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Abstract

The field of renorming theory in Banach spaces focuses on adjusting the norm while
preserving topological properties. This theory is instrumental in unveiling the under-
lying geometric structures within Banach spaces and generating valuable mathematical
insights. Traditionally, Banach spaces have been categorized based on their topological
and geometrical properties.

In this study, we narrow our focus to investigate the relationship between three funda-
mental aspects: the norm’s geometric properties, smoothness, and separability of a space.
It was previously established that every separable Banach space could be renormed with
locally uniformly rotund (LUR) norms that are also Gâteaux differentiable. Similarly,
separable Banach spaces with separable duals could be renormed with LUR norms that
are also Fréchet differentiable.

However, we tackle two open problems that question the existence of renormings for spaces
possessing these topological properties but with weaker geometric norm properties. Our
objectives are to prove the existence of norms that are rotund, Gâteaux differentiable, and
not midpoint locally uniformly rotund (MLUR) for separable Banach spaces. Addition-
ally, we aim to establish the existence of renormings that are weakly uniformly rotund,
Fréchet differentiable, and not MLUR. This research delves into the nuanced relation-
ship between topological and geometric properties of Banach spaces, contributing to the
broader understanding of these spaces in functional analysis.





Abstract in lingua italiana

Il campo della teoria dei rinormamenti negli spazi di Banach si concentra sulla modifica
della norma preservando le proprietà topologiche. Questa teoria è fondamentale per stu-
diare le strutture geometriche degli spazi di Banach attraverso cui si possono classificare
in maniera efficace.

In questa tesi, restringiamo la nostra attenzione sulla relazione tra tre aspetti fondamen-
tali: le proprietà geometriche della norma, la regolarità e la separabilità di uno spazio.
In precedenza, è stato dimostrato che ogni spazio di Banach separabile poteva essere ri-
normato con norme localmente uniformemente convesse (LUR) che sono anche Gâteaux
differenziabili. Allo stesso modo, gli spazi di Banach separabili con duale separabile pote-
vano essere ri-normati con norme localmente uniformemente convesse che sono anche
Fréchet differenziabili.

I nostri obiettivi sono dunque dimostrare l’esistenza di norme che sono strettamente
convesse, Gâteaux differenziabili e non MLUR per spazi di Banach separabili. Inoltre,
si proverà a stabilire l’esistenza di rinormamenti che sono debolmente uniformemente
convessi, Fréchet differenziabili e non MLUR in spazi di Banach con duale separabile.
Questa ricerca approfondisce la complessa relazione tra le proprietà topologiche e geo-
metriche degli spazi di Banach, contribuendo alla comprensione più ampia di questi spazi
nell’ambito dell’analisi funzionale.
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1| Introduction

1.1. Introduction

Banach spaces, a mathematical concept named after the early 20th-century mathemati-
cian Stefan Banach, have an historical lineage that continues to be relevant in contempo-
rary mathematics.

Stefan Banach was born in Krakow on March 30, 1892. It is said that Banach spent some
years of his childhood under the wings of his grandmother in Ostrowsko, the birthplace of
his father. After his graduation in 1910, Banach enrolled at the Faculty of Engineering of
the Polytechnical Institute in Lwow. Due to the outbreak of World War I, he was not able
to finish his studies. A well-known story spread among mathematicians says that some-
time in 1916, Steinhaus (then assistant at the University of Lwow) walked through a park
in Krakow. Suddenly, he overheard the words Lebesgue integral; the youngsters who were
discussing this unusual matter were Stefan Banach and Otton Nikodym. This encounter
was the beginning of a lifelong collaboration and the big bang of the famous Lwow school.
Thanks to this episode Stefan Banach was able to pursue a career in academia, where he
managed to give substantial contributions to mathematics. To appreciate the extent of
Banach’s contributions it’s enough to recall that Steinhaus always claimed that Banach
was his greatest mathematical discovery [10]. The (arguably) greatest achievement he
made is the formalization of what are now called Banach spaces, which serve as the play-
ground for many branches of mathematics. Without this fundamental tool, it would have
been substantially harder to develop fields such as partial differential equations, harmonic
analysis, functional analysis, operator theory, and so on...

It is not surprising that research in the field grew wider as the years passed, given its
versatility. Among the 100 years that have passed since the inception of the concept,
many surprising facts have arisen. In particular, it became apparent how the under-
standing of the properties of Banach spaces was strongly connected to the geometrical
properties of their norm functions. One of the first instances of this connection lies in the
Milman-Pettis theorem, for which such geometrical properties are related to a topological
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characteristic of the Banach space. This thesis is set in this context, aiming to introduce
new results relating some topological characteristics of a Banach space to the geometrical
and smoothness properties of the norm function.

The main protagonist of our research are complete real normed spaces, or as Fréchet called
them, Banach spaces. We will spend some pages introducing the main concepts and some
basic properties, specifically it will be introduced the concept of renorming, which is the
concept of changing a norm with an equivalent one. We say that two norms are equivalent
if and only if they induce the same norm topology on the spaceX. This will be the base for
the final result. After some characterization of the newly introduced concept, we end this
first part by introducing the notion of basis in Banach spaces. We will mainly use the so
called Markushevich basis :{en, e∗n} which are a total and fundamental biorthogonal system
of the space X. This will allow us to work with "orthogonal" directions in a Banach space,
a strongly non trivial task, and will be crucial when defining the final renormings. We then
move on introducing most of the known geometrical properties of the norms. At first, it
will be introduced the concept of rotundity which, intuitively, is just the strict adherence of
the concept of convexity. If a shape is rotund, we can then expect not to find any straight
line on its edge. We then strengthen this conditions introducing the concept of midpoint
local uniform convexity, local uniform convexity, uniform convexity in both the strong
and weak form. This will be followed up with some example and intuitive explanations
to show their connections and meaning. Our final result will be tied mainly to three
of the above properties: rotundity, midpoint local uniform convexity and weak uniform
convexity. We will then move on to the more analytical concept of lattice norm, in which
we wish to establish a relation between a partial order on a set and it’s norm. We somehow
wish to adapt the notion of monotonicity to norm functions, where domains are complex
objects. Even the concept of derivative needs to be adjusted before it can be applied to
such infinite dimensional domains. This is why we will be introducing two extensions of
derivative, which are the most widely adopted in these scenarios: Gâteaux and Fréchet
derivatives. Even if these properties seem to be more analytical than geometrical some
astonishing results (such as Šmulyan’s lemma) draw some very deep connections between
such analytical properties and the previously mentioned geometric ones through duality.
Lastly, we will adapt some results which are known to the state of the art to our purposes.
We will be imposing multiple conditions to specific renormings of separable Banach space
such as Gâteaux or Fréchet combined with rotundity conditions or introduce slices, which
are a way to generate some "cuts" in a geometrical object on a space with a dual.

It is still not known (Section 52.3 [7] Question 3) in the state of the art whether one
can change the norm on a separable Banach space, preserving its topology, with a norm



1| Introduction 3

that satisfies the condition of rotundity but not midpoint locally uniform rotundity. It
is also not known (Section 52.3 [7] Question 6) whether one can change the norm on a
Banach space with a separable dual, preserving its topology, with a norm that satisfies
the condition of weak uniform rotundity but not midpoint locally uniform rotundity. A
proposed proof of this two statements is the content of the last part of this work.
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2| Banach Spaces

Banach spaces, named after the renowned mathematician Stefan Banach, form a central
pillar in functional analysis and modern mathematics. These mathematical structures
provide a framework for studying the properties of vector spaces equipped with a norm,
where convergence and continuity play pivotal roles. Understanding Banach spaces opens
the gateway to investigating a wide range of problems, from the foundational principles
to more advanced applications in various scientific disciplines.

2.1. Norms

Definition 2.1. Let X be a real vector space. A norm is a function ∥·∥ : X → R+

such that:

• ∥x∥ = 0 ⇔ x = 0.

• ∀α ∈ R ∀x ∈ X : ∥αx∥ = |α| ∥x∥.

• ∀x, y ∈ X : ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

The second property is also called homogeneity property and indicates the multiplicative
scale behaviour of the norm function. The third property is the famous triangle inequality,
which ensures that given x, y ∈ X the space X with the norm ∥·∥ "the linear path" that
goes from 0 to x+ y is always shorter than the path that goes from 0 to x and then from
x to x+ y.

Figure 2.1: Triangle inequality.
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It’s easy seeing, using the definition, how every norm induces a distance over the same
space X in the following way: d(x, y) = ∥x− y∥. On the other hand not all the distances
induce a norm (i.e. distance don’t need to be homogeneus).

Definition 2.2. The couple (X, ∥·∥) is said to be a normed space.

Example 2.1:

- (R, |·|) : The easiest example considering the line of the real number and the mono
dimensional euclidean distance (the absolute value function).

- (Rn, ∥·∥e) : The n-dimensional euclidean space with its relative norm ∥x∥e := (
∑n

i=1 x
2
i )

1
2 .

- (C0([a, b]), ∥·∥∞) : C0([a, b]) is the space of continuous functions on the interval [a, b] and
the infinite norm is ∥f∥∞ := maxx∈[a,b] |f(x)|.

- (L1([a, b]), ∥·∥1) : L1([a, b]) is the space of Lebesgue integrable functions on the interval
[a, b] and its norm ∥f∥1 :=

∫ b

a
|f | dµ.

Just to show the process of proving that a function is indeed a norm we focus on the
canonical example (Rn, ∥·∥e).

Definition 2.3. If the normed space (X, ∥·∥) is complete with respect to the metric
induced by the norm then it is said to be a Banach space, namely if every Cauchy
sequence in the metric space (X, ∥·∥) is convergent.

Example 2.2:

-(Rn, ∥·∥e) : The n-dimensional euclidean space with its relative norm ∥x∥e := (
∑n

i=1 x
2
i )

1
2 .

- (Lp, ∥·∥p) : It can be proven that all the Lebesgue Spaces Lp with their relative norms
are Banach spaces for all p ∈ [1,∞].

- (C0[a, b], ∥·∥∞) : The space of continuous function and the infinite norm.

A few example of incomplete normed spaces are:

- (c00, ∥·∥∞), the space of eventually zero sequences. If we now consider the sequence {xn}
made by xn = (1, 1

2
, 1
3
, ..., 1

n
, 0, ...). This Cauchy sequence has no limit inside c00.

- (C0[−1, 1], ∥·∥1) : The space of continuous function and the 1-norm, we can consider
the sequence of functions { 1

1+e−nx}n∈N. The limit of the Cauchy sequence doesn’t exist in
C0[−1, 1].
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Definition 2.4. Given a normed space (X, ∥·∥) we define the unit sphere and unit
ball the following sets:

• S(X,∥·∥) := {x ∈ X : ∥x∥ = 1}.

• B(X,∥·∥) := {x ∈ X : ∥x∥ ≤ 1} .

Unit balls define univocally a norm since, by the homogeneity property of the norm, they
also define all the level curves.

Example 2.3:

Here we can see the picture representing how the unit sphere of the p-norm
∥x∥p := (

∑n
i=1 x

p
i )

1
p varies with respect to the parameter p in the space Rn, for p = ∞ we

define ∥x∥∞ = supi∈N |xi|.

Figure 2.2: Unit spheres of R2

It’s worth saying that if p < 1 the function ∥·∥p is not a norm. A norm cannot have a
non-convex unitary ball, otherwise we would be able to violate triangle inequality.

2.2. Equivalent Norms

Definition 2.5. Two norms defined on the same space X are said to be equivalent
if the following condition holds ∃ m,M ∈ R+ :

∀x ∈ X m ∥x∥1 ≤ ∥x∥2 ≤M ∥x∥1 .

This property induces an equivalence relation on the set of all norms and thus it is
symmetric. One reason that underlines the importance of this notion is the fact that by
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changing the norm with an equivalent one, also known as renorming, a space will hold
the same converging sequences, generating the same topology of the open sets. Two norms
are equivalent if there exists two positive real constants such that mB(X,∥·∥) ⊂ B(X,|·|) ⊂
MB(X,∥·∥), in this way we can think about this concept from a geometrical point of view.

Definition 2.6 ([6, page 53]). Given a Banach space (X, ∥ ·∥), we define the metric
space of all equivalent norms (P, ρ) where the distance ρ for two norms p, q ∈ P

is defined as:
ρ(p, q) = sup{|p(x)− q(x)|;x ∈ B(X,∥·∥)}.

This concept expands upon the previously introduced notion, providing us with a valuable
analytical tool to examine the characteristics of the functional space consisting of all norms
that preserve the topology of the original Banach space. Additionally, it’s noteworthy
that this newly introduced space possesses numerous favorable properties, including its
classification as a Baire space. Furthermore, it’s important to highlight that space P is a
subset of space Q, wherein Q encompasses all continuous seminorms defined on the same
space (X, ∥ · ∥), and Q itself constitutes a complete metric space using the same distance
metric denoted as ρ.

Theorem 2.1. If the Banach space (X, ∥·∥) is finite dimensional, all norms are equiv-
alent.

Proof. To show that every norm is equivalent it will be enough to prove that every norm
is equivalent to the 2-norm ∥·∥e. This follows from the fact that every finite dimensional
space is isomorphic to Rn and the notion of equivalence for norms is transitive. Since
every normed space is also a vector space, and in our case n = dim(X) <∞,
it always exists a subset of the space which is also a basis {ek}nk=1. We can then state the
following:

∀x ∈ X x =
n∑

k=1

x(k)ek.

Where x(k) are the projection along the k-th component of the basis. Let’s rewrite the
norm using the triangle inequality

∥x∥ =

∥∥∥∥∥
n∑

k=1

x(k)ek

∥∥∥∥∥ ≤
n∑

k=1

∥∥x(k)ek∥∥ =
n∑

k=1

|x(k)| ∥ek∥ .

We can now use Cauchy-Schwarz inequality and setting M2 = C =
∑n

k=1 ∥ek∥
2 we obtain
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the following

∥x∥2 ≤ (
n∑

k=1

|x(k)| ∥ek∥)2 ≤
n∑

k=1

|x(k)|2
n∑

k=1

∥ek∥2 = C ∥x∥2e =⇒ ∥x∥ ≤M ∥x∥e .

To find the second inequality we shall focus on the fact that:

• X is finite dimensional ⇔ S(X,∥·∥e) is a compact set.

• The norm function is continuous.

To prove the second point is enough to show that:

| ∥xn∥ − ∥x∥ | ≤ ∥xn − x∥ ≤M ∥xn − x∥e .

Which implies that for all {xn} ⊂ X for which ∃ x ∈ X : d(xn, x) = ∥xn − x∥e → 0 also
the function | ∥xn∥ − ∥x∥ | → 0 and this is the notion of continuity for real functions.

We notice that these are the hypothesis of the Weierstrass theorem allowing us to infer
that ∃ m ∈ R+ : ∥x∥ ≥ m ∀ x ∈ S(X,∥·∥e) and there exists x0 ∈ S(X,∥·∥e) such that
∥x0∥ = m.

It follows that m ≥ 0. If m = 0 then ∃ x0 : ∥x0∥ = m = 0 which implies x = 0 but this is
impossible since x0 ∈ S(X,∥·∥e). The last step is just to consider the element x ∈ X , x ̸= 0.
Then x/ ∥ x∥e ∈ S(X,∥·∥e) leading to:∥∥∥∥ x

∥ x∥e

∥∥∥∥ ≥ m =⇒ ∥x∥ ≥ m ∥x∥e ∀ x ∈ X.

This last inequality combined with ∥x∥ ≤M ∥x∥e for all x ∈ X give us the thesis.

We will now introduce the concept of dual norm ∥ · ∥∗ on X∗ which is the dual space of a
starting Banach space (X, ∥ · ∥).

Proposition 2.1. Let (X, ∥ · ∥) be a Banach, let X∗ be its dual and let T ∈ X∗ we
define the operator norm on the dual with the following: ∥T∥∗ = supx∈S(X,∥·∥)

|Tx|,
this function is a norm on the dual space.

It’s worth noting that not every norm on the dual corresponds to a norm on its predual.
It is now introduced a sufficient condition on a generic ∥ · ∥∗ to be a dual norm on some
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space X.

Proposition 2.2. Given a Banach space (X∗, ∥ · ∥∗) this admits a predual Banach
space (X, ∥ · ∥) if the norm ∥ · ∥∗ is weak∗-lower-semicontinuous.

Having introduced the dual space, we can now state and prove a fundamental theorem on
the equivalence of the norm in infinite dimensional Banach spaces, which underlies once
again the strange properties that we obtain from considering infinite dimensional spaces.

Proposition 2.3. Let (X, ∥·∥) be an infinite dimensional Banach space then it exists
∥·∥2 that is not equivalent to ∥ · ∥.

Proof. This proof is based on the known result that given an infinite dimensional Banach
space (X, ∥·∥) it always exists, under the axiom of choice, a linear and unbounded operator
f : X → R.

We can now consider the following norm:

∥x∥2 = ∥x∥+ |f(x)| ∀x ∈ X.

By hypothesis is known that the operator f is unbounded, hence f /∈ (X∗, ∥·∥∗). Let’s
now check if f ∈ (X∗, ∥·∥∗2):

-Linearity :

We know f to be linear by hypothesis.

-Boundedness :

The boundeness condition is the following ∃ M ∈ R : ∀x ∈ X

∥f∥∗2 ≤M.

Given:
∥f∥∗2 = sup

x∈B(X,∥x∥2)

|f(x)|.

Let’s take all the points x ∈ B(X,∥x∥2):

∥x∥2 = ∥x∥+ |f(x)| ≤ 1 =⇒ sup
x∈B(X,∥x∥2)

|f(x)| ≤ 1.

But this implies the boundedness of the operator and consequently f ∈ (X∗, ∥·∥∗2).
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Let’s now perform the last step assuming that ∃ C ∈ R : ∥x∥2 ≤ C ∥x∥ (necessary
condition to be equivalent). It follows that for all x ∈ B(X,∥x∥2):

|f(x)| ≤ ∥x∥2 ≤ C ∥x∥ =⇒ f ∈ (X∗, ∥·∥∗).

But this generates a contradiction with the initial hypothesis. Then the two norms are
not equivalent.

Proposition 2.4. Given two Banach spaces (X, ∥·∥1) and (X, ∥·∥2) where ∥ · ∥1 and
∥ ·∥2 are equivalent, the identity map τ is an isomorphism between the two spaces and
we will write (X∗, ∥·∥∗1) ≃ (X∗, ∥·∥∗2).

Proof. To show this result, it’s enough to prove that τ : (X∗, ∥·∥∗1) → (X∗, ∥·∥∗2) such that
it is bounded, injective and surjective, where τ is the previously mentioned identity map.

Let us recall that if the two norms are equivalent then we know:

∀x ∈ X m ∥ x ∥1 ≤ ∥ x ∥2 ≤M ∥ x ∥1 .

We can now consider the identity map:

τ(L) = L.

-Well Posed

Let’s start from the fact that τ is linear by definition, we also know that

L ∈ (X∗, ∥·∥∗1) =⇒ ∥τ(L) ∥∗1 = ∥L ∥∗1 ≤ C ∥x∥1 ≤
C

m
∥x∥2 ∀x ∈ X.

But this means that τ(L) ∈ (X∗, ∥·∥∗2)

-Bounded
∥τ∥∗ = sup

L∈∥L∥∗1=1

∥τ(L)∥∗2 = sup
sup∥x∥1=1 |L(x)|=1

|L(x)| ≤ C.

-Injective and Surjective

Injectivity follows from the very definition of the map τ . To show surjectivity we can
proceed as follows:
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Let’s suppose τ is not surjective, this means that

∄ L ∈ (X∗, ∥·∥∗1) : τ(L) = Lδ ∈ (X∗, ∥·∥∗2).

But since Lδ ∈ (X∗, ∥·∥∗2) and the norms are equivalent we can conclude (as in the first
point of the proof) that Lδ ∈ (X∗, ∥ ∥∗1).

But now if we take L = Lδ we get τ(Lδ) = Lδ and this generates a contradiction with the
initial assumption. Thus it is surjective.

Every step applied above can also be applied to the inverse identity map, proving its
boundednes (thus continuity) so, since we have a bijective bounded map with bounded
inverse between two spaces they are isomorphic.

2.3. Basis in Banach spaces

In this chapter, we delve into the fundamental concepts of vector space bases, exploring the
distinct characteristics of Hamel, Schauder, Auerbach, and Markushevich bases. These
diverse types of bases play crucial roles in understanding the structures of different vector
spaces, ranging from finite dimensions to infinite dimensions. By examining the properties
and applications of these bases, we gain valuable insights into the representation and
analysis of elements in various mathematical spaces.

Definition 2.7. A Hamel basis is a subset B of a vector space V over the field R
such that every element v ∈ V can uniquely be written as

v =
∑
b∈B

αbb αb ∈ R b ∈ B.

Hamel bases are considered the most fundamental due to their simple requirement of
unique representation in vector spaces. While every vector space has a Hamel basis,
proven through the Axiom of Choice, they tend to become less of an asset (at least for
our purposes) as we will see in the next theorem. Consequently, in infinite-dimensional
settings, alternative bases like Schauder bases are explored, offering more convenient
properties of the basis.
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Proposition 2.5. Let (X, ||.||) be an infinite dimensional Banach space. Then, any
Hamel basis in X is uncountable.

This is still the main technical difficulty of the Hamel Basis. This proposition can be
proved by the fact that every finite-dimensional subspace of an infinite-dimensional vector
space X has empty interior, and is no-where dense in X. It then follows from the Baire
category theorem that a countable union of bases of these finite-dimensional subspaces
cannot serve as a basis.

Definition 2.8. Let (X, ∥ · ∥) be a Banach space. A Schauder basis is a sequence
{bn} of elements of X such that for every element x ∈ X there exists a unique sequence
{αn} of scalars in R so that:

x =
∞∑
n=0

αnbn.

This type of basis is particularly useful in the study of functional analysis, where it enables
the analysis of convergence and continuity properties of functions and operators. Schauder
bases provide a powerful tool for representing functions and studying the behavior of
functions in infinite-dimensional spaces. Unlike Hamel bases, Schauder bases allow for
infinite linear combinations using limits instead of finite sums.

Definition 2.9 ([9, Definition 1.15]). If X is a Banach space, a biorthogonal sys-
tem {(xn, en)}n∈N for X is a subset of X×X∗ such that ⟨xi, ej⟩ = δi,j for all i, j ∈ N,
where δi,i = 1 and δi,j = 0 for i ̸= j. It is called an Auerbach system if, moreover,
∥xn∥ = ∥en∥ = 1 for all n ∈ N.

Example 2.4:

Consider the Banach spaceX = c0(N) of all real sequences that converge to zero, equipped
with the supremum norm. Let {en}n∈N be the canonical basis of X, where en is the
sequence whose n-th entry is 1 and all other entries are 0. Now, define the sequence of
functionals {e∗n}n∈N in X∗ as follows:

e∗n(x) = xn for x = (x1, x2, . . .) ∈ X.

Definition 2.10 ([9, Definition 1.4-1.6]). A biorthogonal system {en, e∗n}n∈N for a
Banach space X is called fundamental if span{en : n ∈ N} = X. It is called total
if span{e∗n : n ∈ N} is w∗-dense in X∗.
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It can be shown that the previous example {en, e∗n}n∈N forms an Auerbach system in c0.
This system is both fundamental, as the span of {en}n∈N is dense in X, and total, as the
span of {e∗n}n∈N is weak*- dense in c∗0.

Definition 2.11 ([9, Definition 1.7]). A fundamental and total biorthogonal system
for a Banach space X is said to be a Markushevich basis (for short, an M-basis). If
the M-basis is, moreover, an Auerbach system, it is called an Auerbach basis.

Example 2.5:

In the Hilbert space ℓ2, the system {ek}k∈N and {e∗k}k∈N forms a Markushevich basis which
is of course also a Schauder basis and a complete orthonormal system. Here, ek represents
the sequence whose kth entry is 1 and all other entries are 0, and e∗k is the corresponding
functional in ℓ2 with e∗k(x) = xk for x ∈ ℓ2.

Now, two definitions are going to be introduced to further distinct between the possible
M-basis.

Definition 2.12. An M-basis {en, e∗n}n∈N is said to be bounded if sup ∥en∥∥e∗n∥ ≤
∞ ∀n ∈ N. Also an M-basis is said to be shrinking if span{e∗n : n ∈ N} = X∗

We now present two theorems that follow from the previously introduced definitions, one
is key to tackling of the open questions, the other is a fun historical fact.

Theorem 2.2 ([9, Theorem 1.22],[11, Proposition 8.13]). Every separable Banach
space has a bounded M-basis such. If, moreover, X has a separable dual, the M-basis
can be taken to be shrinking and bounded. In both cases the M-basis can be taken to
also satisfy ∥e∗1∥∗ = 1 and ∥en∥ = 1 ∀n ∈ N.

The existence of bounded M-basis in every separable Banach space has been solved in
the affirmative. It was later adjusted to produce an “almost” Auerbach (even norm-
ing) M-basis in every separable Banach space. What ultimately concerns us is the
fact that separable Banach spaces admit bounded M-basis. If one also adds the sep-
arability of the dual the M-basis is shrinking. Now we take a few lines to talk about
the famous "Scottish Book" (more information can be found by clicking at this link :
http://www.math.lviv.ua/szkocka/index.php).

The "Scottish Book" is a renowned artifact in the history of mathematics. It originated at
the Scottish Café in Lwów, where prominent mathematicians of the Lwów School gathered
during the 1930s and 1940s to collaboratively explore problems, particularly in functional
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analysis and topology. The café’s marble tabletops allowed them to write directly with
pencils during discussions.

To preserve their findings, Stefan Banach’s wife supplied them with a large notebook,
which came to be known as the Scottish Book. This notebook served as a repository for
solved, unsolved, and often seemingly unsolvable mathematical problems. Any guest of
the café could borrow the book and attempt to solve these challenges. Rewards, including
valuable items like fine brandy, were offered for successfully tackling the most difficult
problems, a practice that persisted even during the Great Depression and on the eve of
World War II.

The Scottish Book thus became a symbol of the collaborative spirit and intellectual ca-
maraderie among mathematicians during that era, encapsulating their dedication to ad-
vancing the field.

The problem 153, proposed by Mazur, revolved around the assertion that every separa-
ble Banach space must have a Schauder basis, a statement that had defied proof and
baffled mathematicians for an extended period, gaining notoriety for its formidable chal-
lenge. However, in the year 1972, a pivotal moment in mathematical history arrived when
someone unveiled a solution to this long-standing enigma.

Theorem 2.3 ([4]). Not every separable Banach space admits a Schauder basis.

In 1972, Per Enflo made a groundbreaking mathematical dis-
covery by constructing a separable Banach space without the
approximation property and a Schauder basis. To celebrate
this achievement, a memorable "goose reward" ceremony was
held at the Stefan Banach Center in Warsaw, Poland, and
broadcast nationwide, highlighting the profound impact of En-
flo’s work beyond the realm of mathematics.

1

1Image taken from Wikipedia. Link : https://en.wikipedia.org/wiki/Per_Enflo

https://en.wikipedia.org/wiki/Per_Enflo
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3| Geometrical Properties

Within this chapter, we will explore the diverse geometric attributes inherent in norms.
As previously underscored, our principal objective is to establish a substantial correlation
between these norm-derived geometric characteristics and distinct topological properties
within the domain of Banach spaces. Our central focus will center on analyze the interplay
between the norm and convexity.

3.1. Rotundity

We now come to the concept of rotundity. In this case, the norm’s role goes beyond just
meeting the criteria for convexity. Instead, it’s required to go a step further, demonstrating
a strict adherence to this condition.

Definition 3.1. The norm ∥·∥ of the Banach space (X, ∥ · ∥) is said to be rotund (or
strictly convex), if its unit sphere contains no nondegenerate straight line segments.

Figure 3.1: rotundity of the p-norm previously mentioned on the space R2

It can be shown that the p-norm is rotund for all p ∈ (1,∞), as it can be seen in the image
above for 1 and ∞ the unitary sphere contains straight line segments while for p = 2 (but
it is the same for every other p) all the points are extreme points.

Some analytical characterizations of this property can be found in the following lemma:
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Lemma 3.1. Let (X,∥·∥) be a normed space. The following are equivalent:

1. ∥·∥ is rotund.

2. ∥tx1 + (1− t)x2∥ < 1 ∀ x1, x2 ∈ S(X,∥·∥) such that x1 ̸= x2, t ∈ (0, 1).

3.
∥∥x1+x2

2

∥∥ < 1 ∀ x1, x2 ∈ S(X,∥·∥) such that x1 ̸= x2.

4. If x1, x2 ∈ S(X,∥·∥) satisfy ∥x1 + x2∥ = 2 then x1 = x2.

5. If x1, x2 ∈ X x1 ̸= 0, x2 ̸= 0 satisfy ∥x1 + x2∥ = ∥x1∥+ ∥x2∥ then x1 = λx2 for
some λ > 0.

6. If x1, x2 ∈ X satisfy: 2 ∥x1∥2 + 2 ∥x2∥2 − ∥x1 + x2∥2 = 0 then x1 = x2.

Proof. Let’s prove the chain of implication.

-1 ⇔ 2

This is just the analytical characterization of strict convexity. We will also prove (in the
Lemma 4.1) that the unit ball is convex, forcing the average of the two points to be at
most 1.

-2 =⇒ 3

If the condition holds for every t ∈ (0, 1) then it’s also true for t = 1
2
, for which we get∥∥∥∥12x1 + (1− 1

2
)x2

∥∥∥∥ =

∥∥∥∥12(x1 + x2)

∥∥∥∥ .
And thus 3 follows since: ∥∥∥∥12(x1 + x2)

∥∥∥∥ < 1 ∀ x1, x2 ∈ S(X,∥·∥).

-3 =⇒ 4

We derive 4 assuming 3 to be true, so for all x1, x2 ∈ S(X,∥·∥) such that x1 ̸= x2

we know that
∥∥1
2
(x1 + x2)

∥∥ < 1, and hence ∥x1 + x2∥ < 2. But then if we consider
x1, x2 ∈ S(X,∥·∥) such that ∥x1 + x2∥ = 2 then x1 ̸= x2 cannot be true or we would
contradict the hypothesis that 3 is true. Thus x1 = x2, the thesis.

-4 =⇒ 5

Let’s suppose 4 is satisfied:
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Let ∥x + y∥ = ∥x∥ + ∥y∥ for some x ̸= 0, y ̸= 0. We may assume that 0 < ∥x∥ ≤ ∥y∥.
Then,

2 ≥
∥∥∥∥ x

∥x∥
+

y

∥y∥

∥∥∥∥ ≥
∥∥∥∥ x

∥x∥
+

y

∥x∥

∥∥∥∥− ∥∥∥∥ y

∥x∥
− y

∥y∥

∥∥∥∥
=

1

∥x∥
∥x+ y∥ − ∥y∥

(
1

∥x∥
− 1

∥y∥

)
=

1

∥x∥
(∥x∥+ ∥y∥)− ∥y∥

(
1

∥x∥
− 1

∥y∥

)
= 2.

Thus
∥∥∥ x
∥x∥ +

y
∥y∥

∥∥∥ = 2, by 4 we get x
∥x∥ = y

∥y∥ implies that x = λy.

-5 =⇒ 2

Suppose that 5 holds. Let z1 and z2 be different members of S(X,∥·∥) and observe that
z1 ̸= λz2 for every λ > 0 , which implies that ∥tz1 + (1− t)z2∥ < ∥tz1∥+ ∥(1− t)z2∥ = 1.
The space X is therefore rotund, so 5 ⇒ 2.

We have now closed the loop of implications between 1 and 5, showing the equivalence.
We now consider a separate case for 6, showing the equivalence to the point number 4.

-4 ⇔ 6

Let’s start from:

2∥x∥2 + 2∥y∥2 − ∥x+ y∥2 ≥ 2∥x∥2 + 2∥y∥2 − (∥x∥+ ∥y∥)2 = (∥x∥ − ∥y∥)2 ≥ 0.

Thus, if 2∥x∥2 + 2∥y∥2 − ∥x + y∥2 = 0, then ∥x∥ = ∥y∥. Hence, we may assume that
x, y ∈ SX (if they were not in the unit sphere we might rescale of the factor ∥x∥); we get
∥x+ y∥ = 2, and 4 implies x = y.

The converse implication is obvious considering x, y ∈ S(X,∥·∥) then we get

∥x+ y∥ = 2 =⇒ 0 = 2 + 2− ∥x+ y∥2 =⇒ 2∥x∥2 + 2∥y∥2 − ∥x+ y∥2 = 0

Thus finishing the converse implication.

We have then proved the mutual implications of 1 to 5 and then the equivalence of 6
with 4, getting the final result for which every proposition is equivalent to every other
proposition in the lemma.

Theorem 3.1. Given a normed space (X, ∥ · ∥) which is rotund, then it doesn’t admit
any non-rotund subspace (Y, ∥ · ∥).
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Proof. Suppose (X, ∥ · ∥) admits a non rotund subspace (Y, ∥ · ∥), then ∃x1, x2 ∈ S(Y,∥·∥)

distinct points such that
∥∥1
2
(x1 + x2)

∥∥ = 1. But S(Y,∥·∥) ⊆ S(X,∥·∥) which implies x1, x2 ∈
S(X,∥·∥) such that

∥∥1
2
(x1 + x2)

∥∥ = 1, which contradicts the initial hypothesis (through
Lemma 3.1).

Example 3.1:

The Banach space ℓ2 with its relative norm ∥x∥ℓ2 := (
∑∞

i=1 x
2
i )

1
2 is rotund.

Let us first remember that in the space ℓ2 we can define a inner product. It is well known
that all the spaces with a norm that arises from the above mentioned inner product also
satisfy the parallelogram identity for all x, y ∈ X:

∥x+ y∥2ℓ2 + ∥x− y∥2ℓ2 = 2 ∥x∥2ℓ2 + 2 ∥y∥2ℓ2 .

So to retrieve our thesis it’s enough to consider that if we take two points x, y ∈ S(X,∥·∥)

such that:
∥x+ y∥ℓ2 = 2.

Then
∥x+ y∥2ℓ2 = 4.

But if we apply the parallelogram law combined with the fact that x, y ∈ S(X,∥·∥) we get:

4 + ∥x− y∥2ℓ2 = 2 + 2 ⇒ ∥x− y∥2ℓ2 = 0 ⇔ x = y.

Where the last step is justified by the first norm property 2.1.

But what we have written is exactly the fourth point of the lemma previously introduced,
hence the space is rotund. This example also suggests, by applying Theorem 3.1 that
every euclidean space Rn with the euclidean norm also satisfied the rotundity porperty.

Example 3.2:

To show how articulate it might get when trying to prove this property we will try to
prove it for the following norm in the Hilbert space ℓ2, we will use the standard notation
x = (xn)

∞
n=1:

We will take the same norm used in the article [3], given the Banach space (ℓ2, ∥ · ∥ℓ2):
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∥x∥2 = ∥x∥20 +
∞∑
n=1

1

4n
|xn|2

where:
∥x∥0 = max(

1

2
∥x∥ℓ2 , sup |xn|).

We start by noticing that the second term of the norm is just the square of the euclidean
norm of the vector (1

2
x1,

1
4
x2, ...), it’s also fairly easy to check it is well posed since 1

4n
is

always less than 1.

Let’s start by applying condition 6 of Lemma 3.1 to see if we can prove the implication.

0 = 2∥x∥2+2∥y∥2−∥x+y∥2 = 2

(
∥x∥20 +

∥∥∥∥(12x1, 14x2, ...)
∥∥∥∥2
ℓ2

)
+

(
∥y∥20 +

∥∥∥∥(12y1, 14y2, ...)
∥∥∥∥2
ℓ2

)

−

(
∥x+ y∥20 +

∥∥∥∥(12x1, 14x2, ...) + (
1

2
y1,

1

4
y2, ...)

∥∥∥∥2
ℓ2

)
= 0

Rearranging the terms of the equality written above we get:

(2∥x∥20 + ∥y∥20 − ∥x+ y∥20)+

+

(
2

∥∥∥∥(12x1, 14x2, ...)
∥∥∥∥2
ℓ2
+ 2

∥∥∥∥(12y1, 14y2, ...)
∥∥∥∥2
ℓ2
−
∥∥∥∥(1

2
x1,

1

4
x2, ...

)
+

(
1

2
y1,

1

4
y2, ...

)∥∥∥∥2
ℓ2

)
.

But now, if we apply triangular inequality we realize that each term above is non negative
(we will explain better this passage with the next theorem), and since their sum is zero,
it is implied that both terms need to be equal to zero. In particular

2

∥∥∥∥(12x1, 14x2, ...)
∥∥∥∥2
ℓ2
+ 2

∥∥∥∥(12y1, 14y2, ...)
∥∥∥∥2
ℓ2
−
∥∥∥∥(1

2
x1,

1

4
x2, ...

)
+

(
1

2
y1,

1

4
y2, ...

)∥∥∥∥2
ℓ2
= 0.

But we know the euclidean norm to be rotund, thus implying
(
1
2
x1,

1
4
x2, ...

)
=
(
1
2
y1,

1
4
y2, ...

)
,

but these two vectors are equal only if x = y. Thus we retrieve the rotundity of ∥ · ∥ since
implication 6 of Lemma 3.1.

The algebraic structure of the norm was not involved in the calculations, this suggests
that we can extend this result to a much more general framework, as the next theorem
suggests.
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Theorem 3.2 ([7, Proposition 152][7, page 147]). Assume that (Xi, ∥·∥i) i = 1,2
are Banach spaces such that (X2, ∥·∥2) is strictly convex and there is a one-to-one
continuous linear operator T : X1 −→ X2. Then:

∥x∥3 = ∥x∥1 + ∥Tx∥2 , x ∈ X1

and
∥x∥24 = ∥x∥21 + ∥Tx∥22 , x ∈ X1

define two equivalent strictly convex norms on X1.

Proof. We start by proving the first statement. Proving that ∥ · ∥3 is a renorming we can
write:

∥x∥1 ≤ ∥x∥1 + ∥Tx∥2 = ∥x∥3 ≤ (K + 1)∥x∥1

The first inequality needs no explanation while the second follows from the continuity of
the operator T for which we know ∃K ∈ R : ∥Tx∥2 ≤ K∥x∥1 for all x ∈ X1, thus it is
bounded.

Now we take x1, y1 ∈ X1 different from zero for which ∥x1 + y1∥3 = ∥x1∥3 + ∥y1∥3,
specifically:

∥x1 + y1∥1 + ∥T (x1 + y1)∥2 = ∥x1∥1 + ∥y1∥1 + ∥T (x1)∥2 + ∥T (y1)∥2

But we know by triangle inequality that ∥x1 + y1∥1 ≤ ∥x1∥1 + ∥y1∥1 and ∥T (x1 + y1)∥2 =
∥T (x1) + T (y1)∥2 ≤ ∥T (x1)∥2 + ∥T (y1)∥2 and thus both inequality need to be satisfied
with strict equality. We get in particular that ∥T (x1)∥2 + ∥T (y1)∥2 = ∥T (x1) + T (y1)∥2.
We know by injectivity of T that Tx1 ̸= 0 and Ty1 ̸= 0. By the rotundity of the norm
∥ · ∥2 and the point 5 of Lemma 3.1 we get that Tx1 = λTy1 for some λ > 0, but then
Tx1 = T (λy1) and by injectivity x1 = λy1.

But this leads us to the conclusion that ∥x1 + y1∥3 = ∥x1∥3 + ∥y1∥3 =⇒ x1 = λy1, which
is a characterization of rotundity of the previously mentioned lemma.

Let’s use the previous example to finalize a formal proof of the second part of the theorem.

The fact that this is an equivalent norm comes naturally since we can see ∥x∥3 = |∥x∥1|+
|∥Tx∥2| = ∥(∥x∥1, ∥Tx∥2)∥ℓ1 which is the standard norm of the space ℓ1 along the first
two dimensions, but since we are considering a subspace of finite dimensions all norms are
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equivalent, also the euclidean norm ∥x∥4 =
√
∥x∥21 + ∥Tx∥22 = ∥(∥x∥1, ∥Tx∥2)∥ℓ2 , thus

∥ · ∥4 is equivalent to norm ∥ · ∥3 which is equivalent to the initial norm ∥ · ∥1.

We try retrieving the implication of point 6 of Lemma 3.1. Let’s assume by hypothesis
that:

0 = 2∥x∥24+2∥y∥24−∥x+y∥24 = 2(∥x∥21+∥Tx∥22)+2(∥y∥21+∥Ty∥22)−(∥x+y∥21+∥Tx+Ty∥22).

Rearranging:

(2∥x∥21 + 2∥y∥21 − ∥x+ y∥21) + (2∥Tx∥22 + 2∥Ty∥22 − ∥Tx+ Ty∥22) = 0.

By triangle inequality:

2∥x∥21 + 2∥y∥21 − ∥x+ y∥21 ≥ 2∥x∥21 + 2∥y∥21 − (∥x∥1 + ∥y∥1)2 = (∥x∥1 − ∥y∥1)2 ≥ 0.

The same consideration can be made about the other term of the sum, but since we are
summing two terms which are greater than zero and result is zero by hypothesis, then we
must have both terms equal to zero, in particular:

2∥Tx∥22 + 2∥Ty∥22 − ∥Tx+ Ty∥22 = 0

Which is a rotund norm, so by point 6 of Lemma 3.1 we get Tx = Ty, but now we use
the hypothesis that T is one-to-one, leading to x = y, thus implying the rotundity of the
norm ∥ · ∥4.

We now investigate via examples if some another properties of rotundity can be formalized,
like: is it enough to know that a norm | · |22 = ∥ · ∥21 + ∥ · ∥22 is rotund to conclude that
| · | = ∥ · ∥1 + ∥ · ∥2 is rotund too?

Example 3.3:

We start by assuming that |·|22 = ∥·∥21+∥·∥22 is a rotund norm. Let (X1, ∥·∥1) = (R2, ∥·∥1)
and (X2, ∥ · ∥2) = (R2, ∥ · ∥e) where:

∥(x1, x2)∥1 = 2|x1|e + |x2|e

∥(x1, x2)∥2 = |x1|e + 2|x2|e

where | · |e is the monodimensional euclidean norm.



24 3| Geometrical Properties

|(x1, x2)| = ∥(x1, x2)∥1 + ∥(x1, x2)∥2 = 3(|x1|e + |x2|e)

Which is clearly not rotund since we can take x = (1
3
, 0) and (0, 1

3
), those two points have

midpoint contained in the unitary sphere even if they are different.

On the other hand:

|(x1, x2)|22 = ∥(x1, x2)∥21 + ∥(x1, x2)∥22 = (2|x1|e + |x2|e)2 + (|x1|e + 2|x2|e)2 =

= 5|x1|2 + 5|x2|2 + 8|x1||x2|.

We will show in the next chapter (Example 4.3) that this quantity is indeed a norm. Even
though it is not formal, it can be shown that the unitary sphere of this norm is an ellipse
in R2 which is well know to contain only extreme points and hence it is rotund.

Unit sphere norm | · | Unit sphere norm | · |2

The last example revolves around showing that the rotundity of at least one of the two
norms is not necessary condition for the rotundity of the "sum" norm, written formally:
∃ ∥ · ∥1, ∥ · ∥2 which are not rotund but | · | = ∥ · ∥1 + ∥ · ∥2 is.

We can, for example take two norms in R2 like this:

∥(x, y))∥1 = max(∥(x, y)∥e, |x+ y|)

∥(x, y))∥2 = max(∥(x, y)∥e, |x− y|).
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We will show in a very non rigorous way what happens to the unitary spheres in R2:

Unit sphere norm ∥ · ∥1 Unit sphere norm ∥ · ∥2 Unit sphere norm | · |

From this we can clearly see that the first two norms contain some segments in the unit
sphere so they can’t be rotund, while the sum only contains extreme points.

Example 3.4:

Let’s try to show the rotundity of the previously seen norm:

∥x∥2 = ∥x∥20 +
∞∑
n=1

1

4n
|xn|2

where:
∥x∥0 = max(

1

2
∥x∥e , sup |xn|).

By applying Theorem 3.2 with:

(X1, ∥·∥1) = (ℓ2, ∥·∥0), (X2, ∥·∥2) = (ℓ2, ∥·∥ℓ2)

T : ℓ2 → ℓ2 (⊂ ℓ∞) : Tx(n) =
1

2n
x(n).

We need to establish if the space (ℓ2, ∥·∥0) is still a Banach space (as required by the
hypothesis of the theorem), but this comes naturally considering the equivalence between
the norms:

∥x∥0 ≤ ∥x∥∞ +
1

2
∥x∥ℓ2 ≤ ∥x∥ℓ2 +

1

2
∥x∥ℓ2 =

3

2
∥x∥ℓ2 .

While for the converse inequality:

∥x∥0 ≥
1

2
∥x∥ℓ2 .
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Being equivalent to the 2-norm of the space ℓ2 we get the same convergent Cauchy se-
quences, hence the space is Banach. Let’s check if the operator meets the other require-
ments of the Theorem 3.2.

-Linearity:

T (αx1 + βx2)
(n) =

1

2n
(αx

(n)
1 + βx

(n)
2 ) =

1

2n
αx

(n)
1 +

1

2n
βx

(n)
2 = αTx

(n)
1 + βTx

(n)
2 .

-One-to-one:

Tx1 = Tx2 =⇒ 1

2n
x
(n)
1 =

1

2n
x
(n)
2 ∀ n =⇒ x

(n)
1 = x

(n)
2 ∀ n =⇒ x1 = x2.

-Continuous:

We prove its continuity by showing its boundedness:

∀ x ∈ ℓ2 ∥Tx∥2ℓ2 =
∞∑
n=1

1

4n
|x(n)|2 ≤ 1

4
∥x∥2ℓ2 .

All the hypothesis are satisfied, thus ∥·∥ is rotund.

3.2. Midpoint Local Uniform Rotundity

Once foundational results about rotundity are in place, it’s natural to consider its ex-
tensions. From strengthening the condition to refining the concept to be applicable to
sequences, various variations come to light. The first one we present is the following:

Definition 3.2. Given a normed space (X, ∥·∥) and {xn}, {yn} ⊆ S(X,∥·∥) such that
every time ∥xn∥ → 1 ∥yn∥ → 1 and 1

2
(xn + yn) → z with z ∈ S(X,∥·∥), it follows that

∥xn − yn∥ → 0 we say that the norm is midpoint locally uniformly rotund or
MLUR as abbreviation.

This concept was historically introduced by K. Anderson in 1960 in his Phd thesis [1]. His
motivation for such study was to find the correct notion of rotundity in a reflexive Banach
space X that would result in a Fréchet smooth norm in the dual X∗ (a concept that we will
introduce later in Definition 4.6). Unfortunately his hope did not materialized he managed
to introduce the correct notion of rotundity that paired with the Kadec property would
guarantee Fréchet differentiability of the dual norm.
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Lemma 3.2. Let (X,∥·∥) be a normed space. The following are equivalent:

1. ∥·∥ is MLUR.

2. Whenever {xn}, {yn} ⊆ X such that ∥xn∥ → 1 ∥yn∥ → 1 and 1
2
(xn + yn) → z

with z ∈ S(X,∥·∥), it follows that ∥xn − yn∥ → 0.

3. Whenever x ∈ S(X,∥·∥) and {xn} ⊆ X such that ∥x+ xn∥ → 1, ∥x− xn∥ → 1

then xn → 0.

4. Whenever {xn}, {yn} ⊆ X such that ∥xn∥ → ∥x∥, ∥yn∥ → ∥x∥ and ∥1
2
(xn +

yn)− x∥ → 0 for some x ∈ X \ {0} then ∥yn − xn∥ → 0.

Proof. We will prove the chain of implications even in this case.

-1 ⇔ 2

Let’s start by proving 1 =⇒ 2.

Suppose ∥ · ∥ is MLUR and {xn}, {yn} ⊆ X such that ∥xn∥ → 1 and ∥yn∥ → 1, for all
n ∈ N xn ̸= 0, yn ̸= 0 . Suppose also that 1

2
(xn + yn) → z ∈ S(X,∥·∥). So for all n:

0 ≤
∥∥∥∥12(∥xn∥−1xn + ∥yn∥−1yn)− z

∥∥∥∥ ≤
∥∥∥∥12 (∥xn∥−1xn − xn

)∥∥∥∥+ ∥∥∥∥12(∥yn∥−1yn − yn)

∥∥∥∥
+

∥∥∥∥12(xn + yn)− z

∥∥∥∥ .
It follows that 1

2
(∥xn∥−1xn + ∥yn∥−1yn) → z. Therefore ∥∥xn∥−1xn − ∥yn∥−1yn∥ → 0.

This and the fact that

0 ≤ ∥xn − yn∥ ≤ ∥xn − ∥xn∥−1xn∥+ ∥∥xn∥−1xn − ∥yn∥−1yn∥+ ∥∥yn∥−1yn − yn∥.

for each n together show that ∥xn − yn∥ → 0, as required.

We now prove 2 =⇒ 1

This is a far easier task, since if 2 is true and we take {xn}, {yn} ⊆ S(X,∥·∥) such that
1
2
(xn + yn) → z ∈ S(X,∥·∥), then we can also state that the same ∥xn∥ → 1 and ∥yn∥ → 1

and applying condition 2 we get ∥xn − yn∥ → 0, then condition 1 is satisfied.

-2 =⇒ 3

Let’s suppose implication 2 to be true and let us consider x ∈ S(X,∥·∥) and {xn} ⊆ X such
that ∥x+ xn∥ → 1, ∥x− xn∥ → 1. We can now rename x′n = x+xn and y′n = x−xn, if we
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now apply condition two we get ∥x′n∥ → 1 and ∥y′n∥ → 1, while 1
2
(x′n+y

′
n) =

1
2
(x+xn+x−

xn) = x ∈ S(X,∥·∥), but then we know ∥x′n−y′n∥ = ∥x+xn−x+xn∥ = 2∥xn∥ → 0 ⇔ xn → 0.
Forcing proposition 3 to be true.

-3 =⇒ 4

Let’s assume proposition 3 to be true and we also take {xn}, {yn} ⊆ X such that ∥xn∥ →
∥x∥, ∥yn∥ → ∥x∥ and ∥1

2
(xn + yn) − x∥ → 0. We consider the point different from zero

x
∥x∥ ∈ S(X,∥·∥), but then if we consider { xn

∥x∥}, {
yn
∥x∥} ⊆ X we see that 1

2
( xn

∥x∥ +
yn
∥x∥) →

x
∥x∥ ∈

S(X,∥·∥) since we know by hypothesis that ∥1
2
(xn+yn)−x∥ → 0 =⇒ 1

∥x∥∥
1
2
(xn+yn)−x∥ →

0 =⇒ ∥1
2
( xn

∥x∥ +
yn
∥x∥)−

x
∥x∥∥ → 0. So we have two converging sequences { xn

∥x∥}, {
yn
∥x∥} ⊆ X

which tend to an element of the unit sphere x
∥x∥ ∈ S(X,∥·∥), so if we substitute xn

∥x∥ = x
∥x∥+x

′
n

and yn
∥x∥ = x

∥x∥ − x′n then we have two sequences ∥ x
∥x∥ + x′n∥ → 1, ∥ x

∥x∥ − x′n∥ → 1 with
x

∥x∥ ∈ S(X,∥·∥) so we can applying proposition 3 getting the implication x′n → 0, but
x′n = 1

2
( xn

∥x∥ − yn
∥x∥) so 1

2
( xn

∥x∥ − yn
∥x∥) → 0 =⇒ ∥1

2
( xn

∥x∥ − yn
∥x∥)∥ = 1

2∥x∥∥xn − yn∥ → 0 =⇒
∥xn − yn∥ → 0.

-4 =⇒ 2

We finally finish proving this last statement. We assume 4 to be true and we also take
{xn}, {yn} ⊆ X such that ∥xn∥ → 1 ∥yn∥ → 1 and 1

2
(xn + yn) → z with z ∈ S(X,∥·∥). The

conclusion is quite obvious since we can just see 1 = ∥z∥, so since every hypothesis of 4
is satisfied it follows ∥xn − yn∥ → 0 proving the implication.

Example 3.5:

A simple and recurrent example is the space (ℓ2, ∥·∥ℓ2), given that it is very regular. We
shall prove now that (ℓ2, ∥·∥ℓ2) satisfies the MLUR condition.

To show this we can consider the fact that on this space (ℓ2, ∥·∥2) the parallelogram
identity holds:

∥x+ y∥2ℓ2 + ∥x− y∥2ℓ2 = 2∥x∥2ℓ2 + 2∥y∥2ℓ2 ∀x, y ∈ X.

So, we can write considering sequences {xn}, {yn} along S(X,∥·∥):

∥xn − yn∥2ℓ2 = 4

(
∥xn∥2ℓ2

2
+

∥yn∥2ℓ2
2

−
∥∥∥∥12(xn + yn)

∥∥∥∥2
ℓ2

)
.
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But now if we let n→ ∞

∥xn − yn∥2ℓ2 = 4

(
∥xn∥2ℓ2

2
+

∥yn∥2ℓ2
2

−
∥∥∥∥12(xn + yn)

∥∥∥∥2
ℓ2

)
→ 4

(
1

2
+

1

2
− 1

)
= 0 ∀x, y ∈ X.

By the second item of Lemma 3.2.1 the norm ∥ · ∥ℓ2 is MLUR.

We now investigate the relation between the geometrical concepts that we have introduced
with the following theorem.

Theorem 3.3. A normed space (X, ∥·∥) which is MLUR is also rotund.

Proof. Let’s prove this fact via contradiction: assume ∥·∥ to be MLUR but not rotund. If
the space is not rotund then there must exist two points with such property ∃ x, y ∈ S(X,∥·∥)

such that x ̸= y and
∥∥1
2
(x+ y)

∥∥ = 1. But then if we take xn := x for all n ∈ N and
yn := y for all n ∈ N we can state:

∥1
2
(xn + yn)∥ = ∥1

2
(x+ y)∥ = 1, ∥xn − yn∥ = ∥x− y∥ ≠ 0 ∀n ∈ N.

Leading to a contradiction.

Example 3.6:

The converse is not true, for example, if we take the previously introduced norm on the
Hilbert space ℓ2 by S.Draga in the article [3]:

∥x∥2 = ∥x∥20 +
∞∑
n=1

1

4n
|x(n)|2

where:
∥x∥0 = max(

1

2
∥x∥ℓ2 , sup |x

(n)|).

We proved in Example 3.1 the rotundity of ℓ2 and it can also be checked easily that it is
not MLUR. If we consider two sequences in ℓ2: {xn} = (

√
4
5
(1− 1

4n+1 ), 0, ...,−1/2, 0, ...)

and {yn} = (
√

4
5
(1− 1

4n+1 ), 0, ..., 1/2, 0, ...) where the 1
2

and −1
2

occupy the n-th position.

Since

∥xn∥0 = max(
1

2
∥xn∥ℓ2 , sup |x

(k)
n |) =

√
4

5
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for all n ≥ 1 and
∞∑
k=1

1

4n
|x(k)n |2 = 1

4
· 4
5
(1− 1

4n+1
) +

1

4n
· 1
4

we get if n→ ∞

∥xn∥20 = ∥xn∥20 +
∞∑
k=1

1

4n
|x(k)n |2 = 4

5
+

1

4
· 4
5
(1− 1

4n+1
) +

1

4n
· 1
4
→ 1.

The same holds for {yn} by applying the same calculations. While the term 1
2
(xn + yn)

as n→ ∞:

1

2
(xn + yn) = (

√
4

5
(1− 1

4n+1
), 0, ...) → (

√
4

5
, 0, 0, ...) ∈ S(X,∥·∥).

However considering:

∥xn − yn∥2 = ∥(0, ..., 1, 0, ...)∥2 = 1 +
1

4n+1
→ 1 ̸= 0.

So the norm is not MLUR.

In the study of Banach spaces, especially on those treating relations with topology, another
notion might turn out to be useful. We should not only consider the strong convergence
of the factors, but also the weak convergence. Leading us to the usage of an alternative
concept:

Definition 3.3. Let (X, ∥·∥) be a Banach space. If, for every z ∈ S(X,∥·∥) and every
{xn}, {yn} ⊆ S(X,∥·∥) such that 1

2
(xn + yn) → z, it follows that xn − yn ⇀ 0, we

say that the norm is weakly midpoint locally uniformly rotund, wMLUR as
abbreviation.

There is no need to prove how the MLUR condition is stronger than wMLUR, after
keeping in mind that the strong convergence implies the weak one. Whilst the converse
is not true, we are still not able to prove it, but we will come back to this point later
(Example 3.12).

Theorem 3.4. A normed space (X, ∥·∥) which is wMLUR is also rotund.

Proof. Let’s prove this fact via contradiction: Assume ∥·∥ to be wMLUR but not rotund.

If the space is not rotund then it must exist two points with such property ∃ x, y ∈ S(X,∥·∥)

such that x ̸= y and
∥∥1
2
(x+ y)

∥∥ = 1.
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If we now take xn := x for all n ∈ N and yn := y for all n ∈ N

∥1
2
(xn + yn)∥ = ∥1

2
(x+ y)∥ = 1, ∥xn − yn∥ = ∥x− y∥ ≠ 0 ∀n ∈ N.

By virtue of the first property of the norm in the Definition 2.1 we can conclude that
x ̸= y. We now wish to mention a famous corollary of the Hanh-Banach theorem for
which given x, y ∈ X such that x∗(x) = x∗(y) for all x∗ ∈ X∗ =⇒ x = y. Since we
know that x ̸= y we also know that there must exist x∗ ∈ X∗ such that x∗(x) ̸= x∗(y),
but if we take into account the definition of the two sequences we can write by linearity
of the functional of the dual that x∗(xn − yn) ̸= 0 which excludes the weak convergence
of the two sequences.

A small remark shall be made, this was only possible because of the definition of the
two sequences xn := x for all n ∈ N and yn := y for every n ∈ N, since they are
"stationary" in some sense, the corollary can be applied. If this condition is not satisfied
by the sequences we cannot apply the same corollary concluding that ∃x∗ ∈ X∗ such that
x∗(xn − yn) doesn’t go to zero, or we would implicitly imply that not converging strongly
implies not converging weakly, which is not true.

3.3. Local Uniform Rotundity

A similar concept to MLUR that extends the notion of convexity and presents several
ties with the one above is the concept of locally uniformly rotund, which is based on the
notion of LUR modulus.

Definition 3.4. Suppose that X is a normed space. Define a function δX : [0, 2] ×
SX → [0, 1] by the formula:

δX(ε, x) = inf

{
1−

∥∥∥∥12(x+ y)

∥∥∥∥ : y ∈ S(X,∥·∥), ∥x− y∥ ≥ ε

}
.

Then δX is the LUR modulus of X. The space X is locally uniformly rotund or
locally uniformly convex if δX(ε, x) > 0 whenever 0 < ε ≤ 2 and x ∈ S(X,∥·∥).

Another definition for the LUR condition which is not based on the geometrical concept
of the LUR modulus is the following, which will be mainly adopted in our thesis.
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Definition 3.5. Let (X, ∥·∥) be a Banach space. Let x0 ∈ S(X,∥·∥). The norm ∥·∥ on X
is locally uniformly rotund (LUR) at x0 if for every ε ∈ (0, 2], ∃δ = δ(x0, ε) > 0

such that ∥x0+x
2

∥ ≤ 1− δ whenever x ∈ SX and ∥x0 − x∥ ≥ ε.

If this property is satisfied at every point of S(X,∥·∥) then we say that the norm is LUR.
As someone might suspect at this point there is always a characterization lemma relative
to every condition introduced

Here we can find a few of the most common examples of spaces that satisfy this property.

Example 3.7:

-All the (ℓp, ∥·∥p) spaces are known to be LUR for p ∈ (1,∞).

-All the Hilbert spaces are LUR so also (L2, ∥·∥L2).

-(Rn, ∥·∥e) is a LUR space for every n (parallelogram identity holds).

Lemma 3.3. Suppose that (X, ∥·∥) is a normed space. Then the following are equiv-
alent:

1. The space X is LUR.

2. When x ∈ S(X,∥·∥) and {yn} ⊆ S(X,∥·∥) such that ∥1
2
(x+yn)∥ → 1, then it follows

∥x− yn∥ → 0.

3. When x ∈ S(X,∥·∥) and {yn} ⊆ B(X,∥·∥) such that ∥1
2
(x+yn)∥ → 1, then it follows

∥x− yn∥ → 0.

4. When x ∈ S(X,∥·∥) and {yn} ⊆ X such that both ∥yn∥, ∥1
2
(x+ yn)∥ → 1, then it

follows ∥x− yn∥ → 0.

5. ∀{xn} ⊆ S(X,∥·∥), x ∈ S(X,∥·∥) such that limn 2∥x∥2 + 2∥xn∥2 − ∥x+ xn∥2 = 0, it
follows xn → x.

Proof. Suppose that the second point holds and x ∈ S(X,∥·∥ and {yn} ⊂ X such that ∥yn∥,
∥1
2
(x + yn)∥ both tend to 1. It will be shown that ∥x − yn∥ → 0. By discarding a finite

number of terms we can assume yn ̸= 0 for all n ∈ N. Then

1 ≥
∥∥∥∥12(x+ ∥yn∥−1yn)

∥∥∥∥ ≥
∥∥∥∥12(x+ yn)

∥∥∥∥− ∥∥∥∥12(1− ∥yn∥−1)yn

∥∥∥∥→ 1

So
∥∥1
2
(x+ ∥yn∥−1yn)

∥∥→ 1. Since, by the second point ∥yn∥−1yn → x, it then follows that
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yn → x, which establishes that the second point implies the fourth. Now suppose that
the fourth point holds and that x ∈ S(X,∥·∥) and yn ∈ B(X,∥·∥) such that ∥1

2
(x+ yn)∥ → 1.

Since ∥∥∥∥12(x+ yn)

∥∥∥∥ ≤ 1

2
(1 + ∥yn∥) ≤ 1

for each n, it follows that ∥yn∥ → 1, so ∥x− yn∥ → 0 by the fourth point. Therefore the
fourth point implies the third from which it follows 2 ⇔ 3 ⇔ 4. Suppose X is LUR and
x ∈ S(X,∥·∥), {yn} ⊂ S(X,∥·∥) such that ∥1

2
(x+yn)∥ → 1 but ∥x−yn∥ doesn’t go to zero. Let

δX be the LUR modulus of X. It follows that there is a subsequence {ynj
} of {yn} such that

∥x−ynj
∥ ≥ ε for some positive ε and each j, which implies that ∥1

2
(x+ynj

)∥ ≤ 1−δX(ε, x)
for each j, a contradiction. Therefore the first point implies the second.

Finally suppose that X is not LUR then there is ε ∈ (0, 2] and x ∈ S(X,∥·∥) for which
δX(ε, x) = 0. Therefore there is a sequence {yn} ∈ S(X,∥·∥) such that ∥x−yn∥ ≥ ε for each
n, but ∥1

2
(x+ yn)∥ → 1, so the second point doesn’t hold and this shows that the second

point implies the first one. While the converse implication is obvious.

In this last part of the proof we prove the equivalence between statement 2 and 5. We
start by the first implication 2 =⇒ 5, we assume 2 to be true and consider all the points
{xn} ⊆ S(X,∥·∥) x ∈ S(X,∥·∥) such that limn 2∥x∥2 +2∥xn∥2 −∥x+ xn∥2 = 0. We know that
limn ∥xn∥ = 1 and ∥x∥ = 1, so it implies:

lim
n

2∥x∥2 + 2∥xn∥2 − ∥x+ xn∥2 = lim
n

2 + 2− ∥x+ xn∥2 = 0.

We can conclude that limn ∥x + xn∥2 = 4, thus ∥1
2
(x + xn)∥ → 1. We can now apply

proposition two, concluding ∥x− xn∥ → 0.

Now the opposite, let’s assume 5 to be true and let’s also assume x ∈ S(X,∥·∥) and {yn} ⊆
S(X,∥·∥) such that ∥1

2
(x+ yn)∥ → 1. We can immediately conclude that ∥x+ yn∥2 → 4 but

we can express 4 = 2∥x∥2 + 2∥xn∥2 since the sequence and the point are inside the unit
sphere, leading to:

lim
n

2∥x∥2 + 2∥xn∥2 − ∥x+ xn∥2 = 0.

From which we conclude ∥x− xn∥ → 0 and hence the thesis.

Theorem 3.5. A normed space (X, ∥·∥) which is LUR is also MLUR.
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Proof. To prove we start by considering a Banach space (X, ∥·∥) with a LUR norm, we will
use characterization 2 of Lemma 3.3. Now we consider two sequences {xn}, {yn} ⊆ S(X,∥·∥)

with x ∈ S(X,∥·∥) such that
∥∥1
2
(xn + yn)− x

∥∥→ 0.

We start by seeing that: ∥∥∥∥12(xn + x)

∥∥∥∥ ≤
∥∥∥∥12xn

∥∥∥∥+ ∥∥∥∥12x
∥∥∥∥ = 1.

Also we can see that:∥∥∥∥12(xn + x)

∥∥∥∥ =

∥∥∥∥12(xn + x) +
1

2
(yn − yn) + x− x

∥∥∥∥ =

∥∥∥∥12(xn + yn)− x+
3

2
x− yn

2

∥∥∥∥ .
If we now apply inverse triangle inequality we get:∥∥∥∥12(xn + yn)− x+

3

2
x− yn

2

∥∥∥∥ ≥ 3

2
∥x∥ −

∥∥∥∥12(xn + yn)− x− yn
2

∥∥∥∥ .
By applying one last time triangle inequality:

3

2
∥x∥ −

∥∥∥∥12(xn + yn)− x− yn
2

∥∥∥∥ ≥ 3

2
∥x∥ −

∥∥∥∥12(xn + yn)− x

∥∥∥∥− ∥∥∥yn2 ∥∥∥ =

=
3

2
− 1

2
−
∥∥∥∥12(xn + yn)− x

∥∥∥∥→ 1.

But now we can apply the LUR characterization to retrieve that ∥xn−x∥ → 0. The same
exact algebraic steps can be done with {yn} obtaining analogously that ∥yn − x∥ → 0.
But now we also obtain with the following application of triangle inequality:

∥xn − yn∥ ≤ ∥xn − x∥+ ∥yn − x∥ → 0.

Which show that the norm ∥ · ∥ is MLUR.

We will now provide two examples, of why the converse implication is false. We will start
by introducing a definition needed to prove the properties of the following norms.

A Banach space (X, ∥ · ∥) has the Kadec property if the norm and the weak topology
coincide on S(X,∥·∥).

Example 3.8:
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We will now make use of an example taken by the article [12]. Consider the space ℓ1

endowed with the following norm:

∥x∥ =
∞∑
i=1

|xi|+ (
∞∑
i=1

2−i+1x2i )
1
2

We can apply Theorem 3.2 to obtain rotundity of the norm, this norm also satisfies the
Kadec property, thus by Corollary 408, page 298 of the book [7] we also know it is MLUR.
However if we consider the point x = (1

2
, 0, 0...) and the sequence xn = (0, 1

n
, ..., 1

n
, 0, ...)

where 1
n

is repeated n times then: ∥x∥ = 1
2
+ 1

2
= 1, ∥xn∥ = n 1

n
+
√

1
n2

∑n+1
i=2 2−i+1 → 1

and ∥x + xn∥ = 1
2
+ n 1

n
+
√

1
2
+ 1

n2

∑n+1
i=2 2−i+1 ≥ 1 for every n ∈ N. Thus the norm is

not LUR.

Example 3.9:

We won’t discuss in details this example since it requires some very involved argument,
but we mention that the first person to exhibit a norm which was MLUR but not LUR
was the very inventor of the MLUR definition, Kenneth Wayne Anderson in 1960, with
his Phd Thesis [1] he managed to characterize this new concept. It also managed to show
this property without the direct involvment of the Kadec property.

Theorem 3.6 ([5, Theorem 8.1]). Every separable Banach space admits an equivalent
LUR norm.

Proof. To prove this fact we propose a norm that is general to every Banach space and
satisfies the two properties. We take {en : n ∈ N} ⊂ S(X,∥·∥), also dense in S(X,∥·∥). We
also consider {e∗n : n ∈ N} ⊂ S(X∗,∥·∥∗), a separating family for X. We now consider the
sets En = span(e1, ..., en) and note that dist(x,En) → 0 for all x ∈ X. We can now define
a norm:

| · |2 = ∥ · ∥2 +
∞∑
n=1

1

2n
dist(·, En)

2 +
∞∑
n=1

1

2n
e∗n(·)2

First of all this is an equivalent norm since the distance is a positive homogeneous sub-
additive function, thus the equivalence. We will now show that it is also LUR: assume
x ∈ X and {xn} ⊆ X such that limk 2|x|2 + 2|xk|2 − |x + xk|2 = 0. Proceeding as in the
proof of Theorem 3.2 we can conclude:

lim
k

2∥x∥2 + 2∥xk∥2 − ∥x+ xk∥2 = 0
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lim
k

2 dist(x,En)
2 + 2dist(xk, En)

2 − dist(x+ xk, En)
2 = 0 ∀n ∈ N

lim
k

2e∗n(x)
2 + 2e∗n(xk)

2 − e∗n(x+ xk)
2 = 0 ∀n ∈ N

and also that, by the same calculation, using the fact that limk 2|x|2+2|xk|2−|x+xk|2 ≥
limk(|x| − |xk|)2 = 0:

lim
k

|xk| = |x| (1)

lim
k

dist(xk, En) = dist(x,En) ∀n ∈ N (2)

lim
k
e∗n(xk) = e∗n(x) ∀n ∈ N. (3)

Since {e∗n} is a separating family of elements of the dual the topology of pointwise conver-
gence, on {e∗n}, is an Hausdorff topology on X (for every two distinct points in X one can
always find two open sets containing respectively one point with empty intersection). We
will show that {xk} ∪ {x} is compact with respect to the norm. Therefore on {xk} ∪ {x}
the topology of pointwise convergence on {e∗n} is equivalent to the norm topology. Thus
(3) would imply limk ∥xk − x∥ = 0 and the proof is complete. Using (1), choose K > 0

such that ∥xk∥ ≤ K for every k. Let ε ∈ (0, 1), choose n ∈ N such that dist(x,En) < ε

and choose a finite ε-net E in (K+1)BEn . Using (2) choose k0 such that dist(xk, En) < ε

for k > k0. We claim that {x1, x2, ..., xk0}∪E is a 2ε-net for {xk}. Indeed for every k > k0

there is x′k ∈ En such that ∥xk − x′k∥ < ε. Since ∥xk∥ ≤ K for every k and ε < 1 we have
∥x′k∥ < K +1. As E is an ε-net for (K +1)BEn , there is x′′k ∈ E such that ∥x′k − x′′k∥ < ε.
Thus the thesis.

Definition 3.6. Let (X, ∥ · ∥) be a Banach space. If, for every x ∈ S(X,∥·∥) and
{yn} ⊆ S(X,∥·∥) such that

∥∥1
2
(x+ yn)

∥∥→ 1 it follows yn ⇀ x, we say that the norm is
weakly locally uniformly rotund, wLUR as abbreviation.

Clearly in the same fashion mentioned before for wMLUR also the LUR condition implies
the wLUR condition, we will prove later that the converse is not true (Example 3.12).

Theorem 3.7. A normed space (X, ∥·∥) which is wLUR is also wMLUR.

Proof. We start by considering a Banach space (X, ∥ · ∥) with a wLUR norm, we will use
the following characterization x ∈ S(X,∥·∥) and {yn} ⊆ S(X,∥·∥) such that ∥1

2
(x+ yn)∥ → 1,
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then it follows x − yn ⇀ 0. Now we consider two sequences {xn}, {yn} ⊆ S(X,∥·∥) with
x ∈ S(X,∥·∥) such that

∥∥1
2
(xn + yn)− x

∥∥→ 0.

Let’s notice that: ∥∥∥∥12(xn + x)

∥∥∥∥ ≤
∥∥∥∥12xn

∥∥∥∥+ ∥∥∥∥12x
∥∥∥∥ = 1.

We can also see that:∥∥∥∥12(xn + x)

∥∥∥∥ =

∥∥∥∥12(xn + x) +
1

2
(yn − yn) + x− x

∥∥∥∥ =

∥∥∥∥12(xn + yn)− x+
3

2
x− yn

2

∥∥∥∥ .
If we now apply inverse triangle inequality we get:∥∥∥∥12(xn + yn)− x+

3

2
x− yn

2

∥∥∥∥ ≥ 3

2
∥x∥ −

∥∥∥∥12(xn + yn)− x− yn
2

∥∥∥∥ .
By applying triangle inequality:

3

2
∥x∥ −

∥∥∥∥12(xn + yn)− x− yn
2

∥∥∥∥ ≥ 3

2
∥x∥ −

∥∥∥∥12(xn + yn)− x

∥∥∥∥− ∥∥∥yn2 ∥∥∥ =

=
3

2
− 1

2
−
∥∥∥∥12(xn + yn)− x

∥∥∥∥→ 1

But now we can apply the wLUR characterization to retrieve that xn − x ⇀ 0. The same
exact algebraic steps can be done with {yn} obtaining analogously that x− yn ⇀ 0. But
this means that for every L ∈ X∗ L(xn − x) → 0 and for all L ∈ X∗ L(yn − x) → 0,
so also for every L ∈ X∗ L(xn − x) + L(x − yn) → 0 which implies by linearity for all
L ∈ X∗ L(xn − yn) → 0 or, in other words xn − yn ⇀ 0

3.4. Uniform Rotundity

The last geometrical concept that we will see is the one Uniform rotundity. This concept
was one of the first geometrical concepts introduced in the study of Banach spaces. It was
formalized by James A. Clarkson in 1936 because, as we will see, is strongly related with
some topological properties. Intuitively we must have that the center of a line segment
inside the unit ball must lie deep inside the unit ball unless the segment is short. We
will introduce a similar concept as LUR modulus, but adapted to give an even stronger
condition.
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Definition 3.7. The norm ∥·∥ of a Banach space X is called uniformly rotund or
UR if δX(ε) > 0 for each 0 < ε ≤ 2, where δX is the modulus of convexity, defined in
the following way:

δX(ε) = inf

{
1− ∥x+ y∥

2
: x, y ∈ B(X,∥·∥), ∥x− y∥ ≥ ε

}
.

We introduce a characterization of the UR condition with the following lemma.

Lemma 3.4. Suppose that (X, ∥·∥) is a normed space. Then the following statements
are equivalent:

1. The space X is UR.

2. Given {xn}, {yn} ⊆ S(X,∥·∥) such that ∥xn + yn∥ → 2 then ∥xn − yn∥ → 0.

3. When {xn}, {yn} ⊆ X such that ∥xn∥, ∥yn∥, ∥1
2
(xn + yn)∥ → 1, then it follows

∥xn − yn∥ → 0.

Proof. Let’s prove the chain of implications.

-2 =⇒ 3

Suppose that the second statement is true and that {xn}, {yn} ⊂ X are such that ∥xn∥ →
1, ∥yn∥ → 1 and

∥∥1
2
(xn + yn)

∥∥→ 1. It will be shown that ∥xn− yn∥ → 0. We discard the
same terms as in the previous proof, so no xn nor yn will be equal to zero. Then

1 ≥
∥∥∥∥12(∥xn∥−1xn + ∥yn∥−1yn)

∥∥∥∥ ≥
∥∥∥∥12(xn + yn)

∥∥∥∥+∥∥∥∥12(1− ∥xn∥−1)xn

∥∥∥∥+∥∥∥∥12(1− ∥yn∥−1)yn

∥∥∥∥ .
The last term → 1 implying that also

∥∥1
2
(∥xn∥−1xn + ∥yn∥−1yn)

∥∥→ 1. Since ∥∥xn∥−1xn−
∥yn∥−1yn∥ → 0 for the second condition it follows that:

0 ≤ ∥xn − yn∥ ≤ ∥∥xn∥−1xn − ∥yn∥−1yn∥ −
∥∥(1− ∥xn∥−1)xn

∥∥− ∥∥(1− ∥yn∥−1)yn
∥∥ .

Which goes to 0. Therefore ∥xn−yn∥ → 0 which establishes that the second point implies
the third.

-3 =⇒ 2 This is obvious since if we assume 3 to be true and we select points satisfying
all the hypothesis of 2 : {xn}, {yn} ⊆ S(X,∥·∥) such that ∥xn + yn∥ → 2 we automatically
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get the implication ∥xn − yn∥ → 0 since those points also satisfy all the hypothesis of
point 3.

-1 =⇒ 2

Consider sequences in S(X,∥·∥) such that ∥xn + yn∥ → 1 but ∥xn − yn∥ does not tend to
0. Let δX be the modulus of rotundity of X. It follows that there is a subsequence {xnk

}
of {xn} such that ∥xnk

− ynk
∥ ≥ ε for some positive ε and each k, which implies that

1
2
∥xnk

+ynk
∥ ≤ 1− δX(ε) for each k, a contradiction. Therefore the first condition implies

the second.

-2 =⇒ 1

Finally, suppose that X is not uniformly rotund. Then there is an ε such that 0 < ε ≤
2 and δX(ε) = 0. Therefore there are sequences {xn} and {yn} in S(X,∥·∥) such that
∥xn − yn∥ ≥ ε for each n and ∥xn + yn∥ → 1, so the second condition does not hold. This
shows that the second condition implies the first one.

Example 3.10:

-(ℓ2, ∥·∥2) through the use of parallelogram identity.

-(Lp, ∥·∥p), p ∈ (1,∞) are UR spaces. The proof makes use of Clarkson’inequalities:

If p ∈ (1, 2) ∥∥∥∥f + g

2

∥∥∥∥q
Lp

+

∥∥∥∥f − g

2

∥∥∥∥q
Lp

≤
(
1

2
∥f∥pLp +

1

2
∥g∥pLp

) q
p

.

If p ∈ [2,∞) ∥∥∥∥f + g

2

∥∥∥∥p
Lp

+

∥∥∥∥f − g

2

∥∥∥∥p
Lp

≤ 1

2
(∥f∥pLp + ∥g∥pLp) .

where p and q are conjugate numbers.

-(Rn, ∥·∥2) is a UR space for all n (parallelogram identity holds).

Theorem 3.8. A normed space (X, ∥·∥) which is UR is also LUR.

Proof. We take a Banach space (X, ∥ · ∥) whose norm is assumed to be UR, specifically
we’ll use characterization 3 of Lemma 3.4, let us also consider points in the unit sphere.
We now assume to have found {xn} ⊆ S(X,∥·∥), x ∈ S(X,∥·∥) such that

∥∥x+xn

2

∥∥ → 1, but
now if we set xn = xn n ∈ N and yn = x n ∈ N we can apply the UR condition since
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∥xn∥ = 1 for every n ∈ N, ∥yn∥ = ∥x∥ = 1 for all n ∈ N and
∥∥yn+xn

2

∥∥→ 1 thus implying
that ∥xn − yn∥ = ∥xn − x∥ → 0.

Example 3.11:

We now show an example of the fact that the converse is not true. We construct a space
with a LUR norm which is not UR.

We take, for instance the functional space L1. It can be proven that the polynomials with
rational coefficients are dense in Lp p ∈ [1,∞) and thus follows the separability of the
space. We also know that the space L1 is not reflexive.

We have proven that every separable space admits a LUR renorming (Theorem 3.6), but
this norm cannot also be UR or otherwise we could apply another theorem that we will
see in the following section (Theorem 3.11) theorem and get the reflexivity of the space.
Thus we created a norm on L1 which is LUR but not UR.

Similarly to the twin concept introduced after the MLUR and LUR conditions, we can
build another concept which will be more crucial to the focus of our thesis:

Definition 3.8. Let (X, ∥ · ∥) be a Banach space. If, for every {xn} ⊆ S(X,∥·∥) and
{yn} ⊆ S(X,∥·∥) such that

∥∥1
2
(xn + yn)

∥∥ → 1, it follows xn − yn ⇀ 0, we say that the
norm is weakly uniformly rotund, wUR as abbreviation.

The following theorem investigates the relation with the UR property and the other
geometrical properties.

Theorem 3.9. A normed space (X, ∥·∥) which is wUR is also wLUR.

Proof. We take a Banach space (X, ∥ · ∥) whose norm is assumed to be wUR. We now
consider a sequence {xn} ⊆ S(X,∥·∥), x ∈ S(X,∥·∥) such that

∥∥x+xn

2

∥∥→ 1, but now if we set
xn = xn for every n ∈ N and yn = x for all n ∈ N we can apply the wUR condition since
∥xn∥ = 1 for all n ∈ N, ∥yn∥ = ∥x∥ = 1 for all n ∈ N and

∥∥yn+xn

2

∥∥ → 1 thus implying
that xn − yn = xn − x ⇀ 0.



3| Geometrical Properties 41

Example 3.12:

We now introduce an example based on the norm that can be found in the paper [3] used
also in Example 3.6. This will clarify all the open question of this chapter.

Let X = ℓ2 endowed with the following norm:

∥x∥2 = ∥x∥20 +
∞∑
n=1

1

4n
|e∗(x)|2.

where:
∥x∥0 = max(

1

2
∥x∥ℓ2 , sup |e

∗(xn)|).

We start by taking xn, x
′
n ∈ S(X,|·|) such that |xn + x′n| → 2. We then set zn =

(||xn||0, 12e
∗
1(xn), ...) and z′n = (||x′n||0, 12e

∗
1(x

′
n), ...). We can now calculate:

∥zn+z′n∥22 = (||xn||0+||x′n||0)2+
∞∑
n=1

1

4m
e∗m(xn+x

′
n)

2 ≥ (||xn+x′n||0)2+
∞∑
n=1

1

4m
e∗m(xn+x

′
n)

2.

The inequality is given by the triangle inequality applied to ||| · |||. But then:

(||xn + x′n||0)2 +
∞∑
n=1

1

4m
e∗m(xn + x′n)

2 = |xn + x′n|2 → 22 = 4.

Since ∥zn∥2 = |xn| = 1 and ∥z′n∥2 = |x′n| = 1, we can apply the trinagular ineuqality

∥zn + z′n∥2 ≤ ∥zn∥2 + ∥z′n∥2 = |xn|+ |x′n| = 2.

To prove that also ∥zn + z′n∥ → 2. We also know that the norm ∥ · ∥2 of the space ℓ2

satisfies the UR condition, but then by the characterization lemma of UR we also know
that ∥zn − z′n∥2 → 0. This means:

∥zn − z′n∥22 = (||xn||0 − ||x′n||0)2 +
∞∑
n=1

1

4m
(e∗m(xn)− e∗m(x

′
n))

2 → 0.

Which implies our final result limn→∞ e∗m(xn) = limn→∞ e∗m(x
′
n). We now use the key

assumption that span{e∗n} = X∗, this allows us to infer that every operator in the dual
when applied to xn or x′n mantains it’s convergence, or, written in other terms xn−x′n ⇀ 0.
This proves that this norm is wUR.
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Let us also recall that in Example 3.6 we proved that the norm is not MLUR. Given
the chain of implications that we have established throughout the chapters, specifically
Theorem 3.8, Theorem 3.9, Theorem 3.7 and Theorem 3.5, we have simultaneously found
a norm which is wMLUR but not MLUR, wLUR but not LUR and wUR but not UR.

3.5. Comparison

We have finished introducing and characterizing many different notions of convexity. We
now wish, stating a theorem, to shed some light on why we might need all these different
concepts.

Theorem 3.10. A finite dimensional normed space (X, ∥·∥) is UR if and only if is
rotund.

This result underlies how in a finite dimensional space all the previous definitions can be
used interchangeably, those distinctions start to make sense once we consider the infinite
dimensional case.

UR LUR MLUR R

Figure 3.2: Scheme of the cascade of implications in finite dimension

In the infinite dimensional case we also lose track of some topological properties, one
example is the fact that every finite dimensional Banach space is also separable or the
fact that all the finite dimensional spaces are reflexive. Once we start dealing with infinite
dimensional Banach spaces these properties not only emerge creating separate kind of
Banach spaces, but they also have a strong bound with the geometrical properties of the
norm thus showing the need for several characterizations.

One example of this connection is:

Theorem 3.11 ([5, Theorem 9.11], Milman-Pettis). Every UR Banach space is Re-
flexive.

We now know that UR spaces are also reflexive, but not many spaces are "regular enough"
to be UR, so by introducing weaker notions of rotundity we let go of some of this regu-
larity, gaining generalization. The next example is the LUR property, it has been shown
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that every Banach space which is weakly compactly generated admits a LUR renorming.
MLUR condition was introduced in the 60’ in the article [1]. His motivation for such a
study was to find the correct rotundity notion in a reflexive Banach space X that would
be in duality to the smoothness notion of Fréchet differentiability of the norm in the
conjugate space X∗. We also know that every rotund space every extreme point of the
closed unit ball is an exposed point. Different topological notions can be tied to different
geometrical properties giving us the need to distinguish them.

Just to sum up everything we need to know about the relationship between those concept
we propose the follwing scheme:

UR LUR MLUR R

wUR wLUR wMLUR

Figure 3.3: Scheme of all implications related to rotundity

In the open problems that we will try to tackle a topological hypothesis is made at the
beginning of the statement, we will specifically deal with renormings of separable Banach
spaces.
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This section is devoted to formalizing some analytical properties that will be crucial to
the solution of the open problems that we will be solving. We will be introducing concepts
related to the monotonicity of the norms and smoothness.

4.1. Lattice Norms

We will spend this few pages introducing and characterizing the condition of monotonicity
for norms to obtain a very useful renorming technique.

Definition 4.1 ([13, Section 1.8 page 5]). Given a set A, a relation R is defined as
any subset of the space A× A. When the couple (a, b) ∈ R we use the notation aRb

After having introduced this general concept, we lose some generalization with this next
definition to retrieve another related concept that will help us model some notion of
"order" in an arbitrary set.

Definition 4.2 ([13, Section 1.8 page 5]). A relation R satisfying the following three
properties is called partial order:

• ∀ a ∈ A aRa (reflexive)

• aRb and bRa =⇒ a = b (antisymmetric)

• aRb and bRc =⇒ aRc (Transitive)

When aRb we will use the notation a ⪯ b.

We now have a formal way to refer to the order inside a certain set, which is a crucial
concept when introducing the concept of lattice.

Example 4.1:

The relation ≤ on the space R+ is an order relation. In fact for all x ∈ Rx ≤ x, if we
consider x, y ∈ R such that both x ≤ y and y ≤ x then x = y. Given x, y, z ∈ R if x ≤ y

and y ≤ z then x ≤ z.
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Definition 4.3. Let (X,L(·)) a lattice, where L(x) = x ∨ −x, let us also assume
(X, ∥ · ∥) to be a Banach space. The norm ∥ · ∥ is said to be lattice whenever the
following proposition holds:

L(x) ≤ L(y) =⇒ ∥x∥ ≤ ∥y∥ ∀x, y ∈ X

Example 4.2:

-Starting from the last analogy we can easily generate a simple example for (R, | · |)
Considering the homogeneity property of the norms the order relation corresponds to the
output of the norm function. In some sense it can be stated that the norm function and
the order relation coincide.

-(Lp, ∥ · ∥p) are Banach lattices with respect to the order that comes from the pointwise
almost everywhere order of functions.

- Some other spaces like ℓp or c0 with their canonical norms are lattice with respect to
the component-wise ordering.

Definition 4.4. The canonical order on Rn is the following:

x ⪯ y ⇔ (x1 ≤ y1) ∧ ... ∧ (xn ≤ yn).

The need to specify this in a formal way arises from the fact that when we deal with
multidimensional euclidean spaces it’s not very easy to extend the "canonical" partial
order without losing some crucial properties.

One might think to use the (euclidean) distance with respect to the origin, but this doesn’t
generate a partial order since, if we consider x = (1, 0) and y = (0, 1) in R2 we can write
x ⪯ y and y ⪯ x but the implication required for the antisymmetrical property of the
partial order fails: x ̸= y.

On the other hand the price of introducing such order on R2 is losing the property that
the order is total, formally not every couple ∈ R2 belongs to the relation R. One example
of this is the couple x = (2, 1) and y = (1, 2), for which we cannot write xRy nor yRx.

We might also think about a partial order defined similarly to the one above that takes
into account this problem

x ⪯ y ⇔ (x1 ≤ y1) ∨ (x1 = y1 ∧ x2 ≤ y2).
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This allows us to compare every couple of the 2-dimensional plane, but it also makes
"canonical" norms such as the euclidean one non lattice. To show this it is enough to
think about x = (1, 0) and y = (0, 2) for which y ⪯ x but ∥x∥ = 1 while ∥y∥ =

√
2.

We can now show some counterexamples of norms which are not lattice with respect to
the order that we have just introduced. We start from the following norm in R2

∥(x, y)∥ =
√
x2 + (x− y)2

can be proven to be a norm, while for the lattice condition it is sufficient to consider the
points (∥(1, 0)∥ =

√
2 and (1, 1) = 1 while we have (1, 0) ≤ (1, 1)).

Another similar example is given by the following norm

∥(x, y)∥ = |x|+ |(x− y)|.

For which the same example shows the fact that the norm is not lattice.

To introduce the next lemma we still need to define one concept concerning the space Rn.
We will now introduce the canonical projection operator Pi : Rn → Rn which is defined
for x = (x1, x2, ...) as Pi(x) = (0, ..., xi, 0, ...).

Lemma 4.1. Given the finite dimensional normed space (Rn, ∥·∥), the norm is lattice
if:

∥Pi(x)∥ ≤ 1, ∀ i ∈ {1, ..., n}, ∀ x ∈ S(Rn,∥·∥).

Proof. We shall start from remembering that every unit ball is convex since, from the
triangle inequality, it follows the definition of convex function:

∥λx+ (1− λ)y∥ ≤ ∥λx∥+ ∥(1− λ)y∥ = λ∥x∥+ (1− λ)∥y∥, λ ∈ [0, 1].

We now take a vector belonging to the unit sphere x ∈ S(Rn,∥·∥) if by hypothesis ∥Pi(x)∥ ≤
1, then Pi(x) ∈ B(Rn,∥·∥) for all i ∈ {1, ..., n}. This implies that every element of the form
Pi(x) + λi(x − Pi(x)) ∈ B(Rn,∥·∥) given λi ∈ [0, 1] since it is just the line connecting two
points inside a convex set. A similar argument can be applied to all the points of the shape
λiPi(x) with λi ≤ 1 given the fact that the norm is homogeneous, what we are effectively
doing is that we are showing that the set conv ({0, x, P1(x), . . . , Pn(x)}) lies inside the
unit ball. To give an idea we add the two and three dimensional cases with some graphic
visualization. In the case of R2 the square can be built taking linear combinations of
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points on the edge that we have formally proven to be inside the ball and the same stands
for R3.

R2 with the euclidean norm R3 with the euclidean norm

We have, then, found the thesis since we have written for all (y1, y2, y3, ...) ∈ Rn such that
0 ≤ yi ≤ xi the following inequality holds:

∥(y1, y2, y3, ...)∥ ≤ 1 = ∥(x1, x2, x3, ...)∥

Hence the definition of lattice.

Corollary 4.1. The Banach space (R2, ∥·∥e) is lattice when considering the euclidean
norm

Proof. To show this we just see that if x ∈ S(R2,∥·∥) it means that:

x21 + x22 = 1 =⇒ ∥P1(x)∥2e = |x1|2∥(1, 0)∥2e ≤ 1, ∥P2(x)∥2e = |x2|2∥(0, 1)∥2e ≤ 1.

Otherwise we would get x21 + x22 > 1 contradicting the initial hypothesis. If we now apply
the previous lemma we get the thesis.

Example 4.3:

We introduce a way to generate norms. Given Q ∈ R2×2 we can show, under some
conditions, that ∥x∥Q =

√
xTQx, x ∈ R2 is a norm. Clearly not every Q induces a norm,
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for example if we take the matrix:

Q =

[
0 1

1 0

]

the vector (−1, 1) has negative output, so that function is not a norm. Let’s impose the
three norm properties:

-Positivity :

By imposing positivity we obtain that Q needs to be positive-semidefinite. To ensure
this condition we can ask for every eigenvalue λi of Q to be non negative, from which it
follows that detQ ≥ 0 and TrQ ≥ 0.

-homogeneity :

This property doesn’t introduce any new constraint on the matrix Q, since it is already
satisfied:

∥αx∥Q = (αx)TQ(αx) = |α|2xTQx = |α|2∥x∥Q

-Triangle Inequality

∥x+ y∥Q =
√

(x+ y)TQ(x+ y) =
√
xTQx+ yTQy + 2xTQy.

Since the matrix Q is positive semidefinite we can always decompose as Q = (Q
1
2 )TQ

1
2 . If

we let u = (xQ
1
2 )T and v = Q

1
2y we can apply Cauchy-Schwartz inequality to the scalar

product ⟨u, v⟩2 ≤ ∥u∥2∥v∥2, where the norms ∥u∥2 = ⟨u, u⟩ = ⟨(xQ 1
2 )T , (xQ

1
2 )T ⟩ = xTQx

and similarly for v: ∥v∥2 = yTQy.

We can now write:

∥x+ y∥Q =
√

(x+ y)TQ(x+ y) =
√
xTQx+ yTQy + 2xTQy ≤

≤
√
xTQx+ yTQy + 2(xTQx)(yTQy) =

√
(xTQx+ yTQy)2 = ∥x∥Q + ∥y∥Q.

We can conclude that asking for the matrix to be positive semidefinite is enough to obtain
a norm from the formula ∥x∥Q =

√
xTQx. Now we can see how the norm in Example

3.3 on R2 defined as |(x1, x2)|22 = 5|x1|2 + 5|x2|2 + 8|x1||x2| is actually a norm, since it
corresponds to a quadratic form with:

Q =

[
5 4

4 5

]
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Which has detQ = 9 and TrQ = 10. We state that this norm is not lattice. If we
calculate the Q-norm of the vector x = (−1, 1) we get ∥x∥Q =

√
2. We now notice how

given y = (−1, 0), we get y ⪯ x on the partial order previously introduced, but if we
calculate the norms we get ∥y∥Q =

√
5 breaking the lattice condition. We could also

potentially create a number of infinite norms which are not lattice imposing the condition
(1, 0)Q(1, 0) ≥ (1, 1)Q(1, 1) and then solve for the values in the matrix.

4.2. Smoothness

This section is devoted to treating another analytical property: smoothness of the norm.
We introduce two new concepts related to derivatives that can be applied to a very
general framework. As an instance of this, one of the extensions introduced here can be
also intended as an extension of the directional derivative to a functional setting.

Definition 4.5. Let (X, ∥ · ∥), (Y, ∥ · ∥2) be Banach spaces and f : U → Y a function,
where U ⊆ X is open. We say that f is Gâteaux differentiable at x ∈ X if for
each h ∈ X the following limit exists and defines a linear and continuous mapping
f ′ : X → Y such that:

f ′(x)(h) = lim
t→0

f(x+ th)− f(x)

t
.

Given a Banach space (X, ∥ · ∥) we say ∥ · ∥ is Gâteaux differentiable if the norm
satisfies this condition for all x ∈ S(X,∥·∥).

We now want to characterize a different notion of smoothness and we can achieve it by
imposing a stronger notion of convergence. By taking the uniform convergence of h ∈ X

we obtain the so called Fréchet derivative.

Definition 4.6. Let (X, ∥ ·∥), (Y, ∥ ·∥2) be Banach spaces and f : X → Y a function.
We say that f is Fréchet differentiable at x ∈ X if the following limit exists, defines
a linear and continuous mapping and it is uniform for each h ∈ S(X,∥·∥):

f ′(x)(h) = lim
t→0

f(x+ th)− f(x)

t
.

Given a Banach space (X, ∥·∥) we say ∥·∥ is Fréchet differentiable if the norm satisfies
this condition for all x ∈ S(X,∥·∥).
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Example 4.4:

To show how one of its applications we now calculate the derivative of a functional T :

C([0, 1]) → R equipped with the supremum norm ∥ · ∥∞ defined in the following way:

T : u→
∫ 1

0

u(x)2 sin(πx)dx

We can also see the Fréchet derivative as that functional λ such that as for all h ∈ X

such that h→ 0 the following approximation holds T (u+ h) = T (u) + λh+ ψ(h).

T (u+h) =

∫ 1

0

(u(x)+h(x))2 sin(πx) dx = T (u)+2

∫ 1

0

u(x)h(x) sin(πx) dx+

∫ 1

0

h(x)2 sin(πx)dx.

Let’s focus on the third term, clearly if h→ 0:

0 ≤
∫ 1

0

h(x)2 sin(πx)dx ≤ ∥h∥2∞
∫ 1

0

sin(πx)dx = 2∥h∥2∞ → 0.

What we call λ is the Fréchet derivative of the operator, in our case T ′(u) : C([0, 1]) → R
is defined as:

T ′(u)(h) := 2

∫ 1

0

u(x)h(x) sin(πx)dx.

In the second definition we are imposing the uniform convergence which is, of course, a
stronger condition. From this fact it follows the simple implication that if f is Fréchet
differentiable at x then it is also Gâteaux differentiable.

Lemma 4.2 ([6, Lemma 1.2]). Given a Banach space (X, ∥ · ∥) the following state-
ments are equivalent:

1. The norm ∥ · ∥ is Gâteaux differentiable.

2. limt→0
∥x+th∥−∥x∥

t
exists for every x ∈ X \ {0} and h ∈ X.

3. limt→0
∥x+th∥+∥x−th∥−2∥x∥

t
= 0 for every x ∈ X \ {0} and h ∈ X.

Proof. - 1 =⇒ 2

This is just an easy consequence of homogeneity, since if 1 is true then for all x ∈ X

one can find x′ ∈ S(X,∥·∥) such that ∥x∥x′ = x for which it exists its Gâteaux derivative
∥x′∥′(h). But since the Gâteaux derivative is a continuous linear mapping with respect
to h one can write ∥x∥∥x′∥′(h) = ∥∥x∥x′∥′(h) = ∥x∥′(h).
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- 2 =⇒ 1

To prove this implication we just use the subadditivity of the norm function and note that
limt→0+

∥x+th∥−∥x∥
t

is subadditive and less or equal than ∥h∥. While limt→0−
∥x+th∥−∥x∥

t
is

superadditive in h.

- 2 =⇒ 3

If we assume that 2 is true then we need to remember since the limit exists both right
and left limits need to exist and coincide.

lim
t→0

∥x+ th∥ − ∥x∥
t

= lim
t→0+

∥x+ th∥ − ∥x∥
t

= lim
t→0−

∥x+ th∥ − ∥x∥
t

.

But we can also write

lim
t→0

∥x+ th∥ − ∥x∥
t

= lim
t→0−

∥x− th∥ − ∥x∥
t

.

But if we now notice that

∥x+ th∥ − ∥x∥
t

− ∥x− th∥ − ∥x∥
−t

=
∥x+ th∥+ ∥x− th∥ − 2∥x∥

t
.

We obtain
lim
t→0

∥x+ th∥+ ∥x− th∥ − 2∥x∥
t

= 0

To end the proof of this implication one would just need to substitute y = th.

- 3 =⇒ 2 If we apply the standard convexity argument that can be found at Lemma 4.1
then the quotient ∥x+th∥−∥x∥

t
is a monotone function in t. Thus the one sided limits

lim
t→0+

∥x+ th∥ − ∥x∥
t

lim
t→0−

∥x+ th∥ − ∥x∥
t

always exist, but if 3 holds and we apply once again the formula

∥x+ th∥ − ∥x∥
t

− ∥x− th∥ − ∥x∥
−t

=
∥x+ th∥+ ∥x− th∥ − 2∥x∥

t

we get that the two limits are the same, thus implying 2.

While the equivalent for Fréchet differentiation is:
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Lemma 4.3 ([6, Lemma 1.3]). Given a Banach space (X, ∥ · ∥) the following state-
ments are equivalent:

• The norm ∥ · ∥ is Fréchet differentiable.

• limt→0
∥x+th∥−∥x∥

t
exists for every h ∈ X and is uniform in h ∈ S(X,∥·∥).

Proof. The proof for this is analogous to the one for Gâteaux differentiability, since noth-
ing specific about the properties of those two concept was used.

- 1 =⇒ 2

This is just an easy consequence of homogeneity, since if 1 is true then for all x ∈ X

one can find x′ ∈ S(X,∥·∥) such that ∥x∥x′ = x for which it exists its Fréchet derivative
∥x′∥′(h). But since the Fréchet derivative is a continuous linear mapping one can write
∥x∥∥x′∥′(h) = ∥∥x∥x′∥′(h) = ∥x∥′(h).

- 2 =⇒ 1

To prove this implication we just use the subadditivity of the norm function and note that
limt→0+

∥x+th∥−∥x∥
t

is subadditive and ≤ ∥h∥. While limt→0−
∥x+th∥−∥x∥

t
is superadditive in

h.

Many of the rules that apply to standard differentiation also apply to the new introduced
concepts, in fact for both Gâteaux and Fréchet differentiation we can still make use of
differential of a constant which is equal to zero, sum rule from which we can easily
calculate the derivative of sum of functions, the product rule and quotient rule and finally
the chain rule. These properties will be of strong value during our proofs.

Theorem 4.1 ([8, Theorem 70]). Let X, Y , and Z be normed linear spaces, A ⊂ X,
and let g : A→ Y be Gâteaux differentiable at a ∈ A. Suppose further that g(A) ⊂ V ,
where V ⊂ Y is an open set, and f : V → Z. If either f is Fréchet differentiable at
g(a), or f is Gâteaux differentiable at g(a) and f is Lipschitz on V , then f ◦g : A→ Z

is Gâteaux differentiable at a and

D(f(g(a))) = Df(g(a))D(g(a)).
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We will also introduce another version for Frèchet differentiability of this theorem that
will allow us to deal with the same kind of situations.

Theorem 4.2 ([8, Theorem 69]). Given three Banach spaces (X, ∥ · ∥X),(Y, ∥ · ∥Y )
and (Z, ∥·∥Z), we take U ⊂ X open and g : U → Y be Fréchet differentiable at a ∈ U .
Suppose further that g(U) ⊂ V , V ⊂ Y open and f : V → Z is Fréchet differentiable
at g(a). Then:

D(f(g(a))) = Df(g(a))D(g(a)).

4.3. Geometrical Connections

We will use this section to draw a connection between this seemingly unrelated analytical
properties and the geometrical properties of the norms. This bridge will be built using a
well known concept in functional analysis: the dual.

Theorem 4.3 ([6, Theorem 1.4],Šmulyan). Given a Banach space (X, ∥ · ∥) and its
dual Banach space (X∗, ∥ · ∥∗) then:

• The norm ∥ · ∥ is Fréchet differentiable at x ∈ S(X,∥·∥) if and only if whenever
fn, gn ∈ S(X∗,∥·∥∗), fn(x) → 1, and gn(x) → 1, then ∥fn − gn∥∗ → 0.

• The norm ∥ · ∥∗ is Fréchet differentiable at f ∈ S(X∗,∥·∥∗) if and only if whenever
xn, yn ∈ S(X,∥·∥), f(xn) → 1, and f(yn) → 1, then ∥xn − yn∥ → 0.

• The norm ∥ · ∥ is Gâteaux differentiable at x ∈ S(X,∥·∥) if and only if whenever
fn, gn ∈ S(X∗,∥·∥∗), fn(x) → 1, and gn(x) → 1, then fn − gn

w∗
→ 0.

• The norm ∥·∥∗ is Gâteaux differentiable at f ∈ S(X∗,∥·∥∗) if and only if whenever
xn, yn ∈ S(X,∥·∥), f(xn) → 1, and f(yn) → 1, then xn − yn

w→ 0.

Proof. Only the first point will be proven, since the others are held in a similar way.

Assume that the norm ∥·∥ ofX is Fréchet differentiable at x ∈ S(X,∥·∥). By characterization
of Fréchet differentiability at Lemma 4.3, given ε > 0, there is a δ > 0 such that

∥x+ h∥+ ∥x− h∥ ≤ 2 + ε∥h∥ whenever ∥h∥ < δ. (1)

If fn, gn ∈ S(X∗,∥·∥), we have for h ∈ X

fn(x+ h) + gn(x− h) ≤ ∥x+ h∥+ ∥x− h∥. (2)
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If, moreover, fn(x) → 1 and gn(x) → 1, then (1) and (2) show that there is an n0 such
that for every n ≥ n0 and every ∥h∥ < δ, we have

(fn − gn)(h) ≤ 2− fn(x)− gn(x) + ε∥h∥ ≤ 2εδ.

Hence
∥fn − gn∥∗ ≤ 2ε for n ≥ n0.

This shows that limn→∞ ∥fn − gn∥∗ = 0.

Conversely, if ∥ · ∥ is not Fréchet differentiable at x ∈ S(X,∥·∥), then by Lemma 4.3, there
are ε > 0 and hn → 0, hn ̸= 0, such that

∥x+ hn∥+ ∥x− hn∥ ≥ 2 + ε∥hn∥. (3)

Choose fn, gn ∈ S(X∗,∥·∥∗) such that

fn(x+ hn) ≥ ∥x+ hn∥ −
1

n
∥hn∥ and gn(x− hn) ≥ ∥x− hn∥ −

1

n
∥hn∥.

First, note that fn(x) = fn(x+ hn)− fn(hn) → 1 and similarly gn(x) → 1. On the other
hand, from (3) and from the choice of fn and gn, we have

fn(x+ hn) + gn(x− hn) ≥ 2 +

(
ε− 2

n

)
∥hn∥.

Thus
(fn − gn)(hn) ≥

(
ε− 2

n

)
∥hn∥+ 2− fn(x)− gn(x) ≥

(
ε− 2

n

)
∥hn∥.

And there is thus an n0 such that

∥fn − gn∥∗ ≥
ε

2
for n ≥ n0.

Therefore, leading to a contradiction.

This is a very important theorem because it builds the bridge mentioned above, starting
from analytical property of the norms we landed on notions of the dual space which have
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some relation with all the geometric concepts introduced earlier. Based on this bridge
there will introduce a couple of results that are of fundamental importance.

Theorem 4.4 ([6, Corollary 1.5]). Let X be a Banach space and ∥ · ∥ be a norm on
X.

• The norm ∥ · ∥ is Gâteaux differentiable at x ∈ S(X,∥·∥) if and only if there is a
unique f ∈ S(X∗,∥·∥∗) such that f(x) = 1. We say that f is exposed in B(X∗,∥·∥∗)

by x or that x exposes f in B(X∗,∥·∥∗).

• The norm ∥ · ∥ is Fréchet differentiable at x ∈ S(X,∥·∥) if and only if there is a
unique f ∈ S(X∗,∥·∥∗) exposed by x satisfying: for every ε > 0 there exists δ > 0

such that for g ∈ B(X∗,∥·∥∗) and g(x) > 1 − δ, we have ∥g − f∥ < ε. We say
that f is strongly exposed in B(X∗,∥·∥∗) by x or that x strongly exposes f in
B(X∗,∥·∥∗).

Proof. We show only the first implication since the second follows. If ∥ · ∥ is Gâteaux
differentiable at x̂ ∈ S(X,∥·∥), from point three of Lemma 4.3, we have the uniqueness of
f ∈ S(X∗,∥·∥∗) with f(x) = 1. Conversely, if ∥·∥ is not Gâteaux differentiable at x̂ ∈ S(X,∥·∥),
from the same theorem, we have that there are fn, gn ∈ S(X∗,∥·∥∗) such that fn(x) → 1,
gn(x) → 1, and lim inf(fn − gn)(h) > 0 for some h ∈ X. If f and g are weak∗ limit points
of (fn) and (gn) respectively, then f(x) = g(x) = 1, f ∈ S(X∗,∥·∥∗), g ∈ S(X∗,∥·∥∗), and
(f − g)(h) ̸= 0.

We now have all the basis to establish such connections in an explicit manner. We will
start with a relation between smoothness and rotundity.

Theorem 4.5 ([6, Corollary 1.5]). Let (X, ∥ · ∥) be a Banach space then:

• If ∥ · ∥∗ is rotund then ∥ · ∥ is Gâteaux differentiable.

• If ∥ · ∥∗ is Gâteaux differentiable then ∥ · ∥ is rotund.

Proof. We prove the first implication: let’s suppose that X is not Gâteaux smooth. Then
by the Theorem 4.4 on exposed point it exists a point x ∈ S(X,∥·∥) for which there exists
f, g ∈ S(X∗,∥·∥∗) such that f(x) = g(x) = 1, which implies 1

2
(f(x) + g(x)) = 1, but then

this implies that ∥f∥∗ = ∥g∥∗ = ∥1
2
(f +g)∥∗ = 1 from which follows the fact that the dual

is not rotund.
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We now prove the second point: let’s assume ∥ · ∥∗ is Gâteaux smooth but ∥ · ∥ is not
rotund. Then there must exist two distinct points x, y ∈ S(X,∥·∥) such that ∥x+y

2
∥ = 1. We

can now choose f ∈ X∗ such that f
(
x+y
2

)
= 1 and since f(x) ≤ 1 and f(y) ≤ 1 then by

linearity we get f(x) = f(y) = 1. We can now apply Theorem 4.4 for which we get that
if we have f(x) = f(y) = 1 then the only option is that x = y since the norm is Gâteaux
smooth, but this is a contradiction.

The same result doesn’t hold for Fréchet differentiability. It holds another geometric
relation between Uniform Fréchet (that we will not treat) and Uniform rotundity. We
now provide two other examples of relations between smoothness and geometric porperty
of the norms:

Theorem 4.6 ([6, Proposition 1.5]). Let (X, ∥ · ∥) be a Banach space. If ∥ · ∥∗ on X∗

is LUR then ∥ · ∥ on X is Fréchet differentiable.

Proof. Let x ∈ S(X,∥·∥, {fn} ⊂ S(X∗,∥·∥∗). Then there exists f ∈ S(X∗,∥·∥∗) such that
f(x) = 1 and fn(x) → 1. It follows that

2 ≥ ∥fn + f∥∗ ≥ (fn + f)(x) → 2 as n→ ∞ ⇒ ∥fn + f∥∗ → 2.

So,
lim
n→∞

(
2∥fn∥∗2 + 2∥f∥∗2 − ∥fn + f∥∗2

)
= 0.

Since X∗ is LUR, limn→∞ ∥fn − f∥∗ = 0. We can apply the same process to another
{gn} ⊂ S(X∗,∥·∥∗) such that gn(x) → 1 concluding that also limn→∞ ∥gn − f∥∗ = 0.

The last step is to apply triangle inequality to the following terms:

∥fn − gn∥∗ ≤ ∥fn − f∥∗ + ∥f − gn∥∗.

Then, by Lemma 4.3, ∥ · ∥ is Fréchet differentiable at x ∈ S(X,∥·∥).

Theorem 4.7. For any space X, the dual norm of X∗ is uniformly convex if and only
if its predual norm is uniformly Fréchet differentiable. Also, the dual norm of X∗ is
uniformly Fréchet differentiable if and only if its predual norm is uniformly convex.
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We won’t provide the proof for this theorem. It is however very important to recognize the
impact of this theorem, it apparently connects only the geometric view and the analytical
one, but that’s not the end. In fact as stated in the previous chapter we can also use
Milman-Pettis Theorem 3.11 to also prove the reflexivity of the space. Several connections
have been made also in this regard underling how all the concepts are somehow related,
but this goes beyond the aim of this dissertation. We will conclude mentioning another
historical theorem published in 1981 by Yost ([14]) which proved that every reflexive
Banach space can be renormed with a norm which is not LUR, but its dual norm is
Fréchet smooth.
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5| Tools for Renormings

This chapter will be entirely devoted to some useful renorming techniques such as slices,
minkowski functional and some powerful renorming theorems.

5.1. Norm Construction

Given (Y1, ∥ · ∥1),(Y2, ∥ · ∥2) normed spaces, let us consider the map v : Y1 ⊕ Y2 → R2

defined by v(y1, y2) = (∥y1∥1, ∥y2∥2).

Theorem 5.1. Let us consider (Y1, ∥·∥1),(Y2, ∥·∥2) two Banach spaces and the Banach
space R2 endowed with a lattice norm | · |. Then the function ||| · ||| : Y1 ⊕ Y2 → R
defined as |||(y1, y2)||| = |v(y1, y2)| is a norm on Y1 ⊕ Y2, where v is defined as above.

Proof. We start by checking all the properties of Definition 2.1.

-Positivity and Zero:

The function ||| · ||| is defined as the output of a norm on R2 and hence, non negative.

On the other hand if y = (y1, y2) ∈ Y1 ⊕ Y2 we have:

0 = |||y||| = |v(y1, y2)| = |(∥y1∥1, ∥y2∥2)| ⇔ (∥y1∥1 = 0) ∧ (∥y2∥2 = 0).

And so we get to the conclusion that y1 = 0 and y2 = 0, showing the desired implication.

-Homogeneity :

Let a ∈ R and y = (y1, y2) ∈ Y1 ⊕ Y2

|||ay||| = |(∥ay1∥1, ∥ay2∥2)| = |av(y1, y2)| = |a||||y|||.

-Triangle Inequality :

Take x = (x1, x2) and y = (y1, y2) in Y1 ⊕ Y2, then
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|||x+ y||| = |v(x1 + y1, x2 + y2)| = |(∥x1 + y1∥1, ∥x2 + y2∥2)|.

Here we are in a crucial step of the proof, by triangle inequality of the norm | · | and the
fact that | · | is lattice, we obtain:

|(∥x1 + y1∥1, ∥x2 + y2∥2)| ≤ |(∥x1∥1 + ∥y1∥1, ∥x2∥2 + ∥y2∥2)|

= |(∥x1∥1, ∥x2∥2) + (∥y1∥1, ∥y2∥2)|

≤ |(∥x1∥1, ∥x2∥2)|+ |(∥y1∥1, ∥y2∥2)|

= |v(x1, x2)|+ |v(y1, y2)| = |||x|||+ |||y|||.

Since all three hypothesis are satisfied we can conclude that the function ||| · ||| is a norm.

Theorem 5.2. If the Banach spaces (Y1, ∥ · ∥1), (Y2, ∥ · ∥2) and (R2, | · |) also have
all Gâteaux (Fréchet) differentiable norms then the norm ||| · ||| is Gâteaux (Fréchet)
differentiabile.

Proof. Any step of this proof can be repeated for Fréchet differentiability with little to no
variations. We will make use of the chain rule treated in Theorem 4.1 for Gâteaux differ-
entiability to prove the property. By hypothesis the norm | · | is Gâteaux differentiable, if
we now consider the function v and apply the definition we get:

lim
t→0

v(y + th)− v(y)

t
= lim

t→0

1

t
(

(
∥y1 + th1∥1
∥y2 + th2∥2

)
−

(
∥y1∥1
∥y2∥2

)
) = lim

t→0

1

t

(
∥y1 + th1∥1 − ∥y1∥1
∥y2 + th2∥2 − ∥y2∥2

)

=

(
limt→0

∥y1+th1∥1−∥y1∥1
t

limt→0
∥y2+th2∥2−∥y2∥2

t

)
=

(
Dh1(∥y1∥1)
Dh2(∥y2∥2)

)
= Dh(v(y)).

The existence of the Gâteaux derivative of v is guaranteed by the existence of the derivative
of the two norms, which happens by hypothesis. The fact that the function | · | is Lipschitz
is retrieved applying inverse triangle inequality.

Some needed clarifications on the lattice condition hypothesis of the norm defined on
R2. If we drop this hypothesis our resulting function ||| · ||| = |v(·, ·)| might not satisfy
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triangle inequality and therefore it wouldn’t be a norm, to which purpose we introduce
the following example.

Example 5.1:

We define Y1 = (R, |·|) and Y2 = (R, |·|) while the norm on R2 assumes the following values:
|(1, 1)| = 1, |(1, 0)| = α and |(0, 1)| = α where α > 1 from which we retrieve the non lattice
condition. We consider the above introduced function ||| · ||| = |v(·, ·)| : Y1 ⊕ Y2 → R.

Let’s now see how this breaks the triangle inequality x = (1, 1) ∈ Y1 ⊕ Y2, y = (1,−1) ∈
Y1 ⊕ Y2, x+ y = (2, 0). We also see that v(x) = (1, 1), v(y) = (1, 1) and v(x+ y) = (2, 0)

so the triangle equality for these three points:

|v(x+ y)| ≤ |v(x)|+ |v(y)| =⇒ |(2, 0)| ≤ |(1, 1)|+ |(1, 1)| =⇒ 2|(1, 0)| ≤ 2|(1, 1)|

from which it follows
|(1, 0)| ≤ |(1, 1)| =⇒ α ≤ 1

So, to satisfy the triangle inequality holds only if α ≤ 1, which is false.

We can now question if the lattice condition on the norm | · | is necessary in order for
||| · ||| = |v(·, ·)| : Y1 ⊕ Y2 → R to be a norm. To which we introduce the following
proposition. It’s worth noting that the function ||| · ||| can be defined both on the direct
sum of two spaces Y1 ⊕ Y2 or on a third space X provided that X = Y1 ⊕ Y2.

Proposition 5.1. Let (X, ∥ · ∥) be a normed space and let X = Y1⊕Y2, where Y1 and
Y2 are nontrivial subspaces. The function ||| · ||| = |v(·, ·)| : Y1 ⊕ Y2 → R is a norm if
and only if | · | : R2 → R is lattice.

Proof. We already proved the implication that if the norm | · | is lattice then ||| · ||| is a
norm. So it is enough to show the converse implication. Since | · | is not a lattice norm by
Lemma 4.1 there must exist (a, b) ∈ S(R2,|·|) such that |(a, 0)| > 1 or |(0, b)| > 1. We now
suppose |(a, 0)| > 1 since the other case might be held similarly. Since the two spaces
are non trivial it exist y1 ∈ Y1 and y2 ∈ Y2 such that ∥y1∥ = a and ∥y2∥ = b. Let us
now consider the points x1 = (y1, y2) ∈ X and x2 = (y1,−y2) ∈ X. Since |(a, b)| = 1, we
conclude that |||x1||| = 1 and |||x2||| = 1. We now have:

|||x1+x2||| = |v(y1+y1, y2−y2)| = 2|v(y1, 0)| = 2|(a, 0)| > 2 = |(a, b)|+|(a, b)| = |||x1|||+|||x2|||

Which is a violation of triangle inequality and hence the norm ||| · ||| is not a norm.
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5.2. Minkowski Functional

This section is devoted to the so called Minkowski functional, also known as the Minkowski
gauge or Minkowski functional operator which is a mathematical tool used in convex
geometry and functional analysis. It is particularly useful for defining and analyzing
properties of convex sets in a vector space. Given some certain set C in a vector spaces,
the Minkowski functional of C at a given point x is a real-valued function that quantifies
how "far" x is from the boundary of C.

Let’s now start by introducing the conditions that need to be satisfied by the set:

Definition 5.1. A subspace B of a vector space X is said to be absorbing if:

∀ x ∈ X, ∃λ > 0 : x ∈ µB ∀ µ ∈ R with |µ| ≥ λ,

where the notation µB denotes the set µB = {µb : b ∈ B}.

If the set we are considering satisfies this condition then it can "be fed" into the Minkowski
functional that we will introduce below:

Definition 5.2 ([7, Section 3.6.1]). Let B be an absorbing subset of a vector space
X. For each x in X, let PB(x) = inf{t : t > 0, x ∈ tB}. Then PB is the Minkowski
functional of B.

The next theorem characterizes those sets B such that the corresponding Minkowski
functional PB is an equivalent norm on X.

Theorem 5.3. Let (X, ∥ · ∥) be a Banach space and B ⊆ X a convex set such that
aB ⊆ B, whenever a ∈ R satisfies |a| ≤ 1. Then PB is an equivalent norm on X if
and only if B is bounded and has a nonempty topological interior.

Example 5.2:

Let us consider the subset of R2 (see Figure 5.1):

M := {{
√
x2 + (y − 1)2 ≤ 1} ∪ {{x2 ≤ 1} ∩ {y2 ≤ 1}} ∪ {

√
x2 + (y + 1)2 ≤ 1}}

We will now show that the set M generates a norm with the Minkowski functional.
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Figure 5.1: Boundary of the set M .

Proof. Checking the conditions reported in Theorem 5.3 is the same as checking the
following conditions:

-Bounded:

It’s easy seeing that the whole set is contained in the set B := {x ∈ R2 : ∥x∥e < 3}.

-Non empty interior:

Clearly Int(M) ̸= ∅ since the set B = {x ∈ R2 : ∥x∥e < 1/2} ⊆M .

-Closed and convex:

Since all the inequalities defining M are not strict we can establish that all the boundary
points are also included in M , hence: M ∪ ∂M =M .

Convexity can be handled because it’s the composition of three different convex shapes
(two semi circle and a square with side 1), so for all the cases in which we select two points
inside the same geometrical object we know that the condition is valid, we just need to
check the case in which we select a point inside the semi circle and the square:

Here we can see an illustration of the case we need to be considering in order to prove the
convexity of the set M. But also this comes along as quite obvious when considering the
geometry of it.

-Origin symmetry

Even this feature is obvious when considering the geometry of M . We see that every
point on the straight edge would get mapped to another point of the opposite straight
edge, while the circumferences are symmetric when considering the y axes. They are also
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Figure 5.2: Line example on the set M.

symmetric when considering the x axis because their centers are symmetric and they have
the same radius.

Since all these conditions are satisfied we obtain a norm.

5.3. Renorming Theorems

We now wish to take a few lines to describe a few very powerful theorems that will be
crucial to the solution of the open questions. These theorems relate the separability of a
Banach space and its dual to the existence of renormings satisfying additional smoothness
and rotundity conditions. In some sense, they are just an extension of Theorem 3.6,
generalized with differentiability and other properties.

Theorem 5.4 ([5, Theorem 8.2]). Every separable Banach space X admits an equiv-
alent Gâteaux differentiable, LUR norm.

Proof. We will make use of a dense set {en : n ∈ N} ⊂ S(X,∥·∥) whose existence is given
by the separability of X. We can also renorm X with a LUR norm ∥ · ∥ according to
Theorem 3.6. We now define a new dual norm in the following way:

∥f∥∗2n = ∥f∥∗2 + 1

n

(
∞∑
i=1

2−if 2(ei)

)

notice that ∥ · ∥∗ is a dual norm and each term of the series is w∗-continuous. Then ∥ · ∥∗n
are rotund norms as a consequence of Theorem 3.2 and their predual norms converge
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to ∥ · ∥ uniformly on bounded sets. We define a new norm on X in the following way
∥x∥20 =

∑∞
n=1 2

−n∥x∥2n. This norm is Gâteaux differentiable since it is sum of norms with
rotund dual (see Theorem 4.5) and we can apply the sum rule for differentiation, keeping
in mind that the derivative of the norms ∥ · ∥n are uniformly bounded.

We now need to prove that the norm ∥ · ∥0 is LUR. Let us consider a sequence {xk} such
that limk→∞ 2∥xk∥20 + 2∥x∥20 − ∥x + xk∥20 = 0. We can conclude the boundedness of the
sequence {xk} by noticing that by triangle inequality 2∥xk∥20+2∥x∥20−∥x+xk∥20 ≥ 2∥xk∥20+
2∥x∥20−(∥x∥0+∥xk∥0)2 = (∥xk∥0−∥x∥0)2, so if limk→∞ 2∥xk∥20+2∥x∥20−∥x+xk∥20 = 0 also
limk→∞(∥xk∥0 − ∥x∥0)2 = 0. On the other hand the relation limk→∞ 2∥x∥2n + 2∥xk∥2n −
∥x + xk∥2n = 0 holds for every n ∈ N by virtue of the same calculations made in the
proof of Theorem 3.2 for the quadratic case. Since the norm converges uniformly on a
bounded set, as our {xk} is, we can conclude that also the limit of the predual norms
limn ∥ · ∥n = ∥ · ∥ will satisfy limk→∞ 2∥x∥2 + 2∥xk∥2 − ∥x + xk∥2 = 0. If we now use
the fact that ∥ · ∥ is a LUR renorming we get the thesis ∥x − xk∥ → 0 and since ∥ · ∥0
is equivalent to ∥ · ∥ then we also conclude that ∥x − xk∥0 → 0. This is condition 5 of
Lemma 3.3 that is a characterization of the LUR condition for the norm ∥ · ∥0.

Theorem 5.5 ([5, Theorem 8.6]). Every separable Banach space X with separable
dual X∗ admits an equivalent Fréchet differentiable and LUR norm.

Proof. We will make use of the dense set {e∗n : n ∈ N} ⊂ S(X∗,∥·∥∗) whose existence is
given by the separability of the dual space X∗. We can also renorm X with a LUR norm
∥ · ∥ according to Theorem 3.6.

We shall now need a norm whose dual norm is LUR. We might think to apply Theorem
3.6 to retrieve the LUR condition on the dual norm. It’s however unfortunate that not
all the dual norms have a corresponding predual norm. We need to prove that this new
norm ∥ · ∥∗ is w∗-lower semicontinuous.

Let’s consider the norm introduced in Theorem 3.6 but on the dual space X∗. We build
the sets En = span{e∗1, e∗2, ..., e∗n}, we notice that En + B(X∗,∥·∥∗) is w∗-closed as En is w∗-
closed and B(X∗,∥·∥∗) is w∗-compact by Alaoglu’s theorem. Since {f ∈ X∗ : dist(f, En) ≤
1} = En + B(X∗,∥·∥∗) the functions dist(f, En) are w∗-lower semicontinuous and so the
supremum of their weighted sum and thus the norm of Theorem 3.6 applied to the dual
has indeed a predual norm. So we can renorm X∗ with a dual norm that we will call ∥·∥∗1.

Setting this aside we can continue by renorming the dual (X∗, ∥ · ∥∗) where ∥ · ∥∗ is the
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dual norm of the LUR norm ∥ · ∥ with the following norm:

∥f∥∗2n = ∥f∥∗2 + 1

n
∥f∥∗21 ∀ f ∈ X∗

Clearly, this norm is LUR in the dual and this can be seen by applying the same argument
applied in Theorem 3.2 for the quadratic case. Applying Theorem 4.6 we also get the
Fréchet differentiability of the predual norms ∥·∥n, moreover the sequence {∥·∥n} converges
uniformly to ∥ · ∥ on a bounded set as stated in the previous theorem.

We now apply one last renorming similar to the previous theorem to show that this new
norm is indeed the one we are looking for:

∥x∥20 =
∞∑
n=1

2−n∥x∥2n ∀ x ∈ X

Being the sum of Fréchet differentiable norms, we instantly retrieve the differentiability.
We now need to prove that the norm ∥ · ∥0 is LUR. Let us consider a sequence {xk} such
that limk→∞ 2∥xk∥20 + 2∥x∥20 − ∥x + xk∥20 = 0. We can conclude the boundedness of the
sequence {xk} by noticing that by triangle inequality 2∥xk∥20+2∥x∥20−∥x+xk∥20 ≥ 2∥xk∥20+
2∥x∥20 − (∥x∥0 + ∥xk∥0)2 = (∥xk∥0 − ∥x∥0)2, so if limk→∞ 2∥xk∥20 + 2∥x∥20 − ∥x+ xk∥20 = 0

also limk→∞(∥xk∥0−∥x∥0)2 = 0. On the other hand the relation limk→∞ 2∥x∥2n+2∥xk∥2n−
∥x+ xk∥2n = 0 holds for every n ∈ N by virtue of the same calculations made in the proof
of Theorem 3.2 for the quadratic case. Since the norm converges uniformly to ∥ · ∥ on
a bounded set, as our {xk} is, we can conclude that also the limit of the predual norms
limn ∥ · ∥n = ∥ · ∥ will satisfy limk→∞ 2∥x∥2 + 2∥xk∥2 − ∥x+ xk∥2 = 0. If we now use the
fact that ∥ · ∥ is a LUR renorming we get that ∥x− xk∥ → 0 and since ∥ · ∥0 is equivalent
to ∥ · ∥ then we also conclude that ∥x− xk∥0 → 0. This is condition 5 of Lemma 3.3 that
is a characterization of the LUR condition for the norm ∥ · ∥0.

We now introduce a renorming theorem based on the one introduced in the article "Rotund
Gâteaux smooth norms which are not locally uniformly rotund" [2, Theorem 3.1]. This
result will be helpful in determining the equivalence of the first term of the final renorming
with the initial one. In this case we can see how to retrieve the failure of the MLUR
condition: we choose a specific direction (e1) and make it flat enough for some sequences
to violate such condition.
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Theorem 5.6 (cf. [2, Theorem 3.1]). Let (X, ∥ · ∥) be a LUR and Gâteaux differ-
entiable (Fréchet differentiable respectively) Banach space and {en, e∗n} an M-basis on
X. Then ∥ · ∥1 defined by:

∥x∥21 = ∥x− e∗1(x)e1∥2 + ∥e∗1(x)e1∥2.

is LUR and Gâteaux differentiable (Fréchet differentiable respectively).

Proof. Considering the expression of the norm:

∥x∥21 = ∥x− e∗1(x)e1∥2 + ∥e∗1(x)e1∥2.

we can conclude that this new norm is Gâteaux differentiable (Fréchet differentiable) since
we can apply the sum rule to the two terms, which are both Gâteaux (Fréchet). Let’s
now show it is LUR by verifying condition 5 of Lemma 3.3. Let us suppose that:

lim
n

2∥x∥21 + 2∥xn∥21 − ∥x+ xn∥21 = 0, (5.1)

which implies:

lim
n

2∥x− e∗1(x)e1∥2 + 2∥e∗1(x)e1∥2 + 2∥xn − e∗1(xn)e1∥2 + 2∥e∗1(xn)e1∥2

−∥x+ xn − e∗1(x+ xn)e1∥2 − ∥e∗1(x+ xn)e1∥2 = 0.

But now we observe that:

2∥x− e∗1(x)e1∥2 + 2∥xn − e∗1(xn)e1∥2 − ∥x+ xn − e∗1(x+ xn)e1∥2 ≥

2∥x− e∗1(x)e1∥2 + 2∥xn − e∗1(xn)e1∥2 − (∥x− e∗1(x)e1∥+ ∥xn − e∗1(xn)e1∥)2 =

(∥x− e∗1(x)e1∥2 − ∥xn − e∗1(xn)e1∥)2 ≥ 0.

A similar argument can be applied to the other terms leading to:

2∥e∗1(x)e1∥2 + 2∥e∗1(xn)e1∥2 − ∥e∗1(x+ xn)e1∥2 ≥ 0.

If we coonsider 5.1, the only possibility left is that both inequalities are met with equality.
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But this leads to:

lim
n

2∥x− e∗1(x)e1∥2 + 2∥xn − e∗1(xn)e1∥2 − ∥x+ xn − e∗1(x+ xn)e1∥2 = 0

and
lim
n

2∥e∗1(x)e1∥2 + 2∥e∗1(xn)e1∥2 − ∥e∗1(x+ xn)e1∥2 = 0.

Since the norm ∥ · ∥ is LUR, we have

∥x− xn + e∗1(x− xn)e1∥ → 0 and ∥e∗1(xn)e1 − e∗1(x)e1∥ → 0,

then by triangle inequality ∥x − xn∥ ≤ ∥x − xn + e∗1(x − xn)e1∥ + ∥e∗1(xn)e1 − e∗1(x)e1∥
from which we conclude that ∥x − xn∥ → 0. Being ∥ · ∥ equivalent to ∥ · ∥1 we also get
the conclusion that ∥x− xn∥1 → 0

We conclude this section with a result about density of norms satisfying smoothness or
rotundity conditions, in the metric space of all equivalent norms on a given Banach space
X.

Theorem 5.7 ([6, Theorem 4.1]). Given a separable Banach space X the norms which
are Gâteaux and LUR are dense in the metric space of all its equivalent norms. If,
moreover, X∗ is also separable we conclude that the norms which are Fréchet and
LUR are dense in the metric space of all its equivalent norms.

5.4. Slices

Slices are a powerful tool invented to apply "cuts" to an arbitrary subset of the initial space
selecting specific elements belonging to the dual, which are metaphorically the "knives".
The concept is really simple as we use a dual element to separate points on the original
space, hence the name slice.

Definition 5.3 ([7, Section 5.3.2]). Given x∗ ∈ X∗ \ {0} and δ > 0, the slice defined
by x∗ and δ of the ball B(X,∥·∥) is the set S(B(X,∥·∥), x

∗, δ):

S(B(X,∥·∥), x
∗, δ) = {x ∈ B(X,∥·∥) : x

∗(x) > ∥x∗∥ − δ}.

A natural question one might ask is how "big" is the part of the unit ball left out for
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every cut we apply. It’s clear that depending on the shape of the unit ball and on the
direction of the cut we get different results. There are, however, results that guarantee
that some norms allow arbitrarily small cuts when the quantity δ tends to zero.

This fact is not obvious at all, if for instance we consider the Banach space (ℓ∞, ∥ · ∥∞)

and its unit ball, we can see that if we consider cuts parallel to the faces, even if δ is small
we cannot ensure the fact that the part we are cutting is small enough.

We will now show a simple example of the projection in 2
dimension of this case.The blue line is an hyperplane generated
by an element of the dual through the formula above, while
the red object is just a 2d projection of the unitary ball of the
above mentioned space. We can imagine, when considering
the infinite dimensional space, with the infinite dimensional
hyperplane that even if δ is very small we are cutting out a
consistent chunk of the unit sphere.

Theorem 5.8. Let (E, ∥ · ∥) be a LUR Banach space and x ∈ S(E,∥·∥). Let x∗ ∈
S(E∗,∥·∥∗) be such that x∗(x) = 1 then diamS(B(E,∥·∥), x

∗, δ) → 0 as δ → 0+.

Example 5.3:

We will now illustrate an example in which we apply an infinite amount of cuts to the unit
sphere and still obtain an equivalent norm ∥ · ∥M . We start by renorming the separable
Banach space X with a LUR norm ∥ · ∥, by virtue of Theorem 5.4. We then consider its
unit ball B(X,∥·∥), by Theorem 5.8 we can take arbitrarily small slices of this set using linear
functionals belonging to the dual. We can now define the slices in the following way: we
use the bounded M-basis {en, e∗n} with ∥e∗n∥∗ = 1, n ∈ N whose existence is guaranteed by
Theorem 2.2 to select the linear functionals. We set δn = ε

2n
where ε ∈ [0, 1] and define:

SLn(B(X,∥·∥), e
∗
n, δn) := {x ∈ B(X,∥·∥) : |e∗n(x)| > 1− δn}.

We deviated a little from the formal definition of slice, introducing the absolute value,
to generate a symmetric subset of X with respect to the origin. We now apply the
infinite amount of slices, one for each component of the M-basis and we consider the set
M = B(X,∥·∥) \

⋃∞
n=1 SLn(B(X,∥·∥), e

∗
n, δn). We now apply the Minkowski functional PM to

M and this generates a norm since:

-Bounded:

The set M is a subset of the bounded set S(X,∥·∥), hence it is bounded.
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-Non empty interior:

The set M contains the set {x ∈ X : ∥x∥ ≤ 1
2
} since the factor ε ∈ [0, 1] and so every

δ < 1
2
.

-Symmetry with respect to the origin:

We applied symmetrical slices on a symmetrical set to retrieve this property.

-Closed and convex:

We started from a closed set and we applied the slices where the criteria needs to be
met with a strict inequality, leaving the new boundaries inside the new set M and thus
closure follows. While the convexity follows from the fact the new set M can be seen as
the intersection of an infinite number of convex sets (we can see the slices as separating,
since they are linear, two convex part of the space X), which ensures convexity of M .

We have now generated the new norm ∥·∥M and we also notice that this norm is equivalent
to ∥ · ∥ since: (1 − ε

2
)B(X,∥·∥) ⊆ B(X,∥·∥M ) ⊆ B(X,∥·∥) (this follows from the fact that the

deepest cut is the one applied to the face e1).

Theorem 5.9. Let (X, ∥ · ∥) be a separable Banach space and {en, e∗n} a bounded M-
basis such that ∥e∗1∥∗ = 1 and ∥en∥ = 1. Then, for every ε ∈ (0, 1), there exist an
equivalent norm ∥ · ∥M and η > 0 such that

1. (1− ε)B(X,∥·∥) ⊆ B(X,∥·∥M ) ⊆ B(X,∥·∥)

2. (1− ϵ)e1, (1− ϵ)e1 ± ηen ∈ S(X,∥·∥M ) whenever n ∈ N and n > 1

3. ∥en∥M = 1 for all n > 1

Proof. Let us consider a bounded M-basis {en, e∗n} with ∥e∗1∥∗ = 1 and ∥en∥ = 1, whenever
n ∈ N whose existence can be guaranteed by Theorem 2.2. We set ε ∈ (0, 1) an let:

SL(B(X,∥·∥), e
∗
1, ε) := {x ∈ B(X,∥·∥) : |e∗1(x)| > 1− ε}.

This is a simplification of Example 5.3, where we apply one cut instead of infinite, so we
conclude that the Minkowski functional corresponding to M = B(X,∥·∥) \SL(B(X,∥·∥), e

∗
1, ε)

gives us a norm an equivalent norm ∥ · ∥M for which the following holds: (1− ε)B(X,∥·∥) ⊆
B(X,∥·∥M ) ⊆ B(X,∥·∥). Define δ = 1 − ε, then we have ∥δe1∥M = ∥(1 − ε)e1∥M = 1. We
notice that δe1 ∈ Int(B(X,∥·∥)) since δ = 1 − ε < 1, thus it follows that there must exist
some η ∈ R+ such that δe1+ηB(X,∥·∥) ⊆ B(X,∥·∥). Hence also δe1+ηen ∈ B(X,∥·∥) whenever
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n ∈ N, since ∥en∥ = 1. Observing that en ∈ ker(e∗1) for all n > 1, we have that:

e∗1(δe1 + ηen) = 1− ε,

and then we deduce that δe1 + ηen ∈ S(X,∥·∥M ) (n > 1). Similarly, we obtain that δe1 −
ηen ∈ S(X,∥·∥M ) (n > 1). We conclude by noticing that condition 3 is satisfied since
en /∈ SL(B(X,∥·∥), e

∗
1, ε).
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6| Results

We will now state and solve two open problems that can be found on the book [7] section
52.3.

6.1. Problem 1

The first problem we present is number 3 of section 52.3 of [7], for which we ask the fol-
lowing question: Can every infinite-dimensional separable space be renormed to be rotund
but not MLUR?

Theorem 6.1. Every separable Banach space can be renormed with a norm which is
Gâteaux differentiable, rotund but not MLUR.

Proof. Let X be a separable Banach space. By Theorem 5.4 and Theorem 2.2 there
exist a Gâteaux differentiable renorming ∥ · ∥G and a bounded M-basis {en, e∗n} such that
∥en∥G = 1 for all n ∈ N. We can also renorm once again with ∥ · ∥G′ using Theorem 5.6,
obtaining the following properties:

∥x∥2G′ = ∥x− e∗1(x)e1∥2G + ∥e∗1(x)e1∥2G.

We now use the construction introduced in Theorem 5.1 using:

• Y1 = span{e1}.

• Y2 = span{en}n≥2.

• The norm on R2 defined as the Minkowski of the set M given in Example 5.2, that
we will denote as ∥ · ∥M .

By the choice of Y1, Y2 we can see every element of X as a decomposition on the two
subspaces Y1 and Y2 since one of the two spaces is finite dimensional. In our case, for
every x ∈ X we write x = y1 + y2, where y1 = e∗1(x)e1 and y2 = x − e∗1(x)e1. For both
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subspaces we use the initial norm ∥ · ∥G. We then define

|||x||| = ∥(∥y1∥G, ∥y2∥G)∥M .

Observe that the unit sphere of ∥ · ∥M satisfies the hypothesis of Lemma 4.1, indeed
every canonical projection of S(X,∥·∥M ) is contained in B(X,∥·∥M ). Applying Theorem 5.1,
we conclude that ||| · ||| is a norm. The two spaces (Y1, ∥ · ∥G), (Y2, ∥ · ∥G) are Gâteaux
differentiable space since they are subspaces of (X, ∥·∥G), a Gâteaux differentiable Banach
space. If the Gâteaux condition is satisfied at every point, at every direction then it must
also be satisfied for the specific direction generated by span{en}n≥2 and e1 on the two
relative subspaces. So, as stated in Theorem 5.2 we get the Gâteaux differentiability of
the norm ||| · |||. The norm ||| · ||| is also a renorming of ∥ · ∥G′ . To see why we let ∥ · ∥e be
the euclidean norm on R2 and use the fact that all norms in finite dimensional spaces are
equivalent (Theorem 2.1), in particular there exist k,K ∈ R+ such that k∥ · ∥e ≤ ∥ · ∥M ≤
K∥ · ∥e. In our case:

∥x∥G′ = ∥y1 + y2∥G′ = ∥(∥y1∥G, ∥y2∥G)∥e ≤
1

k
||(∥y1∥G, ∥y2∥G)||M =

1

k
|||x|||.

While, for the second inequality:

|||x||| = ∥(∥y1∥G, ∥y2∥G)∥M ≤ K∥(∥y1∥G, ∥y2∥G)∥e = K
√

∥y1∥2G + ∥y2∥2G.

K
√

∥y1∥2G + ∥y2∥2G = K
√

∥e∗1(x)e1∥2G + ∥x− e∗1(x)e1∥2G = K
√

∥x∥2G′ = K∥x∥G′ .

Obtaining the conclusion:
k∥x∥G′ ≤ |||x||| ≤ K∥x∥G′ .

We renorm once again with a new norm on X:

|x|2 = |||x|||2 +
∞∑

m=1

1

4m
|e∗m(x)|2.

We claim that this renorming is rotund, Gâteaux differentiable and not MLUR.

-Renorming and rotund

We can now see this norm as |x|2 = |||x|||2 + ∥Tx∥2ℓ2 where ∥ · ∥ℓ2 is the norm on ℓ2.
We can define T : X → ℓ2 in the following way Tx(n) = 1

2n
e∗n(x). It is one-to-one, given

that if Tx = Ty then Tx(n) = Ty(n) ⇔ e∗n(x) = e∗n(y) for all n and since the M-basis
separates points we get injectivity. The bonundedness of the operator T follows from the



6| Results 75

fact that the M-basis is bounded, in fact we can write for every x ∈ S(X,∥·∥2) it exists
M ∈ R : sup ∥en∥∥e∗n∥ ≤M for all n ∈ N, to which it follows that:

∥Tx∥ℓ2 ≤ ∥M ′(
1

2
,
1

4
, ...)∥ℓ2 =M ′′

We can now apply Theorem 3.2 to show that | · | is renorming and rotund.

-Gâteaux differentiable

This property follows from the fact that the norm | · | is the composition of two Gateaux
differentiable functions ||| · ||| and ∥Tx∥ℓ2 with the euclidean distance in R2 (which is
Lipschitz) so all the hypothesis are satisfied in order to apply Theorem 4.1.

|x| =

√√√√|||x|||2 +
∞∑

m=1

1

4m
e∗m(x)

2.

-Not MLUR

To prove this we shall consider two sequences: xn =
√

4
5
(e1 − en) and yn =

√
4
5
(e1 + en).

|
√

4

5
(e1 − en)|2 =

4

5
|(e1 − en)|2 =

4

5
(|||e1 − en|||2 +

∞∑
m=1

1

4m
e∗m(e1 − en)

2).

We know |||e1 − en||| = ∥(∥e1∥G, ∥en∥G)∥M = ∥(1, 1)∥M = 1 since (1, 1) ∈ S(R2,∥·∥M ) as it
can be seen in Example 5.2.

4

5
(|||e1 − en|||2 +

∞∑
m=1

1

4m
e∗m(e1 − en)

2) =
4

5
(1 +

1

4
e∗1(e1) +

1

4n
e∗n(en)) =

=
4

5
(1 +

1

4
+

1

4n
) =

4

5
(1 +

1

4
+

1

4n
) → 1.

From which we conclude |xn| → 1. The same holds for yn, since:

4

5
(|||e1 + en|||2 +

∞∑
m=1

1

4m
e∗m(e1 + en)

2) =
4

5
(1 +

1

4
e∗1(e1)

2 +
1

4n
e∗n(en)

2) =
4

5
(1 +

1

4
+

1

4n
).

We now notice 1
2
(xn + yn) =

1
2

√
4
5
(e1 + en + e1 − en) =

√
4
5
e1 ∈ S(X,|·|), in fact:

|
√

4

5
e1|2 =

4

5
(|||e1|||2 +

1

4
) =

4

5
(1 +

1

4
) = 1.
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On the other hand: |xn − yn| =
√

4
5
|2en|

4

5
|2en|2 =

16

5
|en|2 =

16

5
(||(0, ∥en∥G)||2M +

1

4n
) =

16

5
(||(0, 1)||2M +

1

4n
).

But we know that ||(0, 1)||2M = ||1
2
(0, 2)||2M = 1

4
since (0, 2) ∈ S(R2,∥·∥M ) as it can be seen

in Example 5.2:

|xn − yn| =
√

16

5
(
1

4
+

1

4n
) →

√
4

5
̸= 0.

By using the second characterization of the MLUR condition found in Lemma 3.2 we can
conclude that | · | is not MLUR.

6.2. Problem 2

The second open problem present is number 6 of the section 52.3 of [7], for which we
ask the following question: Can every infinite-dimensional space with separable dual be
renormed by wUR and not MLUR?

Theorem 6.2. Every Infinite dimensional Banach space with separable dual can be
renormed with a norm which is Fréchet, wUR and not MLUR.

Proof. Let X be a Banach space with separable dual. By Theorem 5.5 and Theorem 2.2
there exist a Fréchet differentiable renorming ∥ · ∥F and a bounded, shrinking M-basis
{en, e∗n} such that ∥en∥F = 1 for all n ∈ N. We can also renorm once again with ∥ · ∥F ′

using Theorem 5.6, obtaining the following properties:

∥x∥2F ′ = ∥x− e∗1(x)e1∥2F + ∥e∗1(x)e1∥2F .

We now use the construction introduced in Theorem 5.1 using:

• Y1 = span{e1}.

• Y2 = span{en}n≥2.

• The norm on R2 defined as the Minkowski of the set M given in Example 5.2, that
we will denote as ∥ · ∥M .

By the choice of Y1, Y2 we can see every element of X as a decomposition on the two
subspaces Y1 and Y2 since one of the two spaces is finite dimensional. In our case, for
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every x ∈ X we write x = y1 + y2, where y1 = e∗1(x)e1 and y2 = x − e∗1(x)e1. For both
subspaces we use the initial norm ∥ · ∥F . We then define

|||x||| = ∥(∥y1∥F , ∥y2∥F )∥M .

Observe that the unit sphere of ∥ · ∥M satisfies the hypothesis of Lemma 4.1, indeed
every canonical projection of S(X,∥·∥M ) is contained in B(X,∥·∥M ). Applying Theorem 5.1,
we conclude that ||| · ||| is a norm. The two spaces (Y1, ∥ · ∥F ), (Y2, ∥ · ∥F ) are Fréchet
differentiable space since they are subspaces of (X, ∥ ·∥F ), a Fréchet differentiable Banach
space. If the Fréchet condition is satisfied at every point, at every direction then it must
also be satisfied for the specific direction generated by span{en}n≥2 and e1 on the two
relative subspaces. So, as stated in Theorem 5.2 we get the Fréchet differentiability of the
norm ||| · |||. The norm ||| · ||| is also a renorming of ∥ · ∥F ′ . To see why we let ∥ · ∥e be
the euclidean norm on R2 and use the fact that all norms in finite dimensional spaces are
equivalent (Theorem 2.1), in particular there exist k,K ∈ R+ such that k∥ · ∥e ≤ ∥ · ∥M ≤
K∥ · ∥e. In our case:

∥x∥F ′ = ∥y1 + y2∥F ′ = ∥(∥y1∥F , ∥y2∥F )∥e ≤
1

k
||(∥y1∥F , ∥y2∥F )||M =

1

k
|||x|||.

While, for the second inequality:

|||x||| = ∥(∥y1∥F , ∥y2∥F )∥M ≤ K∥(∥y1∥F , ∥y2∥F )∥e = K
√

∥y1∥2F + ∥y2∥2F .

K
√

∥y1∥2F + ∥y2∥2F = K
√
∥e∗1(x)e1∥2F + ∥x− e∗1(x)e1∥2F = K

√
∥x∥2F ′ = K∥x∥F ′ .

Obtaining the conclusion:
k∥x∥F ′ ≤ |||x||| ≤ K∥x∥F ′ .

We renorm once again with a new norm on X:

|x|2 = |||x|||2 +
∞∑

m=1

1

4m
|e∗m(x)|2.

We claim that this renorming is wUR, Fréchet differentiable and not MLUR.

-Renorming and rotundity

It is enough to apply Theorem 3.2 to retrieve the renomring and rotundity properties (see
first step of Theorem 6.1).

-Fréchet differentiability
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The first norm ||| · ||| is Fréchet differentiable as stated in Theorem 5.2, the second term
of the norm can be seen as ∥Tx∥ℓ2 which is Fréchet differentiable. Now we combine these
two functions with the euclidean norm on R2.

|x| =

√√√√|||x|||2 +
∞∑
n=1

1

4m
e∗m(x)

2.

If we now apply Theorem 4.2 we can conclude the Fréchet differentiability of | · |.

-wUR

We start by taking xn, x
′
n ∈ S(X,|·|) such that |xn + x′n| → 2. We then set zn =

(|||xn|||, 12e
∗
1(xn), ...,

1
2k
e∗(xn), ...) and z′n = (|||x′n|||, 12e

∗
1(x

′
n), ...,

1
2k
e∗(x′n), ...). We can now

calculate:

∥zn+z′n∥2ℓ2 = (|||xn|||+|||x′n|||)2+
∞∑

m=1

1

4m
e∗m(xn+x

′
n)

2 ≥ (|||xn+x′n|||)2+
∞∑

m=1

1

4m
e∗m(xn+x

′
n)

2 =

= (|||xn + x′n|||)2 +
∞∑
n=1

1

4m
e∗m(xn + x′n)

2 = |xn + x′n|2 → 22 = 4.

Since ∥zn∥ℓ2 = |xn| = 1 and ∥z′n∥ℓ2 = |x′n| = 1, we can apply the triangle inequality

∥zn + z′n∥ℓ2 ≤ ∥zn∥ℓ2 + ∥z′n∥ℓ2 = |xn|+ |x′n| = 2.

This proves that also ∥zn + z′n∥ℓ2 → 2. We know that the norm ∥ · ∥ℓ2 of the space ℓ2

satisfies the UR condition, but then by characterization 3 of Lemma 3.4 we also know
that ∥zn − z′n∥ℓ2 → 0. Written analytically:

∥zn − z′n∥2ℓ2 = (|||xn||| − |||x′n|||)2 +
∞∑
n=1

1

4m
(e∗m(xn)− e∗m(x

′
n))

2 → 0.

Which implies our final result limn→∞ e∗m(xn) = limn→∞ e∗m(x
′
n). We now use the key

assumption that span{e∗n} = X∗, this allows us to infer that every operator in the dual
when applied to xn or x′n mantains it’s convergence, or, written in other terms xn−x′n ⇀ 0.
Since we started by xn, x

′
n ∈ S(X,|·|) such that |xn + x′n| → 2 and obtained xn − x′n ⇀ 0

we notice that this is the the definition of wUR (Definition 3.8)

-not MLUR

The calculations are conducted in the same way as Theorem 6.1. We start by the sequences
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xn =
√

4
5
(e1 − en) and yn =

√
4
5
(e1 + en).

|
√

4

5
(e1 − en)|2 =

4

5
|(e1 − en)|2 =

4

5
(|||e1 − en|||2 +

∞∑
m=1

1

4m
e∗m(e1 − en)

2).

We know |||e1 − en||| = ∥(∥e1∥F , ∥en∥F )∥M = ∥(1, 1)∥M = 1, this follows from looking at
the unit sphere of ∥ · ∥M in Example 5.3 and seeing that (1, 1) belongs to it.

4

5
(|||e1 − en|||2 +

∞∑
m=1

1

4m
e∗m(e1 − en)

2) =
4

5
(1 +

1

4
e∗1(e1) +

1

4n
e∗n(en)) =

4

5
(1 +

1

4
+

1

4n
).

4

5
(1 +

1

4
+

1

4n
) → 1

From which we conclude |xn| → 1.The same holds for yn, since:

4

5
(|||e1 + en|||2 +

∞∑
m=1

1

4m
e∗m(e1 + en)

2) =
4

5
(1 +

1

4
e∗1(e1)

2 +
1

4n
e∗n(en)

2) =
4

5
(1 +

1

4
+

1

4n
).

We now notice 1
2
(xn + yn) =

1
2

√
4
5
(e1 + en + e1 − en) =

√
4
5
e1 ∈ S(X,|·|), in fact:

|
√

4

5
e1|2 =

4

5
(|||e1|||2 +

1

4
) =

4

5
(1 +

1

4
) = 1.

On the other hand: |xn − yn| =
√

4
5
|2en|

4

5
|2en|2 =

16

5
|en|2 =

16

5
(||(0, ∥en∥F )||2M +

1

4n
) =

16

5
(||(0, 1)||2M +

1

4n
).

If we look at the unit sphere of ∥ · ∥M in Example 5.2 we can conclude by homogeneity of
the norm that that ||(0, 1)||2M = ||1

2
(0, 2)||2M = 1

4
, so:

|xn − yn| =
√

16

5
(
1

4
+

1

4n
) →

√
4

5
̸= 0.

By using the second characterization of the MLUR condition found in Lemma 3.2 we can
conclude that | · | is not MLUR.
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6.3. Expanding problem 1

Now that we have discussed the two open problems posed by the book showing that not
only those two norms exist, but they can also satisfy stronger conditions we wish to take
the two initial questions and try to further extend some specific characteristics about
them.

Let’s start from a separable Banach space X and consider (P, ρ), the metric space of all
equivalent norms on X endowed with the ρ metric (see Definition 2.6). We now consider
the space P ′ ⊆ P of all norms which are rotund and not MLUR and we show that the
following condition holds: P ′ = P or, in other words, that P ′ is dense in the metric space
of equivalent renormings of X. This can be also translated to an analytical property for
which, given any equivalent norm ∥ · ∥ on X and any ϵ > 0, there exists a rotund not
MLUR renorming ∥ · ∥1 such that for every x ∈ X:

∥x∥1 ≤ ∥x∥ ≤ (1 + ε)∥x∥1.

Theorem 6.3. Given a separable Banach space X, the metric space (P ′, ρ) of all
rotund and not MLUR equivalent norms on X is a dense subset of the metric space
(P, ρ) of all equivalent norms on X.

Proof. Let X be a separable Banach space and let ∥ · ∥ be an equivalent norm on X. By
Theorem 2.2 there exist a bounded M-basis {en, e∗n} such that ∥en∥ = 1 for all n ∈ N and
∥e∗1∥∗ = 1. We define T : (X, ∥ · ∥) → (ℓ2, ∥ · ∥ℓ2) as Tx = (1

2
e∗1(x),

1
4
e∗2(x), ...). Given the

boundedness of the M-basis we conclude that T is bounded, meaning that there exists
C ∈ R+ such that ∥Tx∥ℓ2 ≤ C∥x∥ (x ∈ X).

Let us fix ε ∈ (0, 1) and let us apply Theorem 5.9 from which we obtain η > 0 and an
equivalent norm ∥ · ∥D with the following properties:

1. (1− ε)∥ · ∥D ≤ ∥ · ∥ ≤ ∥ · ∥D;

2. (1− ϵ)e1 + ηen ∈ S(X,∥·∥D) , whenever n ∈ N;

3. (1− ϵ)e1 ∈ S(X,∥·∥D);

4. ∥en∥D = 1, whenever n > 1.
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Then we consider the norm defined as follows:

∥x∥22 = ∥x∥2D + ε2
∞∑

m=1

1

4m
|e∗m(x)|2.

We know by Theorem 3.2 that ∥ · ∥2 is an equivalent, rotund norm. Moreover, it is clear
that ∥x∥ ≤ ∥x∥D ≤ ∥x∥2. Since ∥x∥D ≤ 1

(1−ε)
∥x∥ for all x ∈ X and ∥Tx∥ℓ2 ≤ C∥x∥, we

can conclude that:

∥x∥22 ≤
(

1

(1− ε)
∥x∥
)2

+ (εC∥x∥)2 =⇒ ∥x∥2 ≤

(√
1

(1− ε)2
+ ε2C2

)
∥x∥.

Combining the two inequalities above we conclude:

∥x∥ ≤ ∥x∥2 ≤

(√
1

(1− ε)2
+ ε2C2

)
∥x∥.

Once we prove that ∥x∥2 is not MLUR, by the arbitrariness of ∥ · ∥ and ε ∈ (0, 1) and the
fact that

√
1

(1−ε)2
+ ε2C2 → 1 as ε→ 0+, we get that P ′ is dense in P .

It remains to prove that ∥x∥2 is not MLUR. We now set k2 = 4
4+ε2(1−ε)2

and select
two sequences xn = k((1 − ε)e1 − ηen) and yn = k((1 − ε)e1 + ηen). We now calculate
∥(1−ε)e1+ηen∥22 = ∥(1−ε)e1+ηen∥2D+ε2( (1−ε)2

4
+ η2

4n
) = 1+ε2( (1−ε)2

4
+ η2

4n
) → 1+ ε2(1−ε)2

4
,

from this we deduce that k2∥(1 − ε)e1 + ηen∥22 → 1. The same calculations hold for
k2∥(1 − ε)e1 − ηen∥2 → 1. If we now calculate 1

2
(xn + yn) = k(1 − ε)e1 ∈ S(X,∥·∥2) since

∥(1− ε)e1∥22 = ∥(1− ε)e1∥2D + ε2(1−ε)2

4
= 1

k2
. On the other hand, we have

∥xn − yn∥22 = ∥2ηen∥2D +
ε2

4n
→ 4η2 ̸= 0,

and hence the norm ∥x∥2 is not MLUR.

6.4. Expanding problem 2

Theorem 6.4. Given a Banach space X with separable dual, the metric space (Q, ρ)

of all wUR and not MLUR equivalent norms on X is a dense subset of the metric
space (P, ρ) of all equivalent norms on X.

Proof. Let X be Banach space with separable dual and let ∥ · ∥. By Theorem 2.2, there
exist a bounded and shrinking M-basis {en, e∗n} such that ∥en∥ = 1 for all n ∈ N and
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∥e∗1∥∗ = 1. We define T : (X, ∥ · ∥) → (ℓ2, ∥ · ∥ℓ2) as Tx = (1
2
e∗1(x),

1
4
e∗2(x), ...). Given the

boundedness of the M-basis we conclude that T is bounded, meaning that there exists
C ∈ R+ such that ∥Tx∥ℓ2 ≤ C∥x∥ (x ∈ X).

Let us fix ε ∈ (0, 1) and let us apply Theorem 5.9 from which we obtain η > 0 and an
equivalent norm ∥ · ∥D with the following properties:

1. (1− ε)∥ · ∥D ≤ ∥ · ∥ ≤ ∥ · ∥D;

2. (1− ε)e1 + ηen ∈ S(X,∥·∥D) ∀n ∈ N;

3. (1− ε)e1 ∈ S(X,∥·∥D);

4. ∥en∥D = 1 n > 1.

Then we consider the norm defined in the following way:

∥x∥22 = ∥x∥2D + ε2
∞∑

m=1

1

4m
|e∗m(x)|2.

We know by Theorem 3.2 that this is an equivalent, rotund norm. By the same calculations
held in Theorem 6.3 we also conclude that

∥x∥ ≤ ∥x∥2 ≤

(√
1

(1− ε)2
+ ε2C2

)
∥x∥.

Once we prove that ∥x∥2 is wUR and not MLUR, by the arbitrariness of ∥·∥ and ε ∈ (0, 1)

and the fact that
√

1
(1−ε)2

+ ε2C2 → 1 as ε→ 0+, we get that Q is dense in P .

The fact that ∥x∥2 is not MLUR follows as in the proof of Theorem 6.3, it remains to prove
that it is wUR. We start by taking xn, x′n ∈ S(X,∥·∥2) such that ∥xn + x′n∥2 → 2. We then
set zn = (||xn||D, ε12e

∗
1(xn), ..., ε

1
2k
e∗k(xn), ...) and z′n = (||x′n||D, ε12e

∗
1(x

′
n), ..., ε

1
2k
e∗k(x

′
n), ...).

We now have:

∥zn + z′n∥2ℓ2 = (||xn||D + ||x′n||D)2 + ε2
∞∑

m=1

1

4m
e∗m(xn + x′n)

2

≥ (||xn + x′n||D)2 + ε2
∞∑

m=1

1

4m
e∗m(xn + x′n)

2,

where the inequality is given by the triangle inequality applied to ∥ · ∥D. Then:

(||xn + x′n||D)2 + ε2
∞∑

m=1

1

4m
e∗m(xn + x′n)

2 = ∥xn + x′n∥22 → 22 = 4.
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Since ∥zn∥ℓ2 = ∥xn∥2 = 1 and ∥z′n∥ℓ2 = ∥x′n∥2 = 1, when we apply the triangle inequality
we obtain:

∥zn + z′n∥ℓ2 ≤ ∥zn∥ℓ2 + ∥z′n∥ℓ2 = ∥xn∥2 + ∥x′n∥2 = 2

this proves that also ∥zn + z′n∥ℓ2 → 2. We also know that the norm ∥ · ∥ℓ2 of the space
ℓ2 satisfies the UR condition for which we can conclude, applying characterization 2 of
Lemma 3.4, that ∥zn − z′n∥ℓ2 → 0. This means:

∥zn − z′n∥2ℓ2 = (||xn||D − ||x′n||D)2 + ε2
∞∑

m=1

1

4m
(e∗m(xn)− e∗m(x

′
n))

2 → 0.

Which implies our final result limn→∞ e∗m(xn − x′n) = 0. We now use the key assumption
that span{e∗n} = X∗, this allows us to infer that xn − x′n ⇀ 0. So, since by taking
xn, x

′
n ∈ S(X,∥·∥2) such that ∥xn + x′n∥2 → 2 we get xn − x′n ⇀ 0, we can conclude that the

norm is wUR.

6.5. Conclusion

In conclusion we were able to answer the questions of whether a separable Banach space
can be renormed with a norm which is rotund but not MLUR in the affirmative, adding
an extra property of the norm: Gâteaux differentiability. We also proved that if the
smoothness condition of Gâteaux differentiability is dropped such norms are a dense subset
of all renormings. The second questions answered in the affirmative is whether a Banach
space with separable dual can be renormed with a norm which is weakly uniformly rotund
but not MLUR, adding the extra property of the norm: Fréchet differentiability. Even
in this case by dropping the smoothness condition it was shown that one could retrieve
the density property. Naturally, in mathematics, when some questions are answered new
ones arise. Indeed, a continuation of this work lies in answering if both the smoothness
condition and the density can be simultaneously kept, specifically:

Given a separable Banach space X, is it true that the set of all equivalent Gâteaux
smooth, rotund and not MLUR norms is dense in (P, ρ)?.

Given a Banach space X with separable dual, is it true that the set of all equivalent
Fréchet smooth, weakly uniformly rotund and not MLUR norms is dense in (P, ρ)?.
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