phasic half recovery
sum

1

N

∑
(thrp − tpeak)

35 Phasic peak energy sum
1

2

∑
[(tpeak − tpoo) ∗ (SCRpeak − SCRpoo)]

36 Phasic rise rate average -

37 Phasic decay rate average -

38 Phasic percentage decay -

39 Phasic number of peaks -

40 Phasic highest amplitude
(PPHA)

max (SCRpeak − SCRpoo)

41 Phasic highest amplitude rise
time

tPPHApeak
− tPPHApoo

Table 3.6: EDA Syntactical features
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The following list is intended to better explain some of the above features that are difficult
to express with a formula:

• Feature 36: The phasic rise rate average is defined as the sum of the SCR first
derivative points that are higher than a threshold fixed at 0.025µS/s

• Feature 37: The phasic decay rate is defined as the average of the SCR first
derivative points that are lower than a threshold fixed at −0.025µS/s

• Feature 38: The phasic percentage decay is defined as the percentage of samples,
over the total number of samples, which has first SCR first derivative lower than 0

3.4. Feature set exploration

After the required features have been extracted a features exploration step is required.
This step will perform cleaning and selection on the previously extracted features so that
only the features with the most significance will be used for classifier training.
The structure is shown in Figure 3.18.

Figure 3.18: Features set exploration

The first block will perform Features cleaning. Features with an high correlation with
others need to be removed from the feature set since they will not bring additional in-
formation (or just very few), but will increase the complexity of the algorithm, thus
increasing the risk of errors. Moreover, for some specific machine learning algorithms, the
presence of a pair of highly correlated features will provide a bias to the system further
decreasing performances.
Once the features cleaning step has been performed features selection is needed so that
only the most informative features as kept for classifier training. The reduction of the
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feature count allow for simpler classifiers model to be obtained thus speeding-up training
and reducing errors introduced by more complex models.

3.4.1. Feature cleaning

The feature cleaning step is performed by first computing the correlation matrix of the
features set and using it to do the cleaning operation.
Once a pair of features with a correlation higher than the specified threshold is found the
algorithm will remove the feature which had the highest correlation with all the other
features; in this way the most informative feature is kept of each pair.
The correlation threshold can be externally specified with the use of papermill and has
been kept at 0.95 after some initial exploration.
The correlation matrix of the features set is shown in Appendix B.

3.4.2. Feature selection

Different algorithms can be used for the feature selection step of the pipeline. The algo-
rithm is used to assign a score to each features and then the highest scoring features are
preserved for classifier training. The number of features to select as well as the algorithm
to use are parameters configurable through papermill.
The following features selection algorithm were tried:

ANOVA-F ANOVA[36] is based on the analysis of variance. It is a parametric statisti-
cal hypothesis test for determining whether the means from two or more samples of data
come from the same distribution or not. Using this analysis method the selector will keep
the features which have variances correlated to the target variance.

CHI-2 Chi-2[37] is a statistical test used to examine the differences between categorical
variables from a random sample in order to judge the goodness of fit between expected
and observed results. Using this test the features which are most likely to be independent
from the target are removed.

MI (Mutual Information) MI[22] is the measure of the mutual dependence between
two variables. Using this test the algorithm will select the features which provide the most
information content overall, thus discarding features which provide similar information
content.
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3.5. Classifiers exploration

After the feature exploration step is completed, a set of the most informative features of
the signals is provided to the Classifiers Training and Validation blocks.
With an iterative approach, this step performs the training of six different classifiers by
exploiting the cross validate function of the scikit-learn Python library [30].

3.5.1. Training Methodology

When dealing with prediction function, learning and testing it on the same set of data
leads to unavoidable mistakes. In order to avoid over-fitting and obtain valid results, the
database must be divided into two groups: training data and test data.
The method used in our work consists on splitting the training dataset into k smaller
sets, called folds. A model is trained using k − 1 of the folds as training data and the
resulting model is validated on the remaining part of the data (i.e., it is used as a test
set to compute performance measures such as accuracy, F1 . . . ) [30]. After all iterations,
the output performance metrics are the average of the k values computed in the loop. At
the end, the test dataset is used for a final evaluation. A representation of the database
splitting method is reported in Figure 3.19.

Figure 3.19: Cross-validation methodology [30]
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3.5.2. Comparison metrics

To be able to evaluate the performance achieved during training of the classifiers and to
choose the best one, nine metrics are extracted, listed below, derived from four commonly
characteristics when dealing with machine learning models. The common characteristics
are described in Table 3.7.

F1 Weighted Mean The weighed-average F1 score is computed by taking the mean
over all folds of all per-class F1 scores, while considering each class’s support. Support
refers to the number of actual occurrences of the class in the dataset. The ‘weight’
essentially refers to the proportion of each class’s support relative to the sum of all support
values.

F1 Weighted STD This metric is a measure of the amount of variation or dispersion
of the weighted F1 scores computed over all folds.

F1 Weighted Min This metric is the minimum value between the computed weighted
F1 scores over all folds.

F1 Micro Mean Micro F1 score is the normal F1 formula but calculated using the total
number of True Positives (TP), False Positives (FP) and False Negatives (FN), instead
of individually for each class. Then all the folds corresponding values are averaged.

F1 Micro STD This metric is a measure of the amount of variation or dispersion of
the micro F1 scores computed over all folds.

F1 Micro Min This metric is the minimum value between the computed micro F1
scores over all folds.

Accuracy Mean This evaluation parameter measures, for each fold, the number of
correct predictions made by a model in relation to the total number of predictions made,
and then compute the resulting average.

Accuracy STD This metric is a measure of the amount of variation or dispersion of
the accuracy scores computed over all folds.
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Accuracy Min This metric is the minimum value between the computed accuracy
scores over all folds.

Metric Formula

Precision
TP

TP + FP

Recall
TP

TP + FN

F1 score 2 ∗ precision ∗ recall
precision+ recall

Accuracy
TP + TN

TP + FP + TN + FN
)

Table 3.7: Machine learning metrics

3.5.3. Tested Classifiers

The following classification algorithm were tried:

KNN The K Nearest Neighbour classifier (KNN) [15] works by classifying a new data
point using the labels assigned to its neighbors in the feature hyperspace, with the new
point being assigned to the label most common among its k nearest neighbors. In our
case we tried the algorithm with k = 3, 5 and 7.

MLP The Multilayer Perceptron (MLP) [21] is a feed-forward artificial neural network,
consisting of fully connected neurons with a nonlinear kind of activation function and at
least three layers. This kind of neural network is able to classify data that are not linearly
separables.

Random Forest The Random Forest classifier (RF) [27] is a learning method that
operates by constructing a multitude of decision trees at training time and then computing
the output label as the label produced by the majority of the trees.
It is classified as an ensemble learning method due to its use of multiple algorithm to
obtain a single result.
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XGBoost The eXtreme Gradient Boosting (XGB) [39] is a framework for the use of
regularized gradient boosting techniques. In particular the obtained model is an ensemble
of weak decision trees.
The XGBoost model often achieves higher accuracy than a single decision tree but it
sacrifices its intrinsic interpretability.

Gaussian Naive Bayes The Naive Bayes is a classification technique used in Machine
Learning based on the probabilistic approach, with the “naive” assumption of conditional
independence between every pair of features. When the likelihood of the features is
assumed to be Gaussian the method is called Gaussian Naive Bayes (GNB) [23].

SVM Support Vector Machines (SVM) [33] are supervised learning models that operate
on the data by finding the best hyperplane that separates the points of a class from the
points of another one, where ’best’ is intended to be the one with the higher margin
between the classes. This method works well with high dimensional spaces (large number
of features) and small dataset.

3.5.4. Selected Classifier

The best results obtained after all the permutations of the Classifier training pipeline are
shown in Figure 3.20 and Figure 3.21.

The two images show the results for normalized EDA data and not-normalized EDA data.
The 10 highest performing options are shown sorted by highest mean accuracy.
It can be easily seen that performance are higher for normalized data, this has to be
expected due to the presence of offsets in the EDA signal as explained is Section 3.3.1.

In the end we choose to use non-normalized EDA data even if the performance are lower.
This was done due to difficulties of applying the normalization in a real-time setup as
explained in more details in Section 5.2.2.

In the end we choose the classifier to use as the top performing one using non-normalized
EDA data. The chosen Classifier is the XGBoost model, trained on 25 features selected
with the CHI-2 algorithm, running on a 60s windows size.



42 3| Algorithm development

Figure 3.20: Results of classifiers training (Normalized Data)

Figure 3.21: Results of classifiers training (Non-Normalized Data)
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Once the Python algorithm was developed it was necessary to move it to a suitable
embedded system.

The Python algorithm worked in a post-processing fashion: data are read from data files
previously acquired, meaningful signals are extracted and then features are computed for
all the available time windows. This working behaviour was not compatible with our
real-time processing goals and cannot be directly moved to an embedded system.
The embedded system instead should work with real-time data, acquiring the signals
directly from sensors and producing an output label once every second in real-time. For
this reasons a suitable architecture for the real-time system needs to be developed and
the algorithm needs to be adapted to work in a real-time fashion.

It was chosen to develop the embedded system as a Heterogeneous system, in this
topology a conventional CPU was paired with a specific Biosignal Coprocessor to aid
in the processing of the signals acquired from the sensors.
The choice of a heterogeneous topology has several advantages in terms of performance
and power consumption ease of design with respect to an homogeneous CPU-only system.

Performance advantages The use of specialized hardware components for some part
of the system allow for increased throughput and reduced latencies: an example of this
are a digital filtering stages (e.g. FIR filters) which can be easily synthesized in hardware
with higher performances than their CPU counterparts. Furthermore multiple hardware
components can be added to exploit parallelization on tasks which may benefit from it.
The use of specific hardware components can also free the CPU from computationally
intensive tasks, thus indirectly increasing the performances of CPU related tasks and
lowering the requirements for the CPU part.

Power consumption A specialized hardware block can be made more power efficient
than a general purpose one since it can be specifically optimized for its task; on the
contrary, a CPU has the potential of performing any task but with a lower power efficiency
intrinsically derived from its general purpose design.
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The use of those hardware block inside a heterogeneous system can therefore produce
a system with an overall lower consumption compared to a conventional system; this is
particularly advantageous in case of wearable or portable devices.

The specific Hardware/Software partitioning we selected for the system will be explained
and justified in details in Section 4.2.

4.1. Platform choice

Starting from previous experiences with the EDA tools achieved during the master’s
degree courses about digital electronics design in Politecnico, the easy availability and
the presence of plenty documentation, an AMD Xilix platform was chosen for this work.
The target device family chosen was the Zynq™ 7000 SoC, which integrates the software
programmability of an ARM®-based processor with the hardware programmability of an
FPGA.
These products integrate a dual-core ARM® Cortex™-A9 base processing system (PS)
and a 28nm Xilinx programmable logic (PL), together with integrated memory, a variety
of peripherals, and high-speed communications interfaces [7]. Its simplified model is shown
in Figure 4.1.

Figure 4.1: Zynq™ 7000 SoC structure model [7]

The Zynq™ 7000 SoC family comprises of different general purpose devices, all with slightly
differences in terms of fabric components, as shown in Figure 4.2.
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Figure 4.2: Zynq™ 7000 SoC comparison

4.1.1. EDA tools

When dealing with SoC devices the manufacturers gives a variety of EDA tools to the
developer in order to design its own system. EDA Tools are very sophisticated and
complex software programs developed to assist with the design and manufacture of chips,
providing simulation, design and verification tools.
Since Zynq™ 7000 SoC are manufactured by AMD Xilinx, the respective manufacturer
tools that were used in this work are described in the following paragraphs.

Vivado™ ML Vivado™ was introduced in April 2012 by Xilinx and is an integrated
design environment (IDE) with system-to-IC level tools for synthesis and analysis of
hardware description language (HDL) designs. This new version of the tool features ML-
based algorithms to accelerate and optimize the design process, improve delay estimation
and automate strategies to reduce timing closure iterations.

Vitis™ HLS This tool allows users to easily create complex FPGA algorithms by syn-
thesizing a C/C++ function into RTL, which could be constrained by applying directives
to instruct the compiler on how the logic is desired to be implemented. Since the de-



46 4| Proposed solution

velopment is completely done in C language, the simulation and validation process is
accelerated, allowing faster iterations than a traditional RTL-based simulation.

Figure 4.3: Vitis™ HLS tool overview

Vitis™ IDE The Vitis™ IDE is a software useful to develop, run and debug platforms
and standalone/Linux application for AMD Xilinx devices.

4.1.2. Development board

Once the Zynq™ 7000 SoC was chosen as the required embedded platform a development
board was needed.
Different options available on the market were considered:

• Zedboard (Based on Zynq-7020, priced around 580$)

• Pynq-Z1 (Based on Zynq-7020, priced around 300$)

• Arty Z7 (Based on Zynq-7010, priced around 200$)

• Cora 7Z (Based on Zynq-7010, priced around 150$)

• MicroZed 7010 (Based on Zynq-7010, priced around 220$)

• EBAZ-4205 (Based on Zynq-7010, priced around 30$)

We choose to use the EBAZ-4205 board [44] since it could be obtained at an extremely
low price and features plenty of useful peripherals which low price boards were missing.
The EBAZ-4205 board was initially built as a control board for Ebit E9+ BTC miners but
was being sold as development board after the decommissioning of the miners. Due to its
initial intended purpose, no official support was provided for the users therefore making
the development experience more difficult with respect to official development boards.
The board is shown in Figure 4.4 and the specification of its Zynq™ 7000 SoC are provided
in Table 4.1.

https://www.avnet.com/shop/us/products/avnet-engineering-services/aes-z7ev-7z020-g-3074457345635221599/?INTCMP=AMER-ECOMM-AVNET-BOARDS-AVT-INT-WEB-ZEDBOARD-PRODUCTS-08282030
https://digilent.com/shop/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/
https://digilent.com/shop/cora-z7-zynq-7000-single-core-for-arm-fpga-soc-development/
https://www.xilinx.com/products/boards-and-kits/1-1g7jkrb.html
https://github.com/xjtuecho/EBAZ4205
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Figure 4.4: EBAZ-4205 board

The EBAZ-4205 has the following specifications:

• SoC: XC7Z010CLG400

• RAM: 256MB DDR3

• Flash: 128MB SLC NAND

• Networking: 100BASE-T Ethernet

• Connectivity: micro-SD slot, 60 GPIO, 2 Buttons, 2 LEDs
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XC7Z010CLG400

CPU 2 x ARM Cortex-A9 MPCore™

CPU max speed 667 MHz

L1 cache 32 KB

L2 cache 512 KB

On-Chip-Memory 256 KB

PL fabric Artix-7 FPGA

PL logic cells 28K

PL LUTs 17 600

PL Flip-Flops 35 200

PL Block RAM 2.1 MB
PL DSP Slices 80

Table 4.1: EBAZ-4205 S0C specs

4.2. Hardware / Software co-design

Hardware/software co-design is an crucial step during development on embedded systems
and a correct design could lead to important improvements in terms of performance and
resource utilization. The main objective of this stage is to offload the CPU from operations
that can be parallelized, implementing them in hardware, leaving the processor the chance
to execute other tasks. The designed architecture is depicted in Figure 4.5 and consists
on the implementation of the signal processing chain on the Programmable Logic, while
the execution of the feature extractor and the classifier model on the Processing System.
This structure gives multiple benefits:

• Parallelize the downsampling and filtering of the two raw signals implementing it
on the fabric

• Parallelize the preprocessing and processing stages providing more significant signals
to the processor

• Possibility to add newer features extracted from the signals provided by the PL

• Possibility to test different and more optimized classifiers without run the imple-
mentation process

• Give the chance to implement more than one application that can exploit the same
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elaborated signals for more advanced and complex system

• Make the system portable and scalable on other platforms for future development

Figure 4.5: System architecture idea

As shown in Figure above the Programmable logic implements a custom Biosignal Co-
processor IP Core, composed of the following stages:

• Downsampling: it deals with filtering and downsampling of the high frequency
raw signal provided from the ADC

• Preprocessing: it elaborates the downsampled signals to compute in real-time
derived characteristics useful to simply the processing stage

• Data Collector: it collects the input streaming of data into arrays ready to be
processed by the next block

• Processing: it computes significant signals from which the processing system ap-
plication can calculate the features

The Processing System instead runs a user-space application, composed of different threads:

• Feature Extractor: it retrieves the data from the Biosignal Coprocessor core
through the memory and it computes all the available features

• Classifier: it gets the computed features and runs the classifier, selecting only those
needed

The hardware and software coexists together exchanging data through the main memory
and different interfaces, which will be explained in details in the following sections.
In Appendix C the Vivado™ block design of the system is shown.

4.2.1. ADC Emulation

Since the time available to develop the system was limited and the need to test all the
designed stages it was decided to emulates the real-time sensors data. By combining both
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hardware and software we design an ADC Emulator block as depicted in Figure 4.6.

Figure 4.6: ADC Emulation

Before moving to the Linux Application two different stimulus data files were generated
in Python from the dataset raw files by applying the resample_poly function, in order to
generate two signals at the same frequency of 500Hz. Then it was developed a synchronous
thread that runs at the target 500Hz, running inside the user-space application, that
sequentially reads from the stimulus files placed in the file-system, loads the data in the
main memory and triggers the data transfer through the DMA.
The AXI DMA is a soft Xilinx IP core which provides high-bandwidth direct memory
access between memory and AXI4-Stream target peripherals. For the purpose of this
thesis it was used in Direct Register Mode, a lower performance but less FPGA-resource-
intensive mode that can be enabled by excluding the Scatter Gather engine. In this mode
transfers are commanded by setting a Source Address (for MM2S) or Destination Address
(for S2MM) and then specifying a byte count in a length register [41]. For this work two
of this IP Core are inserted into the design, one to produce the ECG signal stream and
the second to produce the EDA signal stream, as shown in Figure 4.7.

4.2.2. Interfaces

Different interfaces are needed to allow for communication between PL, PS, Memory and
DMA. Four different interface types are mainly used and will be explained in more details
in the next paragraphs:

AXI-4 The AXI-4 interface [40] is an on-chip communication bus protocol developed
by ARM. It was first introduced in 2003 and it is part of the Advanced Microcontroller
Bus Architecture 4 specifications (AMBA 4).
It is a burst based protocol allowing for multiple data transfers in a single request; this
greatly reduce the overhead necessary for the transfer of contiguous data further improving
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Figure 4.7: AXI DMA blocks in Direct Register Mode for ADC emulation

performances. In the AXI-4 specification, five channels are described:

• Read Address channel (AR)

• Read Data channel (R)

• Write Address channel (AW)

• Write Data channel (W)

• Write Response channel (B)

Each channel is independent from each other and has its own couple of xVALID/xREADY
handshake signals.
While the communication over an AXI bus is between a single initiator and a single target,
the specification includes detailed description and signals to include N:M interconnects,
able to extend the bus to topologies with more initiators and targets.

AXI-4-Lite The AXI-4-Lite interface is defined as a subset of the AXI4 protocol, pro-
viding a register-like structure with reduced features and complexity. Burst support is
dropped as well as the resizing of the interface data bus.
Being a subset of AXI4, AXI4-Lite transactions are fully compatible with AXI4 devices,
permitting the interoperability between AXI4-Lite initiators and AXI4 targets without
additional conversion logic.
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AXI-4-Stream The AXI-4-Stream interface (AXIS) is a simple interface for the transfer
of streaming data. It is a point-to-point protocol, connecting a single Transmitter and a
single Receiver.
The basic structure is composed of a TDATA channel with the required number of bits
and a pair of VALID/READ handshake signals.
Additional signals like TSTRB, TKEEP, TLAST, TID, TDEST and TUSER can be added
to provide more information and aid the interface opeation.

Interrupt An Interrupt is a request for the processor to interrupt currently executing
code, so that the event can be processed in a timely manner.
On Zynq™ 7000 SoCs interrupts are connected to the ARM CPU Generic Interrupt Con-
troller (GIC) and multiple sources of interrupts are available. Moreover, interrupts can be
created between the PL and PS parts so that custom hardware can signal the completion
of tasks to the CPU.

Figure 4.8: System interfaces

Figure 4.8 shows how the previously introduced interface types are used in our system to
interconnect the different blocks.
In the following paragraphs those interconnections are explained in details.

Memory to DMA A full AXI-4 interface is used in a Memory-Mapped fashion. The
DMA blocks use this interface to retrieve ADC emulation data from system memory. The
physical interface used here is the AXI HP0 with 32bit bus width.

ADC/DMA to Biosignal Coprocessor Two AXI-4-Stream interfaces are used here,
one for EDA and one for ECG. The streaming interface was chosen since the data are
received in a streaming fashion from the ADC or the DMA blocks emulating it.
Physically the two interfaces are based on a 16-bit data bus with only the VALID/READY
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handshakes added. The original data width from the DMA blocks is 32-bit, therefore here
a AXI-4-Stream Subset Converter is used to extract only the LSBs of the bus.

Biosignal Coprocessor to Memory A full AXI-4 interface is used here, again in a
Memory-Mapped fashion. Through this interface the Biosignal Coprocessor is able to
write output data in memory without CPU intervention.
The physical interface used here is again the AXI HP0 like the one used for DMAs.

CPU to Biosignal Coprocessor An AXI-4-Lite interface is used here to allow control
of the Coprocessor internal registers from the CPU side. Through this interface the
Coprocessor can be started, stopped and configured.
Physically the interface is routed to the AXI GP0 interface of the PS.

CPU to DMA Again an AXI-4-Lite interface is used here. Through this interface the
CPU can configure and start the DMAs to perform ADC emulation.
The physical interface used is the AXI GP0 with the DMA blocks acting as slaves on the
bus.

Interrupts Three different interrupts are used between PL and PS in our system.
Two of those interrupts are connected to the DMA blocks used for ADC emulation, they
provide a way for the CPU to know when the DMA transfers have been completed.
The third interrupt comes from the Biosignal Coprocessor, it is used to signal the CPU
that a new set of output data has been saved to memory. This interrupt is raised once a
second when 500 samples from the input streams have been processed.

The full block design produced in Vivado™ is shown in Appendix C.

4.2.3. System Memory Map

In order to establish a correct communication between PL and PS it is important to
understand how the memory of the chosen SoC is organized. The memory is accessed
through 32bit address as depicted in Figure 4.9.

As reported in Table 4.2, peripherals registers are mapped starting from the address
0x4000_0000 so for this work the described memory mapping was chosen inside the
Address Editor of Vivado™.
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Figure 4.9: Zynq-7000 SoC memory map [7]

Core Interface Start Address End Address

Biosignal Coprocessor AXI LITE 0x4000_0000 0x4000_FFFF

ECG AXI DMA AXI LITE 0x4040_0000 0x4040_FFFF

EDA AXI DMA AXI LITE 0x4041_0000 0x4041_FFFF

Table 4.2: Peripherals memory map

For the memory mapped interfaces addresses are configured through the slave AXI LITE
interfaces. It was decided to organized them as described in Table 4.3.
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Data Type Size Start Address Offset

DMA input 0x0A00_0000

ECG uint16 1 0x0000_0000

ECG uint16 1 0x0100_0000

Biosignal Coprocessor ECG output 0x0C00_0000

NN array uint16 200 0x0000_0000

CARD array uint16 750 0x0000_2000

NN counter uint16 1 0x0000_4000

Biosignal Coprocessor EDA output 0x0D00_0000

Tonic array int32 1500 0x0000_0000

Phasic array int16 1500 0x0000_2000

Peaks array uint8 1500 0x0000_4000

POO array uint8 1500 0x0000_6000

HRP array uint8 1500 0x0000_8000

Table 4.3: Data organization in memory
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The Biosignal Coprocessor hardware accelerator was designed to offload the main CPU
from some computationally intensive tasks to be performed on ECG and EDA signals.
In particular, the accelerator is performing all the filtering and processing operations
required for the extraction of meaningful signals from the two sensors. It accept as inputs
the two data streams at 500Hz (ECG and EDA) and produce as output the meaningful
signals for the current time window at 1Hz.

The accelerator was developed as a custom Vivado™ IP core synthesized using Vitis™
HLS, the internal structure is shown in Figure 5.1.

Figure 5.1: Overall Accelerator layout

The following signals are produced at the output of the accelerator:

NN Array containing the beat-to-beat intervals extracted from the ECG signal in the
time window of interest.

NN Counter An integer describing the number of heart-beats found in the time window
of interest.
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Cardiotach Array containing the filtered and down-sampled Cardiotach signal for the
time window of interest.

Tonic Array containing the Tonic signal extracted from EDA for the time window of
interest.

Phasic Array containing the Phasic signal extracted from EDA for the time window of
interest.

Peak Array of flags highlighting the positions of peaks found in the EDA signal for the
time window of interest.

Poo Array of flags highlighting the positions of Poos (Point of On-set) found in the
EDA signal for the time window of interest.

Hrp Array of flags highlighting the positions of HRPs (Half Recovery Point) found in
the EDA signal for the time window of interest.

Interrupt Signal used to signal the completion of data processing for 1s of data, when
this signal is raised the CPU can read the data from memory and proceed with the next
steps.

Additionally to those output signals, the Biosignal Coprocessor is producing an interrupt
signal once computations have been completed for the time windows of interest. This
happen when 500 samples of both channels have been consumed, therefore the resulting
interrupt is raised once every second and it is used to signal to the software part that
features extraction can start.

In the following sections all the internal stages used in the Biosignal Coprocessor will be
analyzed and their design process will be described.

5.1. Downsampling

The focus of this stage is to reduce the signals frequency without any loss of information
or aliasing. In digital signal processing this is achieved in two steps:

1. Reduce the signal bandwidth by low-pass filtering the input signal

2. Decimate the filtered signal by a factor M
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The two steps enumerated before could be cascaded as many times as necessary. The
number of downsampling stages involved will be called N . The requirements of this block
are:

• Design a downsampling pipeline to reduce the ECG signal frequency.

• Design a downsampling pipeline to reduce the EDA signal frequency.

• Maintain the overall delays in an acceptable range.

• Reduce the resource utilization to the minimum possible.

Since filtered data could be negative even if input data are only positive integers, as com-
mon data type for this stage a signed integer was used. The two 16 bit unsigned integer
input values were casted to two 17 bit signed integer data using the ap_int.h Xilinx li-
brary. This allowed to not waste unnecessary bit by converting them to 32 bit signed
integers.
The process of filtering before decimate is explained clearly by thinking on the frequency
spectrum of a sampled signal. Sampling continuous-time signal by a certain frequency fs

results to periodicity in frequency domain of the spectrum of that signal by multiple of
fs. This is why a band limited signal is required before sampling, correctly filtered up to
the Nyquist frequency fs/2.
During downsampling process what it’s happening is exactly the same except the fact
we are sampling an already sampled signal. The input signal has to be filtered again in
according to the target frequency that the stage has to achieve.
In signal processing theory there are some tricks that one can adopt during filters design.
In the case of a multi-stage downsampling process, the anti-aliasing filters of the first to
the second-to-last stage could be relaxed by designing those filters as half-band filters.
In addition coefficients scaling could be applied to optimize the resource utilization of
the implemented downsampling chain.

Half-band filter An half-band filter is a particular low-pass filter which reduces the
signal bandwidth by a factor equal or multiple of M = 2. Taking for example a two
stage downsampling process, as the input signal bandwidth goes from 0Hz up to fs/2,
considering a bandwidth of interest fBW much lower than fs/4, we only need to make
sure that the spectrum between fs/2− fSB (where SB means Stop Band) and fs/2 does
not alias onto the 0Hz to fPB (where PB means Pass Band). The part between fs/4

(the new Nyquist frequency of the donwsampled signal) and fs/2−fPB will alias anyway,
but it will be cleaned up by the next filter stage. The designed filter will have equal pass
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Figure 5.2: Half-band filter design

band and stop band frequencies, so with a transition band centered at fs/4. That makes
it possible to design a FIR filter whose every other coefficient is zero, and whose non-
zero coefficients are symmetrical about the center of the impulse response, as reported in
Figure 5.3.

Figure 5.3: Half-band filter impulse response

Coefficients scaling When dealing with digital filters in embedded systems, another
important consideration has to be made. Applying a FIR filter to a signal means taking
a prefixed number of past samples and produce an output which is a weighted sum of
them. Even if the input data is an integer, a generic design of a FIR produce coefficients
which are not integer values, and in some cases even smaller than 1.
A very common trick that is applied in this context is to apply a scaling factor to the
coefficients of the filter in order to convert the floating point values to signed integers.
After applying the scaled filter the output is then scaled down by the same factor.
After setting the data type with which we want to represent the coefficients fixed to 16
bit signed integer, the procedure followed during the design is described here step by step:

1. Remove the coefficients that are too small, for instance lower than a threshold fixed
at 10−8
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2. Find the minimum and the maximum coefficients values after step 1

3. Compute the scaling factor of the minimum coefficient mapping it to the MINint16

4. Compute the scaling factor of the maximum coefficient mapping it to the MAXint16

5. Take the smaller between the two scaling factor computed at step 3 and 4 in order
to not commit overflow

6. Compute the equivalent number of bit, indicated by q, that represents the scaling
factor computed at step 5, approximating the result by the lower possible integer.
Then compute the resulting scaling factor as θ = 2q

7. Scale the filter coefficients multiplying them by θ and rounding them to the nearest
integer value. This step was done in Python and the coefficients were inserted in
the C code already scaled

8. Extract the number of bits (Σ), as in Equation 5.1, with which the accumulator
variable of the filter function has to be defined in order to not commit overflow,

Σ = η + q + log2(Ntaps) (5.1)

where:

• η represents the input data number of bits, in this case 17

• q represents scaling factor number of bits

• Ntaps represents the number of taps of the FIR filter, so the number of sum-
mations that the filter function will perform

An optimization could be done in the number of bits when dealing with FIR filters.
Remembering the fact that signed integer values are represented in CPL2, the rep-
resentation is cyclic, which means that if an overflow happens due to a summation
with a positive value, if the next summation is done with opposite sign and same
module, the first will be compensated, restoring the initial sign. This observation,
combined to the fact that the impulse response of FIR leads to an overall gain al-
ways lower than 1, allows temporary overflows and permits a relaxation on the total
number of bit required for the accumulator variable, resulting to Equation 5.2.

Σ = η + q (5.2)

9. Apply the filter
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10. Scale down the output of the filter by shifting by q

The following two sections describe how the steps described above are applied on the
physiological signals in detail.

5.1.1. ECG Downsampling

The ECG Downsampling stage was designed to accept a 500Hz input signal producing a
downsampled 125Hz signal at the output.
The stage was designed to keep a useful signal bandwith for the ECG signal in the range
0Hz - 40Hz and works with N = 2 and M = 2 for both stages. With the initial frequency
requirements a single downsampling stage could be used but the obtained result would
use more taps than a two-stage design, therefore increasing resource use.
The obtained downsampling stage is shown in Figure 5.4.

Figure 5.4: ECG downsampling

The four internal blocks employed are now described in details:

First LP filter The first LP filter is designed as an half-band filter with the specifica-
tions in Table 5.1:

Parameter Value

Input Sampling Frequency 500Hz

Pass-Band 0Hz to 62.5Hz

Stop-Band 187.5Hz to 250Hz

Stop-Band attenuation 60dB

Table 5.1: ECG Downsampling FIR 1 requirements

Using the scipy.signal.remez() function, which implement a variation of the Parks–McClellan
filter design algorithm [19], we found that a FIR filter of order 14 (15 taps) is able to sat-
isfy those requirements.
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The filter coefficients were scaled on 16 bit signed to allow for the use on integer-only
algebra in the HLS code. The scaling produced the results of Table 5.2 and Figure 5.5.

Parameter Value

Scaling coefficient 32768 (215)

Coefficient max relative error 0.39%

Input signal #bits 16

Coefficient #bits 16

Required accumulator #bits 32

Table 5.2: ECG Downsampling FIR 1 results

Figure 5.5: ECG downsampling FIR 1

First decimator An order 2 decimator is used here. The decimator will reduce the
sampling frequency at half the initial value by keeping a sample every two.

Second LP filter The second LP filter is designed with the specifications of Table 5.3:

Parameter Value

Input Sampling Frequency 250Hz

Pass-Band 0Hz to 40Hz

Stop-Band 62.5Hz to 125Hz

Stop-Band attenuation 60dB

Table 5.3: ECG Downsampling FIR 2 requirements
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The required filter order and the filter coefficients were obtained using an iterative ap-
proach still based on the Parks–McClellan filter design algorithm [19]. The required
filtering performances were obtained with a FIR filter of order 39 (40 taps).
The filter coefficients were scaled on 16 bit signed to allow for the use on integer-only
algebra in the HLS code. The scaling produced the results of Table 5.9 and Figure 5.6.

Parameter Value

Scaling coefficient 65536 (216)

Coefficient max relative error 0.54%

Input signal #bits 17

Coefficient #bits 16

Required accumulator #bits 33

Table 5.4: ECG Downsampling FIR 2 results

Figure 5.6: ECG downsampling FIR 2

Second decimator Again an order 2 decimator is used. The decimator will reduce the
sampling frequency at half the initial value by keeping a sample every two.

Overall delay The delay induced a FIR filter is described by Equation 5.3.

τ =
N − 1

2
∗ 1

f
(5.3)

where N is the filter length (number of taps) and f is the input frequency of the data.
The group delay is constant for all frequencies because FIR filters have linear phase, so all
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the input frequency components of the signal will be shifted in time of the same amount
of delay. The delay for the two stages are reported in Table 5.5.

Stage Order Delay

Decimator 1 15 0.014s

Decimator 2 40 0.078s

Table 5.5: ECG Downsampling delays

leading to an overall stage delay of 0.092s.

5.1.2. EDA Downsampling

The EDA downsampling stage was designed to accept a 500Hz input signal and producing
a 25Hz signal at the output.
Even if the bandwidth of the signal ranges from 0Hz to 2Hz, the output frequency of the
stage was kept higher than 2 ∗ 2Hz = 4Hz to be able to reduce the number of taps of the
resulting filter by enlarging the transition band. The block is designed with a number of
stage N = 2, with downsampling factor equal to M1 = 4 for the first stage, and M2 = 5

for the second stage. The chosen decimation order comes from the half-band filter theory
and the minimization of the total downsampling stage group delay.
The obtained stage is depicted in Figure 5.7

Figure 5.7: EDA downsampling

The four internal blocks employed are now described in details.

First LP filter The first LP filter is designed as an half-band filter with the specifica-
tions in Table 5.6:
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Parameter Value

Input Sampling Frequency 500Hz

Pass-Band 0Hz to 12.5Hz

Stop-Band 112.5 to 250Hz

Pass-Band attenuation 0.05dB

Stop-Band attenuation 60dB

Table 5.6: EDA Downsampling FIR 1 requirements

The optimized result that satisfies the requirements, obtained by using the remez function
of the scipy library results to be a filter of order 22 (23 taps). The filter coefficients were
scaled on int16_t to allow for the use on integer-only algebra in the HLS code. The
scaling produced the results of Table 5.7.

Parameter Value

Scaling coefficient 65535 (216)

Coefficient max relative error 3.9%

Input signal #bits 16

Coefficient #bits 16

Required accumulator #bits 33

Table 5.7: EDA Downsampling FIR 1 results

Figure 5.8: EDA downsampling FIR 1
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First decimator In this step the decimation factor is 4. This is done by keeping 1
sample every 4.

Second LP filter The second LP filter is designed with the specifications of Table 5.8:

Parameter Value

Input Sampling Frequency 125Hz

Pass-Band 0Hz to 2Hz

Stop-Band 5Hz to 62.5Hz

Pass-Band attenuation 0.05dB

Stop-Band attenuation 60dB

Table 5.8: EDA Downsampling FIR 2 requirements

The required filter order and the filter coefficients were obtained using an iterative ap-
proach based on the Parks–McClellan filter design algorithm [19]. The output of the
iterations gives a resulting filter of order 150 (151 taps).
The filter coefficients were scaled on 16 bit signed to allow for the use on integer-only
algebra in the HLS code. The scaling produced the results of Table 5.9 and Figure 5.9.

Parameter Value

Scaling coefficient 524288 (219)

Coefficient max relative error 5.02%

Input signal #bits 17

Coefficient #bits 16

Required accumulator #bits 36

Table 5.9: EDA Downsampling FIR 2 results

Second decimator An order 5 decimator is used. The decimator will reduce the sam-
pling frequency by five, with the same procedure of the previous one.

Overall delay The delay induced a FIR filter is described by Equation 5.4.

τ =
N − 1

2
∗ 1

f
(5.4)
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Figure 5.9: EDA downsampling FIR 2

where N is the filter length (number of taps) and f is the input frequency of the data.
The group delay is constant for all frequencies because FIR filters have linear phase, so all
the input frequency components of the signal will be shifted in time of the same amount
of delay. The delay for the two stages are reported in Table 5.10.

Stage Order Delay

Decimator 1 22 0.022s

Decimator 2 150 0.6s

Table 5.10: EDA Downsampling delays

leading to an overall stage delay of 0.622s.

5.2. Preprocessing

The Preprocessing stage has the purpose on extracting useful signals from the two input
signals received from the Downsampling stage.

The ECG preprocessing will detect the heart-beats in real time while the EDA prepro-
cessing will perform the Tonic/Phasic separation and extract additional signals which will
be used in later stage of the pipeline.
The two preprocessing blocks works with streaming data, therefore providing an output
signal each time an input is received. The operating frequencies are inherited from the
sampling frequencies at this stage of the pipeline being 125Hz for ECG and 25Hz for
EDA.
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Input data are in 17 bit signed format as the outputs of the downsampling stage; the
output data are instead two data structure containing different data types aggregated
together. The ap_int.h as well ap_fixed.h Xilinx libraries are extensively used to better
optimize variables and structure for the FPGA implementation.

Due to the completely different behaviour of the two internal blocks they will be explained
separately in the next two sections.

5.2.1. ECG Preprocessing

The ECG Preprocessing stage main task is to correctly identify the positions of the heart-
beats in the ECG signal. This is done using the Pan-Tompkins algorithm [24] which was
introduced before in Section 3.2.1. The Pan-Tompkins algorithm topology was adapted
to an FPGA implementation, mainly in its Peak-Detector stage, this will be explained in
details in the next paragraphs.

The stage is working in a streaming fashion at 125Hz receiving as input the downsampled
data as 17 bit signed and producing as output a data structure composed of two data:

Peak flag This 1 bit unsigned flag signal is set True when the current sample has been
identified as an heart-beat peak. The heart-beat position is extracted using a decision
stage similar to the one previously used in the Python Algorithm but optimized for FPGA
implementation.

NN (Time continuous) This 11 bit unsigned signal is the current beat-to-beat interval
value. It is a stepped-like signal, it is computed keeping track of the distance in ms

between the last two previously encountered peaks and it is updated each time a new
peak is found.
This signal is not to be confused with the Cardiotach signal, the two are similar but the
NN is intrinsically computed with one heartbeat of delay with respect to the Cardiotach.
The step duration of the NN signal is linked to the current beat-to-beat interval while
its height is the value of the previous beat-to-beat interval. The Cardiotach signal, on
the other side, has the step duration as well as the step height equal to the current beat-
to-beat interval; it cannot be computed in real-time since the knowledge of the following
peak position is needed.

In Figure 5.10 the block structure is shown in details.

The design process of the different internal blocks will now be explained in details:
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Figure 5.10: ECG preprocessing

Band-pass Filter As previously introduced in Section 3.2.1, the first step of the Pan-
Tompkins algorithm is a band-pass filter use to remove unwanted noise from the signal
and preserve only the bandwidth of interest.
The required filtering action is obtained with the combination of two Butterworth filters, a
low-pass one and an high-pass one. IIRs filters are used here instead of FIRs due to their
lower order and to keep the system more consistent with our Python implementation.
Attention was payed to keep the quantization error low for the filter coefficients, this is
critical for IIR filters due to their recursive nature and can introduce introduce instability
otherwise.
In Table 5.11 and Figure 5.11 the performances of the obtained filters are shown.

Parameter LP Filter HP Filter

Cut-off frequency 15Hz 5Hz

Filter order 2 1

Filter type Butterworth Butterworth

Input signal #bits 17 17

Coefficient #bits 16 16

Scaling coefficient 16384(214) 16384(214)

Coefficient max relative error 0.006% 0.0025%

Required accumulator #bits 31 31

Table 5.11: ECG Preprocessing LP and HP filters

Derivator Filter Following the band-pass filtering a derivative action is needed to
enhance the QRS complex slope information in the signal.
The derivative step of the ECG preprocessing was done using the 5 point derivative,
reported in Equation 5.5, instead of the original Pan-Tompkins derivative as previously
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Figure 5.11: ECG Preprocessing LP and HP filters

justified in Section 3.2.1.

H(z) = −1/12z2 + 2/3z − 2/3z−1 + 1/12z−2 (5.5)

The derivative filter was implemented as an FIR filter of order 4 (5 taps) and its coefficients
were quantized as 16 bit signed to allow for the use of integer-only arithmetic. The filter
parameters and its frequency response are shown in Table 5.12 and Figure 5.12.
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Parameter Value

Input signal #bits 17

Coefficient #bits 16

Scaling coefficient 32768(215)

Coefficient max relative error 0.012%

Required accumulator #bits 32

Table 5.12: ECG Preprocessing Derivator filter

Figure 5.12: ECG Preprocessing Derivator filter

Squarer The squarer block is designed to provide a non-linear gain element to the signal
further enhancing out signal of interest (high-slope regions of the QRS complex).
It accept as input a 17 bit signed signal from the previous block and provide at the output
a 32 bit unsigned signal.

Mobile Mean Filter The signal produced at the output of the squarer block needs
to be integrated to produce the required signal shape for the decision stage. A moving
average filter is used for this as previously introduced in Section 3.2.1.
The window size was chosen to be 16 samples (128ms) as previously used in the Python
code.
We choose to use a FIR filter topology with unitary coefficients to create the Moving
Average effect, no scaling was required for the coefficients. A 36 bit unsigned accumulator
was used here since the input data from the squarer are 32 bit unsigned and the window
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size is 16 samples.
In Figure 5.13 the filter transfer function is shown.

Figure 5.13: ECG Preprocessing Moving Average filter

Peak Detector The peak detector block is the one responsible of analyzing the filtered
signal to distinguish where a heart-beat is present.
The original Pan-Tompkins algorithm [24], as well as out Python implementation, used
here a complex decision stage with different thresholds to distinguish signal peaks from
noise peaks, as well as back-search methodology for the wrongly classified points. This
option was quickly ruled-out in the embedded system, due to its complexity and FPGA
porting difficulties.
A simpler decision stage was developed based on Shukla and Macchiarulo [31] work pro-
viding a much simpler implementation on FPGAs. The newly developed decision stage is
based on a pair of thresholds (th_1, th_2) and its dynamically tracking the signal shape
to identify the peak; no back-search is necessary further simplifying the algorithm.
The decision stage works thanks to a finite state machine (FSM) shown in Figure 5.14.

The behaviour of the FSM is the following:

1. PRE_FETCH: Once the system is started an initial value must be estimated for
the amplitude value of a peak. The first 250 samples are sampled and the maximum
value between them is kept to be used later for thresholding. The window of 250
samples (2 seconds) is chosen to guarantee the presence of at least an heartbeat,
the maximum value extracted will therefore be related to the peak amplitude.

2. LOAD 1: In this state the th_1 threshold is applied to the signal, the FSM will
move to the next state and produce a peak flag once the input signal goes above
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Figure 5.14: ECG Preprocessing Peak Detector FSM

th_1.
The threshold level is computed in two different ways: if the detector has identified
less than 8 heart-beats, then 25% of the initialization amplitude value found in the
PRE_FETCH step is used for th_1; otherwise, if more than 8 peaks have been
found, then 25% of the median amplitude value of the last 8 found peaks.

3. LOAD 2: Here the system has started a peak detection window, the second thresh-
old th_2 will be applied to find the end of the peak detection window.
The maximum amplitude of the signal in the window will be tracked and, at each
iteration, the th_2 level will be updated to 25% of the maximum value reached in
the window.
When the signal goes below th_2 the peak has for sure been passed and therefore
the detection window is closed moving the FSM to the next state.

4. PEAK 1: This state is reached once a peak has been detected, here a 224ms (28
samples) dead-time is observed before restarting the FSM from the LOAD_1 state.
The dead-time is required to avoid the triggering of the algorithm due to noise
following a valid heart-beat.

As previously explained the peak flag is raised once the threshold th_1 is surpassed. The
flag is produced as a 1 bit unsigned integer signal.
The obtained decision stage was simulated in Python before the final HLS implementation
and its behaviour is shown in Figure 5.15. The first peak flag is discarded to allow for
NN initialization.
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NN Extractor The last block of the ECG preprocessing is the NN-Extractor which
accept as input the stream of heart-beat peak flags and compute in real-time the NN
value.
The NN computation is done by keeping track of the previous beat-to-beat interval and
assigning its value to the NN signal until a new peak is reached. The NN value is com-
puted in ms, an 11 bit unsigned is used here proving a range between 0ms and 2047ms,
satisfactory for beat-to-beat interval representation.

In Figure 5.15 the behaviour of the last two blocks is shown in more details, that the
first peak flag is discarded to allow for NN extractor initialization. The second and third
plot show the evolution of the two threshold values during operation, note the absence of
threshold for the first 2 seconds of data corresponding to the PRE_FETCH state.

Figure 5.15: ECG Preprocessing Peak detector and NN extractor
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5.2.2. EDA Preprocessing

For this stage a perfect analogy couldn’t be made with the Python pipeline designed
in Chapter 3.2. Since we are now dealing with real-time signal data, presenting at the
input under the AXI-4-Stream protocol (Section 4.2.2), processing has to be made fast
introducing the smallest delay possible. The aim of the preprocessing block is to elaborate
some signal characteristics useful to make the processing stage much simpler and lighter.
In Figure 5.16 a schematic is shown.

Figure 5.16: EDA preprocessing

The input EDA signal, as a 17 bit signed, is converted in a structure composed of:

• Tonic: 17 bit signed integer data stream containing the SCL component of EDA

• Phasic: 16 bit signed fixed point data stream containing the SCR component of
EDA

• Phasic 1st Derivative Zero-Crossing: 1 bit unsigned integer data stream that
flags when a zero-crossing is detected in the first derivative of the SCR component

• Phasic 2nd Derivative Sign: 1 bit unsigned integer data stream that indicates
the sign of the second derivative of the SCR component.

Input and output frequency of the data are the same as the downsampling stage output,
so 25Hz.
The preprocessing procedure is described in details in section below.

Normalizer This block is inserted to reproduce the function of the homonym function
designed in the Python pipeline, but a direct translation of this block in hardware is
not as easy as it looks. Normalizing in that way requires knowing the entire dataset in
advance, which it’s not feasible for a real-time system. Here are described the issues with
each techniques presented in Section 3.3.1:
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• Min-Max normalization: this method is applied knowing the relaxed period
under which the patient is subjected in advance

• Percentile normalization: this procedure normalized the EDA signal by comput-
ing the its distribution, analyzing the entire samples of dataset.

As shown, none of the before listed could be applied.
As a solution here is proposed the online quantile estimation algorithm from [10]. It is a
sequential quantile estimator which allows to estimate quantiles with respect to the given
precision ϵ and it doesn’t require the knowledge of the total number of samples in the
dataset in advance.
For the purpose of this work, to achieve a complete picture of the system, this algorithm
wasn’t implemented, since it requires additional time under development and testing.

Stream broadcast The red blocks in Figure 5.16 were designed by the need to replicate
the normalizer data output in order to provide it to the next blocks.
All the blocks in the chain are linked each other using hls::stream objects, which are
designed by Xilinx and can be found in the hls_stream.h library. This kind of object is
useful when interface between functions is needed and it is implemented as a FIFO with a
default depth of 2 by default. The library provides to the user ready-to-use functions such
as read and write. Since this object is designed to wrap a fully functional FIFO, a read
command will empty the buffer, so multiple reads of the same sample are not feasible.
The broadcaster copies the input data to all the elements of the array of streams at the
output, without introducing any delay.

Signal decomposition This step comprises two blocks and the summation node of the
scheme reported in Figure 5.16. To separate the SCL and SCR components of the EDA,
instead of applying two separate filters, respectively a low-pass and a band-pass as it was
done for the Python pipeline, a combination of an all-pass and an high-pass filter is used.
The benefits that this design choice give are many:

• design just one complex filter, the high-pass FIR filter, reducing the memory occu-
pation needed to store the coefficients

• relax the filter constraints for phasic extraction designing just an high-pass filter
and not a band-pass, exploiting the already good low-pass filtering given from the
downsampling second stage

• design a naive all-pass filter and just subtract from the output the high-pass filter
result, to obtain the tonic component.
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Given those assumptions, the focus of the work was moved to the design of the High-Pass
FIR filter. The requirements are reported in Table 5.13:

Parameter Value

Input Sampling Frequency 125Hz

Pass-Band 0.2 to 2Hz

Stop-Band 0 to 0.01Hz

Pass-Band attenuation 0.1dB

Stop-Band attenuation 35dB

Table 5.13: EDA Preprocessing High-Pass FIR requirements

The required filter order and the filter coefficients were obtained using an iterative ap-
proach based on the Parks–McClellan filter design algorithm [19]. The output of the
iterations gives a resulting filter of order 200 (201 taps).
The filter coefficients were scaled on 16 bit signed to allow for the use on integer-only
algebra in the HLS code. Since the phasic signal is the output of an high-pass filter, its
modulus is mush lower than the original signal, so it was decided to increase its precision
representing it as fixed point value, keeping the same number of total bits. The resulting
representation was a 16 bit signed fixed point, referred here with the notation Q14.2,
where the first number indicates the integer part (represented by 14bit, including the sign
bit) and second one represents the decimal part (2 bit). The precision of this representa-
tion is equal to 2−2 = 0.25.
The scaling produced the results of Table 5.14 and Figure 5.17.

Parameter Value

Scaling coefficient 32768 (215)

Coefficient max relative error 1.67%

Input signal #bits 17

Coefficient #bits 16

Required accumulator #bits Q32.2

Table 5.14: EDA Preprocessing High-Pass FIR results

The delay introduced by this filter is equal to 4s. Even if this delay seems to be very
large, it turned out to be a good compromise while optimizing the in-band ripple of the
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Figure 5.17: EDA Preprocessing High-Pass FIR

filter and the transition bands. It is also useful to remember the procedure followed in the
Python pipeline: features from the signals are extracted after collecting 60s of samples,
so this delay could be accepted.
Once the SCR component is extracted, the SCL component was obtained by subtracting
the phasic from the normalizer output, at which first was applied an All-Pass filter. The
frequency response of this filter is not reported here since its implementation is naive.
Behaving as a pure phase shifter, it was implemented as a FIR exploiting the already
developed function. It has 201 taps as the HPF, with all zero coefficients except the
central one which is 1. The delay introduced is the same of the HPF, equal to 4s.
Theoretically the phasic and tonic components are now ready to be provided to the output
of the preprocessing block. To be complitely correct, before presenting the signal to the
output, it is better to take into account the delay of the other steps in the block. In order
to do that a block for each signal is inserted, reporting an equivalent delay of 0.12s, 3
samples. The meaning of this size will be explained in the next paragraphs.

First Order Differentiator and Zero crossing Detector Reminding the operations
done in the Python pipeline, in order to extract the critical points from the SCR com-
ponent, the first derivative is necessary. The chosen function is reported in Equation
5.6.

H(z) = −1/12z2 + 2/3z + 2/3z−1 + 1/12z−2 (5.6)

The input of the stage is a stream object of Q14.2 type. It was implemented as FIR filter,
scaled and quantized as the previous.
The filter coefficients were scaled on 16 bit signed to allow for the use on integer-only
algebra in the HLS code. Since the differentiator is essential an high-pass filter, it was
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decided to increase further more the precision, representing it as a 64 bit signed fixed
point, referred here with the notation Q59.5, where the first number indicates the integer
part (represented by 59bit, including the sign bit) and second one represents the decimal
part (5 bit). The precision of this representation is equal to 2−5 = 0.03125.
The scaling produced the results reported in Table 5.15 and Figure 5.18.

Parameter Value

Scaling coefficient 32768 (215)

Coefficient max relative error 0.012%

Input signal #bits Q14.2

Coefficient #bits 16

Required accumulator #bits Q59.5

Table 5.15: EDA Preprocessing First order Differentiator FIR results

Figure 5.18: EDA Preprocessing First order Differentiator FIR

The delay introduced by this filter is equal to 0.08s.
To detect critical points of the SCR signal, without propagate the first derivative to the
next stage, it was decided to compute in this step the zero-crossing of this function. In
this way, it was possible to reduce the size of the data, relaxing the resource occupation.
The Zero-Crossing block was designed as a purely digital function, comparing the sign
of three samples of the input signal. Table of truth 5.16 and Karnaugh-map 5.17 are
reported. The synthesized function is reported in Equation 5.7.

Y = A′C +BC ′ + AB′ (5.7)
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A B C Out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1
1 1 1 0

Table 5.16: Zero-Crossing Truth table

AB

C

00 01 11 10

0

1

0

0

1 11

1 1 1

Table 5.17: Zero-Crossing K-map

The output data of the zero-crossing function is an arbitrary precision integer of 1bit,
referred here as uint1_t.
Since the signal is sampled, in order to detect the correct position of the highest o lowest
sample value, the function was designed to detect a window of possible samples during
which those values could be found, flagged with a 1. The delay introduced by this stage is
equal to 1 sample, with the same reasoning of an FIR filter, corresponding to 0.04s, which
perfectly compensate the delay difference with respect to the second order differentiator
filter explained in the next paragraph.

Second Order Differentiator and Sign Extractor The last explained block of the
preprocessing stage is the Second Order Differentiator FIR and its sign detectior block.
Those steps are useful to assess if in the window signaled by the zero-crossing there is a
maximum or a minimum point. The chosen function is reported in Equation 5.8.

H(z) = 1/10z3 + 1/20z2 − 1/10z − 1/10− 1/10z + 1/20z−2 + 1/10 (5.8)

The input of the stage is a stream object of Q14.2 type. The chose representation was
the64 bit signed fixed point, referred here with the notation Q57.7, where the first number
indicates the integer part (represented by 57bit, including the sign bit) and second one
represents the decimal part (7 bit). The precision of this representation is equal to 2−7 =

0.0078125.
The scaling produced the results of Table 5.18 and Figure 5.19.
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Parameter Value

Scaling coefficient 262144 (21)

Coefficient max relative error 0.0015%

Input signal #bits Q14.2

Coefficient #bits 16

Required accumulator #bits Q57.7

Table 5.18: EDA Preprocessing Second order Differentiator FIR results

Figure 5.19: EDA Preprocessing Second order Differentiator FIR

The delay introduced by this filter is equal to 0.12s. With the same reasoning of the
zero-crossing stage it was decided to compute here the sign of the second derivative.
The sign function does not introduce a further delay, since it is simply an assignment of
the output data as:

• 1: second derivative sample is positive

• 0: second derivative sample is negative.

Figure 5.20 shows how the signals looks like after the preprocessing stage.
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Figure 5.20: EDA Preprocessing Output

5.3. Data collector

The Data Collector stage scope is to aggregate one second of data thus providing the
necessary time window shift for the processing stage. This stage, together with the pro-
cessing stage internal arrays, create the same time windowing effect as in Section 3.1. The
structure of the stage in shown in Figure 5.21

The stage is internally divided in ECG and EDA due to the difference in sampling fre-
quencies. Each one of the sub-stages works in the following manner:

1. Read from the input stream the data structure produced by the previous stage (ECG
preprocessing or EDA preprocessing).

2. Collect 1s of data samples, storing them in a group of internal arrays. (125 samples
for ECG, 25 samples for EDA).
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Figure 5.21: Data collector

3. Write on the output stream the aggregated data structure once every second.

The output data for each of the sub-stages is a data structure composed of the same
signals generated by the preprocessing stage, just aggregated in 1-second arrays.

5.4. Processing

The Processing stage is the heart of the accelerator IP core, it extract the final signals
required for features extraction from the time window of interest, save the data to memory
and raise the interrupt to the processor once operations have been completed.
The stage is working at 1Hz frequency timed by the arrival of data from the previous
data collector stage and, together with it, is performing the time windowing operation.

The Processing stage operates differently on ECG and EDA and its divided internally
in two sub-stages. The general behaviour of one of the stage and each sub-stages is the
following:

1. A block of 1-second aggregated data is read from the input stream coming from the
Data collector. This operation is performed independently for each sub-stage.

2. The 1s block of data is saved into the internal array. The array is sized to store 60s

of data corresponding to the time window of interest and works in a FIFO fashion:
the new block of data is added to the FIFO array and the oldest one is removed.
This operation is performed independently for each sub-stage.

3. The required operations are done on the array of data. This part is different between
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ECG and EDA and will be explained in details in the next Subsections.

4. Once the processing operations have been completed the output data are written
directly to system memory using the Biosignal Coprocessor AXI-4 interface. More
details regarding the interfaces and the memory access are provided in Section 4.2.2
and Section 4.2.3. This operation is again performed independently for each of the
two sub-stages.

The arrays internally used for the 60s of data have the size shown in Table 5.19.

Array Data type Sample count Array bit size

ECG NN uint11_t 7500 82.5Kb

ECG Peak flags uint1_t 7500 7.5Kb

EDA Tonic int17_t 1500 25.5Kb

EDA Phasic Q14.2 1500 24Kb

EDA Phasic 1stDer ZC uint1_t 1500 1.5Kb
EDA Phasic 2ndDer Sign uint1_t 1500 1.5Kb

Table 5.19: Processing Arrays sizes

5.4.1. ECG Processing

The ECG Processing stage has the structure shown in Figure 5.22.
As explained before this stage received 1s data blocks from the Data collector, preserve
the last 60s of data and process them to extract the required signals (NN array, NN
counter and Cardiotach array).

Figure 5.22: ECG processing

The different internal blocks of the stage are the followings:

• Extract NN array This block will use the NN continuous time signal and the
peak flag signal to extract an array with the different beat-to-beat intervals found
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and count them.
It works by running through the NN continuous time signal, sampling the NN
continuous time signal when the peak-flag signal is set as True and increasing the
NN-counter each time a peak is found in the window.
The NN array as well as the NN counter will be initialized at zero at the start, thus
the resulting array will be filled with a number of valid NNs equal to the NN-counter.

• Extract Cardiotach This block is used to produce the Cardiotach raw signal from
the NN array and the peak flag signal. The signal is generated in a stepped fashion
by assigning the correct NN value at the signal between two peak flags.
The extraction process is explained in Figure 5.23.

Figure 5.23: ECG processing Cardiotach extraction algorithm

• Cardiotach Zero-phase filter The stepped Cardiotach raw array is filtered using
a zero-phase filtering to smooth-out the steps and obtain a slowly varying signal
in time. The concept of zero-phase filtering was introduced before in Section 3.2.2
again in the context of Cardiotach, it can be used here since the entire signal is
available beforehand.
Details about the filter used are shown in Table 5.20 and Figure 5.24. As the filters
used in downsampling and preprocessing, integer scaling was performed allowing for
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the use of integer-only arithmetic.

Parameter Value

Cut-off frequency 1Hz

Filter order 1

Filter type Butterworth

Input signal #bits 11

Coefficient #bits 16

Scaling coefficient 16384(214)

Coefficient max relative error 0.059%

Required accumulator #bits 25

Table 5.20: ECG Processing Cardiotach filter

Figure 5.24: ECG processing Cardiotach filter

• Cardiotach Decimator Once the Cardiotach raw signal has been filtered with
the zero-phase filter the obtained results can be downsampled to 12.5Hz using a
decimator of order 10.
The decimation step is performed by keeping a sample each ten, it is used here
to reduce the array size without loss of useful information thanks to the previous
filtering.

Once all the required data have been extracted, the ECG processing block will perform
a memory transfer to save the results in the system memory. A single memory transfer
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is issued at the end of the computations, this allow to use bursts better optimizing the
AXI-4 performance.

5.4.2. EDA Processing

The EDA Processing stage has the structure shown in Figure 5.25.
As the introduction of this section explains, its input are four arrays containing each 1s

of data aggregated by the Data Collector block, Section 5.3. The Processing stage focuses
on saving those data inside a bigger structure which collects the last 60s of data, by
discarding the oldest, and processing to extract the critical points (Peak, Point of Onset,
Half Recovery Point). Then critical points, besides tonic and phasic components, are
written to the output arrays.
Since this data will be elaborated from the CPU, the arbitrary precision data are converted
to standard types. In detail:

• Tonic: from int17_t to int32_t

• Phasic: from Q14.2 to int16_t. In order to not lose the precision of the fixed point
value, before conversion the data is left-shifted by 2. It will be converted back by
the feature extractor function in the Linux application

• Peak: computed from uint1_t data, it is uint8_t

• POO: computed from uint1_t data, it is uint8_t

• HRP: computed from uint1_t data, it is uint8_t

Figure 5.25: EDA processing

The two critical points detection algorithms are explained in the following paragraphs.

Peak and Point of Onset Detector With respect to the Python equivalent, the peak
and point of onset detectors were collapsed in one single algorithm, designed to be more
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optimized and hardware specific, as Figure 5.26 describes.
Given the 60s data array, the algorithm selects a section of 2s of input data, in which
searches for an absolute maximum point that can be a peak candidate for the phasic signal.
If it is found, then two threshold check are performed: the phasic value at the selected
sample is compared with a fixed threshold at 0.01µS; then the EDA (tonic+phasic) value
at the selected sample is compared with a threshold computed on a window of 10s, as
depicted in bottom of Figure 5.26.
Once the peak point satisfies all the requirements, the algorithm starts looking for a POO,
searching back from the peak to the previous one, or for a maximum range of 3.2s.
If both the Peak and POO are found, they are saved in internal arrays of the processing
stage, ready to be written to the output. It is important to notice that this procedure
ensures that for each peak selected a point of onset must be found to retain its value,
otherwise the candidate will be discarded.

Half Recovery Point Detector Defined as the point were the amplitude of the peak
decreases by the 50%, the Half Recovery Points are searched once the previous algorithm
ended and it is represented in the flow diagram in Figure 5.27. Also for this procedure, a
further optimization of the Python equivalent block was done.
This algorithm takes as input the previously computed Peak and POO arrays, (in addi-
tion to the EDA components) and scrolls the 60s array of data. In order to compute the
amplitude of each peak, it starts looking for a point of onset, savings the corresponding
phasic sample value. Since every point of onset is followed by a peak, once the algorithm
find a peak, it saves the corresponding half recovery point target value and enables the
search of it.
Once the HRP search is enabled a threshold check is performed and the first following
sample lower or equal to the half recovery point target value is picked, saving it in an
internal processing block array.
It is mandatory to remember that, as described from the Electrodermal Activity studies
and as also reported in Section 3.3.3, to each Peak and POO couple of points sometimes
there will not correspond an HRP, especially if a second SCR begins before skin con-
ductance levels have dropped sufficiently. In those cases, peak and point of onset are
maintained, because they still describe the signal trend. The algorithm includes this kind
of possibility by checking at every cycle if the sample is a point of onset, in order to not
remain stacked looking for an HRP when it will not be present.

Once all critical points algorithm ended, all internal arrays are ready to be written to the
output. This step is done only at the end of the stage, ensuring a single transfer to the
system memory by using the burst feature of the AXI-4 interface.
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Figure 5.26: Peak and POO detection algorithm Figure 5.27: HRP detection algo-
rithm
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5.5. Interrupt generation

The Biosignal Coprocessor needs to signal to the CPU that data have been written to
memory and are ready for the next processing steps, this signalling is done using an
interrupt so that the CPU doesn’t need to check for the data in a polling manner.

Vitis™ HLS provide a generic interrupt port on all the IP cores which are developed with
it, this interrupt port can be configured through the AXI-LITE control interface to be
active on different signals. Normally only two interrupt sources are available:

• ap_done The interrupt is raised when the IP core has completed its operations.

• ap_ready The interrupt is raised when the IP core becomes ready for further
processing.

Due to our chosen topology, neither of those two options could be used as interrupt source.
Our IP core will be put into auto-restart mode and run 500 times, each time reading a
new set of input data from the ADC, before finally writing the output values to memory.
For this reason an additional interrupt source was added thus creating the valid_interrupt
signal.
The interrupt generation process is shown in Figure 5.28.

Figure 5.28: Interrupt generation for Biosignal Coprocessor

It works in the following way:

1. The valid_interrupt boolean signal was created and added as a register accessible
through the AXI-LITE control interface of the Biosignal Coprocessor.
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2. The valid_interrupt signal was enabled as an interrupt source on the AXI-LITE
interface.

3. Once each one of the processing sub-stages (ECG and EDA) completed its memory
transfer, a Boolean status value is set to True and latched at this state for the next
cycles.

4. Once both of the boolean status values are in the True state the valid_interrupt is
written as True thus raising the interrupt. The two booleans are then reset to False
before proceeding with the next cycle.

Attention must be payed to a small detail: interrupt is raised each time the valid_interrupt
is written, not when a specific value (True) is written to it. For this reason the valid_interrupt
is written only in those cycles on which the system has completed both (ECG and EDA)
output data transfer to memory.
More details regarding the validation of the interrupt generation process are explained in
Section 5.6.1.

5.6. HLS design workflow

The development workflow sketched in Figure 5.29 was followed during the HLS design
of the previously described stages.

Figure 5.29: HLS design workflow

First, the stage previously designed for the Python pipeline was analyzed, extracting the
part that has to be implemented in HLS, then the block was designed in Python following a
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more hardware oriented approach, without using all possible array manipulation provided
by the language. The advantages of this additional step are different:

• Block functionality can be developed and debugged quickly

• Possibility to test the block with real data coming from the available datasets

• Generation of stimulus input files that could be provided to the HLS equivalent
implementation

• Generation of golden output files in order to compare the Python results with the
corresponding HLS block output.

Starting from the Python code, the functionality of the stage was reproduced in Vitis™
HLS, making the proper hardware considerations as already described in the preceding
chapters. A proper HLS test bench was then written, which:

1. Takes as input the stimulus file produced in Python

2. Collects output from the HLS implementation of the block

3. Compares the output with the golden output files produced in Python.

Once each block has passed all the development steps, the complete pipeline is recon-
structed in Python, aggregating all the equivalent design already made. This brought the
chance to test the complete Biosignal Coprocessor IP core and validate its functionalities.

5.6.1. Interrupt validation

As described in Section 5.5, when both ECG and EDA Processing stages complete their
operations, an interrupt is raised at the output of the Biosignal Coprocessor. This inter-
rupt is used to notify the CPU that data in the memory are ready to be read.

We tried to validate the process of interrupt generation using a Vitis™ HLS test-bench
but we encountered some co-simulation errors. The test-bench was not able to run due
to conditional writing on the interrupt signal which was stalling the simulation.
A custom RTL test-bench was developed in Vivado™ to overcome this issue: the entire
IP core was placed inside a wrapper and the external interfaces were emulated in VHDL.
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5.7. Implementation

Once all the stages were developed, tested and connected together, Vitis™ HLS was used
to synthesize the required Biosignal Coprocessor IP core to be later used in Vivado™.
The results of the synthesis is the IP core seen in Figure 5.30.

Figure 5.30: Biosignal Coprocessor IP core

Additional information regarding the connections to the IP core are provided in Appendix
C.

The different interfaces of the block are clearly visible:

• ap_clk, ap_rst_n Clock and reset signal of the IP core. They will be provided
by the FPGA fabric.

• in_eda, in_ecg AXI-4-Stream interfaces to receive the ADC data for the two
channels.

• s_axi_AXI_Lite_Control AXI-4-Lite interface used to control the IP core.
The internal registers can be set through this interface. This will be connected to
the AXI-GP0 port of the Zynq™ 7000 processing system.

• m_axi_AXI_Memory_Access AXI-4 interface used to write output data di-
rectly to system memory (DDR). This interface will be connected to AXI-HP0 port
of the Zynq™ 7000 processing system.

• interrupt Interrupt port used to signal processing completion at the CPU. This
will be connected to the Zynq™ 7000 processing system IRQ port.

After the accelerator has been tested and its behaviour and performances validated, as
explained in Section 5.6, the resource occupation as well as the timing performances
obtained need to be compared with our requirements and constraints.
The solution settings are shown in Table 5.21.
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Parameter Value

Chosen target XC7Z010CLG400− 1

Clock Period 10ns (100MHz)

Clock Uncertanty 2.7ns

Table 5.21: Vitis™ HLS synthesis configuration
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All the work explained in the preceding chapter is the first part on which consists a
heterogeneous system. As complementary part, this chapter describes the application
development, which collects data processed in hardware and elaborate them to extract
useful data features and to run the chosen classifier. The board was equipped with a
PetaLinux custom image, built specifically for this work, on which the custom application
was developed.
Among the different possible methods, the development of a user-space Linux application
was chosen with respect to the use of a RTOS or a bare-metal approach. The reasons are
mainly:

• Despite its simplicity, high performance and almost absent overhead, the develop-
ment of this kind of application with a bare-metal approach would lead to a system
with limited scalability and no possibility to be directly integrated in a more complex
environment

• A Real Time Operating System (RTOS) would probably have brought to almost the
same result achieved by this work, since the great possibility to create multithreading
application, but without the availability of device support, file-systems, network
connectivity and all the other benefits you get from a general-purpose Linux OS.

The developed application structure is sketched in Figure 6.1.

The platform bitstream, extracted from the Vivado™ project, was used to build the PetaL-
inux image. Then the application was developed on Vitis™ IDE exploiting the options to
run and debug directly on hardware.
As development starting point of the Linux application, the first step was the exploration
of the device drivers described in Section 6.1, in order to correctly establish an hard-
ware/software interaction. Once this was done, the application structure was written and
tested, following the concepts described in Section 6.3.

PetaLinux It is a Linux build environment released by AMD Xilinx as a productivity
layer [43], built on top of a Yocto/BitBake back-end [45]. This tool eases the development



98 6| Application design

Figure 6.1: Linux application structure

of a Linux-based product with less and more specific commands, enabling evaluation of
Xilinx platforms within minutes.
In the standard YOCTO flow preconfigured tested recipes are used, which can be down-
loaded from GitHub, to build an embedded Linux distribution targeting Xilinx reference
platforms. This recipes can also be customized. The PetaLinux tools instead abstracts
all the process offering to the users some automation utilities.

6.1. Peripheral drivers

Hardware and software interface each other by a low-level and very specific software
called driver. The driver is the abstraction layer between software concepts and hardware
circuitry; as such, it needs to talk with both of them.
In the following paragraphs all the peripheral drivers involved in this work are explained
in detail.

6.1.1. Biosignal Coprocessor driver

While designing a Vitis™ HLS core, if an AXI4-Lite slave interface is implemented, a set
of C driver files are automatically created. Those files provide a set of APIs that can be
integrated into any software running on a CPU and used to communicate with the device
via the AXI4-Lite slave interface.
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The generated driver are wrapped around the UIO Linux driver, getting from the corre-
sponding character device all the basic information to communicate with the peripheral,
like the start address and the register map size, mapping user-space virtual variables to
the physical memory. Then it provides specific functions, encapsulating read and write
register operations.
Appendix D contains the detailed Biosignal Coprocessor register map.

6.1.2. User-space I/O driver

A device driver has basically two main task: access device memory and deal with inter-
rupts generated by the device. In many situations, creating a custom Linux device driver
is an overkill, and here it’s where UIO drivers comes in. This driver bridges a user-space
program with the hardware, acting as a thin layer between them.
Even if Linux is able to map physical memory of the device to an address accessible from
user-space, this approach introduces security leaks and stability problem. UIO prevents
those issues ensuring that no addresses outside of the device would be mapped.
A step further is made when dealing with interrupts. If the developed application has to
wait for an interrupt, it simply does a blocking read() from /dev/uioX. It must to be
remembered that, in a multithread application, so for instance with a thread that uses
the UIO drivers, make a blocking read does not prevent the rest of the application from
running. Instead only the spcecific thread which calls the read() function will be blocked.
The function will return immediately as soon as an interrupt occurs [16].

6.2. Memory access

User-space is the area of memory that non-kernel applications run in. A user-space
application, as the one designed in this work, runs in user mode, which is the non-
privileged execution mode that the process’ instructions are executed with.
In order to access the peripherals registers and processed data from the hardware, the
user-space application have to perform a memory mapping. As explained in the Linux
kernel documentation [42], it consists of mapping a kernel address space to a user address
space, eliminating the overhead of copying user space information into the kernel space
and vice versa. This can be done through a device driver and the user space device
interface called /dev, by using the mmap() system call on the file descriptor.
First the /dev/mem file is open through the system call open(). Many flags could be
used as opening options of this file. The ones used for this application are the following:

• O_RDWR: requests opening the file read/write operations
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• O_SYNC: write operations on the file will complete according to the requirements
of synchronized I/O file integrity completion. This flag cause the accesses to the
hardware to be non-cached.

After the mapping, when accessing the mapped virtual address, the MMU translates it
into physical addresses with the help of page tables. Specific flags could be used while
calling the mmap() function. The ones used in this work are:

• PROT_READ: indicates that pages may be read

• PROT_READ: indicates that pages may be read

• PROT_WRITE: indicates that pages may be written

• MAP_SHARED: indicates that updates to the mapping are visible to other pro-
cesses mapping the same region.

6.3. Multithread application

Once that all tools are introduced, this section is dedicated to the functional behaviour
of the application.
The application was designed to manage multiple threads, one dealing with a specific
function. With this approach it was able to divide the development in single pieces that
it was possible to develop and test separately.
At first, the main thread takes care of allocating the thread data structures, maps the
physical memory to those structures and call the initialize function of the application
submodules. After that spawns one thread for each submodule. The sumodules involved
in the application are:

• ADC Emulation

• Biosignal Coprocessor

• Feature Extractor

• Classifier.

To each of them corresponds a thread, with it own data structure composed as follows:

• Module specific data structure pointer: it points to peripheral specific or
function specific structure which contains variables and/or substructure useful to
sample the data at the input or to store the file descriptor of the UIO driver, needed
for the interrupt
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• Time structure pointer: it points to a structure describing CPU time used to
catch the execution times of each single operation to make performance analysis

• Execution time: it is a local variable containing the thread execution time mea-
sured during the last operation

• Run: it is a local variable controlled by the thread itself on which the internal loop
cycles. It is reset in case the thread receives an end condition and has to stop its
execution, until then it is always true

• Producer-Consumer control data structure: it points to a structure which
provides to the thread all it needs to implement the synchronization mechanism.
The following custom structure was developed to implement a producer-consumer
mechanism:

– Ready variable: it is a shared variable asserted by the consumer once the
data are ready to be consumed

– End variable: it is a not commonly used variable, but in our case was used
to propagate and end condition throughout a produce-consumer chain

– Mutex: it is an object which provides mutually exclusive access to a shared
resource.

– Conditional variable: it is an object which implements a synchronization
mechanism, which allows a thread to wait for an arbitrary condition, which
other threads will make true.

This structure is pointed as input for a consumer and as output for a producer.
Thread which consumes data, but also produces, have both in separated structures.

By the combination of a Mutex and a Conditional variable a robust synchronization
mechanism was built. The associated mutex is used to ensure that a condition can be
checked atomically, and that the thread can block on the associated condition variable
without missing either a change to the condition or a signal that the condition has changed.
In addition, the thread which is holding the mutex, at the end of its operations, could
notify all the waiting threads via a notification.
In the next sub-sections all the thread are explained in detail. The chain starts by the
ADC emulation, which produces the data to be consumed by the Biosignal Coprocessor.
Once that it is finished its operations, it notifies back the thread which signals the feature
extractor that new data are ready to be consumed. After the extraction of the features
is done, then the classifier thread is woken up and the function prediction executed.
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6.3.1. ADC Emulation thread

This thread focuses on the emulation of real signal coming from sensors by transferring
data loaded on physical memory to AXI4-stream channels as input of the Biosignal Co-
processor. The thread has an internal loop which runs at the ADC target frequency of
500Hz and keeps reading from stimulus files coming from the already mentioned datasets.
With this kind of emulation the goal is to have a measure of comparison between the re-
sults of the pipeline implemented entirely in Python and the non ideal hardware specific
counterpart implemented in hardware. Schematically the steps the thread deals with are
as follows, wrapped by a while loop constantly checking the run local variable:

1. Get the current time value

2. Read from the stimulus files new ECG and EDA raw data

3. Start the ECG DMA and EDA DMA transfers from the main memory to the AXI4-
Stream channels by writing the number of bytes in the registers

4. Wait until both DMA transfers has been completed

5. Lock the output mutex, set the ready output flag to 1 and notify all the waiting
threads, then unlock the mutex

6. Compute execution time by subtracting the current time value to the one saved at
step 1

7. Sleep for 2ms, equivalent to 500Hz.

The cycle ends when a predefined number of rows have been read or the end is reached for
one of the stimulus files. If this happens the thread asserts both ready and end output
flags and notify through the conditional variable, then it expires.
It is easy to understand that this thread is the first of the chain, so it could be interpreted
as a consumer. In reality no data are exchanged between this thread and the next one,
since the transfer is made by the hardware. It was still preferred to give this kind of
structure to improve application reliability since in this way any thread know the status
of those nearby.

6.3.2. Biosignal Coprocessor thread

After the ADC Emulation, the main thread spawns the Biosignal Coprocessor. After
the core has been initialized with the previous mentioned output address, the autorestart
mode was enabled. Then the thread cycling accomplish these simple but fundamental
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operations:

1. Wait for the input ready variable to be asserted from the ADC emulation thread
which indicates that data have been transferred at the input of the core. This is done
by acquiring the input mutex and waiting for a notification through the condition
variable. Also the input end variable is checked here,

2. Get the current time value

3. Wait for an interrupt from the Biosignal Coprocessor hardware core. This is done
by do a blocking read() on the /dev/uioX. After the function returns the thread
operations goes on.

4. Lock the output mutex, set the ready output flag to 1 and notify all the waiting
threads, then unlock the mutex

5. Clear all the interrupt flags and registers

6. Compute execution time by subtracting the current time value to the one saved at
step 2

All the listed steps are wrapped around a while loop, constantly checking the run local
variable. If the input end is asserted by the ADC Emulation thread the cycle ends, so
the thread asserts both ready and end output flags and notify through the conditional
variable, then it expires.
As the described behaviour explains, this thread indirectly consumes data coming from
the ADC Emulation thread and as the interrupt occur produces processed data to the
Feature Extractor thread. This thread is bot a producer and a consumer.

A unit-testing process, as the one used for HLS blocks introduced in Section 5.6, was
followed for Biosignal Coprocessor thread where the hardware processed array were com-
pared with golden values obtained from the Python equivalent model. This step allowed-us
to verify the actual functionality of the core before its integration into the final application.

6.3.3. Features extractor thread

The features extractor thread scope is performing feature extraction on the signals received
from the Biosignal Coprocessor. The ECG and EDA signals are again processed in a
separate fashion and the resulting features are merged in a single data structure.
The thread internal working behaviour is depicted in Figure 6.2.

The output structure is composed of 42 double precision floating point values which con-
tain all the features previously introduced in Section 3.2 and Section 3.3. Floating point
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Figure 6.2: Features Extractor Thread

data are used for every feature to allow uniformity in the data passed as input to the
classifier.

Internally three blocks are present, those will be explained in the next paragraphs:

Lomb-Scargle Periodogram To extract information about the spectral content of the
NN signal a periodogram is needed. As previously explained in Section 3.2.3, the use of
the Lomb-Scargle periodogram [18, 28] was chosen due to its higher performance for HRV
analysis.
The periodogram was calculated using the algorithm developed by Townsend [34] on
which the function used in the Python implementation was also based. This algorithm
was initially developed to be used on GPU (Graphical Processing Units) but can easily
adapted and used on a CPU, it differs from the original Lomb-Scargle works since it
requires only a single pass into the input array, thus simplifying the implementation and
increasing performance.

ECG Features Extractor This block perform the features extraction from ECG in-
put data (NN, NN Counter, NN periodogram and Cardiotach). Four separate feature
groups are obtained (NN Time domain, NN Spectral domain, NN non-linear domain and
Cardiotach).

EDA Features Extractor This block perform the features extraction from EDA input
data (Tonic, Phasic, Peak, Poo and Hrp). Two separate feature groups are obtained
(Statistical and Syntactical).
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The before mentioned blocks were inserted inside the same cyclic structure explained in
the preceding two sections. In this case, the Feature Extractor thread consumes data
coming from the Biosignal Coprocessor thread and produces new data for the next one,
the Classifier thread.

The Features Extractor was separately tested using a similar methodology as the one used
for HLS blocks introduced in Section 5.6. A test-bench was wrapped around the Features
Extractor functions and stimulus values were applied, the output was then checked against
a golden valued obtained from the Python features extractor.
This unit-testing step allowed-us to verify the behaviour of the code before its integration
into the final application.

6.3.4. Classifier thread

This is the last step of the entire algorithm, this thread waits for a new set of features
to be ready and then apply the stress classifier on them, obtaining as output the stress
label.
The structure of the thread is shown in Figure 6.3. The depicted blocks were inserted

Figure 6.3: Classifier Thread

inside the same cyclic structure explained in the preceding sections. In this case, the
Classifier thread consumes data coming from the Feature Extractor thread.

The classifier was developed using the Python pipeline introduced in Chapter 3 and
porting to C++ was necessary for it to be used inside the Linux application. The porting
operation was done in two steps:

1. Classifier porting: The classifier trained in Python was converted into C++ code
using the micromlgen tool [20]. This simple tool works with sklearn classifiers and
generated a .h file containing the synthetized classifier Class.
This porting methodology was chosen instead of others due to the ease of use and
simplicity of the obtained code.
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2. Classifier wrapper: Once the classifier was exported in C++ the required features
selection needs to be added. This is necessary because the model trained in Python
only requires a certain amounts of features but here the entire feature set is available.
To correctly extract only the required features a wrapper was built around the
classifier to work as and adapter layer.

The porting operation was developed as a Python pipeline, the classifier code as well as
the wrapper code around it are generated automatically thus removing human errors and
speeding-up the deployment of a new classifier. The code-generation for the wrapper is
handled using Jinja [12], an easy to use template engine for Python which is also internally
used in the micromlgen tool.

As in the case of the Features Extractor thread, a unit-testing approach was used also
used here allowing for verification of the obtained code before the entire application was
completed.

6.4. Testing methodology

From the Python pipeline introduced in Chapter 3 we were able to export both stimulus
and golden output files for each stage of the chain, performing unit-testing on each com-
ponent, testing and debugging it before the integration with the application, as described
in the preceding sections.
At the end, in order to have a complete picture of the system, a validation process of the
entire chain was performed, giving as input the input data of the first stage and comparing
the output of the last stage (the stress label) with golden output files from the Python
pipeline.

A complete description of these results will be given in the Chapter 7.
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The designed solution has to meet specific requirements in order to correctly assess per-
sonal stress level in real-time using the available physiological signals. They could be
divided in three groups:

• Resource constraints

– The synthesized design has to fit inside the target Zynq™ 7010 SoC, considering
both the custom IP core and the additional circuitry needed for interconnection
and routing.

• Timing constraints

– The Biosignal Coprocessor logic has to run at the 100MHz fabric clock

– The target system has to elaborate input signals in real-time without the need
of a post-processing step

– Process raw signal data sampled by an ADC at a frequency of 500Hz through
a custom designed hardware accelerator

– Compute with a target frequency of 1Hz the signal features giving the chance
to expand them for further development

– Estimate the stress label with a target frequency of 1Hz through a classifier

• Classification constraints

– The machine learning algorithm has to assess the level of stress classifying it
into 3 labels: rest, normal, stressed

– Train a classifier model which doesn’t require parameters tuning on the specific
subject

After the development of the system the following described validation methodology was
followed.
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Validation methodology The results of the proposed solution described in the previ-
ous chapters were evaluated by comparing:

• The stress label predicted by a test bench developed in Vitis™ HLS in which raw
data are provided to the Biosignal Coprocessor and the output elaborated signals
are given to the C equivalent implementation of the feature extractor and classifier
functions

• The stress label predicted by the system implemented on the target platform, in
both hardware and software part.

As input data for both the above mentioned environments all the data available were
given. The sections below present and justify the obtained results.

7.1. Resource occupation

The resource usage estimate of our IP core is shown in Table 7.1 and it is obtained from
Vitis™ HLS. Furthermore also the percentage occupation is shown targeting the Zynq™
7010 device we choose (more details on SoC choice in Section 4.1 and Section 4.1.2.

Resource Used Available Guideline % Used %

LUT 10474 17600 < 70% 59.51%

FF 17245 35200 < 50% 49.00%

DSP 27 80 < 80% 33.75%

BRAM 46 60 − −

Table 7.1: Biosignal Coprocessor resource usage estimate from Vitis™ HLS

As could be observed the used resources satisfy the guideline percentages suggested by
Vitis™ HLS, thus ensuring that enough resources will still be available for interconnections
and routing. In addition, the resource occupation shown is not optimized by Vivado™ on
the actual chip and therefore an even lower overall resource occupation is expected.

The entire system shown in Appendix C comprising of the IP core, the blocks for ADC
emulation and the interconnections was built in Vivado™ and its resource occupation is
reported in Table 7.2. An increase in the number of Flip-Flops (FF) and Look-Up-Tables
(LUT) can be seen with respect to the Vitis™ HLS Biosignal Coprocessor occupation
estimate. This is justified by the presence of the ADC emulation blocks as well as all the
different interconnections between the blocks. Instead, the number of BRAM used in the
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Vivado™ system is reduced thanks to optimizations occurring in the bitstream generation
process. It must be considered that, for future developments, ADC emulation blocks will
be removed since they are needed only for validation purposes and so additional resources
will be available for expansions.

Resource Used Available Used %

LUT 12054 17600 68.49%

FF 20240 35200 57.50%

DSP 27 80 33.75%

BRAM 23 60 −

Table 7.2: System resource occupation from Vivado™

7.2. Timing results

The timings obtained from the Biosignal Coprocessor IP core synthesis in Vitis™ HLS
and from the implementation of the entire system in Vivado™ are shown in Table 7.3.

Parameter Value

CP Vitis™ HLS 8.397ns (119.1MHz)

CP Vivado™ 9.580ns (104.4MHz)

WNS Vitis™ HLS 1.603ns

WNS Vivado™ 0.420ns

Table 7.3: Biosignal Coprocessor logic timings

As shown by the obtained clock periods and Worst-Negative-Slack (WNS) for both Vitis™
HLS and Vivado™, the Biosignal Coprocessor as well as the entire system are able to run
at the target clock frequency of 100MHz with a consistent margin.

The execution latencies of the different blocks of the system are reported in Table 7.4. As
explained in Section 5.6.1 the overall cosimulation was challenging due to the interrupt,
therefore to extract the timing of the entire IP core a cosimulation with the interrupt
removed was used. Timings results show that the IP core can run at frequency higher
than 500Hz in the worst case, allowing the processing of the 500Hz ADC inputs. The
worst latency is obtained in the cycles where output data are written to system memory
through the AXI-4 interface.
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Min Avg Max

Biosignal Coprocessor 2ms (500Hz)

Result [s] 2.40µs 9.97µs 1.39ms

Result [Hz] 416.7KHz 100.3KHz 714.9Hz

Feature Extractor 1s (1Hz)

Result [s] 2.23ms 29.7ms 48.9ms

Result [Hz] 448.5Hz 33.7Hz 20.5Hz

Classifier 1s (1Hz)

Result [s] 255.5µs 438.1µs 839.3µs

Result [Hz] 3.91KHz 2.28KHz 1.12KHz

Table 7.4: System timing results

To give a complete picture some considerations have to be made:

• Biosignal Coprocessor
The Biosignal Coprocessor latencies were extracted from Vitis™ HLS cosimulation.
For future validations, it will be better to compare those values with measured one,
but the results should be very similar.

• Feature Extractor and Classifier
Those timings were been measured as reported in Section 6.3 through a set of vari-
ables that captures the system time before and after the execution of the functions.

7.3. Classification results

In Figure 7.1 the results obtained from the before mentioned validation methodology,
comparing the output predicted label with respect to the reference given by the dataset
used.
The output label are distributed in the dataset as described in Table 7.5.

Label Value Percentage

Relaxed 0 30.0%

Normal 1 44.7%

Stressed 2 25.3%

Table 7.5: Input data equivalent label distribution
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(a) Vitis™ HLS (b) Zynq7010

Figure 7.1: Stress label confusion matrix

As it is possible to understand, the processing pipeline running on the target platform
gives valid and equivalent results with respect to the Vitis™ HLS C-simulation. This
leads to the conclusion that for further developments the Vitis™ HLS environment could
be preferred to accelerate the testing and validation of further developments in one of the
pipeline stages.

Another result that can be noticed is that, despite the dataset is mainly composed of
normal and relaxed labels, it could be challenging to make a clear distinction between
those two events. Patients were indeed stimulated with different stimuli but they could
be influenced by the test itself and other personal thoughts.

In addition inter-individual variability play a key role during stress assessment and to
make a better evaluation of the system performance it will be better to validate it with a
bigger dataset maybe composed of stressors of different types.
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developments

The estimation of human stress level is an hot topic of the affective-computing world and
is an important step in the creation of healthier and safer work environment as well as
preventing accidents on high-risk jobs. In the years different approach were proposed
mainly working in a post-processing fashion.

With the system developed in this work of thesis we were able to estimate the stress level
in real-time using ECG and EDA, two signals easy to collect with simple and cheap sensors
in a non-invasive fashion. The obtained stress estimation performances were satisfactory
knowing that only data from publicly available datasets have been used. A more specific
experiment for data collection would be required to obtain better estimation performances.

The proposed heterogeneous architecture, composed of hardware and software subsys-
tems, allowed us to obtained an high-performance system without sacrificing the ability
to reconfigure it.
The hardware signal processing chain can process data at high frequency directly from
sensor, thus simplifying the extraction of the meaningful signals and avoiding the use of
CPU computational power for those tasks.
The software application based on Petalinux, a versatile linux-based operating system,
allowed for an easy scalability of the system and simplified the development of addi-
tional software part of the system. Furthermore, better performing features extractor and
classifier can be easily experimented with and added to the system without the need of
rebuilding the hardware part.

The obtained system has therefore to be considered as a platform which can be expanded
on and further improved in the future. It can be integrated into wearable devices to
obtain portable stress-monitoring systems which can have different application in real
world scenarios. Fields spacing from medical to high-risk job environments can benefit
from a system like this for varying reasons ranging from research purposes to accident
prevention.
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8.1. Future developments

Different parts of this work of theses can be further expanded and researched-on. In
particular the following areas:

• Real-world testing The system can be tested in a real-world scenario using real
sensors connected to internal ADC of the board and a set of test subjects. A set
of experiments should be designed to produce the required stress-levels and the
obtained data should be verified against the stress-level reported by the subject.
Different kind of stressors should be used to explore the behaviour of the system in
different conditions.

• Filtering delays The delays introduced by the filtering stages (Downsampling and
preprocessing) can be studied in more details and improved with more complex
filtering schemes. Different approaches such-as modulation and IIR filtering can be
used to reduce the introduced delays.

• Latencies validation The IP core latencies can be further validated in the hard-
ware implementation through the use of the Vivado™ Debugger, and additional
hardware timer in the block design or by directly measuring the timings on the
hardware implementation. This step wold allow to verify the results obtained by
co-simulation.

• EDA Normalization The real-time normalization step for the EDA signal can be
added in hardware further improving system performance, this will allow to obtain
a more subject-independent system.

• EDA decomposition To improve the EDA decomposition stage in terms of delay
introduced by the filters, one possible solution is modulate the EDA signal with
a constant frequency one. This shifts the frequency band around fmod giving the
chance to design a filter with an higher number of taps, improving the filter perfor-
mance, keeping low the overall group delay. Another solution could be to move the
EDA decomposition to the processing stage and apply a zero-phase filtering since
all the data samples were already collected for the entire 60s window.

• Feature extractor The feature extractor in the software part can be expanded
with other features which can improve the performance. Additionally more features
can be added to expand the scope of the signal beyond stress detection.

• Classifier training Different kind of classifiers can be tested with additional datasets
to improve the estimation accuracy. Ideally, a specific set of experiment should be
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designed ad-hoc to produce different levels of stress using different stressors to better
generalize the stress detection.

• Sensors The sensors to be used can be better researched to allow for an even less
invasive placement on the subject. The conventional ECG sensor can be replaced
with an optical sensor measuring blood-volume pulses and it can be combined into
a single wearable device together with the EDA sensor.
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The different datasets analyzed and used for this work of thesis are introduced here.

A.1. DRIVEDB dataset

The DRIVED database was created in 2005 following the work of Healey and Picard [11].
It has been published on PhysioNet and contains a collection of multiparameter recordings
from healthy volunteers, taken while they were driving on a prescribed route including
city streets and highways in and around Boston, Massachusetts.

The objective of the study for which these data were collected was to investigate the
feasibility of automated recognition of stress on the basis of the recorded signals, which
include ECG, EMG (right trapezius), GSR (galvanic skin resistance) measured on the
hand and foot, and respiration.
The stress recognition was done in a post-processing fashion on intervals of aroungd 5
minutes.

A.1.1. DRIVEDB Sensors

Different sensors were used in the experimental setup which produced the DRIVEDB
database, the sensor list is the following:

• ECG: Cardiac signal mesured on the chest using a modified lead II configuration to
minimize motion artifacts and maximize the amplitude of the R-waves. The signal
was sampled at 496Hz.

• EMG: Electromyogram signal measured on the trapezius (shoulder), which has
been used as an indicator of emotional stress in other researches. The signal was
sampled at 31Hz.

• EDA: Galvanic skin response signal, measured in two different point (on the hands
palms and on the sole of the feets). Both signals were sampled at 15.5Hz.

• RESP: Respiration signal, measured with a chest belt sensible to the chest expan-
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sion and contraction. The signal was sampled at 15.5Hz.

All the sensors were acquired using a FlexComp analog to digital converter system to log
the required data. An additional channel was used as a "marker" to signal the transition
between the different driving stages and therefore the different stress level to be expected.
The data acquisition system was complemented by a set of cameras able to record the
road, the driver and the environment, thus keeping trace of the stimulus encountered.

A.1.2. DRIVEDB Stress labeling

The stressors were not controlled, but the driving protocol was designed to take the driver
through situations where stressors were more or less likely to occur.

Three different kind of driving stages were advised, each one able to provide a different
level of stress to the driver: rest, highway driving and city driving.
The level of stress of each section was rated in a scale of 0 − 5 with a questionnaire
answered by the driver after the experiment. The questionnaire results was unambiguous
and allowed us to rate the stress level in the three different driving stage as shown in
Table A.1. The µ and σ values shown are the mean and the standard deviation of the
score assigned for that particular stage on a 0-5 scale.

Stage Stress score µ Stress score σ Stress level assigned

Rest 1.16 0.88 Relaxed

Highway 2.00 0.92 Normal

City 2.55 1.02 Stressed

Table A.1: DRIVEDB driving stages stress rating

The region in which the label was undefined,such as the transition zones between the
different driving stages, were discarded by us due to their lack of useful information.

A.2. WESAD dataset

The WESAD database was created in 2018 as a a multi-modal dataset for Wearable Stress
and Affect Detection [29].
This multi-modal dataset features physiological and motion data, recorded from both a
wrist- and a chest-worn device, of 17 (15 once cleaned) subjects during a lab study in
which different mental stimuli were applied.



A| Appendix A 123

The focus of this dataset was to provide the affective computing community and research
environment with a standard dataset for wearable stress detection. The obtained dataset
provides multi-modal high-quality data and include multiple affective states. Furthermore
the dataset allow to compare the results of sensor placement between chest and wrist to
better understand the requirements for future werable devices.

A.2.1. WESAD Sensors

Two different sensor placement have been used for this experiment: chest mounted sensors
and wrist mounted sensor. The chest sensors are acquired using a RespiBAN system while
on the wrist an Empatica E4 system is used. The different signals with useful details are
listed now:

• RespiBAN: Chest worn sensor system. All sensor sampled at 700Hz and with
16bit ADC.

– ECG: Cardiac signal measured with a sensor placed on the chest, a 3 electrode
configuration is used.

– EDA: Galvanic skin response signal, measured through a sensor placed on the
rectus abdominis (abodomen).

– EMG: Electromiography signal extracted through a sensor placed on the upper
trapezius muscle on both sides of the spine.

– Temp: Body temperature signal, sensor placed on the sternum.

– Acc X/Y/Z: Accelerations of X/Y/Z axis, measured trough a series of ac-
celerometers placed inside the RespiBan system mounted on the chest.

– Respi: Respiration signal monitored using an inductive plethysmograph sensor
included in the RespiBan unit.

• Empatica E4: Wrist worn sensor system mounted on the subject non-dominant
hand, different acquisiton frequencies are used.

– BVP: Blood volume pulse signal acquired using a plethysmograph sensor,
sampled at 64Hz.

– EDA: Galvanic skin response signal, sampled at 4Hz.

– Temp: Body temperature signal, sampled at 4Hz.

– Acc X/Y/Z: Accelerations on X/Y/Z axis, measured with accelerometers
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inside the wrist mounted unit. Sampled at 32Hz.

The data for the two devices are logged separately and then synchronized and merged
in a single file. The synchronization is performed using a specific acceleration pattern
produced at the start of the recording session.

A.2.2. WESAD Stress labeling

For the WESAD experiment the stress level applied as well as the stressors used were
tightly controlled. Four different mental stimulus were applied: Baseline, Amusement,
Stress and Meditation; all those stimulus will be explained in details:

• Baseline The subjects were sitting/standing at a table and neutral reading material
(magazines) was provided. The baseline condition aimed at inducing a neutral
affective state.

• Amusement A set of funny videos were shown to the subject aimed at creating an
amusement reaction.

• Stress The stress stimulus was created by making the subject perform a public
speaking task and a mental arithmetic task. Those two stimuli were studied in the
Trier Social Stress Test [14] and have been shown to elicit stress reliably.

• Meditation A guided meditation was used to produce a relaxation state. The
meditation was based on a controlled breathing exercise, instructed via an audio
track.

The applied stimuli were validated with a questionnaire filled by the subjects after the test.
The questionaire answers are considered ad subjective reports on how the participants felt
during a condition and may be used to train personalised models. This was out of the
scope of our work since we were interested in a real-time stress estimator which could
work without any kind of personalized model.

Those different mental stimulus needed to be mapped to stress levels to be used in our
algorithm, we choose to remove the amusement state as it had no direct mapping in our
3-level stress labeling. The mapping is shown in Table A.2.
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Stimulus Stress level assigned

Baseline Normal

Amusement -

Stress Stressed
Medidation Relaxed

Table A.2: WESAD stress level mapping

A.3. SWELL-KW dataset

The SWELL-KW dataset was collected as part of the SWELL project (Smart reasoning
systems for well-being at work and at home) [17].
The objective of this project is to develop user-centric sensing and reasoning techniques
that help to improve physical well-being (mostly in a private context) and to improve
well-working (in a work context).

The dataset was collected in an experiment, in which 25 people performed typical knowl-
edge work (writing reports, making presentations, reading e-mail, searching for informa-
tion). The working conditions were manipulated with different work related stressors
while a varied set of data was recorded from the subjects.

A.3.1. SWELL-KW Sensors

Different sensors as well as different data acquisition systems were used for the experiment,
the data not only focused on physiological signals but also on computer interactions,
postural data and on facial expressions.
Here a list of the signal available is provided, focus is given to the physiological signals
due to the requirements of our work of thesis:

• Computer interactions

– Mouse and Keyboard inputs

– Application data

• Facial expressions Measured using a camera and the Face-reader software.

– Head orientation

– Facial movements
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– Action Units

– Emotion

• Body postures Measured using a Kinect IR sensor and the Kinect SDK.

– Distance

– Joint angles

– Bone orientations

• Physiological signals Recorded with a Mobi device (TMSI). Both signals were
recorde at 2048Hz.

– ECG: Cardiac signal acquired using electrodes mounted across the chest.

– EDA: Skin conductance measured with finger electrodes fixed with Velcro
tape around the lower part of the thumb and ring finger of the participant’s
nondominant hand.

All the acquired data are provide merged and aligned in time between the different data
acquisition devices. Additionally to the raw data, features extraction was performed on
the acquired data and the resulting features are given.
For the scope of our work of thesis only the data related to the physiological sensors have
been analyzed.

A.3.2. SWELL-KW Stress labeling

During the SWELL-KW experiments the 25 subject were assigned tasks related to normal
office works. To ensure that the participants worked on the tasks seriously it was stated
that all the required tasks had to be finished to receive the full subject fee
Three different stress conditions were applied:

• Neutral: The office work was executed normally, with the normal stress level it
presented and without an additional stressor.

• Time pressure: In this case the time allowed to finish all tasks was 2/3 of the time
the participant needed in the neutral condition.

• Interruptions: While the subject was performing its task 8 emails were sent to
him. Some of those mails were relevant to one of the tasks, others were irrelevant.
Some emails required a reply, others did not. In this way different distraction events
were created, increasing the stress level.



A| Appendix A 127

For our work or thesis we decided to discar the SWELL-KW dataset due to its absence
of a "Relaxed" state as well as different "Stressed" states. This was not compatible with
the stress labeling we decided to use for our work, it was also not coherent with the level
of stress applied by the other two datasets.
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Correlation matrices for EDA and ECG features are shown in Figure B.1 and B.2. The
two features set have been separated for clarity.
The maximum correlation between ECG and EDA features is 0.49.

Figure B.1: EDA features correlation
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Figure B.2: ECG features correlation
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Figure C.1: ADC Emulator

Figure C.2: Board GPIOs
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Figure C.3: Processing System and Interconnects
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Figure C.4: Main block design
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Offset Description Position Operations

0x00 Control signals

ap_start bit 0 Read/Write/COH

ap_done bit 1 Read/COR

ap_idle bit 2 Read

ap_ready bit 3 Read/COR

auto_restart bit 7 Read/Write

interrupt bit 9 Read

0x40 Global Interrupt Enable Register

Global Interrupt Enable bit 0 Read/Write

0x08 IP Interrupt Enable Register

ap_done bit 0 Read/Write

ap_ready bit 1 Read/Write

valid_interrupt bit 16 Read/Write

0x0c IP Interrupt Status Register

ap_done bit 0 Read/TOW

ap_ready bit 1 Read/TOW

valid_interrupt bit 16 Read/TOW

Data signal output

0x0c out_eda_tonic bit 31∼0 Read/Write

0x1c out_eda_phasic bit 31∼0 Read/Write

0x28 out_eda_peak bit 31∼0 Read/Write

0x34 out_eda_poo bit 31∼0 Read/Write

0x40 out_eda_hrp bit 31∼0 Read/Write

0x4c out_ecg_nn bit 31∼0 Read/Write

0x58 out_ecg_nn_counter bit 31∼0 Read/Write

0x64 out_ecg_card bit 31∼0 Read/Write

0x70 valid_interrupt bit 0 Read

0x74 valid_interrupt_ap_vld bit 0 Read/COR

Table D.1: Biosignal Coprocessor AXI4-Lite Control register map
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