
POLITECNICO DI MILANO
Scuola industriale e dell’informazione

Corso di Laurea magistrale in Ingegneria Aeronautica

Drone fleet model identification and

comparison

Relatore: Marco Lovera

Tesi di Laurea di:

Cristina Ghezzi, matricola 927943

Anno Accademico 2020-2021





A tutte le persone che mi sono state vicine

e che hanno creduto in me.





Ringraziamenti

Ringrazio i miei genitori per avermi dato la possibilitá di inseguire i miei sogni:

sono orgogliosa di essere vostra figlia.

Ringrazio i miei amici Marco, Petru, Riccardo e Diletta, per aver sempre creduto

in me ed essermi stati vicino in questi anni.

Ringrazio Matteo, che mi ha aiutata a inseguire i miei sogni e a fare il primo passo

verso la loro realizzazione.

Infine ringrazio Sergio, che in poco tempo mi ha fatto capire che la normalitá puó
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Abstract

In the last decades, the interest for unmanned air vehicles (UAVs) is increasing,

due to their adaptability and capability to work in different conditions. They are

employed from the civil to the military field where high-level performance are re-

quired.

The purpose of the thesis is to study the mathematical model of a drone fleet and to

understand how the model differ from one to the other, considering a SIMO (single

input, multiple output) problem. The drones are the ANTx 2DoF drone, and they

were tested in laboratory in order to create a safe and controlled environment and

to run experiments in a repeatable way. The model identification implemented

is the grey-box modelling approach and it is performed in time domain. Both

close and open loop are discussed. Experimental data are validated in order to

guarantee accurate results.
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Sommario

Negli ultimi decenni, l’interesse per gli aeromobili a pilotaggio remoto (APR) é

in aumento, a causa delle loro capacitá di adattarsi e di lavorare in diverse con-

dizioni. I droni vengono usati sia in ambito civile che militare dove sono richieste

prestazioni di alto livello.

L’obiettivo della tesi é di studiare il modello matematico di una flotta di droni

e di vedere come differiscono uno dall’altro, considerando un problema di tipo

SIMO (single input, multiple output). I droni sono droni ANTx 2Dof drone e sono

stati testati in laboratorio dove le condizioni erano sicure e controllate, cośı da

garantire la ripetibilitá degli esperimenti. L’identificazione applicata é la grey-box

nel dominio del tempo. Sia l’approccio in anello chiuso che in anello aperto sono

stati studiati. I dati sono poi stati validati, cośı da dimostrare l’accuratezza dei

risultati.
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Chapter 1

Introduction

Chi ha provato il volo camminerá guardando il cielo, perché lá é stato e lá vuole

tornare.

Leonardo da Vinci

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are flying systems

that can be remotely controlled or fly autonomously through software embedded

in their systems. Louis Breguet built the first rotary wing aircraft ”Gyroplane n:

01” in 1907. It had very limited flight capabilities and was controlled by people on

the ground for stabilization. For its time, the design of this drone was visionary

since the structure is very similar to that of modern UAVs.

Unmanned aerial vehicles have become increasingly prominent in a variety of

aerospace applications, from the military field to the civilian one. The most com-

mon configuration, which is the subject of this thesis, is the X-configuration with

four motors. Despite the advantages of weight, size and costs, multi-rotor UAVs

are affected by instability. In the first experiments stabilisation was controlled by

people, whereas today this task is accomplished by software.

The first step in understanding the drone behaviour is to study the real responses of

the UAV subjected to different inputs. The second step is to build a mathematical

model that, under the same inputs, gives a good approximation of the outputs of

the real system. Obviously, the mathematical model will never perfectly fit the

real system and this will be shown in depth in the next chapters.



1.1 Goal of the thesis

The goal of the thesis is to study and compare the behaviour of fifteen identical

drones, tested with same input under the same conditions and to analyse how the

mathematical model (one for each drone) differ one from the other.

The first step was developing a program that shows the data collected in the lab-

oratory, where the drones where subjected to different tests. The main advantage

that the developed program has, is that the user can overlap the data collected

from different tests for UAVs and can easily understand the differences between

the behaviour of the different systems under study.

Finally the system identification is performed, which is a methodology for building

mathematical models of dynamic systems using measurements of the input and

output signals of the system. This process is repeated for each of the fifteen UAV,

thanks to grey box model approach (which will be explained later) .

1.2 State of the art

The first step towards model identification is done by studying the behaviour of the

drone subjected to different tests. One of the most useful tools is Flight Review[1].

This online tool allows to load and analyse UAV autopilot flight data, as well as

create a customized series of plots. This software is open source and developed by

PX4 Development Team and Community.

Another software that works similarly is Flight log analyser[2], which is an appli-

cation released for the R2021a version of MATLAB. These two tools do not allow

overlapping data from different flights or different drones, making comparison be-

tween multiple tests difficult. An overview of several different software can be seen

in: [3].

Once the flight data have been collected, the goal is to find the mathematical model

that best fits them. Model identification is a really discussed topic in literature, an

overview of the subject can be found in “Practical grey-box process identification:

theory and applications” by Bohlin, Torsten P. [4]. This topic was also studied by

Ljung in: [5] where the white-box, black-box and all the palette of grey shades-

box modelling are used to build different mathematical models. A less general

approach about model identification is presented in: [6] where the discussion is

focused on flight vehicles model identification. In 2014, Qianying Li investigated

the problem of “Grey-Box System Identification of a Quadrotor Unmanned Aerial

Vehicle” [7]. This thesis focuses on the modelling and identification of a quadrotor

17



system through the implementation of a grey-box identification method for control

purpose. A theoretical approach to the problem of identification can be seen

in [8]: “When the Grey-box model is constructed and parametrised, the next

step is to estimate the optimal values of parameters using experimental data.

There are numerous estimation methods that can be used. However, probably the

most common approaches are Prediction Error Method, Least Squares Estimation,

or Maximum Likelihood Estimation.” Then the article proceeds to analyse the

Maximum likelihood Estimation method in detail. This topic is really discussed

in literature, in particular in [9], Identification of Linear Time-Invariant Systems

is studied.

Model identification can be both in frequency domain and in time domain, the

latter is discussed in [10], where longitudinal dynamics of a UAV is presented.

Some software have been created to assist system identification, the most famous

is the MATLAB System Identification Toolbox [11], which can be used in time

domain as well as in the frequency one. This tool uses output-error method to

estimate the unknown parameters in an Linear Time Invariant model. It maximize

the likelihood function, that is equivalent to minimizes the cost function shown

in [8], by using suitable initial parameter values. The unknown parameters are

iteratively determined.

Finally a detailed paper about UAV identification is: [12], where identification of

the attitude dynamics of a quadrotor is analysed.
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Chapter 2

Drone dynamics: theoretical basis

In this chapter a detailed description about reference frames and the dynamics

of the drone will be shown. Both of them will be deeply used in the thesis, so

it is fundamental to give univocal definitions about how they are defined and

implemented.

2.1 Reference frames

A generic rigid body has 6 Dof: three degrees described by coordinate x, y, z and

other three degrees of freedom describing the orientation of the body: pitch, roll

and yaw. These 6 Dof are usually defined with respect to two types of coordinate

systems: Body frame and NED Frame which will be used to analyse flight data in

the next chapters, thus they will be described in detail here.

Body frame

This type of reference frame consists of an origin that is typically placed at the

body’s center of gravity and three orthogonal axes that comprise a right-handed

system (Figure 2.1). These axes are usually configured to the UAV in such a way

that the x-axis is pointing forward, the y-axis is pointing to the right, and the

z-axis is pointing down.



Figure 2.1: Body frame

Inertial frame: Nord East Down

The NED frame is defined such that the North and East axes form a plane tangent

to the earth’s surface at its present position, assuming a WGS84 ellipsoid model

of the earth.

Figure 2.2: Ned frame

As shown in the Figure 2.2, the NED frame contains three orthogonal axes in

which the Nx axis points to true North, the Nz axis points towards the centre of

the Earth and the Ny axis completes the right-handed system pointing East.
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2.2 Euler angles and Quaternions

In order to switch from this two reference systems, rotation matrices, Euler angles

and Quaternions must be introduced.

The Euler angles are three angles which describe the orientation of a rigid body

with respect to a fixed coordinate system.

Given two reference frames (x, y, z) and (b1, b2, b3), the Euler’s theorem states that:

“The most general displacement of a rigid body with a fixed point is a rotation

about some axis through some angle” (Figure 2.3).

Figure 2.3: Frames x, y, z and b1, b2, b3

Given the rotation about the x, y, z is possible to go from one reference frame to

the other thanks to a sequence of three rotations (Figure 2.4).

Figure 2.4: Rotations

Each rotation can be represented by a matrix A, called attitude matrix or Direc-

tion Cosine Matrix (DCM).
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A3 =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.1)

A2 =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (2.2)

A1 =

cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

 (2.3)

A3 is the rotation about the third axis of an angle ψ, A1 is the rotation about the

first axis of an angle θ, and A2 is the rotation about the second axis of an angle φ.

The main advantage of the Euler angles is the clear physical interpretation, but the

con is that there is a singularity at sinψ = 0, sin θ = 0 and sinφ = 0. This issue

is called: gimbal lock. It is necessary to do a step further and define Quaternions.

This new parametrisation is less intuitive and has one redoundant parameter, but

there aren’t singularities. Another advantage of the quaternion presentation is its

computational efficiency. While the Euler angle formulation contains nonlinear

trigonometric functions, the Quaternion expression results in much simpler.

Given for example a rotation about the first axis:

cosφ =
1

2
trace(A)− 1 (2.4)

e1 =
(A23 − A32))

2 sinφ
(2.5)

e2 =
(A31 − A13))

2 sinφ
(2.6)

e3 =
(A12 − A21))

2 sinφ
(2.7)
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it is possible to evaluate:

q1 = e1 sin
φ

2
(2.8)

q2 = e2 sin
φ

2
(2.9)

q3 = e3 sin
φ

2
(2.10)

q4 = cos
φ

2
(2.11)

The corresponding vector of Quaternions can be written as follow:

q =


q1
q2
q3
q4

 (2.12)

where q1, q2, q3, q4 are real numbers such that ||q|| = 1. Is now possible to define

the Rotation matrix as follows:

A(q) =

q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q3q2 + q1q4)

2(q1q3 + q2q4) 2(q3q2 − q1q4) −q21 − q22 + q23 + q24

 (2.13)
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2.3 Modelling UAV dynamics

Starting from the Newton's second law:

F = ma (2.14)

where F is the force, m the mass and a the acceleration, crossing both sides of

the equation with a position vector (r) from some origin O, the rotational law of

motion about the origin O is obtained:

~r × F = ~r ×ma (2.15)

The equation to moment M can be simplified in this way for systems with

constant mass distribution:

M = I
dω

dt
= IΩ (2.16)

where I is the moment of inertia and Ω the angular velocity. The moment of

inertia is defined in physics for scalars as:

I = mr2 (2.17)

A more general representation where the mass is integrated over the entire body

of the object is:

I =

∫
body

r2dm (2.18)

Assume r made from coordinate with components [x, y, z]:

I =

∫
body

r2dm =

∫
body

[r× r× dm] (2.19)

I =

∫
body

 0 −z y

z 0 −x
−y x 0

 0 −z y

z 0 −x
−y x 0

 dm (2.20)

I =


∫

(y2 + z2)dm −
∫

(xy)dm −
∫

(xz)dm

−
∫

(xy)dm
∫

(x2 + z2)dm −
∫

(yz)dm

−
∫

(xz)dm −
∫

(yz)dm
∫

(x2 + y2)dm

 (2.21)

24



I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (2.22)

With the hypothesis of small perturbations about the trim condition, the equa-

tions of motion expressed in the quadrotor body-fixed frame for the longitudinal

dynamics are the following:

u̇ = Xuu+Xqq − g sin(θ) +Xδδlong (2.23)

q̇ = Muu+Mqq +Mδδlong (2.24)

where u is the longitudinal body velocity and q the pitch rate. The first equation is

about the position dynamics, instead the second one describes the attitude. These

equation will be implemented in chapter number six, for the development of the

model to identify.

The parameters Xu, Xq, Mu, Mq are the dimensional stability derivatives with

respect to velocities and rates, X terms have dependence from the mass, instead

M terms have the dependece from inertia I seen before.

δlong is the control input normalised between -1 and 1, Xδ and Mδ are the di-

mensional control derivatives with respect to the control input and finally g is the

gravitational acceleration.
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Chapter 3

Analysis of the ANT-X drone’s

data through Log Analyser

Here will be given a description of the developed tool Log Analyser. It will be

shown how it was created and how it can be used. The software was entirely

developed with the goal to be user friendly, but also with some useful features for

further analysis.

3.1 Description of Log analyser software

It was developed in Python, with the support of PySimpleGUI package. For the

following section, Figure 3.4 and 3.5 have to be taken as references. In this soft-

ware, the user can load both ulog and CSV format. When the file is loaded, the

software places it in the column of Normal or Custom mode, based on the topics

contained in the file. Notice that not all the plots are available for both the modes:

the grey labels (Figure 3.5) are available only in Custom mode.

On the right side of the Log analyser interface, there is a column with the list

of all the plots available. They are divided in the following categories: Attitude,

Position, Control and Debug. If the user flags a plot which is not available due to

some missing data in the file loaded, the software will skip the plot and will go on

with the other required.

At the bottom right there is the section for the plot customisation. If none of the

plot customisation features are selected, the result shown by the software will be



the one in Figure 3.1. In this section there are two possible choices:

1. Align starting time to 0: if selected, this command will change the times-

tamps of all the files loaded and flagged in the left part of the window. The

timestamps will go from 0 to the time the test ended. This command is very

useful, since it aligns and makes comparable plots of different tests that start

at different times (time is the x-axis of the most of the plots), as can be seen

in Figure 3.2.

2. Starting and Ending time: this command will trim the plots at a given time

(Figure 3.3). The plots can be exported as CSV files. They will maintain

the customisation options selected and can be reloaded in the program from

the “Load a CSV folder”

The main advantage of this software is the ability to overlap the data collected in

different flights, so the comparison can be a lot more easier. The customisation

options help the user to trim the log’s data and increase comparability.

Figure 3.1: Position data without any plot customisation
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Figure 3.2: Position data with Align starting time selected

Figure 3.3: Position data with Align starting time and trim starting and ending time selected
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Figure 3.4: Log analyser first interface
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Figure 3.5: Log analyser Log file loaded
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Now it will be shown a comparison between the software developed by Matlab and

Log Analyser. For the plots with the latter software, use as reference Figure 3.3.

Figure 3.6: Position flight log X0080 20201208 1252 with Matlab tool

Figure 3.7: Position flight log X0083 20201208 1339 with Matlab tool
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Flight Log Analyser (the tool developed by Matlab) it is not developed to support

different flight logs, so a plot for each flight log is required (Figure 3.6 and 3.7). The

comparison between flight logs can be really difficult, instead with Log Analyser it

is pretty simple. Futhermore, the plot customisation shown before are not available

with the Flight Log Analyser.

When the user has selected the graphs to plot, it is possible to export the file in

CSV format. The software will not save the plots selected, but it will export the

flight data in CSV format, with the customisation options selected. In this way

if, for example, the button starting time is selected, the data will be trimmed at

that time and then saved in a folder selected by the user. With the button Load

CSV folder, it is possible to load the folder in the software and plot all the graphs

needed.
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3.2 ANT-X drone specification

The drone fleet under analysis is made up by fifteen ANT-X 2DoF drones.

“The ANT-X 2DoF Drone is a laboratory test-bed designed to be employed for

aerospace control research and educational purposes. It is a quadrotor drone con-

strained to a structure in such a way that the two degrees of freedom of translation

and rotation are retained. [...] The 2DoF Drone is designed to run experiments in

a safe and controlled environment, and in a repeatable way”. [13]

Main specifications:

Characteristic Value

Weight[Kg] 0.27

Dimensions[cm] 20 x 20 4

Hovering[min] 7’30”

Battery LiPO 950mAh 3S

Propellers 3-bladed

Table 3.1: ANT-X 2DoF specifications

The software components on these drones is PX4 firmware, ROS(Robot Operating

System) and MATLAB. ROS enables communication between nodes in the net-

work. In the case of the 2DoF Drone, connects the ground control station and

the FCC. PX4 is an open source flight control software and its flight logs can be

analysed by Flight Review. This online tool allows users to upload flight data,

and analyze them through the browser. It will be shown and compared with Log

Analyser later in this chapter.
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3.3 2DoF Drones tests

For each drone, the following sequence of tests was executed in this order:

1. Hovering test: the drone is armed, then a level attitude set-points is sent to

the drone, simulating the hovering condition. After 20s, the drone goes to

idle mode and then is disarmed.

2. Attitude steps: the drone is armed, and a sequence of step attitude set-points

of increasing magnitude and alternated sign are sent to the drone, then, the

drone is disarmed.

3. Position steps: the drone is armed and a sequence of step position set-points

of increasing magnitude and alternated sign are sent to the drone, then, the

drone is disarmed.

The first and second tests were carried out in 1DoF mode, instead the third was

carried out in 2DoF mode. To guarantee the degrees of freedom and to block the

other movements, the drone was connected to some bars through some bearings: in

the 2DoF mode the drone was sliding, in the other was fixed to them. An example

of the test can be seen at: [14]. The same position and attitude controller was

employed in all the tests [15]. In order to achieve maximum repeatability, the

battery was replaced with a fully charged one at the beginning of each sequence

of 3 tests and the tests scripts were automated. Level attitude calibration was

carried out before each sequence of three tests.

3.4 Test log analysis with Log analyser

In this section will be showed some of the plots which can be obtained with the

developed software and the log data from the Position and Attitude test. Only

three flights will be taken into account and overlapped.
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Figure 3.8: Log analyser, position test: position vs set-point position

Figure 3.9: Log analyser, position test: position error
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Figure 3.10: Log analyser, position test: velocity vs set-point velocity

Figure 3.11: Log analyser, position test: velocity (body frame) vs set-point velocity
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Figure 3.12: Log analyser, position test: attitude angles vs set-point attitude angles

Figure 3.13: Log analyser, position test: attitude angles estimate vs mocap
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Figure 3.14: Log analyser, position test: angular rates

Figure 3.15: Log analyser, position test: thrust
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Figure 3.16: Log analyser, position test: moments

Figure 3.17: Log analyser, position test: battery
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Figure 3.18: Log analyser, attitude test: attitude angles vs set-point

Figure 3.19: Log analyser, attitude test: attitude error
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Figure 3.20: Log analyser, attitude test: angular rates vs set-point angular rates

Figure 3.21: Log analyser, attitude test: attitude estimate vs mocap
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Figure 3.22: Log analyser, attitude test: moments

Figure 3.23: Log analyser, attitude test: thrust
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In the Position set-point tests, in “position vs set-point” figure (Figure 3.8), is

highlighted the step input given to the drones. The “position error” plot instead,

gives a better understanding of which is the flight that best follows the set-point.

In this case, the green one is the most accurate.

All the plot are in NED frame, except for the one where is specified to be in the

body one, this is the case of “velocity vs set-point velocity” plot. The way to go

from one reference frame to the other is showed in the second chapter.

Finally in the last plot of position set-point, the battery one (Figure 3.17), is easy

to check that the battery was replaced with a fully charged one at the beginning

of each sequence of tests, as we said before.

Similar consideration can be done for the attitude set-point plots.

After an qualitative analysis of the data available in the previous plots, it is evident

that all the drones had a very similar behaviour, so a deeper analysis is needed.

Model identification will be introduced in order to understand the mathematical

model behind each drone. Both closed loop and open loop identification will be

performed. For the first one, only mathematical model for position set-point will

be described, for the latter both position and attitude model will be taken into

account.
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Chapter 4

Theory of model identification

In this Chapter the theory of model identification will be described: from the def-

inition to state estimation problem, to the process of the model identification and

the inputs used in laboratory for flight testing. The grey box modeling approach

will be shown, as well as a way to validate the results of the obtained solutions.

The entire process from flight testing to the results of the problem will be taken

into account.

4.1 State estimation problem

There is an estimation problem every time it is necessary to gather information

about an unknown or uncertain parameter by means of experimental observations.

Experiments collect data about a quantity (parameter called θ ) which want to be

estimated.

This parameter can be either:

1. Constant (for example the moment of inertia of an aircraft)

2. Time-varying θ(t) (for example the attitude of an aircraft during flight).

Information are collected as data samples and are represented as a function of an

index t observation instants: d(t) t ∈ t1, t2, t3, ..., tN . This means that exists a func-

tion which correlates data to the parameter that needs to be estimated: θ̂ = f(d).

Define θ̂ as the estimate of θ, the collected data plugged into the function f will

result in the estimate of the parameter. Depending on the nature of the estimation



problem, the function f might be simple or a complex procedure/algorithm.

In the case θ is constant, the estimation problem can be called:

1. Parametric if θ is finite-dimensional (θ ∈ Rn)

2. Non-parametric if θ is infinite-dimensional

In the case θ is time-varying, the estimation problem can be called:

1. Prediction problem if given d, θ(t) for t >n, needs to be estimated

2. Filtering problem if given d, θ(t) for t = tn, needs to be estimated

3. Smoothing problem if given d, θ(t) for t1 < t < tn, needs to be estimated

In the prediction problem, past data in the window [t1, tn] are used to estimate

what the value of θ which will be at a future time instant; the further the parameter

needs to be evaluated in the future, the harder it will be to obtain its expression.

4.2 System identification

System identification or model identification is the engineering name for the es-

timation problem. A system identification problem exists every time that, for a

given system:

1. There is a mathematical problem which contains one or more uncertain or

unknown parameters.

2. It is possible to carry out experiments on the system, to collect data through

which uncertainty on the parameters can be reduced.

The difference with the estimation problem is that now the mathematical model of

the system is taken into account. What will follow, will be a much more realistic

and practical formulation of the general problem of estimation.

The Figure 4.1 shows how the system identification problem is implemented in real

life experiments. The values of the parameters are modified by comparing mea-

surements collected on the real system with the simulations of the model. Define:
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Figure 4.1: Logical approach to the identification problem

1. A system S generating the data

2. A model class M(θ)

For example S might be the flight dynamics of a real aircraft and M its mathe-

matical model representation. This one is not a specific model unless the value of

θ is fixed, within the set of values that makes sense for the given problem.

In a realistic situation the model class is not able to capture the dynamics of the

real system, no matter the value of θ plugged in the model. This is true because of

the simplified physics applied to the problem to avoid unnecessary complexity of

the model. The true system is too complicated to be captured by the mathemat-

ical point of view. For analysis purposes, things are simpler if it is assumed that

the true system does belong to the model class S ∈ M(θ), so there is an optimal

θ that allows picking an element belonging to the model class which matches the

true system. Thanks to this assumption a solution to the problem can be found.

The typical approach to the solution of the problem is:

1. Define a metric J(θ), which is a function of the data and the model class. J

must measure how well the model class matches the data for a given θ, so

the smaller is the metric, the better the model approximates the measured

data.

2. Solve the optimization problem:

θ̂ = argminJ(θ) (4.1)
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4.3 Model identification process

No matter what specific application of the model identification problem, the pro-

cess is characterized by the same steps:

1. Definition of the model class depending on the intended application of the

identified model (simulation, prediction, control law design, ...) and on the

specific requirements of the application (flight control, aeroelastic analysis,

...). Appropriate modelling choices and assumptions are made and the pa-

rameters to be estimated are defined, at this point structural identifiability

must be verified.

2. Experiment design: the input sequence used to excite the system must ensure

experimental identifiability, but on the other hand, the experiment must be

safe and repeatable. This means that the response to the applied input

must not lead the system into unsafe conditions and that the shape of the

input sequence must be suitable for: either repeatable manual application

or easy automatic implementation. Depending on the specific application,

experiments are carried out: in open-loop disabling the feedback systems

if there is any, or in closed-loop, to guarantee stability during tests. The

control system tends to suppress the effect of perturbations so it is harder

to carry out parameter estimation.

4.4 Input sequences for flight testing

Sine sweep is the most commonly used input, it is a sinusoid with a frequency

increasing over time (Figure 4.2)

The law of increasing of the frequency is defined by the experiment. This input

is an approximate way of implementing a sum of many sinusoids with frequencies

ranging from the minimum to the maximum one. The sine sweep would be almost

impossible to be applied by a human and non automatic test pilot, so there are

some simpler sequences that can simulate that behavior (Fifure 4.3).

The 3211 sequence is a sequence of steps applied to the pilot controls. Its name

comes from the time duration of signals: the last two step have the duration of 10

seconds, the one before lasts 20 seconds and the first one lasts 30 seconds.

47



Figure 4.2: Sine sweep

Figure 4.3: 3211

The simplest sequence of all is the Doublet (Figure 4.4), which consists of the

application of a step input, then reverse it and then go back to trim. This sequence

is not as informative as the 3211 sequence or the sweep but is very easy to use

and usually contains enough information to clearly identify models to be sure that

they actually capture the response of the true system in a satisfactory way.

Figure 4.4: Doublet
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4.5 Maximum likelihood estimation and Output-

error method

Let’s now see how to build actual estimators for given problems. There are many

approaches to estimator design, but the most classical one is the maximum likeli-

hood estimation.

4.5.1 Likelihood Principle

To formulate the principle an initial problem statement is needed: assume that N

independent identically distributed observations xi with i = 1...N are available.

The probability density function f of the random variable is:

xi ∼= f(qi|θ), i = 1, ... (4.2)

At this point the likelihood function L is defined as the joint probability function

of the observed data-set:

L(x|θ) = f(x1|θ)f(x2|θ), ..., f(xn|θ) (4.3)

The joint probability function is given by the product of the probability density

function of each random variable evaluated at the corresponding measurement.

Considering the probability density function f(qi|θ) to be a Gaussian, and picking

values of x near the expected value, the probability density function will be high,

this means that x is a highly probable value (Figure 4.5).

Figure 4.5: Gaussian probability
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On the other hand by picking values of x that are far to the right or far to the left

the probability density function will be low, this means that x is a low probable

value. The maximum likelihood principle consists in choosing as estimate θn of

the parameter the value that makes the likelihood as large as possible:

θ̂n : L(x|θn) ≤ L(x|θ) (4.4)

4.5.2 The output error method

General theory of the maximum likelihood estimators will be now applied. The

name output-error for this set up comes from the fact that measurement noise is

the only noise considered, no disturbance is acting on the plant and the map from

input u to output y is deterministic (Figure 4.6).

Figure 4.6: Block diagram of output-error method

v is the measurement error, assuming that systematic errors are not present, the

expected value of the product of v at different time instants is zero. This means

that the measurement error at a certain time i is uncorrelated from the correspond-

ing measurement error at the instant j. v is gaussian, has zero mean and there is

no correlation between pairs of samples at different time instants: if at time i the

error is small or large, the value is uncorrelated to the one at time j.

The assumption of no disturbances on the plant is quite restrictive as in real

experiments there are always some. If the developed theory is applied to some

experiments, the requirement must be respected as much as possible.

The next step is to define the error e as the difference between the measured output

(ym) and the identified one (y):

e(k, θ) = ym(k)− y(k, θ) (4.5)
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and to define the corresponding cost function. Now the cost function has to be

minimised, an optimisation problem has to be solved, taking care to find the global

minimum of the cost function.

4.6 Classification of model identification prob-

lems

There are several ways identify the mathematical model, but the most common

ones are: black-box and grey-box model identification.

Black-box identification problem is the formulation with a model structure that

does not have any physical consideration, it is just defined in an optimal way to

extract as many information as possible from the data. Grey-box identification

instead is the formulation with a model structure that comes from physics, there-

fore it is physically motivated. This approach is used for the purpose of the thesis

coupled with output error method and maximum likelihood principle. The imple-

mentation of this procedure will be seen in the next chapter through the command

greyest of Matlab.

Some further distinctions can be done:

1. Continuous-time vs discrete-time: the models may be formulated in contin-

uous time, mainly used in grey-box modelling, or in discrete time, mainly

used in black-box modelling, to reflect the discrete nature of sampled data.

2. Linear vs nonlinear models: Linear models is used to capture flight dynamics

near a given trim condition. Nonlinear models instead are used if the dynamic

of the problem involves large angles and/or fast maneuvering flight.

4.7 Preliminary practical issues for model iden-

tification

There are some important factors to be taken into account in the setup of the

experiment:
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1. Choice of sampling interval

2. Prefiltering

3. Stability

4.7.1 Choice of sampling interval

The choice of the sampling interval is a free parameter and needs to be chosen

carefully, as this will affect the estimation process considerably. Therefore some

guidelines must be followed.

Since a variable that has a certain frequency has to be sampled, the sampling

needs to be sufficiently fast to capture its dynamics.

From this point of view the Shannon-Nyquist theorem gives a lower bound about

the frequency at which the sample is needed: the sampling has to be sufficiently

fast with respect to the relevant dynamics. This means that the sampling interval

should be at least 5 to 10 shorter than the faster dynamics of interest.

Another aspect is related to the higher frequency at which the sensor can sample,

but choosing an arbitrarily small sampling interval is not necessarily a good idea:

it may increase the number of data-points to be processed with little or no gain in

terms of information about the parameters.

Given the expressions of the cost function this means that the larger the data-set,

the longer it will take to obtain the optimal solution.

4.7.2 Prefiltering

Prefiltering appears also in the nonlinear case, but, for sake of simplicity, it will be

discussed in the case of a LTI system. It was assumed that the true system belongs

to the model class, the dynamics of the problem was approximated to be totally

described by the parameters in the vector θ. This assumption is hardly never true

in real life: if the data-set contains contributions from modes or dynamics not

included in the model class the approximation will not be as good as expected.

The best thing is to setup the experiment in a such a way that the system is

excited only by frequencies of interest. Unfortunately this is not possible in real

life: post processing of the data is needed. This method is called prefiltering.

The only annoyance associated with this idea is that the error filtering is needed

at each iteration of the optimisation problem for the cost function. Therefore, it

represents a significant increase in the cost of the procedure. However, for linear
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systems it is possible to filter data before the optimisation process. To better

understand data prefiltering, consider the block diagram in Figure 4.7.

Figure 4.7: error filtering

The system S is tested using the input u, then the output is measured (ym), con-

taining the measurement error v, and finally it is processed with the filter F to

obtain the measured filtered output (ym, f). In the lower branch the same input

is applied to the model class and the simulation of the model is generated. Then

the simulation is filtered to obtain a filtered version (yf ). The filtered error (ef )

can be computed as:

ef (k; θ) = L(z)e(k; θ) = L(z)ym(k)− L(z)y(k; θ) = ym, f(k)− yf (k; θ) (4.6)

L(z) is a linear digital filter design to attenuate the contribution of undesired

dynamics. Since all the blocks are linear, the order of the blocks can be changed

in order to obtain a different solution for the branch of the model class (Figure

4.8):

Figure 4.8: Prefiltering
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Instead of filtering the output, the input of the model is filtered.

Thanks to the fact that the input is filtered, filtering at each iteration is not needed.

This is what is called data prefiltering and it is possible only in the linear case.

Using data prefiltering in nonlinear problem can lead to unpredictable results.

4.7.3 Stability

In the output-error method, at each iteration of the optimisation algorithm, the

estimate of θ and the new cost function are evaluated. Assuming that the true

system is asymptotically stable there is no guarantee that at each iteration the

estimation will get closer to the true value. If a model that diverges, the cost will

be very different at each iteration and the algorithm for the minimisation will fail.

There are several ways to not let this happen:

1. Use a constrained optimisation algorithm to enforce bounds on the param-

eters. This is not easy because it depends on how the parameters relate to

the eigenvalue of the dynamics.

2. Check stability at each iteration and modify the current estimate to lead to

a stable system. This issue in nonlinear problems is a lot harder to handle.

4.8 Validation of the model

Once the identified model is found, it must be validated. This means that some pa-

rameters to evaluate how much the model behaves as the real system, are needed.

The most useful validation parameters are the following:

V AF = max(1− V ar(ymodel − yestimate)
V ar(y)

, 0)100 (4.7)

FIT = max(1− ||ymodel − yestimate||
2

||ymodel − E(ymodel)||
, 0)100 (4.8)
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PEC =
1√
N
||ymodel − yestimate||2 (4.9)

VAF is the Variace accounted for, FIT is the percentage of fitting and PEC is the

Prediction error cost. When ym = yestimate, VAF and FIT have a value of 100%,

instead PEC would be 0, these are the best values possibles, but they are recheable

only from a theoretical point of view.
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Chapter 5

Model identification applied to

ANT-X drones

In this chapter grey box model identification is described both in a theoretical and

practical point of view. Both closed and open loop model identification are applied

for the dataset. The parameters identified are collected and shown in tables and

the meaning of the results is deeply analysed.

5.1 Grey-box identification

The identification performed for the purpose of the thesis is the grey-box identi-

fication, thorough the Matlab function: Greyest. Both identification in the time

and frequency domain are possible, but in this thesis only the time domain is taken

into account. This function uses output error method and maximum likelihood

estimation, described in the previous chapter. Define now the prediction error e

as the difference between the measured output and the output of the model:

e(k, θ) = ym(k)− ymodel(k, θ) (5.1)

maximize the likelihood function is equal to minimize the cost function:

J(θ) =
1

N

∑
(e(k, θ)2) (5.2)

This is the cost function implemented with Greyest. This command is an iterative

algorithm that needs some starting values for the estimates. It is important to find

the most reliable ones and ensure that the algorithm finds the global minimum of

the cost function. The experimental data were collected in closed loop, and the



identification has been performed both in closed loop and in open loop. Closed

loop will be analysed first: in this case position and attitude for longitudinal dy-

namics identification were performed. The drone is supposed to be Linear and

Time Invariant (LTI) system with sampling time: 250Hz.

5.2 Closed loop identification for longitudinal dy-

namics: Position

The ANT-X drones were subjected to a set-point position input, as shown in Fig-

ure 3.1. The red line is the input given to the drone and the blue line instead

is the real response of the system. The aim of model identification is to create

a mathematical model that gives a similar response shown by the blue line. The

entire system is approximated by a second order transfer function with position

set-point as input and position and acceleration as outputs. The following transfer

function is implemented:

y

y0
= µ

ω2
n

s2 + 2ξωn + ω2
n

(5.3)

with the gain µ = 1. The parameters to estimate are: ωn (natural frequencies) and

ξ (damping). The initial parameters for estimation are: ω = 2.8 and ξ = 0.8. Once

the parameters are estimated, the response of the model will be compared with

the real one seen in Figure 3.1 and the quality of the model will be analysed. u

is the longitudinal velocity [m/s], instead x is the position [m] and x0 the setpoint

position. The corresponding state space model is:

ẋ =

[
u

ax

]
=

[
0 1

−ω2
n −2ξωn

] [
x

u

]
+

[
0

ω2
n

]
x0 (5.4)

y =

[
x

ax

]
=

[
1 0

−ω2
n −2ξωn

] [
x

u

]
+

[
0

ω2
n

]
x0 (5.5)

Recall the concept of prefiltering discussed in the previous section, the output of

the real system (so the data collected in the laboratory: position and acceleration

in NED frame) and the input of the model (position set-point in NED frame) are
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filtered in such a way that the system is excited only by frequencies of interest.

The identification of the unknown parameters is performed for each drone of the

fleet and the results are presented in Table 5.1. A more effective way of presenting

the data will be done in Figure 5.1, 5.2, 5.3. The validation data are presented with

the VAF parameter discussed in the previous chapter. The data of the response

of the real system were compared to the data simulated with the identified model.
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N ωn ξ variance ωn variance ξ VAF pos VAF acc 3σ ωn 3σ ξ

1 3,3103 0,8105 1,0669E-04 1,0131E-05 99,63 60,42 0,0309 0,0095

2 3,1224 0,7950 1,9535E-04 2,1468E-05 98,86 51,45 0,0419 0,0139

3 3,6604 0,7759 5,3509E-04 3,4565E-05 99,58 59,29 0,0693 0,0176

4 3,3311 0,8655 3,6416E-04 3,5270E-05 99,14 41,24 0,0572 0,0178

5 4,2393 1,0816 5,2083E-04 3,9616E-05 99,60 38,60 0,0685 0,0189

6 3,2659 0,8122 1,2951E-04 1,3316E-05 99,48 64,24 0,0341 0,0109

7 3,4646 0,7894 8,6194E-05 6,6542E-06 99,68 68,06 0,0279 0,0077

8 3,5398 0,9267 3,0774E-04 2,7980E-05 99,54 37,00 0,0526 0,0159

9 3,5272 0,8240 1,2294E-04 9,5965E-06 99,67 61,41 0,0333 0,0093

10 3,3026 0,8114 8,0392E-05 8,0647E-06 99,42 67,76 0,0269 0,0085

11 3,2867 0,7938 4,9400E-05 5,3831E-06 99,46 73,59 0,0211 0,0070

12 3,7659 0,8681 4,0345E-04 2,7788E-05 99,64 51,37 0,0603 0,0158

13 3,5118 0,8540 1,1644E-04 1,0149E-05 99,52 66,34 0,0324 0,0096

14 3,4077 0,7766 1,7796E-04 1,4722E-05 99,12 65,82 0,0400 0,0115

15 3,2462 0,8133 4,6347E-05 5,6791E-06 99,42 74,21 0,0204 0,0071

MEAN 3,4655 0,8399 2,1617E-04 1,8025E-05 99,45 58,72 0,0411 0,0121

MEDIAN 3,4078 0,8121 1,2951E-04 1,3315E-05 99,52 61,41 0,0341 0,0109

Table 5.1: Results from identification position in closed loop

Figure 5.1: Results from identification position in closed loop: estimated values
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Figure 5.2: Results from identification position in closed loop: variance of the estimate

Figure 5.3: Results from identification position in closed loop: VAF
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The accuracy of the position estimation is really high as is shown by Figure 5.1,

instead the acceleration is much less accurate, with a pretty low VAF. In Figure

5.2 is highlighted the low variances of the estimates.

Before drawing some conclusions about the presented data, it is important to take

a look at how the mathematical model reproduce the response of the drone to a

certain input. The first drone tested of the entire fleet will be taken into account

and it will be subjected to the same step input in position, that was used to excite

the real system in the laboratory.

Figure 5.4: Results from identification position for the first drone tested: Position
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Figure 5.5: Results from identification position for the first drone tested: Acceleration

The histograms show that all the drones have a very similar behaviour. This

means that the drone presented in the last two figures (Figure 5.4 and 5.5) can be

taken as a good example of behaviour of the fleet. The Figure 5.5 shows that the

response of the identified model does not reproduce in an accurate way the real

response of the system.

The position approximation has a better fitting to the real data compared with

the acceleration one. The main reason is that the latter is a second derivative of

the position, so the approximation of the behaviour is more complex.

The reason why the identified model differ from one drone to the other is mainly

given by the different lubrication of the bearings and calibration of the bars used

to run the experiments.
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5.3 Closed loop identification for longitudinal dy-

namics: Attitude

The ANT-X drones were subjected to a set-pitch angle position input, as shown in

Figure 3.11. The red line is the input given to the drone and the blue line instead

is the real response of the system. The following state space model is implemented:

ẋ =

[
θ

θ̈

]
=

[
0 1

−ω2
n −2ξωn

] [
θ

θ̇

]
+

[
0

ω2
n

]
θ0 (5.6)

y =

[
θ

θ̇

]
=

[
1 0

0 1

] [
θ

θ̇

]
(5.7)

Where θ is the pitch angle and θ0 the setpoint position angle. The following data

are obtained with identification, which was performed in the same way of position

identification, the only difference now is that now the test done in laboratory was

with 1DoF. The initial parameters for identification are: ω = 10 and ξ = 0.5:
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N ωn ξ variance ωn variance ξ VAF θ VAF θ̇ 3σ ωn 3σ ξ

1 15,9712 0,5636 9,3363E-04 2,9683E-06 99,86 96,86 0,0917 0,0052

2 16,1709 0,5655 9,7379E-04 3,0840E-06 99,85 97,14 0,0937 0,0053

3 16,0971 0,5640 8,8610E-04 2,7936E-06 99,86 97,16 0,0893 0,0050

4 16,1611 0,5612 8,82710E-04 2,7774E-06 99,86 97,27 0,0891 0,0050

5 16,5547 0,5731 8,9318E-04 2,6729E-06 99,88 97,49 0,0897 0,0049

6 16,0264 0,5535 1,0043E-03 3,2672E-06 99,82 96,93 0,0951 0,0054

7 15,9807 0,5557 8,0436E-04 2,5816E-06 99,87 97,30 0,0851 0,0048

8 16,3708 0,5541 7,3686E-04 2,2420E-06 99,89 97,66 0,0814 0,0045

9 16,2787 0,5598 7,5203E-04 2,3114E-06 99,89 97,60 0,0823 0,0046

10 16,4102 0,5629 7,4439E-04 2,2552E-06 99,89 97,74 0,0819 0,0045

11 16,1706 0,5505 7,9394E-04 2,4995E-06 99,87 97,49 0,0845 0,0047

12 16,0658 0,5587 9,9415E-04 3,2026E-06 99,84 97,00 0,0946 0,0054

13 15,8809 0,5575 8,6971E-04 2,7955E-06 99,86 96,96 0,0885 0,0050

14 16,6049 0,5658 9,5544E-04 3,0165E-06 99,83 97,78 0,0927 0,0052

15 15,9781 0,5543 8,6837E-04 2,8116E-06 99,85 97,24 0,0884 0,0050

MEDIAN 16,1814 0,5601 9E-04 2,7519E-06 99,86 97,31 0,0885 0,0050

MEAN 16,1611 0,5598 9E-04 2,7936E-06 99,86 97,27 0,0891 0,0050

Table 5.2: Results from identification attitude in closed loop

Figure 5.6: Results from identification attitude in closed loop: estimated values
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Figure 5.7: Results from identification attitude in closed loop: variance of the estimate

Figure 5.8: Results from identification attitude in closed loop: VAF
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Figure 5.9: Results from identification angular position for the first drone tested: Attitude

Figure 5.10: Results from identification angular velocity for the first drone tested: Attitude
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Comparing the data obtained from Figures 5.4, 5.5 and Figures 5.9, 5.10, it is ob-

vious that the approximation performed in Attitude gives a better approximation

of the real system. This happens because in the attitude test, there were only one

degree of freedom and the drone could have only a rotation of some angle, sliding

was not possible: friction was lower and the data collected more accurate.

The histograms show that all the drones of the fleet have a very similar behaviour

and that the model identified, as before, are similar one from the other.

5.4 Open loop identification for longitudinal dy-

namics

As was discussed before, the results obtained from the previous analysis are simi-

lar for all the drones considered, for this reason open loop model identification is

studied. Data were collected in closed loop in the laboratory, so when the identifi-

cation of the open loop system will be performed, the dynamics of the controllers

will be taken into account for the validation part of the process. The data used

for this study are the one from the 2 Dof position test, so position will be approxi-

mated. For this identification, the dynamics of the drone is required (Chapter 2.3).

The equation for the model that has to be identified:
u̇

q̇

θ̇

ẋ

 =


Xu Xq −g 0

Mu Mq 0 0

0 1 0 0

1 0 0 0



u

q

θ

x

+


Xδ

Mδ

0

0

 δlongitudinal (5.8)

[
u

x

]
=

[
1 0 0 0

0 0 0 1

]
u

q

θ

x

 (5.9)

After the identification is performed and the unknown parameters

Xu, Xq,Mu,Mq, Xδ,Mδ (5.10)

are identified, the next step is to use the model identified in open loop and to close

it, so that the data obtained can be validated through the comparison with the
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data obtained in laboratory.

Figure 5.11: Block diagram

The block diagram (Figure 5.11) represents the closed loop system implemented.

The model (the red block) is the identified one, P is the Proportional controller

and PID is the Proportional, Integral, Derivative one. The inner block is the at-

titude one, instead the outer is the position one.

The gains used for the controllers are the following:

Position P Kp = 2

PID Kp = 0.5 Ki = 0.4 Kd = 0

Attitude P Kp = 12

PID Kp = 0.9 Ki = 0.21 Kd = 0.0016

Table 5.3: Block diagram of closed loop model

The transfer function of the controller implemented are the following:

fp = Kp (5.11)

fpid = Kp +
Ki

s
+

Kds

Tss+ 1
(5.12)

Where Ts is the Time sampling: Ts = 0.004s

The data collected from the identification and validation are the following:
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N Xu Xq Mu Mq Xd Md VAF x

1 -0,00354 -18,9084 1,037E-07 -6,6228 98,7534 4,7850 95,94

2 -0,02476 0,7101 2,893E-09 -7,5262 97,7980 5,5599 95,74

3 -0,02420 -1,6767 3,916E-10 -4,8001 99,7335 4,1036 96,38

4 -0,04235 2,1828 4,409E-06 -8,4703 98,1318 5,9631 95,62

5 -0,03692 1,4420 7,246E-03 -13,6122 97,2853 10,0917 96,70

6 -0,04667 6,3011 5,625E-04 -12,4027 96,3890 8,7747 96,22

7 -0,02610 -10,329 4,677E-04 -11,3455 86,8309 6,9253 95,89

8 -0,02746 -1,1612 2,321E-05 -10,4661 97,6953 7,8523 95,82

9 0,00007 -2,5369 4,982E-04 -5,85315 98,3472 5,6470 96,22

10 -0,00086 3,1884 6,394E-03 -26,4081 89,1074 21,3173 96,19

11 -0,05836 0,6971 5,123E-08 -6,1304 98,8318 4,6231 96,38

12 -0,04582 1.0000 4,273E-09 -7,1812 98,9792 5,0558 96,27

13 -0,04043 -0,4418 1,213E-10 -5,2889 98,9168 5,1516 96,03

14 0,00107 -5,8023 1,860E-03 -7,9183 98,2862 5,3322 95,56

15 -0,20491 85,4117 1,334E-03 -0,9503 101,0434 0,1461 96,12

MEAN -0,03874 4,0051 1,226E-03 -8,9984 97,0753 6,7552 96,07

MEDIAN -0,02746 0,6971 2,321E-05 -7,5262 98,2861 5,5599 96,12

Table 5.4: Results from identification position in open loop

Figure 5.12: Results from identification position in open loop: Xu and Xq
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Figure 5.13: Results from identification position in open loop: Mu and Mq

Figure 5.14: Results from identification position in open loop: Xd and Md
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Figure 5.15: Results from identification position in open loop: VAF

Figure 5.16: Results from identification position in open loop: position (Results from the last drone of the fleet)
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The initial guess for the parameters are the following: Xu = −0.1, Xq = 20,

Mu = 0.1, Mq = −110, Xd = 100, Md = 10.

Comparing the results obtained from the identification performed in closed loop,

the identified variables obtained in open loop analysis differ much more one to

another.
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Chapter 6

Conclusions

The drone fleet was subjected to three types of tests (hovering, attitude steps, po-

sition steps) and their responses were collected. Through the developed software

Log Analyser, a qualitative comparison was performed: all the drones had a really

similar behaviour, as expected.

Then the problem of system identification has been considered. The fleet was sub-

jected to closed loop identification, where position, acceleration, pitch angle and

pitch rate were estimated. All the identified parameters had similar values from

one drone to the other. The goal of the identification in closed loop is to identify

the entire controlled system. Given that the drones have a similar behaviour, it is

reasonable that the values obtained after the identification, are similar one to the

other.

Finally the identification in open loop was performed. The aim was to identify the

system in open loop through the UAV dynamics. The results obtained were really

different one from the other. This result underlines that, even if the drones were

built in the same way, subjected to the same inputs and in the same environment,

they worked in different ways, with different variables in their dynamic.

It is obvious that the controllers (P and PID) have an important role in the de-

velopment of a drone and for its correct behaviour. Notice that the gains of the

controllers implemented in the fifteen drones are the same, even if the identified

variables differ.
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