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1. Introduction
The increasing focus on the study of the
EEG (electroencephalogram) signal has led to
numerous advances in the field of neuroscience
and to the development of new technologies.
Notable among these are BCI (Brain-Computer
Interfaces), which are used as a support system
for people with physical disabilities. In several
studies, it has been proved that the perfor-
mance of these interfaces can be enhanced by
introducing a correction system based on the
recognition of error-related potentials (ErrPs),
namely those potentials that are generated
at the level of the Anterior Cingulate Cortex
(ACC) and that can be observed in the subject’s
EEG as a result of discrepancies between the
expected and the observed outcome. The focus
of the thesis is on the development of a new
framework of LIME, a well-known library for
the explainability of deep learning models, for
the extraction of meaningful features, aiming
to build a much simpler and more transparent
machine learning model. In doing so, we aim
to fill the hole currently left by the library
regarding the handling of signals that develop
over time.

Throughout this summary, we will initially de-
scribe the dataset used and the processing to
which these data were subjected. Next, we will
focus on training a Convolutional Neural Net-
work, called EEGNet, for the classification of
EEG epochs. An explainability process will then
be performed on this model for the extraction of
meaningful features to add to the typical ErrP
features and to additional features in the fre-
quency domain. This explainability process will
be carried out through the application of three
different LIME frameworks: the original one,
our new framework, and an intermediate version
between them. Finally, the identified features
will be used to train an LDA model, from which
it will be possible to draw conclusions about the
validity of the new LIME framework we have
introduced.

2. Materials and Methods
A dataset containing the EEG signal recording
of 6 subjects during the interaction with a BCI
interface was used. The subjects monitored
on a screen the movement of a cursor toward
the target location. At each instant of time, a
20% probability that the cursor moved in the
wrong direction was introduced, thus leading
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to the generation of an ErrP at the recognition
of the erroneous movement. A data processing
pipeline was defined and applied to the dataset
in order to properly extract the epochs of inter-
est needed to train the model. This processing
consisted of re-referencing the data by Common
Average Reference (CAR), filtering between 1
and 40 Hz to remove low and high-frequency
noise, and downsampling the signal from 512 Hz
to 64 Hz. At the end of this process, the epochs
of interest were defined as the signal in the range
[-650, ms +650 ms] with respect to the stimulus.

After this initial pipeline, a process known
as subspace regularization was applied to the
extracted EEG epochs to isolate the sources
of the potentials from the background EEG.
Subspace regularization is an approach in
which the second-order statistics of the set of
measurements are used to constitute the prior
information model for evoked potential, proving
to be well suited for their single-trial estimation
[5].

2.1. EEGNet training
The obtained instances were divided into three
subgroups, train, validation, and test sets,
containing 70%, 15%, and 15% of the original
examples, respectively. This division was
performed maintaining the same distribution
between the classes present in the original full
dataset. To prevent the largest features from
dominating the prediction, the obtained epochs
were standardized to ensure that each of its fea-
tures was centered around 0 and had a standard
deviation equal to 1. The grand average (i.e.,
the mean of the epochs containing an ErrP)
and the error-minus-correct signal, calculated
as the difference between the mean of incorrect
responses and the mean of correct responses,
obtained as a result of this data preparation
process, are shown in Figure 1. As expected,
the waveform of ErrPs is clearly visible at the
channels indicated in the literature (FCz and
Cz).

Since the dataset was highly unbalanced, we had
to design a balancing strategy to ensure a correct
training of the selected Deep Learning model.
This process was carried out by oversampling

the minority class through SMOTE and under-
sampling the majority class, equalizing the num-
ber of instances belonging to the two classes
without introducing too much synthetic data.
The designated model was EEGNet, a compact
CNN architecture based on depthwise and sep-
arable convolutions.

Figure 1: Visualization, at channels FCz and
Cz, of the average of the ErrPs epochs (red), the
average of the Non-ErrPs epochs (blue), and the
difference between the two (green).

2.2. Features Extraction
In response to the need for transparent and in-
terpretable models in the healthcare field, an
explainability process was then applied to the
EEGNet model. The goal was to extract mean-
ingful features to train a much simpler and inter-
pretable model. For this purpose, three types of
features were considered: classical ErrP-related
features, computed after subspace regulariza-
tion; frequency features extracted from RNN;
spatiotemporal features extracted from EEG-
Net.

2.2.1 Classical ErrP features

Typical features, both in the time and frequency
domain, that characterize the waveforms of an
ErrP, focusing on channels FCz and Cz. Follow-
ing the literature [2], features over time focused
on the values and latencies of the ErrP char-
acteristic peaks. The features in the frequency
domain, on the other hand, consisted of the av-
erage PSD in the delta and theta bands.

2.2.2 RNN frequency domain features

Additional frequency features are used to inves-
tigate the potential discriminative capabilities of
other channels. This step was carried out by
computing the PSD for each of the epochs ob-
tained as a result of subspace regularization and
by classifying them with an RNN architecture.
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To gain a deeper insight into the reasons behind
the decisions made by this model, an explain-
ability process using LIME was applied. In this
way, it was possible to derive the most dominant
features in the frequency domain, each consti-
tuted by the combination of a channel and a par-
ticular frequency among those identified in the
construction of the PSD. A validation of the con-
sistency of the identified features was obtained
by visualizing the distribution among the four
main frequency bands of those features that led
to a correct classification of the ErrPs epochs. In
fact, as expected from the literature, the classi-
fication of ErrPs is mainly driven by frequencies
in the delta and theta bands.

2.2.3 EEGNet features

The last group includes the features that most
influenced the decisions made by EEGNet.
Through this analysis, we can perform a study
of the model both in space (the channel of in-
terest) and in time (the identified time instant).
These identified points were divided into two
categories for feature extraction: points placed
at a maximum or minimum of the signal and
points placed at an intermediate position of
the waveform. In the former case, the value of
the positive/negative peak and its latency were
extracted, in the latter the signal slope at that
time instant.

2.3. LIME Frameworks
The EEGNet features were extracted through
the application of the LIME library. This feature
extraction process and the comparison of the re-
sults were performed with three different ver-
sions of LIME: the original framework (hence-
forth referred to as Original LIME), our modi-
fied framework (Kernel LIME), and an interme-
diate version between the two (Modified LIME).

2.3.1 Original LIME Framework

The basic idea behind LIME is to create an in-
terpretable model that approximates the behav-
ior of the original complex model by creating
perturbed instances of the data (signal in our
case) and checking how these variations modify
the prediction of the model. Within the orig-
inal LIME framework, these new examples are

obtained by drawing, for each feature, a random
value among the ones that the feature assumed
in the various instances. This random sampling
is done by assigning to each possible value a
probability related to the frequency with which
that value appeared among all the instances.

2.3.2 Revised LIME Frameworks

In Modified LIME a deliberate choice was made
to refrain from discretization, given that the
considered features do not represent indepen-
dent entities but collectively shape the tempo-
ral and spatial trends within the signal. Addi-
tionally, instead of randomly perturbing the fea-
tures, it was decided to nullify the values of the
signal in specific positions. This version serves
as an intermediary stage bridging the gap be-
tween the original LIME framework and our ul-
timate solution Kernel LIME. This is essential
for assessing whether any subsequent enhance-
ments introduced by our final framework result
from the incorporation of the kernel or are pri-
marily attributed to the strategic decision to
refrain from discretization and nullify specific
data points instead of randomly perturbing fea-
tures. Finally in Kernel LIME, in addition to the
changes already introduced in Modified LIME,
it was decided not to modify the points individ-
ually but to also take into consideration the in-
fluence of surrounding samples. To achieve this,
a Gaussian-shaped kernel was employed. The
goal was to nullify a given instant while simul-
taneously smoothing the surrounding ones. This
approach aligned with the assumption that each
temporal instance is not an independent entity
but also necessitates the evaluation of its sur-
roundings to determine its dominance in the pre-
diction. Each kernel encompassed, in addition to
the central sample, also the three preceding and
three subsequent samples, resulting in a time
window of approximately 100 ms. Moreover, to
maintain a balance between computational effi-
ciency and a comprehensive assessment of posi-
tions, a 50% overlap between successive kernels
was imposed. The kernel application involved
zeroing the sample associated with the central
position of the kernel and reducing the ampli-
tudes of adjacent samples based on the kernel
shape.

p = (1− k) · s (1)
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where s is the value assumed by the original sig-
nal at the given time instant, k is the value of
the kernel, and p is the value assumed by the
signal following the application of the kernel.

3. Results and Discussion
In this section are first reported the performance
obtained with the original EEGNet model and
with the derived LDA model, focusing on the re-
sults obtained with our final LIME framework.
Next, these results are compared with those ob-
tained with the other two LIME frameworks, al-
lowing us to obtain a validation of the proposed
new method.

3.1. EEGNet Evaluation
By first analyzing the performance obtained
with EEGNet, it can be seen that the model
tends more to classify correctly rather than in-
correctly each of the two classes, with greater ac-
curacy on the Non-ErrP class. Specificity, which
measures the model’s ability to correctly iden-
tify negative epochs, is of particular interest in
all those applications where it is desired to min-
imize false positives. Indeed, in this application,
it is critical to minimize false positives to avoid
correcting the BCI system in the absence of an
error. As desirable, this metric settled around
90% for each of the three sets. To take class
imbalance into account, two other metrics were
considered: Balanced accuracy and F1 score.
Both of these metrics showed a decrease in vali-
dation and test sets compared to training. How-
ever, it can be seen that the performances are
comparable between validation and test sets sug-
gesting a constancy in the performance that the
model could have on new data sets (see Table
1).

Train Validation Test

Specificity 0.9207 0.8944 0.8815

Bal Acc 0.8919 0.8417 0.8246

F1 Score 0.8886 0.7185 0.6893

Table 1: Performace metrics for EEGNet

3.2. Validation of LIME features
In order to have a general overview of the im-
portant features of each of the two classes, the

algorithm systematically scans through all cor-
rectly classified instances for each class (TP and
TN) in the test set and records the distinctive
features, identified by our LIME framework,
that contribute to the correct predictions.
Considering the 10 most significant features
identified by LIME for each instance, it was
recorded how many times a specific feature had
been found to be important for the classification
of that class. For each channel, the number of
times LIME identified a sample belonging to
it was calculated and then normalized for the
total number of considered instances. For each
of the two classes (TP and TN), the attention
was focused on the five predominant channels:

• FCz, FC1, POz, Cz, Pz for the ErrP class
(TP);

• Poz, Pz, FC1, FT7, F4 for Non-ErrP class
(TN);

Looking at these results, the validity of the ex-
plainability carried out was supported by the
channels returned. In fact, for the recognition
of error potentials, both channels in which the
recording of its waveform is expected, namely
FCz and Cz, were identified. Notably, the in-
dividual points identified in these channels also
reflect the values expected from the literature.
In fact, the identified samples are concentrated
in correspondence with the typical signal wave-
form, particularly in correspondence with the
significant ErrP peaks. These points are then
complemented by samples placed at the rising
edge of the waveform, suggesting the importance
of the signal slope at that instant. In addition,
one channel found to be present in the prediction
of both classes is POz. This channel is corre-
lated with the subject’s level of attention, thus
suggesting that the generation of error-related
potentials may also be influenced by the sub-
ject’s level of attention and engagement.

3.3. A Much Simpler and Transpar-
ent Model

The guiding principle behind the choice of the
Machine Learning model was linked to the
prospective need for potentially applying this
model in real-time applications. Therefore, it
was imperative to restrict the selection to mod-
els that are notably simple and efficient. With
this premise in mind, three potential models
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were considered: K-Nearest Neighbors (KNN),
Decision Trees, and Linear Discriminant Anal-
ysis (LDA). The evaluation of these models in-
volved the assessment of three distinct feature
combinations, aimed at pinpointing the most ef-
fective model-feature pairing. These three com-
binations encompass:

1. Only the ErrP features;
2. A combination of ErrP features and LIME

features;
3. The incorporation of all three feature types,

with the addition of frequency features.

1 2 3

KNN 59.5% 70.2% 69.1%

Decision Tree 63.9% 65.6% 61.9%

LDA 60.9% 78.3% 77.4%

Table 2: Balanced accuracy on the test set with
various combinations of ML models and fea-
tures: (1) represents only the ErrP features,
(2) the combination of ErrP and LIME features,
and (3) the combination of ErrP, LIME and Fre-
quency

Considering the balanced accuracy as the main
evaluation metric (Table 2), the LDA was se-
lected as the final model since it combined the
best performance with the shortest training and
inference time. The results in Table 3 confirm
the importance of the features extracted from
LIME, as their introduction does not lead to a
significant increase only in the balanced accu-
racy but in all key features.

1 2 3

Accuracy 0.6377 0.8012 0.7899

Balanced Accuracy 0.6091 0.7832 0.7741

F1 Score 0.3881 0.6082 0.5932

Specificity 0.6576 0.8138 0.8008

AUC Score 0.61 0.78 0.77

Table 3: Performace metrics for LDA on the test
set for the tree combination of features: (1) rep-
resents only the ErrP features, (2) the combi-
nation of ErrP and LIME features, and (3) the
combination of ErrP, LIME and Frequency

3.4. Comparative Analysis of LIME
framework

The goal of this final analysis was to validate
the effectiveness of the modification we made to
the LIME algorithms. As a first step, a qualita-
tive comparison can be made by comparing the
five main channels identified by each of the three
frameworks for the classification of error poten-
tials. By doing this, we obtained a first valida-
tion of the modification introduced: while Mod-
ified LIME and Kernel LIME identified, among
the dominant channels, those expected from the
literature (FCz and Cz), these were not found
by Original LIME. In fact, in the latter, the fo-
cus is more on parietal channels (POz, P7, P10)
rather than, as desirable, on the vertex. This
initial conclusion allowed us to confirm how the
decision to avoid the discretization of individ-
ual time points and to nullify those of interest
rather than randomly modifying them could be
a valid idea to enhance explainability applied to
temporal signals. Moving then to a more quan-
titative analysis, the first approach was based
on comparing the confusion matrices and key
evaluation metrics obtained through the three
different approaches. Taking advantage of the
prior results listed in the previous section, the
comparison was set up by training the LDA with
the combination of typical ErrP features and fea-
tures extracted from LIME, thus discarding the
frequency features since they led to a slight de-
crease in performance. The examination of the
relevant metrics and the confusion matrices, just
like the channel analysis, supported our thesis:
in fact, Kernel LIME was the one that exhibited
the best performance on all the relevant met-
rics (Table 4) when compared to the other two
versions. Similarly, from the confusion matrices
(Table 5), it can be observed that our framework
allowed for the best recognition of both classes.

Original Mod Kernel
Accuracy 0.7795 0.7867 0.8012
Bal Acc 0.7545 0.7647 0.7832
F1 Score 0.5697 0.5830 0.6082
Specificity 0.7969 0.8021 0.8138
AUC Score 0.75 0.76 0.78

Table 4: Performace metrics for LDA on the test
set for the three LIME frameworks.
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Original LIME

Non ErrP ErrP

Non ErrP 612 156

ErrP 57 141

Modified LIME

Non ErrP ErrP

Non ErrP 616 152

ErrP 54 144

Kernel LIME

Non ErrP ErrP

Non ErrP 625 143

ErrP 49 149

Table 5: Confusion matrices for Original LIME
(top left), Modified LIME (top right), and Ker-
nel LIME (bottom).

The definitive confirmation was provided by the
analysis of the utility gain, a quantitative mea-
sure of the improvement introduced by an error
correction system. If the gain is higher than 1,
the correction system introduces a benefit; con-
versely, if the gain is lower than 1, the BCI sys-
tem performs better without the correction sys-
tem. As suggested in [4], the visualization of
gain versus probability of the classifier may con-
stitute the main method to quantitatively eval-
uate the improvement in BCI performance fol-
lowing the introduction of LIME’s new frame-
work. In Figure 2, each curve represents the
utility gain introduced by the correction method
based on each of the three LIME frameworks,
while the dashed red line (utility gain = 1) in-
dicates the limit for which the correction intro-
duces a benefit, identifying when the gain be-
comes less than its useful value. It is evident
that the model trained with features extracted
from Kernel LIME was the one introducing the
best gain if compared with the others. In fact, it
allowed for the improvement of the model per-
formance to values slightly exceeding 80%, while
the other two frameworks were unable to reach
this threshold. This suggested that the observed
improvement is not solely due to the absence
of discretization and the decision to nullify the
points to analyze, but also to the introduction
of the kernel to consider the surrounding signal.

Figure 2: Utility gain introduced by the appli-
cation of the Original LIME (in blue),
Modified LIME (in orange) and Ker-
nel LIME (in green) frameworks.

4. Conclusions
In conclusion, this work has proposed and de-
veloped a novel LIME framework specifically
crafted for the analysis of signals developing in
the time domain, a field where the original LIME
version, tailored for images and tabular data, fell
short. Our approach opens to new possibilities
regarding the interpretability of deep learning
models applied to signals in the time domain.
The obtained results provide robust pieces of
evidence of the validity of our variation, with
improved performances and a higher utility gain
with respect to the default LIME framework.
To understand how our work fits within the state
of the art concerning the classification of error
potentials, the obtained results were compared
with two studies based on the same dataset, so
that the results could be comparable. The ap-
proach used in [1] was based on the development
of a simple deep Convolutional Neural Network,
while in [3] deep neural networks were employed
for constructing a Generative Adversarial Net-
work (GAN) architecture. In both cases, the
final result was reported in terms of accuracy.

CNN GAN LDA

Acc. 87.94% 79.91%±2.43%. 80.12%

Table 6: Comparison of our results (last column)
with literature values.
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Analyzing these results, it was confirmed the
consistency of our work with the state of the art
in this research field. This is particularly note-
worthy if we consider that our model is much
easier and more interpretable when compared
with the other models. Thus, the efficacy of our
work not only translates into improvements in
the classification performances but also, hope-
fully, in the opening of new perspectives for the
use of more transparent and easily interpretable
models in the field of BCI interfaces.
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