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Abstract

In the field of robotics, ensuring the safe and smooth motion of robotic arms within
dynamic environments is a critical challenge. This thesis addresses this challenge by
presenting a novel solution for obstacle avoidance and inverse kinematics control for a 6
degrees of freedom robotic arm in an unknown environment.

The objective is to safely drive the robot arm to a accomplish a desired task in an unknown
workspace by relying only on a partial description of its environment provided by an
exteroceptive sensor. In the design of the overall architecture, a hierarchical control
system was adopted: a high-level strategy for obstacle free path generation, a medium
level Model Predictive Controller, and low level controllers for set-point tracking.

In the context of Local Path Planning, an innovative approach based on the construction of
obstacle free convex polytopes is proposed. This method generates intermediate obstacle
free trajectories inside the convex sets of safe regions by exploiting only local sensor
measurements without the need of an a-priori description of the environment.

To achieve precise end-effector positioning in the workspace, a smooth Inverse Kinematics-
Model Predictive Control (IK-MPC) was developed. Since the IK-MPC is recomputed at
every control iteration, it is possible to deal with dynamic and unknown scenarios. The
formulation of latter optimization problem was based on a Quadratic Programming(QP)
approach which allowed the inclusion of motion constraints: position, velocity and ac-
celeration, together with obstacle collision and self-collision avoidance constraints. The
linear-quadratic problem formulation has been retained while extending these constraints
across a prediction horizon.

The formulation of the overall system architecture ensures a safety task achievement of the
robotic arm through complex and dynamic environments respecting physical constraints
of the chosen robotic model. The tests were performed on a developed Digital Twin of a
MyCobot280 Robotic Arm model that shows the effectiveness of the proposed approach.

Keywords: Model Predictive Control, Inverse Kinematics, Optimization, Quadratic Pro-
gramming, Local Path Planner
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Abstract in lingua italiana

Nel campo della robotica, garantire il movimento sicuro e fluido di bracci robotici in
ambienti dinamici rappresenta una sfida critica. Questa tesi affronta tale sfida presentando
una soluzione innovativa per l’evitamento degli ostacoli e il controllo cinematico inverso
per un braccio robotico a 6 gradi di libertà in un ambiente sconosciuto.

L’obiettivo è guidare in modo sicuro il braccio robotico per completare un compito
desiderato in uno spazio di lavoro sconosciuto, basandosi solo su una descrizione parziale
dell’ambiente fornita da un sensore esterocettivo. Nella progettazione dell’architettura
complessiva, è stato adottato un sistema di controllo gerarchico: una strategia di alto
livello per la generazione di percorsi liberi da ostacoli, un controllore predittivo di livello
medio e controllori di basso livello per il tracciamento dei set-point.

Nel contesto della pianificazione di percorsi locali, viene proposto un approccio innovativo
basato sulla costruzione di poliedri convessi liberi da ostacoli. Questo metodo genera
traiettorie libere da ostacoli all’interno dei poliedri convessi delle regioni sicure, sfruttando
solo misurazioni sensoriali locali senza la necessità di una descrizione a priori dell’ambiente.

Per ottenere un posizionamento preciso dell’effettore finale nello spazio di lavoro, è stato
sviluppato un Inverse Kinematics-Model Predictive Control(IK-MPC). Poiché l’IK-MPC
viene ricalcolato ad ogni iterazione di controllo, è possibile affrontare scenari dinamici e
sconosciuti. La formulazione del problema di ottimizzazione è basata su un approccio
di Programmazione Quadratica(QP), che consente l’inclusione di vincoli di movimento:
posizione, velocità e accelerazione, insieme a vincoli di evitamento delle collisioni con
ostacoli e auto-collisioni.

L’approccio ottiene l’evitamento di collisioni in ambienti complessi e dinamici in cui il ma-
nipolatore opera. Le prove in simulazione su un modello del braccio robotico MyCobot280
mostrano l’efficacia della tecnica proposta.

Parole chiave: Controllo predittivo(MPC), Cinematica inversa, Ottimizzazione, Pro-
grammazione quadratica, Pianificatore di percorsi.
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1| Introduction

1.1. Problem statement

In recent years, the integration of robotic arms into real-world applications has opened a
new era of automation and efficiency in different industries. Nevertheless, new challenges
have arisen with the ever evolving technologies and applications. Robotic manipula-
tors have been widely included into manufacturing industries, automation and lastly into
more complex structures such mobile robotic manipulators. Mobile manipulation systems
(MMSs) are robotic systems consisting of one or more robot arms mounted on a mobile
base as shown in Figure 1.1. The coupling of the overall system enable the manipulator
to navigate and expand its operational workspace, all while preserving its manipulative
capabilities. These systems are able to perform extensive series of tasks in various en-
vironments which can vary from agriculture [32], inspection [30], logistics [17], pick and
place [8] to even construction [27]. In this regard, the secure and safety maneuvering of
the whole mobile robotic manipulator within dynamic and unknown environments has
been an interest of recent works [43][5][1][7]. Nevertheless, with the increasing number
of applications it seems inevitable that more dexterity(than 3-DOF) of the robotic ma-
nipulators will be required independently from the mobile part of the robot (e.g. for
confined spaces or coexistence with humans). This is the reason why this thesis is fo-
cused on a novel solution for obstacle avoidance and inverse kinematics control tailored
for a 6-degrees-of-freedom robotic arm operating in unknown environments, without loss
of generality of the proposed approach that can be extended to the mobile part.

The core mission is to guide the robotic arm safely toward the successful execution of de-
sired tasks in an environment that is characterized to be unknown, with fixed or dynamic
obstacles, relying only on partial environmental information provided by an exteroceptive
sensor. The complete architecture of the system embraces a hierarchical control system,
comprising a high-level strategy for generating obstacle-free trajectories, a medium-level
Model Predictive Controller(MPC) as Inverse Kinematics(IK) and reactive obstacle avoid-
ance, and assumed low-level controllers for joint set-point tracking. More in detail, the
overall framework should address the following tasks:
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• Local Path Planning: The local trajectory planner should guarantee the gen-
eration of safe obstacle free paths as partial paths towards the desired goal. This
will be tackled by an innovative approach based on the construction of obstacle free
convex polytopes which in recent works has been proposed for other applications in
autonomous vehicles and unmanned aerial vehicles [10][31].

• End-Effector positioning in the workspace: This task should involve an In-
verse Kinematics algorithm to map the trajectory generated in task space into
joint space while reactively avoiding obstacles of the environment and respecting
other enforced constraints. To this end, an Inverse Kinematic-Model Predictive
Controller(IK-MPC) is proposed which accounts for the aforementioned tasks. The
formulation of the controller as an optimization problem is performed in a Quadratic
Programming(QP) approach, allowing the integration of motion constraints cover-
ing position, velocity, and acceleration, alongside obstacle collision and self-collision
avoidance constraints.

(a) Reference [30] (b) Reference [8]

(c) Reference [43]

Figure 1.1: Example of Mobile Robotic Manipulators
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1.1.1. Robotic manipulator

The fundamental characteristic defining a robot is its mechanical structure. Commonly,
robots are categorized based on their structural configuration, namely those with a sta-
tionary foundation, known as robot manipulators, and those equipped with a mobile base,
referred to as mobile robots. The mechanical composition of a robot manipulator com-
prises of a set of rigid bodies (links) interconnected through articulations (joints).

Typically, a manipulator is characterized by an arm that ensures mobility, a wrist that
confers dexterity, and an end-effector that performs the task required of the robot. When
referring to a robot manipulator there exist some key components, this can be charac-
terized by the numbers of degrees-of-freedom(DOF), its workspace and the type of joints
that it has. The articulation between two consecutive links can be done by means of
prismatic(translational motion) or revolute(rotational motion) joints. Thus, each joint
provides a single DOF to the whole kinematic chain, these characterize the dexterity of
manipulator to operate a given task. In a three-dimensional (3D) space for positioning
and orientating an object, six DOF are required. While the workspace represent the
feasible 3D space were the End Effector of the robot can access.

For the purpose of the kinematic modelling and simulation of this work, a MyCobot280
6-DOF Robotic Arm was chosen. This model is part of a family of laboratory robots
characterized by six revolute joints which make it able to fully operate(positioning and
orientation) in a 3D space. The kinematic parametrization will be performed by means of
the Denavit-Hartenberg method explained below, on top of it, an analysis of the workspace
will be presented in further sections.

The boundaries that are related to the joint position and velocity are specified in the
datasheet [14] of the robot model. However, it is not the case of the acceleration. Thus,
several experiments were performed in the physical robot to obtain the boundary accel-
eration values by achieving the maximum velocities of the robot with initial zero speed.
Table 1.1 shows the results obtained.

Joint Number qmin[rad] qmax[rad] q̇min[
rad
s
] q̇max[

rad
s
] q̈min[

rad
s2
] q̈max[

rad
s2
]

Joint 1 -2.7053 2.7053 -3.1416 3.1416 -15 15
Joint 2 -2.7925 2.7925 -3.1416 3.1416 -15 15
Joint 3 -2.7925 2.7925 -3.1416 3.1416 -15 15
Joint 4 -2.7925 2.7925 -3.1416 3.1416 -15 15
Joint 5 -2.7925 2.7925 -3.1416 3.1416 -15 15
Joint 6 -2.9671 2.9671 -3.1416 3.1416 -15 15

Table 1.1: Constraints limits. MyCobo280 Robotic Arm.
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Denavit-Hartenberg Parametrization

The Denavit-Hartenberg (DH) method is a systematic approach used in robotics to de-
scribe the kinematic structure and geometry of a robot manipulator. It provides a stan-
dardized framework to define the coordinate systems and parameters that characterize the
motion of each joint in a robotic arm. These parameters play a crucial role in the forward
and inverse kinematics calculations necessary for robot control and trajectory planning
[34]. For the purpose of simulation, a MyCobot280 model Robotic Arm was chosen, the
overall structure of the manipulator is shown in Figure 1.2a while the schematic coordinate
frames attached to each link according to the Denavit-Hartenberg convention are shown
in Figure 1.2b. Without any assumption of a specific tool attached to the end effector,for
the sake of simplicity, the end effector position coincides with the reference frame of the
last link. Additionally, each frame position is referred with a sub-index starting from 1 to
6, while the index 0 refers to the base frame which is fixed.

Using the standard DH convention, the computed parameters of the referenced model are
reported in Table 1.2. The orthogonal distance between the origins of two consecutive
frames, called link length, is represented by a, while d identifies the offset between the
links. Both are expressed in meters and were obtained from the corresponding data sheet
of the robot model [14]. The α parameter represents the link twist and θ is the joint angle
of the each corresponding joint. For a detailed explanation of the DH-standard convention
used for the parametrization please refer to [34].

Joint Frame α (rad) a (m) d (m) θ (rad)
1 π

2
0 0.13156 0

2 0 -0.1104 0 −π
2

3 0 -0.096 0 0
4 π

2
0 0.06639 −π

2

5 −π
2

0 0.07318 π
2

6 0 0 0.0436 −π
2

Table 1.2: Denavit-Hartenberg kinematic parametrization.
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(a) MyCobot 280.

(b) DH Frames [14].

Figure 1.2: Robotic Manipulator Model and DH Frames.
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1.1.2. LiDAR sensor

Light Detection and Ranging(LiDAR) is a laser based advanced sensing technology that
has gained significant prominence in the fields of robotics, autonomous vehicles and in-
dustrial automation. This remote sensing method uses laser light to measure distances
and generate precise three-dimensional maps of its surroundings. In Figure 1.3, a classic
structure of LiDAR sensor is presented.

The principle of operation is based on emitting laser pulses and measuring the time it takes
for these pulses to return after bouncing off objects in the environment. By calculating
the time-of-flight, LiDAR sensors can determine the distance to each point in their field of
view. A rotating scan mirror allows multiple laser pulses to be emitted in quick succession,
then a photo-detector measures the reflected light, and the data processing unit calculates
the distances and assembles the point cloud data. This real-time data provides a 360-
degree visibility that let robots to capture detailed spatial information to create a local
map of the environment [4].

In the field of robotics, LiDAR technology plays an important role as a feedback solu-
tion which enables the perception and navigation capabilities of autonomous systems.
Mounted on robotic arms, mobile robots, or drones, LiDAR sensors allow robots to navi-
gate through complex, unknown or dynamic environments with a high degree of accuracy
and safety. The integration of LiDAR technology with optimization strategies offers im-
mense potential for improving various robotic tasks. Thus, robots can exploit the real-time
environmental data provided by the LiDAR to optimize their movement, making dynamic
decisions based on optimization algorithms that can be applied into several fields such
path planning, object recognition, and obstacle avoidance, ensuring that robots perform
tasks efficiently and reliably.

Figure 1.3: Construction diagram of a LiDAR sensor.
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The main features for the specification of a 3D LiDAR sensor are:

• Angular horizontal resolution θr [rad]

• Angular vertical resolution φr [rad]

• Angular horizontal field of view θh [rad]

• Angular vertical field of view φv [rad]

• Maximum distance range rLi [m]

• Distance resolution dres [m]

1.2. Original Contributions

The main contribution of this thesis is focused on providing a novel solution to the problem
of the autonomous operation of a robotic manipulator in unknown environments. To this
end, multiple innovative contributions have been proposed, the principal ones are:

• Novel Local Path Planner based on the generation of obstacle free convex polytopes.
Additionally, a original Target Shifting strategy is presented as an heuristic approach
to the obstacle avoidance task.

• Development of a Model Predictive Controller (MPC) for the Inverse Kinemat-
ics(IK) and reactive obstacle avoidance. A Quadratic Programming formulation is
proposed including a predictive strategy(for states and the jacobian), direct accel-
eration constraints (not only joint and velocity constraints), jerk penalization in the
cost function, self-collision and obstacle as inequality constraints.

• Together, the proposed framework provides double layer of safety (obstacle free
trajectory generation and reactive obstacle avoidance) for obstacle avoidance which
is the main contribution of this work.

1.3. Thesis structure

The overall structure of presented Thesis is organized as follows.

In Chapter 2 the Inverse Kinematics Problem is generally discussed providing ground
insights about the solution presented. Additionally, the Kinematic Modelling of the chosen
MyCobot280 robot model is presented, delving into the Jacobian computation and a
feasible workspace analysis.
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Chapter 3 introduces preliminaries representations for the LiDAR simulation and obsta-
cles. Then, presents the proposed method by decoupling the entire structure into Local
Path Planning, Inverse Kinematics as an Optimization Problem and the complete itera-
tive Algorithm. For every section a extensive discussion of the related works is done as
well as the mathematical formulations.

In Chapter 4 simulation results are presented. The partial results are divided into the two
main algorithms developed for the Local Path Planning and Inverse Kinematics. While
the entire system results are presented in depth with an analysis of each complex scenario
explaining every iteration made by the overall architecture.

Chapter 5 presents the conclusions derived from this study. It also outlines potential
future directions for research and development, highlighting onto possible areas for further
exploration and enhancement.
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2.1. Introduction

Typically, the desired trajectory of a robot is planned in Cartesian space, whereas the
robot’s controller requires a joint space trajectory. Therefore, the classic Inverse Kine-
matics (IK) problem is defined as the process of determining a set of joint parameters or
angles that yield a desired position and orientation for the end-effector of a robotic arm
in the cartesian space. The significance of IK lies in its application in trajectory plan-
ning and control, where it enables robots to perform precise and controlled movements
of a desired motion. Between the traditional methods for solving the inverse kinematics
there exist two main types: completely analytical (closed form solution) and numerical
optimization techniques [34].

In general, consider a n-degree-of-freedom manipulator and denoting q, q̇ and q̈ ∈ Rn

its joint position, velocity and acceleration vectors respectively. The robot is required
to perform a main task xd(t) ∈ Rm in the Cartesian space, such that f0(q(t)) = xd(t)∀t
where f0 is the forward kinematic function related to the manipulator. This task can be
considered at differential level exploiting the relationship between the joint velocity space
and the operational velocity space. This relation is expressed as follows:

[
ṗe

ωe

]
︸ ︷︷ ︸

ẋd

=

[
JP

JO

]
︸ ︷︷ ︸

J

q̇ (2.1)

Where JP is the (3 × n) matrix relating the contribution of the joint velocities q̇ to the
end-effector linear velocity ṗe, while JP is the (3× n) matrix relating the contribution of
the joint velocities q̇ to the end-effector angular velocity ωe. Thus, the (6 × n) matrix J
is the manipulator geometric Jacobian. By considering (2.1), the joint velocities can be
obtained via simple inversion of the Jacobian matrix.

q̇ = J−1(q)ẋd (2.2)
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If the initial joint configuration of the manipulator q(0) is known, then the joint positions
can be computed by integrating velocities over time. Although this integration can be
performed in discrete time by numerical techniques, it can also lead to divergence of the
solution known as drift phenomena and as a consequence the end-effector pose correspond-
ing to the joint positions differs from the desired one. This problem is usually adressed
by including the operational space error which accounts for the difference between the
end-effector actual position and the desired one [34]:

e = xd − xe (2.3)

Thus, including the operational space error as state feedback, the inverse kinematic prob-
lem can be rewritten as:

q̇ = J−1
A (q)(ẋd +Ke) (2.4)

WhereK is a positive definite diagonal matrix weighting the error and JA is the Analytical
Jacobian. The latter uses a specific minimal representation of the end effector orientation
(eg. ZYZ Euler Angles) for the rotational velocity φ̇e instead of angular velocities ωe.
The relation between both can be expressed as:

ωe = T (φe)φ̇e (2.5)

Matrix T (φe) represents the contributions of each rotational velocity to the components
of angular velocities about the axes of the reference frame. Once this matrix is obtained
the analytical Jacobian and geometric Jacobian can be related as:

J =

[
I 0

0 T (φe)

]
︸ ︷︷ ︸

TA(φe)

JA (2.6)

It can be proven that, if JA is square and non-singular, the choice of (2.4) leads to a
convergence of the error towards zero. In particular, this solution is known as the Closed-
Loop Inverse Kinematic(CLIK) method and the corresponding block scheme is shown in
Figure 2.1. The general overview of this closed loop solution will help to understand and
develop the next steps related to the Inverse Kinematics algorithm proposed in this work.
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Figure 2.1: Inverse kinematics algorithm with Jacobian Inverse [34]

Although this solution works well for unconstrained Inverse Kinematics, if joint constraints
need to be imposed, they cannot be easily ensured in the form of the referred CLIK. Even
though there exist methods that account for the joint position limits, the constraints
for joint velocities and especially accelerations are not straightforward to include [40].
This particular reason led the present research to adapt novel numerical constrained
formulations discussed in the following sections.
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2.2. Kinematic Modelling

In order to properly formulate the Inverse Kinematics problem it is first necessary to ana-
lyze the direct kinematics equations that governs the robotic system. As mentioned, this
can be achieved through the well known Denavit-Hartenberg(DH) method which is also
adopted in this work. This previous analysis will ease the computation of the Geometrical
and Analytical Jacobian that are needed for the Inverse Kinematics formulation.

2.2.1. Preliminaries

Direct Kinematics

The direct kinematics aims to relate the pose of the end-effector as a function of the joint
variables by means of homogeneous transformation matrices. These matrices expresses
the coordinate transformation between two frames in a compact form and can be defined
in terms of the DH parameters as [34]:

Ai−1
i (qi) = Ai−1

i′ Ai′

i =


cos (θi) − sin (θi) cos (αi) sin (θi) sin (αi) ai cos (θi)

sin (θi) cos (θi) cos (αi) − cos (θi) sin (αi) ai sin (θi)

0 sin (αi) cos (αi) di

0 0 0 1

 (2.7)

Where indexes relates the i-th and (i−1)-th frame, and the function only depends on the
actual revolute joint θi and the DH parameters. Furthermore, the direct kinematic func-
tion T b

e can be calculated by the product of the intermediate homogeneous transformation
matrices, defined as follows:

T b
e (q) = A0

1A
1
2A

2
3...A

5
6 =

[
nb
e(q) sbe(q) abe(q) pbe(q)

0 0 0 1

]
(2.8)

Where nb
e , sbe and abe are the unit vectors of the frame attached to the end effector,

moreover, the rotation matrix from base to end effector is Rb
e(q) = [nb

e(q), s
b
e(q), a

b
e(q)] .

Thus, the pose(position and orientation) of the end effector can be attained by means
of the direct kinematic function. This previous analysis will ease the computation of
the Geometrical and Analytical Jacobian that are needed for the Inverse Kinematics
formulation.
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Euler Angles Representation

Additionally, as stated before, the use of a more comprehensive representation of the
orientation angles will be employed. To this end, the ZYZ Euler angles were chosen
to represent the rotational matrices of end effector. Given the rotational matrix Rb

e(q)

corresponding to the orientation of the end effector:

Rb
e(q) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.9)

Then the representation of the set φe of Euler ZYZ angles (ϕE,θE,ψE) is performed as
follows:

φe =

ϕE

θE

ψE

 =

 atan2(r23, r13)

atan2
(√

r213 + r223, r33
)

atan2(r32,−r31)

 (2.10)

Therefore, the orientation transformation matrix can be derived as:

T (φe) =

0 − sinϕe cosϕe sin θe

0 cosϕe sinϕe sin θe

1 0 cos θe

 (2.11)

2.2.2. Jacobian Computation

As the Denavit–Hartenberg convention was used for the description of the kinematic chain,
this resource is exploited in this section for the computation of the Jacobian in literal
form. To this end, the transformation matrices of each joint were computed forward and
used to get the intermediate positions (p1, p2..p6) and intermediate orientations of the
frames (z1, z2..z6). Till this point an homogeneous transformation matrix from base to
end effector could be extracted in analytical form. Finally, both of the last mentioned
expressions where used to compute the final analytical expression of the Jacobian. A
detailed explanation is represented in the developed Algorithm (2.1) where the index "i"
refers to the each joint variable and the set of joint angles defined as q = [θ1, θ2, ..., θ6].
The parameters vectors are defined as: ā = [a1, ..., an] , d̄ = [d1, ..., dn] and ᾱ = [α1, ..., αn]
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Algorithm 2.1 Jacobian Computation
Input : DH parameters ā, d̄, ᾱ, q
Output: T b

e (q) , J(q)

1: n← 6

2: while i ≤ n do
3: Computation of the homogeneous transformation matrices as Equation (2.7):

Ai−1
i (qi)←


cos (θi) − sin (θi) cos (αi) sin (θi) sin (αi) ai cos (θi)

sin (θi) cos (θi) cos (αi) − cos (θi) sin (αi) ai sin (θi)

0 sin (αi) cos (αi) di

0 0 0 1


4: Extraction of the frame’s rotation matrices and position vectors:

A0
i (qi) = A0

1A
1
2...A

i−1
i =

[
R0

i p0i

0 1

]
5: Computation of each frame orientation:

zi = R0
i z0

6: end while
7: Calculation of the each joint Jacobian as follows:

Ji =

[
zi × (p− pi−1)

zi−1

]
8: Construction of the complete Jacobian:
J (q) = [J0, . . . , J5] ∈ R6×6

9: Construction of the Homogeneous Transformation Matrix from base frame to end
effector frame:

T b
e (q) = A0

1A
1
2A

2
3...A

5
6 =

[
Rb

e pbe

0 1

]
∈ R4×4

10: Computation of the ZYZ Euler angles (Equation (2.10)) and transformation matrix(
Equation (2.11)):
T (φe)← T (ϕE, θE, ψE)

11: Finally, the analytical jacobian can be expressed as:

JA(q) =

[
I 0

0 T (φe)

]−1

J(q)

The computation of the homogeneous transformation matrix from base to end effector
T b
e (q) and the Analytical Jacobian JA(q) both in analytical form will be recalled as func-

tions to be evaluated in further algorithms. Moreover, the function to provide the end
effector pose in terms of ZYZ Euler angles will be defined as f0(q).
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2.2.3. Analysis of the Feasible Workspace

As mentioned, the feasible workspace of a robot is an intrinsic characteristic of it. The
analysis of the workspace is an important aspect of understanding its capabilities and
limitations. This exploration focus into determining the spatial coordinate domain within
which the kinematic chain can maneuver and operate effectively. Thereby, taking into
account the Homogeneous Transformation matrix from base to end effector T b

e (q) gath-
ered from the Algorithm 2.1, an extension iterative Algorithm 2.2 was developed. The
main purpose of the latter is to retrieve a set of points of the feasible workspace Pfe =

[p1, ..., pNfe
] based on the configuration space and compute the setW which is the convex

hull representation of the feasible workspace. The parameters θmin and θmax represent the
joint minimum and maximum limits of the robot,and θstep the minimum step to loop the
range of each joint through all the configuration space.

Algorithm 2.2 Computation of the feasible workspace
Input : θstep , T b

e (q) ,θmin ,θmax

Output: W
1: xe(q)← T b

e (q)(4,1:3)

2: for all θi = θmin : θstep : θmax do
3: Compute feasible points matrix:

P i
fe = xe(qi)

4: end for
5: W = chull(Pfe)

A result of the presented algorithm can be observed in Figure 2.2, where the green dots
represents the point cloud of feasible workspace Pfe and the light-blue polyhedron repre-
sents the convex hull W . Notice that this representation will be remain invariable since
it is referred to the world coordinate frame of the robot.

It should be also highlighted that a further development of this algorithm could analyze
the singularities related to the kinematic chain based on the Singular Values Decompo-
sition(SVD) of the determinant of the Jacobian which was also computed by Algorithm
2.1. Nevertheless, this is out of the scope of this work.
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Figure 2.2: Feasible Workspace
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3.1. Introduction

As presented in the last section, the Inverse Kinematics problem is challenging by itself and
it can be addressed by different methods; nevertheless, a precondition is required which
is the reference trajectory in coordinate space to follow towards a target position. This
trajectory is generated by automatic path planners which typically take into account a
preliminary description of the environment. On the contrary, given that the scenario of the
manipulator does not have any a-prior description of the environment, the automatic path
planner will be only account for local information from the exteroceptive sensor therefore
this will be referred as a Local Path Planner. Accordingly, the proposed approach can
be decomposed in two main structures detailed in the following sections. In detail, the
overall control architecture of the proposed approach is shown in Figure 3.1.

Figure 3.1: Block diagram scheme of the architecture

As it can be observed, the Local Path Planner anticipates a generated trajectory (position
XD and velocity ẊD) to the Inverse Kinematics block, and the latter provides the joint
references(q(k), q̇(k)) to the low level controllers to perform the required motion. The
feedback of the actual position of the robot is computed by its forward kinematic function
Tf(q(k)) while the point-cloud P of the position of the obstacles in the environment is
provided by the exteroceptive LiDAR sensor. Each of the mentioned variables will be
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formally defined in the subsequent sections.

Since for the purpose of this work the motion of the robot will be performed in a simulated
environment, some assumptions were taken to mimic as close as possible a real-world
scenario:

• The LiDAR sensor is mounted on the top of the robot, that is the end effector
position. The sensing from the LiDAR is simulated by an algorithm, that is based
on the mounted position.

• The environment will be characterized by three-dimensional obstacles, convex or
non-convex, with variable cross-section. Where each obstacle can be described as a
compact set.

• The robotic manipulator task is to reach a general target position ptarget inside the
environment which is external to every obstacle.

• The low level controllers are assumed to have a sufficient large gain margin.

The methodology adopted focuses in the development of modular simpler algorithms
which together conforms the complete algorithm of the proposed solution. Therefore, this
section is meant to present the formulation and algorithms belonging to the Local Path
Planning stage and the Inverse Kinematics, both will serve as ground for the understand-
ing of the complete structure presented in the last section.

3.2. Preliminaries

Since the presented control architecture is meant to be evaluated in a simulation envi-
ronment, it is essential to define additional components of the environment apart from
the model of the robot. It is necessary to include a model of the obstacles inside the
environment coupled with an algorithm that can emulate the LiDAR sensing. Therefore,
this section provides insights in the definition of the obstacles inside the environment and
LiDAR measurements which will be used in the formalization of the problem on hands.

3.2.1. Obstacles Representation

Obstacles are represented as rectangular cuboids, as depicted in Figure (3.2). This par-
ticular shape is convex which allows various straightforward representations. Specifically,
it is highly advantageous to represent obstacles using the six inequalities associated with
the planes that describe their faces [9]. This method simplifies the process of determining
whether a given point in space is within an obstacle. Although this approach focuses on
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simple and convex shapes, it does not restrict the ability to represent more complex ob-
stacles. Complex shapes can be achieved by combining multiple simple objects, including
non-convex ones.

Figure 3.2: Obstacle representation with one plane associated to the upper face

Equation (3.1) corresponds to a three-dimensional linear constraint associated with an
obstacle’s face. If a point satisfies all six constraints related to the faces of a particular
obstacle, it is considered to be inside the obstacle.

aix+ biy + ciz + di ≥ 0 , i = 1, ..., 6 (3.1)

Each obstacle can be stored as a 6x4 matrix containing the parameters of the inequali-
ties as shown in Equation (3.2) where j represents the index. While the representation
assumes obstacles to be rectangular shape cuboids for simplicity, it is equally suitable for
representing generic cuboids and convex polyhedra by increasing the number of inequali-
ties as needed.

Oj =



a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a5 b5 c5 d5

a6 b6 c6 d6


∈ R3 (3.2)

Therefore, the overall set of obstacles can be defined as :

O =

Nobs⋃
j=1

Oj (3.3)
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3.2.2. LiDAR simulation

For the purpose of this study, A simulation algorithm is employed to emulate LiDAR
sensing, taking into account that is mounted in the robot end effector position. This
assumption is not contradictory of what is a common practice nowadays in the industry.
This algorithm generates data information that closely resembles what would be obtained
from a physical sensor. The accuracy of the simulations and the execution time signifi-
cantly relies on this sensor emulation. Thus, an essential requirement for this model is its
computational efficiency since LiDAR sensors typically provide data at a high refresh rate,
often exceeding 1 kHz. Therefore, the model must be computationally cheap to ensure
that simulations can be conducted efficiently without compromising accuracy. To this
end, an extension of the Algorithm proposed in [9] is formulated in Algorithm (3.1) for a
3D system environment. The advantage of this algorithm is that exploits the formulation
of the obstacles boundaries as inequalities in order to optimize the computations needed
to check intersections enabling it to reduce the computational effort and time.

Therefore, the model of the LiDAR sensor must take as input the position of the end
effector of the robot, pEE(kLi) together with the set of obstacles O = [O1, ...,ONobs

]

and the parameters vector paramLi = [φv, rLi, dres] at time kLi. Given the resolution of
the vertical(elevation) and horizontal(azimuth) angles, the complete dimensional vectors
of the angles to produce the points cloud of the sensor can be respectively defined as
φ̄ = [−φv,−φv + φacc,−φv + 2φacc, ...,+φv] ∈ RNv and θ̄ = [0, 2θacc, 3θacc, ..., 2π] ∈ RNv

. Then the algorithm must return as output a set of sensor readings P(kLi) ∈ R3×NvNh

and a vector of distances dLi(kLi) ∈ RNvNh with respect to the center of the sensor(in this
case coincides with the end effector position) in the same form that a real sensor would
provide.

The chosen values for the LiDAR model parametrization are reported in Table (3.1). As
it can be noticed, in order to avoid excessive computational time the resolution of the
measurements was increased as well as the distance resolution with respect to standard
values(less than 1 deg of precision) that can be encountered in commercial LiDAR prod-
ucts. Nevertheless, the remaining parameters related to the field of view were chosen
according to standard specifications.
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Parameter Value
Angular horizontal resolution (θr) [deg] 5
Angular vertical resolution (φr) [deg] 5

Angular horizontal field of view (θh) [deg] 360
Angular vertical field of view (φv) [deg] 75

Maximum distance range (rLi) [m] 0.5
Distance resolution (dres) [m] 0.01

Table 3.1: LiDAR Parameters

Algorithm 3.1 LiDAR Simulation Algorithm
Input : O ,paramLi, pEE(kLi)

Output: P(kLi) , dLi(kLi)

1: ind← 1

2: for φ = −φv : φacc : φv do
3: for θ = 0 : θacc : 2π do
4: for d̄c = dres : dres : rLi do
5: pc ← pEE(kLi) + [dc cos(φ) cos(θ), dc cos(φ) sin(θ), d sin(φ)]

T

6: for i ≤ Nobs do
7: Ac ← −Oi,(:,1:3)

8: bc ← Oi,(:,4)

9: if Acpc ≤ bc then
10: dLi ← min(rLi, dc)

11: if dc ≤ rLi then
12: Pind(kLi)← pc

13: else
14: Pind(kLi)← pc − [rLi cos(φ) cos(θ), rLi cos(φ) sin(θ), rLi sin(φ)]

T

15: end if
16: end if
17: end for
18: end for
19: ind← ind+ 1 ;
20: end for
21: end for

As a graphical representation, a complete overview of the LiDAR sensor measurements
P(kLi) (light-blue dots) and four obstacles representations are reported in Figure 3.3. As
mentioned before, the LiDAR sensor is assumed to be mounted in the end effector position
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of the robot, thereby, the point cloud obtained will always depend on this position.

Figure 3.3: LiDAR measurements (light-blue dots) and Obstacles.

3.3. Local Path Planning

This section is divided in three main parts, first a state-of-the-art analysis is presented to
ground the solution proposed. Second, the algorithms for the Convex Approximation of
the Free Space and Trajectory generation are formulated and deployed.

In this methodology, the trajectory generation is generated every time the robot requires
it, in other words, when the robot already performed its last trajectory fed. Therefore,
the creation of the obstacle free polytope and the trajectory generation will be performed
after a varying time period τt which can be defined to happen every kt step. Specifically,
between the time steps of kt(t) and kt(t+ τt) the trajectory is generated and fed into the
Inverse Kinematics algorithm.
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3.3.1. Related works

The problem of autonomous navigation of robots has been addressed quite extensively in
the literature [3]. In this domain, trajectory planning algorithms are typically approached
through two main strategies: Global Planning and Local Planning.

Global planning algorithms require a prior description of the map of the environment, or
at least the area between the current and target robot positions. Therefore, are able to
generate obstacle free trajectories given the current configuration of the obstacles in the
space. Algorithms based on probabilistic techniques such as PRM(Probabilistic Roadmap)
or RRT (Rapidly-exploring Random Tree) are widely used in the industry [34].

However, in new robotics applications with dynamical environments the robot must be
able to plan its motion online and without an entire knowledge of its environment. This
entails utilizing partial information about the workspace acquired during motion, relying
on sensor measurements. Therefore, local methods rely solely on local environmental
information, suppressing a previous knowledge of a complete map. As a result, they
are well-suited for online and reactive trajectory planning [34]. In this domain, path
planning via artificial potential fields is a well know method which aims to drive the
robot towards a goal configuration while avoiding obstacles. In detail, each obstacle
produces an artificial potential function positioned in the center of the obstacle and the
gradient of such function can be interpreted as a repulsive force pushing the robot away
from the obstacles. Nevertheless, this method suffers from local minima problem when the
pulling and pushing components are equal and opposed, so that the virtual force acting on
the robot becomes zero and the robot stops moving. Consequently, the motion planning
methods via artificial potentials are not complete in general, because it may happen that
the goal configuration is not reached even though a solution exists [35]. Several efforts had
been conducted to avoid the local minima problem; nevertheless, most of them does not
rely on an offline planned nominal path to be possibly modified/adapted. Furthermore,
only a few of them are actually able to include kinematic constraints, such as velocity
limits or limited joint ranges, as well as any other kind of constraints to be accounted
during task execution [6].

In this regard, a new methodology based on the generation of Convex Regions of Obstacle-
Free Space has been acquiring popularity during the last years in several fields such au-
tonomous vehicles [10], unmanned aerial vehicle [31], humanoid robots [26] and specifically
in the field of robotic manipulators [39][29][12]. This method allows the generation of re-
gions that are convex and collision free that surpass efficiently the computational burden
of collision checking from standard motion planning techniques while driving the agents



24 3| Proposed Method

through guaranteed safe trajectories. In detail, the trajectory planning under an approx-
imated obstacle free region can be approached in Configuration space or Cartesian space,
and can be generated based on convex optimization techniques(were constraints can be
enforced) or efficient algorithms. For example in [12] the generation of convex polytopes is
based Cartesian space while in [39][29] in configuration spaces, both approaches by means
of convex optimization techniques. Nevertheless, the computational time presented for
a 7DOF robot in a cluttered environment is in order of the 103 seconds which can com-
promise an online iterative algorithm. On the other hand, new computationally efficient
methods based on Cartesian space were developed in [10][31] showcasing its potential for
an online real implementation which is the aim of this work.

On top of the latter mentioned approaches, this work proposes a structural division.
From one side, the generation of obstacle-free regions in Cartesian space for the purpose
of trajectory generation by including the latter computational efficient algorithms in the
current field of robotic manipulators. While for the inclusion of kinematic constraints
and reactive obstacle avoidance, a trajectory following inverse kinematics its proposed
as an optimization problem. The proposed partition guarantees a double layer of safety
(obstacle free trajectory generation and reactive obstacle avoidance) for obstacle avoidance
which allows a safe motion of the manipulator towards a target position in a obstacle
characterized environment .

3.3.2. Convex Approximation of the Free Space

As mentioned before, the manipulator has an exteroceptive sensor used to gather informa-
tion of its environment. The position and configuration of this LiDAR sensor mounted in
the head of the robot recovers all the measurements of the closest obstacles to the robot
within the range of measurement. Lets denote P(kt) = [ρLi,kt(0), ..., ρLi,kt(NLi − 1)] ∈
R3×NLi the NLi readings of the LiDAR sensor at time kt, pEE as the position of the end
effector of the manipulator and Nobs the number of obstacles in the environment. Ad-
ditionally, considering user selected quantities βa > θr and βe > φr i.e. azimuth and
elevation angular resolution intervals defining a number nv of equally spaced candidate
vertices on the unit sphere centered at the end effector position. Where for an ordered set
of points Sv = {Sv

1 , ..., S
v
nv
} ∈ R3 (in this case vertices), the notation chull(Sv) denotes

their convex hull. As proposed in [31], the Algorithm 3.2 for the construction of convex
sets of obstacle free regions was developed with small modifications.

First, a regular polyhedron with nv vertices circumscribed in a sphere of radius dmin is
built. Then, the vertex corresponding to the iteration is radially translated with respect
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to the center by the distance dstep, and the convex hull is updated. Thus, if the resultant
hull does not contains any sensor measurement P(kt) and the computed vertices are
inside the detection range, the polyhedron S(v) is updated and the operation repeats for
the next vertex. On the contrary, if the condition does not meet, the last expansion is
removed and the position of the vertex is blocked. The cycle concludes when all auxiliary
variables γi are set to true (as indicated in line 7). This condition guarantees that either all
vertices have been blocked or they reached the maximum allowable distance of rLi. When
the full process is completed, the algorithm returns the convex set Sv of the resultant
polyhedron. Although the generated polytope Sv represents an obstacle free region, it
does not guaranteed that this region is inside the feasible space of the robot. Moreover,
the generation of a obstacle free trajectory towards a target inside the polytope could lead
to an unfeasible task for the robot. Therefore, according to the analysis of the feasible
workspace developed in Section 2.2.3, this polytope must also lay inside the boundaries
of the feasible space of the robot. To this end, an intersection of the convex sets must be
carried out. Since the intersection of two convex sets is also convex, the algorithm returns
the convex hull S(kt) of the intersection of the aforementioned sets (line 16).

Algorithm 3.2 Convex under-approximation of the free space
Input : P(kt), W , pEE(kt) , dstep, rLi
Output : S(kt)
Procedure : polytope_gen(P(kt),W , pEE(kt), dstep, rLi)

1: Finding the minimum distance to the point cloud:
dmin(kt)← mini=0,...,NLi−1 |ρLi,kt(i)|

2: Initialization of variable γ as a vector of zeros of dimension nv:
γ ← 01×nv

3: for i = 0 : nv − 1 do
4: Sv

i ← pEE(kt) + dmin(kt)[cos(iβe) cos(iβa), cos(iβe) sin(iβa), sin(iβe)]
T ;

5: end for
6: for i = 0 : nv − 1 do
7: while γi ̸= 1 do
8: S̄v

i ← Sv
i + dstep[cos(iβe) cos(iβa), cos(iβe) sin(iβa), sin(iβe)]

T ;
9: if P(kt) /∈ chull(S̄v) ∧ (∥S̄v

i − pEE(kt)∥22 < rLi) then
10: Sv ← S̄v

11: else
12: γi ← 1
13: end if
14: end while
15: end for
16: S(kt) = chull(Sv ∩W)

A graphic representation of the outcome of the Algorithm is shown in Figure 3.4, where
the light-blue dots represents the sensor measurements, the light-red region represents the
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obstacle free region Sv and the green region represent the intersection with the workspace
S(kt).

Figure 3.4: Example of construction of the convex approximation of the free region. Left:
Isometric View. Right: Side view.

3.3.3. Obstacle Free Trajectory Generation

This section focuses on the proposed strategy for the local path planning of the 6-degree-
of-freedom robotic manipulator operating in an unknown environment. The key challenge
is to avoid obstacles in the environment that might impede the robot’s movement toward
its target location. The method involves a multi-step strategy, starting with a Temporary
Target Shifting Strategy to the Trajectory Generation of the obstacle-free reference path
to be fed to the Inverse Kinematics block.

The Temporary Target Shifting Strategy tackles the problem of finding an obstacle free
path when an obstacle obstructs the robot’s direct path to its target position. The
proposed strategy selects a temporary target from the sensor readings within a specific
threshold range in order to avoid trajectories towards an imminent obstacle. The choice
of this temporary target involves vector-based strategies.

Following this strategy, the Trajectory Generation phase is deployed. Based on the con-
vex under-approximation of free space, the strategy generates trajectories for the robot’s
movement from its current location to a temporary target. This process involves defining
minimum jerk polynomial trajectories to ensure smooth, controlled, and vibration-free
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motion. The orientation of the robot’s end effector is also considered, aligning it towards
the target position.

Finally, the complete Obstacle Free Trajectory Generation algorithm, detailed in Algo-
rithm 3.5, synthesizes and combine these steps to generate the robot’s path, handling
obstacle avoidance and orienting the robot towards its target location. The trajectory
is developed to guarantee an obstacle-free path characterized by smooth polynomial mo-
tions.

Temporary Target Shifting Strategy

A frequently encountered issue in optimization-driven autonomous path planning without
a preliminary knowledge of the environment occurs when the agent faces an obstacle
situated between the current location and the intended target. As proposed in [31], a
target shifting strategy must take place in order to avoid a locally optimal position where
the agent could stop moving because any other movement will just increase the distance
from the target position.

Contrary to what is proposed in [31] for unmanned aerial vehicles (UAVs) where the
temporary target is the obstacle free reading that is closest to the target, in this case,
the agent is a 6-DOF robotic manipulator with unknown obstacles in its workspace which
makes the problem more sensible to the choice of a temporary target. The sensibility of
the chosen target is explained by the fact that the robotic arm has a fixed base frame
position with a connected kinematic chain(not only a compact body) that allows different
configurations, and that the control architecture includes a reactive obstacle avoidance
function. Together, the overall implementation can lead to unstable configurations or
repetitive movements of the robot trying to reach the aforementioned target position.
Thereby, the target shifting strategy adopted differs mainly in the choice of temporary
target.

Considering the sensor readings as P(kt) at time kt, and a specific threshold ε̄, the set of
candidate indexes can be defined as:

I(kt) =
{
ī : ī = ρLi,kt(i) > ε̄ , ∀i = 0, .., NLi − 1

}
The parameter ε̄ allows to include the sensor readings of distant obstacles but within the
range as possible temporary targets. Correspondingly, the temporary target value can be
obtained from the set of candidate indexes contained in ī ∈ I(kt). Therefore, a subset of
the point cloud but containing the candidate indexes is defined:
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Is(kt) =
{
ρLi,kt (̄i) : ī ∈ I(kt)

}
Since the strategy is based on the cosine similarity of the candidate points with respect to
the target position, a unitary vector pointing from the actual position towards the target
should be defined:

p⃗t(kt) =
ptarget(kt)− pEE(kt)

|ptarget(kt)− pEE(kt)|

Subsequently, on top of the definitions, the strategy for temporary target shifting is de-
ployed in Algorithm 3.3. First (line 1), a cloud of vectors from the end effector current
position towards the candidates point cloud Is(kt) is defined. This cloud of vectors con-
tains all the directions were the trajectory could be shifted. Then, a cosine similarity set
Sc is built given the cloud vector and the vector pointing towards the target position p⃗t(kt)
(lines 3-5). Consequently, a check (lines 6-10) of the cosine similarity set is performed
with the aim to identify if there is visibility of the target point. The qualitative visibility
is defined numerically by the tolerance TOLsc which specifies a high value of cosine simi-
larity (eg. 0.99). On the contrary, if there is not visibility, a candidate point of the point
cloud Is(kt) is chosen based on the parameter maxcos which will maintain the candidate
target far from the obstacle. Finally (lines 12-20), a linear path towards the candidate
target p̂Li is constructed with the objective to extract the furthest point belonging to the
linear path but within the boundaries of the obstacle free Convex Polytope S(kt) .

Graphically, this method can be observed in Figure 3.5, where the light-green area rep-
resents the obstacle free polytope, the red line represents the unfeasible direct trajectory
from the end effector position of the robot towards the target and the blue dotted line
represents the shifted target position(represented by a blue star).
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Algorithm 3.3 Target Shifting Strategy
Input : Is(kt) , S(kt) , flag1 , ptarget(kt) , pEE(kt) , TOLsc ∈ [−1, 1] , maxcos ∈ [−1, 1]
Output: ptemp(kt)

Procedure : temp_target(Is(kt),S(kt), f lag1, ptarget(kt), pEE(kt), TOLsc,maxcos)

1: I⃗s = (Is(kt)− pEE(kt))./vecnorm(Is(kt)− pEE(kt))

2: NI ← length(Is(kt))
3: for i = 1 : NI do
4: Sc(i) = I⃗s(i) · p⃗t(kt)
5: end for
6: if (∃Sc(i) > TOLsc∀i) ∧ flag1 then
7: p̂Li = ptarget

8: else
9: ī : arg maxī=1,...,NI

Sc(̄i) < maxcos

10: p̂Li = Is(kt)(̄i)
11: end if
12: ⃗̂pLi = p̂Li − pEE(kt)

13: res← 1000

14: for j = 1 : res do
15: t = (j − 1)/(Res− 1)

16: P̂ (i, :) = pEE(kt) + t⃗̂pLi

17: end for
18: P̂in = {P̂ (i, :) : P̂ (i, :) ∈ S(kt) , ∀i = 1, ..., res}
19: NPin

← length(Pin)

20: ptemp(kt) = arg maxi=1,...,NPin
∥pEE(kt)− P̂in(i, :))∥22

Trajectory Generation

Given the convex under-approximation of the free space S(kt), the actual position pEE(kt)

and the temporary target ptemp(kt), it is now possible to proceed with the strategy for
trajectory generation in coordinate space. As the robot intermediate task are going to be
defined in Cartesian space, the pose of the end effector PEE(kt) = [pEE(kt), φEE(kt)] ∈ R6

must be taken into account. In practice, this can be achieved with trapezoidal, circular
or polynomial trajectories for the path parametrization.

Consequently, without loss of generality, the use of minimum jerk polynomial trajectories
was employed given the advantages of this method to suppress vibrations and generation
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Figure 3.5: Target Shifting Example maxcos = 0.8. The obstacle free polytope is repre-
sented by the light-green geometry, the direct path towards the target is in solid red and
the path towards the temporary target is in dashed blue.

of smooth movements while preserving accuracy [33].

Polynomial trajectories serve as a fundamental technique for defining and governing mo-
tion profiles within robotic systems. These trajectories, often characterized by their
smoothness and controllability, provide a structured framework for shaping and directing
the movement of robotic elements. They are represented by mathematical functions that
offer a versatile means of controlling motion with precision and accuracy.

p(t) = a0 + a1t+ a2t
2 + . . .+ ant

n (3.4)

The equation above demonstrates the general form of a polynomial trajectory, where
coefficients a0, a1, a2, . . . , an determine the specific shape and behavior of the trajectory.
The choice of these coefficients determine the smoothness and shape of the trajectory
generated. In order, to assign the polynomial parameters, the initial pEE and final ptemp

points, the travel time τ and the boundary conditions for velocity, acceleration and jerk,
need to be defined.

As mentioned before, the minimum jerk trajectory generation was chosen for the purpose
of this work, which apart from considering the resultant trajectory subject to a polyno-
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mial parametrization(eg. Equation (3.4)), this method also minimizes the jerk executed
through the path. Since the scope of this study is not focused in the trajectory gen-
eration algorithm, the algorithm function minjerkpolytraj developed by the the Robotic
System Toolbox [38] of Matlab [28] was used. Technical details of the formulation of
the aforementioned algorithm are expressed in [33].

The function outputs positions XD and velocities ẊD, accelerations ẌD, and jerks
...
XD

at a given number of samples, Nsamp, initial and final position, and, initial and final time
points. It should be pointed out that apart from the position trajectory, an orientation
trajectory must also be generated. As referred in Section 2.2.2, the Euler ZYZ orientation
representation was chosen, thereby, the trajectory generated should be in term of the set
of Euler angles : ϕE, θE and ψE. Nevertheless, the final orientation of the end effector
is a sensible choice for the purpose of the task given to the robot and for the performed
motions through the environment. Since the choice of the latter is mostly related to
the specific task of the robot, without lose of generality, it is assumed that the robot
orientation should be always pointing towards the temporary target position. This is
represented in Figure 3.6 by following the example temporary target given in Figure 3.5.

For this purpose, Algorithm 3.4 was designed to return the set of Euler angles : ϕE, θE
and ψE given the current and desired position of the robot.

Figure 3.6: Orientation Positioning. The direct trajectory towards the target is repre-
sented by the solid red line, the trajectory towards the shifted target in solid blue and
the orientation axis(x, y, z) are represented by the red, green and blue lines centered at
the initial and final positions.
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Algorithm 3.4 Orientation Positioning
Input : ptarget(kt) , pEE(kt)

Output: ϕE(kt) , θE(kt) , ψE(kt)

Procedure : get_orientation(ptarget(kt), pEE(kt))

1: Getting directional vector:
p⃗φ = ptarget−pEE(kt)

|ptarget−pEE(kt)|

2: Computation of the first rotation angle:
ϕE(kt)← atan2(p⃗φ,(2), p⃗φ,(1))

3: Creation of intermediate vector to align with Z-axis:

Rz =

cos(−ϕE(kt)) −sin(−ϕE(kt)) 0

sin(−ϕE(kt)) cos(−ϕE(kt)) 0

0 0 1


p⃗temp1 = Rzp⃗φ

4: Computation of the second Y rotation angle:
θE(kt)← atan2(p⃗temp1,(3), |p⃗temp1)|

5: Rotation of intermediate vector around Y-axis:

Ry =

cos(−θE(kt)) 0 sin(−θE(kt))
0 1 0

sin(−θE(kt)) 0 cos(−θE(kt)))


p⃗temp2 = Ryp⃗temp1

6: Computation of the third Z rotation angle:
ψE(kt)← atan2(p⃗temp2,(2), p⃗temp2,(1)|)

Algorithm

Exploiting the algorithms detailed in the above sections, now a complete algorithm for
Obstacle Free Trajectory Generation as a Local Path Planner can be developed by stating
first some preliminary conditions.

First, the problem of generating a trajectory inside a variable volume polytope intrinsi-
cally leads to the generation of trajectories of different lengths, thus the time law cannot
be assigned with a constant time parameter. Moreover, a concatenation of linear paths
cannot be performed since the subsequent temporary target position is not know at iter-
ation kt. Therefore, as a rule of thumb, this time parameter can be defined proportional
to a standard linear distance Dtot that the robot can perform for a given fixed time t̄f
(see Line 16).

Second, the variable flag1 is referred to a parameter used to drift even more the temporary
target position if the robot gets stuck close to an obstacle more than one kt iteration (see
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Lines 9-13).

Third, when the target position is detected to be inside the convex polytope(see Lines
18-21), the security and influence distances are relaxed(see Section 3.4.3), and the time
to reach the target is extended to generated a slow positioning motion.

These both considerations were included in the complete Algorithm 3.5. After the pa-
rameters assignment, the algorithm starts by generating an obstacle free polytope S(kt)
given the current sensor measurements (line 7). Then, the belonging of target position
ptarget(kt) into the obstacle free polytope is performed. If the condition is not met, then
the temporary target shifting strategy is performed (lines 9-15). As mentioned, themaxcos
parameter it is conditioned if the target needs to be further shifted, this last drift is done
by means of a monotonically decreasing function (line 10) which can be tuned with respect
to the application. On the contrary, the target position ptarget belongs to the convex poly-
tope S(kt) were a trajectory could be generated directly towards it. Finally, the ZY Z
Euler orientation angles are computed pointing towards the temporary target position
and the trajectory is generated with zero boundaries conditions(Bcnd) for velocity and
acceleration (lines 23-27).

A 3D representation of the position and orientation trajectories generated(result of Algo-
rithm 3.5) inside the obstacle free convex polytope is reported in Figure 3.7. Graphically,
it can be observed that the orientation trajectory is iteratively moving towards the di-
rection of the temporary target which is the desired behaviour. On the other hand, the
generated trajectory vectors XD and ẊD are shown in Figure 3.8 respectively.
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Algorithm 3.5 Obstacle Free Trajectory Generation
Input : P(kt) ,Is(kt),W ,φEE(kt),pEE(kt),ptarget(kt), pobs, Dtot,tinit,Ts,t̄f ,flag1
Parameters : di , ds , dstep , rLi ,TOLsc ∈ [−1, 1] , maxcos ∈ [−1, 1], d̄obs
Output: XD ,ẊD , Dis

1: dstep ← 0.005

2: rLi ← 0.5

3: TOLsc ← 0.995

4: maxcos ← 0.6

5: di ← d̄i

6: ds ← d̄s

7: S(kt)← polytope_gen(P(kt),W , pEE(kt), dstep, rLi)

8: if ptarget(kt) ̸∈ S(kt) then
9: if p6obs < d̄obs then

10: maxcos = 0.5flag1∗0.8

11: flag1 = flag1 + 1

12: else
13: flag1 = 1

14: end if
15: ptemp(kt)← temp_target(Is(kt),S(kt), f lag1, ptarget(kt), pEE(kt), TOLsc,maxcos)

16: τt(kt) =
∥pEE(kt)−ptemp(kt)∥22

Dtot
t̄f

17: Dis ← [d̄i, d̄s]

18: else
19: ptemp(kt)← ptarget(kt)

20: Dis ← [d̄i − 0.01, d̄s − 0.01]

21: τt(kt)← 2

22: end if
23: φtemp(kt)← get_orientation(ptarget(kt), pEE(kt))

24: Bcnd ← 0

25: ttemp = tinit : Ts : τt(kt)

26: Ntp ← length(ttemp)

27: [XDẊD]← minjerkpolytraj(tinit, τt(kt), [pEE(kt);φEE(kt)], [ptemp(kt);φtemp(kt)](kt), Ntp, Bcnd)
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Figure 3.7: Position and Orientation Trajectories 3D Representation.The direct trajectory
towards the target is represented by the solid red line, the trajectory towards the shifted
target in solid blue and the orientation axis(x, y, z) are represented by the red, green and
blue lines centered at the initial and final positions.
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3.4. Inverse Kinematics as an Optimization Problem

As presented in Section 2.1, the standard Closed Loop Inverse Kinematics solution relays
on the inverse of the analytical jacobian and the compensation of operational space error
but does not accounts for joint constraints if they need to be enforced. Although different
methods were developed to include the satisfaction of joint constraints in a Closed Loop
solution, the inclusion of higher order constraints(velocity and acceleration bounds) are
not straightforward to include [40]. On the contrary, during the last years in the field of
robot control, online-solvable instantaneous constrained optimization has become increas-
ingly popular(eg. [18][2][37][40][44][21]) due to its capacity to easily incorporate kinematic
functions, position, velocity, and acceleration constraints into the problem formulation.

In light of the above mentioned, the current section will be focused on the discussion,
formulation and derivation Inverse Kinematics as an optimization problem.

3.4.1. Related works

There exist few main approaches to define the robot task in the formulation of an opti-
mization problem. One main approach is to define the robot task as a constraint while
minimizing a suited cost function that can include velocity or acceleration terms [2]. Al-
though the task error can also be included as a quadratic term in the cost function, just
one step ahead prediction of system evolution is normally taken into account [40][44].
In detail, the future state and constraints behaviour are not included in the problem
definition, so that a feasible solution at a given time instant can lead to an unfeasible
configuration in the future [7].

With the increasing computational power, recent works [1][7] propose Model Predictive
Control(MPC) to account for the system evolution over a prediction horizon and includ-
ing the joint error evolution to account the state feedback. The advantage of this method
is that the state feedback controller is optimal over the N future time steps and complies
with kinematic constraints. Nevertheless, the aforementioned studies propose an archi-
tecture where the Inverse Kinematics solution is given as a reference to the MPC which
is formulated only in joint space. Since the Inverse Kinematics is solved independently,
the inclusion of tasks related to the operational space(eg. collision avoidance) cannot be
directly enforced and complexity of the overall architecture is increased.

In [16] the operational space task as a reference of the MPC is included. Therefore, the
inverse kinematics problem is solved at every time instant but allowing to impose not
only kinematic constraints of the joints but also secondary tasks in the operational space
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such human-robot distance maximization or collision avoidance. Lastly, this approach has
gained importance since it also allows to include an online or dynamical motion planning
executed by the optimization algorithm while following a nominal Cartesian task and
accomplishing safety tasks in dynamical environments [15][13][23]. Even though the latter
formulation shows significant advantages, the prediction of the future state of the system
over an horizon has been a topic of discussion. Moreover, the inclusion of the task space
error and velocity error in the cost function intrinsically contains the evaluation of the
jacobian and homogeneous transformation functions which are a non-linear functions of
the joint configuration.

With the aim to maintain the linear nature of the optimization problem over an horizon,
several methods were developed. For example in [2] a time integration of the joint states
is included in the QP problem for the prediction of the system behaviour over the horizon,
while the future prediction of the Jacobian is carried out by the Taylor expansion using
the Jacobian derivatives. Although this method is linear with respect to the decision
variables, the computation of the Jacobian derivatives involves the evaluation of non-
linear functions at each time step over the prediction horizon, which increases the total
execution time and complexity. Instead, as proposed in [15][1][7] a linearization of the task
at each iteration k is formulated by using the solution obtained at time k− 1 to compute
the future trajectory vector of joint positions qk+i so that the overall linear nature of the
QP problem is preserved.

While the ultimate quadratic program (QP) is an approximation of the initial non-linear
problem, it allows the computational time to be of the same order of magnitude of local
methods(in the order of milliseconds), but still conferring the advantages of a predictive
strategy. Furthermore, the QP formulation of the IK problem is not limited to manip-
ulators but it can also be used in a wide variety of robots such mobile, humanoids [20],
hexapods [22] or a combination of them such as mobile robotic manipulators as shown in
[1][7].

In this regard, the contribution of the present work is to propose a QP formulation of the
IK-MPC which includes the operational space task as a reference, a predictive strategy,
direct acceleration constraints (not only joint and velocity constraints), jerk penalization
in the cost function, self-collision and obstacle avoidance as inequality constraints. It
should be noticed that the latter acts more as a reactive strategy for obstacle avoidance
and trajectory re-planning since the obstacle free reference trajectory is generated by a
local path planning algorithm explained in Section 3.3.
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3.4.2. Problem Formulation

In this section, the main formulation of the proposed approach for the Inverse Kinematics
as an optimization problem is presented. First, the system model is defined, based on
the discrete-time Linear Time-Invariant (LTI) system governing robotic kinematic chain.
Second, the fundamental objective function is defined, denoted as L, which the optimiza-
tion routine seeks to minimize. Finally, the methodology for the prediction of the future
system states and jacobian is discussed and presented.

System Model

Considering the discrete time LTI system describing the linear kinematics as a dual-
integrator system, whose dynamic equation can be written as :[

q(k + 1)

q̇(k + 1)

]
︸ ︷︷ ︸

z(k + 1)

=

[
In TsIn

0n×n In

]
︸ ︷︷ ︸

A

[
q(k)

q̇(k)

]
︸ ︷︷ ︸

z(k)

+

[
0.5Ts

2In

TsIn

]
︸ ︷︷ ︸

B

u(k)
(3.5)

Equation (3.5) can be compacted in the form of :

z(k + 1) = Az(k) +Bu(k) (3.6)

Where u(k) = q̈(k) ∈ Rnu and z(0) = [q(0)T , q̇(0)T ]T ∈ R2nq . The matrix In ∈ Rnq×nq

refers to an identity matrix of the dimension of the joints (in this case nq = 6), Ts is the
discrete integration time and k as the discrete time variable.

For the purpose of the state’s feedback, equation (3.6) could be divided into :q(k + 1) = A0z(k) +B0u(k)

q̇(k + 1) = A1z(k) +B1u(k)
(3.7)

where the matrices A0 , A1 , B0 and B1 are:

A0 =
[
Inq 0nq×nq

]
︸ ︷︷ ︸

C1

A B0 =
[
Inq 0nq×nq

]
B

A1 =
[
0nq×nq Inq

]
︸ ︷︷ ︸

C2

A B1 =
[
0nq×nq Inq

]
B
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Cost Function

As discussed, the Inverse Kinematics problem considers a specific coordinate task xd(k)

that the robot needs to reach at every time instant k while complying with motion con-
straints. First, a reference trajectory that can drive the robot given its current con-
figuration xe(k) ← T b

e (q(k))(4,1:3) to a desired position xd(k) in M steps can be com-
puted beforehand (e.g. through polynomial trajectories) obtaining a set of references
xd(k + i), i = 1, ...,M . Notice that the construction of this trajectory does not enforce
any motion constraint in joint space. Then, a MPC structure of the Inverse Kinematics
can be used to compute the sequence of control inputs to achieve the desired position in
the operational space. The nature of the MPC formulation allows the computation of
the control inputs at each control interaction, allowing it to deal with unforeseen events
or dynamic scenarios. Moreover, as mentioned in Section 3.4.1, additional constraints
linearly dependent on the sequence of control inputs can be easily included. At each time
instant k, the MPC problem is defined as finding a M sequence of future control inputs
Uk = [u(0|k)T , u(1|k)T , ..., u(M − 1|k)T ]T that minimizes an specific cost function. The
proposed cost function for the purpose of this work is shown in Equation (3.8) where the
operational error and operational error velocity were included as well the joint velocity,
joint acceleration and jerk for penalization purposes.

L =
4∑

i=1

Ji (3.8)

Where J1, ..., J4 are the desired tasks to minimize defined as:

J1 =
M∑
i=1

∥JA(qk+i)q̇k+i − ẋdk+i
+K(xdk+i

− xe(qk+i)∥2W

J2 =
M∑
i=1

∥q̇k+i∥2S

J3 =
M∑
i=1

∥q̈k+i∥2R

J4 =
M−1∑
i=1

∥∆q̈k+i∥2R∆q̈

The jerk is defined as ∆q̈(k + i) = q̈(k + i)− q̈(k), M is the prediction horizon and K is
a positive definite weighting matrix related to the convergence of the error. W , S, R and
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R∆q̈ are symmetric and positive definite weighting matrices, and the following shorthand
notation was employed:

∥x∥2Q = xTQx ∈ R (3.9)

Therefore, the formalization of the optimization problem at hand can be written as:

min
Uk

L(Uk, Q̂k,
ˆ̇Qk, Xd, Ẋd, k) (3.10)

Subject to :

z(i+ 1|k) = Az(i|k) +Bu(i|k)

q(i|k) = C1z(i|k)

q̇(i|k) = C2z(i|k)

AineqU(k) ≤ bineq

(3.11a)

(3.11b)

(3.11c)

(3.11d)

Notation z(i|k) denotes the value of z at time k + i, predicted at time k. Where Q̂k

and ˙̂
Qk are the vectors related to the prediction through the horizon of the future joint

position and velocity respectively. Xd and Ẋd are the vectors which refer to the position
and velocity of a partial trajectory composed by M steps ahead. Aineq and bineq are know
inequality matrices defining the boundaries of the joint position, velocity and acceleration
vectors. Additionally, the reactive Obstacle Avoidance function as well as the self-collision
avoidance will be both also enforced as inequality constraints. For a detailed definition of
the aforementioned variables refer to Section 3.4.5.

Prediction of the Future States

As mentioned in Section 3.4.1 and formulated in (3.8), the proposed approach includes
a predictive strategy which is based in a linearization of the task at each iteration k by
using the solution obtained at time k − 1 to compute the approximation of the future
trajectory vector of joint positions q(k + i).

Recalling equation (2.1), in discrete form and employing the analytical jacobian, the
relationship between the joint velocities and the task velocities can be expressed as follows:

JA(q(k + 1))q̇(k + 1) = ẋd(k + 1) (3.12)
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It should be noticed that JA(qk) is non-linear in terms of u(k), therefore, it will depend on
the actual configuration q(k) and its evolution that can be obtained by iterating Equation
(3.7). Accordingly, the predicted future evolution of the system states q(k+i) and q̇(k+i)
through the prediction horizon M results in :

q̂(k + i) = C1A
iz(k) + C1

i−1∑
j=0

Ai−j−1Bû(k + j) , i = 1, ...,M + 1

˙̂q(k + i) = C2A
iz(k) + C2

i−1∑
j=0

Ai−j−1Bû(k + j) , i = 1, ...,M + 1

(3.13)

Where q̂(k+ i) and ˙̂q denote for the future prediction of the states evolution. Notice that
the evolution of the system states depends on the actual state of the robot z(k) at time k
and the optimal vector Uk−1 = [û(0|k − 1)T , û(2|k − 1)T , ..., û(M − 1|k − 1)T ]T computed
in the last iteration at time k−1 where the first element of the vector is the control input
u(0) = û(0|k−1) applied to the system model. Moreover, the prediction of the Analytical
Jacobian Matrix JA(q(k+ i)) and the pose vector xe(q(k+ i))← f0(q(k+ i)) through the
horizon M are performed based on the results of Equation 3.13 starting from q(k). In the
following sections, the evolution of the joint configuration for the prediction of these non-
linear functions will be exploited in the formulation of the optimization problem which
will allow to maintain the linear nature of the cost function and constraints with respect
to the vector of decision variables U .

3.4.3. Inequality Constraints

This section presents the formalization of the motion constraints and obstacle avoidance
functions enforced into the optimization routine as inequality constraints. According to
the Optimization Problem (3.10), the inequality constraints to be enforced can be divided
in three main different types : joint boundaries, obstacle avoidance and self-collision
avoidance. Accordingly the analysis of each type of constraint is divided as mentioned in
the subsequent subsections.

Motion Constraints

As discussed before, the formulation of the optimization problem presented in Equation
(3.10) allows to impose direct constraints on joint positions, velocities, and accelerations
with the aim to ensure the robot’s motion within its feasible kinematic limits. These
boundaries should be imposed for the whole prediction horizon M such that:
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qmin ≤ q(k + i) ≤ qmax , ∀i = 1, ...,M − 1

q̇min ≤ q̇(k + i) ≤ q̇max , ∀i = 1, ...,M − 1

q̈min ≤ u(k + i) ≤ q̈max , ∀i = 1, ...,M − 1

(3.14)

The detailed derivation of these constraints with respect to the vector of decision variables
U is formulated in Section 3.4.5.

Obstacle Avoidance as Inequality constraint

Given that the robotic arm will operate in dynamic scenarios with unforeseen events, it
is not only sufficient to generate a trajectory free of obstacles but to consider an online
reactive collision avoidance strategy between the manipulator and the obstacles that can
be enforced into the Inverse Kinematics algorithm. There exist different approaches to
formulate collision avoidance constraints for convex objects. Between the most popular
methods one can find spherical and ellipsoidal approximate representation of the obsta-
cle region, constructive solid geometry (CSG) or dual signed obstacle representation [24].
Nevertheless, most of those methods consider the whole convex set or primitives approxi-
mation of the whole set to formulate the collision avoidance constraint. Therefore, in the
quest of an efficient mathematical formulation an inequality-based constraint via velocity
damper for the collision avoidance task was established [19]. The advantage of this ap-
proach resides in its implementation as inequality constraint and the simplicity of using
geometric models for the kinematic chain of the robot without any approximation, fur-
thermore this method can be extended to the case of non-strictly convex objects. In the
last years, this method was exploited by [41] and [42], which demonstrates its numerical
efficiency.

In this work, the implementation of this strategy will account for the collision avoidance of
the whole kinematic chain with obstacles of the environment and self-collision avoidance
between the links of the manipulator.
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Figure 3.9: Closest distance and velocity damper definition.

Consider two convex sets O1 and O2 shown in Figure (3.9). O2 is a fixed obstacle for the
respective time period and O1 represents one link position of the robot (in this case only
the end effector position is represented). The points p1 and p2 denote the closest points
between O1 and O2 so the distance dobs is defined by ∥p1 − p2∥. The derivative of the
distance with respect to time, ḋobs, is bounded as follows :

−ḋobs ≤ ζ
d− ds
di − ds

; di > ds (3.15)

Where ζ is a positive coefficient that regulated the convergence speed, ds and di are
positive values called security and influence distances respectively. The inequality (3.15)
is called velocity damper and once the closest distance d becomes smaller that di, the
velocity vector is restricted guaranteeing that d is never smaller than ds.

Since O2 is fixed, ḋobs can be expressed as a function of the unitary vector n⃗ and the time
derivative of p1:

ḋobs = n⃗T ṗ1 ; n⃗ =
p1 − p2
dobs

(3.16)

Taking into account that O1 is belongs to the robotic chain, ṗ1 can be expressed as as a
function of the robot generalized coordinates q and its derivatives q̇. Recalling 2.1, this



44 3| Proposed Method

relation can be expressed as follows:

ṗ1 = Jp1(q)q̇ (3.17)

Where Jp1 is the relative translation Jacobian matrix of point p1. By replacing (3.16) in
(3.15), it becomes a linear inequality constraint over the robot joint velocity vector:

−n⃗TJp1(q)q̇ ≤ ζ
d− ds
di − ds

(3.18)

Thus, the inequality (3.18) is in the form that can be imposed as a linear inequality
constraint in (3.8). The detailed derivation of the latter over a prediction horizon and
considering self-collision avoidance will be developed in Section 3.4.5 .

To this point, it is necessary to state the closest distance between the points and the
method used to define it. Therefore, the closest distance to the obstacles was defined as
a function of the measurements of the exteroceptive sensor received at every time instant
kLi which happens every τLi seconds.

Lets denote Nobs as the number of obstacles to detect and S(kLi) = [skLi
(0), ..., skLi

(Ns −
1)] ∈ R3×Ns the Ns filtrated readings of the LiDAR sensor at time kLi. Moreover, S(kLi) ∈
P(kLi) and denotes all the readings that are inside the maximum range of measurement
of the sensor. Notice that the ground can also be recognized as a close obstacle, this it
is also considered in the Convex Approximation of the Free Space in order to avoiding
colliding with the low level ground. Once the sub-set S(kLi) is computed in a the related
kLi time instant, the proposed routine to get the closest distance from the Nobs obstacle
to the point p1 is given by Algorithm 3.6. After initializing values, (line 3) a K-nearest
neighbors(kmeans) algorithm is used in order to classify the sensor readings from each
obstacle. The resultant clusters, namely Si, are sub-spaces of S(kLi); furthermore S =⋃Nkm

j=1 Sj. Then, an interactive search of the closest distance from each link to each obstacle
cluster is performed (lines 4-13).
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Algorithm 3.6 Closest Distance Computation
Input : [pl1(kLi), ..., pl6(kLi)] , S(kLi) , Nkm

Output: pobs(kLi) ∈ R3×Nobs

Procedure: closest_obstacles([pl1(kLi), ..., pl6(kLi)],S(kLi), Nkm)

1: Nobs ← 4

2: nl ← 6

3: Generation of Nc sub-spaces of S(kLi) using k-means clustering technique:
Si = kmeans(S(kLi), Nkm) , i = 1, ..., Nkm

4: for ind = 1 : nl do
5: for i = 1 : Nkm do
6: NS ← length(Si)
7: for j = 1 : NS do
8: dist(j) = ∥Sj

i − plind
∥22

9: end for
10: ī : arg minī=1,...,NS

dist(̄i)

11: pobs
i
ind = Si(̄i)

12: end for
13: end for
14: pobs(kLi) = [pobs1 , ..., pobsnl

]

The representation of the aforementioned method is shown in Figure 3.10 and 3.11, where
the light-blue spheres attached to the manipulator represent the link positions, and the
remaining colored spheres the closest distances from each link to each cluster. The radius
of the spheres represents the desired security distance factor ds in which the obstacles
should not collide with the kinematic chain. Notice that the relative distance between
each link position and each obstacle is computed given the actual configuration of the
robot q(kLi), this means that during motion the obstacle relative positions are time-
varying. This dependency can be observed in the different positions between Figure 3.10
and Figure 3.11, where the different colored dots represents each cluster and the respective
spheres the closest obstacles from each link to each cluster.
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Figure 3.10: Example 1: Obstacles clustering. q(kLi) = [−π
8
, 0, −π

8
, 0,−2.44, 0], ds = 0.4

Figure 3.11: Example 2: Obstacles clustering. q(kLi) = [−π
8
, −π

4
, −π

8
, 0, 2.44, 0], ds = 0.4
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Self-Collision Avoidance

This constraint, integrated into the optimization framework, aims to prevent the robotic
manipulator from colliding with its own structure or links during motion. The inclusion
of this constraint aims to prove the capabilities of the proposed method; therefore, only
the joint frame positions are considered to cover self-collisions, instead of every part of
the whole joint body (which could be done by primitive approximations).

The derivation and inclusion of this constraint will be also based on Equation 3.18, but
considering instead the position of the links that are most likely to collide. In other words,
although the collision avoidance functionality can be implemented for the whole kinematic
chain, this was included only for the joints that are most likely to collide as it can be seen
in Figure 3.12.

Thus, the relation between self collision avoidance between each link position can be
expressed as follows:

plink4 ↔ plink1 plink3 ↔ plink1

plink6 ↔ plink1 plink5 ↔ plink1

plink6 ↔ plink2 plink5 ↔ plink2

Graphically the position of each link and the relation with the self-collision aforementioned
considerations is shown in Figure 3.12 where the green spheres refers to the link position
with a radius of 4 cm (ds security distance), the red arrows represents the self-collision
relation between link pl1 and the other links, and the blue arrows represents the self-
collision relation between link pl2 and the other links. As mentioned, for the purpose of
this work only these relations where assumed, however, other relations for self-collision or
obstacle avoidance can be included.
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Figure 3.12: Self-collision links relations.

The further derivation of the self-collision avoidance function as linear inequality con-
straints with respect to the decision variable u(k) is detailed in Section 3.4.5.

3.4.4. Model Predictive Control (MPC)

In order to impose a receding horizon strategy as proposed in Equation 3.8, thus, a Model
Predictive Control methodology will be exploited and included in the Inverse Kinematics
problem formulation.

Model Predictive Control (MPC) is a powerful control strategy widely used in various
engineering applications. It is an advanced control approach that operates by iteratively
solving the control problem as an optimization problem over a finite prediction horizon
M . MPC incorporates a dynamic model of the system, constraints on inputs and states,
and an objective function to determine optimal control inputs. It relies on the Receding
Horizon(RH) principle in which at every time instant the main objective is to find the
optimal sequence of control inputs [u(k), ..., u(k +N − 1)] over a finite time horizon that
minimizes a predefined cost function and apply to the system only the first element u◦(k)
of the optimal sequence [25].
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To solve the MPC optimization problem, various numerical methods and solvers can be
employed depending on the nature of the overall formulation. Common approaches in-
clude: Quadratic Programming(QP) and Sequential Quadratic Programming(SQP). As
explained before(refer to Section 3.4.1), by maintaining the linear nature of the optimiza-
tion problem, a quadratic programming solver can be utilized which will also provide
computationally efficiency while still conferring the advantages of the receding horizon
strategy. Therefore, the QP will be the preferred method for the purpose of this work.

3.4.5. Quadratic Programming Formulation

QP is a mathematical technique used to solve optimization problems that involve quadratic
objective functions subject to linear constraints. The use of QP in robotics offers several
advantages, including the ability to handle complex or high-dimensional problems. It
provides a mathematical framework for incorporating various constraints, and facilitate
real-time or real-time solutions. This versatility is crucial in tasks where robots must
adapt to changing environments and dynamic scenarios.

The general form of a Quadratic Programming (QP) problem can be expressed as follows:

Minimize:
min

x
cTx+

1

2
xTHx (3.19)

subject to:

Ax ≥ b

Cx = d

Where:
x : Vector of optimization variables

H : Symmetric positive semi-definite matrix

c : Vector of linear coefficients

A : Matrix of inequality constraint coefficients

b : Vector of inequality constraint bounds

C : Matrix of equality constraint coefficients

d : Vector of equality constraint bounds

More specifically for this work, in the case of inequality-constrained QPs, finding a KKT
triplet that satisfies (3.19) is a non-linear and non-smooth problem. Therefore, there
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exist two main iterative methods to deal with it active-set and interior-point. A latter
discussion between both methods will be deployed in the results section.

Cost Function

In this section the formal derivation of the Cost Function for the Quadratic Programming
problem is presented. The dimension of the vectors presented in this section will be
referred in function of dimension nu of the decision variable u(k), the dimension nz of
the state vector z(k), the dimension nq of the number of joints q(k) and the prediction
horizon M . The related constant diagonal matrices are denoted as:

W̄ = diag(
[
W W . . . W

]
) ∈ R(M)nq×(M)nq

S̄ = diag(
[
S S . . . S

]
) ∈ R(M)nq×(M)nq

R̄ = diag(
[
R R . . . R

]
) ∈ R(M)nu×(M)nu

R̄∆q̈ = diag(
[
R∆q̈ R∆q̈ . . . R∆q̈

]
) ∈ R(M)nu×(M)nu

K = diag(
[
K K . . . K

]
) ∈ R(M)nq×(M)nq

As stated in Equation (3.13) the prediction vectors of joint position and joint velocities
can be respectively defined as:

Q = [q̂(1|k)T , q̂(2|k)T , ..., q̂(M |k)T ]T

Q̇ = [ˆ̇q(1|k)T , ˆ̇q(2|k)T , ..., ˆ̇q(M |k)T ]T

Thus, the future evolution of the joint positions is characterized by:

Q = Λq + ΛUU (3.20)

And the evolution of the joint velocities:

Q̇ = Φq + ΦUU (3.21)

Where :
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Λq =

ΛA︷ ︸︸ ︷
C1A

C1A
2

...
C1A

M+1

 z(0) Φq =

ΦA︷ ︸︸ ︷
C2A

C2A
2

...
C2A

M+1

 z(0)

And the associated constant matrices:

ΛU =


C1B 0 . . . . . . 0

C1AB C1B 0 . . . 0
... . . . . . . . . . 0

C1A
M−1B C1A

M−2B . . . . . . C1B

 ΦU =


C2B 0 . . . . . . 0

C2AB C2B 0 . . . 0
... . . . . . . . . . 0

C2A
M−1B C2A

M−2B . . . . . . C2B


Moreover, if the trajectory position and velocity vectors are compacted as:

XD =


xd(k)

xd(k + 1)
...

xd(k +M)

 ẊD =


ẋd(k)

ẋd(k + 1)
...

ẋd(k +M)


And the evolution of the non-linear functions respectively, future evolution of the jacobian
matrix, and the end effector position are defined as:

JA =


JA(q̂(k)) 0 . . . 0

0 JA(q̂(k + 1)) . . . 0
... . . . . . . 0

0 0 . . . JA(q̂(k +M))

 ẊE =


f0(q̂(k))

f0(q̂(k + 1))
...

f0(q̂(k +M))


It should be remarked that the aforementioned matrices are a prediction based on Equa-
tion (3.13), therefore, to maintain the linear nature of the problem they remain constant
at every time iteration and recalculated at the next iteration.

In addition, the cost function proposed in (3.8) can be rewritten in matrix form:

J1 =

∥∥∥∥ẊD − JAQ̇+K(XD −XE)

∥∥∥∥2

W

(3.22)

If we denote the task space error as E = XD −XE, replacing (3.21) in matrix form and
operating, we obtain:
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J1 =

∥∥∥∥ ẊD − JAΦq +KE︸ ︷︷ ︸
ΛX

−JAΦU︸ ︷︷ ︸
ΓU

U

∥∥∥∥2

W

(3.23)

Thus, by performing the norm, the cost function J1 can be defined in matrix form as :

J1 = [ΛX + ΓUU ]
T W̄ [ΛX + ΓUU ] (3.24)

Operating and eliminating the terms that does not depend on the vector of decision
variables U , we obtain:

J1 = 2[ΛT
XW̄ΓU ]

TU + UT [ΓUW̄ΓU ]U (3.25)

Similarly for the other terms of the cost function :

J2 = [Φq + ΦUU ]
T S̄[Φq + ΦUU ] = 2(ΦT

q S̄ΦU)
TU + UT (ΦU S̄ΦU)U

J3 = UT R̄U
(3.26)

As for the term related to the penalization of the vector of the joint jerk which was stated
as ∆q̈(k+ i) = q̈(k+ i)− q̈(k),and since q̈(k) is the decision variable u(k), the formulation
of J4 in matrix form can be rewritten as:

J4 =

∥∥∥∥

−Inu Inu 0 0 . . . 0

0 −Inu Inu 0 . . . 0
... . . . . . . . . . . . . 0

0 0 . . . 0 Inu −Inu


︸ ︷︷ ︸

ΛT

U

∥∥∥∥2

R̄∆q̈

J4 = UT (ΛT
T R̄∆q̈ΛT )U

(3.27)

Thus, composing all the terms of the cost function, we have:

L =
4∑

i=1

Ji

L =
[
2(ΦT

q S̄ΦU)
T + 2(ΛT

XW̄ΓU)
T
]
U

+UT
[
(ΓUW̄ΓU) + (ΦU S̄ΦU) + R̄ + (ΛT

T R̄∆q̈ΛT )
]
U

(3.28)

Finally, diving the cost by two, the form proposed in 3.10, is derived as the following QP:
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min
U

(ΦT
q S̄ΦU + ΛT

XW̄ΓU)
T︸ ︷︷ ︸

cT

U +
1

2
UT (ΓUW̄ΓU + ΦU S̄ΦU + R̄ + ΛT

T R̄∆q̈ΛT )︸ ︷︷ ︸
H

U (3.29)

Inequality Constraints

Motion Limits
Being the problem on hand a constrained optimization problem, appropriate bounds have
been chosen for the variables through the prediction horizon. Replacing Equation (3.21)
in (3.14)

Qmin ≤ Λq + ΛUU ≤ Qmax

Q̇min ≤ Φq + ΦUU ≤ Q̇max

Q̈min ≤ U ≤ Q̈max

(3.30)

Where the boundary matrices are defines as:

Qmin =
[
qmin

T qmin
T . . . qmin

T
]T
∈ RMnu

Qmax =
[
qmax

T qmax
T . . . qmax

T
]T
∈ RMnu

Q̇min =
[
q̇Tmin q̇Tmin . . . q̇Tmin

]T
∈ RMnu

Q̇max =
[
q̇Tmax q̇Tmax . . . q̇Tmax

]T
∈ RMnu

Q̈min =
[
q̈Tmin q̈Tmin . . . q̈Tmin

]T
∈ RMnu

Q̈max =
[
q̈Tmax q̈Tmax . . . q̈Tmax

]T
∈ RMnu

Thus, the inequalities related to the boundaries of joints can be rewritten in terms of the
vector of decision variables as:

ΛU

−ΛU

ΦU

−ΦU

Inu×nu

−Inu×nu


︸ ︷︷ ︸

ALineq

U ≤



Qmax − Λq

−Qmin + Λq

Q̇max − Φq

−Q̇min + Φq

Q̈max

−Q̈min


︸ ︷︷ ︸

bLineq

(3.31)
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Obstacle Avoidance

Regarding the obstacle avoidance function, the formulation as inequality constraint will
be based on Equation (3.18).

Defining the vector of one step ahead prediction states :

ẑ(k + 1) =

[
q̂(k + 1)
˙̂q(k + 1)

]

Moreover, in order to formulate the obstacle avoidance to the full kinematic chain (each
link), the partial Jacobian functions Jp1, ..., Jp6 will be needed. Additionally, as a result
of Algorithm (3.6), if we define the location of the position of just one obstacle pobs1(kLi)
at time kLi and the positions of all joints [pl1(k), ..., pl6(k)] = Tf(q(k)) at every time k (see
Figure 3.13). Then, distances from each joint to the respective obstacle can be computed
as :

di = ∥pli(k)− pobsi(kLi)∥22 , ∀i = 1, ..., 6 (3.32)

𝒪2

𝒪1

𝑝𝑜𝑏𝑠1

𝑑6

𝑛6

𝑝𝑜𝑏𝑠2

𝑝𝑜𝑏𝑠6

𝑛1

𝑛2

𝑑1

𝑑2

𝑝𝑙1

𝑝𝑙2

𝑝𝑙3

𝑝𝑙6

Figure 3.13: Joint to Obstacle Distances at time kLi.

Should be noticed that the distances and their respective unit vectors n⃗i as well as the
Jacobian functions are dependent on the actual configuration of the robot q(k).

Thus, based on (3.6), it can be derived for only one step ahead prediction :

−ΛJB̄1u(k) ≤ Ψ1D̄(q(k + 1)) + ΛJ(q(k + 1))Ā1ẑ(k + 1) (3.33)
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Where :

D̄(q(k + 1)) =
[
dT1 dT2 . . . dT6

]T
∈ R6

B̄1 = =
[
B1 B1 . . . BT

1

]T
∈ R6nq×nu

Ā1 = =
[
A1 A1 . . . AT

1

]T
∈ R6nq×nz

And

ΛJ(q(k + 1)) =


n⃗T
1 Jp1 0 . . . 0

0 n⃗T
2 Jp2 . . . 0

... . . . . . . 0

0 0 . . . n⃗T
6 Jp6

 Ψ1 =


ζ1 0 . . . 0

0 ζ1 . . . 0
... . . . . . . 0

0 0 . . . ζ1


Consequently, Equation (3.33) can be extended trough the prediction horizon M and
considering the evolution of the future states denoted in (3.20) :

−ΦJB1U ≤ ΨDΦJ +A1Z̃ (3.34)

Where the state dependent matrices are:

D =


D̄(q̂k+1)

D̄(q̂k+2)
...

D̄(q̂k+M)

 Z̃ =


˙̂zk+1

˙̂zk+2

...
˙̂zk+M

 ΦJ =


ΛJ(q̂k+1) 0 . . . 0

0 ΛJ(q̂k+2) . . . 0
... . . . . . . 0

0 0 . . . ΛJ(q̂k+M)


And the constant matrices:

A1 =


Ā1 0 . . . 0

0 Ā1 . . . 0
... . . . . . . 0

0 0 . . . Ā1

 B1 =


B̄1 0 . . . 0

0 B̄1 . . . 0
... . . . . . . 0

0 0 . . . B̄1

 Ψ =


Ψ1 0 . . . 0

0 Ψ2 . . . 0
... . . . . . . 0

0 0 . . . Ψ6


For clarity, the dimensions of the described matrices are denote as follows: D ∈ Rnq×M ,
B1 ∈ Rn2

qM×nuM , A1 ∈ Rn2
qM×2nqM , ΦJ ∈ RnqM×n2

qM , Ψ ∈ RnqM×nqM , Z̃ ∈ RnqM×2nqM

Moreover, with the aim to relax the constraints, the convergence rate ζ is defined with
decreasing values trough the horizon, this is the reason why the matrix Ψ refers to different
matrices Ψ.
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As mentioned, Equation (3.34) shows the formulation for the inequality constraints in the
case of just one obstacle with reference to all the joint positions. Therefore, the notation
for the i obstacle can be simplified as:

AOi = −ΦJB1
bOi = ΨD + ΦJA1Z̃

Thereby, this can be extended for a specific number of Nobs to include as Inequality
constraints in the optimization problem. Thus, the complete inequality matrices for Nobs

can be re-written in the form of :

AOineq =
[
AOT

1 AOT
2 . . . AOT

Nobs

]T
bOineq =

[
bOT

1 bOT
2 . . . bOT

Nobs

]T (3.35)

Self-Collision Avoidance

Similarly, for the case of inequalities related to the self-collision avoidance it is necessary
to define the positions of the obstacles. In this case, the obstacle position it is the joint
position of the link from which a collision want to be avoided. Therefore, as mentioned in
Section 3.4.3, if we define the positions of all joints [pl1(k), ..., pl6(k)] = Tf(q(k)) at every
time k. Then, the distances between each pair of joints can be computed as :

ds1 = ∥pl4(k)− pl1(k)∥22 ds2 = ∥pl3(k)− pl1(k)∥22
ds3 = ∥pl6(k)− pl1(k)∥22 ds4 = ∥pl5(k)− pl1(k)∥22
ds5 = ∥pl6(k)− pl2(k)∥22 ds6 = ∥pl5(k)− pl2(k)∥22

If we compact the terms into :

D̄s(q(k + 1)) =
[
dTs1 dTs2 . . . dTs6

]T
∈ R6

And, correspondingly in the same order, the relationship for the computation of the unit
vectors n⃗si and Jacobian functions should be maintained such as:

ΛJs(qk+1) = diag(
[
n⃗T
s1
Jp4 n⃗T

s2
Jp3 n⃗T

s3
Jp6 n⃗T

s4
Jp5 n⃗T

s5
Jp6 n⃗T

s6
Jp5

]
)
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Considering the same constant matrices B̄1 and Ā1, then it can be derived for only one
step ahead prediction :

−ΛJsB̄1u(k) ≤ Ψs1D̄s(q(k + 1))) + ΛJs(q(k + 1))Ā1ẑ(k + 1) (3.36)

Where :

Ψs1 =


ζs1 0 . . . 0

0 ζs1 . . . 0
... . . . . . . 0

0 0 . . . ζs1


Comparably, taking into account Equation (3.20) regarding the evolution of the joint
positions, for M steps ahead we have:

−ΦJsB1U ≤ ΨsDsΦJs +A1Z̃ (3.37)

Where :

Ψs =


Ψs1 0 . . . 0

0 Ψs2 . . . 0
... . . . . . . 0

0 0 . . . Ψs6

 ΦJs =


ΛJs(q̂k+1) 0 . . . 0

0 ΛJs(q̂k+2) . . . 0
... . . . . . . 0

0 0 . . . ΛJs(q̂k+M)


Analogously with the aim to relax the constraints, the convergence rate ζs1 is defined
with decreasing values trough the horizon. Finally, for the inclusion into the inequality
constraints the notation can be simplified as:

ASineq = −ΦJsB1
bSineq = ΨsD + ΦJsA1Z̃

Complete Inequality Constraints

Finally, the formalization of the inequality constraints stated in (3.11) regarding the
motion limits, obstacle avoidance and self-collision avoidance it is presented:
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Aineq =
[
ALT

ineq AOT
ineq AST

ineq

]T
bineq =

[
bLT

ineq bOT
ineq bST

ineq

]T (3.38)

It should be noticed that the dimension of constraints related to the motion limits will
increase accordingly to the prediction horizon, while the constraints related to obstacle
avoidance function are dependent on the number of obstacles to detect and the prediction
horizon. The efficiency of this technique resides in the computational effort required when
more obstacles are needed to be included. Although this can increase the dimension of
the inequality constraints, it does not compromise significantly the complexity of the
optimization problem since the decision variables dimension is unchanged.

Problem Formalization

At this point, the formalization of the optimization problem in (3.10) as a Quadratic
Programming problem can be stated as follows:

min
U

(ΦT
q S̄ΦU + ΛT

XW̄ΓU)
T︸ ︷︷ ︸

cT

U +
1

2
UT (ΓUW̄ΓU + ΦU S̄ΦU + R̄ + ΛT

T R̄∆q̈ΛT )︸ ︷︷ ︸
H

U (3.39)

Subject to:

z(i+ 1|k) = Az(i|k) +Bu(i|k)

q(i|k) = C1z(i|k)

q̇(i|k) = C2z(i|k)[
ALT

ineq AOT
ineq AST

ineq

]T
︸ ︷︷ ︸

Aineq

U(k) ≤
[
bLT

ineq bOT
ineq bST

ineq

]T
︸ ︷︷ ︸

bineq

(3.40a)

(3.40b)

(3.40c)

(3.40d)

3.4.6. Iterative Algorithm

In order to solve the optimization program in (3.10), as presented above, some prelimi-
naries operations(acquisition of sensor measurements and computation of the closest dis-
tances to obstacle) must take place. Moreover, in order to integrate the receding horizon
strategy, a numerical simulation of the system model is required as well as a recursive
implementation of the overall Inverse Kinematics-Model Predictive Control. Therefore, a
sequential iterative strategy is presented in Algorithm 3.7. Notice that the iterations are
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related to the discrete time variable Ts which its numerical value will be defined in the
subsequent sections.

Algorithm 3.7 Quadratic Programming - Inverse Kinematics
Input: XD, ẊD, q(0), q̇(0), q̈(0), τLi
Output: q(k), q̇(k)
Procedure: inverse_kinematics(XD, ẊD, q(0), q̇(0), q̈(0), τLi)

1: Compute the positions of each link given the current configuration
([pl1(k), ..., pl6(k)]← Tf(q(k))

2: Acquire the sensor measurement S(kLi) ∈ P(kLi) every τLi (See Algorithm 3.1).
3: Compute the closest distance from each joint to the obstacles:
pobs(kLi) = closest_obstacles([pl1(kLi), ..., pl6(kLi)],S(kLi), Nkm)

4: Acquire the last evolution of the manipulated variables [q(k), q̇(k)] and the last optimal
vector U(k − 1).

5: Solve the QP formulated in (3.39) subject to the inequality constraints(3.40d) and
obtain U(k);

6: Apply the first input u(0|k) of the optimal sequence to the plant (3.5).
7: Set k = k+1 , go to 1.

3.5. Algorithm

In the present chapter, modular algorithms were developed and presented in order to build
the proposed hierarchical architecture. In summary, in Algorithm 3.5, which refers to the
Local Path Planner, the following Sub-algorithms 3.2 , 3.3 and 3.4 were integrated. Later,
for Algorithm 3.7 the problem formulation of the IK-MP as a QP was developed, this
included the integration of following Sub-algorithm 3.6. As stated, both main Algorithms
are subjected to the LiDAR sensor readings that are simulated in Algorithm 3.1. A
graphical scheme representing the interaction of the main Algorithms is deployed in Figure
3.14.

As it can be observed, the proposed structure allows the inclusion of other components
such an offline or sequential high level planner which can compute the referenced target
ptarget based on the specific application, or a customized low level control system which
can run at a different discrete time. This characteristic makes the presented architecture
adaptable and capable to be extended with other motion or control techniques.
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Figure 3.14: Block diagram scheme of the architecture
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4.1. Robotic arm simulation environment

The evaluation of the proposed method for a 6 degrees of freedom robotic arm in un-
known environments provides insights into the effectiveness and versatility of the devel-
oped framework. The results are presented in three main sections, each of them focusing
on a specific aspect of the presented system’s architecture .

For the purpose of this study, there is no requirement to simulate a highly complicated
structure. Instead, the preferred tests are focused in generate new environments and
conduct rapid simulations of the kinematic robot behavior. In fact, with this aim certain
assumptions should be stated:

• The low level controllers are assumed to be unitary gain with a sufficiently large
gain margin.

• Ideal communication scenario, which does not takes into account any delays related
to communication.

• The environment is limited to finite number of cuboid shape obstacles and the
ground is defined to be at 5 cm under (Z-axis) the base frame of the robot.

• The LiDAR measurements are received every τLi seconds and it does not sense the
body links of the manipulator.

• The trajectory is generated every τt seconds which means every time the robot
performed the last partial trajectory fed.

• Only one target position ptarget will be provided to the robot.

Therefore the system model used for the simulation is the one reported in Equation 3.5.
For the purpose of a graphical representation of the results, several toolboxes will be used
such as Simulink-Simscape[36](for dynamical motion simulation) and PeterCorke Robotic
Toolbox [11](for a kinematic representation of the robot).
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The simulations will be conducted under some initial conditions such as an initial con-
figuration of the robot, fixed obstacles and a target position to reach. An example rep-
resentation of an initial state of the system is shown in Figure 4.1, where the red star
represented the target to reach ptarget and the light-blue dots the LiDAR point-cloud.

Finally, the reported tests have been executed on a laptop equipped with an Intel core
i7-11800H CPU, 16 GB of RAM , and Matlab [28] R2023a version.

Figure 4.1: Example of Initial Configuration q(0) = [π/8, 0, π/8, 0,−2.44, 0]. Red-star:
Target position ptarget. Light-blue dots: Initial LiDAR readings.
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4.2. Simulation Results

4.2.1. Trajectory Generation Results

This section delves into the trajectory generation component of the hierarchical control
system. Various scenarios are explored to assess the execution time under different condi-
tions. Additionally, the effectiveness of the obstacle clustering technique and the impact of
the target shifting strategy, with variations in the parameter maxcos, are thoroughly ana-
lyzed. The outcomes provide a comprehensive understanding of the trajectory generation
module’s capabilities and limitations.

To this end, an initial case scenario is built and deployed in Figure 4.2. The clustered
LiDAR readings are shown as well as the convex polytope of the obstacle free region
in which the trajectory generation should take place. The large red dot refers to the
target position and its line to the direct trajectory towards it. Additionally, the spheres
represents the closest distances of each cluster to each link position.

Figure 4.2: Trajectory Results: Initial Configuration. Light-green geometry: Obstacle free
convex polytope. Circular dots: Represent each cluster of the sensor readings. Spheres:
Closest distances of each cluster to each link position.
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Thus considering this scenario, before computing a possible trajectory, the parameter
maxcos related to shifting strategy should be analyzed. As mentioned before, this param-
eter is related on how much the target should be shifted away from the imminent obstacle.
A representative analysis for different values of maxcos (0.2, 0.4, 0.6 and 0.8) is reported
in Figure 4.3, where the blue stars represents the shifted targets and the parameter value.
As it can be observed, lower values will produce a very shifted targets which, in some cases
can be exploited to allow the robot for a reconfiguration. Indeed, this reconfiguration,
as stated in Algorithm 3.5(line 10), is defined as a function dependent on whenever the
manipulator tries to keep passing an obstacle but it always arrives closer to it.

It is reasonable to conclude that this value will be dependent on how limited is the free
space of the robot, workspace and how close the manipulator could be around an obstacle.
Without, any further assumption, for this work, an iterative experimental tunning resulted
in an initial value for maxcos = 0.8 which showed a performance for the overall target
shifting strategy.

Figure 4.3: Blue-dashed: Possible trajectories for different values of maxcos. Blue-stars:
Shifted target positions. Solid red: Direct trajectory towards the target.

For this initial configuration there is no need of reconfiguration of the robot, then for
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a given settled parameter as maxcos = 0.8, a polynomial trajectory generation can take
place as shown in Figure 4.4. The complete execution of Algorithm 3.5 reported a total
execution time of 0.3695 seconds, with 0.1061 seconds for the Convex Polytope Gen-
eration and 0.2634 seconds for the Trajectory Generation and remaining arrangements.
Additionally, the resultant polynomial trajectories positionXD and velocity ẊD are shown
in Figure 4.5. Although a general purpose library of Matlab is being used for the tra-
jectory generation, the time efficiency of the method is proven, with a possibility to be
improved by personalized functions for the polynomial trajectory generation.

Figure 4.4: The polynomial trajectory generated maxcos = 0.8 towards the shifted target
is represented in solid blue and the orientation axis(x, y, z) are represented by the red,
green and blue lines centered at the initial and final positions.
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Figure 4.5: Polynomial Trajectory Profiles.

4.2.2. IK- Optimization Results

In this section, the inverse kinematics optimization results are presented, comparing the
standard one-step-ahead formulation with a multi-step-ahead approach. Metrics such
as execution time, trajectory following accuracy (measured by Mean Squared Error),
and the performance of optimization methods, specifically interior-point and active-set,
are evaluated. This section aims to highlight the advantages of the proposed Inverse
Kinematics-Model Predictive Control (IK-MPC) in dynamic scenarios.

Optimization Parameters

Recalling the QP optimization problem stated in (3.39), it is necessary to parameterize
the weights and related coefficients in order to evaluate overall performance.

Regarding the weights considered in the cost function of the optimization routine, were
adjusted in for trajectories without obstacles and updated through different simulation
scenarios. Since the orientation of the end effector during the trajectory following it is
less crucial that the position the matrix W and K were tuned accordingly. Moreover,
to be consistent with the established limits of velocity and acceleration the matrices S
and R were adjusted respectively together with the jerk penalization matrix R∆q̈ to avoid
drastic movements. Thereby, a final experimental tuning accounting for these effects led
to the following values:
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W = diag(
[
5000 5000 5000 0.5 0.5 0.5

]
)1e12

S = diag(
[
3 3 3 3 3 3

]
)1e9

R = diag(
[
9 9 9 9 9 9

]
)1e8

R∆q̈ = diag(
[
1 1 1 1 1 1

]
)1e− 4

The convergence rate of the error instead was chosen to maintain the stability of the
Closed Loop [40] accordingly to the following relationship :

K <
2

Ts
(4.1)

Where, Ts = 0.01 is the chosen discrete time period. Therefore, the following values for
the position error Kp and orientation Ko coefficient were chosen:

Kp = diag(
[
10 10 10

]
)

Ko = diag(
[
1 1 1

]
)

K = diag(
[
Kp Ko

]
)

Additionally, for the case of the IK-MPC, as mentioned before (see Section 3.4.5), the
convergence rate coefficient ζ in the obstacle avoidance function should be relaxed through
the prediction horizon. This relaxation is denoted by a linear relationship as follows:

ζi = ζinit −
ζinit − ζend
M − 1

i , ∀i = 1, ...,M (4.2)

Thus, after a practical tunning the values were established as ζinit = 0.5 and ζinit = 0.1.
The same values were also considered for the self-collision avoidance.

Lastly, since the problem on hand has only few inequality constraints(max 4 clusters)
and a small dimension of the prediction horizon, the active set method was chosen as the
preferred optimizer algorithm. The chosen algorithm was also particularly advantageous
as it allowed to exploit the last solution found as a initial guess for the following iter-
ation in the Inverse Kinematics algorithm, leading to faster convergence in subsequent
optimizations and a substantial reduction in the overall computation. In contrast, the
interior-point method, with its approach of navigating through the interior of the feasible
region, seemed less influenced by the initial estimates. A comparison of the two methods
is shown Table 4.2.
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In fact, the Matlab solver quadprog for QP optimization problems was employed and
the values for the optimizer options were chosen based on performance required, these
details are shown in Table 4.1.

Description Value
Algorithm Active Set

Optimality Tolerance 1e−14

Step Tolerance 1e−8

Constraint Tolerance 5e−4

MaxIterations 200

Table 4.1: Optimization Parameters.

Simulation Results

In order to analyze the IK-MPC results, an offline generated circular trajectory with an
intermediate point was fed as a reference with the aim to compare the results for different
horizons and optimization algorithms. As shown in Figure 4.6, the robot is positioned in
a starting configuration q(0) = [π/8, 0, π/8, 0,−2.4435, 0], the blue line represents selected
circular trajectory which first reaches a target position ptarget = (−0.1522,−0.2238, 0.2000)
and the returns to the initial position pinit = (−0.0522,−0.1238, 0.3855) with a constant
orientation over the whole trajectory.

Given that the trajectory tracking is very accurate for all the cases which is difficult
to appreciate graphically, the results will be measured considering the Mean Squared
Error(MSE) between the reference trajectory and the performed trajectory for different
Prediction Horizons. The results are reported in Table 4.2. From the table can be inferred
that the MSE is improved when the Prediction Horizon is longer but that implies a trade-
off with a higher execution time per iteration. Between both algorithms, as expected, the
Active-Set had better results in terms of execution time while achieving the same MSE as
the Interior-Point for all horizons. Additionally, the MSE improvement between the 1-
step and 5-steps horizon are significant, but not the case from the 5-steps to 10-steps which
also implies a higher computational effort (almost the double per iteration). Furthermore,
although both methods demonstrated their capabilities to solve the problem within the
discretization time Ts = 0.01s, the reported average time per iteration of the Active-Set
algorithm exhibited a better performance validating its feasibility to be implemented with
a sampling time as lower as 1ms. Therefore, given that the proposed method is meant to
be computationally efficient, from now on, the chosen method for testing and results will
be Active-Set with a 5-steps ahead prediction horizon.
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Figure 4.6: Circular Trajectory Reference. The trajectory is represented by the solid
blue line and the orientation axis(x, y, z) are represented by the red, green and blue lines
centered at the initial and final position

Moreover, the choice of the prediction horizon is coherent with a good practice since for
a sampling time of Ts = 0.01s it will cover 0.05s which given the small changes between
iterations(in the order of 10−2[rad]) for a common high-gain lower level controller it should
be sufficient to cover the entire settling time.

The resultant joint positions, velocities and acceleration of the performed trajectory as
a result of the IK-MPC are shown in Figure 4.7. As observed, the joint velocity and
acceleration vectors are characterized by smooth motions without discontinuities, and as
a consequence a smooth trajectory.



70 4| Simulation results

Table 4.2: Task Space Results.

Active-Set Interior-Point
Prediction Horizon 1-step 5-steps 10-steps 1-step 5-steps 10-steps

MSE xEE[10
−9] 2.8373 1.5524 1.5668 2.8373 1.5524 1.5668

MSE yEE[10
−9] 8.8543 1.4406 1.4383 8.8543 1.4406 1.4383

MSE zEE[10
−9] 6.4671 3.5911 3.6316 6.4671 3.5911 3.6316

MSE ϕEE[10
−9] 6.8249 4.5419 4.6066 6.8249 4.5419 4.6066

MSE θEE[10
−9] 9.5563 7.3995 7.6011 9.5563 7.3995 7.6011

MSE ψEE[10
−9] 6.7244 3.2923 3.1278 6.7244 3.2923 3.1278

Total Exec. Time [s] 0.3858 0.4486 0.8844 1.7843 3.8132 8.0320
Avg. Time per Iter. [ms] 0.3870 0.4518 0.8951 1.7897 3.8401 8.1296
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Figure 4.7: Joints Motion. Algorithm: Active-set. Prediction horizon: M = 5.

Now, the system is able to be tested with obstacles obstructing the generated trajectory.
To this end, a linear polynomial trajectory was generated to the same target(returning
to the same position) with a sphere shape obstacle in the middle of the path (see Figure
4.8). The resultant performed trajectory is presented in 3D-space in Figure 4.9, while the
task space(position and orientation) results with the evolution of the constraint(distance
to obstacle) are shown in Figure 4.10.

Additionally, the joint motions are presented in Figure 4.11, where the most oscillating
behaviour can be observed when the robot is avoiding the obstacle.
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Figure 4.8: Trajectory reference with obstacle. The trajectory is represented by the solid
blue line and the orientation axis(x, y, z) are represented by the red, green and blue lines
centered at the initial and final position.

Figure 4.9: 3D Trajectory Tracking Results



72 4| Simulation results

0 1 2 3 4 5 6 7 8 9 10

[s]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

[m
]

Position Trajectory

0 1 2 3 4 5 6 7 8 9 10

[s]

-2

-1.5

-1

-0.5

0

0.5

1

[r
a
d
]

Orientation Trajectory

0 100 200 300 400 500 600 700 800 900 1000

[s]

0.04

0.06

0.08

0.1

0.12

[m
]

Distance to obstacle - Collision avoidance constraint
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Figure 4.11: Trajectory with obstacle: Joints Motion.
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4.2.3. Overall Framework Results

To this point, both algorithms, Trajectory Generation and IK-MPC, are shown inde-
pendently a satisfactory performance according to what was required in the problem
formulation. Now it is possible to test the coupled performance of the entire architec-
ture in challenging environments; thus, in this section, the overall performance of the
developed system is assessed through two distinct scenarios simulating real-world robotic
applications. Each scenario represents a complex environment, challenging the robotic
arm to navigate and execute tasks while respecting the physical constraints and obstacle
avoidance functions. The use of a Digital Twin of a MyCobot280 Robotic Arm in the
simulation, was implemented using Simulink, Matlab, and Peter Corke’s Robotic Tool-
box, this ensures a realistic representation of the system’s kinematic behavior. The results
provide insights into the system’s robustness, safety, and efficiency in accomplishing tasks
within dynamic and unpredictable conditions. Although these scenarios were selected for
its complexity, additional simpler tests were performed as reported in Appendix A. In all
cases, the manipulator will try to reach a target position ptarget (with no direct visibility
of the target) and then return to its initial position pinit. Although it is reasonable that
the solution to reach the target position could be exploited to return to the initial po-
sition, it will not be the case for this set-up. All with the aim to show the capabilities
of the proposed method even when robot starts moving(when returning) in a cluttered
environment.

As outlined in the preceding sections, it is necessary to provide a summary of fixed
parameters for simulating the algorithms, these are reported in Table 4.3 (for the LiDAR
configuration see Table 3.1).

Description Value Related Algorithm
ε̄ 0.4 temp_target()

maxcos 0.7 temp_target()
TOLsc 0.99 temp_target()
Dtot 0.05 Trajectory Generation
tf 1 s Trajectory Generation
d̄i 0.05 inverse_kinematics()
d̄s 0.04 inverse_kinematics()
τLi 0.5 s General
Ts 0.01 s General
Nobs 4 General

Table 4.3: Simulation Algorithm Parameters.

Finally, the 3D representation of every figure in this section will obey the following con-
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vention : Light-blue dots LiDAR readings at time kt, the light-green polytope the obstacle
free region at time kt,the red stars represents the initial and target positions, the blue
dotted line are the initial and final Z orientation of the end effector, the cyan triangles
represents the shifted target position, the blue continue line the trajectory generated and
the black line (triangle markers) is the final performed trajectory .

First Scenario

This first scenario aims to challenge the robotic manipulator with a common task such
as "picking an object under a table". The environment will be also characterized with
two additional aleatory obstacles generated within the workspace apart from the table.
Although the task of "picking" is out of the scope of this work, the automatic motion of
robot will try to mimic this situation by reaching a target position starting from a random
configuration. The initial state of the robot is reported in Table 4.4 and graphically
represented in Figure 4.12.

Description Value
Initial Configuration [rad] [π/2, 0, π/8, 0,−2.443, 0]

Initial Position [m] (0.0944,-0.0956 ,0.3855)
Target Position [m] (-0.0056,-0.2156, 0.1500)

Table 4.4: First Scenario: Initial Configuration.

Figure 4.12: First Scenario: Initial Configuration
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The results of the aforementioned scenario will be analyzed iteratively to understand every
step made by the system in specific situations. First, (see Figure 4.13) since there is no
direct visibility, the robot system starts by shifting its trajectory towards an obstacle free
direction by reconfiguring its position, then a second trajectory is generated but closer
to the target. Consequently (see Figure 4.14), a third trajectory is generated but not
with direct visibility to the target because condition in line 6 - Algorithm 3.3 was not
accomplished. Finally(4th iteration), this condition was accomplished a last trajectory
towards the target was generated. Subsequently, the target was shifted towards the initial
position, and for the first iteration(retraction) the orientation was maintained.

Figure 4.13: Intermediate Trajectories 1 and 2

Figure 4.14: Intermediate Trajectories 3 and 4
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Figure 4.15: Intermediate Trajectories 5 and 6

Figure 4.16: Intermediate Trajectories 7 and 8

Figure 4.17: Intermediate Trajectories 9



4| Simulation results 77

The complete 3D trajectory performed by the manipulator is shown in Figure 4.18 while
a detailed task space trajectory tracking is shown in Figure 4.19. It can be observed that
the reference orientation is not tracked as much as the position, this was expected since
the cost function weights were focused most on the positioning part.

Figure 4.18: First Scenario: Complete Performed Trajectory.Red-Stars: Initial and target
positions. Black triangle-dashed line: Trajectory performed. Blue-line: intermediate
trajectories. Cyan triangles: Intermediate Shifted targets.

Consequently, the resultant joint positions, velocities and acceleration of the performed
trajectory are reported in Figure 4.20

Finally, the distances related to the obstacle avoidance constraint are reported in Figure
4.21 while the ones related to the self-collision constraint in Figure 4.22. It should be
noticed that the new position of the obstacles is updated every τLi = 0.5 s, which leads
in some cases to a sudden violation of the obstacle constraints, therefore, the control
input(acceleration) saturates trying to return to the feasible region.
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Figure 4.19: Performed Trajectory(solid red) and Generated Trajectory(blue dashed).

0 2 4 6 8 10 12 14 16

[s]

-200

-100

0

100

200

[d
eg

]

Joint Angles

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

0 2 4 6 8 10 12 14 16

[s]

-4

-2

0

2

4

[r
ad

/s
]

Joint Velocities

0 2 4 6 8 10 12 14 16

[s]

-20

-10

0

10

20

[r
a
d
/
s2

]

Joint Accleration

Figure 4.20: Joints Motion
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Figure 4.21: Distance from each link to each obstacle
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Figure 4.22: Self-Collision Distances. Constraint at 0.045 m

Additionally, as know, each trajectory had a different time-scaling, a time allocated to
generate the obstacle free polytope and generate the trajectory, and a time to solve the
IK. Those values are reported in Table 4.5 respectively. From the table can be concluded
that the collected time results show the efficiency of the method with a lower than 2ms

for the IK time period. This shows the capability of the method to be used for an online
implementation since the IK is solved much faster than the discrete time Ts. While a
maximum of 1s for the trajectory generation, trajectory that can be computed in parallel
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while the robot is still reaching its target.

Iteration Traj. Time [s] Traj. Gen. Time [s] Iter. Avg. Time IK-MPC [s]
1 2.8641 1.0055 1.5326 ×10−3

2 2.4302 0.4278 0.7157 ×10−3

3 0.8092 0.1409 0.9011 ×10−3

4 2.0000 0.1742 0.5413 ×10−3

5 2.1329 0.3018 0.6899 ×10−3

6 0.7996 0.1303 0.9900 ×10−3

7 1.8325 0.1863 0.4813 ×10−3

8 2.4488 0.8454 0.4748 ×10−3

9 2.0000 0.1931 0.4990 ×10−3

Table 4.5: First Scenario: Time Execution Results.

Moreover, although any map generation was included in this work, it is essential to men-
tion the possibilities of generating an obstacle free local map while the robot is reaching
the target. This feature can be exploited by means of the the union of the intermediate
convex polytopes generated, for this example, graphically this is represented in Figure
4.23.

(a) Isometric view. (b) Side view.

Figure 4.23: First Scenario: Complete Obstacle Free Region.
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Second Scenario

This second scenario aims to challenge the robotic manipulator in a highly cluttered
environment with a target close and between obstacles. The environment will be also
characterized with fourteen additional aleatory obstacles generated within the workspace.
This scenario is particularly challenging since the goal target is laying between obstacles
and in positioned backwards, situation which will require the robot to reconfigure without
colliding with itself. The initial state of the robot is reported in Table 4.6 and graphically
represented in Figure 4.24.

Description Value
Initial Configuration [rad] [1.396, 0, π/8, 0,−π/2, 0]

Initial Position [m] (0.0971,-0.0829 ,0.3983)
Target Position [m] (-0.1861,0.2109, 0.1500)

Table 4.6: Second Scenario: Initial Configuration.

Figure 4.24: Second Scenario: Initial Configuration

First (see Figure 4.25), a trajectory with orientation towards the target is generated.
Since the target position is behind the robot this trajectory involves a reconfiguration of
the manipulator which took place during the performed trajectory. Then (right image),
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a second trajectory is generated towards a obstacle free direction, nevertheless, this tra-
jectory was unfeasible since an approximation of the robot will cause a collision with the
closer obstacle. Therefore, the robot IK-MPC anticipated the collision and performed a
different trajectory but still closer to the temporary target.

Finally (see Figure 4.26), the manipulator reached the target while respecting the obstacle
avoidance constraints. Followed by a retracting stage to return to its initial position (also
Figure 4.27).

Figure 4.25: Intermediate Trajectories 1 and 2

Figure 4.26: Intermediate Trajectories 3 and 4
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Figure 4.27: Intermediate Trajectory 5

The entire 3D trajectory performed by the manipulator is shown in Figure 4.28 while a
detailed task space trajectory tracking is shown in Figure 4.29. As expected, the robot
deviates from its referenced trajectory to reconfigure and point towards the objective.
Additionally, when the end effector its getting closer to the obstacles, the LiDAR readings
are updating the obstacles positions which led to a sudden violation of the constraints as
shown in Figure 4.31, in those time instants the control input saturates by trying to go
back to the feasible region as it can be observed in the acceleration behaviour in Figure
4.30. In the other hand, despite the fact that the robot needed to reconfigure, it performed
without violating the self-collision constraint as presented in Figure 4.32.
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Figure 4.28: Second Scenario: Complete Performed Trajectory. Black triangle-dashed
line: Trajectory performed. Blue-line: intermediate trajectories. Cyan triangles: Inter-
mediate Shifted targets.
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Figure 4.29: Performed Trajectory(solid red) and Generated Trajectory(blue dashed).
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Figure 4.30: Joints Motion
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Figure 4.31: Distance from each link to each obstacle

Once again, the execution time results collected show the efficiency of the method for
an online implementation with less than 1ms for the average time per iteration in the
IK-MPC and small trajectory generation times. In addition, as before, the entire obstacle
free region built as a union of all generated Polytopes is reported in Figure A.10.
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Figure 4.32: Self-Collision Distances. Constraint at 0.045 m.

Iteration Traj. Time [s] Traj. Gen. Time [s] Iter. Avg. Time IK-MPC [s]
1 7.7356 1.6417 0.9652 ×10−3

2 1.0515 0.6014 0.9100 ×10−3

3 2.0000 0.1903 0.7186 ×10−3

4 2.0650 0.2597 0.8244 ×10−3

5 2.0000 0.3423 0.9167 ×10−3

Table 4.7: Second Scenario: Time Execution Results.

(a) Isometric view. (b) Top view.

Figure 4.33: Second Scenario: Complete Obstacle Free Region.
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developments

This thesis presented a novel hierarchical control framework for a 6-DOF robotic manipu-
lator operating in unknown and dynamic environments. Starting from an understanding
of the state-of-the-art, this work proposed novel strategies for Local Path Planning and
a constrained Inverse Kinematics. The proposed partition guaranteed a double layer of
safety (obstacle free trajectory generation and reactive obstacle avoidance) for obstacle
avoidance which allows a safe motion of the manipulator towards a target position in an
obstacle characterized environment .

In the Local Path Planning block, a Convex Approximation of the Free Space was pro-
posed with the aim to generate obstacle free trajectories towards a target. An efficient
strategy for target shifting was presented and tested. The results indicated its significance
in achieving successful trajectory planning in intricate environments. The generated poly-
nomial trajectories exhibited satisfactory performance, meeting the desired specifications.

The Inverse Kinematics used a Model Predictive Control approach, which exhibited im-
proved performance compared to traditional one-step-ahead formulations. Through ex-
tensive parameter tuning, the framework achieved accurate trajectory following while sat-
isfying the joint motion, obstacle and self-collision avoidance constraints. Furthermore,
despite the fact the robot is not redundant, the self-collision avoidance constraint allowed
different reconfiguration of the robot while operating. In addition, the average time per
iteration for IK-MPC was consistently below 2ms for the presented scenarios that show
its potential for an online real implementation. A comparison between the optimization
algorithms were presented and tested to aim the best performance.

The integration of the Local Path Planning strategy and Inverse Kinematics into a unified
hierarchical control system was evaluated in specific challenging scenarios with aleatory
obstacles. The proposed system demonstrated robustness, safety, and efficiency in accom-
plishing tasks while satisfying the enforced constraints.

Nevertheless, the completeness of the method was not proven. During the tuning of
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parameters the results of the system showed an inefficient path towards the target or even
not being able to reach it (which was not the case after the tuning). These tests revealed
that the system behavior is sensible to the choice of those parameters to achieve the target
in a greater or lesser number of iterations. However, this characteristic is not unique of
this method, well know methods such as planning via artificial potentials[34] are also not
complete in general. Overall, the presented framework represents a viable and efficient
solution to the considered problem, and its applicable in real world scenarios.

In conclusion, the developed hierarchical control framework exhibited promising capabil-
ities for robust and adaptable robotic manipulator operation in complex environments.
In fact, the proposed method was developed as general as possible to be able to include
redundant, humanoids or hexapods robots in future works. Additionally, the proposed
structure allows the inclusion of other components such an offline or sequential high level
planner which can compute the referenced target ptarget based on the specific applica-
tion, or a customized low level control system which can run at a different discrete time.
The results obtained elucidates a path for continued advancements in the field of robotic
control systems, with potential applications in diverse industrial and research domains.

5.1. Future Developments

While the current research provides a solid foundation, there are still points for future
research lines and enhancement. One of them, which was also proven in the results,
is the generation of a constantly updated Local Map based on the obstacle free convex
regions. This local map can be characterized as an occupancy map or other required
techniques. Additionally, since the choice of the parameter maxcos is sensible, a future
research can approach the target shifting as an optimization problem taking into account
more variables than just the direction towards the target.

As for the case of the IK-MPC, the framework showcased its adaptability and versatility to
include more requirements. The extension could point towards redundant manipulators
or the inclusion of a mobile base in order to exploit redundancy and dexterity in the
solution, which are important in obstacle characterized environments. In this regard, a
manipulability index as well as other terms could be also included in the cost function.
The obstacle avoidance functions can be extended for "Nobs" obstacles depending on the
application. Moreover, the approximation of the links of the manipulator with primitives
shapes can be done and enforced as inequality constraints to cover the whole kinematic
chain. Additionally, the complete formulation as QP could be compared in terms of
performance and computational time by solving the entire non-linear problem with a
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SQP solver.

Finally, the extension of the proposed method to a real-world application is encouraged
for experimental validation to evidence the capabilities of this work.
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A.1. Additional Tests

A.1.1. Test 1

Test with visibility of the target but with obstacle obstructing the path planned.

Description Value
Initial Configuration [rad] [1.3962, 0, π/8, π/8, 2.2689, 0]

Initial Position [m] (0.0137,-0.1124 ,0.3626)
Target Position [m] (-0.0500,-0.2500, 0.1500)

Table A.1: Test 1: Initial Configuration.

Figure A.1: Test 1: Initial Configuration
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Figure A.2: Intermediate Trajectories 1 and 2

Figure A.3: Intermediate Trajectories 3 and 4

Figure A.4: Intermediate Trajectories 5 and 6
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Figure A.5: Complete Performed Trajectory
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Figure A.6: Performed Trajectory(red) and Generated Trajectory(blue dotted)
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Figure A.7: Joints Motion
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Figure A.8: Distance from each link to each obstacle
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Figure A.9: Self-Collision Distances

Figure A.10: Complete Obstacle Free Region.
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A.1.2. Test 2

Test in a cluttered environment with flying obstacles but visibility of the target.

Description Value
Initial Configuration [rad] [1.7453,−π/8, π/8, π/8, 2.4435, 0]

Initial Position [m] (0.0407,-0.0097,0.3844)
Target Position [m] (0.0000,-0.2000,0.2800)

Table A.2: Test 2: Initial Configuration.

Figure A.11: Test 1: Initial Configuration

Figure A.12: Intermediate Trajectories 1 and 2
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Figure A.13: Intermediate Trajectories 3 and 4

Figure A.14: Complete Performed Trajectory
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Figure A.15: Performed Trajectory(red) and Generated Trajectory(blue dotted)
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Figure A.16: Joints Motion
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Figure A.17: Distance from each link to each obstacle
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Figure A.18: Self-Collision Distances
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(a) Isometric view. (b) Side view.

Figure A.19: Complete Obstacle Free Region.
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