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1. Introduction
The thesis focuses on the ownership structure
and presence of interlocks among several compa-
nies listed in the italian stock exchange. It aims
to study the relationship between those features
across firms by introducing a multi layer net-
work representation of the market. This is done
by creating and analysing different graphs, each
one build from either data regarding ownership
composition of firms or their Board of Directors
structure. Those graphs show the different in-
terconnetions taking place between companies
in the italian market, and each of them gives
a different representation of the overall market
and of its players, by displaying the degrees of
connections tighting it up and the importance of
each company in it. In particular, four different
graphs are created: two of them consider inter-
locks for their creations, while the others focus
on the presence of ownership ties or on the de-
gree of similarity between companies’ownership
structure. These graphs are first presented in-
dependently with the aim of identifying their
general topology. Then, they are then studied
together, allowing for the comparison between
layers. Measures as edge overlap, graph distance
and VN entropy are used for understanding the
relationships between the layers and the degree

of similarity between them and therefore of the
dataset from which they stem.

2. Mathematical Framework
Let G = (V,E) be a graph where V represents
the set of nodes of G and E ⊂ V × V the set
of edges of G. Consider undirected graphs, that
is edges connecting nodes without having a spe-
cific direction.
Consider a graph G = (V,E) of N nodes and
indicate them as V = {v1, . . . , vN}. Write
A = (aij)

N
i,j=1 as the adjacency matrix of G,

that is a matrix whose entry is 1 if nodes vi
and vj are linked by and edge and 0 otherwise.
It is possible to attach positive real numbers
to edges representing their importance; these
are called weights of the edges. Indicate with
W = (wij)

N
i,j=1 the weight matrix of G, where

wij ∈ [01] is equal to the weight of the edge con-
necting nodes vi and vj if this one exists and
0 otherwise. The degree and strength of node
vi are respectively ki =

∑
j=1 aij =

∑
j=1 aji

and si =
∑

j=1wij =
∑

j=1wji A multilayer
network M of order M is a pair M = (G, C)
where G = {G1, . . . , GM} is a set of M graphs
Gα = (Vα, Eα) and C is a set of interconnections
between nodes of different layers Gα and Gβ .
When comparing the layers, but also for graphs
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in general, consider for simplicity graphs to in-
sist on the same set of nodes. For a network M
this is equal to say that V1 = · · · = VM = V .
Consider moreover in this case C to be the set
of edges simply connecting the same nodes over
the different layers.
For each α = 1, . . . ,M , indicate with A[α] = a

[α]
ij

and W [α] = w
[α]
ij the N × N adjacency and

weight matrices of layer Gα. Indicate with
k
[α]
i =

∑N
j=1 a

[α]
ij and s

[α]
i =

∑N
j=1w

[α]
ij respec-

tively the degree and strength of node vi in layer
α.
For comparing different layers across a network,
we introduce, among others, the following mea-
sures: edge overlap, graph distance and V N
entropy. Considering a network M = (G, C)
and two two subnetworks M1 and M2 whose
layers are the graphs G1 = (Gα1 , . . . , GαM1

) and
G2 = (Gβ1 , . . . , GβM2

), with Gj ∈ G∀j and
G2 ⊂ G1 ⊂ G, the edge overlap EO between
the two subnetworks is:

EO(M1,M2) =

∑N
i,j=1 a

[α1]
ij · ... · a[αM1

]

ij∑N
i,j=1 a

[β1]
ij · ... · a[βM2

]

ij

where N is the number of nodes. The edge over-
laps computes the fraction of edges which are
presented in all layers of G2 that are also present
in all layers of G1. It can take values from 0 to
1.
For what concerns the definition of a distance
d : G ×G → R between graphs ( here G rep-
resents the set of graphs of N nodes), this can
be done in several ways. The important thing is
that the operator d satisfies the usual properties
that a distance measure is required to satisfy.
These are being positively defined, taking null
value only when valuating the distance of an el-
ement with itself and satisfying the triangular
inequality. For unweighted graphs G1 = (V,E1)
and G2 = (V,E2), we define d as :

d(G1, G2) =
∑

{u,v}∈E1∩E2

|dG1(u, v)− dG2(u, v)|

+
∑

{u,v}∈E1\E2

|N − dG1(u, v)|+

+
∑

{u,v}∈E2\E1

|N − dG2(u, v)|

where dGi is the usual distance among nodes in
graphs Gi (i.e. it corresponds to the length of

the shortest path connecting them. The length
of a path is the number of edges composing the
path). This distance can be normalised so to fit
in the interval [0 1].
VN entropy on the other hand requires first the
definition of the projection operator on a net-
work M in order to be introduced. In this direc-
tion, indicate with MN(N,M) the set of (possi-
bly weighted) multi networks composed by N
nodes and M layers. Then, given a network
M = (G, C) ∈ MN(N,M), the projection of
order m ∈ 1, . . . ,M of the sub network S ⊂ G
composed by layers (Sα1 , . . . , Sαm) is the opera-
tor πS such that:

πS :
MN(N,M) → MN(N, 1)

M 7→ πS(M)

where the 1 layer network πS(M) is completely
identified by the adjacency matrix AπS whose
entries are

aπS
ij =

{
1 if ∃α ∈ {α1, . . . , αm} : a

[α]
ij = 1

0 otherwise

and, in case of a weighted networks, by the ma-
trix WπS whose entries are:

WπS (i, j) = wπS
ij =

∑
α∈{α1,...,αm}

w
[α]
ij

Given this notation, considering a network M of
N nodes and M layers, the aggregate projection
matrix Ap = (apij)

N
i,j=1 is defined as the adja-

cency matrix of the 1 layer network πp(M) :=
πM(M).
Now, given a graph G = (V,E) of N nodes, the
Von Neuman entropy hV N of the graph is given
by:

hV N = −Tr(LG · log2(LG))

where the operator Tr is the trace operator, that
is Tr(B) =

∑N
i=1 bii with B = (bij)

N
i,j=1, and LG

is the rescaled laplacian matrix associated with
the graph G. LG = c · (D−A) where D is a di-
agonal matrix, having as diagonal entrances the
degrees of the nodes, A is the adjacency matrix
and c = 1/

∑N
i,j=1 aij is a rescaling factor. As-

suming now to consider a network M = (G, C)
of M layers across N nodes, the Von Neumann
entropy for M is

HV N (M) =
1

M

M∑
α=1

h
[α]
V N
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VN entropy can be computed for every represen-
tation R of the network. A representation R is
a subnetwork of M whose layers are either orig-
inal layers of M or stem from the projection of
some of them onto one single layer. In the no-
tation just introduces the m ≤ M layer network
R is composed by layers (R1, . . . , Rm) such that
for each i, Ri = Gj∧Ri = πS(M) for some j and
some S. Moreover each layer Gj belonging to M
must contribute to the construction of one and
only one of the layers Ri. Structural reducibil-
ity calculates the VN entropy between a given
network and its aggregate, projected represen-
tation. Structural reducibility aims to find the
best representation R of the network M that
maximises the quantity:

q(R) = 1− HV N (R)

HV N (πM(M))

3. Layers Construction
The dataset considered regards companies listed
in the italian stock exchange, collecting infor-
mation for 234 companies for which data is
avaliable regarding either ownership structure or
BoD composition. Based on this data four differ-
ent weighted layers are constructed: two regard-
ing interlocks (a direct and an indirect version),
one considering possible ownership ties and one
linking firms with similar onwhersip structure.

3.1. Direct Interlocking
In the DI layer, companies are linked when they
have at least one director in common. DI graph
turns out to have a relatively low number of
edges (269). Out of 201 considered firms, 38
of the are not connected to any other, while 143
of them, around 73% of the sample, compose a
giant component. Weights are proportional to
the number of interlocks. The average degree
and strength are 2,67 and 0,33, showing how the
layer is far from being highly connected.

3.2. Indirect Interlocking
In the II layer, a link is created among two com-
panies not only if they share a common director,
but also if there exist a couple of directors, sit-
ting on the boards of the respective firms, that
also sit, together, as members of another listed

BoD. When considering also this scenario, the
final layer structure presents many more edges
(1020). Interestingly enough, the topology of
the graph remains the same; indeed, the same
38 companies stay isolated, while the giant com-
ponent is again including the same 143 firms.
What changes are the mean values for degree
and strength (respectively 10,15 and 2,19). This
is a consequence of the increment in the number
of edges.

3.3. Ownership Ties
In the OT layer, links are born when either com-
panies have a common shareholder or one is in-
vesting in the other. Links are undirected, so
the information about which firm is investing in
which is discarded. The final structure is com-
posed by 232 firms and 239 edges. In this frame-
work, companies are roughly divided in three
categories: isolated nodes, firms belonging to the
main giant component and companies ingaging
in few links outside of the main component. The
giant component is composed by 72 firms, that
is a little more than 31% of the sample, while
the number of isolated nodes is 130. As fewers
links are present, also mean degree and strength
witness a degrease, reaching values of 2,06 and
0,74.

3.4. Ownership Similarity
The OS layer is build by means of a similarity
index s. This score assigns to each couple of
companies a number that takes values in the
range [0 1]. The higher the score, the more com-
panies are regarded as similar. This index is
based on ownership data; it takes into account
the percentage of shares held by the main share-
holder as well as the aggregate shares owned by
the relevant shareholders (A shareholder is rele-
vant if he holds at least 2% of the total equity).
It considers the number of relevant shareholders
and finally also the category to which the com-
panies’ main shareholders belong to. If, for two
companies, the score s is higher than a certain
threshold t, then a link is constructed between
the two firms. t is chosen as 0,875. The final
structure results in a disconnected graph, com-
posed by 232 firms and 879 edges. It decomposes
in two main giant components and other smaller
disconnected ones. Overall, the number of con-
nected components is 62, when including also
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isolated nodes. It turns out that firms belong-
ing to the main giant components are heavily
controlled by their first shareholder who owns
more than 50% of total shares. Mean degree
and strength are respectively 7,58 and 2,81.

4. Network Analysis
The layers are studied together in order to com-
pare the results. Two 3-layer networks are con-
sidered, one composed by layers (DI,OT,OS)
and the other one by (II,OT,OS). This to un-
derstand the effect of including indirect inter-
loockings into the picture.

4.1. Network 1

Figure 1: Network (II,OT,OS)

The first network M1 is composed by a 234 com-
panies and a total number of 1387 edges. The
OS layer is the most relevant one in terms of
number of edges as more than 65% of them be-
long to this layer. Beside 6 isolated firms and
two other only connected to each other, all com-
panies are connected in a giant component.

EOA (DI,OT ) (DI,OS) (OT,OS) (DI,OT,OS)

DI 0,1152 0,0260 0,0186
OT 0,1297 0,0837 0,0209
OS 0,0080 0,0228 0,0057

(DI,OT ) 0,1613
(DI,OS) 0,7143
(OT,OS) 0,2500

Table 1: Edge overlap

Edge overlap is very low, especially when tak-
ing into account the OS layer. OT and
DI are the layer overlapping the most, given
the fact that EO(DI, (DI,OT )) = 0, 12 and
EO(OT, (DI,OT )) = 0, 13. Looking at the
dataset more in depth shows how companies for
which overlapping happens are linked mainly by
owners that are either a physical person or a

public investor.

distances DI OT OS

DI 0 0,3679 0,4288
OT 0,3679 0 0,1774
OS 0,4288 0,1774 0

Table 2: Distances across graphs

The distance d on the other hand indicates OT
and OS as the most similar graphs. The reason
behind this is because both layers present many
same couple of nodes that are disconnected, and
are thus regarded as equally distancing between
the two layers. DI on the other hand identi-
fies a main connected component to which the
majority of nodes belongs to. VN entropy and
structural reducibility state that the network
representation R departing the most from the
projected network representation πp(M1) is the
original 3-layer network.

R VN entropy q
(DI,OT,OS) 6,79 0,0928

((DI,OT),OS) 7,05 0,0581
((DI,OS),OT) 6,82 0,0881
(DI,(OT,OS)) 7,18 0,0410
((DI,OT,OS)) 7,48 0

Table 3: VN entropy

Because of these results and because of the very
low nomber of overlaps, it turns out that all lay-
ers tend to complement each other with respect
to their projected layer.

4.2. Network 2
The second network M2 is composed by layers
(II,OT,OS).

Figure 2: Network (II,OT,OS)
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The network present a total of 2147 eges. The
topology is the same as in M1, in the sense that
there are the same 6 isolated nodes and the same
giant component.

EO (II,OT) (II,OS) (OT,OS) (II,OT,OS)
II 0,0486 0,0233 0,0058
OT 0,2092 0,0837 0,0251
OS 0,0273 0,0228 0,0068

(II,OT) 0,12
(II,OS) 0,25
(OT,OS) 0,3

Table 4: Edge overlap

Edge overlap between interlocks and ties
increases with respect to layer OT as
EO(OT, (II,OT )) = 0, 21. The distance
among layers remain practically the same.

distance II OT OS
II 0 0,3709 0,4319
OT 0,3709 0 0,1774
OS 0,4319 0,1774 0

Table 5: Distances between graphs

VN entropy appoints again the original repre-
sentation M2 as the best one for describing the
network.

R VN entropy q
(DI,OT,OS) 6,706 0,0987

((DI,OT),OS) 7,0518 0,0598
((DI,OS),OT) 6,8682 0,0843
(DI,(OT,OS)) 7,1760 0,0433
((DI,OT,OS)) 7,5000 0

Table 6: VN entropy

In general, even if by including also indirect in-
terlocks into the picture leas to many more edges
to be born, the overall structure of the network
does not change significantly.

5. Conclusions
What emerges from the study is that there is
a strong level of separation between the layers,
meaning that considering different data leads to
very different final structures. All layers com-
plement each other, and there are very few com-
panies engaging in more than one link. Because

of the low level of edge overlap, no relevant cor-
relation is found between strongly concentrated
ownership and interlocks. As the dataset con-
siders companies that, on average, are controlled
by few investors, this could lead to the conclu-
sion that interlocks are less likely to happen for
those firms. On the other hand, the majority
of ties between companies happens across firms
with a more dispersed ownership structure. In-
terlocks and ownership ties are the layers that
tend to overlap the most, but still present a
very complementary feature. The overlaps be-
tween those are driven by small clusters of firms,
all mainly linked by either a single person or a
common public investor. Considering indirect,
rather than only directs interlocks leads to more
connected networks, but does not change mean-
ingfully the relationships between the layers.
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