
Executive Summary of the Thesis

State Persistence in Noir

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Emmanuele Lattuada

Advisor: Prof. Alessandro Margara

Co-advisors: Prof. Gianpaolo Cugola, Luca De Martini

Academic year: 2022-2023

1. Introduction
The continuous growth in data volumes de-
mands more efficient solutions capable of han-
dling and processing large datasets to extract
meaningful models and statistics. Distributed
systems have been developed to distribute com-
putation across clusters of hosts, and new soft-
ware architecture paradigms have been pro-
posed.
These systems are typically used for long-
term and complex computations on very large
datasets or data streams. Therefore, having
fault-tolerance mechanisms is crucial to prevent
the loss of work in case of failure. A common
approach to this problem involves periodically
saving the system’s state to create checkpoints
for recovery in case of failure.
This thesis focuses on designing a snapshot algo-
rithm for Noir, a promising streaming and batch
processing system. The snapshot algorithm en-
ables the periodic saving of the system’s state to
a reliable external source, facilitating recovery
to the last valid state in the event of a failure.
Some experiments have been conducted to try
to understand the algorithm’s impact on Noir’s
performance.

2. Noir
Noir [3] is a streaming and batch processing sys-
tem developed by a research team at Politecnico
di Milano and implemented in Rust. It enables
the analysis of both bounded and unbounded
generic streams and is based on the dataflow
paradigm. Noir has a rich set of API inspired
by Apache Flink, but it can achieve better per-
formance. It provides various functions and ab-
stractions such as map, reduce, filter, join, win-
dows, and iterations. Additionally, it can handle
partitioned key-value streams and timestamp-
value event streams.
The functions and transformations applied to
the stream result in a directed graph of op-
erators, where the data stream enters through
the initial operators, known as Sources. After
traversing the entire graph and being processed,
the stream exits as the output of the final oper-
ators, known as Sinks. The edges of the graph
represent communication channels used by op-
erators to receive stream tuples and send newly
generated tuples to subsequent operators.
In Noir, the job graph is initially created, con-
taining an instance for each operator applied to
the stream. Subsequently, the execution graph is
generated, which includes the final graph of op-
erators. The key distinction from the job graph

1



Executive summary Emmanuele Lattuada

is that operators are replicated to fully leverage
available parallelism. The replication of opera-
tors depends on factors such as the number of
hosts in the cluster, the available parallelism for
each host, and the nature of the operator itself,
as some operators cannot be replicated.
Operators are grouped into blocks, and within a
block, operators form a chain where each opera-
tor is preceded by a single operator and followed
by another single operator. At the beginning of
the block, there is always a Source operator or
a Start operator. The former produces stream
tuples, while the latter receives data from the
previous blocks. At the end of the block, there
is always a Sink operator or an End operator.
The former receives and manages the results pro-
duced by the computation, while the latter sends
tuples to the subsequent blocks. The blocks are
replicated exactly like the operators they con-
tain, so all operators within a block have the
same replication constraints.
The block has a pull-based architecture in which
control passes from the last operator of the block
to the previous ones. Each operator has two
main control functions: setup() and next(). The
setup() function is used to set up the operator
before starting processing, while the next() func-
tion performs the processing, always returning
the processed tuple. Communication within a
block occurs only through function calls and re-
turn values. Communication between two blocks
occurs through communication channels, specif-
ically in-memory channels if the two blocks are
instantiated on the same host or TCP channels
if they are instantiated on two different hosts.
The execution phases of a program in Noir are
as follows:

• Create the environment through the config-
uration: local if you want to run only on
localhost or remote by specifying the hosts
belonging to the cluster.

• Spawn remote workers: in the case of re-
mote execution, the program is sent and
launched on all hosts in the cluster.

• Define the functions to apply to the stream:
in this phase, the job graph is generated.

• Start execution: in this phase, the execu-
tion graph is computed, blocks are instan-
tiated, and operators are set up.

• Processing: the stream is produced by
Sources, processed by operators, and the re-

sults are received and managed by Sinks.

3. Implementation
We chose to implement a non-blocking snapshot
algorithm without a central coordinator to pre-
serve the original architecture of Noir. Each op-
erator independently saves its state, and the pro-
cedure is triggered by a special snapshot mes-
sage. This algorithm is inspired by Chandy-
Lamport [2] and Asynchronous Barrier Snap-
shotting (ABS [1]) but has differences from both.
The ideal use case for which the snapshot al-
gorithm has been modeled is as follows: sav-
ing the state at regular time intervals so that
the impact on performance is relatively low but
at the same time ensures that there is always
a global state that is not too outdated for the
application context. In other words, this algo-
rithm is designed to be applied to long-term and
computationally expensive executions or for un-
bounded streams (i.e., continuous processing),
where snapshots are taken at a frequency that
allows the time needed for recovery and repro-
cessing of lost tuples to be compatible with the
specific scenario, and where the impact of snap-
shots on throughput and latency is acceptable.

3.1. Snapshot algorithm
The snapshot is initiated by Sources, which pe-
riodically inject a special snapshot message into
the stream. Since each Source is independent
and autonomous from the others, the snapshot
frequency is defined over a time interval. This
ensures that each Source generates the snapshot
token at the same moment (within the precision
of the system time). Snapshot tokens contain a
monotonically increasing ID.
The snapshot procedure is as follows:

1. The operator receives a snapshot token with
index "i" from one of its input channels
"channel1."

2. It makes a copy of its internal state.
3. It sends the snapshot token to the down-

stream operators.
4. For each input channel other than "chan-

nel1," all tuples that arrive before the snap-
shot token with index "i" are buffered.

5. Both the buffered tuples and the non-
buffered ones are processed as usual.

6. When the token with index "i" has been
received from all inputs, the state is saved.

2



Executive summary Emmanuele Lattuada

The figure 1 shows step-by-step the operations
of the algorithm, at step 6 the operator persists
the state containing its internal state taken at
step 2 and the message queue with "a" and "d".

Figure 1: Snapshot algorithm

The persisted state consists of the internal state
of the operator and the message queue. In Noir,
only the Start operator maintains the message
queue; all other operators (except for iterative
ones, as explained later) have a single input
channel. Therefore, upon receiving the snapshot
token, they simply save their state and forward
the token to the next operator.
The internal state of each operator varies de-
pending on the specific operator and contains
only information that changes and depends on
the tuples processed previously. The size of the
state also depends on the specific operator; for
some, it is fixed, while for others, it depends
on the tuples processed previously. Each oper-
ator independently saves its state on Redis us-
ing a key that combines the operator’s coordi-
nates, uniquely identifying it within the execu-
tion graph, and the ID of the snapshot.

3.2. Iterations
Iterative operators introduce cycles within the
operator graph, they are blocking and they con-
sume the entire stream during the first iteration.
Another critical aspect of loops is the shared
state among the loop replicas, which is updated
at each iteration by the IterationLeader opera-
tor. The IterationLeader is not replicated and
represents the unique synchronization point be-
tween iterations.
For these reasons, a dedicated procedure has
been developed, which can be distinguished into
two phases. During the first:

1. When a snapshot token arrives at the iter-
ative operator from the input channel, the

operator copies its internal state and for-
wards the new token to the operators in the
body.

2. If the iterative operator has a feedback
channel through which it receives tuples
generated by the loop body, it copies and
buffers all tuples arriving on the feedback
channel before the snapshot token. When
the token arrives on the feedback channel,
it can save the state (internal state and mes-
sage queue).

3. The operators in the body take the snap-
shot as usual.

4. When the IterationLeader receives the to-
ken for the first time, it copies it and saves
its internal state. Then, it forwards the to-
ken to the external output channel of the
loop.

5. After the IterationLeader detects the end
of the first iteration, it initializes its Snap-
shotGenerator with the SnapshotId of the
last taken snapshot. This last snapshot is
also the last snapshot taken by all operators
inside the loop.

After the first iteration:
1. Before the IterationLeader sends the mes-

sage with the new state to the replicas of
the iterative operator, it checks if the Snap-
shotGenerator has produced a SnapshotId.

2. If there is a SnapshotId, the IterationLeader
takes that snapshot and then it adds the
SnapshotId to the message containing the
new state to be sent to the replicas of the
iterative operator.

3. When an iterative operator completes an
iteration, it waits for a message from the
leader. When this message arrives, it sets
the new state and checks if a SnapshotId is
also present.

4. If there is a SnapshotId, it follows the pro-
cedure to save its internal state and sends a
stream element containing the SnapshotId
to the operators in the body. This way, the
snapshot token is the first element in the
stream that flows into the body.

5. When the token returns to the Itera-
tionLeader, it is simply ignored, and it is
not sent to operators outside the loop.

The figure 2 represents the evolution of the snap-
shot algorithm for iterative operators. In the
blue rectangles, we can see the queues with

3



Executive summary Emmanuele Lattuada

SnapshotIds related to the snapshots taken by
each operator. The number within square brack-
ets is a secondary index that distinguishes the
snapshots taken within the loop.
With this algorithm, the snapshot tokens gen-
erated within the loop do not exit it, making
the algorithm suitable for nested loops. Addi-
tionally, if the dataflow contains multiple loops
in parallel or in sequence, the snapshots of the
different loops are taken and considered inde-
pendently.
This algorithm requires that all replicas of the
iterative operator receive the same snapshot to-
kens during the first iteration. For this rea-
son, two possible token alignment solutions have
been implemented. The first solution blocks the
generation of tokens from the Sources, ensur-
ing that a single token is generated at the end
of the stream tuples. The second solution adds
a special block before the loop that aligns the
snapshots. This solution should be used only if
the operators before the loop are the prevalent
part of the computation. It is mandatory to use
the first solution in case of side inputs.

Figure 2: Snapshot algorithm for iterations

3.3. Recovery
The recovery procedure determines the last com-
plete saved snapshot and allows resuming from
it or from a specific snapshot chosen by the user.
Since the saving occurs autonomously and in a
decentralized manner, a snapshot is considered
complete only when all operators in the graph
have saved the snapshot. This means that to de-
termine the last complete snapshot or if the user-

requested snapshot is valid, the coordinates of
all operators in the network are necessary. This
is the only part of the code where the global
snapshot is considered, not the individual saved
states of the operators. Once the ID from which
to resume has been determined, this informa-
tion is passed to the operators, which, during the
setup phase, retrieve the state and resume from
it. Start operators that have saved the message
queue must process those messages before being
able to receive and process new tuples.

4. Performance evaluation
Several experiments were conducted to study the
impact of this algorithm on performance. In par-
ticular, two benchmarks were used: Nexmark
and Wordcount. The first is a set of queries
commonly used to evaluate the performance of
a stream processing system. These queries are
based on an auction system modeled with three
entities: person, auction, and bid. There are
eight queries that require various analyses and
operations, including filtering, joining, and win-
dowing. The second is a benchmark that cal-
culates the number of occurrences of each word
in a text document, containing three different
implementations performing this analysis.
All experiments were executed with an input
stream of size 1’000’000 and with local con-
figuration with replication equal to 12. This
setup does not represent the execution scenario
for which the snapshot algorithm was designed.
However, it is still useful to get an idea of the
algorithm’s behavior.
The graphs 3 and 4 compare the original version
of Noir with this new version but with persis-
tence disabled.

Figure 3: Nexmark benchmark: original Noir vs
persistence disabled

4



Executive summary Emmanuele Lattuada

Figure 4: Wordcount benchmark: original Noir
vs persistence disabled

The other experiments examine how the execu-
tion time of benchmarks evolves with varying
snapshot algorithms. In the chart 5, the Wor-
dount benchmarks are represented, while in the
charts 6 and 7, the Nexmark benchmarks are
presented. Some queries are represented with
the same line because the execution times are
very close. The overhead introduced by the
snapshot algorithm is variable. However, the
growth factor of the execution time is mainly
determined by the number of Start operators re-
ceiving data from multiple replicas.

Figure 5: Wordcount benchmark: various snap-
shot frequencies

Figure 6: Nexmark query 0, 1, 2, 3, 5, 7, 8:
various snapshot frequencies

Figure 7: Nexmark query 4, 6: various snapshot
frequencies

5. Conclusions
We have designed and implemented a snapshot
algorithm that enables periodic state saving in
Noir. State persistence marks a significant evo-
lution for Noir as it allows the system to recover
from failures by resuming execution from the
last saved state, thus avoiding restarting from
scratch. The algorithm has been tested and
the conducted experiments highlight differences
with the original version of Noir and illustrate
the evolution of execution times with varying
snapshot frequencies.

6. Acknowledgements
Thanks to Prof. Alessandro Margara, Prof.
Gianpaolo Cugola and Luca De Martini who
guided me during this thesis, and thanks to my
family who supported me during my studies.

References
[1] Paris Carbone, Gyula Fóra, Stephan

Ewen, Seif Haridi, and Kostas Tzoumas.
Lightweight asynchronous snapshots for dis-
tributed dataflows. 06 2015.

[2] K. Mani Chandy and Leslie Lamport. Dis-
tributed snapshots: Determining global
states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63–75, feb 1985.

[3] Edoardo Morassutto and Marco Donadoni.
Noir : design, implementation and evalu-
ation of a streaming and batch processing
framework. Master’s thesis, ING - Scuola
di Ingegneria Industriale e dell’Informazione,
2021.

5


	Introduction
	Noir
	Implementation
	Snapshot algorithm
	Iterations
	Recovery

	Performance evaluation
	Conclusions
	Acknowledgements

