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Abstract

In this thesis a specific kind of stochastic problems is treated: partial differential
equations with white noise boundary conditions. First results about this topic can
be found [DZ93]. This topic was introduced recently, its literature is still very
fragmented and wide possibilities of development are available. This kind of equa-
tions has a relevant modeling interest. In fact, in several physical cases, random
perturbations come from the boundary of the domain and are not distributed in-
side it [DL06],[Kim06].
In the first part of the thesis, I will recall part of the literature available on this
kind of problems, dwelling on the heat equation, proving that the solution of this
problem belongs to proper functional spaces and has some regularity properties.
The heat equation was the first problem where white noise boundary conditions
were introduced, therefore its literature is more detailed. In addition, it was proven
that different boundary conditions lead to different regularity for the solution of
the heat equation with white noise boundary conditions.
Subsequently, I will analyze a fourth order linear evolution equation with several
stochastic boundary conditions. No results are available on this kind of problems.
However, it is possible to replicate what has been recalled for the heat equation,
getting analogous results to the ones found in [DZ93],[AB02b] and improve, focus-
ing on a specific case, the results proven in [Mas95].
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Sommario

In questa tesi viene trattata una particolare classe di problemi stocastici: equazioni
differenziali con condizioni al bordo stocastiche di tipo rumore bianco. I primi risul-
tati su questo argomento si trovano in [DZ93]. Questo argomento è stato introdotto
recentemente, la letteratura è ancora molto frammentata e sono possibili ampi
margini di sviluppo. Questo tipo di equazioni ha un importante interesse model-
listico. In diversi problemi di interesse fisico, le perturbazioni caotiche provengono
dal bordo del sistema e non sono distribuite al suo interno [DL06],[Kim06].
Nella prima parte di questa tesi si ripercorrerà parte della letteratura presente su
questo tipo di problemi, soffermandosi sull’equazione del calore, provando l’apparte-
nenza della soluzione ad opportuni spazi funzionali e alcune sue proprietà di re-
golarità. L’equazione del calore è stata la prima su cui sono state introdotte
condizioni al bordo stocastiche di tipo white noise e i risultati a riguardo sono
meglio dettagliati. Inoltre, è noto per questa equazione che problemi al bordo
diversi portano a risultati differenti nella regolarità della soluzione.
Successivamente si analizzerà un’equazione di evoluzione lineare del quarto ordine
con vari tipi di condizioni al bordo stocastiche. Non sono disponibili risultati
su questa tipologia di problemi. Tuttavia è possibile estendere i risultati noti
per l’equazione del calore [DZ93],[AB02b] e migliorare, focalizzandosi su un caso
specifico, i risultati di [Mas95].
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Chapter 1
Introduction

Stochastic equations with white noise boundary conditions are a recent topic be-
tween mathematical analysis and stochastic calculus. They were introduced by
Da Prato and Zabczyk in [DZ93]. In general stochastic differential equations de-
scribe all dynamical systems, in which random effects can be taken into account as
perturbations. Stochastic boundary conditions have a clear model interpretation
because in some applications the noise can effect the evolution of a system only
through the boundary of a region. An easy example of what kind of problems is
affected by this noise can be found in [DL06]. Imagine that rain falls on the surface
of a lake, producing a sound wave that propagates under water. This noise is pro-
duced by a large number of small contributions (the rain droplets). After suitable
rescaling, the noise can be considered to be spatially homogeneous on the surface
of the lake, propagating through a three-dimensional medium. Hence, the noise is
concentrated on the two dimensional boundary of a three-dimensional domain.

1.1. Plan of the work

The aim of this work is on the analysis of mild solution of partial differential
equation with white noise boundary conditions. We will concentrate on existence,
uniqueness and regularity of solutions, but this is not the only kind of issue re-
lated to these stochastic problems. Particularly relevant are also topics related
to ergodicity properties and long time behavior of the solutions [DZ96],[AB02a],
stochastic optimal control problems [FG09],[Mas10],[DFT07]. The discussion will
be focused to give a clear explanation of the literature devoted to the heat equa-
tion with white noise boundary conditions of Dirichlet type or Neumann type
[AB02b],[DZ96],[DZ93]. These two cases present relevant differences in the reg-
ularity of their own solution. Therefore, they are enough to understand some
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1. Introduction

critical issues of this kind of problems. Then, our attention will be focused to
expose some original results on a fourth order linear evolution equation with white
noise boundary conditions.

• In chapter 2, some general notions and results useful for the analysis of
stochastic partial differential equations are introduced and stated [LR15],[DZ93].
At the beginning of the chapter, we introduce the notion of mild solution for
a general stochastic problem, in order to get a more flexible notion of solu-
tion that, actually, generalize the notion of mild solution for a deterministic
problem. Then we move to a problem with stochastic boundary conditions.
Let Γ be a regular domain in Rn, A0 : D(A0) ⊂ L2(Γ) → H = L2(Γ) a
differential operator, τ : D(τ) ⊂ L2(Γ)→ L2(∂Γ) = U2 an operator defining
boundary conditions. We are interested in giving a meaning and, then, a
proper definition of solution to the equation

∂X
∂t

(t) = A0X(t) + F (X(t)) +BẆ 1(t) t ∈ [0, T ]

τX(t) = Ẇ 2(t) t ∈]0, T ]

X(0) = x

(1.1.1)

where F : D(F ) ⊂ H → H is a non linear operator, B is a linear operator
from a Hilbert space U1 with values in H and Ẇ 1(t), Ẇ 2(t) are two white
noise processes in U1 and U2. In general we are not interested in the notion of
solution introduced in classical stochastic calculus [Bal17], but to a different
one, called mild solution. Under reasonable assumptions on A0:

1. its restriction to the kernel of τ generates a C0 semigroup of operators
S(t) on H;

2. the stationary problem

(A0 − λ)z = 0, τ(z) = u

has a unique solution for some λ ∈ R, z = Du ∀u ∈ U2.

Then a mild solution of equation (1.1.1) can be defined at least in a formal
way as a process satisfying:

X(t) = S(t)x+ (λ− A)

ˆ t

0

S(t− s)DẆ 2(s)ds+

ˆ t

0

S(t− s)BẆ 1(s)ds+

ˆ t

0

S(t− s)F (X(s))ds.

(1.1.2)

It can be noted that the first summand is the mild solution of the determin-
istic linear problem, the third one and the fourth one are given by variation
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1.1. Plan of the work

of constants formula and are due to the non-linearities of the equation, lastly
the second summand takes care of stochastic boundary conditions and is ob-
tained by detection of the boundary conditions. Then it is clear why the two
above assumptions on A0 are needed. Of course the above formula is not
well defined in general since it has an implicit representation and the two
stochastic integral are well posed under suitable assumptions. Hence, at the
end of chapter 2, some abstract conditions for the well posedness of equation
(1.1.2) are stated.
In addition, some results on partial differential equations with white noise
boundary conditions are related to a notion of solution different from the
mild one, called weak solution in analogy to the weak solution of determin-
istic problems [Sow94], [AB02b],[Brz+15]. We neglect results related to this
notion of solution in this thesis.

• Chapter 3 is devoted to the application of the general theory to some specific
equation in this stochastic framework. The first part (sections 3.1, 3.2) is fo-
cused on presenting some available results on the heat equation in a bounded
interval. To be more precise in section 3.1(resp. 3.2) the heat equation in a
closed interval with Neumann (Dirichlet) boundary conditions is analyzed,
proving that formula (1.1.2) is well defined and it is a L2 continuous function
(a distribution) for each fixed time t. Further analysis on heat equation in
a general Riemannian manifold with Neumann boundary conditions can be
found in [Sow94]. We just present a direct proof of the fact that the solution
of the problem in the half-line is a L2 function almost everywhere in Ω×[0, T ]
in section 3.1.
The fact that the solution of the problem described in section 3.2 for a fixed
time t is a distribution leads us to the question if this is due to some blow up
in a region of Γ. This idea moves to the analysis introduced in [AB02b] and
reported in section 3.3. Actually, they consider a more general heat equation
with Dirichlet white noise boundary conditions

∂Z
∂t

(t, ξ) = ∂2Z
∂ξ2

(t, ξ) +
∑n

j=1[bj(ξ)
∂Z
∂ξ

(t, ξ) + Fj(t, ξ, Z(t, ξ))]Ẇ j(t)

Z(t, 0) = V̇ (t)

Z(0, ξ) = 0 (t, ξ) ∈ IT := [0, T ]× R+

(1.1.3)
Where W (t) = (W 1, ...,W n)(t) is a real standard n-dimensional Wiener pro-
cess and V (t) is real standard Wiener process adapted to the filtration gener-
ated by W (t). Equation (1.1.3) obviously includes the heat equation, taking
bj = Fj ≡ 0. In particular, it is proven that, under suitable assumptions on bj
and Fj, the solution belongs to some Lp weighted spaces, Mp(Ω× [0, T ];Lpγ),
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1. Introduction

where Lpγ is the space of real measurable functions such that
ˆ +∞

0

|f(x)|p(1 ∧ xp−1+γ)dx < +∞

and the degree of increasing close to the origin can be quantified
∀T > 0, α > 0

lim
x→0 0≤t≤T

x1+α|u(t, x)| = 0 P− a.s.

In addition, the solution of equation (1.1.3) is continuous far from the ori-
gin, namely ∀δ > 0 it exists a modification of the solution continuous in
[δ,+∞). In conclusions, the authors prove that the solution is not only a
distribution-valued process, but it belongs to some L2 function space, pro-
vided an appropriate weight is introduced.

• In chapter 4, we are interested to a fourth order parabolic problem, consid-
ering different kinds of domain Γ and boundary conditions.

∂Z

∂t
(t, ξ) +

∂4Z

∂ξ4
(t, ξ) = 0 t ≥ 0 ξ ∈ Γ. (1.1.4)

1. White noise zero and second order boundary conditions (Navier Bound-
ary conditions) in a bounded interval (P1).

2. White noise zero and second order boundary conditions (Navier Bound-
ary conditions) in the half-line (P2).

3. White noise first and third order boundary conditions in a bounded
interval (P3).

4. White noise first and third order boundary conditions in the half-line
(P4).

This is the original part of the thesis. The results on these problems can
be coupled. In fact problems P1 and P3 are as related as problems P2 and
P4. Equation (1.1.4) has no direct modeling interpretation, but adding some
terms it leads to a Cahn–Hilliard equation. For this reason, it can be the first
step to deeper and much more relevant analysis. Concerning problems P1
and P3 we prove that the solution belongs to distributional spaces for each
fixed time t, in addition boundary conditions of higher order derivative give
us more regularity as in the Neumann-Dirichlet case previously described.
Concerning problems P2 and P4, we find that, again as in section 3.3, the
solution belongs to some Lp weighted spaces, Lp(Ω× [0, T ];Lpγ). In the case
of P2, Lpγ is the space of real measurable functions such that

ˆ +∞

0

|f(x)|p(1 ∧ x3p−1+γ)dx < +∞.
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1.2. New results

In addition, the solution of both problems is continuous away from the origin.

• All the analysis made in chapters 2, 3 and 4 needs some advanced math-
ematical tools which are reported in the appendices. Some results on sine
and cosine transforms are presented in appendix A, then they are applied to
some deterministic linear parabolic equations. In appendix B we introduce
the notion of C0 semigroup of linear operator on a Banach space and of mild
solution for a deterministic problem. Then, in appendix D, we introduce the
notion of Wiener process with value in a general Hilbert space and the notion
of stochastic integral with respect of this kind of processes exploiting some
operator theory tools recalled in appendix C. In appendix E some standard
results of stochastic calculus are recalled.

All the original results are fully explained and their proofs are as complete as
possible. Instead, concerning the rest of the statements, not all the proofs are
presented. To be more precise, concerning the more technical statements, the idea
behind them is often only described, then a reference for the complete proof is
added.

1.2. New results

• The proof of proposition 3.1.6 is new. Actually, it is not an original result.
In fact, in [Sow94] more general results in a Riemannian manifold are shown.
The relevance of this proof is that, in this specific case, we can find an easier
and more direct approach.

• Chapter 4 is completely new. In particular, the first part is an easy appli-
cation of some abstract results presented in chapter 2. Instead, the second
part, namely propositions 4.2.1, 4.2.3, 4.2.4, 4.2.5, improves, focusing on a
specific case, the results available in [Mas95].
To get all the results presented in chapter 4 some complications emerge. In
fact, there are no available results for parabolic equation with white noise
boundary conditions of order 2m with m > 1, except a few general results
like proposition 2.2.3 and a sufficient condition for the belonging of the solu-
tion for a fixed time t to an L2 space with respect to the Lebesgue measure
[Mas95]. Of course this sufficient condition is not so useful in the applica-
tions, because, as proven in section 3.2, also the solution of an elementary
problem, namely the heat equation with stochastic Dirichlet boundary con-
ditions, is not a L2 function for a fixed time t. Further analysis presented in
section 3.3 and [Sow94] exploit the explicit elementary formula for the kernel
of the differential operator or some useful estimates for the kernel. These
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1. Introduction

kinds of results are not completely available for the fourth order parabolic
equation. For this reason it is necessary to work with some non elementary
representation for the solution of problems P2 and P4.

1.3. Some notations

In general, all the notations are clearly introduced before being used. In this
section we define a few basic mathematical objects, whose notation will be kept
throughout the entire thesis.

• For a Banach space W , we denote by Lp([0, T ];W ), where p ∈ [1,+∞], the
Lp-space of W -valued, Bochner-integrable functions on [0, T ]. We denote by
C([0, T ];W ) the set of W -valued continuous functions on [0, T ].

• Even if it is not explicitly done, we will consider a probability space (Ω,F ,P)
and the natural filtration Ft generated by the noises in the equation.

• For an a Hilbert space W (so for a Banach space too), we denote its dual
space by W ∗, its inner product by 〈·, ·〉W , its duality pairing by 〈·, ·〉W ∗,W ,
and its norm by ‖·‖W .

• Ck
b (R) is the space of function with derivatives up to the order k continuous

and bounded.

• When we refer to constant quantities whose exact value is irrelevant, we may
share the same symbol for more than one of these objects.

More specialized functional and probabilistic tools will be specified when necessary.
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Chapter 2
Systems Perturbed Through the
Boundary

In this chapter we will introduce the main topics of this thesis: the concept of mild
solution and its application to some partial differential equations with stochastic
boundary conditions in a very abstract framework. A more detailed description
about these topics can be found in [DZ93], [DZ96],[DZ14],[LR15].

2.1. Mild solution

Let (U, ‖·‖U) and (H, ‖·‖H) be separable Hilbert spaces. We fix a cylindrical
Wiener process W (t), t ≥ 0, in U on a probability space (Ω;F ;P) with a normal
filtration Ft, t ≥ 0. Moreover, we fix T > 0 and consider the following type of
stochastic differential equations in H

{
dX(t) = [AX(t) + F (X(t))]dt+B(X(t))dW (t) t ∈ [0, T ]

X(0) = ξ
(2.1.1)

where

• A : D(A)→ H is the infinitesimal generator of a C0 semigroup S(t), t ≥ 0,
of linear operators on H,

• F : H → H ,

• B : H → L(U,H),

7



2. Systems Perturbed Through the Boundary

• ξ is an H valued, F0-measurable random variable.

First, we want to try to motivate the definition of mild solution. In fact, we
note that only in very special cases can one find a solution to (2.1.1) such that
X ∈ D(A) dt ⊗ P − a.s. Therefore, one reformulates the equation using the
following heuristics: Consider the integral form of (2.1.1) and apply the (in general
not-defined!) operator e−tA for t ∈ [0, T ] to this equation. Applying Itô’s product
rule (again heuristically), we find

e−tAX(t) = ξ+

ˆ t

0

e−sA(AX(s)+F (X(s)))ds+

ˆ t

0

e−sAB(X(s))dW (s)−
ˆ t

0

e−sA(AX(s))ds

that implies

X(t) = S(t)ξ +

ˆ t

0

S(t− s)F (X(s))ds+

ˆ t

0

S(t− s)B(X(s))dW (s) P− a.s.

This heuristic drives our definition of mild solution.

Definition 2.1.1 (mild solution). An H-valued predictable process X(t), t ∈
[0, T ], is called mild solution of problem (2.1.1) if

X(t) = S(t)ξ +

ˆ t

0

S(t− s)F (X(s))ds+

ˆ t

0

S(t− s)B(X(s))dW (s) P− a.s.

for each t ∈ [0, T ].

To be more clear the P-zero set where the above equation does not hold may
depend on t. If we introduce an enough common set of hypotheses we get existence,
uniqueness and continuity of the mild solution in a proper space and that the
solution map is Lipshitz continuous. To be more specific:
Hypothesis M.0

• A : D(A)→ H is the infinitesimal generator of a C0 semigroup S(t), t ≥ 0,
of linear operators on H,

• F : H → H is Lipschitz continuous,

• B : H → L(U,H) is strongly continuous, i.e. the map x → B(x)u is
continuous from H to H ∀u ∈ U ,

• ∀t ∈]0, T ] and x ∈ H we have that S(t)B(x) ∈ L2(U,H),

• there is a square integrable mapping K : [0, T ]→ [0,+∞] such that

8



2.2. Equations with non-homogeneous boundary conditions

– ‖S(t)(B(x)−B(y))‖L2(U,H) ≤ K(t)‖x− y‖H
– ‖S(t)B(x)‖L2(U,H) ≤ K(t)(1 + ‖x‖H)

∀t ∈]0, T ] and x, y ∈ H

If we also introduce for a fixed T > 0 and p ≥ 2 the space Hp(T,H) as the space
of all the H-valued predictable process Y such that

‖Y ‖Hp := sup
t∈[0,T ]

(E[‖Y (t)‖pH ])
1
p < +∞

Then (Hp(T,H), ‖·‖Hp) is Banach space (obviously considering the usual equiva-
lence classes of processes).
Now it is possible to state the following result.

Theorem 2.1.2. Under Hypothesis M.0 there exists a unique mild solution X(ξ) ∈
Hp(T,H) of problem (2.1.1) with initial condition ξ ∈ Lp(Ω,F0,P;H) =: Lp0. In
addition, the mapping
X : Lp0 → Hp(T,H) that associates to each initial datum its mild solution is
Lipschitz continuous.

Proof. The proof of this theorem can be found in [LR15] and is based on Con-
traction Mapping Theorem and some results about continuity of the implicit func-
tion.

Concerning the regularity of the solution, to prove theorem 2.1.2 as sub-result we
get that

´ t
0
S(t−s)F (X(s))ds has a continuous version, hence to get the continuity

of X(t) it is enough to show that
´ t

0
S(t− s)B(X(s))dW (s) has a continuous ver-

sion. To obtain this result we need to add a further hypothesis on K(t) introduced
in Hypothesis M.0.

Proposition 2.1.3. Assume that A, B, F satisfy Hypothesis M.0, and let p ≥ 2.
If there exists α ∈]1

p
,+∞[ such that

´ T
0
s−2αK2(s)ds < +∞ then the mild solution

X(ξ) of the problem (2.1.1) has a continuous version for all initial conditions
ξ ∈ Lp0.

Proof. The proof of this fact can be found in [LR15].

2.2. Equations with non-homogeneous boundary
conditions

Let Γ be a bounded domain in Rn with smooth boundary ∂Γ, let A0 : D(A0) ⊂
L2(Γ) → H = L2(Γ) a partial differential operator. Let moreover τ : D(τ) ⊂

9



2. Systems Perturbed Through the Boundary

L2(Γ)→ L2(∂Γ) = U2 be a linear operator defining boundary conditions. We are
interested about equations of the type

∂X
∂t

(t) = A0X(t) + F (X(t)) +BẆ 1(t) t ∈ [0, T ]

τX(t) = Ẇ 2(t) t ∈]0, T ]

X(0) = x

(2.2.1)

Where F : D(F ) ⊂ H → H is a nonlinear operator, B is a bounded linear
operator from a Hilbert Space U1 into H and Ẇ 1(t), Ẇ 2(t) represent white noise
processes in U1, U2 respectively. The analysis of this equation can be done re-
placing the noises by arbitrary functions or exploiting the properties of semigroup
method [Bal12]. This section will follow this approach to get some satisfactory
results about the study of this equation.

First we consider two orthonormal bases of U1 := L2(0, T ;U1) and U2 := L2(0, T ;U2)
made by smooth functions {ψ1

n} and {ψ2
n} and two sequences of standard and inde-

pendent one dimensional normal random variables {ξn} and {ηn}, then we consider
the approximating form of (2.2.1)

∂XN
∂t

(t) = A0XN(t) + F (XN(t)) +BẆ 1
N(t) t ∈ [0, T ]

τXN(t) = Ẇ 2
N(t) t ∈]0, T ]

X(0) = x

(2.2.2)

where Ẇ 1
N(t) =

∑N
n=1 ξnψ

1
n(t), Ẇ 2

N(t) =
∑N

n=1 ηnψ
2
n(t). Now we solve this approx-

imating equation thanks to semigroup method. Let Ay = A0y, y ∈ D(A) = {y ∈
D(A0) ∩ D(τ); τy = 0}. Assume that A generates a C0 semigroup of operators
S(t) on H and that the stationary boundary value problem

(A0 − λ)z = 0, τ(z) = u

has for some λ ∈ R a unique solution z = Du ∀u ∈ U2. With the operators A and
D defined this way, problem (2.2.2) can be written as

XN(t) = S(t)x+ (λ− A)

ˆ t

0

S(t− s)DẆ 2
N(s)ds+

ˆ t

0

S(t− s)BẆ 1
N(s)ds+

ˆ t

0

S(t− s)F (XN(s))ds

In the sequel we will use the more compact notation Z2
N(t) = (λ − A)

´ t
0
S(t −

s)DẆ 2
N(s)ds and Z1

N(t) =
´ t

0
S(t− s)BẆ 1

N(s)ds. The reason why we can consider
this equivalent problem instead of equation (2.2.2) can be found in [DZ96], now

10



2.2. Equations with non-homogeneous boundary conditions

we explain the formal reason why this is possible at least in case F ≡ 0 (case
with F generic follows by variation of constants argument). Assuming ˙W 1

N(t) and
˙W 2
N(t) are two deterministic and regular functions u1(t) and u2(t) (at least C2

functions, with values in U1 and U2 respectively) and x−Du2(0) ∈ D(A), thanks
to proposition B.4.6, there exists a strong solution of the equation{

z′(t) = Az(t) + λDu2(t)−Du′2(t) +Bu1(t) t > 0

z(0) = x−Du(0)
(2.2.3)

In particular τ(z(t)) = 0, ∀t ≥ 0. If we define y(t) = z(t) + Du2(t), t ≥ 0. Then
we have{

τ(y(t)) = τ(Du2(t)) = u2(t), t ≥ 0
d
dt

(y(t)−Du2(t)) = (A0 − λ)(y(t)−Du2(t)) + λy(t)−D(u′2(t)) +B(u1(t))

Taking into account that (A0 − λ)y(t) = 0 ∀t ≥ 0 we get that
∂y
∂t

= A0y(t) +Bu1(t), t > 0

τ(y(t)) = u2(t), t > 0

y(0) = x

So y(t) solves the deterministic version of equation (2.2.2) and is given by

y(t) = S(t)x+ (λ− A)

ˆ t

0

S(t− s)Du2(s)ds+

ˆ t

0

S(t− s)Bu1(s)ds

Now we come back to our approximating stochastic problem (2.2.2). We start
considering the homogeneous case (namely F ≡ 0), so that XN(t) = S(t)x +
Z1
N(t) +Z2

N(t). It is well known [Bal12] that Z1
N(t) converges in H in mean square

if and only if
´ t

0
|S(r)B|2L2(U,H)dr < +∞ and it holds

Z1
N(t)→ Z1(t) =

ˆ t

0

S(t− s)B(s)dW 1(s).

hence we are interested in finding necessary and sufficient conditions so that

Z2
N(t)→ Z2(t) =

ˆ t

0

(λ− A)S(t− s)DdW 2(s) (2.2.4)

in H in mean square ∀t ∈ [0, T ]. For this reason, by linearity of the equation we
can concentrate on the problem

∂ZN
∂t

(t) = A0ZN(t) t ∈ [0, T ]

τZN(t) = Ẇ 2
N(t) t ∈]0, T ]

Z(0) = 0

(2.2.5)

11



2. Systems Perturbed Through the Boundary

The solution of this problem is called Ornstein-Uhlenbeck process in analogy to the
classical case. Now it is possible to state some technical sufficient and necessary
conditions, so that conditions (2.2.4) holds. These are useful to get some manage-
able conditions. They explain the possibility to extend the deterministic operator
LTu = (λ − A)

´ t
0
S(t − s)Du(s)ds, which is linear from D(LT ) = W 1,2(0, T ;U2)

into L2(0, T ;H) = H, to a bigger domain which includes our boundary conditions,
namely U2 .

Theorem 2.2.1. The operator LT has an extension to a Hilbert-Schmidt opera-
tor from U2 to H if and only if for almost r ∈ [0, T ] the operators D∗S∗(r)A∗ :
D(A∗)→ H have Hilbert-Schmidt extensions and

ˆ T

0

(ˆ t

0

‖D∗S∗(r)A∗‖2
L2(H;U2)dr

)
dt < +∞ (2.2.6)

Note that if B and C are respectively bounded and densely defined unbounded
linear operators and the operator BC has a bounded extension, then ImB∗ ⊂
D(C∗) and the operator C∗B∗ is a bounded operator adjoint to BC. If we consider
B = D∗S∗(r), C = A∗, since a Hilbert-Schmidt operator is bounded we get the
following equivalent formulation of Theorem 2.2.1.

Theorem 2.2.2. The operator LT has an extension to an Hilbert-Schmidt operator
from U2 to H if and only if

ˆ T

0

(ˆ t

0

‖A(S(r)D)‖2
L2(U2;H)dr

)
dt < +∞

Proof. The proofs of these theorems are very technical and can be found in [DZ93].

Actually if just a weaker version of (2.2.6) holds
ˆ T

0

‖D∗S∗(r)A∗‖2
L2(H;U2)dr < +∞ (2.2.7)

we get that the process

Z2(t) =

ˆ t

0

(λ− A)S(t− s)DdW 2(s) t ∈ [0, T ]

is well defined and formally LT (Ẇ 2) = Z2(·) P−a.s. If a stronger version of (2.2.7)
holds, namely

∃γ > 0 :

ˆ t

0

r−γ‖AS(r)D‖2
L2(U2;H)dr < +∞ (2.2.8)

12



2.2. Equations with non-homogeneous boundary conditions

then the processes Z2
N(t) converge to Z2(t) that is well defined and has a version

H-continuous. In applications to nonlinear equations it is important that the space
H is as small as possible. So let us introduce some intermediate versions of H.
We assume that A generates an analytic semigroup on H and denote by Hα the
fractional power spaces of A.
If α ≥ 0, then Hα = D((−A)α) ⊂ H with the graph norm induced by (−A)α.
Instead, if α < 0 then Hα is the completion of H with respect to the norm
‖x‖α = ‖(−A)αx‖H . From now on we assume that A is self-adjoint and that
there exists a complete orthonormal basis of eigenvectors {gn} of A corresponding
to the sequence {−λn} ↓ −∞ of non positive eigenvalues. In particular we have
the following result, really useful for the applications.

Proposition 2.2.3. If for some γ > 0

+∞∑
n=1

λ2α+γ+1
n ‖D∗gn‖2

U2
<∞

Then the process Z2(t) has an Hα-continuous version.

Proof. Note that
ˆ t

0

r−γ‖AS(r)D‖2
L2(U2;Hα)dr =

ˆ t

0

r−γ‖(−A)1+αS(r)D‖2
L2(U2;H)dr

But

‖(−A)1+αS(r)D‖2
L2(U2;H) =

+∞∑
n=1

‖D∗S(r)(−A)1+αgn‖2
U2

=
+∞∑
n=1

e−2λnrλ2(1+α)
n ‖D∗gn‖2

U2

Therefore
´ t

0
r−γ‖AS(r)D‖2

L2(U2;Hα)dr < +∞ holds true if and only if

+∞∑
n=1

λ2(1+α)
n ‖D∗gn‖2

U2

ˆ t

0

r−γe−2λnrdr < +∞.

The last inequality holds if and only if
∑+∞

n=1 λ
2α+γ+1
n ‖D∗gn‖2

U2
<∞, hence we get

the continuity of the process by equation (2.2.8) and the thesis.

Remark 2.2.4. The last proposition is a sort of summability regularity of Fourier
coefficients of our solutions. As in the deterministic case, the bigger is the summa-
bility order of the Fourier series the more regular is the solution.
The last result is really useful in the applications because it gives us an easy

way to compute the regularity of the solution provided that it is possible to find
an orthonormal basis of H made by eigenvectors of A

13



2. Systems Perturbed Through the Boundary

2.3. Nonlinear case

Now it is possible to move to the nonlinear case, assuming that the solution of the
linear problem belongs to a set of proper regular function (distributional solution
are not allowed in this framework, because composition of function and distribution
is not well defined).

∂X
∂t

(t) = A0X(t) + F (X(t)) +BẆ 1(t) t ∈ [0, T ]

γX(t) = Ẇ 2(t) t ∈]0, T ]

X(0) = x

(2.3.1)

To solve this problem we need to introduce several Hilbert space and formulate
assumptions. Let us start considering J ⊂ K ⊂ H Hilbert spaces and F : K → H
a mapping such that
Hypothesis L.1

1. F − ωI is m-dissipative1 on H for some ω ∈ R.

2. F maps J into K and the restriction of F − ωI to J is dissipative in K.

3. F transforms bounded sets in J into bounded sets in K and bounded sets in
K into bounded sets in H.

A intermediate function y(t), mild solution of a homogeneous problem, namely

y′(t) = Ay(t) + F (y(t) + ψ(t)) y(0) = x (2.3.2)

where ψ ∈ C([0, T ]; J), or equivalently

y(t) = S(t)x+

ˆ t

0

S(t− s)F (y(s) + ψ(s))ds t ∈ [0, T ].

Then, if this solution y exists, then X solution of equation (2.3.1) can be written,
thanks to linearity, as X(t) = y(t) +Z1(t) +Z2(t) t ∈ [0, T ], where ψ(t) is exactly
Z1(t) + Z2(t). To guarantee that equation (2.3.2) has a proper solution, useful to
solve problem (2.3.1) we need to introduce new assumptions on A, namely
Hypothesis L.2

1Let (Y, 〈·, ·〉Y ) be a Hilbert space. An unbounded linear operator (A,D(A)) on Y is m-
dissipative if

• 〈A(y), y〉Y ≤ 0 ∀y ∈ D(A).

• ∀f ∈ Y, ∀λ > 0, ∃y ∈ D(A) such that λy −Ay = f .
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2.3. Nonlinear case

1. A generates a contraction semigroup S(·) on H.

2. The part of A in K generates a contraction semigroup S(·) on K.

Now we can state the following theorem and its obvious but crucial corollary.

Theorem 2.3.1. Under hypothesis L.1 and L.2, for arbitrary x ∈ K and ψ ∈
C([0, T ]; J), equation (2.3.2) has a mild K-valued solution.

Proof. the proof of this theorem can be found in [DZ93] and exploits Fα, i.e. the
Yoshida approximations of F , then it is considered the approximated problem:

y′α(t) = Ayα(t) + Fα(yα(t) + ψ(t)) yα(0) = x (2.3.3)

Subsequently, it is shown that solution of problem (2.3.3) exists for each α > 0
and limα→0yα(t), t ∈ [0, T ] exists uniformly in [0, T ] and is the required solution
of equation (2.3.2).

Corollary 2.3.2. Assume that conditions of theorem 2.3.1 are satisfied and that
processes Z1(·), Z2(·) have J-continuous versions, then the mild form of equation
(2.3.3) has a K-valued and H-continuous solution.

Remark 2.3.3. The continuity property in H holds also for y(t) since an inspection
of the proof of theorem 2.3.1 shows us that yα(t)→ y(t) in H as α→ 0, uniformly
on [0, T ].
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Chapter 3
The Heat Equation

There are several articles about the analysis of heat equation with white noise
boundary conditions. To see some examples [BBT14],[Brz+15],[Sow94],[AB02b],
[DZ93],[SV10]. In this chapter we will introduce some results related to one di-
mensional heat equation, showing the critical differences between Dirichlet and
Neumann conditions. This is just a taste about the literature devoted to this topic,
there is a lot of research about different notions of solutions, some ergodicity prop-
erties or control problems, see for example [DZ96],[AB02a],[Mas10],[FG09],[DFT07].

3.1. Neumann boundary conditions

Consider the problem
∂Z
∂t

(t, ξ) = ∂2Z
∂ξ2

(t, ξ) t ≥ 0 ξ ∈ [0, π]
∂Z
∂ξ

(t, 0) = v̇1(t) ∂Z
∂ξ

(t, π) = v̇2(t) t ≥ 0

Z(0, ξ) = 0 ξ ∈ [0, π]

(3.1.1)

where v1(t) and v2(t) are two independent real Wiener processes. In this case
H = L2(0, π), A = ∂2

∂ξ2
, D(A) = {f ∈ H2 : f ′(0) = f ′(π) = 0}, U2 = R2. It is clear

that A is self-adjoint, it generates an analytic semigroup on H (see for example
[Lun12]) and there exists an orthonormal basis of H made by eigenvectors of A,
namely g0(ξ) = π−

1
2 , gn(ξ) = ( 2

π
)
1
2 cos (nξ), λn = −n2, n ∈ N. If we set λ = 1 then

we can define the mapping D : R2 → H introduced in section 2.2 as

D
(
α

β

)
(ξ) = ψ(ξ) = −cosh(π − ξ)

sinhπ
α +

cosh ξ

sinhπ
β,
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3. The Heat Equation

so that ψ − d2ψ
dξ2

= 0 ξ ∈ [0, π], ψ′(0) = α, ψ′(π) = β and it is possible to find the
adjoint operator of D, D∗ : H → R2 given by

D∗(ψ) =

( −1
sinh(π)

´ π
0

cosh (π − ξ)ψ(ξ)dξ
1

sinh(π)

´ π
0

cosh (ξ)ψ(ξ)dξ

)
.

By easy computations it is possible to get:

|D∗gn|2 =
2

π
(1− cos(nπ))2(1 + n2)−2 n ∈ N0.

Therefore it is possible to apply proposition 2.2.3 and we get that the inequality
holds true if and only if 4α+2γ−1 < 0; we can formulate the following proposition
about the regularity of the solution.

Proposition 3.1.1.

(i) The solution Z(·) of problem (3.1.1) is an Hα-valued process if and only if
α < 1

4
.

(ii) If α < 1
4
, then Z(·) has an Hα continuous version.

(iii) For arbitrary p > 1 the process Z(·) has an Lp(0, π)-continuous version.

Proof. Part (i) and (ii) follow by previous computations and proposition 2.2.3.
Part (iii) follows by part 2 and Sobolev embedding theorem.

Remark 3.1.2. Even if the argument was proven just in the case Γ = ]0, π[, we can
find similar result on the cube ]0, π[n, see [DZ96].

Remark 3.1.3. It is possible to show Z(t), t > 0 is Markov and strong Feller on
H = L2(0, π), see [DZ93].

Since the solution to the linear problem belongs to a proper space of functions,
it is possible to find a solution of a nonlinear equation where f is, for example, a
function of polynomial growth, thanks to the result described in section 2.3.

Example 3.1.4.
∂X
∂t

(t, ξ) = ∂2X
∂ξ2

(t, ξ) + f(X(t, ξ)) t ≥ 0 ξ ∈ [0, π]
∂X
∂ξ

(t, 0) = v̇1(t) ∂X
∂ξ

(t, π) = v̇2(t) t ≥ 0

X(0, ξ) = x ξ ∈ [0, π]

(3.1.2)

where f(x) = −x2n+1 +
∑2n

j=0 ajx
j. Let now consider K = L2(2n+1)(0, π) and
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3.1. Neumann boundary conditions

J = L2(2n+1)2(0, π). Then the mapping F = f ◦ x, x ∈ K satisfies the condition of
theorem 2.3.1. Moreover

Z(t) = Z1(t) + Z2(t) = (I − A)

ˆ t

0

S(t− s)D
(
dv1(s)

dv2(s)

)
.

By proposition 3.1.1 the process Z(·) has a J-continuous version. So, by corol-
lary 2.3.2, equation (3.1.2) has a L2(0, π)-continuous solution X(·).

Remark 3.1.5. Concerning the analysis of the heat equation with Neumann bound-
ary conditions in a general Riemannian manifold see [Sow94]. In this section we
just add a direct proof of the fact that the solution of the heat equation in the
half-line with white noise Neumann boundary conditions is a proper Lp function.

Let us consider the following heat equation.
∂Z
∂t

(t, ξ) = ∂2Z
∂ξ2

(t, ξ) t ≥ 0 ξ ∈ R+

∂Z
∂ξ

(t, 0) = v̇1(t) t ≥ 0

Z(0, ξ) = 0 ξ ∈ R+

(3.1.3)

where v1(t) is a real Wiener process in a probability space (Ω,F ,P), with natural
filtration generated by v1(t). We call Lp(Ω× [0, T ];Lp) as the space of p-integrable
random process with values in Lp := Lp (0,+∞). For the solution of equation
(3.1.3), the following proposition holds.

Proposition 3.1.6. The solution of the stochastic differential equation (3.1.3) is
a process in Lp(Ω× [0, T ];Lp).

Proof. Thanks to example A.1.11, we have that a formal solution of equation
(3.1.3) is given by

Z(t, ξ) = − 1√
π

ˆ t

0

dv1(s)
e
−ξ2

4(t−s)

√
t− s

.

Since the integrand process is deterministic, the thesis guarantees the well posed-

ness of the process Z(t, ξ). If we call Φ(s, t, ξ) = − e
−ξ2

4(t−s)
√
t−s
√
π
, then Z(t, ξ) =

´ t
0

Φ(s, t, ξ)dv1(s).

Z(t, ξ) ∈ Lp(Ω× [0, T ];Lp) ⇐⇒

ˆ T

0

dt E [‖Z‖pLp ] < +∞
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3. The Heat Equation

Thanks to Fubini-Tonelli theorem and Burkholder-Davis-Gundy inequality E.3.1,
we get that

ˆ T

0

dt E [‖Z‖pLp ] ≤ c

ˆ T

0

dt

ˆ +∞

0

dξ

(ˆ t

0

ds|Φ(s, t, ξ)|2
) p

2

=

c

ˆ T

0

dt

ˆ 1

0

dξ

(ˆ t

0

ds|Φ(s, t, ξ)|2
) p

2

+ c

ˆ T

0

dt

ˆ +∞

1

dξ

(ˆ t

0

ds|Φ(s, t, ξ)|2
) p

2

.

For matter of simplicity, we are interested to the innermost integral
´ t

0
ds|Φ(s, t, ξ)|2 =

´ t
0
ds e

−ξ2
2(t−s)

t−s =
´ t

0
ds e

−ξ2
2s

s
. We can get this useful estimate ∀q ≥ 1:

e
−ξ2
2s

s
= e

−ξ2
2s s−

1
q s−1+ 1

q ≤ s−1+ 1
q max
s∈[0,+∞]

e
−ξ2
2s s−

1
q .

Calling g(s) = e
−ξ2
2s s−

1
q , it is true that ŝ = argmaxs∈[0,+∞]g(s) = qξ2

2
and

g(ŝ) = e−
1
q

(q
2

)− 1
q 1

ξ
2
q

= C(q)
1

ξ
2
q

.

In conclusion

∀q ≥ 1

(ˆ t

0

ds|Φ(s, t, ξ)|2
) p

2

≤ C(q)

(ˆ t

0

ds
s−1+ 1

q

ξ
2
q

) p
2

=
C(q)

ξ
p
q

t
p
2q .

In particular ∀p ≥ 2 there exist q1, q2 ≥ 1 such that p
q1
< 1 e p

q2
> 1 and

ˆ T

0

dt E [‖Z‖pLp ] ≤ c

ˆ T

0

dt

ˆ 1

0

dξ

(ˆ t

0

ds|Φ(s, ξ)|2
) p

2

+c

ˆ T

0

dt

ˆ +∞

1

dξ

(ˆ t

0

ds|Φ(s, ξ)|2
) p

2

≤

C(q1)

ˆ T

0

dt

ˆ 1

0

dξ
t
p

2q1

ξ
p
q1

+ C(q2)

ˆ T

0

dt

ˆ +∞

1

dξ
t
p

2q2

ξ
p
q2

< +∞.

3.2. Dirichlet boundary conditions

Consider the problem
∂Z
∂t

(t, ξ) = ∂2Z
∂ξ2

(t, ξ) t ≥ 0 ξ ∈ [0, π]

Z(t, 0) = v̇1(t) Z(t, π) = v̇2(t) t ≥ 0

Z(0, ξ) = 0 ξ ∈ [0, π]

(3.2.1)
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3.2. Dirichlet boundary conditions

where v1(t) and v2(t) are two independent real Wiener processes. In this case
H = L2(0, π), A = ∂2

∂ξ2
, D(A) = H1

0 (0, π) ∩ H2(0, π), U2 = R2. It is clear that A
is self-adjoint, it generates an analytic semigroup on H (see for example [Lun12])
and there exists an orthonormal basis of H made by eigenvectors of A, namely
gn(ξ) = ( 2

π
)
1
2 sin (nξ), λn = −n2, n ∈ N0. If we set λ = 0 then we can define the

mapping D : R2 → H introduced in section 2.2 as

D
(
α

β

)
(ξ) = ψ(ξ) =

π − ξ
π

α +
ξ

π
β,

so that d2ψ
dξ2

= 0 ξ ∈ [0, π], ψ(0) = α, ψ(π) = β and it is possible to find the
adjoint operator of D, D∗ : H → R2 given by

D∗(ψ) =

( 1
π

´ π
0

(π − ξ)ψ(ξ)dξ
1
π

´ π
0
ξψ(ξ)dξ

)
.

By easy computations it is possible to get

|D∗gn|2 =
4

πn2
n ∈ N0.

Therefore it is possible to apply proposition 2.2.3 and we get that the inequality
holds true if and only if 4α+2γ+1 < 0; we can formulate the following proposition
about the regularity of the solution.

Proposition 3.2.1.

(i) The solution Z(·) of problem (3.2.1) is an Hα-valued process if and only if
α < −1

4

(ii) If α < −1
4
, then Z(·) has an Hα continuous version

Proof. Part (i) and (ii) follow by previous computations and proposition 2.2.3.

Remark 3.2.2. Note that problem (3.2.1) does not have a solution in the original
space H = H0 = L2(0, π).
Remark 3.2.3. Since the solution of problem (3.2.1), without deeper analysis made
in the following, belongs to a space of distribution it is not possible to continue
with the non-linear case as made in the previous section.
Remark 3.2.4. Note that this analysis reflects what is known in the deterministic
case, namely the lesser regularity I have on the boundary, the lesser regularity
I have on the solution. In fact the Wiener process is never differentiable, very
irregular. Consequently, a solution of the heat equation with the white noise on
the boundary cannot be very regular. Using Neumann boundary conditions we do
not impose an irregular trace for the function, so a better regularity of the solution
is recovered.
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3. The Heat Equation

3.3. The heat equation in weighted spaces

In [AB02b] a crucial step in the analysis of heat equation with Dirichlet boundary
conditions is done. Equation (3.2.1) is generalized, considering it in the half-
line with several sources of randomness. In particular, the authors analyzed the
problem

∂Z
∂t

(t, ξ) = ∂2Z
∂ξ2

(t, ξ) +
∑n

j=1[bj(ξ)
∂Z
∂ξ

(t, ξ) + Fj(t, ξ, Z(t, ξ))]Ẇ j(t)

Z(t, 0) = V̇ (t)

Z(0, ξ) = 0 (t, ξ) ∈ IT := [0, T ]× R+

(3.3.1)

Where W (t) = (W 1, ...,W n)(t) is a real standard n-dimensional Wiener process in
a probability space (Ω,F ,P) and V (t) is real standard Wiener process adapted to
the filtration generated byW (t). Object of this section is trying to find a weighted
space where the solution of this equation can be properly defined, then studying
its continuity and blow up properties. To be more precise let Lpγ the space of the
real-valued measurable functions such thatˆ +∞

0

|f(x)|p(1 ∧ xp−1+γ)dx < +∞.

We define as Lp(Ω× [0, T ];Lpγ) the set of p-integrable random processes with value
in Lpγ and as Mp(Ω× [0, T ];Lpγ) the subspace of Lp(Ω× [0, T ];Lpγ) adapted to the
filtration generated by W (t). We introduce the following hypotheses on functions
bj and Fj.
Hypothesis H.1

1. The drift coefficients bj : R+ → R belongs to C3
b and they satisfy the joint

ellipticity condition

Σ(x) = 1− 1

2

n∑
j=1

b2
j(x) ≥ ε > 0.

2. The nonlinear terms Fj(t, ξ, u) are uniformly Lipschitz in u, namely ∃L > 0
such that for all t ∈ [0, T ], ξ ∈ R and j = 1, ..., n

|Fj(t, ξ, u)− Fj(t, ξ, v)| ≤ L|u− v|.

We also assume that condition (F )p,θ holds, namely exists p ≥ 2, 0 < θ < 1 and
h(x) ∈ Lpθ such that for all t ∈ [0, T ] and j = 1, ..., n

|Fj(t, ξ, 0)| ≤ h(ξ) ∀ξ ∈ R+.

Under these assumptions we can state the following theorem proved in subsec-
tion 3.3.3.
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3.3. The heat equation in weighted spaces

Theorem 3.3.1. Assume that condition (F )p,θ holds for some p ≥ 2, 0 < θ < 1.
Then equation (3.3.1) has a unique solution Z(t, ξ) ∈ Mp(Ω × [0, T ];Lpγ) for any
γ ∈ (0, 1). If moreover condition (F )p,θ holds for some p > 2, θ ∈ (0, 1), then the
function Z(t, ·) is continuous on [δ,+∞) for every δ > 0 and it satisfies that

ξ1+αZ(t, ξ)→ 0 a.s.

for every α > 0.

All the details omitted in this section can be found in [AB02b] where another
notion of solution that can be well defined for the process Z(t, ξ) is also pre-
sented. Concerning the ergodicity properties of Z(t, ξ) some results can be found
in [AB02a].

3.3.1. The stochastic heat kernel

In this subsection we recall the definition and the basic properties of the stochastic
kernel related with equation (3.3.1). This construction follows that in [NV00].
Let B = {Bt, t ∈ [0, T ]} be a Brownian motion with variance 2t defined in an
additional probability space (W ,G,Q). Consider the following backward stochastic
differential equation on the probability space (Ω×W ,F × G,P⊗Q):

ϕt,s(ξ) = ξ −
n∑
j=1

ˆ t

s

bj(ϕt,r(ξ))dW
j(r) +

ˆ t

s

√
Σ(ϕt,r(ξ))dB(r) (3.3.2)

It can be proven, thanks to results present in [Kun97], that this equation has a
solution ϕ = {ϕt,s(ξ), 0 ≤ s ≤ t ≤ T, ξ ∈ R} continuous in all the three variables
and verifying ϕr,s(ϕt,r(ξ)) = ϕt,s(ξ) for all s < r < t ξ ∈ R. The existence of the
kernel for the operator ∂2

∂ξ2
+
∑n

j=1 bj(ξ)
∂
∂ξ

˙W j(t) was proven in [Nua06] .

Proposition 3.3.2. Let ϕt,s defined as in equation (3.3.2). Then there is a version
of the marginal density p(s, t, υ, ξ) = Q[ϕt,s(ξ)∈dυ]

dυ
which is F ts-adapted and satisfies

the semigroup property

p(s, t, υ, ξ) =

ˆ
R
p(s, r, υ, ζ)p(r, t, ζ, ξ)dζ

for all ξ, υ ∈ R and 0 ≤ s < r < t ≤ T .

Remark 3.3.3. A crucial side result of the proof of this proposition is that if we
call the stochastic heat kernel as pD(s, t, υ, ξ) = p(s, t, υ, ξ)−p(s, t,−υ, ξ), we have
an implicit representation of pD(s, t, υ, ξ):

pD(s, t, υ, ξ) = qD(s, t, υ, ξ) +
n∑
j=1

ˆ t

s

(ˆ
R+

bj(ζ)qD(r, t, ζ, ξ)
∂pD
∂z

(s, r, υ, ζ)dζ

)
dW j

r
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3. The Heat Equation

where qD(s, t, υ, ξ) is the heat kernel on R+ with zero Dirichlet boundary condi-
tions.
To prove theorem 3.3.1 we need some estimates on the Lp norms of pD and its

derivatives. They are given by the following proposition.

Proposition 3.3.4. For all s < t, ξ, υ ∈ R+ it holds that

‖pD(s, t, υ, ξ)‖Lp(Ω) ≤ C(t− s)−1/2exp

(
−|υ − ξ|

2

c(t− s)

)
(3.3.3)

‖pD(s, t, υ, ξ)‖Lp(Ω) ≤ Cυa(t− s)−1/2−a/2exp

(
−|υ − ξ|

2

c(t− s)

)
(3.3.4)

‖∂
m+kpD
∂υk∂ξm

(s, t, υ, ξ)‖Lp(Ω) ≤ C(t− s)−(m+k+1)/2exp

(
−|υ − ξ|

2

c(t− s)

)
(3.3.5)

for each m = 0, 1, 2, k = 0, 1, 0 ≤ a ≤ 1 and for some constant C, c > 0.

3.3.2. The boundary term

All the computations presented in this subsection prove theorem 3.3.1 in the easier
case Fj ≡ 0.
Let us consider now

ψ(t, ξ) :=

ˆ t

0

∂pD
∂υ

(s, t, 0, ξ)dV (s).

It is, at least formally, the mild solution of problem (3.3.1) when Fj ≡ 0 ∀j ∈
{1, · · · , n}. Now we want to prove that the thesis of theorem 3.3.1 holds in this
easier case. In this way we may hope that it could be true in the general case. It
is easy to prove that ψ ∈ Mp(Ω × [0, T ];Lpγ) for every p ≥ 2, 0 < γ < 1. In fact,
we have using inequality (3.3.5) and Burkholder–Davis–Gundy Inequality E.3.1

E
[∣∣∣∣ˆ t

0

∂pD
∂υ

(s, t, 0, ξ) dV (s)

∣∣∣∣p] ≤ C

∣∣∣∣ˆ t

0

(t− s)−2exp

(
− ξ2

c(t− s)

)∣∣∣∣
p
2

= C

∣∣∣∣ 1

ξ2
e−ξ

2/t

∣∣∣∣ p2 = Cξ−pe−
pξ2

2t . (3.3.6)

Hence, by Fubini-Tonelli theorem and the above inequality,

‖ψ‖Mp =

ˆ T

0

dt E
[ˆ +∞

0

dξ(1 ∧ ξp−1+γ)

∣∣∣∣ˆ t

0

∂pD
∂υ

(s, t, 0, ξ) dV (s)

∣∣∣∣p]

≤ C

ˆ T

0

dt

ˆ +∞

0

dξ(1 ∧ ξp−1+γ)ξ−pe−
pξ2

2t < +∞.
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3.3. The heat equation in weighted spaces

Lemma 3.3.5. For any α > 0 the following convergence holds for any t ∈ [0, T ],
almost surely

ξ1+αψ(t, ξ)→ 0 as ξ → 0.

Proof. It is enough to prove that for some α′ < α the function ξ1+α′ψ(t, ξ) is a.s.
bounded in a neighborhood of 0, so a fortiori if we prove that exists a version of
ξ1+α′ψ(t, ξ) almost surely Hölder continuous in an interval [0, K], K > 0 we get
the thesis. By Kolmogorov’s continuity theorem E.1.1 we are left to prove that
∀p ≥ 2 and ξ, ζ ∈ (0, K), ξ < ζ the following estimate holds:

E[
∣∣ζ1+αψ(t, ζ)− ξ1+αψ(t, ξ)

∣∣p] ≤ C|ζ − ξ|pα. (3.3.7)

Adding and subtracting E[|ξ1+αψ(t, ζ)|p] and exploiting convexity

E[
∣∣ζ1+αψ(t, ζ)− ξ1+αψ(t, ξ)

∣∣p] ≤ A1 + A2,

where
A1 = ξp(1+α)E[|ψ(t, ζ)− ψ(t, ξ)|p]
A2 = (ζ1+α − ξ1+α)pE[|ψ(t, ζ)|p].

By inequality (3.3.6) we have proved that E[|ψ(t, ζ)|p] ≤ Cζ−p so that

A2 ≤ C|ζ − ξ|pα.

On the other hand, by Hölder and Burkholder–Davis–Gundy inequalities we can
estimate the difference

E [|ψ(t, ζ)− ψ(t, ξ)|p] ≤ CE

[∣∣∣∣ˆ t

0

(
∂pD
∂υ

(s, t, 0, ζ)− ∂pD
∂υ

(s, t, 0, ξ))2 ds

∣∣∣∣
p
2

]

≤ C

∣∣∣∣ˆ t

0

‖∂pD
∂υ

(s, t, 0, ζ)− ∂pD
∂υ

(s, t, 0, ξ)‖2
Lp(Ω)ds

∣∣∣∣ .
In the end by inequality (3.3.3) and (3.3.5) we can deduce (recalling that ξ < ζ)

E[|ψ(t, ζ)− ψ(t, ξ)|p] ≤ C|ζ − ξ|pα
∣∣∣∣ˆ t

0

(t− s)−2−αexp

(
− ξ2

c(t− s)

)
ds

∣∣∣∣
p
2

≤

C|ζ − ξ|pαξ−p(1+α).

Combining all these inequalities we get that inequality (3.3.7) holds, so Kol-
mogorov’s continuity theorem can be applied and the lemma is proved.

Remark 3.3.6. As a side result of this proof, we get that ξ → ψ(t, ξ) is continuous
on (0,+∞) and uniformly Hölder continuous on (δ,+∞). This result is really
interesting. In particular, it explains how the solution is regular within the half-
line and the degree of growth close to the boundary can be estimated.
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3. The Heat Equation

3.3.3. Mild Solution

The proof of the general case follows by a classical fixed point argument. Two
technical lemmas are needed to get the results. They are stated without proofs.
Some basis of Malliavin calculus are required to completely understand them (see
for example [Bel12],[KS84],[KS85],[Kus87],[Nua06]).

Lemma 3.3.7. The application Λ defined by

(ΛΦ)(t, ξ) =
n∑
j=1

ˆ t

0

(ˆ
R+

pD(s, t, υ, ξ)Φ(s, υ)dυ

)
dW j(s) (3.3.8)

is a contraction fromMp(Ω×[0, T ];Lpγ) toMp(Ω×[0, T ];Lp(R+)), for all 0 < γ < 1
and p ≥ 2.

Lemma 3.3.8. Assume that Φ(t, ξ) ∈ Mp(Ω × [0, T ];Lpγ) for some p > 2 and
0 < γ < 1. Then for any t ∈ [0, T ] and a > 1+γ

p
the mapping

ξ → ξa(ΛΦ)(t, ξ)

is almost surely uniformly Hölder continuous on [0, K], for all K > 0, of order ρ,
where

ρ <
1

2
(a− 1 + γ

p
) ∧ (

1

2
− 1

p
).

Remark 3.3.9. In the proofs of this theorem is fully exploited the fact that γ < 1, so
it can be understood why in theorem 3.3.1 that hypothesis, never used in previous
computations, is required.

Proof of theorem 3.3.1. Let us introduce the transformation K as

(Kφ)(t, ξ) = ψ(t, ξ) +
n∑
j=1

ˆ t

0

ˆ
R+

pD(s, t, υ, ξ)Fj(s, υ, φ(s, υ))dυ dW j(s).

For any λ ∈ (0, 1) the applicationKmapsMp(Ω×[0, T ];Lpλ) into itself. The bound-
ary term belongs to Mp(Ω × [0, T ];Lpγ) as it is shown in the previous subsection.
Thanks to lemma 3.3.8 it remains to prove that for any φ ∈Mp(Ω× [0, T ];Lpλ) the
process Φ(t, ξ) = F (s, υ, φ(s, υ)) belongs toMp(Ω× [0, T ];Lpλ). In fact, adding and
subtracting Fj(s, υ, 0), exploiting hypothesis H.1 and condition (F )p,θ, we have

E

[
n∑
j=1

ˆ T

0

ˆ
R+

|Fj(s, υ, φ(s, υ))|p(1 ∧ υp−1+λ)dυds

]
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3.3. The heat equation in weighted spaces

= E

[
n∑
j=1

ˆ T

0

ˆ
R+

|Fj(s, υ, φ(s, υ))− Fj(s, υ, 0) + Fj(s, υ, 0)|p(1 ∧ υp−1+λ)dυds

]

≤ 2p−1E

[
n∑
j=1

ˆ T

0

ˆ
R+

(|Fj(s, υ, φ(s, υ))− Fj(s, υ, 0)|p + |Fj(s, υ, 0)|p)(1 ∧ υp−1+λ)dυds

]

≤ CE
[ˆ T

0

ˆ
R+

(|φ(s, υ)|p + |h(υ)|p)(1 ∧ υp−1+λ)dυds

]
.

Then, by lemma 3.3.8, ΛΦ(s, υ) belongs to Mp(Ω× [0, T ];Lp(R+)) and Lp(R+) ↪→
Lpγ for any γ ∈ (0, 1). So, taking λ = γ, the mapping K is a contraction. Then we
want to prove the boundary regularity statement, namely

ξ1+αψ(t, ξ) + ξ1+α

n∑
j=1

ˆ t

0

ˆ
R+

pD(s, t, υ, ξ)Fj(s, υ, φ(s, υ))dυ dW j(s)→ 0 a.s.

The first term tends to 0 thanks to lemma 3.3.5 the second one does the same
by lemma 3.3.9. Concerning the regularity, again, everything follows easily from
lemma 3.3.5 and lemma 3.3.9.

Remark 3.3.10. The solution Z(t, ξ) of equation (3.3.1) is the solution of the fixed
point problem

Z(t, ξ) =

ˆ t

0

∂pD
∂υ

(s, t, 0, ξ)dV (s)+
n∑
j=1

ˆ t

0

(ˆ
R+

pD(s, t, υ, ξ)Fj(s, υ, Z(s, υ))dυ

)
dW j(s).
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Chapter 4
A Fourth Order Parabolic Problem

The aim of this chapter is trying to extend what was done in chapter 3 to a
fourth order problem, a sort of fourth order heat equation. The literature about
stochastic parabolic equations of order 2m is not so large. Some very general and
not so easily applicable sufficient conditions for the L2 solvability of this kind of
problems can be found in [Mas95]. Although this really general theorem cannot
be applied, a more direct approach will lead us to some results similar to the ones
of section 3.3.

4.1. Equation in a bounded domain

Let us start considering the problem


∂Z
∂t

(t, ξ) + ∂4Z
∂ξ4

(t, ξ) = 0 t ≥ 0 ξ ∈ [0, π]

Z(t, 0) = v̇1(t) Z(t, π) = v̇2(t) ∂2Z
∂ξ2

(t, 0) = v̇3(t) ∂2Z
∂ξ2

(t, π) = v̇4(t) t ≥ 0

Z(0, ξ) = 0 ξ ∈ [0, π]

(4.1.1)

where v1(t), v2(t), v3(t) and v4(t) are four independent real Wiener processes. This
kind of boundary conditions are called in literature as Navier boundary conditions
and they will be called with this name in the following. In this case H = L2(0, π),
A = − ∂4

∂ξ4
, D(A) = {f ∈ H4 : f(0) = f(π) = f ′′(0) = f ′′(π) = 0}, U2 = R4.

It is clear that A is self-adjoint, it generates an analytic semigroup on H (see for
example [Lun12]) and there exists an orthonormal basis of H made by eigenvectors
of A, namely
gn(ξ) = ( 2

π
)
1
2 sin (nξ), λn = −n4, n ∈ N. If we set λ = 0 then we can define the
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4. A Fourth Order Parabolic Problem

mapping D : R4 → H introduced in section 2.2 as

D


α
β
γ
δ

 (ξ) = ψ(ξ) =
δ − γ

6π
ξ3 +

γ

2
x2 + (

β − α
π
− π

6
δ − π

3
γ)ξ + α,

so that −d4ψ
dξ4

= 0 ξ ∈ [0, π], ψ(0) = α, ψ(π) = β ψ′′(0) = γ, ψ′′(π) = δ and it is
possible to find the adjoint operator of D, D∗ : H → R4 given by

D∗(ψ) = (

ˆ π

0

(1− ξ

π
)ψ(ξ)dξ;

ˆ π

0

ξ

π
ψ(ξ)dξ;

ˆ π

0

(
−ξ3

6π
+
ξ2

2
− πξ

3
)ψ(ξ)dξ;

ˆ π

0

(
ξ3

6π
− πξ

6
)ψ(ξ)dξ)′.

By easy computations it is possible to get

D∗(gn) = (

√
2√
πn

;

√
2(−1)n+1

√
πn

;
−
√

2√
πn3

;
(−1)n√
πn3

)′, |D∗gn|2 ≈
1

n2
n ∈ N0.

Therefore, it is possible to apply proposition 2.2.3 and we get that the inequality
holds true if and only if 8α+4γ+3 < 0; we can formulate the following proposition
about the regularity of the solution.

Proposition 4.1.1.

(i) The solution Z(·) of problem (4.1.1) is an Hα-valued process if and only if
α < −3

8

(ii) If α < −3
8
, then Z(·) has an Hα continuous version

Proof. Both parts follow from previous computations and proposition 2.2.3.

Remark 4.1.2. This result is in a certain sense reasonable and predictable since,
as in the second order case, we have little regularity on the trace of the solution,
so we cannot expect that the solution can be a square integrable function. More
surprising is the fact that, with a fourth order problem, not even considering some
noises on the boundary conditions of the first and third order derivatives is enough
to get the L2(0, π) regularity, as the following computations will show.
So, let us consider the problem


∂Z
∂t

(t, ξ) + ∂4Z
∂ξ4

(t, ξ) = 0 t ≥ 0 ξ ∈ [0, π]
∂Z
∂ξ

(t, 0) = v̇1(t) ∂Z
∂ξ

(t, π) = v̇2(t) ∂3Z
∂ξ3

(t, 0) = v̇3(t) ∂3Z
∂ξ3

(t, π) = v̇4(t) t ≥ 0

Z(0, ξ) = 0 ξ ∈ [0, π]

(4.1.2)
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4.1. Equation in a bounded domain

where v1(t), v2(t), v3(t) and v4(t) are again four independent real Wiener processes.
Again, H = L2(0, π) and A = − ∂4

∂ξ4
, but now D(A) = {f ∈ H4 : f ′(0) = f ′(π) =

f ′′′(0) = f ′′′(π) = 0}, U2 = R4. It is clear that A is self-adjoint, it generates an
analytic semigroup onH (see for example [Lun12]) and there exists an orthonormal
basis of H made by eigenvectors of A, namely g0(ξ) = π−

1
2 , gn(ξ) = ( 2

π
)
1
2 cos (nξ),

λn = −n4, n ∈ N. If we set λ = 4, then we can define the mapping D : R4 → H
introduced in section2.2 as

D


α
β
γ
δ

 (ξ) = ψ(ξ) = a cos(ξ)eξ + b sin(ξ)eξ + c cos(ξ)e−ξ + d sin(ξ)e−ξ

where


a = −2α−γ+2βeπ−δeπ

4(e2π−1)

b = −2α+γ+2βeπ+δeπ

4(e2π−1)

c = −eπ 2β−δ+2αeπ−γeπ
4(e2π−1)

d = eπ 2β+δ+2αeπ+γeπ

4(e2π−1)
.

In this way −d4ψ
dξ4
−λψ = 0 ξ ∈ [0, π], ψ′(0) = α, ψ′(π) = β ψ′′′(0) = γ, ψ′′′(π) = δ

and it is possible to find the adjoint operator of D, D∗ : H → R4 given by

D∗(ψ) =


´ π

0
−2 cos(ξ)eξ−2 sin(ξ)eξ+2e2π cos(ξ)e−ξ+2e2π sin(ξ)e−ξ

4(e2π−1)
ψ(ξ)dξ´ π

0
eπ −2 cos(ξ)eξ−2 sin(ξ)eξ+2 cos(ξ)e−ξ+2 sin(ξ)e−ξ

4(e2π−1)
ψ(ξ)dξ´ π

0
cos(ξ)eξ−sin(ξ)eξ−e2π cos(ξ)e−ξ+e2π sin(ξ)e−ξ

4(e2π−1)
ψ(ξ)dξ´ π

0
eπ cos(ξ)eξ−sin(ξ)eξ−cos(ξ)e−ξ+sin(ξ)e−ξ

4(e2π−1)
ψ(ξ)dξ

 .

Substituting gn in the above formula we obtain |D∗gn|2 ≈ 1
n4 n ∈ N0. Therefore

it is possible to apply proposition 2.2.3 and we get that the inequality holds true
if and only if 8α + 4γ + 1 < 0; we can formulate the following proposition about
the regularity of the solution.

Proposition 4.1.3.

(i) The solution Z(·) of problem (4.1.2) is an Hα-valued process if and only if
α < −1

8

(ii) If α < −1
8
, then Z(·) has an Hα continuous version

Proof. Both parts follow from previous computations and proposition 2.2.3.
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4. A Fourth Order Parabolic Problem

Remark 4.1.4. Boundary conditions on higher derivatives allow us to gain more
regularity. Opposite to the second order case, this time we do not reach enough
regularity to get a proper L2(0, π) function. For both cases described in this
subsection, we expect that this would be due to the blow up of the solution near
to the boundary of the domain.

4.2. Equation in the half-line

Since for both the problems analyzed in the previous subsection we did not find a
standard L2(0, π) solution, we move as in section 3.3 trying to follow the approach
of [AB02b]. In particular we start considering the following fourth order problem
with Navier boundary conditions.

∂Z
∂t

+ ∂4Z
∂ξ4

= 0

Z(t, 0) = v̇1(t) ∂2Z
∂ξ2

(t, 0) = v̇2(t)

Z(0, ξ) = 0 ξ ∈ R+ t ∈ [0, T ]

(4.2.1)

where obviously v1(t) and v2(t) are two independent real Wiener processes in a
probability space (Ω,F ,P), with natural filtration generated by v1(t) and v2(t).
As is done in section 3.3, let γ(ξ) be an almost everywhere positive measurable
function. For p ≥ 2 we introduce the vector spaces of measurable, real valued
functions such that

´ +∞
0
|f(x)|pγ(x)dx < +∞. If we consider the norm

‖f‖ =

(ˆ +∞

0

|f(x)|pγ(x)dx

) 1
p

these spaces are Banach spaces (obviously considering the equivalence classes
of functions) and we call them Lpγ. In a natural way we introduce the spaces
Lp(Ω × [0, T ];Lpγ) as the space of p−integrable random processes adapted to the
filtration generated by v1(t) and v2(t), with values in Lpγ above defined. Then
we can state and prove the following proposition about the summability of the
solution of equation (4.2.1).

Proposition 4.2.1. The solution of the stochastic differential equation (4.2.1) is
a process in Lp(Ω× [0, T ];Lpγ), taking γ(ξ) = 1 ∧ ξ3p−1+δ, for δ ∈ (0, 1).

Proof. Thanks to the representation formula in example A.1.8, we have that a
formal solution of equation (4.2.1) is given by

Z(t, ξ) =
2

π

[ˆ t

0

ˆ +∞

0

w3sin(wξ)e−w
4(t−s) dw dV1(s)−

ˆ t

0

ˆ +∞

0

wsin(wξ)e−w
4(t−s) dw dV2(s)

]
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4.2. Equation in the half-line

Since the integrand processes are deterministic, then the thesis guarantees the well
posedness of the process Z(t, ξ). So, if we call

Ψ1(t, ξ) =

ˆ t

0

ˆ +∞

0

w3sin(wξ)e−w
4(t−s) dw dV1(s)

and

Ψ2(t, ξ) =

ˆ t

0

ˆ +∞

0

wsin(wξ)e−w
4(t−s) dw dV2(s)],

it is enough to prove that for i ∈ {1, 2}
´ T

0
dtE[
´ +∞

0
dξ γ(ξ)|Ψi|p(t, ξ)] < +∞. Let

us start considering Ψ1(t, ξ). Thanks to Fubini-Tonelli theorem and Burkholder–Davis–Gundy
inequality E.3.1, we get

I =

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

(ˆ +∞

0

w3sin(wξ)e−w
4(t−s) dw

)2

ds

) p
2

< +∞ =⇒

Ψ1(t, ξ) ∈ Lp(Ω× [0, T ];Lpγ).

Now we introduce the following change of variables

{
l = (t− s)
v = 4
√
lw

and we get

I =

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

1

l2

(ˆ +∞

0

v3sin(v
ξ
4
√
l
)e−v

4

dv

)2

dl

) p
2

.

To simplify the notation, we consider just the innermost integral and we call α =
ξ
4√
l
.

I1 =

ˆ +∞

0

v3sin(vα)e−v
4

dv.

All the following steps are integration by parts, where the sinusoidal term is the
derivative term.

I1 =

[
−cos(vα)

α
v3e−v

4

]+∞

0

+

ˆ +∞

0

cos(vα)

α
(−v2)e−v

4

(4v4 − 3) dv =

[
sin(vα)

α2
(−v2)e−v

4

(4v4 − 3)

]+∞

0

− 2

ˆ +∞

0

sin(vα)

α2
ve−v

4

(8v8 − 18v4 + 3) dv =[
2
cos(vα)

α3
ve−v

4

(8v8 − 18v4 + 3)

]+∞

0

+4

ˆ +∞

0

cos(vα)

α3
e−v

4

(32v12−144v8+102v4−3) dv =

4

α3

ˆ +∞

0

cos(vα)e−v
4

(32v12−144v8+102v4−3) dv ≤ 4

α3

ˆ +∞

0

e−v
4

(32v12+144v8+102v4+3) dv
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4. A Fourth Order Parabolic Problem

≤ C

α3

Where C is a proper positive constant. The same estimates holds true also for
|I1|. Substituting the estimates of |I1| in the definition of I and taking γ(ξ) =
1 ∧ ξ(3p−1)+δ

I ≤ Cp

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

1√
sξ6

ds

) p
2

= 2
p
2Cp

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)
4
√
tp

ξ3p
<∞.

The second summand is absolutely analogous to treat and easier to manage.

J =

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

(ˆ +∞

0

wsin(wξ)e−w
4(t−s) dw

)2

ds

) p
2

< +∞ =⇒

Ψ2(t, ξ) ∈ Lp(Ω× [0, T ];Lpγ).

Again introducing the change of variables

{
l = (t− s)
v = 4
√
lw

we get

J =

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

1

l

(ˆ +∞

0

vsin(v
ξ
4
√
l
)e−v

4

dv

)2

dl

) p
2

Again for matter of simplicity, we take care the innermost integral and call α = ξ
4√
l
.

J1 =

ˆ +∞

0

vsin(vα)e−v
4

dv =

[
−cos(vα)

α
ve−v

4

]+∞

0

+

ˆ +∞

0

cos(vα)

α
e−v

4

(1−4v4) dv ≤

ˆ +∞

0

1

α
e−v

4

(1 + 4v4) dv ≤ D

α

Where D is a proper positive constant. The same estimates holds true also for
|J1|. Substituting the estimates of |J1| in the definition of J and taking γ(ξ) =
1 ∧ ξ(p−1)+δ.

J ≤ Dp

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

1√
sξ2

ds

) p
2

= 2
p
2Dp

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)
4
√
tp

ξp
<∞

In conclusion, taking γ(ξ) = 1 ∧ ξ(3p−1)+δ, δ ∈ (0, 1), then Ψi(t, ξ) ∈ Lp(Ω ×
[0, T ];Lpγ) for i ∈ {1, 2} and this completes the proof.

Remark 4.2.2. Note that γ(ξ) has exactly the same form of the one obtained in
section 3.3, replacing p with 3p.
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4.2. Equation in the half-line

Everything can be repeated for the equation with boundary conditions on the first
and third order derivative. Let us consider the following equation

∂Z
∂t

+ ∂4Z
∂ξ4

= 0
∂Z
∂ξ

(t, 0) = v̇1(t) ∂3Z
∂ξ3

(t, 0) = v̇2(t)

Z(0, ξ) = 0 ξ ∈ R+ t ∈ [0, T ]

(4.2.2)

Following all the notations given for equation (4.2.1) we can state and prove an
analogous result about the solution of equation (4.2.2).

Proposition 4.2.3. The solution of the stochastic differential equation (4.2.2) is
a process in Lp(Ω× [0, T ];Lpγ), taking γ(ξ) = 1 ∧ ξ2p−1+δ, for δ ∈ (0, 1).

Proof. Thanks to the representation formula in example A.1.9, we have that a
formal solution of equation (4.2.2) is given by

Z(t, ξ) =
2

π

[ˆ t

0

ˆ +∞

0

−w2cos(wξ)e−w
4(t−s) dw dV1(s) +

ˆ t

0

ˆ +∞

0

cos(wξ)e−w
4(t−s) dw dV2(s)

]
.

Since the integrand processes are deterministic, then the thesis guarantees the well
posedness of the process Z(t, ξ). If we call

Ψ1(t, ξ) =

ˆ t

0

ˆ +∞

0

w2cos(wξ)e−w
4(t−s) dw dV1(s)

and

Ψ2(t, ξ) =

ˆ t

0

ˆ +∞

0

cos(wξ)e−w
4(t−s) dw dV2(s)],

it is enough to prove that for i ∈ {1, 2}
´ T

0
dtE

[´ +∞
0

dξ γ(ξ)|Ψi|p(t, ξ)
]
< +∞.

Let us start considering Ψ1(t, ξ). Thanks to Fubini-Tonelli theorem and Burkholder–Davis–Gundy
inequality E.3.1, we get

I =

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

(ˆ +∞

0

w2cos(wξ)e−w
4(t−s) dw

)2

ds

) p
2

< +∞ =⇒

Ψ1(t, ξ) ∈ Lp(Ω× [0, T ];Lpγ).

Now we introduce the following change of variables

{
l = (t− s)
v = 4
√
lw

so we get

I =

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

1√
l3

(ˆ +∞

0

v2cos(v
ξ
4
√
l
)e−v

4

dv

)2

dl

) p
2

.
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4. A Fourth Order Parabolic Problem

To simplify the notation we consider just the innermost integral and we call α = ξ
4√
l
.

I1 =

ˆ +∞

0

v2cos(vα)e−v
4

dv.

All the following steps are integration by parts, where the sinusoidal term is the
derivative term.

I1 =

[
sin(vα)

α
v2e−v

4

]+∞

0

+

ˆ +∞

0

sin(vα)

α
(2v)e−v

4

(2v4 − 1) dv =

[
−cos(vα)

α2
(2v)e−v

4

(2v4 − 1)

]+∞

0

−
ˆ +∞

0

cos(vα)

α2
2e−v

4

(8v8 − 14v4 + 1) dv =

−
ˆ +∞

0

cos(vα)

α2
2e−v

4

(8v8 − 14v4 + 1) dv ≤ 2

α2

ˆ +∞

0

e−v
4

(8v8 + 14v4 + 1) dv

≤ C

α2

Where C is a proper positive constant. The same estimates holds true also for
|I1|. Substituting the estimates of |I1| in the definition of I and taking γ(ξ) =
1 ∧ ξ(2p−1)+δ

I ≤ Cp

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

1√
sξ4

ds

) p
2

= 2
p
2Cp

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)
4
√
tp

ξ2p
<∞.

The second summand is absolutely analogous to treat and easier to manage.

J =

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

(ˆ +∞

0

cos(wξ)e−w
4(t−s) dw

)2

ds

) p
2

< +∞ =⇒

Ψ2(t, ξ) ∈ Lp(Ω× [0, T ];Lpγ).

Again introducing the change of variables

{
l = (t− s)
v = 4
√
lw

we get

J =

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

(ˆ t

0

1√
l

(ˆ +∞

0

cos(v
ξ
4
√
l
)e−v

4

dv

)2

dl

) p
2

Again for matter of simplicity we take care the innermost integral and call α = ξ
4√
l

J1 =

ˆ +∞

0

cos(vα)e−v
4

dv =

[
sin(vα)

α
e−v

4

]+∞

0

+

ˆ +∞

0

sin(vα)

α
e−v

4

(4v3) dv ≤
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4.2. Equation in the half-line

ˆ +∞

0

1

α
e−v

4

(4v3) dv ≤ D

α
.

Where D is a proper positive constant. The same estimates holds true also for
|J1|. Substituting the estimates of |J1| in the definition of J and taking γ(ξ) =
1 ∧ ξ(p−1)+δ

J ≤ Dp

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)(

ˆ t

0

1

ξ2
ds)

p
2 = Dp

ˆ T

0

dt

ˆ +∞

0

dξγ(ξ)

√
tp

ξp
<∞

In conclusion, taking γ(ξ) = 1 ∧ ξ(2p−1)+δ, δ ∈ (0, 1), then Ψi(t, ξ) ∈ Lp(Ω ×
[0, T ];Lpγ) for i ∈ {1, 2} and this completes the proof.

Now we want to prove a continuity results for both the problems presented in this
subsection. Actually, the form of the weight let us no hope to get continuity in
[0,+∞), so we try to find a weaker result.

Proposition 4.2.4. For each δ > 0, the solution of problem (4.2.1) is continuous
in [δ,+∞) for each fixed t. More precisely, for each fixed δ > 0, t ∈ [0, T ], there
exists a continuous modification of the solution of problem (4.2.1) continuous in
[δ,+∞).

Proof. We want to apply Kolmogorov’s continuity theorem E.1.1. So we fix t ∈
[0, T ], δ > 0 and the goal is trying to prove the following inequality:

∃ a > 0 s.t. E[|Z(t, ξ)− Z(t, υ)|p] ≤ c|υ − ξ|1+a δ < ξ, υ < K < +∞.

Recalling that the solution of equation (4.2.1) is

Z(t, ξ) =
2

π
[

ˆ t

0

ˆ +∞

0

w3sin(wξ)e−w
4(t−s) dw dV1(s)

−
ˆ t

0

ˆ +∞

0

wsin(wξ)e−w
4(t−s) dw dV2(s)] = ψ1(t, ξ) + ψ2(t, ξ)

and exploiting convexity

E[|ψ1(t, ξ)+ψ2(t, ξ)−ψ1(t, υ)−ψ2(t, υ)|p] ≤ 2p−1(E[|ψ1(t, ξ)−ψ1(t, υ)|p]+E[|ψ2(t, ξ)−ψ2(t, υ)|p])

we can consider the two summand separately. Thanks to Burkholder–Davis–Gundy

inequality E.3.1 and the change of variable

{
l = (t− s)
v = 4
√
lw

we get:

E[|ψ1(t, ξ)−ψ1(t, υ)|p] ≤ C0

(ˆ t

0

ds

(ˆ +∞

0

w3(sin(wυ)− sin(wξ))e−w
4(t−s) dw

)2
) p

2
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4. A Fourth Order Parabolic Problem

= C0

(ˆ t

0

1

l2

(ˆ +∞

0

v3(sin(v
ξ
4
√
l
)− sin(v

υ
4
√
l
))e−v

4

dv

)2

dl

) p
2

Considering the innermost integral I =
´ +∞

0
v3(sin(v ξ

4√
l
) − sin(v υ

4√
l
))e−v

4
dv and

integrating four times by parts, namely one more time than in the first part of the
proof of proposition 4.2.1, we get

I =

ˆ +∞

0

v3(sin(v
ξ
4
√
l
)− sin(v

υ
4
√
l
))e−v

4

dv

= 16l

ˆ +∞

0

dv (
sin( vξ4√

l
)

ξ4
−
sin( vυ4√

l
)

υ4
)v3e−v

4

(32v12 − 240v8 + 390v4 − 105)

If we call f(x) =
sin( vx4√

l
)

x4
, f ′(x) =

vcos( vx4√
l
)

x4
4√
l
− 4

sin( vx4√
l
)

x5
,

then |f ′(x)| ≤ v

x4
4√
l
+ 4

x5
. So applying Lagrange’s theorem for |I| we get

|I| ≤ 16l

ˆ +∞

0

dv v3e−v
4

(32v12 + 240v8 + 390v4 + 105)(
v

η4 4
√
l

+
4

η5
)|ξ − υ|

≤ 16l

ˆ +∞

0

dv v3e−v
4

(32v12 + 240v8 + 390v4 + 105)(
v

δ4 4
√
l

+
4

δ5
)|ξ − υ|

≤ (C1

4
√
l3

δ4
+ C2

l

δ5
)|ξ − υ|.

Coming back to E[|ψ1(t, ξ)−ψ1(t, υ)|p] and exploiting (a+b)2 ≤ 2a2 +2b2 we reach
the following useful estimate

E[|ψ1(t, ξ)− ψ1(t, υ)|p] ≤ C0(

ˆ t

0

1

l2
(
C2

1

√
l3

δ8
+
C2

2 l
2

δ10
) dl)

p
2 |ξ − υ|p

= C0(
C2

1

√
t

δ8
+
C2

2 t

δ10
)
p
2 |ξ − υ|p = C(T, p, δ)|ξ − υ|p.

Now we move to the second summand. Thanks to Burkholder–Davis–Gundy in-

equality and the change of variable

{
l = (t− s)
v = 4
√
lw

we get:

E[|ψ2(t, ξ)−ψ2(t, υ)|p] ≤ C0

(ˆ t

0

ds

(ˆ +∞

0

w(sin(wυ)− sin(wξ))e−w
4(t−s) dw

)2
) p

2

= C0

(ˆ t

0

1

l

(ˆ +∞

0

v(sin(v
ξ
4
√
l
)− sin(v

υ
4
√
l
))e−v

4

dv

)2

dl

) p
2
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4.2. Equation in the half-line

Considering the innermost integral J =
´ +∞

0
v(sin(v ξ

4√
l
) − sin(v υ

4√
l
))e−v

4
dv and

integrating by parts twice, namely one more time than in the second part of
proposition 4.2.1, we get

J =

ˆ +∞

0

v(sin(v
ξ
4
√
l
)− sin(v

υ
4
√
l
))e−v

4

dv

= 4
√
l

ˆ +∞

0

(
sin( vξ√

l
)

ξ2
−
sin( vυ√

l
)

υ2
)v3e−v

4

(4v4 − 5) dv.

If we call g(x) =
sin( vx4√

l
)

x2
, g′(x) =

vcos( vx4√
l
)

x2
4√
l
− 2

sin( vx4√
l
)

x3
,

then |g′(x)| ≤ v

x2
4√
l
+ 2

x3
. So applying Lagrange’s theorem for |J | we get

|J | ≤ 4
√
l

ˆ +∞

0

dv v3e−v
4

(4v4 + 5)(
v

η2 4
√
l

+
2

η3
)|x− y|

≤ 4
√
l

ˆ +∞

0

dv v3e−v
4

(4v4 + 5)(
v

δ2 4
√
l

+
2

δ3
)|ξ − υ|

≤ (D1

4
√
l

δ2
+D2

√
l

δ3
)|ξ − υ|.

Coming back to E[|ψ2(t, ξ)−ψ2(t, υ)|p] and exploiting (a+b)2 ≤ 2a2 +2b2 we reach
the last estimate

E[|ψ2(t, ξ)− ψ2(t, υ)|p] ≤ C0(

ˆ t

0

1

l
(
D2

1

√
l

δ4
+
D2

2l

δ6
) dl)

p
2 |ξ − υ|p

= C0(
D2

1

√
t

δ4
+
D2

2t

δ6
)
p
2 |ξ − υ|p = D(T, p, δ)|ξ − υ|p.

In conclusion

E[|Z(t, ξ)− Z(t, υ)|p] ≤ (D(T, p, δ) + C(T, p, δ))|ξ − υ|p δ < x, y < K < +∞.

Hence we can apply Kolmogorov’s continuity theorem with a = p−1 and the proof
is complete.

Proposition 4.2.5. For each δ > 0, the solution of problem (4.2.2) is continuous
in [δ,+∞) for each fixed t. More precisely, for each fixed δ > 0, t ∈ [0, T ], there
exists a continuous modification of the solution of problem (4.2.2) continuous in
[δ,+∞).
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4. A Fourth Order Parabolic Problem

Proof. We want to apply Kolmogorov’s continuity theorem E.1.1. So we fix t ∈
[0, T ], δ > 0 and the goal is trying to prove the following inequality:

∃a > 0 s.t. E[|Z(t, ξ)− Z(t, υ)|p] ≤ c|υ − ξ|1+a δ < ξ, υ < K < +∞

Recalling that the solution of equation (4.2.2) is

Z(t, ξ) =
2

π
[

ˆ t

0

ˆ +∞

0

−w2cos(wξ)e−w
4(t−s) dw dV1(s)

+

ˆ t

0

ˆ +∞

0

cos(wξ)e−w
4(t−s) dw dV2(s)] = ψ1(t, ξ) + ψ2(t, ξ)

and exploiting convexity

E[|ψ1(t, ξ)+ψ2(t, ξ)−ψ1(t, υ)−ψ2(t, υ)|p] ≤ 2p−1(E[|ψ1(t, ξ)−ψ1(t, υ)|p]+E[|ψ2(t, ξ)−ψ2(t, υ)|p])

we can consider the two summand separately. Thanks to Burkholder–Davis–Gundy

inequality E.3.1 and the change of variable

{
l = (t− s)
v = 4
√
lw

we get:

E[|ψ1(t, ξ)−ψ1(t, υ)|p] ≤ C0

(ˆ t

0

ds

(ˆ +∞

0

w2(cos(wυ)− cos(wξ))e−w4(t−s) dw

)2
) p

2

= C0

(ˆ t

0

1√
l3

(ˆ +∞

0

v2(cos(v
ξ
4
√
l
)− cos(v υ

4
√
l
))e−v

4

dv

)2

dl

) p
2

.

Considering the innermost integral I =
´ +∞

0
v2(cos(v ξ

4√
l
) − cos(v υ

4√
l
))e−v

4
dv and

integrating three times by parts, namely one more time than in the first part of
the proof of proposition 4.2.3, we get

I =

ˆ +∞

0

v2(cos(v
ξ
4
√
l
)− cos(v υ

4
√
l
))e−v

4

dv

= −8
4
√
l3
ˆ +∞

0

(
sin( vξ4√

l
)

ξ3
−
sin( vυ4√

l
)

υ3
)v3e−v

4

(8v8 − 30v4 + 15) dv.

If we call f(x) =
sin( vx4√

l
)

x3
, f ′(x) =

vcos( vx4√
l
)

x3
4√
l
− 3

sin( vx4√
l
)

x4
,

then |f ′(x)| ≤ v

x3
4√
l
+ 3

x4
. So applying Lagrange’s theorem for |I| we get

|I| ≤ 8
4
√
l3
ˆ +∞

0

dv v3e−v
4

(8v8 + 30v4 + 15)(
v

η3 4
√
l

+
3

η4
)|ξ − υ|
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4.2. Equation in the half-line

≤ 8
4
√
l3
ˆ +∞

0

dv v3e−v
4

(8v8 + 30v4 + 15)(
v

δ3 4
√
l

+
3

δ4
)|ξ − υ|

≤ (C1

√
l

δ3
+ C2

l

δ4
)|ξ − υ|.

Coming back to E[|ψ1(t, ξ)−ψ1(t, υ)|p] and exploiting (a+b)2 ≤ 2a2 +2b2 we reach
the following useful estimate

E[|ψ1(t, ξ)− ψ1(t, υ)|p] ≤ C0(

ˆ t

0

1

l
3
2

(
C2

1 l

δ6
+
C2

2 l
3
2

δ8
) dl)

p
2 |ξ − υ|p

= C0(
C2

1

√
t

δ6
+
C2

2 t

δ8
)
p
2 |ξ − υ|p = C(T, p, δ)|ξ − υ|p.

Now we move to the second summand. Thanks to Burkholder–Davis–Gundy in-

equality and the change of variable

{
l = (t− s)
v = 4
√
lw

we get:

E[|ψ2(t, ξ)− ψ2(t, υ)|p] ≤ C0

(ˆ t

0

ds

(ˆ +∞

0

(cos(wυ)− cos(wξ))e−w4(t−s) dw

)2
) p

2

= C0

(ˆ t

0

1√
l

(ˆ +∞

0

(cos(v
ξ
4
√
l
)− cos(v υ

4
√
l
))e−v

4

dv

)2

dl

) p
2

.

Considering the innermost integral J =
´ +∞

0
v(cos(v ξ

4√
l
) − cos(v υ

4√
l
))e−v

4
dv and

integrating by parts, as it is done in the second part of proposition 4.2.3, we get

J =

ˆ +∞

0

(cos(v
ξ
4
√
l
)− cos(v υ

4
√
l
))e−v

4

dv

= 4
4
√
l

ˆ +∞

0

(
sin( vξ√

l
)

ξ
−
sin( vυ√

l
)

υ
)v3e−v

4

dv.

If we call g(x) =
sin( vx4√

l
)

x
, g′(x) =

vcos( vx4√
l
)

x
4√
l
−

sin( vx4√
l
)

x2
,

then |g′(x)| ≤ v

x
4√
l
+ 1

x2
. So applying Lagrange’s theorem for |J | we get

|J | ≤ 4
4
√
l

ˆ +∞

0

dv v3e−v
4

(
v

η 4
√
l

+
1

η2
)|ξ − υ|

≤ 4
4
√
l

ˆ +∞

0

dv v3e−v
4

(
v

δ 4
√
l

+
1

δ2
)|ξ − υ|
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4. A Fourth Order Parabolic Problem

≤ (
D1

δ
+D2

4
√
l

δ2
)|ξ − υ|.

Coming back to E[|ψ2(t, ξ)−ψ2(t, υ)|p] and exploiting (a+b)2 ≤ 2a2 +2b2 we reach
the last estimate

E[|ψ2(t, ξ)− ψ2(t, υ)|p] ≤ C0

(ˆ t

0

1√
l
(
D2

1

δ2
+
D2

2

√
l

δ4
) dl

) p
2

|ξ − υ|p

= C0(
D2

1

√
t

δ4
+
D2

2t

δ6
)
p
2 |ξ − υ|p = D(T, p, δ)|ξ − υ|p.

In conclusion

E[|Z(t, ξ)− Z(t, υ)|p] ≤ (D(T, p, δ) + C(T, p, δ))|ξ − υ|p δ < ξ, υ < K < +∞.

Hence we can apply Kolmogorov’s continuity theorem with a = p−1 and the proof
is complete.
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Chapter 5
Conclusions and Future Work

The aim of this thesis was to present some techniques used for the analysis of
parabolic differential problems with stochastic boundary conditions, then apply
some of these tools to a new problem with no results available in the literature.
We started in an abstract framework, presenting a class of stochastic problem
and some conditions for the well posedness of their solutions, then we moved to
a concrete example deeply analyzed in the literature, lastly we proved some reg-
ularity results for a fourth order model problem. In particular, we proved that
the solution of equations 4.1.1 and 4.1.2 belongs to proper distributional spaces.
The analysis of equations 4.2.1 and 4.2.2 was deeper. It led us to a represen-
tation formula for the solutions via A.1.8 and A.1.9, then by exploiting these
representation formulas we could prove the well posedness of the solutions in some
proper weighted Lp spaces, namely Lp(Ω× [0, T ];Lpγ), and some continuity results
(propositions 4.2.1, 4.2.3, 4.2.4, 4.2.5). This was done not only for its intrinsic
mathematical interest, but also in order to become familiar with the methods in
such a way to consider more relevant physical problems in the future.

Actually the analysis of the fourth order heat equation with stochastic bound-
ary conditions is not completed. Several questions are already open. Among these
the more relevant ones are:

• Quantify the degree of increase close to the origin for the solutions of equa-
tion 4.2.1 and 4.2.2. The definition of the spaces Lp(Ω× [0, T ];Lpγ) leads us
to conjecture that the solution of problem 4.2.1 has a singularity of order
three in the origin, instead the solution of problem 4.2.2 has a singularity of
order two in the origin.

• Find stronger continuity results for the solutions of equation 4.2.1 and 4.2.2.
The majority of the literature is devoted to find continuity results in the
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5. Conclusions and Future Work

space variable for a fixed time, similar results were obtained also for our
cases. It could be interesting find continuity results in space-time variables
via Kolmogorov’s continuity theorem.

• Generalize results to multidimensional domains. Of course differential equa-
tions have a more relevant impact on applications if results are available
for multidimensional domains. As a first step, a possible goal is trying to
replicate what is done in chapter 4 at least in hypercubes or half-spaces
Rn−1 × R+.

• Handling some nonlinear terms satisfying suitable assumptions. Since the
solutions of equation 4.2.1 and 4.2.2 belong to some weighted Lp spaces, on
suitable conditions on nonlinearities, the membership of the solution of the
nonlinear problem to Lp(Ω× [0, T ];Lpγ) could be recovered.

• Introduce other notions of solution. In [Sow94],[AB02b], [Brz+15] other
relevant notions of solution for the nonlinear problems are treated different
from the mild one already described.

Among some physical problems where stochastic boundary conditions have an im-
pact, the linear wave equation with bilaplacian in a multidimensional domain or
some problems of stochastic fluid dynamics and material sciences can be taken
as main examples. In fact, in several physical cases, random perturbations come
from the boundary of the domain and are not distributed inside it. So far great
part of the literature devoted to this kind of topics is related to Ginzburg-Landau
equation and classical wave equation (see for example [DL06],[Kai19],[Kim06]).
Anyhow fourth order wave equation has a mechanical interpretation as interesting
as classical wave equation. In fact, it represents the vibrations of a plate in the
presence of noise on the boundary.

For all the problems treated in this thesis our interest was on existence and reg-
ularity issues. Actually, these equations (and the same holds for all the other
mentioned, namely wave equation, fourth order wave equation and so on) can lead
us to other issues relevant in the applications, for example:

• Behavior of the solution for large times. The literature devoted to this topic
is composed by few results, generally on heat equation [DZ96],[AB02a].

• Stochastic optimal control problems. Optimal control is a relevant topic in
stochastic analysis. Nevertheless the results for differential problems with
stochastic boundary conditions are related to one dimensional equations, see
for example [FG09],[Mas10],[DFT07].
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• Differential problems with dynamic boundary conditions. Even if this type
of problems could look not related to the topic presented in this thesis, in
case of the dynamic boundary conditions subject to some noise, the equations
can be reformulated in the framework of differential problems with stochastic
boundary conditions.
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Appendix A
Some Applications of Sine and Cosine
Transforms

A.1. Sine and Cosine Transforms

Integral transforms have a crucial role in several topics of engineering or applied
mathematics as signal processing, probability or studying of differential equations
in particular domains. A complete and clear treatment of this topic can be found
in [Pou18]. In this appendix we will use some techniques related to sine and
cosine transforms to solve parabolic equations in the half-line. In particular exam-
ples A.1.8, A.1.9 and A.1.11 give some explicit formulas for the formal solutions
of problems 4.2.1, 4.2.2 and 3.1.3.

Definition A.1.1 (Fourier sine transform). Let f(t) : [0,+∞)→ C be a L1(0,+∞)
piecewice continuous function. Then its Fourier sine transform is defined as

Fs(w) = Fs[f(t)] =

ˆ +∞

0

f(t) sin(wt)dt w ≥ 0.

Definition A.1.2 (Fourier cosine transform). Let f(t) : [0,+∞) → C be a
L1(0,+∞) piecewice continuous function. Then its Fourier cosine transform is
defined as

Fc(w) = Fc[f(t)] =

ˆ +∞

0

f(t) cos(wt)dt w ≥ 0.

If also Fs(w) or Fc(w) are L1(0,+∞) piecewice continuous function, then the
inverse Fourier sine and cosine transform can be defined.

Definition A.1.3 (inverse Fourier sine transform). Let Fs(w) : [0,+∞)→ C be a
L1(0,+∞) piecewice continuous function. Then its inverse Fourier sine transform
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is defined as

F−1
s [Fs(w)] =

2

π

ˆ +∞

0

Fs(w) sin(wt)dw t ≥ 0.

Definition A.1.4 (inverse Fourier cosine transform). Let Fc(w) : [0,+∞) → C
be a L1(0,+∞) piecewice continuous function. Then its inverse Fourier cosine
transform is defined as

F−1
c [Fc(w)] =

2

π

ˆ +∞

0

Fc(w) cos(wt)dw t ≥ 0.

Now we state some results about the well posedness of these definitions and
some useful properties for solving differential equations.

Proposition A.1.5. Let f(t) : [0,+∞)→ C be a L1(0,+∞) piecewice continuous
function, such that f ′(t) is piece-wise continuous in each bounded subinterval of
[0,+∞). Then if f is continuous in t

f(t) =
2

π

ˆ +∞

0

Fc(w) cos(wt)dw =
2

π

ˆ +∞

0

[ˆ +∞

0

f(τ) cos(wτ)dτ

]
cos(wt)dw.

f(t) =
2

π

ˆ +∞

0

Fs(w) sin(wt)dw =
2

π

ˆ +∞

0

[ˆ +∞

0

f(τ) sin(wτ)dτ

]
sin(wt)dw.

If f has a jump discontinuity in t0 then

2

π

ˆ +∞

0

[ˆ +∞

0

f(τ) cos(wτ)dτ

]
cos(wt)dw =

1

2

(
lim
t→t+0

f(t) + lim
t→t−0

f(t)

)
.

2

π

ˆ +∞

0

[ˆ +∞

0

f(τ) sin(wτ)dτ

]
sin(wt)dw =

1

2

(
lim
t→t+0

f(t) + lim
t→t−0

f(t)

)
.

Proposition A.1.6. Let f(t) : [0,+∞) → C be a continuous function such that
f ′(t) is continuous in [0,+∞), f(t) and f ′(t) vanish as t→ +∞. Then

Fc[f ′′(t)] = −w2Fc(w)− f ′(0).

Fs[f ′′(t)] = −w2Fs(w) + wf(0).

Remark A.1.7. More complex formulas hold without assuming continuity of f(t)
and f ′(t).
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Example A.1.8. Let us start considering f1 : [0,+∞)→ R and f2 : [0,+∞)→ R,
f1, f2 ∈ L∞(0,+∞) and the fourth order heat equation with Navier boundary
conditions. Find a formal solution of the equation:

∂u
∂t

+ ∂4u
∂x4

= 0

u(t, 0) = f1(t) ∂2u
∂x2

(t, 0) = f2(t)

u(0, x) = 0 x ∈ R+ t ≥ 0

(A.1.1)

Applying the Fourier sine transform and proposition A.1.6 getting rid of Navier
boundary conditions, we get the easier equation{

∂U
∂t

+ w4U = w3f1 − wf2

U(0, w) = 0 w ∈ R+ t ≥ 0
(A.1.2)

Where U(·, w) = Fs[u(·, x)]. Solving the ordinary differential equation, it is easy
to obtain

U(t, w) = e−w
4t

ˆ t

0

ds ew
4s(w3f1(s)− wf2(s)) w ∈ R+ t ≥ 0.

Taking the inverse transform to both side and applying Fubini-Tonelli theorem we
get the solution of equation (A.1.1)

u(t, x) =
2

π

ˆ t

0

ds

ˆ +∞

0

dw sin(wx)e−w
4(t−s)(w3f1(s)− wf2(s)) x ∈ R+ t ≥ 0.

Example A.1.9. Let us start considering f1 : [0,+∞)→ R and f2 : [0,+∞)→ R,
f1, f2 ∈ L∞(0,+∞) and the fourth order heat equation with boundary conditions
on first and third derivative. Find a formal solution of the equation:

∂u
∂t

+ ∂4u
∂x4

= 0
∂u
∂x

(t, 0) = f1(t) ∂3u
∂x3

(t, 0) = f2(t)

u(0, x) = 0 x ∈ R+ t ≥ 0

(A.1.3)

Applying the Fourier cosine transform and proposition A.1.6 getting rid of bound-
ary conditions, we get the easier equation{

∂U
∂t

+ w4U = f2 − w2f1

U(0, w) = 0 w ∈ R+ t ≥ 0
(A.1.4)

Where U(·, w) = Fc[u(·, x)]. Solving the ordinary differential equation, it is easy
to obtain

U(t, w) = e−w
4t

ˆ t

0

ds ew
4s(f2(s)− w2f1(s)) w ∈ R+ t ≥ 0.
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Taking the inverse transform to both side and applying Fubini-Tonelli theorem we
get the solution of equation (A.1.3)

u(t, x) =
2

π

ˆ t

0

ds

ˆ +∞

0

dw cos(wx)e−w
4(t−s)(f2(s)− w2f1(s)) x ∈ R+ t ≥ 0.

Remark A.1.10. In both examples Fubini-Tonelli theorem can be applied because,
calling

C = max(‖f1‖L∞ , ‖f2‖L∞),

we have for x 6= 0

1. ˆ +∞

0

dw

ˆ t

0

ds |sin(wx)|e−w4(t−s)|w3f1(s)− wf2(s)| ≤

C

ˆ +∞

0

dw
1− e−w4t

w4
(w3 + w)|sin(wx)| < +∞.

Since
´ +∞

0
dw |sin(wx)|1−e−w

4t

w4 w ≤
´ +∞

0
dw 1−e−w4t

w4 w <∞ and

ˆ +∞

0

dw
1− e−w4t

w4
w3|sin(wx)| =

ˆ π
x

0

dw
1− e−w4t

w
|sin(wx)|+

ˆ +∞

π
x

dw
1− e−w4t

w
|sin(wx)| ≤

≤
ˆ π

x

0

dw
1− e−w4t

w
|sin(wx)|+

ˆ +∞

π
x

dw
1

w
|sin(wx)|.

The first summand converges since 1−e−w4t

w
|sin(wx)| ∼ w4t|x| for w → 0.

For what concern the second summand

ˆ +∞

π
x

dw
1

w
|sin(wx)| =

+∞∑
k=0

∣∣∣∣∣
ˆ 1

x
(π+(k+1)π)

1
x

(π+kπ)

1

w
sin(wx) dw

∣∣∣∣∣ =

+∞∑
k=0

∣∣∣∣∣
[
− 1

wx
cos(wx)

] 1
x

(π+(k+1)π)

1
x

(π+kπ)

−
ˆ 1

x
(π+(k+1)π)

1
x

(π+kπ)

sin(wx)
1

w2x
dw

∣∣∣∣∣ ≤
+∞∑
k=0

(
1

(k + 1)π
− 1

(k + 2)π

)
+

ˆ +∞

π
x

1

w2x
dw < +∞.
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2.
ˆ +∞

0

dw

ˆ t

0

ds |cos(wx)|e−w4(t−s)|−w2f1(s)+f2(s)| ≤ C

ˆ +∞

0

dw
1− e−w4t

w4
(w2+1) < +∞.

Since 1−e−w4t

w4 w2 ∼ w2t and 1−e−w4t

w4 ∼ t for w → 0.

Example A.1.11. Let us start considering f1 : [0,+∞) → R, f1 ∈ L∞(0,+∞)
and the heat equation with Neumann boundary conditions. Find a formal solution
of the equation: 

∂u
∂t
− ∂2u

∂x2
= 0

∂u
∂x

(t, 0) = f1(t)

u(0, x) = 0 x ∈ R+ t ≥ 0

(A.1.5)

Applying the Fourier cosine transform and proposition A.1.6 getting rid of
boundary conditions, we get the easier equation{

∂U
∂t

+ w2U = −f1

U(0, w) = 0 w ∈ R+ t ≥ 0
(A.1.6)

Where U(·, w) = Fc[u(·, x)]. Solving the ordinary differential equation, it is easy
to obtain

U(t, w) = −e−w2t

ˆ t

0

ds ew
2sf1(s) w ∈ R+ t ≥ 0.

Taking the inverse transform to both side and applying Fubini-Tonelli theorem we
get the solution of equation (A.1.5)

u(t, x) = − 2

π

ˆ t

0

dsf1(s)

ˆ +∞

0

dw cos(wx)e−w
2(t−s) x ∈ R+ t ≥ 0.

This solution can be written in an easy way. In fact
ˆ +∞

0

dw cos(wx)e−w
2(t−s) =

1

2

ˆ
R
dw cos(wx)e−w

2(t−s) = Re

(
1

2

ˆ
R
dw eiwxe−w

2(t−s)
)

=

√
π

2

e
−x2

4(t−s)

√
t− s

.

and

u(t, x) = − 1√
π

ˆ t

0

ds f1(s)
e
−x2

4(t−s)

√
t− s

x ∈ R+ t ≥ 0.
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Remark A.1.12. In this example Fubini-Tonelli theorem can be applied because,
calling

C = ‖f1‖L∞ ,

we have for x 6= 0

ˆ +∞

0

dw

ˆ t

0

ds |cos(wx)|e−w2(t−s)|f1(s)| ≤ C

ˆ +∞

0

dw
1− e−w2t

w2
< +∞.

Since 1−e−w2t

w2 ∼ t for w → 0.
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Appendix B
C0 Semigroups of Linear Operators

C0 semigroups of linear operators are a functional analysis topic useful to general-
ize some concepts about linear ordinary differential equations to a Banach space
framework. This increase of generality is useful to associate a parabolic equation
to a linear differential equation in a Banach space. A detailed discussion on this
topic and its applications to the study of differential equations can be found in
[Lun12],[EN01],[Paz12]. The proofs of all the results stated in this chapter can be
found in these books.

B.1. Definition and basic properties

Definition B.1.1. Let (E, ‖·‖E) be a Banach space, a family of operators {S(t) :
t ≥ 0} belonging to L(E) is a C0 semigroup of linear operator if

1. S(0) = I.

2. S(t+ s) = S(t)S(s) ∀t, s ≥ 0.

3. S(·)x is continuous in [0,+∞), ∀x ∈ E.

Definition B.1.2 (infinitesimal generator). Let S(t) a C0 semigroup of linear
operator in E, the infinitesimal generator of S(·), A, is the linear operator defined
as {

D(A) = {x ∈ E : ∃ limt→0+
S(t)x−x

t
}

Ax = limt→0+
S(t)x−x

t
, ∀x ∈ D(A).

Before going on some properties of C0 semigroup of linear operator we recall some
classical functional analysis definitions.
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Definition B.1.3. Let (E, ‖·‖E) be a Banach space, a linear operator L : D(L) ⊂
E → E is closed if its graph is closed, i.e. if

GL = {(x, y) ∈ E × E : x ∈ D(L), y = Lx}

is closed in E × E with respect to the product topology.

If L is closed we always endowed D(L) with the graph norm

‖x‖D(L) = ‖x‖E + ‖Lx‖E

such a way (D(L), ‖·‖D(L)) is a Banach space too.

Definition B.1.4. Let (E, ‖·‖E) be a Banach space and L a linear operator L :
D(L) ⊂ E → E, we define the resolvent set and the sprectrum of L respectively
as

ρ(L) = {λ ∈ C : ∃(λI − A)−1 ∈ L(E)}, σ(L) = C \ ρ(L).

Now we can state some properties of a C0 semigroup that will explain its use-
fulness.

Proposition B.1.5. Let S(·) be a C0 semigroup in E and A its infinitesimal
generator. Then A is closed and D(A) is dense in E. Moreover, if x ∈ D(A),
then

S(·)x ∈ C1([0,+∞);E) ∩ C([0,+∞);D(A)])

and
d

dt
S(t)x = AS(t)x = S(t)Ax, t ≥ 0.

Remark B.1.6. Last proposition explain how the concept of C0 semigroup gener-
alize the exponential mapping for solution of ordinary linear differential equation.
In fact, if we consider the Cauchy problem{

u′(t) = Au(t), t ≥ 0

u(0) = x ∈ E.
(B.1.1)

Then S(t) is the solution map of this problem, namely S(t)x = u(t, x) ∀x ∈ D(A).
Given its analogies with the exponential function, sometimes S(t) is also denoted
as eAt.
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Theorem B.1.7 (Hille-Yosida). Let A : D(A) ⊂ E → E be a linear closed
operator on E. Then the following statements are equivalent.

• A is the infinitesimal generator of a C0 semigroup S(·) such that

‖S(t)‖ ≤Meωt t ≥ 0.

• D(A) is dense in E, (ω,+∞) ⊂ ρ(A) and the following estimates hold

‖R(λ,A)‖ ≤ M

(λ− ω)k
, ∀k ∈ N.

Moreover if the two properties above hold then

R(λ,A)x =

ˆ +∞

0

e−λtS(t)x dt, ∀x ∈ E, λ > ω.

Finally
S(t)x = lim

n→+∞
etAnx ∀x ∈ E

where An = nAR(n,A) and the following estimate holds

‖etAn‖ ≤Me
ωnt
n−ω , ∀t ≥ 0, n > ω.

Remark B.1.8. If M = 1, then S(·) is called a pseudo-contraction C0 semigroup.
If in addition ω ≤ 0, it is called a contraction C0 semigroup. The number

ω0 = lim inf
t→+∞

1

t
log(‖S(t)‖),

is called the type of the semigroup S(·). Then, for any ε > 0 there exists Mε ≥ 1
such that

‖S(t)‖ ≤Mεe
(ω0+ε)t.

Remark B.1.9. The operator An are called the Yoshida approximations of A and
they inherently interesting. In fact the following proposition holds.

Proposition B.1.10. Let A : D(A) ⊂ E → E be the infinitesimal generator of a
C0 semigroup. Then{

limn→+∞ nR(n,A)x = x, ∀x ∈ E,
limn→+∞Anx = Ax, ∀x ∈ D(A).
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B.2. Analytic generator

For any ω ∈ R and θ ∈ (0, π) we denote by

Sω,θ = {λ ∈ C \ {ω} : |arg(λ− ω)| ≤ θ}.

Assume now that A is a linear closed operator such that the following hypothesis
holds.

Hypothesis B.0

1. ∃ ω ∈ R, θ0 ∈ (π
2
, π) such that ρ(A) ⊃ Sω,θ0

2. ∃ M > 0 such that

‖R(λ,A)‖ ≤ M

|λ− ω|
∀λ ∈ Sω,θ0 .

Then we can define a semigroup S(·) of bounded linear operators in E by setting
S(0) = I and

S(t) =
1

2πi

ˆ
γε,θ

eλtR(λ,A)dλ, t > 0. (B.2.1)

In equation (B.2.1) θ ∈ (π
2
, θ0) and γε,θ is the following path in C

γε,θ = γ+
ε,θ ∪ γ

−
ε,θ ∪ γ

0
ε,θ,

γ±ε,θ = {z ∈ C; z = ω + re±iθ, r ≥ ε},

γ0
ε,θ = {z ∈ C; z = ω + εe±iη, |η| ≤ θ}.

Remark B.2.1. Equation (B.2.1) is well defined since θ ≥ π
2
and by Cauchy theorem

on holomorphic functions (λ → etλR(λ,A) is holomorphic in Sω,θ), S(t) does not
depend on the choice of ε and θ. In fact let π

2
< θ1 ≤ θ2 < θ,

ˆ
γε1,θ1

eλtR(λ,A)dλ−
ˆ
γε2,θ2

eλtR(λ,A)dλ = lim
n→+∞

ˆ
Cn

eλtR(λ,A)dλ = 0.

Where Cn is the closed curve obtained linking {λ ∈ γε1,θ1 : |λ| ≤ n} − {λ ∈ γε2,θ2 :
|λ| ≤ n} with two circumference arcs of center ω and radius n. The integrals over
Cn are identically 0 since the integrand is an olomorphic function.

Remark B.2.2. We say that S(t) is the semigroup generared by A, nevertheless
D(A) may be not dense in E and S(t) may not satisfy the continuity property
required in the definition of C0 semigroup.
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Theorem B.2.3. Assume that A fulfills hypothesis B.0 and S(t) defined by equa-
tion (B.2.1). Then the following statements hold.

1. The mapping S : (0,+∞) → L(E), t → S(t) is analytic. Moreover for any
x ∈ E, t > 0 and n ∈ N, S(t)x ∈ D(An) and

Sn(t)x = AnS(t)x.

2. S(t+ s) = S(t)S(s) ∀t, s ≥ 0.

3. S(·)x is continuous in 0 if and only if x ∈ D(A).

4. There exist M,N > 0 such that

‖S(t)‖ ≤Meωt, ‖AS(t)‖ ≤ eωt(
N

t
+ ωM) ∀t ≥ 0.

5. S(·) can be extended to an analytic L(E)-valued function in S0,θ0−π2 .

Because of property 5 the semigroup S(t) is called analytic. If in equation
(B.1.1) A satisfies hypothesis B.0 then the solution of the equation shares many
properties with the solution of a classical parabolic equation. Therefore, in this
case Cauchy problem (B.1.1) is called parabolic.

Remark B.2.4. It can be proven (see for example [Sin85]) that A fulfilling hypoth-
esis B.0 generates a C0 semigroup if and only if D(A) is dense in E.

Remark B.2.5. In the general case let call AF the part of A in F = D(A) defined
by {

D(AF ) = {y ∈ D(A) ∩ F : Ay ∈ F}
AFy = Ay, ∀y ∈ D(AF ).

It can be proven that D(AF ) is dense in F and the restriction SF (·) of S(·) to F
is a C0 semigroup.

Remark B.2.6. IfA fulfills hypothesis B.0 andD(A) is dense in E, then supλ∈σ(A) Re(λ)
is the type of the C0 semigroup S(t) as defined in remark B.1.8.

B.3. Fractional powers and interpolation spaces

In this section we assume the hypothesis B.0 holds and also that ω < 0, so that
the semigroup S(t) is of negative type. With these hypotheses we can introduce
some scales of subspace of E useful to analyze the regularity of the solution of the
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abstract Cauchy problem (B.1.1). With the notations of previous section, we set
for α ∈ (0, 1)

(−A)−αx =
1

2πi

ˆ
γε,θ

(−λ)αR(λ,A)xdλ, t > 0 x ∈ E.

It can be proven that (−A)−α is one to one and we denote as (−A)α its inverse
with domain D((−A)α). It also can be proven that

(−A)α(−A)β = (−A)α+β, ∀α, β ∈ (0, 1) : α + β ≤ 1.

The operator (−A)α are called fractional powers of −A and their domains form a
first scale of subspace of E. Thanks to representation formula (B.2.1) we can find
a representation formula for (−A)αS(·) too.

Proposition B.3.1. Let A be a linear operator fulfilling Hypothesis B.0 with ω <
0. Then for any α ∈ (0, 1) and t > 0 we have S(t)x ∈ D((−A)α), ∀x ∈ E and

(−A)αS(t)x =
1

2πi

ˆ
γε,θ

(−λ)αeλtR(λ,A)xdλ.

Moreover for any ε > 0, there exists Nα,ε > 0 such that

‖(−A)αS(t)‖ ≤ Nα,εt
−αe(ω+ε)t.

B.4. Cauchy problem for nonhomogeneous
equations

Let us consider the Cauchy problem{
u′(t) = Au(t) + f(t), t ∈ [0, T ],

u(0) = x ∈ E.
(B.4.1)

where A is the infinitesimal generator of a C0 semigroup S(·) in E and f ∈
Lp(0, T ;E) p ≥ 1. There were introduced several notions of solution of this
problem

Definition B.4.1.

(i) A strict solution of problem (B.4.1) in Lp(0, T ;E), p ∈ [1,+∞], is a function
u that belongs to W 1,p(0, T ;E) ∩ Lp([0, T ];D(A)) and fulfils (B.4.1).
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(ii) A strict solution of problem (B.4.1) in C(0, T ;E), is a function u that belongs
to C1([0, T ];E) ∩ C0([0, T ];D(A)) and fulfils (B.4.1).

(iii) A weak solution of problem (B.4.1) is a function u ∈ C([0, T ];E) such that

ψ(u(t)) = ψ(x) +

ˆ t

0

(A∗ψ)(u(s)) +

ˆ t

0

f(s) ds, ∀ψ ∈ D(A∗).

Remark B.4.2. A strict solution is a weak solution, too. The converse is generally
false.
Now we introduce some sufficient condition for the existence of these kinds of

solution.

Proposition B.4.3. Let A be the infinitesimal generator of a C0 semigroup S(·)
in E and f ∈ L1(0, T ;E). Then there exists a unique weak solution u of equation
(B.4.1) and is given by the variation of constants formula

u(t) = S(t)x+

ˆ t

0

S(t− s)f(s) ds t ∈ [0, T ]. (B.4.2)

The function u(·) defined by equation (B.4.2) is called mild solution of problem
(B.4.1).

Proposition B.4.4. Let A be the infinitesimal generator of a C0 semigroup S(·)
in E.

(i) If x ∈ D(A) and f ∈ W 1,p(0, T ;E) with p ≥ 1, then problem (B.4.1) has a
unique strict solution in C([0, T ];E), given by formula (B.4.2) and moreover
u ∈ C1([0, T ];E) ∩ C0([0, T ];D(A)).

(ii) If x ∈ D(A) and f ∈ Lp(0, T ;D(A)) then problem (B.4.1) has a unique
strict solution in Lp(0, T ;E), given by formula (B.4.2) and moreover u ∈
W 1,p(0, T ;E) ∩ C0([0, T ];D(A)).

Proof. The proof of this fact can be found in [DZ14] and exploits Yosida approxi-
mations of A defined in section B.1.

We introduce one last kind notion of solution weaker than strict in C(0, T ;E).

Definition B.4.5. Let f ∈ C0([0, T ];E) and x ∈ E. A strong solution of problem
(B.4.1) is a function u(·) : u(0) = x and there exists a sequence {un}n∈N ⊂
C1([0, T ];E) ∩ C0([0, T ];D(A)) such that

u′n − Aun → f in C([0, T ];E) n→ +∞,

un → u in C([0, T ];E) n→ +∞.
Proposition B.4.6. Let x ∈ X, f ∈ C0([0, T ];X). Then problem (B.4.1) has a
unique strong solution given by formula (B.4.2).
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Appendix C
Operator Theory Tools

In this chapter we will introduce some tools of functional analysis necessary for
the definition of the stochastic integral in infinite dimensional spaces. A more
complete treatment of these topics and all the proofs omitted can be found in
[LR15],[DZ14] or in some classical books of operator theory[VS17],[Mor10]. In all
this chapter (U, 〈·, ·〉U) and (H, 〈·, ·〉) will be two separable Hilbert spaces. Also
we will say that L ∈ L(U) is nonnegative if 〈Lu, u〉U ≥ 0 for all u ∈ U .

C.1. Nuclear and Hilbert-Schmidt operators

Definition C.1.1 (Nuclear operator). An element T ∈ L(U,H) is said to be a
nuclear operator if there exists a sequence {aj}j∈N ⊂ H and a sequence {bj}j∈N ⊂ U
such that

Tx =
+∞∑
j=1

aj〈bj, x〉U ∀x ∈ U

and
+∞∑
j=1

‖aj‖‖bj‖U < +∞.

The space of nuclear operator from U to H is denoted by L1(U,H).

If U = H, T ∈ L1(U,H) and T is symmetric, then T is called trace class.

Proposition C.1.2. The space L1(U,H) endowed with the norm

‖T‖L1(U,H) := inf

{
+∞∑
j=1

‖aj‖‖bj‖U

∣∣∣∣∣ Tx =
+∞∑
j=1

aj〈bj, x〉U , x ∈ U

}
is a Banach space.
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Definition C.1.3. Let T ∈ L(U) and ek, k ∈ N an orthonormal basis of U . Then
we define

trT :=
+∞∑
j=1

〈Tek, ek〉U

if the series is convergent.

Remark C.1.4. It can be proven (see for example [LR15]) that the definition does
not depend of the choice of the orthonormal basis ek, k ∈ N. Moreover we have
that |trT | ≤ ‖T‖L1(U,H).

Definition C.1.5 (Hilbert-Schmidt operator). T ∈ L(U,H) is called an Hilbert-
Schmidt operator if

+∞∑
k=1

‖Tek‖2 < +∞

The space of Hilbert-Schmidt operator from U to H is denoted by L2(U,H).

Remark C.1.6.

(i) The definition of Hilbert-Schmidt operator and the number

‖T‖2
L2(U,H) :=

+∞∑
k=1

‖Tek‖2

do not depend of the choice of the orthonormal basis ek, k ∈ N. Moreover
‖T‖L2(U,H) = ‖T ∗‖L2(H,U).

(ii) ‖T‖L(U,H) ≤ ‖T‖L2(U,H).

(iii) Let G be another Hilbert space, S1 ∈ L(H,G), S2 ∈ L(G,U), T ∈ L2(U,H).
Then S1T ∈ L2(U,G), TS2 ∈ L2(G,H) and

‖S1T‖L2(U,G) ≤ ‖T‖L2(U,H)‖S1‖L(H,G),

‖TS2‖L2(G,H) ≤ ‖T‖L2(U,H)‖S2‖L(G,U).

Proof. (i) Let ek k ∈ U and fk k ∈ H be orthonormal basis of U and H
respectively.

‖T‖2
L2(U,H) =

+∞∑
k=1

〈Tek, T ek〉 =
+∞∑
k=1

〈T ∗Tek, ek〉U = tr(T ∗T )

62



C.1. Nuclear and Hilbert-Schmidt operators

which does not depend of the choice of the orthonormal basis by remark
C.1.4. By Parceval identity we get

‖T‖2
L2(U,H) =

+∞∑
k=1

〈Tek, T ek〉 =
+∞∑
k=1

+∞∑
j=1

|〈Tek, fj〉|2 =
+∞∑
j=1

‖T ∗fj‖2
U = ‖T ∗‖2

L2(H,U).

(ii) Let x ∈ U and fk k ∈ H be an orthonormal basis of H. Then we get

‖Tx‖2 =
+∞∑
k=1

〈Tx, fk〉2 ≤ ‖x‖2
U

+∞∑
k=1

‖T ∗fk‖2
U = ‖T‖2

L2(U,H)‖x‖2
U

which is the thesis.

(iii) Let ek be an orthonormal basis of U . Then

+∞∑
k=1

‖S1Tek‖2
G ≤ ‖S1‖2

L(H,G)‖T‖2
L2(U,H).

For what concern the second claim, since (TS2)∗ = S∗2T
∗ and ‖S∗2‖L(U,G) =

‖S2‖L(G,U) we get

‖TS2‖L2(G,H) = ‖(TS2)∗‖L2(H,G) = ‖S∗2T ∗‖L2(H,G) ≤ ‖T‖L2(U,H)‖S2‖L(G,U).

Hence TS2 ∈ L2(G,H) and the thesis follows.

The following proposition can be proven with classical arguments (see for exam-
ple [LR15]).

Proposition C.1.7. Let S, T ∈ L2(U,H) and ek an orthonormal basis of U . If
we define

〈S, T 〉L2
:=

+∞∑
k=1

〈Sek, T ek〉

we obtain that (L2(U,H), 〈·, ·〉L2) is a separable Hilbert space. Moreover if fk is an
orthonormal basis of H we get that fj⊗ek := fj〈ek, ·〉U , j, k ∈ N is an orthonormal
basis of L2(U,H).

Proposition C.1.8. Let (G, 〈·, ·〉G) be a further Hilbert space. If T ∈ L2(U,H)
and S ∈ L2(H,G) then ST ∈ L1(U,G) and

‖ST‖L1(U,G) ≤ ‖S‖L2‖T‖L2 .
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Proof. Let fk, k ∈ N be an orthonormal basis of H. Then we have

STx =
+∞∑
k=1

〈Tx, fk〉Sfk, x ∈ U.

Therefore by definition of norm in L1(U,G) and Cauchy-Scwhartz inequality it is
possible to get

‖ST‖L1(U,G) ≤
+∞∑
k=1

‖T ∗fk‖U‖Sfk‖G ≤ (
+∞∑
k=1

‖T ∗fk‖2
U)

1
2 (

+∞∑
k=1

‖Sfk‖2
G)

1
2 = ‖S‖L2‖T‖L2 .

Remark C.1.9. Let ek k ∈ N an orthonormal basis of U . An immediate conse-
quence of previous proposition is that if T ∈ L(U) is symmetric, nonnegative and∑
〈Tek, ek〉 < +∞, then T ∈ L1(U).

We end this section with another proposition which links Hilbert-Schmidt and
nuclear operator. The proof can be found in [LR15] and it is an easy consequence
of Proposition C.1.8 and remark C.1.6.

Proposition C.1.10. Let L ∈ L(H), B ∈ L2(U,H). Then LBB∗ ∈ L1(H), B∗LB ∈
L1(U) and we have that

trLBB∗ = trB∗LB.

C.2. The pseudo inverse of linear operators

Definition C.2.1 (Pseudo Inverse). Let T ∈ L(U,H). The pseudo inverse of T
is defined as

T−1 := (T |(KerT )⊥)−1 : T (Ker(T )⊥) = T (U)→ Ker(T )⊥.

Remark C.2.2. If T ∈ L(U,H) then T−1 : T (U)→ Ker(T )⊥ is linear and bijective.

Proposition C.2.3. Let T ∈ L(U) and T−1 the pseudo inverse of T .

(i) If we define an inner product on T (U) by

〈x, y〉T (U) := 〈T−1x, T−1y〉U ∀x, y ∈ T (U),

then (T (U), 〈·, ·〉T (U)) is an Hilbert space.

(ii) Let ek, k ∈ N, be an orthonormal basis of (KerT )⊥. Then Tek is an or-
thonormal basis of (T (U), 〈·, ·〉T (U)).
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Now it is possible to present some results about the image of linear operators.

Proposition C.2.4. Let (U1, 〈·, ·〉1), (U2, 〈·, ·〉2) be two Hilbert spaces, T1 ∈ L(U1, H)
and T2 ∈ L(U2, H). Then the following statements hold:

(i) if there exists c ≥ 0 such that ‖T ∗1 x‖U1 ≤ ‖T ∗2 x‖U2 for all x ∈ H, then

{T1u | u ∈ U1, ‖u‖1 ≤ 1} ⊂ {T2v | v ∈ U2, ‖v‖2 ≤ c}.

In particular, this implies ImT1 ⊂ ImT2.

(ii) if ‖T ∗1 x‖U1 = ‖T ∗2 x‖U2 for all x ∈ H, then ImT1 = ImT2 and ‖T−1
1 x‖U1 =

‖T−1
2 x‖U2 for all x ∈ ImT1, where T−1

i is the pseudo inverse of Ti i ∈ {1, 2}.

Proof. The proof of this fact can be found in [LR15] and it follows by an application
of the geometric version of the Hanh-Banach theorem (see [Bre10]).

Corollary C.2.5. Let T ∈ L(U,H) and set Q = TT ∗ ∈ L(H). Then we have

ImQ
1
2 = ImT ‖Q−

1
2x‖ = ‖T−1x‖U ∀x ∈ ImT,

where Q−
1
2 is the pseudo inverse of Q

1
2 .

Proof. Since Q = TT ∗ then Q is symmetric and nonnegative, so Q
1
2 exists and is

symmetric. Moreover ∀x ∈ H

‖(Q
1
2 )∗x‖2 = ‖Q

1
2x‖2 = 〈Qx, x〉 = 〈T ∗Tx, x〉 = ‖T ∗x‖2

U .

Then it is possible to apply proposition C.2.4. and the thesis follows.
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Appendix D
The Stochastic Integral for Cylindrical
Wiener Processes

In this chapter we will present the Cylindrical Wiener Process and the stochastic
integral with respect of such kind of processes. A complete and deeper presentation
of the topics analyzed in this appendix can be found in [LR15] and [DZ14]. In
all this chapter (U, 〈·, ·〉U) and (H, 〈·, ·〉) will be two separable Hilbert spaces and
(Ω,F ,P) will be a probability space.

D.1. Cylindrical Wiener processes

Let Q ∈ L(U) be nonnegative definite and symmetric. If Q is of finite trace then
a Q-Wiener process can be represented as

W (t) =
∑
k∈N

βk(t)ek, t ∈ [0, T ] (D.1.1)

where ek, k ∈ N, is an orthonormal basis of U0 := Q
1
2 (U) (with inner product

defined as in section C.2) and βk, k ∈ N, is a family of independent real-valued
Brownian motion. In this case the series converges in L2(Ω,F ,P;C([0, T ];U))
because the inclusion U0 ⊂ U is a Hilbert-Schmidt embedding, hence, for a fixed
t, in L2(Ω,F ,P;U) too. In general, we can recover this convergence property
introducing a further Hilbert space (U1, 〈·, ·〉1) and a Hilbert-Schmidt embedding
J : (U0, 〈 , 〉0)→ (U1, 〈·, ·〉1).

Proposition D.1.1. Let ek, k ∈ N, be an orthonormal basis of U0 and βk, k ∈ N,
a family of independent real-valued Brownian motion. Define Q1 := JJ∗. Then
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Q1 ∈ L(U1), is nonnegative definite,symmetric, with finite trace and the series

W (t) =
+∞∑
k=1

βk(t)Jek, t ∈ [0, T ]

converges in M2
T (U1)1 and define a Q1-Wiener process on U1. Moreover we have

that Q
1
2
1 (U1) = J(U0) and ∀ u0 ∈ U0

‖u0‖0 = ‖Q−
1
2Ju0‖1 = ‖Ju0‖

Q
1
2
1 (U1)

i.e. J : U0 → Q
1
2
1 (U1) is an isometry.

Proof. The proof of this fact can be found in [LR15]. The first claim is just a
matter of patience, second claim follows by an application of corollary C.2.5.

Definition D.1.2. Let ek, k ∈ N, be an orthonormal basis of U0 and βk, k ∈ N,
a family of independent real-valued Brownian motion. Define Q1 := JJ∗. Then

W (t) =
+∞∑
k=1

βk(t)Jek, t ∈ [0, T ]

is a cylindrical Q-Wiener process in U .

D.2. Stochastic integral for Wiener processes

Definition D.2.1 (Elementary process E). A process Φ(t), on (Ω,F ,P), with
normal filtration Ft, taking value in L(U,H) is said to be elementary if there
exists 0 = t0 < · · · < tk = T, k ∈ N, such that

Φ(t) =
k∑

m=0

Φm1]tm,tm+1](t), t ∈ [0, T ]

where:
1let E be a Banach space, for a fixed 0 < T < +∞ we denote by M2

T (E) the space of all
E-valued continuous square integrable martingales M(t), t ∈ [0, T ]. It can be proven that
M2

T (E) with the norm

‖M‖M2
T (U1)

:= sup
t∈[0,T ]

(E(‖M(t)‖)) 1
2 = (E(‖M(T )‖)) 1

2

is a Banach space.

68



D.2. Stochastic integral for Wiener processes

• Φm : Ω → L(U,H) is Ftm measurable with respect to Borel σ-algebra on
L(U,H), 0 ≤ m ≤ k − 1.

• Φm takes only a finite number of values in L(U,H).

For a standard Q-Wiener process W (t) we define

Int(Φ)(t) :=

ˆ t

0

Φ(s)dW (s) :=
k−1∑
m=0

Φm(W (tm+1 ∧ t)−W (tm ∧ t)), t ∈ [0, T ].

Remark D.2.2. It can be proven that Int : E →M2
T and

‖
ˆ ·

0

Φ(s)dW (s)‖2
M2

T
= E

[ˆ T

0

‖Φ(s) ◦Q
1
2‖2

L2
ds

]
:= ‖Φ‖2

T .

The last equality is called Ito isometry. In particular

Int : (E , ‖·‖T )→ (M2
T , ‖·‖M2

T
)

is an isometric transformation and there is a unique isometric extension of Int to
Ē (namely the closure of E with respect to ‖ ‖T ).
An explicit representation of Ē is available:
N 2
W (0, T ;H) := Ē = {Φ : [0, T ] × Ω → L0

2 := L2(U0, H)| Φ is predictable and
‖Φ‖T < +∞} = L2([0, T ]×Ω,PT 2, dt⊗P;L0

2). Via localization argument, actually,
the definition of stochastic integral can be extended to a more general class of
processes:

NW (0, T ;H) :=

{
Φ : Ω× [0, T ]→ L0

2

∣∣∣∣ Φ is predictable with P
(ˆ T

0

‖Φ(s)‖2
L0
2
< +∞

)
= 1

}
.

For Φ ∈ NW (0, T ;H) we define τn := {t ∈ [0, T ]|
´ t

0
‖Φ(s)‖2

L0
2
> n} ∧ T and

ˆ t

0

Φ(s)dW (s) :=

ˆ t

0

1]0,τn](s)Φ(s)dW (s) ω ∈ {τn ≥ t}.

In the general case Q ∈ L(U) nonnegative, symmetric but not necessarily of finite
trace the idea is to integrate with respect to the standard U1-valued Q1-Wiener
process given by proposition D.1.1. Thanks to proposition D.1.1. we also get

Φ ∈ L0
2 = L2

(
Q

1
2 (U), H

)
⇐⇒ Φ ◦ J−1 ∈ L2

(
Q

1
2
1 (U1), H

)
,

2PT := σ(Y : Ω× [0, T ]→ R| Y is left continuous and adapted to Ft, t ∈ [0, T ]).
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then we define
ˆ t

0

Φ(s)dW (s) :=

ˆ t

0

Φ ◦ J−1(s)dW (s) t ∈ [0, T ]. (D.2.1)

So, in both cases of standard or cylindrical Wiener process, the class of integrable
processes is given by

NW (0, T ;H) =

{
Φ : Ω× [0, T ]→ L0

2

∣∣∣∣ Φ is predictable with P
(ˆ T

0

‖Φ(s)‖2
L0
2
< +∞

)
= 1

}
.

Remark D.2.3. The definition given by equation (D.2.1) does not depend on the
choice of (U1, 〈 , 〉U1) and J . This is due to the fact that the definition is indepen-
dent in the case of elementary processes.

D.3. Properties of stochastic integral

In this section we collect some properties of stochastic integral. First two repre-
sentation formulas, then some miscellaneous results.

Lemma D.3.1. Let W (t), t ∈ [0, T ] be a standard Q-Wiener process and Φ ∈
N 2
W (0, T ;H). Then P− a.s.

ˆ t

0

Φ(s)dW (s) =
+∞∑
k=1

√
λk

ˆ t

0

Φ(s)(fk) dβk(s), t ∈ [0, T ]

where λk, fk, βk, k ∈ N are as in the representation (D.1.1) (i.e.
√
λkfk = ek

is an orthonormal basis of U0) and the sum on the right-hand side converges in
L2(Ω,F ,P;C([0, T ];H)).

More generally:

Proposition D.3.2. Let W (t), t ∈ [0, T ] be a cylindrical Q-Wiener process and
Φ(t) ∈ N 2

W (0, T ;H). Then P− a.s.

ˆ t

0

Φ(s)dW (s) =
+∞∑
k=1

ˆ t

0

Φ(s)(ek) dβk(s), t ∈ [0, T ]

where ek, βk, k ∈ N are as definition (D.1.2) and the sum on the right-hand side
converges in L2(Ω,F ,P;C([0, T ];H)).
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Proof. By definition
ˆ t

0

Φ(s)dW (s) :=

ˆ t

0

Φ(s)J−1dW (s).

For Φ(s)J−1 lemma D.3.1. holds (obviously in U1). Given ek orthonormal basis of
U0, by proposition D.1.1. we get that Jek is an orthonormal basis of Q

1
2 (U1), then

ˆ t

0

Φ(s)J−1dW (s) =
+∞∑
k=1

ˆ t

0

Φ(s)◦J−1(Jek)dβk(s) =
+∞∑
k=1

ˆ t

0

Φ(s)(ek) dβk(s), ∀t ∈ [0, T ]

and convergence properties hold.

Theorem D.3.3. Assume that Φ ∈ N 2
W (0, T ;H) then the stochastic integral´ t

0
Φ(s)dW (s) is a continuous square integrable martingale, and its quadratic vari-

ation is of the form

〈
ˆ t

0

Φ(s)dW (s)〉 =

ˆ t

0

QΦ(s) ds

where QΦ(s) = (Φ(s)Q
1
2 )(Φ(s)Q

1
2 )∗, s, t ∈ [0, T ]. If Φ ∈ NW (0, T ;H), then

〈
´ t

0
Φ(s)dW (s)〉 is a local martingale.

Proposition D.3.4. Let Φ be a L0
2-valued stochastically integrable process, (H̃, 〈 , 〉H̃)

a further separable Hilbert space and L ∈ L(H, H̃). Then the process L(Φ(t)), t ∈
[0, T ], is an element of NW (0, T ; H̃) and

L

(ˆ T

0

Φ(t)dW (t)

)
=

ˆ T

0

L(Φ(t))dW (t) P− a.s.

Proposition D.3.5. Assume Φ1, Φ2 ∈ N 2
W (0, T ;H). Then

E
[ˆ t

0

Φi(s)dW (s)

]
= 0, E

[
‖
ˆ t

0

Φi(s)dW (s)‖2

]
< +∞, t ∈ [0, T ], i ∈ {1, 2}.

Moreover the correlation operators

V (t, s) = Cor

(ˆ t

0

Φ1(r)dW (r),

ˆ s

0

Φ2(r)dW (r)

)
, t, s ∈ [0, T ]

are given by the formulas

V (t, s) = E
[ˆ t∧s

0

(Φ2(r)Q
1
2 )(Φ1(r)Q

1
2 )∗dr

]
.

Remark D.3.6. All the missing proofs and some interesting results about stochastic
integral can be found in [LR15], [DZ14].
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Appendix E
Some Stochastic Tools

In this appendix we introduce some results used repeatedly in chapter 2 and chap-
ter 3. For the proofs of these facts and a deeper discussion see [Bal17],[DZ14].

E.1. Kolmogorov’s continuity theorem

Theorem E.1.1. Let D ⊂ Rm be an open set and (Xy)y∈D a family of d-dimensional
random variables such on (Ω,F ,P) such that there exist α > 0, β > 0, c > 0 sat-
isfying

E[|Xy −Xz|β] ≤ c|y − z|m+α.

Then there exists a family (X̃y)y∈D of Rd-valued random variables such that

Xy = X̃y a.s. ∀y ∈ D.

(i.e. X̃ is a modification of X) and that, for every ω ∈ Ω, the map y → X̃y(ω) is
continuous and even Hölder continuous with exponent γ for every γ < α

β
on every

compact subset of D.

Proof. The proof of this fact can be found in [Bal17].

E.2. The Itô Formula

Let (U, ‖·‖U) and (H, ‖·‖H) be separable Hilbert spaces. We fix a cylindrical
Wiener process W (t), t ≥ 0, in U on a probability space (Ω;F ;P) with a normal
filtration Ft, t ≥ 0. Moreover, we fix T > 0. We assume that

• Φ ∈ NW (0, T ;H)
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• ϕ : Ω× [0, T ]→ H is a predictable and P-a.s. Bochner integrable process on
[0, T ]

• X(0) : Ω→ H is F0-measurable

• F : [0, T ]×H → R is twice Fréchet differentiable with derivatives

∂F

∂t
:= D1F : [0, T ]×H → R

DF := D2F : [0, T ]×H → L(H,R)

D2F := D2
2F : [0, T ]×H → L(H)

which are uniformly continuous on bounded subsets of [0, T ]×H.
Under these assumptions the process

X(t) := X(0) +

ˆ t

0

ϕ(s)ds+

ˆ t

0

Φ(s)dW (s), t ∈ [0, T ]

is well defined and the following Itô Formula holds.

Theorem E.2.1. There exists a P-null set N ∈ F such that the following formula
is fulfilled on N c for all t ∈ [0, T ]:

F (t,X(t)) = F (0, X(0)) +

ˆ t

0

〈DF (s,X(s)),Φ(s)dW (s)〉1

+

ˆ t

0

∂F

∂t
(s,X(s)) + 〈DF (s,X(s)), ϕ(s)〉

+
1

2
tr
[
D2F (s,X(s))(Φ(s)Q

1
2 )(Φ(s)Q

1
2 )∗
]
ds

Proof. The proof of this fact can be found in [DZ14].

E.3. Burkholder–Davis–Gundy Inequality

In this section we follow all the notation introduced in the previous one. Then we
can state the following result.

Theorem E.3.1. Let p ≥ 2 and Φ ∈ NW (0, T ;H). Then(
E

[
sup
t∈[0,T ]

‖
ˆ t

0

Φ(s)dW (s)‖p
]) 1

p

≤ p

(
p

2(p− 1)

) 1
2
(ˆ T

0

(E[‖Φ(s)‖p
L0
2
])

2
pds

) 1
2

.

1
´ T
0
〈f(t),Φ(t)dW (t)〉 :=

´ T
0

Φ̃f (t) dW (t) with Φ̃f (t)(u) := 〈f(t),Φ(t)u〉, u ∈ U0
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Proof. The proof of this fact can be found in [DZ14].

Remark E.3.2. If Φ ∈ N 2
W (0, T ;H) we get that

´ t
0

Φ(s)dW (s) is a martingale and
therefore

sup
t∈[0,T ]

E
[
‖
ˆ t

0

Φ(s)dW (s)‖2

]
= E

[
‖
ˆ T

0

Φ(s)dW (s)‖2

]
.
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In questi anni mi sono dovuto dividere tra nord e sud e, nonostante la mia pro-
lungata assenza, i miei amici de I wajoni del caffe non si sono mai scordati di
me, rendendomi sempre partecipe delle loro manie sebbene col passare del tempo
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