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Abstract

In the latest years the population of space debris and satellites has considerably increased
leading to the phenomenon of space congestion, in particular near Low Earth Orbits’
(LEO) region; to decrease the risk of collisions, different strategies have been imple-
mented based mainly on the design of collision avoidance manoeuvres (CAMs), which are
regularly performed by operators.
Together with space congestion, it is important to take into account also the increasing
amount of low thrust satellites in space, that are preferred due to their better fuel perfor-
mances but also add complications in the design process since they require longer active
times and the current methods are based on fully numerical models which are very ex-
pensive from a computational point of view, whereas the analytical models, that already
exist, do not take into account any orbital perturbation (or at least only a few of them).
The following thesis focuses on the implementation and validation of semi-analytical al-
gorithms for the design of low-thrust CAMs subject to different orbital perturbations:
lightweight semi-analytical (SA) algorithms are implemented, considering not only a con-
stant low-thrust perturbation but also other kind of orbital perturbations, such as atmo-
spheric drag and J2 for LEOs, and luni-solar, solar radiation pressure (SRP) and J2 for
Geostationary Earth Orbits (GEO).
Lastly parametric analysis of the SA models are performed in the design process in order
to solve optimisation problems and define the optimal conditions to gain the maximum
miss distance or the minimum probability of collision (PoC) from the secondary object.
The results are analysed and compared with respect to reference values, obtained through
numerical integration to highlight the accuracy and the gain in the computational time;
in this way it is possible to deal with the high amount of daily close approaches by re-
trieving the optimal solution in a matter of few minutes (or seconds) with respect to a
fully numerical model which can take also some hours.
Key words: Collision avoidance manoeuvre, Orbital perturbation, Semi-analytical model,
Low thrust, Probability of collision, CAM design and optimisation.





Abstract in lingua italiana

Negli ultimi anni la popolazione di detriti spaziali e satelliti è considerevolmente aumen-
tata portando al fenomeno della congestione spaziale, in particolare attorno alla zona
dei satelliti LEO; per diminuire il rischio di collisioni, diverse strategie sono state imple-
mentate basate principalmente sul design di manovre di anti-collisione che sono effettuati
regolarmente da un operatore.
Oltre alla congestione spaziale, è importante tenere in considerazione anche l’aumento dei
satelliti a bassa spinta nello spazio, che sono preferiti per la miglior prestazione del carbu-
rante ma che aggiungono anche complicazioni poichè richiedono periodi di attività molto
lunghi e i metodi attuali per il loro design si basano su modelli interamente numerici ad
alto costo computazionale mentre i modelli analitici già presenti tengono in considerazione
poche se non nessuna perturbazione orbitale.
La seguente tesi intende focalizzarsi sull’implementazione e validazione di algoritmi semi-
analitici per il design di LT CAMs soggetti a diverse perturbazioni: verranno ideati degli
algoritmi semi-analitici a basso costo computazionale che oltre alla bassa spinta, terranno
conto anche delle diverse perturbazioni orbitali come resistenza atmosferica e J2 presenti
nei satelliti LEO o perturbazioni luni-solari, J2 e pressione di radiazione solare (SRP)
presenti invece nei satelliti GEO.
Infine verranno effettuate analisi parametriche dei modelli nel processo di design per poter
definire le condizioni ottimali per risolvere problemi di ottimizzazione ed ottenere la mas-
sima deviazione o la minima probabilità di collisione dal corpo secondario.
I risultati sono dunque analizzati e comparati con valori di riferimento ottenuti tramite in-
tegrazione numerica in modo da poter ottenere un confronto sull’accuratezza e il guadagno
nei costi computazionali; in questo modo è possibile gestire l’alto numero di eventi di
avvicinamento ottenendo la soluzione ottimale in pochi minuti (o secondi) rispetto ad un
modello interamente numerico che altrimenti impiegherebbe ore.
Parole chiave: Manovre di anti-collisione, Perturbazioni orbitali, Modelli semi-analitici,
Bassa spinta, Probabilità di collisione, Design e ottimizzazione di manovre.
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1

1| Introduction

1.1. General Introduction and Motivation

In the latest years the population of space debris and satellites has considerably increased
leading to the phenomenon of space congestion, in particular near LEO region; to decrease
the risk of collisions, different strategies have been implemented:

1. Design of re-entry manoeuvres for end-of-life satellites where the Inter-
Agency Space Debris Coordination Committee’s (IADC) coordinates the activities
of the member space agencies regarding space debris mitigation by providing the
guidelines for post mission disposal [28]: in the case of GEO spacecrafts (s/c) the
strategy is to manoeuvre the spacecraft far away from the GEO protected region in
order to avoid interference with other satellites whereas for LEO the strategy consists
in de-orbit the s/c (direct reentry is preferred) or manoeuvre it in an auxiliary orbit
with an expected orbital lifetime of 25 years.

2. Active debris removal missions which are still under research, with technical and
regulatory challenges; recent milestones are the successful missions accomplished by
Astroscale’s ELSA-d and ESA’s ClearSpace-1.

3. Design of collision avoidance manoeuvres (CAMs) which are regularly per-
formed by operators and are based on low thrust or impulsive propulsion systems;

The thesis focuses on the last point, in particular on perturbed low-thrust CAMs: the
phenomenon of space congestion and the increasing amount of low thrust satellites in
space, that are preferred due to their better fuel performances, add complications in the
design process since they require longer active times and the current methods are based on
fully numerical models which are very computationally expensive, whereas the analytical
models, that already exist, do not take into account any orbital perturbation (or at least
only a few of them); to address this problem, lightweight and accurate mathematical
models are defined and implemented for this kind of manoeuvres to find the optimal
strategy to get the maximum deviation or the minimum probability of collision (PoC).



1.2. CAM Operational Background

The European Space Agency’s Space Debris Office (SDO) at European Space Operation
Centre (ESOC) provides a service to support operational collision avoidance activities:
the support consists mainly in conjunction events’ detection, collision risk assessment,
orbit determination and orbit and covariance propagation of objects involved in high risk
conjunction events (HRCE).
This chapter gives an introduction to collision avoidance processes involved at ESOC with
insights on the related activities in the recent years and on the statistical distribution of
conjunction events.

1.2.1. Collision Avoidance Process at ESOC

The service is supported by two main tools:

• CRASS (Collision Risk Assessment Software) to predict daily conjunction events
and to assess the associated PoC;

• ODIN (Orbit Determination by Improved Normal Equations) to improve the orbit
determination of secondary object (e.g. debris or inoperative satellite) involved in
HRCE through processing of acquired tracking data;

All of the provided services work following two steps:

1. Upcoming HRCE are identified based on Two-Lines-Elements (TLE) data obtained
from United States STRATegic COMmand (USSTRATCOM), whereas precise orbit
and covariance information of the object is obtained from ESA’s Database and
Information System Characterising Objects in Space (DISCOS), lastly the results
are distributed as CRASS daily bulletins.
This process is executed daily in an automated manner;

2. The second step is only applied to particular events with an estimated PoC higher
than a certain threshold; these events are supported by further tracking data of
the secondary object to ease the analysis, then a recommendation is sent to the
mission management about whether or not to perform a CAM and how to perform it;
any manoeuvre trajectory is screened for the introduction of secondary conjunction
events.
This process is applied in case of HRCE and requires an operator.

The overall process is shown in Figure 1.1, highlighting the first (orange) and second
(green) steps.



Figure 1.1: Operations on collision avoidance process at ESOC (from [15]).

As an alternative to this final step, also conjunction events warnings (with information
on miss distance in radial, transversal and out-of-plane direction with associated errors)
and Conjunction Summary Messages (CSM) received from Combined Space Operation
Centre (CSPOC), with information on orbital state and full 6x6 covariance matrices in
position and velocity are used since 2009 to perform a collision risk assessment; also in
this case the step is initiated by an operator and the overall process is instead illustrated
in Figure 1.2.
Reaction times are important in these situations, in case additional tracking data are re-
quired this should be notified fourty-eight hours before the conjunction (this time covers
the acquisition of orbit determination, re-assessment of the risk, planning and possible
implementation of CAM); all analyses need to be finished twelve hours before the con-
junction since the command generation and the upload of the CAM require some amount
of time.
The design should take into account the time to get to the closest approach (CA) and
the conjunction geometry; along-track manoeuvres increase radial separation and can be
executed very late (about half period before the conjunction), however they may be not
optimal in terms of fuel consumption.
The reaction threshold considers a minimum miss distance or a maximum PoC; the one
which is currently applied correspond to a maximum PoC of 10−4 in the case of TLE avail-
ability; for what it concerns the collision risk, the COllision Risk COmputation Software
(CORCOS) provides a collection of different algorithms for its evaluation, such as:

• Alfriend-Akella, that performs the 2D integration of hard body projection in the
encounter plane;

• Patera, that performs the contour integration of the projection;

• Maximum probability assuming spherical scaled covariance;



• MonteCarlo analysis;

• Non-spherical objects via projection of the Minkowsky sum to the B-plane;

Figure 1.2: Operations on collision avoidance process at ESOC using CSM (from [15]).

Figure 1.3a shows the TLE-based risk evolution of a conjunction event whether the risk
is ignored (red line) or avoided through some actions (green line), in function of the ac-
cepted PoC level; this factor can be relaxed to 10−3 as shown in Figure 1.3b if CSM
are added since they give more reliable and accurate information on the covariance and
orbital state; in this way the majority of the risks can be avoided and the frequency of
performing expensive CAM can be reduced of one order of magnitude.
It is easy to understand that the high number of close approaches that are detected in
a day requires fast and accurate algorithms to complete the design process in a short
amount of time and to retrieve the optimal solution especially for low thrust CAMs (LT-
CAM) where the control authority is smaller and the required manoeuvring times are
longer than impulsive CAMs.
CAM Optimisation Software (CAMOS) supports the planning of avoidance manoeuvres:
it allows optimising various objective functions such as minimising risk or ∆v or max-
imising separation; this software can be run in parametric mode to assess one or several
strategy analyses computed through a 1D or 2D parametric execution of a manoeuvre
optimisation problem, the challenge is to expand the validity regions of CAMOS by ob-
taining lightweight algorithms especially on LEO that takes into account the different
orbital perturbations and that can be used to perform 2D or 3D parametric analysis, and
from this, retrieve a solution to the optimisation problems as soon as possible.



(a)

(b)

Figure 1.3: Risk assessment for TLE-based (top) and CSM-based (bottom) data [9].

1.2.2. Event Statistics

The described service is operational since 2006, since then the number of fragmentation
particles and debris is increased, and leads to an increasing additional contribution of
fragments in the catalogue provided by CSPOC; today from studies done on Envisat
(ES), the fragments of Iridium 33, Cosmos 2251 and FengYun 1C in the altitude band of
800 km (band related to Sun-synchronous orbits (SSO)) contribute to roughly two thirds
of all its close conjunction events, as shown in Figure 1.4; regarding the number of events
in 2010, 43 HRCE, that exceed the PoC threshold, were detected; this is twice the number



of events detected in 2009 suggesting that the population of space debris, fragments etc.
is increasing.

Figure 1.4: Objects encountered by ES into an ellipsoid of 10x25x10 km [15].

1.2.3. Summary on ESOC’s CAM Process

Since 2006, ESA’s missions in LEOs are monitored by a routine service that identify
close conjunction events assessing their PoC with tracking campaigns that are carried
out to improve orbit states and covariance of the secondary objects, especially near the
operational altitude of SSO.
Until 2010 only TLEs were available for the secondary objects, by then with the use of
CSM provided by CSpOC it was possible to have a more accurate definition of HRCE.

1.3. CAM’s State of the Art

This section is dedicated to the analysis of the already existing analytical and SA models
for the solution of optimisation problems related to impulsive and low thrust CAMs; it
is important to highlight that all of these models do not take into account any orbital
perturbation.

1. Impulsive CAM models: there are several algorithms to solve the different op-
timisation problems such as miss distance maximisation, PoC minimisation, cost
minimisation etc.
To retrieve the optimal solution, different analytical models have been implemented
such as those proposed by Bombardelli and Hernando-Ayuso [5],[8] based on Dromo
orbital elements where the solution is retrieved by solving an eigenvalue problem; an-
other model is also proposed by Gonzalo and Colombo [24] where a state transition



matrix (STM) based on Gaussian equations is adopted, this method is less accurate
than the Bombardelli’s and Hernando-Ayuso’s model for long coasting times but it
needs less computational time.
Major details about formulas and expressions of Bombardelli and Hernando-Ayuso
models are given in section 1.3.1 in order to solve three kind of optimisation prob-
lems: miss distance maximisation, PoC minimisation and ∆v minimisation.

2. Low Thrust CAM models: in this case the optimal solution can be retrieved
through a parametric analysis; most of the models are based on semi-analytical
(SA) or analytical (AN) averaging techniques that maps the state of the s/c at the
detected CA when subject to a in-plane low thrust action.
Regarding tangential low thrust, Colombo et al. developed a SA model based on
an approximated time law and a numerical fitting procedure [13], [20].
The model was then improved to an analytical one by Gonzalo et al. first by reducing
the fitting procedure to the computation of some elliptic integrals [23] (in this way
it was possible to decrease the computational time since no numerical integration
of the equations of motion are performed) and later on by adopting a more refined
time law model [22] to get a better accuracy.
For what it concern the normal component, a similar averaging procedure to the
tangential case was developed by Gonzalo et al. which permits to compute the state
of the s/c at CA when subject to the only normal low thrust action [25].
Major details on the SA and AN tangential model and the AN normal model are
given in section 1.3.2

1.3.1. Impulsive Collision Avoidance Manoeuvre

In this section analytical solutions for the optimisation of impulsive CAM are treated
for the short-term encounters (see definition given in Chapter 3) of an operative s/c, in
particular three main optimisation problems are analysed :

• Maximisation of the miss distance δr;

• Minimisation of PoC;

• Minimisation of ∆v to get a given PoC;

The first two problems are based on the search of the optimal direction of ∆v to grant
fuel saving and optimisation of their respective parameters (δr and PoC) through the
implementation of analytical and time efficient algorithms.
At the end the optimal solution is found by solving an eigenvalue problem which gives the



optimal direction of ∆v; one of the drawbacks of this method is the fact that we cannot
optimise the magnitude of the manoeuvre: the magnitude is kept to a constant value ∆v0

which is the total impulse capability of the spacecraft.
The third problem instead minimises the ∆v cost both in terms of magnitude and direction
in order to grant a given PoC, then results can be plotted in order to show the evolution
of the miss distance (or PoC, ∆v) in function of different tCAM which is the time instant
when the impulsive manoeuvre starts before the CA.

Analytical Model for Miss Distance Optimisation

This problem optimises the thrust direction in order to reach at a given tCA (time of
CA) the maximum deflection from the secondary object (an inoperative satellite or a
debris) by using the overall thrust capability of the propulsion system; the results, of
course differ from each others based on the starting time of the CAM, in particular for
very long coasting times ∆tcoast (time interval between the start of the manoeuvre and
the CA) it is demonstrated that the optimal direction aligns with the tangential one if
no other perturbations are considered; the algorithms proposed for this problems were
implemented by Bombardelli and Hernando-Ayuso [5],[6], and consists in the solution of
an eigenvalue problem by using Dromo’s orbital elements to grant better accuracy also
for very long coasting arcs.
By starting from a given initial miss distance δ⃗re the s/c performs at a certain tCAM the
manoeuvre with a given ∆⃗v (which components are given in the radial, transversal and
out-of-plane (RTH) reference frame); the problem consists in the maximisation of the miss
distance δ⃗r projected in the encounter plane (or B-plane).
The encounter plane is in general the plane whose normal direction is aligned with the
relative velocity vector of the two objects at the CA and it contains the vector of minimum
separation, the directions of the frame used to define the vector δ⃗r = [ξ η ζ]⊤ in this plane
are computed as in Eq. (1.1): 

u⃗ξ =
v⃗2×v⃗1

||v⃗2×v⃗1||

u⃗η =
v⃗1−v⃗2

||v⃗1−v⃗2||

u⃗ζ = u⃗ξ × u⃗η

(1.1)

the cost function Jr to maximise δ⃗r is instead defined as:

Jr = δ⃗r
⊤
Qδ⃗r =

(
δ⃗re +M∆⃗v

)⊤
Q
(
δ⃗re +M∆⃗v

)
(1.2)



which can be reduced to the following form by eliminating the constant terms:

J̃r(u⃗) = u⃗⊤Au⃗+ 2⃗b⊤u⃗ (1.3)

subject to the following constraint:

f(u⃗) = u⃗⊤u⃗− 1 ≤ 0 (1.4)

where:

u⃗ =
∆⃗v

∆v0
(1.5)

b⃗⊤ =
δ⃗re

⊤
QM

∆v0
(1.6)

M = RKD (1.7)

A = M⊤QM (1.8)

Q =

1 0 0

0 0 0

0 0 1

 (1.9)

The expression for the matrices R (rotation) K (kinematics) and D (dynamics),based on
Dromo elements, can be found in [8].
The problem can be reduced in a convex form and leads to the following non-linear
equation : 

(
s⃗⊤1 b⃗

λ−λ1

)2
+
(

s⃗⊤2 b⃗

λ−λ2

)2
− 1 = 0

λ ≥ λ1
(1.10)

where λ1, λ2, s⃗1 and s⃗2 are respectively the corresponding non-zero eigenvalues of A and
their associated eigenvectors, the solution of the equation gives the value λopt which can
be used to compute ∆v.

⃗∆vopt = −∆v0(A− λoptI)
P b⃗ (1.11)

where the script P denotes the pseudo-inverse; at this point it is possible to retrieve the
maximum miss distance δ⃗rmax by substituting Eq. (1.11) in Eq. (1.2).
The overall method consists in the solution of an eigenvalue problem and a non-linear
equation, the problem can be simplified in the case of null δ⃗re (case of direct impact) where
the problem consists only in the solution of an eigenvalue problem where the eigenvector
associated to the maximum eigenvalue of A provides the optimal direction.



Analytical Model for Collision Probability Optimisation

This method is still based on the model adopted by Bombardelli and Hernando-Ayuso
and consists in performing an impulsive CAM to minimise the PoC.
The model adopted for the probability computation is the one proposed by Chan [11] but
other methods exist and can be found in Chapter 3.
The optimisation problem is similar to the one adopted for the maximum deflection CAM
with the only difference that the matrix Q is substituted with Q̂ and has the following
expression:

Q̂ =


1
σ2
ξ

0 − ρξζ
σξσζ

0 0 0

− ρξζ
σξσζ

0 1
σ2
ζ

 (1.12)

where σξ, σζ and ρξζ are related to the relative position covariance matrix in B-plane
associated to the ξ-ζ axes; once the components (ξ and ζ) of the maximum deflection are
obtained, it is possible to retrieve the depth of intrusion v using Eq. (3.8) to compute
Chan’s PoC as shown in Eq. (3.6).
As before the problem consists in solving an eigenvalue problem and a non-linear equation
which leads to the optimal ∆v to gain the minimum PoC; the problem, also in this case,
can be simplified to the only eigenvalue problem in case of an initial null miss distance
δ⃗re.

Analytical Model for Thrust Optimization

In this problem the thrust magnitude and direction is optimised in order to grant a given
PoC; the definition of the problem is similar to those mentioned before and it still consists
in the solution of an implicit equation; the associated cost function is defined as:

J(∆⃗v) = ∆⃗v
⊤
∆⃗v (1.13)

which is subject to the following constraint:

(δ⃗re +M∆⃗v)⊤Q̂(δ⃗re +M∆⃗v)− vreq = 0 (1.14)

where v req is computed from Preq which is the required PoC that is given as input; by
following the same procedure adopted for the optimal miss distance, the problem ends up
with an implicit equation which is solved by λopt, then the optimal thrust is computed as:

∆⃗v = −λopt(I + λoptÂ)P b⃗ (1.15)



also in this case the problem can be reduced to an eigenvalue problem if a direct impact
case is considered (δ⃗re=0).
All of these optimisation problems are also included in the Optimal Computation of
CAM (OCCAM) [27], a novel software tool aimed at computing minimum-fuel impulsive
CAMs in the short-term encounter scenario using the algorithms that have already been
proposed.

1.3.2. Low Thrust Collision Avoidance Manoeuvre

Impulsive CAMs are very efficient when performed a few orbits before the conjunction,
on the other hand low-thrust CAMs require longer active times and are very expensive
from the computational point when making optimisation and decision-making analysis;
to ease this action some semi-analytical and fully analytical models are proposed, based
on averaging techniques to shorten the CPU time.
The goal of the LT CAMs is to modify the phasing at the CA in order to reduce the PoC
and increase miss distance.
In the following paragraph the two methods based on SA and AN models are illustrated
for both the tangential and normal cases and both methods rely on the hypothesis of
constant thrust acceleration.
As described for Manoeuvre Intelligence for Space Safety (MISS) [21], the CAM modeling
is based mainly on three main blocks:

• Characterisation of orbit modification due to the CAM expressed by means of Ke-
plerian elements;

• Determination of the deviation at CA using linearised relative motion equations to
map the changes of Keplerian elements at CA into changes of position and velocity;

• Post-process operations for optimisation analysis;

Regarding the first point, the variation of Keplerian elements (KE) are modelled through
the Gauss’ planetary equations; in these methods the equations are rewritten after per-
forming a change of variable from time to eccentric anomaly E ; the general expression of
the first order time law in E when considering a null out-of-plane acceleration is reported
below:

dt

dE
=

r

an
+ at

2r2 sin θ

aben2v
+ an

r3 (e+ cos θ)

a2ben2v
+ o(a2t ) + o(a2n) (1.16)

According to the different models this expression can be approximated by neglecting the
terms depending on the acceleration to get a zeroth order time law.
At this point the equations are averaged over one period by integrating in E from 0 to 2π



to obtain SA and AN expressions for the KE evolution as function of E : each element x is
obtained as a sum of a reference value, a mean value (as result of the averaging method)
and an oscillatory components whose expressions differs according to the adopted models:

x(E) = xref + ϵt,nxmean + ϵt,nxosc (1.17)

where ϵt,n=at,na2ref/µ is the thrust parameter where the subscript t and n differentiate
the tangential and normal cases.

Tangential Semi-Analytical Model

The models adopted in this paragraph are based on the works of Colombo et al. [13],[20]
and consider only the tangential component; in this way the only perturbed components
are the semi-major axis (a), the eccentricity (e) and the pericenter anomaly (ω): first the
following zeroth order time law equation is adopted to perform the change of variable in
E :

dt

dE
≈

√
a3

µ
(1− e cosE) (1.18)

then the equations in a, e and ω are averaged by integrating in E over one orbital period
(from 0 to 2π).
This method reduces the evolution of a, e and ω to their mean components but to have
an accurate model also oscillatory contributions must be considered:

x(E) = x0 +
∆x

2π
(E − E0) +Kx(cos(E − ϕx)− cos(E0 − ϕx)) (1.19)

in this case the term ∆x, which define the mean component, can be obtained from the
averaging procedure by solving two elliptic integrals, whereas the terms Kx and ϕx which
define the oscillatory component can be retrieved through a fitting procedure over a set
of numerical values obtained by integrating numerically over one revolution of the orbit
in this way a general expression for a, e and ω as function of the only unknown E is
obtained.
To get the final eccentric anomaly E at the end of the manoeuvre, Eq. (1.18) is integrated
numerically using for a and e the expressions provided in Eq. (1.19).
Once the final E is retrieved, it is possible to compute the final a, e and ω from Eq. (1.19).
Lastly the evaluation of the variation of mean anomaly (δM) is computed as:

δM = (nf − n0)tCA + n0t0 − nf tf +∆M (1.20)



where n0 and nf are the mean motion evaluated at the manoeuvre’s initial and final times
(t0 and tf respectively) which are the result of the change in mean motion of the orbit
whereas ∆M is the variation introduced by the direct effect of CAM acceleration in the
Gaussian equations; this last term is retrieved by integrating numerically the differential
equation of M only along the last incomplete revolution.
The need to perform the numerical integration of the time law over ∆tCAM and of the
mean anomaly over the last incomplete arc, together with the fitting process over a whole
orbit revolution is what prevents the method from being fully analytical.

Tangential Analytical Model: 0th-Order Time Law

In the previous paragraph a SA method to compute the changes of KE has been shown,
however this method relies on three different numerical integrations:

1. a, e and ω over one period to perform the fitting of the short periodic corrections;

2. The approximated time law over the whole LT arc to get the final eccentric anomaly;

3. The differential equation of M over the last incomplete revolution to determine the
term ∆M ;

In order to avoid these integrations, an analytical expression for the short periodic terms
was proposed by Gonzalo et al. in [23].
Considering the same approximated time law as in the SA case, the following analytical
expression for a and e as a particular case of Eq. (1.17) are obtained as function of the
eccentric anomaly E :

a(E) = aref + ϵtKaE + ϵtaosc(E) (1.21)

e(E) = eref + ϵtKeE + ϵteosc(E) (1.22)

where the reference values are those associated to a and e at E=0; Ka and Ke are associ-
ated to the mean component and are evaluated by solving two complete elliptic integrals
of first and second kind whereas the short periodic terms are obtained as an expansion
in small eccentricity without performing any fitting process; using these expressions, the
final eccentric anomaly is computed through the approximated time law by means of a
root finding problem:

∆tnref = E − eref sinE + ϵt

[
E2 3Ka

4aref
− E

(
Ke +

3

2
eref

Ka

aref

)
sinE+

+
∑
u=1

eu−1
ref

u∑
v=1

ME
uv cos(vE)

]∣∣∣E
E0

(1.23)



the expressions for the different parameters can be found in [23]; the mean anomaly is
then computed through the Kepler’s law using the previous expressions for a and e.
However this time law is an approximation: the direct contribution of thrust on the
eccentric anomaly E, which is related to the apse line rotation is not considered; so a
correction in the implicit Eq. (1.23) is made by adding the following term in order to have
a better accuracy:

∆ω = ϵt
2
√

1− e2ref

e2ref

(
2a sin

√
1− erefcosE

2
−
√

1− e2ref cos
2E
)∣∣∣E

E0

(1.24)

this is also the solution for the change in argument of pericenter, which is the osculating
change in ω.
By adopting this correction, a better accuracy is reached, in particular the apse line
correction reduces the error for quasi-circular orbits since the apse line becomes more
sensitive to perturbation as the orbit becomes circular, where the apse line is not defined
and the Gauss’ equations become singular.
This new model requires only the numerical solution of an implicit equation and one key
difference with the SA method is that it captures the frequencies of the short periodic
corrections better than the sinusoidal fitting of the SA.
By analyzing the results shown in [23] a better accuracy with respect to the SA approach
is also obtained.

Tangential Analytical Model: 1st-Order Time Law

To improve both accuracy and computational cost a fully analytical model has been
presented in the previous paragraph; using this model the determination of the changes
of KE is reduced to a root finding problem in the t(E) time law.
Despite these advantages, there are two main limitations to take into account:

• The use of an approximate time law for the change of independent variable;

• The use of the only tangential component which still gives good solutions, but for
a more accurate model also the normal and out-of-plane component need to be
considered;

This paragraph describes the model developed by Gonzalo et al. in [22] where the following
first order expression for the time law from Eq. (1.16) is adopted:

dt

dE
=

r

an
+ at

2r2 sin θ

aben2v
+ o(a2t ) (1.25)



It can be observed that the approximate time law introduced in Eq. (1.18) neglects the
direct effect of thrust on E.
However, the averaged models for the KEs obtained so far include terms up to the first
order in at, making the expansion in ϵt of the time law inconsistent with the expansion of
the KEs.
To address this, a new expression is derived introducing the analytical solutions of a and
e (already shown in Eq. (1.21) and Eq. (1.22)), into Eq. (1.25) and expanding in power
series of the thrust parameter up to first order.
At the end two main contribution can be observed:

• The first one corresponds to the solution already presented in the analytical time
law without the apse line correction;

• The second one arises by introducing the reference values of KE into the term
depending on at of Eq. (1.25)

By integrating analytically, the following expression for the first-order time law is re-
trieved, which can be solved as before by adopting a numerical solver.

∆t∗nref =
C1 − C2

e2(ece − 1)
√

−1− 2
−1+ece

∣∣∣E
E0

(1.26)

where the expressions for C1, C2 and ce can be found in [22].
The results presented in [22] show that first-order model gives a better accuracy with
respect to the zeroth-order with apse line correction, however as the orbit becomes circular
the zeroth-order model outperform the first-order model for very high values of at, this
suggests of using a zeroth-order time with apse line correction for the cases of quasi-circular
orbits.

Normal Analytical Model

To have a more complete model for in-plane thrust, Gonzalo et al. developed an analytical
model also for the normal thrust component [25].
This component causes changes only in eccentricity, pericenter anomaly and mean anomaly;
by performing a change of variable in eccentric anomaly E using the time law in Eq. (1.16),



the following expression for e, ω and t can be derived:
de
dE

= −ϵn
√
1− e2 (1−e cosE) sinE√

1+e cosE
1−e cosE

dω
dE

= ϵn
(e+cosE)(1−e cosE)2

e
√
1−e2 cos2 E

dt
dE

= r
an

+ an
r3(e+cos θ)
a2ben2v

(1.27)

the equation in eccentricity can be integrated analytically, whereas the one in pericenter
anomaly is derived by following a similar procedure used for a and e in the tangential
case with an expansion in power series of eref :

e(E) =eref +
ϵn
√

1− e2ref

2eref
((4 + eref cosE)

√
1− e2ref cos

2E+

+ 6arctan

√
1 + eref cosE

1− eref cosE
)
∣∣∣E
E0

(1.28)

ω(E) =ωref + ϵn
2
√

1− e2ref

e2refπ

(
(2− e2ref )E

[
−

e2ref
1− e2ref

]
− 2F

[
−

e2ref
1− e2ref

])
E+

+ ϵnωosc(E)

(1.29)

The analytical expression to get the final E is then retrieved by solving a non-linear
equation:

∆tnref = E − eref sinE + ϵn

[
EKn

E +
∑
u=1

eu−1
ref

u∑
v=1

NE
uv sin vE

] ∣∣∣E
E0

(1.30)

the expressions for the oscillatory component ωosc can be found in [25] whereas those
related to the time law are reported in Appendix A.
Although the optimal thrust direction to get higher miss distances tends to align with the
tangential direction, it is important to have a good understanding of this component to
define an overall model for the in-plane thrust.



1.4. Thesis Goal

1.4.1. Scope of the Work

The models shown until now do not take into account any orbital perturbation due to the
complexity and the difficulties in their integration with analytical expressions, potentially
leading to large errors in terms of position and PoC.
This thesis work is meant to provide lightweight and accurate algorithms for the design
of low-thrust CAM when the satellite is subject to different orbital perturbations.
Analytical and SA perturbation models will be provided and integrated together to obtain
an overall low-thrust perturbed model which will be used to perform parametric analysis
and obtain optimal solutions in a short amount of time with respect to a fully numerical
propagator; the region of interest for these models are limited to the only LEO and GEO
regions where space congestion is a big issue.
In each of these regions, orbital perturbations are identified in order to decide which ones
can be included in the SA model.

1.4.2. Original Contribution from the Thesis

In this work a new SA perturbed CAM model is developed by putting together different
perturbation models developed by different authors with some modifications to their works
to obtain lighter algorithms.
This perturbed model is integrated together with a CAM design algorithm and then tested
for some optimisation problems in different orbits to assess its robustness, accuracy and
low CPU cost.

1.4.3. Thesis Outline

After the introductory chapter regarding CAM’s background and state of the art (Chap-
ter 1.1), the document is followed by a chapter dedicated to the orbital perturbations of
interest, with a brief summary on their effects and computation.
Chapter 3 is dedicated to a general overview on probability of collision, in particular to its
definition and computation using different methods developed by authors such as Chan,
Patera, Foster, etc.
Chapter 4 is the core of the work, where all of the developed perturbation models will be
presented, each perturbation has its own section with details on how to model it, each of
them is then tested against a numerical propagator to assess their accuracy on LEO and
GEO.



Chapter 5 is dedicated to the application of the developed models for different optimisa-
tion problems through numerical examples and cases, at the end of the chapter pro and
cons of the models will be analyzed highlighting their accuracy and CPU cost.
The last chapter (Chapter 6) is dedicated to the conclusions: advantages against a nu-
merical propagator, final thoughts and future works.
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2| Orbit Perturbations

2.1. Introduction

Keplerian orbits are the closed form solutions of the two body equation of relative position:

⃗̈r = − µ

r3
r⃗ (2.1)

this equation is based on the assumption that there are only two body objects in space,
and that they only interact through their spherically symmetric gravitational fields.
Any effect that cause the motion to deviate from the Keplerian trajectory is known as
perturbation; to account for them, the equation of motion is modified as follows [14]:

⃗̈r = − µ

r3
r⃗ + p⃗ (2.2)

where p⃗ is the vector of perturbing accelerations from all sources.
There are different perturbations the s/c is subject to, and their magnitudes vary with
the distance between s/c and Earth; Figure 2.1, describes the various perturbations’ mag-
nitude acting on a satellite as function of its distance from the Earth’s centre.
In this work only perturbations acting on LEO and GEO satellites will be considered to
model the SA perturbed CAM propagator, in particular it is possible to notice that in
LEO (h: 300-1000 km) the main contributions are given by atmospheric drag and gravity
(which includes J2 effect and higher order zonal harmonics) whereas for a GEO (h: 36000
km) the main contributions are given by third body perturbations (of Sun and Moon),
solar radiation pressure (SRP), J2 and J2,2 effects.
All of these orbital perturbations, except of drag, can be described by a disturbing po-
tential U which can be used in Lagrangian equations to calculate the change in elements.
In the case of non-conservative forces (e.g. atmospheric drag and thrust) it is possible to
use instead a more general form based on the Gaussian equations to calculate the varia-
tion of orbital elements especially when dealing with LT CAMs.
This work aims to find a semi-analytical solution to these equations when the s/c is sub-



ject to a constant low thrust and to other orbital perturbations; one of the recurring
methodology is based on averaging the Keplerian elements over one revolution in order to
filter high frequency oscillations and decrease the CPU time, in particular using this SA
approach it is possible to differentiate the various short-period, long-period and secular
variations.
In the following sections, each perturbation source is studied separately.

Figure 2.1: Magnitude of orbital perturbations [36].

2.2. Gravitational Perturbation

In the Keplerian model shown in Eq. (2.1), the Earth is considered as a perfect sphere
which is not true in reality since the equator is twenty-one kilometers larger than polar
radius.
Due to this lack of symmetry the gravity of an orbiting body is not directed towards the
centre of the Earth; this perturbation can be described through a potential which is sum
of two main terms which are the zonal and tesseral harmonics:

U(r, ϕ, λ) = Uzonal(r, ϕ) + Utesseral(r, ϕ, λ) (2.3)



the s/c position in this case is described by the polar coordinates where r is the radial
distance from the centre, λ is the longitude and ϕ is the latitude from the equator.
Developing the terms for the zonal and tesseral harmonics, the following equation for the
gravity potential is obtained :

U = −µ
r

[
1−

∞∑
n=2

Jn
(Re

r

)n
Pn(sinϕ) +

∞∑
n=2

n∑
m=1

Jn,m
(Re

r

)n
Pn,m(sinϕ) cos(m(λ− λn,m))

]
(2.4)

where Pn,m(x) and Pn(x) are the associated Legendre function and the Legendre poly-
nomial respectively, the values for Jn, Jn,m and λn,m can be instead retrieved from the
geodesy data; in this work only the first term will be considered (J2).

2.3. Atmospheric Drag

For the Earth, the space altitude begins beyond 100 km, air density at this altitude is
sufficient to exert drag and cause aerodynamic heating of objects moving at orbital speeds.
The drag lowers the speed and the height of a s/c with the orbit eccentricity that gets
lower and lower; the drag effect is negligible for GEO satellites but not for LEO which
orbits at very low altitudes; this perturbation is calculated as:

p⃗drag = −1

2
ρvrel

(CDA

m

)
v⃗rel (2.5)

v⃗rel = v⃗ − ω⃗e × r⃗ (2.6)

where CD is the drag coefficient, A/m is the ratio between the exposed surface and the
mass of the s/c, ωe is Earth angular velocity and ρ is the density of air at the given
altitude.
There are different models that can be considered to define the air density; the most
refined ones consider the influence of the air temperature, of solar cycles, etc. such as
the Naval Research Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended
(NRLMSISE) model [39].
In this work it has been decided to adopt the simplest model which relate the atmospheric
density to an exponential relation [14]:

ρ(h, t) = ρ0 exp
[
− h− h0

H

]
(2.7)



where ρ0, h0 are the reference values and H is the scale height; all these values are
tabulated according to the U.S. Standard Atmosphere.
Atmospheric drag is the only non-conservative force so it cannot be expressed through a
disturbing potential, in this case Gaussian equations are used and averaged to compute
secular and long-term effects.

2.4. Solar Radiation Pressure

Solar radiation comprises photons, which are mass-less particles that carry energy and
momentum, this flux of photons interacts with the s/c and exerts a pressure on it, this
pressure is called solar radiation pressure (SRP) and at 1 UA is PSR=4.56 µPa; by adopt-
ing the cannonball model where the s/c is assumed as a spherical object, the perturbing
acceleration is computed as [14]:

p⃗SRP = −ν S
c

CRA

m
ˆ⃗u (2.8)

where ν is the shadow function (0 in eclipse case, 1 otherwise), the ratio between S (energy
flux per unit time per unit area) and c (speed of light) defines the solar radiation pressure
PSR, CR and A are the reflectivity coefficient and the exposed area of the s/c (which is the
area of a circle according to the cannonball model) and the versor ˆ⃗u defines the Earth-Sun
direction.
The influence of SRP is more pronounced at higher orbital altitude, where the effect of
atmospheric drag is negligible, in particular the altitude of 625 km defines the transition
between the two forces; the effect of SRP on the s/c orbit depends on the area-to-mass
ratio and on the reflectivity coefficient of the s/c itself; the higher the values the higher
the magnitude of SRP and its effects on the orbit, which mainly leads to an increase of
eccentricity especially for GEO satellites.
One of the main complications in the model is given by the eclipse condition: when the s/c
is in Earth’s shadow then the SRP is null; the following elementary procedure, defined by
Vallado [42] based on a conical shadow with no penumbra, manages to identify whether
a satellite is in Earth’s shadow or not: defining as α the angle between the s/c and the
Sun positions from Earth, α1 the angle between the Sun position and its tangential point
to the Earth and α2 the angle between the s/c position and its tangential point to the
Earth, if α1+α2<α then there is no line of sight and the SRP is ’off’, otherwise the s/c is
in the Sun’s line of sight and the SRP is ’on’.
There are other models for the modeling of eclipses such as the cylindrical approximation,
where the shadow created by Earth is a cylindrical projection of the Earth’s diameter



along the Earth-Sun direction; and the conical approximation with penumbra described
in [43].
The introduction of shadow is a complication also because it is difficult to define a proper
potential since the perturbation is no more conservative.

2.5. Third Body Perturbation

Until now only two objects have been considered in the problem; however there are other
different objects that exert an attractive force towards the satellite.
It is the case of the Moon and of the Sun, thanks to their mass (in case of the Sun) and
closeness (in case of the Moon) the nominal orbit of the s/c is perturbed.
These perturbations tends to grow up as the distance from the Earth get larger and larger,
especially in the case of GEO satellites.
The perturbation is defined as [12]:

p⃗3B = µ′( r⃗′ − r⃗

(r′ − r)3
− r⃗′

r′3
)

(2.9)

where the apex denotes the coefficients related to the third body; also in this case it is
possible to associate a disturbing potential in the form of:

U(r, r′) =
µ′

r′
((
1− 2

r

r′
cosψ +

( r
r′
)2)−0.5 − r

r′
cosψ

)
(2.10)

where ψ is the angle between the s/c position and the third body which can be compacted
in a Taylor series as modelled by Kaufman and Dasenbrock [29]:

U3B(r, r
′) =

µ′

r′

∞∑
k=2

δkFk(A,B, e, E) (2.11)


δ = a

r′

A =
ˆ⃗
P · ˆ⃗′r

B =
ˆ⃗
Q · ˆ⃗′r

(2.12)

where ˆ⃗
P , ˆ⃗

Q are the eccentricity versor and the semi-latus rectum versor, respectively,
expressed in ECI and Fk is instead the Kaufman-Dasenbrock function (full expression is
available in [29]).
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3| Collision Probability

One of the most important actions to take into account, when a close conjunction is ob-
served, is to compute the probability that a collision may occur, so an estimation of the
probability of collision is needed.
When considering a close approach between two objects, that in this work will be con-
sidered as spheres of radius rP (for the primary) and rS (for the secondary), a collision
will occur if the distance between them is equal or lower than the sum of the two radii;
in case there are uncertainties in the state of the objects, then the problem is equivalent
to studying the relative motion of a sphere with radius the sum of the two radii, and of
a point where all of the uncertainty of the two objects is concentrated, the PoC is hence
computed as:

PoC =

∫∫∫
V

fr(r⃗)dr⃗ (3.1)

where r⃗ is the relative position of the primary with respect to the secondary, fr is the
associated probability function (e.g. a Gaussian distribution) and V the volume swept
by the combined sphere centered in the primary.
Figure 3.1, shows the encounter plane with the combined covariance applied on the sec-
ondary object and the combined volume on the primary.
Before going into details it is fundamental to introduce the hypothesis of short-term en-
counters: a close encounter can be regarded as short-term depending not only on the
relative encounter velocity but also on the size of the covariance ellipsoid.
For this purpose it is necessary to introduce the definition of covariance ellipsoid and
encounter plane.
The covariance ellipsoid is a region defined by a given probability that depends on a
scalar parameter, σ called depth of intrusion (or standard deviation), whose boundary is
defined (assuming a Gaussian distribution) through:

(x⃗− µ⃗)⊤C−1(x⃗− µ⃗) = σ2 (3.2)

where µ⃗ is the expected value and C the covariance matrix which eigenvalues and eigen-
vectors give the magnitude of the ellipsoid’s axes and directions respectively.



Along this contour the PoC is constant and it decreases for increasing σ as the size of the
ellipsoid increases.

Figure 3.1: Encounter plane between two objects [40].

The encounter plane is instead the plane whose normal direction is aligned with the
relative velocity vector of the two object at the CA and it contains the vector of minimum
separation; there are several frames associated to this plane but the one that is adopted
here is the one shown in Eq. (1.1) characterized by the directions [ξ η ζ].
Now it is possible to define the concept of short-term encounter: from a quantitative point
of view, it is possible to define the conjunction duration tc as the time required by the
primary to move through the 1σ relative position uncertainty ellipsoid in the η direction
[7]:

tc =
2ση

||v⃗P − v⃗S||
(3.3)

In this way, a short-term encounter is characterized by:

ϵc =
tc
TP

≪ 1 (3.4)

where T1 is the orbital period of the primary body; typical values for ϵc are in the order
of 10−3 or lower.
If the hypothesis of short-term encounter is satisfied then the relative motion, described
before, approaches to a rectilinear one and the volume approaches to that of a cylinder,



in this way is possible to approximate the integral in Eq.(3.1) to a 2D one, defined as:

PoC =

∫∫
A

1

2πσξσζ
√

1− ρ2ξζ

exp
{
−
[(ξ − ξe

σξ

)2

+

(
ζ − ζe
σζ

)2

+

− 2ρξζ
ξ − ξe
σξ

ζ − ζe
σζ

] 1

2(1− ρ2ξζ)

}
dξdζ

(3.5)

where the subscript e indicates the expected closest approach relative position, A is a
circular domain of radius sa (given by sum of the two radii) and σξ, σζ and ρξζ are related
to the relative position covariance matrix in the B-plane axes.
There are several models, both numerical and analytical, for the computation of the PoC:
the one developed by Chan [11], through some manipulations, can be approximated to
a Rician integral; the model of Serra [41] is a general case of Chan’s model; the models
of Foster [16] and Alfano [4] require less manipulation but they are based on solving a
2D integral whereas the model developed by Patera [38] is based instead on a contour
integral; Monte Carlo analysis can also be used in order to compute the PoC starting
from random sampling points of the error ellipsoid defined in Eq. (3.2).
Further details on each of the models listed above will be given in the next sections.
Other models exist, such as Akella’s and Alfriend’s [1] or Garcia-Pelayo’s [18] models, but
they will not be discussed.

3.1. Chan’s Model

In the model developed by Chan, the computation of Eq. 3.5 is equivalent of integrating a
properly scaled isotropic Gaussian distribution over an elliptical cross-section; if this one
is approximated to a circular cross-section of equal area, then the computation of PoC
reduces to a Rician integral:

PoC(u, v) = e−v/2

∞∑
m=0

vm

2mm!

(
1− e−u/2

m∑
k=0

uk

2kk!

)
(3.6)

where u represents the ratio between the circular cross sectional area and the 1σ covariance
ellipse:

u =
s2a

σξσζ
√

1− ρ2ξζ

(3.7)



and v is the square of the depth of intrusion:

v =

[(
ξe
σξ

)2

+

(
ζe
σζ

)2

− 2ρξζ
ξe
σξ

ζe
σζ

]
1

1− ρ2ξζ
(3.8)

These formulas are valid for a general case with a not-isotropic, not-diagonal covariance
matrix where the isotropic solution (σξ=σζ=σ) is a particular case.
A good approximation of PoC, for small values of u can be reached if the series is truncated
after three or higher terms.

3.2. Serra’s Model

This method allows to compute PoC for short-term encounters under Gaussian distributed
uncertainties.
Serra’s can be considered a general case of Chan’s method: the model, computed as a
product between an exponential term and a convergent power series with positive terms
obtained through Laplace transform, provides analytical bounds on the truncation error,
does not need any approximation of the integral and performs better, compared to the
previous methods; for its formulation the PoC in Eq. (3.5) is arranged in a new reference
frame in order to cancel the cross-term of the covariance and then it is integrated over
the circular domain of radius sa defined in the collision plane:

PoC = g(s2a) =
1

2πσxσy

∫
A

exp
{
− 1

2

[(x− xe
σx

)2
+
(y − ye

σy

)2]}
dxdy (3.9)

where the domain A is defined by a closed disk centered in the origin of radius sa, the
PoC as mentioned before is given by the product between an exponential and a convergent
series:

PoC = g(s2a) = f(s2a) exp(−ps2a) (3.10)

p =
1

2σ2
y

(3.11)

f(s2a) =
∞∑
k=0

βks
2k
a (3.12)

The full expression for the different parameters are shown in [41]; at the end the PoC
according to Serra’s method is computed as:

PoC = g(s2a) = exp(−ps2a)
∑
k=0

βks
2k
a (3.13)



3.3. Patera’s Model

Chan showed that it is possible to combine the error covariance matrices of two objects
if they are statistically independent; this combined covariance matrix has an associated
3D probability density function (PDF) that represents the uncertainty in the relative
position between the two objects; as mentioned before the problem can be reduced to
a two-dimensional one by eliminating the dimension parallel to the relative velocity (η-
direction), the computation of the PoC is then reduced to a 2D integral over a circular
region in the B-plane.
In Patera’s methodology this area integral is computed as a path integral around the
perimeter of the hard-body (the body with the combined radii), this one is obtained by
performing a coordinate rotation followed by a scale change to make the density distri-
bution symmetric which enables the 2D integral to be reduced to a 1D path integral; the
coordinate rotation does not alter the size of the body but its location whereas the scale
change alters both position and size of the hard-body circle.
The problem is then reduced to integrating a symmetric probability function over an
elliptical region :

PoC = − 1

2π

∮
ellipse

exp(−αr2)dθ (3.14)

this formula is valid in the case the hard-body does not belong to the origin, if this
happens the adopted formula is:

PoC = 1− 1

2π

∮
ellipse

exp(−αr2)dθ (3.15)

where α is a parameter that depends on the coordinate rotation and the subsequent
scale change to get a symmetric PDF; this methodology does not require any additional
assumption, it is computationally efficient and applicable to satellites of irregular shape.

3.4. Alfano’s Model

In this methodology the double integral is reduced to a single integral by using the error
function whose integral is evaluated through Simpson’s one-third rule.
Also in this case the objects are modelled as spheres with their combined size and covari-
ance; by starting from Eq. (3.5) a change of reference frames is performed in order to get



a diagonal covariance, this new frame is defined by x’y’:

PoC =
1

2πσx′σy′

∫ sa

−sa

∫ √
s2a−x2

−
√

s2a−x2

exp
{
− 1

2

[(x′ + x′e
σx′

)2
+
(y′ + y′e

σy′

)2]}
dx′dy′ (3.16)

where the subscript e indicates the secondary body’s coordinates and sa the combined
radius; the equation is then reduced to a single integral through the use of the error
function erf and then to a n-series expression which is then computed numerically through
Simpson’s rule which is chosen for its simplicity and computational efficiency; at the end
the PoC is computed as:

PoC =
dx′

3
√
8πσx′

(meven +modd +m0) (3.17)

the odd, even and zeroth order expressions are shown in [4] whereas dx’ is computed as:

dx′ =
sa
m

(3.18)

with m that defines the accuracy of PoC and it is defined as:

m = int

(
5sa

min(σx′ , σy′ ,
√
x′2e + y′2e )

)
(3.19)

3.5. Foster’s Model

This method was developed in 1992 and used by NASA for analyzing the hazard of space
debris on the International Space Station (ISS); the mathematical model is based on
representing the position distribution by a bi-variate normal distribution and integrating
it over a circular domain defined by the hard-body sphere of radius sa; the method is
based on the following process:

1. Position distribution of the secondary relative to the primary object is described by
a 2D normal distribution along the estimated CA on the B-plane ξ, η, ζ;

2. The σ’s associated to the bi-variate function are extracted from the σ’s of primary
and secondary objects;

3. A per-event PoC is calculated for the primary sphere;



In particular for the calculation of PoC in point 3, the following formula is used:

PoC =
1

2πσξσζ
exp

{
− R2

2

[(sinϕ
σξ

)2
+
(cosϕ
σζ

)2]}
∫ sa

0

∫ 2π

0

exp
[
rR
(cosϕ cos θ′

σ2
ζ

+
sinϕ sin θ′

σ2
ξ

)
+

− r2

2

(sin2 θ′

σ2
ξ

+
cos2 θ′

σ2
ζ

)]
rdrdθ

(3.20)

where R and ϕ define the polar coordinates of the miss distance whereas r and θ′ define
the polar coordinates of the actual position in the B-frame.
The integral can be solved numerically adopting a proper discretisation for both r and θ′

variables.
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4| Perturbation Models

The goal of this thesis work is to obtain lightweight and accurate perturbed CAM algo-
rithms which can be used for the fast computation of parametric analysis; the orbits that
will be taken into account belong to LEO (from 300 to 1000 km of altitude) and GEO (at
36000 km of altitude) regions so it is essential to know the main perturbations acting on
these regions.
Analyzing Fig. 2.1 and taking into account that the maximum time for a CAM ma-
noeuvre is of a few hours, it is possible to neglect those perturbations characterized by
long-periodic effects on the orbit (an example is J2,2 harmonic for GEO).
At the end it is stated that the most relevant perturbations on LEO are atmospheric
drag and J2 effects, whereas on GEO there are solar radiation pressure, luni-solar and J2
effects.
In the next paragraphs accurate and analytical algorithms will be developed for each of
these perturbations, the accuracy of each model will be tested by plotting the absolute
error in position between the analytical and numerical models whose solution is derived
by solving the six Gaussian Ordinary Differential Equations (ODE) through ode45 of
MATLAB using an abstol and reltol of 1e-12.

4.1. Analytical J2 Models

Earth gravitational effects are very important when dealing with orbital perturbation, in
particular the second zonal harmonic (J2 harmonic) is the most relevant orbital pertur-
bation; on LEO it has an order of magnitude from 10−5 to 10−6 km/s2 whereas on GEO
its effect is much weaker but still relevant with respect to the other perturbation, with a
magnitude of 10−8 km/s2.
During the past years, different analytical algorithms to model this effect were developed
such as the first-order models of Brouwer [10] and Lyddane [35], the second-order’s of
Kozai [32] and Aksnes [2] and the third-order’s of Kinoshita [30]; each of these models
has been validated by performing numerical tests on each region, in order to choose the
best one to adopt for the SA propagator.



The results given by each model are briefly summarized below:

• Brouwer’s model: it is a first order model based on Delaunay’s elements (but
there is a version with Keplerian elements too) and it is the fastest one from a
computational point of view; however the accuracy is really poor, both for LEO and
GEO (reaching errors in position of 200 m and 500 m respectively).

• Lyddane’s model: it is based on a first order model and it is a particular case of
Brouwer’s model optimized for very low eccentricities and inclinations by adopting
the Poincarè’s elements.
The model is less fast than Brouwer’s but the accuracy on GEO is really good
with errors that are below one meter, however on LEO the errors are still too large
(150-200 m).

• Kozai’s model: it is a second order model based on Delaunay’s elements and it
requires more time with respect to Brouwer’s.
The errors on GEO are in the order of 400-500 m whereas on LEO are in the order
of 80-100 m but only for e>0.02 otherwise they increase exponentially.

• Aksnes’s model: it is a second order model based on Hill’s elements.
The errors in this case are very small both on GEO and LEO (in the order of a
few centimeters), however this is the heaviest model from a computational point of
view.

Each model has its own accuracy and computational cost (which increase as the order of
the model increases too).
For the region of our interest it was adopted for LEO the analytical model of Aksnes
whereas for GEO the model developed by Lyddane which gives good results when dealing
with small inclinations and eccentricities.
More details on the two models are given in the next sections.

4.1.1. Aksnes Model on LEO

Due to the high order of magnitude of J2 effect on the LEO zone, a first-order solution
is not accurate enough to model the perturbation, hence a second-order solution was
developed based on the analytical model of Aksnes which is lighter and more accurate
with respect to the one developed by Kozai.
Aksnes’ J2 model has no singularity at zero eccentricity and includes short and long
periodic terms up to the second-order whereas the secular components are developed up
to the third-order; starting from a set of initial Keplerian mean elements the algorithm



computes the state at a given time in terms of modified Hill’s variables; one of the main
drawback of this algorithm is that it starts from the mean elements which can be retrieved
from the osculating ones solving a non-linear equation.
Below it is reported the overall algorithm, more information are also available in [2]:

Algorithm 4.1 Aksnes J2 Algorithm
1: Start from initial osculating element α0 and propagation time ∆t.
2: Compute the mean elements α0 from the initial Keplerian osculating elements solving

the following non-linear system:

F (α0) = α0 +∆αsp +∆αlp − α0 = 0 (4.1)

3: Propagate the initial mean elements at the wanted time ∆t by adding the 3rd-order
secular terms.

α(t) = α0 + α̇sec∆t (4.2)

4: Compute the modified Hill’s variables αH(t) from the propagated mean Keplerian
elements:

αH =
[
r ṙ

√
µp

√
µp cos i Ω ω + θ

]
(4.3)

5: Compute the second-order short and long periodic terms and add them to the Hill’s
variables to retrieved the final osculating state in terms of Hill’s elements:

αH(t) = αH(t) + ∆αH,sp +∆αH,lp (4.4)

6: Convert the Hill’s variables to the desired elements (Keplerian, Cartesian etc.)

To assess the accuracy of the model, the algorithm was run for different values of semi-
major axis and eccentricities typical of the LEO region, Figure 4.1 shows the maximum
absolute error in position as function of a and e between the numerical model and the
analytical one over five revolutions of the orbit.
It can be noticed that the error is in the order of a few centimeters making Aksnes’ algo-
rithm an accurate model to compute the Keplerian elements subject to J2 perturbation.



Figure 4.1: Error in position of Aksnes’ model.

4.1.2. Lyddane Model on GEO

For the modeling of J2 effect on GEO a 1st-order model was adopted, precisely Lyddane’s
model, the reason behind this choice is given by the fact that the second zonal harmonic
is much weaker in GEO than LEO so a good accuracy can be reached in a short time
with respect to a second-order model.
Lyddane gives very good results when dealing with very small inclinations and eccentric-
ities which are typical of a GEO.
Lyddane’s model can be considered as a particular case to Brouwer’s analytical J2 model
for e≈0 and i≈0, the steps are similar to the one developed by Aksnes with the only
exception that the final state is expressed through Poincaré’s canonical elements:

αP =
[
a Ω + ω +M e cosM e sinM sin i

2
cosΩ sin i

2
sinΩ

]
(4.5)

the short periodic terms of Keplerian elements (δα) are computed as shown in [10] (and
can also be found in Appendix B together with the secular expressions), then they are



integrated together to compute the final state in terms of Poincaré variables:

a = a+ δa

Ω + ω +M = Ω+ ω +M + δ(Ω + ω +M)

e cosM = (e+ δe) cosM − eδM sinM

e sinM = (e+ δe) sinM + eδM cosM

sin i
2
cosΩ = [sin i

2
+ 1

2
cos i

2
δi] cosΩ− sin i

2
δΩ sinΩ

sin i
2
sinΩ = [sin i

2
+ 1

2
cos i

2
δi] sinΩ + sin i

2
δΩcosΩ

(4.6)

where the overlined element α represent a generic mean element propagated for the wanted
∆t according to Eq. (4.2).
As done previously, to assess the accuracy of the model, the algorithm was run for a
given range of eccentricities and inclination typical of a GEO region (semi-major axis is
fixed to 42165 km), Figure 4.2 shows the maximum absolute error in position between
the numerical and analytical models over one revolution of the orbit.
Also in this case it is noted that the error is very small (below one meter) in the eccentricity
and inclination range of interest.

Figure 4.2: Error in position of Lyddane’s model.



4.2. Semi-Analytical Atmospheric Drag Models

Another important perturbation to be considered when dealing with s/c in the LEO region
is the atmospheric drag, the main effects of this perturbation is a continuous decrement
of semi-major axis and eccentricity which can lead to orbit decay; to avoid this problem
and reduce its effects, most of the satellite in LEO, especially those very close to Earth,
are quasi-circular (e.g. ISS orbit) however drag effects are still relevant and must be taken
into account.
For the modeling of atmospheric drag, a SA approach developed by King-Hele will be used
[26], this method is not fully analytical since it consists on the numerical integration of
equations but it is still lightweight with respect to a fully numerical model since the short
periodic terms are removed by averaging the equations, moreover the equations to be
integrated are only three since atmospheric drag has relevant effects only on semi-major
axis, eccentricity and mean anomaly.
King-Hele developed two different models for the low and high eccentricity cases, in this
work both the models will be presented highlighting the position error of both for a given
range of semi-major axes and eccentricities, both models are also developed considering
the exponential atmospheric model shown in Eq. (2.7)

4.2.1. Low Eccentricity Drag Model

The following model is adopted when dealing with very small eccentricities, in this case a
series expansion in e is performed and then integrated using the modified Bessel function
of first kind In(z), where z is an auxiliary variable defined as z=ae/H and H is the scale
height at the perigee altitude.
The final state is retrieved by solving the following ODE of three equations on semi-major
axis, eccentricity and mean anomaly:

da
dt

= −A
m
CD

√
µaρ(hp) exp (−z)[e⃗⊤K l

aI⃗]
de
dt

= −A
m
CD

√
µ
a
ρ(hp) exp (−z)[e⃗⊤K l

eI⃗]
dM
dt

=
√

µ
a3

(4.7)

The expressions for the vectors e⃗ and I⃗ and the matrices Kl
a and Kl

e are available in
Appendix C.1.
Lastly, to validate the model, the maximum absolute error between the numerical and
SA model over five periods of a LEO subject to only atmospheric drag was plotted for
different a and e.



Figure 4.3: Error in position of KH low eccentricity model.

Figure 4.3 is obtained by considering an area-to-mass ratio of 0.005 m2/kg and a drag
coefficient of 2.0 which are typical values for a LEO satellite; it is shown that the error
reaches very large values for low a and high e; this is mainly due to two limitations of
KH model:

1. The model consists on an averaged solution which discards short periodic terms,
these terms tends to be significant for high eccentricity cases, especially when the
drag effects at perigee are relevant;

2. The density is evaluated only at the perigee height, so the larger the difference
between perigee and apogee altitudes, the larger the error;

However as said previously most of the LEO satellites (especially those really close to
Earth) are quasi-circular to minimise drag effects which can lead to orbital decay, so the
model is still really good for low a and low e with a maximum error of 50-60 meters; for
a>7000 km the model works perfectly for the given range of e which can be enlarged by
adopting the high eccentricity KH model shown in Section 4.2.2.

4.2.2. High Eccentricity Drag Model

The high eccentricity model can be used when dealing with large e, however as said before
the eccentricity cannot grow too much due to the model limitation especially in the low
a region.



In this model instead of performing a series expansion on e, the expansion is performed
over a λ parameter defined as 1/z (1-e2) where z is the same auxiliary variable defined in
the low eccentricity case; then, as before, the final state is retrieved by solving numerically
the following ODE:

da
dt

= −A
m
CD

√
µaρ(hp)

√
2(1+e)
πz(1−e)

(1 + e)[e⃗⊤Kh
a r⃗]

de
dt

= −A
m
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√
µ
a
ρ(hp)

√
2(1+e)
πz(1−e)

(1− e2)[e⃗⊤Kh
e r⃗]

dM
dt

=
√

µ
a3

(4.8)

The expressions for the vectors e⃗ and r⃗ and the matrices Kh
a and Kh

e are available in
Appendix C.2.
Lastly, as done previously, to validate the model, the maximum absolute error between
the numerical and SA model over five periods of a LEO subject to the only atmospheric
drag was plotted for different a and e, also in this case the values adopted for the drag
coefficient and the area-to-mass ratio are respectively 2.0 and 0.005 m2/kg.

Figure 4.4: Error in position of KH high eccentricity model.

Figure 4.4 shows that a good approximation can be reached for e>0.01, also in this case
the error tends to grow up starting from the low a and high e region, however the error
remains globally lower than 10-20 meters.



4.3. Analytical Solar Radiation Pressure Model

SRP is one of the main perturbations acting on GEO.
To model this perturbation, the works developed by Kozai [31] and Aksnes [3] (who ba-
sically corrected some errors present in Kozai’s model) are considered.
Kozai computed the variations in Keplerian elements by integrating analytically the Gaus-
sian equations considering all terms constant except the true anomaly θ, once the varia-
tions are computed they are added to the initial mean Keplerian element to compute the
final state at the wanted time.
Despite its simplicity this model has three main limitations:

1. Eclipse conditions are not modelled: to compute the extremes of the sunlight arc a
quartic non-linear equation must be solved which is computationally too expensive;
however this simplification will not introduce a big error in the model;

2. Since the perturbation’s magnitude is really low (10−10 km/s2 considering an area-
to-mass ratio of 0.01 m2/kg) the initial mean elements are approximated with the
initial osculating ones;

3. The Sun-Earth vector is considered to be constant during the whole interval, this
approximation is valid since the characteristic interval for a low-thrust CAM is less
than a day;

Taking into account these limitations, the short periodic variations can be calculated (full
expression are available in Appendix D with some corrections) to retrieve the final state.
To compute the Sun’s ephemerides, precisely the ecliptic longitude λsun and the obliquity
ϵ) and the SRP magnitude the following formulae, taken from [3], are adopted:


d =MJD − 15019.5

ϵ = 23.44◦

Msun = 358.48◦ + 0.98560027◦d

λsun = 279.70◦ + 0.98564734◦d+ 1.92◦ sinMsun

(4.9)


asun
rsun

= 1+0.01672 cos (Msun+1.92◦ sinMsun)
0.99972

aSRP = CR
A
m
PSR

(
asun
rsun

)2 (4.10)

where MJD is the modified Julian day and PSR is the Sun pressure exerted on Earth’s
surface of 4.56×10−6 Pa; these formulae will be used both for the numerical and analytical
models in order to reduce the differences between them.



The algorithm was run for different ranges of GEO’s eccentricities and inclinations (con-
sidering A/m=0.01 m2/kg and CR=1.5) to evaluate the error over one revolution of the
model starting from an initial propagation date fixed to the 1st March 2023, Figure 4.5
shows that the error is bounded to 150 meters and increases slightly towards the low-
eccentricity high-inclination region.
However, this error does not take into account the different starting times: results given
on a certain date are not the same for another one, so the algorithm was run for different
epochs of year 2023 and also in this case the maximum absolute error over one revolution
was plotted considering e=0.0005, i=1 deg, A/m=0.01 m2/kg and CR=1.5; Figure 4.6
shows how significantly the error varies according to the starting point, in particular an
oscillatory behaviour is detectable over the whole year leading to errors that grow from
60 up to 200 meters.
Despite this large error, the model is still accurate enough to model a perturbed low-
thrust GEO CAM considering also all the simplifications that have been done.

Figure 4.5: Error in position of SRP model.



Figure 4.6: Error in position of SRP model at epoch.

4.4. Analytical Sun Perturbation Model

Last of the perturbation to be modelled on GEO is the luni-solar perturbation, this per-
turbation is caused by the interaction of the satellite with a third body (Sun and Moon in
this case) and the relevant effects can be detected in particular on the pericenter anomaly
and eccentricity.
Regarding the solar perturbation, this one is modelled according to a model developed
by Kozai [33], the procedure is similar to the one used to model J2 perturbation in Chap-
ter 4.1 with some differences: the long-periodic contributions are derived numerically
whereas the short-periodic ones are computed analytically.
In order to decrease the computational cost and avoid numerical integration, some mod-
ifications to the original theory are made:

1. Since the CAMs’ manoeuvring times last less than few hours, the long-periodic
effects will not act in a relevant way in this amount of time and so it can be treated
as part of the secular contribution;

2. Secular evolution of Keplerian elements is considered to vary linearly in time;

Taking into account these assumptions, a fully analytical model for Sun perturbation
is derived, Algorithm 4.2 reports the main steps to compute the final state of a satellite
subject only to the Sun perturbation, starting from a set of osculating Keplerian elements;



the full expressions of the secular and short-periodic contributions can be found in [33].

Algorithm 4.2 Sun Model Algorithm
1: Start from initial osculating element α0 and propagation time ∆t.
2: Compute the mean elements α0 from the initial Keplerian osculating elements solving

the following non-linear system:

F (α0) = α0 +∆αsp,0 − α0 = 0 (4.11)

where ∆αsp,0 is the short periodic contribution evaluated at the initial time.
3: Propagate the initial mean elements to the wanted time ∆t by adding linearly the

secular rates.
α(t) = α0 + α̇sec∆t (4.12)

4: Compute the short-periodic terms and add them to the propagated variables to re-
trieved the final osculating state in terms of Keplerian elements:

α(t) = α(t) + ∆αsp (4.13)

The accuracy of the model was tested by calculating the maximum absolute error over one
revolution between the numerical and analytical models for a given range of eccentricities
and inclinations; the starting propagation time of the algorithm was fixed to 1st March
2023 whereas Sun ephemerides were computed by adopting the same equations used for
the SRP model (Eq. 4.9).
Figure 4.7 shows how the error increases exponentially as the orbit gets more and more
circular reaching a maximum error of 150 meters for e=0.0001, the inclination instead does
not have so much influence in the error of the model; also in this case the algorithm was
run for different epochs of 2023 to check the error of the model over one year, Figure 4.8
reports this error for a generic GEO (e=0.0005, i=1 deg) showing an oscillatory behaviour
(as seen in Figure 4.6) with a maximum error of 60 meters over the whole year.



Figure 4.7: Error in position of Sun model.

Figure 4.8: Error in position of Sun model at epoch.



4.5. Numerical Moon Perturbation Model

For what concerns the Moon perturbation on GEO, several models were considered to
compute this perturbation such as the versions proposed by Giacaglia [19], Lane [34],
Musen [37] and Kozai [33].
Numerical tests have been performed on Kozai’s and Giacaglia’s models, however the
results are not accurate enough and the models are really heavy from a computational
point of view (especially when solving the non-linear equations to get the mean elements)
making them inefficient with respect to the full numerical integration.
For this purpose it was decided to model Moon perturbation by integrating numerically
the Gaussian equations using ode45 of MATLAB with more relaxed tolerances: abstol
and reltol are both fixed to 1e-8.

4.6. Analytical In-Plane Low-Thrust Models

To model a low thrust CAM with perturbation is important to have a model for in-plane
thrust of course; analytical models for both the tangential and normal thrust were already
presented in Section 1.3.2 with their references.
In this section a sensitivity analysis for both the tangential and normal components will
be performed in LEO and GEO to have a better understanding of the error between the
two models.

4.6.1. Tangential LT Model

It is important to have a good accuracy along this component since the optimal thrust
direction to get optimal results tends to align with the tangential one or close to it; the
first order algorithm developed by Gonzalo et al. [23] was tested on LEO for different
ranges of a and e considering a propagation time of five periods and a tangential thrust
acceleration of 1e-9 km/s2 (which is a reasonable value for a low thrust of 500 mN mounted
on ISS with mass of 420 tons).
The maximum absolute error in position between the numerical and analytical models
was computed and plotted in Fig. 4.9, the error tends to stay below 10 meters even after
five revolution all over the LEO region, which is really good considering also the given
thrust levels.
The algorithm was tested also on GEO for a given range of eccentricities and inclinations,
in this case the thrust level is still fixed to 1e-9 km/s2 but the propagation time is reduced
to only one period since there is no interest for longer time when dealing with low-thrust



CAM, results are shown in Fig. 4.10 where the maximum absolute error in position is
plotted; in this case the error is much higher than in LEO due to the fact that the tan-
gential thrust parameter ϵt=ata2

ref/µ is no longer small in GEO so, when performing the
series expansion, the error tends to grow up too, the error in particular is much higher for
quasi-circular orbits: the lower the eccentricity the more sensitive the error in pericentre
anomaly, so even a small error in ω can cause a large error in position when dealing with
very low eccentric orbits; for what it concerns the inclination, the error tends to remain
constant since the tangential model does not have any influence in the inclination of the
orbit.
Another aspect to consider is that as ϵt increases, the displacement for a given acceler-
ation increases too together with the error because the perturbation becomes stronger
compared to the main gravitational attraction.
Fig. 4.11 shows the behaviour of the error as function of the total displacement obtained
by solving for different ϵt; in particular it shows how the error increase exponentially with
the displacement both on LEO and GEO, considering tangential accelerations that go
from 1e-9 to 5e-9 km/s2.
Although the same accelerations are adopted, the error in LEO is much lower than in
GEO since in LEO aref is smaller.

Figure 4.9: Error in position of LEO tangential model.



Figure 4.10: Error in position of GEO tangential model.
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Figure 4.11: Position error VS displacement obtained from different ϵt.

4.6.2. Normal LT Model

To have an overall model for in-plane thrust, also a normal thrust model was developed,
although the normal component is not essential as the tangential one when dealing with
LT CAM; in this case analytical expression for e, ω and E are formulated to develop



lightweight algorithms.
To assess the accuracy of the model developed by Gonzalo et al. for the normal component
[25], the algorithm was run first on LEO considering a propagation time of five periods and
a normal thrust acceleration of -1e-9 km/s2; the error of the model between the analytical
and numerical one is shown in Fig. 4.12.
In this case the error is much larger than that already presented for the LEO tangential
case reaching peaks of 40 meters for high semi-major axes but it is still a good error
especially considering the high thrust level used for the test: the thrust level along the
normal component is much lower than that along the tangential one which is the optimal
direction.

Figure 4.12: Error in position of LEO normal model.

The algorithm was tested also in GEO considering for this case a propagation time of one
period and a normal thrust acceleration of -1e-10 km/s2, the error was plotted for different
ranges of inclinations and eccentricities as shown in Fig. 4.13; as it can be noticed, the error
is much bigger than the GEO tangential case reaching errors in the order of kilometers
for the quasi-circular orbits, for this reason the normal component is not considered for
orbits with e<0.0005 whereas for e>0.0005 a limited normal thrust acceleration of -1e-10
km/s2 is considered.



Figure 4.13: Error in position of GEO normal model.

Lastly, from now on, to have a better understanding of the LT propulsion, the two com-
ponents will be expressed through aT and γt which are the acceleration magnitude and
the angle measured clockwise from the tangential direction respectively, in this way it is
straightforward to calculate the two components as:{

at = aT cos γt

an = −aT sin γt
(4.14)

For LEO the considered angle γt goes from 0 to 30 degrees whereas on GEO from 0 to 5
degrees, this narrow range is also related to the model accuracy since high accelerations
on the normal direction cause big errors on GEO; instead, the considered acceleration
magnitude aT goes from 1×10−9 to 5×10−9 km/s2 for both regions.

4.7. Computation of Perturbed Elements

Table 4.1 shows the main perturbation models that have been treated until now with their
classification; almost all of them consist of analytical and SA algorithms that are capable
of computing the final state in a shorter time with respect to a numerical model; the only
exception is given by Moon perturbation which is the only fully numerical model, since it
was not possible to retrieve a fast and accurate algorithm to compute the final states.



LEO GEO

Drag SA -

Sun - AN

SRP - AN

J2 AN AN

Moon - NUM

LTn AN AN
LTt AN AN

Table 4.1: Summary of perturbation models.

Now that all of the perturbation models have been shown, the next step is to compute
the final Keplerian element at a given time starting from an initial one given at t0; this is
computed by adding to the initial element α0 the variation caused by each perturbation
to the given element α.
The variations for a given perturbation are calculated as follows by considering one per-
turbation per time: 

δapert(t) = apert(t)− a0

δepert(t) = epert(t)− e0

δipert(t) = ipert(t)− i0

δωpert(t) = ωpert(t)− ω0

δΩpert(t) = Ωpert(t)− Ω0

δMpert(t) =Mpert(t)−M0 −
√

µ
a30
(t− t0)

(4.15)

Once the variations are calculated for all of the perturbations, the final Keplerian elements
are retrieved using Eq. (4.16) for the LEO case where only drag and J2 perturbation are
considered together with the LT action and Eq. (4.17) for the GEO case where instead
luni-solar, SRP and J2 are considered together with the LT action.
In LEO this formula approximates well the perturbed behaviour of KE for any eccentric-
ities and semi-major axes, but on GEO the formula shows some inaccuracies especially
for very low eccentricities.
To avoid big errors in the perturbed GEO model a limitation on the eccentricity was set
to 0.0005, any e lower than this limit will create big errors in the model.

α(t)LEO = α0 + δαdrag(t) + δαJ2(t) + δαt(t) + δαn(t) (4.16)



α(t)GEO = α0 + δαMoon(t) + δαJ2(t) + δαSun(t) + δαsrp(t) + δαt(t) + δαn(t) (4.17)

The accuracy and advantages of this propagator will be shown in Chapter 5 which is
dedicated to the design of perturbed CAM and the use of the developed SA propagator
for different optimisation problems.
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5| CAM Design

5.1. Introduction to SA Propagator

The perturbed SA propagator built until now computes the KE at the original CA, in
particular the propagator takes as input the original state of satellite and debris at CA,
the powered time (or manoeuvring time, ∆tCAM) where LT is turned on, the coasting
time (∆tcoast) where LT is turned off and the thrust acceleration aT , giving as output the
final state of the satellite at the original time of CA after being perturbed by the given
thrust acceleration for the given time ∆tCAM under the influence of orbital perturbations.
The steps of the SA propagator can be summarized with the following three points,
reported below and in Fig 5.1:

1. Backward Arc: Backward perturbed propagation for a time ∆t=∆tCAM+∆tcoast,
starting from the initial state at CA considering a null LT action;

2. Powered Arc: Forward perturbed propagation for a time ∆tCAM , starting from
the final state obtained from the backward propagation in step 1, considering also
the LT action (which was given as input);

3. Coasting Arc: Forward perturbed propagation for a time ∆tcoast, starting from
the final state obtained from the powered phase in step 2, considering a null LT
action;

All of these steps take into account the orbital perturbations during the propagation,
which are based on the SA and AN algorithms developed in Chapter 4 and combined
through Eq. (4.16) for the LEO case and Eq. (4.17) for the GEO case.
Now that the final state is derived from the coasting arc, the next step is the computation
of miss distance and PoC.



Figure 5.1: Structure of the perturbed SA propagator.

5.1.1. Computation of Miss Distance

Given the state at CA and the final state in terms of KE obtained from the propagator,
the miss distance can be retrieved immediately:

1. Convert the two states based in KE to Cartesian elements to retrieve the position
vector for both;

2. Compute the difference δ⃗r between the two position vectors;

3. Compute the miss distance δr by taking the norm of the vector computed in 2;

5.1.2. Computation of PoC

The computation of the PoC is not that immediate, as shown in Chapter 3 there are
different methods to compute it, but in this work it was decided to adopt Chan’s method
for its computation.
Once the combined covariance matrix, projected in the B-plane, Cξζ and the combined
radius sa have been defined, the PoC is computed through the following steps:

1. Convert the two states based in KE to Cartesian element to retrieve the position
vector for both;

2. Compute the difference δ⃗r between the two position vectors;



3. Through a rotation matrix, transform the vector δ⃗r from the Cartesian reference
frame to the B-plane reference frame which axes are computed through Eq. (1.1)
(in this case v⃗1 and v⃗2 are the velocity of s/c and debris at CA respectively);

4. Use the components of the B-plane position vector to compute the covariance ellipse
ratio u and the depth of intrusion v through Eq. (3.7) and (3.8);

5. Calculate the PoC using Chan’s formula given in Eq. (3.6) truncated after three-four
terms;

5.2. Introduction to Optimisation Problems

Now that all the algorithms and elements to compute miss distance and PoC have been
presented, the next goal is to use these algorithms to design and validate real case CAM
through optimisation analysis, which is carried out through a parametric analysis involving
three main free variables: aT , ∆tCAM , ∆tcoast.
With the developed propagator it is possible to solve several optimisation problems:

• Minimisation of cost to reach given miss distance or PoC;

• Minimisation of time to reach given miss distance or PoC;

• Maximisation of miss distance in a given interval;

• Minimisation of PoC in a given time;

• Other combinations involving PoC, δr, ∆v and ∆t;

Some of these problems will be discussed and solved in the next sections through numerical
examples, both for LEO and GEO, highlighting the differences between the fully numerical
and SA approaches.

5.3. Case A : Cost Minimization for Given Miss Dis-

tance

The goal of this optimisation problem consists in reaching a given miss distance δr by
minimizing the ∆v parameter, which is computed as a product between the thrust ac-
celeration aT and the manoeuvring time ∆tCAM ; in order to have a bounded problem, a
further constraint on the overall time ∆t is applied which takes into account the times
needed for the design of CAM,and various processes that start once CA is detected.
This kind of problem can be mainly implemented to save propellant.



5.3.1. Case A : Optimisation on LEO

Problem Statement

In this test case, a CA is detected on 27th June 2023 at 3:37 p.m. (GMT), the states of
both orbit and debris are reported in Table 5.1 and the goal is to reach a miss distance
of about 800 meters (or more), by minimizing the cost of the CAM, moreover the overall
manoeuvre cannot last more than 3.5 periods of the nominal orbit.

a [km] e [-] i [deg] ω [deg] Ω [deg] θ [deg] A
m

[m
2

kg
] CD [-]

LEO1 7500 .0070 40.00 10.00 20.00 100.00 0.100 2.0
DEB 7549 .0701 39.14 17.56 23.54 89.71 - -

Table 5.1: Case A: Orbital parameters of LEO1 and debris at CA.

To better define the problem, a mathematical formulation is reported in Eq. 5.1:
min ∆v = min aT∆tCAM

δr ≥ 800 m
∆t ≤ 3.5 T

(5.1)

Optimisation Analysis

The problem has four free variables to work on in order to carry out the optimal solution:
aT , ∆tCAM , ∆tcoast and γt; in order to decrease the dimension of the problem, it was
decided to use a constant parameter for the angle γt which was fixed to 15 degrees, so
from now the miss distance δr is function of only three variables.
The optimal solution is carried out by performing a parametric analysis in ∆tCAM and
∆tcoast for a given acceleration level aT , at this point once the contour plots with the
curves’ level in δr are obtained, an optimisation analysis on each of these plots is per-
formed in order to get a sub-optimal solution for each value of aT , lastly all of these
sub-optimal solutions are confronted to get a final global optimal solution.
The parametric analysis uses different values of ∆tCAM and ∆tcoast which go from 0 to
3.5 T in 50 equally spaced steps, whereas for the accelerations five values are considered
which go from 1e-9 to 5e-9 km/s2, so a final 50x50x5 grid is obtained and solved.
The next five figures (Fig. 5.2, 5.3, 5.4, 5.5 and 5.6) show the various contour plots (with
the δr curves’ level in meters) obtained for the different values of aT , in particular in
each of them is presented the solution obtained by solving the grid analytically through



the SA propagator (on the left) and the absolute error in δr (on the right) between the
SA and numerical models, this one is carried out through ode45 of MATLAB with abstol
and reltol of 1e-13, in the analytical plot is also present a red dot which identify the
sub-optimal solution for the given ϵ.

Figure 5.2: CASE A: LEO1 solution for aT=1×10−9 km/s2.

Figure 5.3: CASE A: LEO1 solution for aT=2×10−9 km/s2.



Figure 5.4: CASE A: LEO1 solution for aT=3×10−9 km/s2.

Figure 5.5: CASE A: LEO1 solution for aT=4×10−9 km/s2.



Figure 5.6: CASE A: LEO solution for aT=5×10−9 km/s2.

Fig. 5.2 shows no feasible solution with respect to the others since the acceleration is not
enough to grant a miss distance of 800 meters before 3.5 T, it can be notice too that
the optimal solution tends to move along the curve line of 3.5 T towards lower and lower
manoeuvring times as the acceleration level increases.

Solution Analysis

Table 5.2 reports the coordinates of the sub-optimal solution for each acceleration with
their relative miss distances and costs, moreover the last two columns report the CPU
cost of the SA and numerical methods to solve the 50x50 grid.
It is easy to notice that the global optimal solution which gives the minimum cost ∆v is
the one obtained by using an acceleration of 5e-9 km/s2.

aT [km
s2

] δr [m] ∆tCAM [T] ∆tcoast [T] ∆t [T] ∆v [ cm
s
] tanCPU [s] tnumCPU [s]

1e-9 - - - - - 42.17 946.82

2e-9 ≈ 800 1.1060 2.3940 3.5000 1.4298 38.63 986.67

3e-9 ≈ 800 0.7124 2.7876 3.5000 1.3815 37.20 1040.88

4e-9 ≈ 800 0.5259 2.9740 3.5000 1.3598 37.22 978.07
5e-9 ≈ 800 0.4158 3.0842 3.5000 1.3439 37.70 1001.22

Table 5.2: Case A: LEO1 results for different aT .



Now that the problem is solved, the final solution can be summarized as follows:

• The CAM starts on June 27th 2023 at 9:20 a.m.(GMT);

• An acceleration of 5e-9 km/s2 tilted of 15 deg from the tangential direction is
adopted;

• The powered leg lasts approximately 45 min (2688 s);

• The coasting leg lasts 5 h 32 min (19936 s);

• The total time of the manoeuvre (powered+coasting) is about 6 h 17 min;

• The cost of the manoeuvre is 1.3439 cm/s;

• The final miss distance, reached through the manoeuvre, is about 800 m;

• To solve the 50x50x5 grid and compute the solution the SA propagator takes 192.92
s whereas the numerical takes 4953.66 s;

The last point describes the fulcrum of the whole thesis: saving time is essential when
dealing with this kind of manoeuvres especially when collisions are detected at the latest
moment and the manoeuvre has to be designed in a short time; the use of these lightweight
algorithms help in the design process by reducing drastically the computational cost of also
two orders of magnitude with respect to a numerical integration and giving also accurate
results as shown in Table 5.3 where the values of the optimal solution obtained from the
SA model are confronted with those from the numerical one: the error committed in time
during the powered and coasting legs are both of only 25 s, whereas the error on ∆v is
about 0.0136 cm/s.

δr [m] ∆tCAM [T] ∆tcoast [T] ∆v [ cm
s
] tCPU [s]

SA ≈ 800 0.4158 3.0842 1.3439 37.70
NUM ≈ 800 0.4116 3.0884 1.3303 1001.22

Table 5.3: Case A: LEO1 results from numerical and SA models for aT=5e-9 km/s2.

5.3.2. Case A : Optimisation on GEO

Problem Statement

In this test case, a CA is detected on 1st April 2023 at 9:49 p.m. (GMT), the states
of both the GEO and debris are reported in Table 5.4 and the goal is to reach a miss



distance of about 1100 meters (or more), by minimizing the cost of the CAM, moreover
the overall manoeuvre cannot last more than 0.3 periods of the nominal GEO.

a [km] e [-] i [deg] ω [deg] Ω [deg] θ [deg] A
m

[m
2

kg
] CR [-]

GEO1 42165 .0008 1.00 50.00 30.00 20.00 0.010 1.2
DEB 38846 .3128 35.16 124.17 98.66 237.47 - -

Table 5.4: Case A: Orbital parameters of GEO1 and debris at CA.

The mathematical formulation of the problem is reported in Eq. 5.2:
min ∆v = min aT∆tCAM

δr ≥ 1100 m
∆t ≤ 0.3 T

(5.2)

Optimisation Analysis

For this problem, it was decided to use a fixed value of three degrees for the angle γt.
Also in this case, the optimal solution is carried out by performing a parametric analysis
in ∆tCAM and ∆tcoast for a given acceleration level aT .
The parametric analysis uses values of ∆tCAM and ∆tcoast which space from 0 to 0.3 T in
50 equally spaced steps, whereas for the accelerations the same range of values adopted in
LEO are used, so a final 50x50x5 grid is obtained and solved; the next five figures (Fig. 5.7,
5.8, 5.9, 5.10 and 5.11) show the various contour plots obtained for the different values of
aT , with the same structure as before: analytical solution on the left, the absolute error
on the right and a red dot to identify the sub-optimal solution in the analytical model.



Figure 5.7: CASE A: GEO1 solution for aT=1×10−9 km/s2.

Figure 5.8: CASE A: GEO1 solution for aT=2×10−9 km/s2.



Figure 5.9: CASE A: GEO1 solution for aT=3×10−9 km/s2.

Figure 5.10: CASE A: GEO1 solution for aT=4×10−9 km/s2.



Figure 5.11: CASE A: GEO1 solution for aT=5×10−9 km/s2.

Fig. 5.7 and 5.8 show no feasible solution with respect to the others, since the acceleration
levels are not enough to grant a miss distance of 1100 meters before 0.3 T; instead the
optimal solution in Fig. 5.9, 5.10 and 5.11 tends to move along the curve line of 0.3 T
towards lower and lower manoeuvring times as the acceleration level increases.

Solution Analysis

Table 5.5 reports the various information in terms of cost and coordinates of the sub-
optimal solution for each acceleration; the global optimal solution which gives the mini-
mum cost ∆v is the one obtained by using an acceleration of 5e-9 km/s2.

aT [km
s2

] δr [m] ∆tCAM [T] ∆tcoast [T] ∆t [T] ∆v [ cm
s
] tanCPU [s] tnumCPU [s]

1e-9 - - - - - 53.23 92.21

2e-9 - - - - - 51.70 89.44

3e-9 ≈ 1100 0.1468 0.1532 0.3000 3.7948 51.33 89.30

4e-9 ≈ 1100 0.0763 0.2238 0.3000 2.6305 51.76 89.60
5e-9 ≈ 1100 0.0524 0.2476 0.3000 2.2590 50.71 90.72

Table 5.5: Case A: GEO1 results for different aT .

Once the final solution is carried out, the final solution can be summarized as follows:



• The CAM starts on April 1st 2023 at 2:39 p.m.(GMT);

• An acceleration of 5e-9 km/s2 tilted of 3 deg from the tangential direction is
adopted;

• The powered leg lasts approximately 1h 15 min (4518 s);

• The coasting leg lasts 5 h 56 min (21360 s);

• The total time of the manoeuvre (powered+coasting) is about 7 h 11 min;

• The cost of the manoeuvre is 2.2589 cm/s;

• The final miss distance, reached through the manoeuvre, is about 1100 m;

• To solve the 50x50x5 grid and compute the solution the SA propagator takes 258.73
s whereas the numerical takes 451.27 s;

In this GEO case, despite the SA approach is still the fastest one, the difference in
computational time between the two models is not as relevant as in LEO also by adopting
very stringent tolerances for the numerical integrator.
The accuracy of the model is also tested by confronting the optimal solutions obtained
from the SA and numerical models, the values reported in Table 5.6 shows that the
committed error reaches values of about 30 min for both the CAM and coasting arcs
whereas in terms of cost, an error of 0.994 cm/s is committed, these errors are mainly
associated to the analytical thrust model, as the thrust level increases the error increases
too especially on GEO (see Section 4.6.1).

δr [m] ∆tCAM [T] ∆tcoast [T] ∆v [ cm
s
] tCPU [s]

SA ≈ 1100 0.0524 0.2476 2.2590 50.71
NUM ≈ 1100 0.0755 0.2245 3.2530 90.72

Table 5.6: Case A: GEO1 results from numerical and SA models for aT=5e-9 km/s2.

5.4. Case B : Time Minimization for Given Miss Dis-

tance

The goal of this problem is to reach a determined miss distance δr in the less amount of
time ∆t, given by the sum of the powered and coasting times; to have a bounded solution,
the problem is also subject to a constraint in ∆v given by the LT propulsion capability.



This kind of problem can be implemented for the last moment detection of CA or to
complete the overall manoeuvre in a short time.

5.4.1. Case B : Optimisation on LEO

Problem Statement

In test case B, a CA is detected on June 23rd 2023 at 7:05 a.m. (GMT), with the states
of both satellite and debris reported in Table 5.7; the goal is to reach a miss distance of
800 meters by minimizing the overall time ∆t, moreover the cost of the manoeuvre ∆v

must be kept less than 5.00 cm/s.

a [km] e [-] i [deg] ω [deg] Ω [deg] θ [deg] A
m

[m
2

kg
] CD [-]

ISS 6800 .0013 52.00 0.00 20.00 60.00 0.001 2.0
DEB 6762 .0088 52.07 295.21 20.16 124.69 - -

Table 5.7: Case B: Orbital parameters of ISS and debris at CA.

The optimisation problem is lastly summarized in the following mathematical notation:
min ∆t = min (∆tCAM +∆tcoast)

δr ≥ 800 m
∆v ≤ 5.00 cm/s

(5.3)

Optimisation Analysis

In this case it was decided to adopted a value of five degrees for γt.
For ∆tCAM and ∆tcoast the values that are adopted, go from 0 to five orbital periods in
50 equi-spaced steps, whereas the same acceleration levels as before are adopted.
The results of each parametric analysis are shown in Fig 5.12, 5.13, 5.14, 5.15 and 5.16.



Figure 5.12: CASE B: ISS solution for aT=1×10−9 km/s2.

Figure 5.13: CASE B: ISS solution for aT=2×10−9 km/s2.



Figure 5.14: CASE B: ISS solution for aT=3×10−9 km/s2.

Figure 5.15: CASE B: ISS solution for aT=4×10−9 km/s2.



Figure 5.16: CASE B: ISS solution for aT=5×10−9 km/s2.

Solution Analysis

Each plot shows how the sub-optimal solution tends to move towards low CAM times as
the acceleration level increases, minimizing the coasting time down to zero.
The coordinates of each sub-optimal solution are reported in Table 5.8 together with the
total time ∆t, the manoeuvre cost ∆v and the computational time (both numerical and
SA) to solve the 50x50 grid; the global optimal solution is reached for a thrust acceleration
of 5e-9 km/s2 which grants the minimum time to complete the overall CAM, in particular
this solution uses all of the LT propulsion capability to perform the overall powered arc,
followed then by a short coasting phase to reach the wanted miss distance.
For the other cases instead the acceleration aT is too small to reach the maximum ∆v:
this one can be reached only by increasing the manoeuvring time ∆tCAM leading to higher
miss distances.
However the sub-optimal solution will not reach this saturation condition for ∆v since the
following problem wants to minimise the overall time and it is not needed to have higher
miss distances than 800 meters.



aT [km
s2

] δr [m] ∆tCAM [T] ∆tcoast [T] ∆t [T] ∆v [ cm
s
] tanCPU [s] tnumCPU [s]

1e-9 ≈ 800 4.0940 ≈ 0 4.0940 2.2847 40.78 3437.38

2e-9 ≈ 800 2.9182 ≈ 0 2.9182 3.2570 40.22 3348.64

3e-9 ≈ 800 2.4048 ≈ 0 2.4048 4.0260 40.37 3042.16

4e-9 ≈ 800 2.0535 ≈ 0 2.0535 4.5838 40.14 3121.51
5e-9 ≈ 800 1.7920 0.0500 1.8420 5.0000 39.81 2944.12

Table 5.8: Case B: ISS results for different aT .

The results are summarized as follows:

• The CAM starts on June 23rd 2023 at 7:05 a.m.(GMT);

• An acceleration of 5e-9 km/s2 tilted of 5 deg from the tangential direction is
adopted;

• The powered leg lasts approximately 2h 47 min (10000 s);

• The coasting leg lasts 5 min (280 s);

• The total time of the manoeuvre (powered+coasting) is about 2 h 51 min;

• The cost of the manoeuvre is 5.0000 cm/s;

• The final miss distance, reached through the manoeuvre, is about 800 m;

• To solve the 50x50x5 grid and compute the solution the SA propagator takes 201.32
s whereas the numerical takes 15893.81 s;

In case B, the numerical integration takes more than four hours to solve a 50x50x5 grid,
whereas the SA one takes less than four minutes, so in terms of computational cost the
SA propagator outperforms the numerical one of almost two orders of magnitude; the SA
model is also accurate as shown in Table 5.9 where an error of only 10 s is committed in
the overall time ∆t (precisely during the coasting arc) with respect to the numerical one.
The use of the SA propagator is particularly essential in this specific case where the time
between the detection of CA and the CA itself is very short and so the design of the
manoeuvre has to be carried out as soon as possible.



δr [m] ∆tCAM [T] ∆tcoast [T] ∆v [ cm
s
] tCPU [s]

SA ≈ 800 1.7920 0.0500 5.0000 39.81
NUM ≈ 800 1.7920 0.0519 5.0000 2944.12

Table 5.9: Case B: ISS results from numerical and SA models for aT=5e-9 km/s2.

5.4.2. Case B : Optimisation on GEO

Problem Statement

In this test case, a CA is detected on 6th February 2023 at 3:23 a.m. (GMT), the states
of both the GEO and debris are reported in Table 5.10 and the goal is to reach a miss
distance of about 1100 meters (or more), by minimizing the overall time.
Moreover the cost of the manoeuvre must be lower than 7.5 cm/s.

a [km] e [-] i [deg] ω [deg] Ω [deg] θ [deg] A
m

[m
2

kg
] CR [-]

GEO2 42165 .0010 1.00 65.00 70.00 150.00 0.010 1.1
DEB 38963 .2500 145.80 236.45 284.15 122.53 - -

Table 5.10: Case B: Orbital parameters of GEO2 and debris at CA.

The mathematical formulation of the problem is instead reported below:
min ∆t = min (∆tCAM +∆tcoast)

δr ≥ 1100 m
∆v ≤ 7.5 cm/s

(5.4)

Optimisation Analysis

As done until now, the free variables are reduced to three by assuming a constant value
for γt which is fixed to 5 degrees.
Different values for ∆tCAM and ∆tcoast are used in the analysis which go from 0 to 0.45
orbital periods in 50 equi-spaced steps, whereas five acceleration levels are considered
which go from 1e-9 to 4e-9 km/s2, so the final 50x50x5 grid is defined.
The results of each parametric analysis are then shown in the following figures (Fig 5.17,
5.18, 5.19, 5.20, 5.21):



Figure 5.17: CASE B: GEO2 solution for aT=1×10−9 km/s2.

Figure 5.18: CASE B: GEO2 solution for aT=2×10−9 km/s2.



Figure 5.19: CASE B: GEO2 solution for aT=3×10−9 km/s2.

Figure 5.20: CASE B: GEO2 solution for aT=3.5×10−9 km/s2.



Figure 5.21: CASE B: GEO2 solution for aT=4×10−9 km/s2.

Solution Analysis

As it happens for the LEO case, also in GEO the plots show how the sub-optimal solution
move towards low CAM times as the acceleration level increases, minimizing the coasting
time down to zero as long as the constraint on ∆v is satisfied; the results of each sub-
optimal solution are reported in Table 5.11.
The global optimal solution is reached for a thrust acceleration of 4e-9 km/s2 which grants
the minimum time to complete the overall CAM, and also here the solution uses all of the
LT propulsion capability to perform the powered arc followed by a short coasting phase
to reach the wanted miss distance.
It can be noticed that the last four figures show some folds in the contour plots, these are
mainly due to the errors in the SA GEO model: as the thrust acceleration increases, the
errors of GEO in analytical tangential and normal models become more relevant.
If the error is contained then only small δr curves will be affected by it, leading to a fold
(Fig. 5.18 and 5.19), but as the error increases then also the curves of large miss distances
will be affected and so the number of folds increases for higher aT (Fig. 5.20 and 5.21);
this explains why, to avoid big errors, for this test case the accelerations are considered
only up to 4e-9 km/s2.



aT [km
s2

] δr [m] ∆tCAM [T] ∆tcoast [T] ∆t [T] ∆v [ cm
s
] tanCPU [s] tnumCPU [s]

1e-9 ≈ 1100 0.4332 ≈ 0 0.4332 3.7323 54.05 126.00

2e-9 ≈ 1100 0.3340 ≈ 0 0.3340 5.7559 53.73 128.30

3e-9 ≈ 1100 0.2872 ≈ 0 0.2872 7.4241 53.65 126.06

3.5e-9 ≈ 1100 0.2487 0.0221 0.2708 7.5000 53.77 128.52
4e-9 ≈ 1100 0.2176 0.0389 0.2565 7.5000 53.93 128.86

Table 5.11: Case B: GEO2 results for different aT .

Once the final solution is carried out, the results can be summarized as follows:

• The CAM starts on February 5th 2023 at 9:15 p.m.(GMT);

• An acceleration of 4e-9 km/s2 tilted of 5 deg from the tangential direction is
adopted;

• The powered leg lasts approximately 5h 12 min (18750 s);

• The coasting leg lasts 56 min (3352 s);

• The total time of the manoeuvre (powered+coasting) is about 6 h 8 min;

• The cost of the manoeuvre is 7.5000 cm/s;

• The final miss distance, reached through the manoeuvre, is about 1100 m;

• To solve the 50x50x5 grid and compute the solution the SA propagator takes 269.13
s whereas the numerical takes 637.74 s;

As in case A of GEO1, also here for GEO2, the difference in computational time between
the SA and numerical methods is not that huge.
By testing the accuracy of the two models, Table 5.12 shows an error of 17 min in the
overall time, precisely in the coasting time that actually lasts about 1 h 12 min, leading
to a total time ∆t of 6 h 25 min, although the error in this case is smaller with respect
to the first GEO case and the SA is still faster than the numerical model, the use of the
SA propagator is not convenient since the saving in time is reduced to only 6 min.



δr [m] ∆tCAM [T] ∆tcoast [T] ∆v [ cm
s
] tCPU [s]

SA ≈ 1100 0.2176 0.0389 7.5000 53.93
NUM ≈ 1100 0.2176 0.0505 7.5000 128.86

Table 5.12: Case B: GEO2 results from numerical and SA models for aT=4e-9 km/s2.

5.5. Case C : Cost Minimization for Given PoC

This problem is similar to that proposed in case A, with the only exception that the goal
is to reach a fixed PoC minimizing the cost ∆v, the computation of PoC was already
treated in Section 5.1.2 for which a combined radius sa of 10 meters and a covariance
matrix reported in Eq. (5.5), projected in ξ-ζ directions, were adopted for both LEO and
GEO regions.

Cξζ =

[
0.02 km2 0

0 0.8 km2

]
(5.5)

5.5.1. Case C : Optimisation on LEO

Problem Statement

Case C is characterized by a CA detected on 21st September 2023 at 1:13 p.m. (GMT),
the states of satellite and debris are reported in Table 5.13 and the goal is to reach a PoC
of 1×10−5 (or less) by minimizing the total cost ∆v of the CAM.
Lastly the overall manoeuvre cannot last more than four periods of the nominal orbit.

a [km] e [-] i [deg] ω [deg] Ω [deg] θ [deg] A
m

[m
2

kg
] CD [-]

LEO2 7100 .0100 30.00 10.00 10.00 80.00 0.010 2.0
DEB 7114 .0059 30.00 38.47 10.75 50.87 - -

Table 5.13: Case C: Orbital parameters of LEO2 and debris at CA.

Below it is reported the mathematical formulation of the problem:
min ∆v = min aT∆tCAM

PoC ≤ 1e− 5

∆t ≤ 4.0 T
(5.6)



Optimisation Analysis

For this test case the thrust vector is tilted of ten degrees from the tangential direction
and, as done until now, a 50x50x5 grid for ∆tCAM , ∆tcoast (from 0 to four periods) and
aT (from 1e-9 to 5e-9 km/s2) is adopted to perform the parametric analysis.
Next figures (Fig 5.22, 5.23, 5.24, 5.25 and 5.26) show the contour plots from the paramet-
ric analysis for each thrust acceleration, in this case each curve line represents a certain
PoC and the absolute error is computed on it.

Figure 5.22: CASE C: LEO2 solution for aT=1×10−9 km/s2.

Figure 5.23: CASE C: LEO2 solution for aT=2×10−9 km/s2.



Figure 5.24: CASE C: LEO2 solution for aT=3×10−9 km/s2.

Figure 5.25: CASE C: LEO2 solution for aT=4×10−9 km/s2.



Figure 5.26: CASE C: LEO2 solution for aT=5×10−9 km/s2.

Solution Analysis

Each plot shows how the sub-optimal solution tends to move towards low CAM times and
high coasting times as the acceleration level increases; Table 5.14 summarizes the results
obtained from the contour plot reporting the computational time.
In this case the global optimal solution is reached for a thrust acceleration of 5e-9 km/s2

which grants the minimum cost to complete the overall CAM whereas for thrust acceler-
ations of 1e-9 and 2e-9 km/2 no feasible solutions are detected considering the adopted
constraints.

aT [km
s2

] PoC [-] ∆tCAM [T] ∆tcoast [T] ∆t [T] ∆v [ cm
s
] tanCPU [s] tnumCPU [s]

1e-9 - - - - - 39.32 1038.00

2e-9 - - - - - 38.69 1059.58

3e-9 ≈ 1e-5 2.9516 1.0484 4.0000 5.2720 38.71 1007.31

4e-9 ≈ 1e-5 1.8240 2.1760 4.0000 4.3439 39.72 996.51
5e-9 ≈ 1e-5 1.3664 2.6335 3.9999 4.0677 39.53 1054.46

Table 5.14: Case C: LEO2 results for different aT .

The final result can be summarized as follows:

• The CAM starts on September 21st 2023 at 6:36 a.m.(GMT);



• An acceleration of 5e-9 km/s2 tilted of 10 deg from the tangential direction is
adopted;

• The powered leg lasts approximately 2 h 15 min (8135 s);

• The coasting leg lasts 4 h 21 min (280 s);

• The total time of the manoeuvre (powered+coasting) is about 6 h 37 min;

• The cost of the manoeuvre is 4.0677 cm/s;

• The final PoC, reached through the manoeuvre, is about 1e-5;

• To solve the 50x50x5 grid and compute the solution the SA propagator takes 195.97
s whereas the numerical takes 5155.86 s;

Also in this case the SA propagator is more efficient with respect to the numerical one,
leading to the solution of the whole grid in just three minutes, the accuracy of the optimal
solution is instead reported in Table 5.15 where an error of only 35 s is committed in
both the coasting and CAM times, whereas the error in ∆v is of 0.0174 cm/s.

PoC [-] ∆tCAM [T] ∆tcoast [T] ∆v [ cm
s
] tCPU [s]

SA ≈ 1e-5 1.3664 2.6335 4.0677 39.53
NUM ≈ 1e-5 1.3722 2.6277 4.0851 1054.46

Table 5.15: Case C: LEO2 results from numerical and SA models for aT=5e-9 km/s2.

5.5.2. Case C : Optimisation on GEO

Problem Statement

Test case C is now tested on a GEO: a CA is detected on 9th November 2023 at 9:49 p.m.
(GMT) with the states of s/c and debris defined in Table 5.16; the goal is to obtain a
PoC of 1e-5 (or less) in less than 0.3 orbital periods, by minimising the total cost ∆v.

a [km] e [-] i [deg] ω [deg] Ω [deg] θ [deg] A
m

[m
2

kg
] CD [-]

GEO3 42165 .0010 1.00 30.00 30.00 40.00 0.010 1.2
DEB 38845 .3128 35.16 124.17 98.66 237.46 - -

Table 5.16: Case C: Orbital parameters of GEO3 and debris at CA.



The mathematical formulation of the problem is reported here:
min ∆v = min aT∆tCAM

PoC ≤ 1e− 5

∆t ≤ 0.3 T
(5.7)

Optimisation Analysis

For this test case the thrust vector is aligned with the tangential direction and a 50x50x5
grid for ∆tCAM , ∆tcoast (from 0 to 0.3 periods) and aT (from 1e-9 to 5e-9 km/s2) is adopted
to perform the parametric analysis.
Fig 5.27, 5.28, 5.29, 5.30 and 5.31 show the contour plots of the SA parametric analysis
for each thrust acceleration, with their absolute errors.

Figure 5.27: CASE C: GEO3 solution for aT=1×10−9 km/s2.



Figure 5.28: CASE C: GEO3 solution for aT=2×10−9 km/s2.

Figure 5.29: CASE C: GEO3 solution for aT=3×10−9 km/s2.



Figure 5.30: CASE C: GEO3 solution for aT=4×10−9 km/s2.

Figure 5.31: CASE C: GEO3 solution for aT=5×10−9 km/s2.

Solution Analysis

The results of each sub-optimal solution are reported in Table 5.17; the global optimal
solution is reached for a thrust acceleration of 5e-9 km/s2 which grants the minimum cost
to complete the manoeuvre and reach the desired PoC.



aT [km
s2

] PoC [-] ∆tCAM [T] ∆tcoast [T] ∆t [T] ∆v [ cm
s
] tanCPU [s] tnumCPU [s]

1e-9 - - - - - 50.50 81.69

2e-9 ≈ 1e-5 0.0807 0.2193 0.3000 1.3907 49.92 86.75

3e-9 ≈ 1e-5 0.0503 0.2497 0.3000 1.2995 51.74 84.20

4e-9 ≈ 1e-5 0.0382 0.2618 0.3000 1.3149 52.63 86.71
5e-9 ≈ 1e-5 0.0299 0.2701 0.3000 1.2870 53.31 85.81

Table 5.17: Case C: GEO3 results for different aT .

The results are lastly summarized as follows:

• The CAM starts on November 9th 2023 at 2:38 p.m.(GMT);

• An acceleration of 5e-9 km/s2 aligned with the tangential direction is adopted;

• The powered leg lasts approximately 43 min (2574 s);

• The coasting leg lasts 6 h 28 min (23276 s);

• The total time of the manoeuvre (powered+coasting) is about 7 h 11 min;

• The cost of the manoeuvre is 1.2870 cm/s;

• The final PoC, reached through the manoeuvre, is about 1e-5;

• To solve the 50x50x5 grid and compute the solution the SA propagator takes 258.10
s whereas the numerical takes 425.16 s;

Also here for GEO3, the difference in computational time between the SA and numerical
methods is minimum.
By testing the accuracy of the two models, Table 5.18 shows an error of 1 min in both the
CAM and coasting times and of 0.0400 cm/s in ∆v, the error in this case is much smaller
with respect to the other two GEO cases with the SA still faster than the numerical model
but not as convenient.

PoC [-] ∆tCAM [T] ∆tcoast [T] ∆v [ cm
s
] tCPU [s]

SA ≈ 1e-5 0.0299 0.2701 1.2870 53.31
NUM ≈ 1e-5 0.0308 0.2692 1.3300 85.81

Table 5.18: Case C: GEO3 results from numerical and SA models for aT=5e-9 km/s2.



5.6. Case D : PoC Minimisation in a Given Time

The final optimisation problem that is analyzed is based on the minimisation of PoC
within a given time ∆t; this problem is very useful for the cases where CAs are detected
at the last moment, making it similar to Case B with the only difference that there is
not a defined target; moreover for the computation of PoC, Chan’s algorithm will be used
together with the same covariance matrix adopted in Eq. (5.5) and a combined radius sa
of ten meters.

5.6.1. Case D : Optimisation on LEO

Problem Statement

In Case D the CA is detected on 27th July 2023 at 4:45 p.m. (GMT), the states of
satellite and debris are reported in Table 5.19 and the goal is to minimize the PoC between
satellite and debris within two orbital periods of the nominal orbit; the problem has also
a constraint on the overall propulsion capability ∆v which cannot exceed 6.0 cm/s.

a [km] e [-] i [deg] ω [deg] Ω [deg] θ [deg] A
m

[m
2

kg
] CD [-]

LEO3 7050 .0034 22.00 5.00 50.00 120.00 0.005 2.0
DEB 6945 .0445 20.11 2.28 58.77 114.53 - -

Table 5.19: Case D: Orbital parameters of LEO3 and debris at CA.

Below it is reported the mathematical formulation of the problem:
min PoC
∆v ≤ 6.0 cm/s
∆t ≤ 2.0 T

(5.8)

Optimisation Analysis

For this test case the thrust vector is tilted of seven degrees and a 50x50x5 grid for ∆tCAM ,
∆tcoast (from 0 to two periods) and aT (from 1e-9 to 5e-9 km/s2) is adopted to perform
the parametric analysis whose contour plots are reported in the figures below (Fig. 5.32,
5.33, 5.34, 5.35, 5.36) together with the optimal solution and the error in PoC.



Figure 5.32: CASE D: LEO3 solution for aT=1×10−9 km/s2.

Figure 5.33: CASE D: LEO3 solution for aT=2×10−9 km/s2.



Figure 5.34: CASE D: LEO3 solution for aT=3×10−9 km/s2.

Figure 5.35: CASE D: LEO3 solution for aT=4×10−9 km/s2.



Figure 5.36: CASE D: LEO3 solution for aT=5×10−9 km/s2.

Solution Analysis

Each plot shows how the sub-optimal solution is reached by maximising the powered arc
which leads to a null coasting phase, this is intuitive since during an emergency case like
this one where time is precious, the propulsion system must work for the duration of the
overall manoeuvre; lastly the results of each plot are reported in Table 5.20:

aT [km
s2

] PoC [-] ∆tCAM [T] ∆tcoast [T] ∆t [T] ∆v [ cm
s
] tanCPU [s] tnumCPU [s]

1e-9 3.81e-4 2.0000 0.0000 2.0000 1.1782 41.01 505.21

2e-9 3.43e-4 2.0000 0.0000 2.0000 2.3564 40.99 507.78

3e-9 2.87e-4 2.0000 0.0000 2.0000 3.5346 40.80 505.68

4e-9 2.24e-4 2.0000 0.0000 2.0000 4.7129 42.22 505.26
5e-9 1.63e-4 2.0000 0.0000 2.0000 5.8911 39.87 514.08

Table 5.20: Case D: LEO3 results for different aT .

The final result can be summarized as follows:

• The CAM starts on July 27th 2023 at 1:29 p.m.(GMT);

• An acceleration of 5e-9 km/s2 tilted of 7 deg from the tangential direction is
adopted;

• The powered leg lasts approximately 3 h 16 min (11782 s);



• There is no coasting leg;

• The total time of the manoeuvre (powered+coasting) is about 3 h 16 min;

• The cost of the manoeuvre is 5.8911 cm/s;

• The final PoC, reached through the manoeuvre, is about 1.63e-4;

• To solve the 50x50x5 grid and compute the solution the SA propagator takes 204.89
s whereas the numerical takes 2538.01 s;

Also in this time constrained case, the SA propagator is more efficient with respect to
the numerical one, leading to the solution of the whole grid in about three minute and
saving about forty minutes; the accuracy of the optimal solution is reported in Table 5.21
showing a very small error in the final PoC.

PoC [-] ∆tCAM [T] ∆tcoast [T] ∆v [ cm
s
] tCPU [s]

SA 1.63e-4 2.0000 0.0000 2.0000 39.87
NUM 1.64e-4 2.0000 0.0000 2.0000 514.08

Table 5.21: Case D: LEO3 results from numerical and SA models for aT=5e-9 km/s2.

5.6.2. Case D : Optimisation on GEO

Problem Statement

Test case D is lastly tested on a GEO: the date of CA and the states of s/c and debris
are the same adopted in Case C, however the goal is to obtain the minimum PoC in less
than 0.2 orbital periods, with a maximum ∆v of 9.0 cm/s.
The mathematical formulation of the problem is reported below:

min PoC
∆v ≤ 9.0 cm/s
∆t ≤ 0.2 T

(5.9)

Optimisation Analysis

For this test case the already mentioned 50x50x5 grid for ∆tCAM , ∆tcoast (from 0 to 0.2
periods) and aT (from 1e-9 to 5e-9 km/s2) is adopted to perform the parametric analysis.
Figures 5.37, 5.38, 5.39, 5.40 and 5.41 show the contour plots of the SA parametric analysis
for each thrust acceleration, with their absolute errors.



Figure 5.37: CASE D: GEO3 solution for aT=1×10−9 km/s2.

Figure 5.38: CASE D: GEO3 solution for aT=2×10−9 km/s2.



Figure 5.39: CASE D: GEO3 solution for aT=3×10−9 km/s2.

Figure 5.40: CASE D: GEO3 solution for aT=4×10−9 km/s2.



Figure 5.41: CASE D: GEO3 solution for aT=5×10−9 km/s2.

Solution Analysis

The final results are reported in Table 5.22; the global optimal solution is reached for a
thrust acceleration of 5e-9 km/s2 and as for the LEO case, also in GEO the sub-optimal
solution is reached by maximising the powered arc.

aT [km
s2

] PoC [-] ∆tCAM [T] ∆tcoast [T] ∆t [T] ∆v [ cm
s
] tanCPU [s] tnumCPU [s]

1e-9 2.51e-4 0.2000 0.0000 0.2000 1.7233 49.26 61.31

2e-9 1.07e-4 0.2000 0.0000 0.2000 3.4467 49.58 61.54

3e-9 2.87e-5 0.2000 0.0000 0.2000 5.1700 49.33 61.83

4e-9 4.91e-6 0.2000 0.0000 0.2000 6.8933 50.56 64.23
5e-9 5.34e-7 0.2000 0.0000 0.2000 8.6167 49.99 61.14

Table 5.22: Case D: GEO3 results for different aT .

The results are lastly summarized as follows:

• The CAM starts on November 9th 2023 at 5:03 p.m.(GMT);

• An acceleration of 5e-9 km/s2 aligned with the tangential direction is adopted;

• The powered leg lasts approximately 4 h 47 min (17220 s);

• There is no coasting leg;



• The total time of the manoeuvre (powered+coasting) is about 4 h 47 min;

• The cost of the manoeuvre is 8.6167 cm/s;

• The final PoC, reached through the manoeuvre, is about 5.34e-7;

• To solve the 50x50x5 grid and compute the solution the SA propagator takes 248.72
s whereas the numerical takes 310.05 s;

Here for GEO3, the difference in computational time between the SA and numerical
methods is the lowest and the saving is reduced to only one minute; this is mainly due to
the low propagation times adopted for ∆tCAM and ∆tcoast which reduce the cost of the
numerical model.
Lastly, by testing the accuracy, Table 5.23 shows an error of 1.54e-7 on the final PoC,
which is a good error but considering the very low saving in time with respect to the
numerical model, the SA model is not as convenient.

PoC [-] ∆tCAM [T] ∆tcoast [T] ∆v [ cm
s
] tCPU [s]

SA 5.34e-7 0.2000 0.0000 0.2000 49.99
NUM 6.89e-7 0.2000 0.0000 0.2000 61.14

Table 5.23: Case D: GEO3 results from numerical and SA models for aT=5e-9 km/s2.

5.7. Cost Breakdown Analysis

From the previous sections, different test cases were analyzed for both LEO and GEO,
Table 5.24 summarizes the different computational times to solve the 50x50x5 grid using
the SA or the numerical models.

Case tLEO
CPU [s] tGEO

CPU [s]

SA NUM SA NUM

A 192.92 4953.66 258.73 451.27

B 201.32 15893.81 269.13 637.74

C 195.97 5155.86 258.10 425.16
D 204.89 2538.01 248.72 310.05

Table 5.24: Comparison of CPU times.

As already observed, the difference in computational time between SA and numerical is



very large in LEO, whereas on GEO the difference is not that relevant; the reason behind
this is to research in the temporal evolution of the perturbed Keplerian elements.
LEOs are very close to Earth and so orbital perturbations, such as J2 and drag, are very
strong reaching magnitude from 1e-7 to 1e-5 km/s2, considering also that the typical dura-
tion of a LEO low thrust CAM is larger than a period, then the short periodic oscillations
in the evolution of KE increase either in magnitude and frequency.
The frequency of oscillations due to J2 effect is calculated as 1/T (where T is the or-
bital period); since in LEO the orbital period is small, the frequency is much higher than
in other regions; considering also that the manoeuvring times ∆tCAM in LEO are much
larger than an orbital period then the number of oscillations increases.
As the number of oscillations gets higher and higher, also the numerical integration time
increases especially when very stringent tolerances are used to retrieve the solution (re-
mind that in the cases analyzed until now the numerical solution was retrieved through
ode45 of MATLAB using a reltol and an abstol of 1e-12 for both); this explains why the
CPU times to get the numerical solution on LEO are so large and different from those
obtained through the SA model; to better understand this phenomenon, Fig. 5.42 shows
the evolution of KE on ISS orbit when this one is subject to atmospheric drag and J2

effects.
The propagation time has been set to five periods (typical duration for a LT-CAM) and
it can be noticed how the frequency and amplitude of the oscillations are very high on all
of the elements: the former is due to the fact that the manoeuvring time ∆tCAM is much
larger than the characteristic orbital period T whereas the latter is due to the magnitude
of the perturbations.
For what concerns GEOs, these orbits are very far from Earth and the main orbital per-
turbations, such as J2, SRP and luni-solar, reach magnitudes that go from 1e-10 to 1e-8
km/s2 which are very weak compared to the magnitudes on LEO, in this way the ampli-
tude of oscillations is very small
The frequency of oscillations for J2 on GEO is much lower than in LEO (TLEO<TGEO),
moreover the manoeuvring time ∆tCAM on GEO are smaller than one orbital period and
so the number of oscillations is much lower; so the numerical solution can be retrieved
quickly also by using very low tolerances, that is why the difference in computational time
between the SA and numerical models is not that relevant, although the SA one is still
faster.
Fig. 5.43 shows the evolution of KE on GEO1 when it is perturbed by luni-solar, J2 and
SRP effects, in this case the propagation time has been set to half of a period and it can be
observed the small amount of oscillations in all elements, due to the shorter manoeuvring
time with respect to the GEO orbital period.
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6| Conclusion

6.1. Conclusive Summary

Sometimes it may happen that CAs are detected at the last instant especially in this
current scenario where space congestion is becoming a big issue; the design process must
then be accomplished as soon as possible, so having lightweight and accurate algorithms
for the modeling of perturbed LT-CAMs gets more and more relevant.
This thesis work was intended to provide lightweight and accurate algorithms for the de-
sign of low thrust CAMs under orbital perturbation effects.
During the project’s development different perturbation models are analyzed and imple-
mented, such as Aksnes’ and King-Hele’s models for the design of J2 and atmospheric drag
on LEO, and as Kozai’s and Lyddane’s models for the design of SRP, Sun perturbation
and J2 effect on GEO.
All of the orbital perturbation algorithms were tested for different ranges of semi-major
axes, eccentricities and inclinations in order to assess their accuracy against an exact-
numerical model, then all of the models were merged together in order to obtain an
overall perturbed SA propagator.
Lastly, to simulate the LT action, an analytical model for the tangential and normal
thrusts developed by Gonzalo et al. was integrated to complete the propagator.
To understand its advantages, the SA propagator was then tested against a numerical one
for the design of perturbed LT-CAMs: different optimisation problems are analyzed and
solved in order to find out the optimal solution; the optimisation process is not carried
out in an analytical way but through the analysis of contour plots which are the results
of a parametric analysis.
Three free variables, the coasting time, the CAM time and the thrust acceleration, are
chosen to define a 3D grid of variables, each element of the grid is then used as input to
the SA propagator to get the optimal solution, the same is done also with the numerical
propagator in order to have a reference solution as a comparison to the accuracy and CPU
cost.
The results coming out from the design process, show how fast is the SA propagator with



respect to the numerical one; in LEO the computational time of the SA model to solve
the grid of the parametric analysis is one or two orders of magnitude lower than the nu-
merical one, showing also a very accurate behaviour; in GEO instead the accuracy of the
SA model is still discrete and the algorithm is still faster than the numerical one but the
difference is not huge.
The numerical integration in GEO takes much less time than in LEO because of the small
amount of fast short-periodic oscillations in the evolution of the Keplerian elements due
to the smaller ratio between manoeuvre duration and orbital period.
Summarizing, the new SA propagator is very convenient in terms of cost and accuracy
on LEO whereas on GEO the game is not worth the candle especially when solving very
small grids.

6.2. Future Works

This final chapter is dedicated to future works that can be done to improve the models
already presented here, in particular the researches will be focused on the following points:

• Development of a SA or analytical lunar model: Moon perturbation in this
work was modelled by integrating numerically the Gaussian equation, this is the
only numerical model present within the GEO’s SA propagator since all of the other
perturbations are modelled in a fully analytical way; next works will be focused on
the modeling of a SA or AN model in order to further decrease the computational
time of the GEO propagator and get a difference in CPU time between the SA and
numerical models of at least one order of magnitude;

• Inclusion of HEO and MEO: the models developed until now are valid only for
LEO and GEO, next works will focus on expanding the perturbation models to also
include Medium Earth Orbits (MEO) and High Eccentric Orbits (HEO); for MEO
the perturbations that can be taken into account are the same of GEO, however
all of the models must be revised since the magnitude of the perturbations is much
different; for HEO instead a completely new method must be adopted since the
models developed until now are not valid for high eccentricities;

• Development of a optimisation algorithm: in the design process the optimal
solution is retrieved through a grid search by analyzing different contour plots.
The goal is to obtain an algorithm, maybe based on genetic and gradient-based
algorithms or particle swarm optimisation, to directly search for the optimal solution
when the grid search is not required.
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A| Appendix A

A.1. Gonzalo’s Normal Thrust Time Law

The final eccentric anomaly E can be retrieved by solving the following non-linear equa-
tion:

∆tnref = E − eref sinE + ϵn

[
EKn

E +
∑
u=1

eu−1
ref

u∑
v=1

NE
uv sin vE

] ∣∣∣E
E0

(A.1)

where the expressions for the parameters Kn
E and NE are computed as:

Kn
E =

2γ

3πarefe2refn
2

(
(11 + 2e2ref )E[e

2
ref ]− (11 + e2ref )F[e

2
ref ]
)
+

− eref
2

−
3e3ref
16

−
7e5ref
128

−
55e7ref
2048

(A.2)

NE =
γ

areferefn2
N1 +N2 (A.3)

F[...] and E[...] are the complete elliptic integral of first and second kind respectively, γ
and the matrices N1 and N2 are instead computed as:

γ =
√

1− e2ref (A.4)

N1 =



7
4

0 0 0 0 0 0

0 −5
6

0 0 0 0 0
81
32

0 19
96

0 0 0 0

0 −29
48

0 − 13
192

0 0 0
297
256

0 91
512

0 9
512

0 0

0 −145
348

0 − 113
1536

0 − 1
128

0
3205
4096

0 617
4096

0 569
20480

0 71
28672

0 −1757
6144

0 − 217
3072

0 − 27
2048

0


(A.5)



N2 =



−2 + 3
4
π 0 0 0 0 0 0

0 −1
4

0 0 0 0 0
3
4

0 1
12

0 0 0 0

0 −1
8

0 − 1
64

0 0 0
5
32

0 5
192

0 1
320

0 0

0 − 21
512

0 − 21
2560

0 − 7
7680

0
35
512

0 7
512

0 7
2560

0 1
3584

0 − 11
512

0 − 11
2048

0 − 11
10752

0


(A.6)

Once the non-linear equation is solved, the value of E is used to compute the final values
for eccentricity and pericenter anomaly using the expressions presented in [25] and in
Section 1.3.2.
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In this appendix are reported the secular and short periodic components needed to for
the modeling of J2 according to Lyddane’s model.
These expressions are the same presented in Brouwer’s theory [10] (Lyddane use Brouwer’s
expressions but integrate them in a different way using Eq. (4.6)).

B.1. Brouwer’s Secular Terms

J2 perturbation has secular effects on pericenter anomaly, RAAN and mean anomaly;
below are presented the expression of their secular rate of change developed up to the
second order:

Ṁsec =n

{
1 +

3

2
γ2η2(−1 + 3χ2) +

3

32
γ22η2

[
− 15 + 16η2 + 25η22 + (30+

− 96η2 − 90η22)χ
2 + (105 + 144η2 + 25η22)χ

4
]} (B.1)

ω̇sec =n

{
3

2
γ2(−1 + 5χ2) +

3

32
γ22

[
− 35 + 24η2 + 25η22 + (90− 192η2+

− 126η22)χ
2 + (385 + 360η2 + 45η22)χ

4
]} (B.2)

Ω̇sec = n

{
−3γ2χ+

3

8
γ22

[
(−5 + 12η2 + 9η22)χ+ (−35− 36η2 − 5η22)χ

3
]}

(B.3)

where the terms γ2, χ, η and n are computed as:

γ2 =
J2
2

[
Re

a(1− e2)

]2
(B.4)

χ = cos i (B.5)



η2 =
√

1− e2 (B.6)

n =

√
µ

a3
(B.7)

B.2. Brouwer’s Short-Periodic Terms

Short-periodic oscillations are present in all of the KE and their expressions are developed
up to the first order as follows:

δa = aγ̃2

[
(−1 + 3χ2)

(a3
r3

− η−3
2

)
+ 3(1− χ2)

a3

r3
cos(2ω + 2θ)

]
(B.8)

δe =
η22
2e

{
γ̃2

[
(−1 + 3χ2)

(a3
r3

− η−3
2

)
+ 3(1− χ2)

(a3
r3

− η−4
2

)
cos(2ω+

+ 2θ)
]
− γ2(1− χ2)[3e cos(2ω + θ) + e cos(2ω + 3θ]

} (B.9)

δi =
1

2
γ2χ
√
1− χ2[3 cos(2ω + 2θ) + 3e cos(2ω + θ) + e cos(2ω + 3θ)] (B.10)

δM =− η32
4e
γ2
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2(−1 + 3χ2)

(a2
r2
η22 +

a

r
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r2
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sin(2ω + 3θ)
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4e
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+ 3e sin(2ω + θ) + e sin(2ω + 3θ)]}

(B.12)

δΩ =− 1

2
γ2χ[6(θ −M + e sin θ)− 3 sin(2ω + 2θ)− 3e sin(2ω + θ)+

− e sin(2ω + 3θ)]
(B.13)



in this case θ is the ’mean’ true anomaly computed using Kepler’s law from the ’mean’
mean anomaly M , the expressions for r and γ̃2 are instead reported below:

r =
a(1− e2)

1 + e cos θ
(B.14)

γ̃2 =
J2
2

(
Re

a

)2

(B.15)

It is important to remind that the overlined quantities are referred to the mean elements.
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In this appendix are reported the full expressions of vector and matrices essential to model
the King-Hele low and high eccentricity drag models; more information is also available
in [26] and [17].

C.1. King-Hele Low Eccentricity Drag Model

To retrieve the final state of a s/c subject to the only atmospheric drag, the following
ODE system must be solved through a numerical integrator:

da
dt

= −A
m
CD

√
µaρ(hp) exp (−z)[e⃗⊤K l

aI⃗]
de
dt

= −A
m
CD

√
µ
a
ρ(hp) exp (−z)[e⃗⊤K l

eI⃗]
dM
dt

=
√

µ
a3

(C.1)

in this case the vectors e⃗ and I⃗ are defined as:

e⃗⊤ =
[
1 e e2 e3 e4 e5

]
(C.2)

I⃗⊤ =
[
I0 I1 I2 I3 I4 I5 I6

]
(C.3)

where the generic I n(z ) is the Bessel function of first kind defined as:

In(z) =
(z
2

)n ∞∑
j=0

(−1)j(x
2
)2j

j!Γ(n+ j + 1)
(C.4)



the matrices Kl
a and Kl

e are instead defined as:

K l
a =
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(C.5)

K l
e =
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2
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2
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(C.6)

C.2. King-Hele High Eccentricity Drag Model

Similarly to the previous section, to retrieve the final state of a s/c subject to the only
atmospheric drag, the following ODE system must be solved through a numerical inte-
grator: 

da
dt

= −A
m
CD

√
µaρ(hp)

√
2(1+e)
πz(1−e)

(1 + e)[e⃗⊤Kh
a r⃗]

de
dt

= −A
m
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a
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√
2(1+e)
πz(1−e)

(1− e2)[e⃗⊤Kh
e r⃗]

dM
dt

=
√

µ
a3

(C.7)

the vectors e⃗ and r⃗ are defined as:

e⃗⊤ =
[
1 e e2 e3 e4 e5 e6 e7 e8 e9

]
(C.8)

r⃗⊤ =
[
1 λ λ2 λ3 λ4 λ5

]
(C.9)

where λ is computed as:

λ =
1

z(1− e2)
(C.10)



the matrices Kh
a and Kh

e are instead defined as:

Kh
a =


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(C.11)

Kh
e =
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256
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D.1. Kozai’s SRP Model

In this appendix are reported the expressions of the short-periodic variations δα on Ke-
plerian elements subject to SRP perturbation, these expressions show some corrections
with respect to those exposed in [31].

δa = 2a3
PSR

µ

∣∣∣R cosE + S
√
1− e2 sinE

∣∣∣Ef

E0

(D.1)

δe = a2
PSR

µ

√
1− e2

∣∣∣1
4
R
√
1− e2 cos 2E + S

(
3

2
E − 2e sinE +

1

4
sin 2E

) ∣∣∣Ef
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(D.2)
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µ
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sin iδΩ =a2
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δω + cos iδΩ =
a2PSR
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δM =−
√
1− e2 (δω + cos iδΩ)+

− 3a2
PSR
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2
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5

3
+

2

3
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(D.6)

where R, S and W represents the direction cosines of the Earth-Sun position vector in
the RSW frame evaluated at θ=0, whereas E0 and Ef are the eccentric anomaly at the
initial and final epochs.
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