
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA - DEIB

DOCTORAL PROGRAM IN INFORMATION TECHNOLOGY

FROM THEORETICAL TO REAL WORLD

CRYPTOGRAPHY: TOWARDS PRACTICAL

PRIVACY-PRESERVING OUTSOURCED COMPUTATION

AND ACCURATE PARSING OF DIGITAL CERTIFICATES

Doctoral Dissertation of:
Nicholas Mainardi

Supervisor:
Prof. Gerardo Pelosi

Tutor:
Prof. Cristina Silvano

Chair of the Doctoral Program:
Prof. Barbara Pernici

2020 – XXXII Cycle

Acknowledgments

The most great and precious contribution to this research is certainly due to my advisor
Prof. Gerardo Pelosi, who has always been strongly committed to guide me through-
out all my PhD. I am grateful for all his patience and the time he devoted to show me
how to describe a scientific work in a clear and rigorous manner, especially for the
headaches I often gave him when reading the drafts of our papers; to be honest, it was
sometimes tedious and frustrating to see entire paragraphs being rewritten, but I def-
initely acknowledge the great improvements to my scientific writing skills thanks to
his advice and the many important details making a scientific paper pleasant to read
that I learned from him. I am also thankful for the valuable feedback and insights on
my research activity, which significantly improve the quality of our works. Another
pillar of this research is definitely Prof. Alessandro Barenghi, who contributed to all
the works reported in this thesis with valuable ideas and advice, especially in the part
devoted to the parsing of digital certificates, where he inspired most of the works. I am
really pleased for all the notions that I learned from his “omniscience”, formerly as a
student and later as a colleague. I have also to thank him for the suggestion to become
the teaching assistant for a course as complex as “Theoretical Computer Science and
Algorithm Design”, which was a useful and valuable activity, helping me a lot to im-
prove my communication skills and giving me appealing human experiences with my
students.

A stimulating environment for a PhD student is also crucial to produce good quality
research and a memorable PhD experience. Luckily, I found myself in an astonishing
environment, the Heap Lab, full of brilliant and funny people. Although I could not
share many research activities with most of them, due to the heterogeneity of our group,
being in such a friendly environment allowed me to really enjoy these years, without
losing motivation even when the challenges of the research activity emerged. I would
like to thank all the members of the Heap lab for all the moments full of “disagio”
that we spent together, to which I hope I provided enough contributions. I have also to
apologize with some of the whiteboards and chairs of the lab, as I was a bit bully with
them in my raging moments.

I would like to also thank the reviewers of this thesis for their valuable comments
who contributed to improve the quality of this manuscript, providing also some inter-

1

esting insights for further developments of my research activity.
Last but not least, I must also mention my parents and my girlfriend, who supported

me throughout all my PhD, bearing all the times I was unavailable during nights or
weekends because of my research activities. Their support was extremely valuable
especially during the harsh moments of my research activity.

Abstract
PLEASE, LET ME EXPLAIN!!

Cryptographic primitives are fundamental building blocks for the security of a system.
Nonetheless, the security guarantees of cryptographic primitives do not depend only on
their theoretical soundness, but also on their proper adoption in real-world applications.
This process is often challenging, as there are many different issues that may com-
promise the security guarantees of cryptographic components, such as implementation
flaws, side-channel attacks and misuses of the primitive. In this work, we focus on two
relevant challenges that arise in the adoption of two cryptographic primitives in real-
world applications: the unpractical performance overhead exhibited by cryptographic
solutions for privacy-preserving outsourced computation; the security vulnerabilities
stemming from the improper parsing of digital certificates.

Privacy-preserving outsourced computation techniques allow to offload a computa-
tion to an untrusted server while retaining the confidentiality of the data involved in the
computation. Fully Homomorphic Encryption (FHE) is one of the most suitable tech-
niques to perform privacy-preserving outsourced computation, as it allows arbitrary
computation directly on encrypted data; nonetheless, its adoption in real-world appli-
cations is currently hindered by its prohibitive performance overhead. In this work, we
aim at evaluating several strategies to reduce such unpractical performance overhead
exhibited by FHE schemes. First, we investigate the security guarantees of existing
noise-free FHE schemes, which are appealing due to their higher efficiency than com-
mon noisy FHE schemes. Our investigations lead to the design of two novel attack tech-
niques against FHE schemes, which amplify the impact of existing vulnerabilities in the
target FHE scheme by relying on its homomorphic capabilities. Our attack completely
breaks two existing noise-free FHE schemes, hence showing the difficulty of design-
ing a secure noise-free FHE scheme. Given the unavailability of secure and efficient
noise-free FHE schemes, we evaluate two alternative strategies for privacy-preserving
outsourced computation: employing Partial Homomorphic Encryption (PHE) schemes,
which restrict the set of computations that can be performed on ciphertexts to gain some
efficiency over FHE ones; relying on trusted hardware, such as the Intel Software Guard
Extension (SGX) technology. We show the effectiveness of these two approaches by
applying them to the design of two Privacy-Preserving Substring Search (PPSS) pro-
tocols, which allow to outsource the look-up of strings in outsourced documents while

I

Abstract

retaining the search and access pattern privacy of the queries as well as the confidential-
ity of the outsourced documents. Both our solutions show an extremely low bandwidth
and a practical response time on real-world use cases, highlighting the effectiveness of
our approach in reducing the performance overhead for privacy-preserving outsourced
computation.

Digital certificates are widely employed in secure communication protocols to en-
sure the authenticity of the binding between a public key and its owner. Despite their
crucial role, existing parsers for these certificates still exhibits a significant lack of ac-
curacy, which has already been exploited to conduct several powerful attacks against
the protocols relying on these certificates. For X.509 digital certificates, automati-
cally generating a parser from a grammar specification has already turned out to be
really effective in improving the parsing accuracy; nonetheless, the formal grammar
for X.509 digital certificates is extremely complex, and thus hardly usable in real-world
implementations. To overcome this issue, in this work we propose a novel format for
X.509 digital certificates; our format, while retaining the same expressiveness of exist-
ing X.509 certificates, can be described by a simple regular grammar, in turn allowing
the automatic generation of a parser exhibiting optimal time and space complexities.
In addition, given the accuracy showed by automatically generated parsers for X.509
digital certificates, in this work we also analyze the format of certificates and messages
in the OpenPGP protocol, showing that the OpenPGP format can be described by a
Deterministic Context-Free grammar, from which an efficient parser can be automati-
cally derived. Nonetheless, we show that such grammar requires a prohibitively high
number of rules and it is thus unusable in practice. Furthermore, we outline several
attacks that rely on different flaws that we identify in our analysis of the OpenPGP
format, assessing their effectiveness against existing implementations of the OpenPGP
protocol.

II

Estratto in Italiano

Le primitive crittografiche sono dei componenti fondamentali per la sicurezza di un
sistema informatico. Tuttavia, le garanzie di sicurezza di queste primitive non dipen-
dono esclusivamente dalla loro validità formale, ma anche dalla corretta integrazione
delle stesse nelle applicazioni pratiche. L’adozione di questi componenti è spesso com-
plicato, a causa delle molte insidie che possono compromettere le loro garanzie di si-
curezza, come ad esempio degli errori implementativi, gli attacchi side channel e un im-
proprio utilizzo della primitiva. In questa tesi, consideriamo due problemi rilevanti che
emergono nell’adozione in applicazioni reali di due importanti primitive crittografiche:
le notevoli perdite di performance causate dall’utilizzo di primitive crittografiche che
consentono di delegare la computazione a una macchina non sicura senza compromet-
tere la confidenzialità dei dati coinvolti nella computazione; le vulnerabilità di sicurezza
derivanti da un’impropria validazione della struttura sintattica dei certificati digitali.

La crittografia omomorfa permette di effettuare una computazione direttamente su
dati cifrati, consentendo quindi di delegare la computazione a una macchina non sicura
mantenendo la confidenzialità dei dati coinvolti nella computazione. Purtroppo una
grossa limitazione all’utilizzo pratico di questa primitiva è la significativa perdita di per-
formance della computazione, che diventano proibitive rispetto allo svolgimento dello
stesso calcolo su dati non cifrati. In questa tesi, consideriamo diverse possibili strate-
gie per risolvere questa importante limitazione della crittografia omomorfa. In primo
luogo, valutiamo le garanzie di sicurezza fornite da un tipo di schemi di crittografia
omomorfa caratterizzati dall’assenza di rumore, che sono di significativo interesse a
causa della loro efficienza rispetto a schemi più comuni. In particolare, introduciamo
due nuove tecniche di attacco contro schemi di crittografia omomorfa, sfruttando le
loro capacità omomorfe per amplificare l’impatto di alcune vulnerabilità esistenti, por-
tando così alla completa compromissione delle garanzie di confidenzialità degli schemi
vulnerabili ai nostri attacchi. Le nostre tecniche sono efficaci contro due schemi di crit-
tografia omomorfa senza rumore, gli unici di questa tipologia disponibili con garanzie
di sicurezza tali da renderli utilizzabili in applicazioni reali, mostrando le difficoltà nel
progettare schemi di crittografia omomorfa senza rumore in maniera sicura.

Data l’indisponibilità di schemi di crittografia omomorfa senza rumore che coni-
ugano sicurezza ed efficienza, consideriamo in questa tesi due strategie alternative per

III

Estratto in Italiano

consentire di delegare la computazione a una macchina non sicura mantenendo la confi-
denzialità dei dati coinvolti senza sacrificare l’efficienza del calcolo. Il primo approccio
utilizza i cosiddetti schemi parzialmente omomorfi, che consentono di effettuare un in-
sieme ristretto di calcoli su dati cifrati rispetto agli schemi di crittografia omomorfa, ma
ne migliorano notevolmente le performance; il secondo approccio basa le sue garanzie
di sicurezza su componenti hardware, come la tecnologia SGX di Intel, che consentono
di eseguire una computazione in maniera sicura su una macchina il cui software, in-
cluso quello di sistema, è potenzialmente compromesso da un attaccante. In questa
tesi, mostriamo l’efficacia di questi due approcci progettando due protocolli che con-
sentono di delegare la ricerca di sottostringhe in un insieme di documenti memorizzato
in una macchina non sicura, garantendo la confidenzialità sia dei documenti che della
sottostringa cercata, e senza rivelare le similarità tra le diverse ricerche. Il primo proto-
collo ha un ridotto consumo di banda e consente di effettuare simultaneamente ricerche
diverse da parte di più utenti, rappresentando anche la prima soluzione che supporta
la ricerca di stringhe contenenti metacaratteri (pattern matching) senza diminuire le
garanzie di confidenzialità dei dati; il secondo protocollo ha un consumo di banda ot-
timale e offre anche garanzie di correttezza del risultato della ricerca, ma attualmente
non supporta né ricerche simultanee da parte di più utenti, né le ricerche di stringhe
contenenti metacaratteri. In conclusione, entrambi i protocolli mostrano un consumo
di banda molto ridotto e dei tempi di risposta per le ricerche che evidenziano la loro
applicabilità in casi d’uso reali, sottolineando così l’efficacia di entrambi gli approcci
nel garantire la confidenzialità dei dati coinvolti in una computazione effettuata su una
macchina remota senza introdurre delle eccessive perdite di performance.

I certificati digitali sono largamente utilizzati nei protocolli di comunicazione si-
curi al fine di garantire la corrispondenza tra una chiave pubblica e il suo proprietario.
Nonostante il ruolo fondamentale di questi certificati nel prevenire attacchi di imper-
sonificazione, i riconoscitori sintattici di questi certificati mostrano ancora una notevole
mancanza di accuratezza, che è già stata sfruttata per effettuare alcuni attacchi estrema-
mente efficaci contro diversi protocolli la cui sicurezza è basata sui certificati digitali.
Per i certificati X.509, utilizzati nel diffusissimo protocollo di comunicazione sicura
TLS, la generazione automatica di un riconoscitore sintattico a partire da una grammat-
ica formale ha dimostrato la sua efficacia nel migliorare l’accuratezza del riconosci-
mento sintattico; tuttavia, la grammatica formale utilizzata per i certificati X.509 è
estremamente complessa, e di conseguenza difficilmente utilizzabile e manutenibile in
applicazioni reali. Per risolvere questo problema, in questa tesi proponiamo un nuovo
formato per i certificati digitali X.509. Il nostro formato, pur mantenendo la stessa ca-
pacità espressiva del formato attuale, può essere descritto con una semplice grammatica
regolare, consentendo così la generazione automatica di un riconoscitore sintattico con
complessità computazionali minime sia in termini di tempo che di memoria. Il nostro
formato ha un preambolo che consente alle implementazioni esistenti di identificarlo
immediatamente come una versione ignota, evitando in questa maniera di causare er-
rori imprevedibili nelle implementazioni esistenti dovuti al tentativo di processare un
formato sconosciuto; questa possibilità è cruciale nel consentire una graduale adozione
del nostro formato nell’infrastruttura dei certificati digitali, in quanto consente la co-
esistenza tra implementazioni esistenti in grado di riconoscere solo i certificati attuali e
i nuovi certificati costruiti con il nostro formato.

IV

Estratto in Italiano

Considerando i buoni risultati in termini di accuratezza mostrati nei certificati X.509
dai riconoscitori sintattici automaticamente generati a partire da una grammatica, in
questa tesi compiamo anche un primo passo in questa direzione per OpenPGP, il pro-
tocollo distribuito che rappresenta la principale alternativa al sistema centralizzato di
autenticazione delle chiavi pubbliche basato sui certificati X.509. In particolare, pre-
sentiamo un’analisi del formato dei certificati e dei messaggi utilizzato nel protocollo
OpenPGP, al fine di determinare se è possibile generare automaticamente un riconosci-
tore sintattico per questo formato. La nostra analisi mostra che il formato di OpenPGP
può essere descritto da una grammatica libera dal contesto deterministica, da cui è pos-
sibile generare automaticamente un riconoscitore sintattico. Tuttavia, la nostra analisi
rivela anche che la grammatica che descrive il formato ha un numero di produzioni
estremamente elevato, che rendono impraticabile il suo utilizzo in qualsiasi infras-
truttura di calcolo attualmente esistente. Di conseguenza, discutiamo in questa tesi
possibili modifiche al formato di OpenPGP che consentono di ottenere una semplice
grammatica libera dal contesto deterministica da cui è praticabile generare automatica-
mente un’automa a pila deterministico in grado di riconoscere certificati e messaggi di
OpenPGP. In aggiunta, presentiamo diversi attacchi basati su alcune falle identificate
durante la nostra analisi del formato del protocollo OpenPGP, valutando l’efficacia di
questi attacchi contro le implementazioni esistenti del protocollo OpenPGP. La valu-
tazione sperimentale mostra che i nostri attacchi non sono applicabili su queste im-
plementazioni, principalmente a causa della bontà delle scelte degli sviluppatori, che
hanno adottato la specifica OpenPGP considerando le implicazioni delle loro scelte
sulla sicurezza dell’implementazione. Tuttavia, questo non dimostra che i nostri attac-
chi siano innocui contro una generica implementazione; per questo motivo, proponiamo
anche delle modifiche alla specifica del formato di OpenPGP che consentono di evitare
gli attacchi identificati.

V

Contents

Introduction 5

I Privacy-Preserving Outsourced Computation 23

1 Definitions and Preliminaries 25
1.1 HE Schemes . 26
1.2 Homomorphic Comparison of Integers 29
1.3 PPSS Protocol . 31
1.4 Backward-Search Algorithm . 34
1.5 Private Information Retrieval . 38
1.6 Oblivious RAM Protocols . 41

2 Comparison-Based Attack Against Noise-Free FHE Schemes 47
2.1 Plaintext-Recovery Attack . 48
2.2 Applying Our Attack on Linearly Decryptable FHE Schemes 53
2.3 Computational Complexity and Experimental Evaluation 60
2.4 Mitigating Attack against OctoM and JordanM 64
2.5 Amplifying Known Plainext Attack in FHE Schemes 67

3 Multi-User PPSS Protocol with Polylogarithmic Communication Cost 71
3.1 Our Multi-User PPSS Protocol . 72
3.2 Queries with Wildcard Characters . 78
3.3 Security Analysis of Our Multi-User PPSS Protocol 89
3.4 Experimental Evaluation of our PPSS Protocol 94

4 ObSQRE: PPSS Protocol Based on Intel SGX 103
4.1 Doubly Oblivious RAMs . 105
4.2 Oblivious Substring Search Algorithms 111
4.3 Security Analysis of ObSQRE . 114
4.4 Experimental Evaluation . 120

VII

Contents

II Digital Certificates 125

5 Definition and Preliminaries 127
5.1 Language Theoretical Concepts . 127
5.2 Format of X.509 Digital Certificates 129
5.3 Description of OpenPGP Protocol and Format 134

6 Novel Regular Format for X.509 Digital Certificates 139
6.1 Parsing Hindrances in X.509 Format 139
6.2 Description of Our X.509 Format . 141
6.3 Implementation strategies and experimental validation 146

7 Security Audit of OpenPGP Format 149
7.1 On the Design of a Formal Grammar for the OpenPGP Format 149
7.2 Design Flaws in OpenPGP Format . 152
7.3 Experimental Evaluation of Our Attacks 155
7.4 Improvements to OpenPGP Format 156

Concluding Remarks and Further Developments 159

Bibliography 169

A Appendix 181

VIII

List of Figures

1 Entities involved in a PPSS protocol for a document collection D . . . 12

1.1 BWT L and SA Suf of the string alfalfa 35
1.2 Path ORAM tree example. Figure reused from [132], with author consent 42

2.1 Execution times for single core implementation of our attack. Figure
reused from [103] . 62

2.2 Execution times for parallel implementation of our attack. Figure reused
from [103] . 63

2.3 Speed-up of our attack. Figure reused from [103] 64

3.1 Security game experiments for our PPSS protocol 90
3.2 Parameters estimation for our PPSS protocol. Figure derived from [102] 95
3.3 Performance of our PPSS protocol with increasing document size. Fig-

ure derived from [102] . 96
3.4 Performance of our PPSS protocol for increasing number of occurrences 96
3.5 Execution of the SETUP procedure of our PPSS protocol. Figure reused

from [102] . 97
3.6 Memory consumption of our PPSS protocol in a multi-user scenario.

Figure reused from [102] . 97
3.7 Computational costs of our PPSS protocol for patterns containing wild-

cards . 99
3.8 Communication cost of our PPSS protocol for patterns containing wild-

cards . 100

4.1 Overview of the ObSQRE PPSS architecture 104
4.2 Security experiments for DORAM. Figure derived from [104] 116
4.3 Security experiments for PPSS protocol. Figure derived from [104] . . 118
4.4 DORAM Benchmarking. Figure reused from [104] 121
4.5 Performance evaluation of ObSQRE over different datasets. Figure reused

from [104] . 122

1

List of Figures

5.1 ASN.1 description of X.509 digital certificate. Figure reused from [13] 132
5.2 ASN.1 description of X.509 extensions. Figure reused from [13] 134
5.3 EBNF description of OpenPGP format. Figure reused from [11] 137

6.1 Lexical grammar four our novel X.509 format. Figure reused from [14] 142
6.2 Syntactical grammar for our novel X.509 format. Figure reused from [14] 144
6.3 Parsing time for our novel X.509 format. Figure reused from [14] . . . 147

2

List of Tables

1.1 Comparison of our PPSS protocols with existing ones 34
1.2 Bucket metadata in Ring ORAM . 43

2.1 Scalability of parallel implementation of our attack. Table reused from [103] 63

3.1 Wildcard meta-characters in Unix glob patterns 79

4.1 Bucket metadata for Ring DORAM. Table reused from [104] 107
4.2 Computational overhead introduced by our DORAMs over correspond-

ing ORAMs. Table reused from [104] 111
4.3 Parameters chosen for experimental evaluation of our DORAMs. Table

reused from [104] . 120
4.4 Comparison of ObSQRE with baseline solutions. Table reused from [104] 123

5.1 ASN.1 constructed data types. Table reused from [13] 130

7.1 Comparison of query times among PPSS protocols based on different
privacy-preserving solutions . 165

3

Introduction
PLEASE, LET ME EXPLAIN!!

The design of secure systems often hinges upon the security guarantees provided by
cryptographic primitives, which are among the most critical components of a secure
system. Indeed, weaknesses found in cryptographic components are often sufficient to
completely subvert the security guarantees of a system. Unfortunately, the adoption
of theoretically sound cryptographic constructions does not necessarily guarantee that
the cryptographic components of a system cannot be exploited by attackers. Indeed,
both the design and the security guarantees of cryptographic primitives usually rely on
complex statistical and algebraic concepts; because of such complexity, their imple-
mentation is rather error-prone, and even a simple flaw is often sufficient to completely
subvert their security guarantees. A well-known example is the private key recovery
attack against flawed implementations of Ellyptic Curve Digital Signature Algorithm
(ECDSA) signature scheme. To compute the signature, this algorithm employs a value,
called nonce, which must be sampled uniformly at random, as the signing private key
can be efficiently computed if two signatures computed with the same nonce are col-
lected by the attacker. This requirement of ECDSA was neglected by developers of
Sony PlayStation 3, which naively employed the same nonce for every signature 1; the
same vulnerability was exploited against an Android Bitcoin wallet which computed
ECDSA signatures with a nonce generated by a flawed random number generator 2.

Even if a cryptographic algorithm is properly implemented with no statistical or al-
gebraic flaws, there is a further threat that the implementation has to withstand, namely
the information leaked to the attacker through side-channels. In general, a side-channel
is an information leak that derives from the execution of the algorithm on a device,
such as the execution time or the power consumption. When this information may be
actually exploited by an attacker to learn sensitive data (e.g., the cryptographic key),
the implementation is said to be vulnerable to a side-channel attack. A well-known
example of side-channel vulnerability is found in the square-and-multiply algorithm
to compute exponentiation, which is a common operation in several asymmetric en-
cryption schemes, such as RSA. This algorithm iterates over each bit of the exponent,
performing a costly multiplication if and only if the bit at hand is 1. Thus, if an attacker

1https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
2https://bitcoin.org/en/alert/2013-08-11-android

5

Introduction

is able to profile the execution time of each iteration, it can easily learn the value of
each bit of the exponent, which must be kept secret in several encryption algorithms:
for instance, the decryption operation in the RSA scheme is an exponentiation where
the exponent is the secret key; if the square-and-multiply algorithm is employed for
this exponentiation, then the attacker can easily reconstruct the RSA key. To avoid this
threat, it is necessary to employ a modified algorithm that performs the multiplication
for each bit of the exponent, independently from their value.

In addition, even assuming that a safe implementation resilient to side-channel at-
tacks is employed, application developers can easily misuse the cryptographic prim-
itive. For instance, even by considering a simple cryptographic component such as
a block cipher (e.g., Advanced Encryption Standard (AES)), an application developer
with little knowledge of cryptography may compromise the confidentiality of the en-
crypted content by employing a secret key derived from a user password without adding
further randomness to the password, or by choosing Initialization Vectors (IVs) of ci-
phertexts in increasing order, hence making them trivially predictable.

Finally, the adoption of cryptographic constructions is sometimes hindered by the
computational or communication overhead they introduce, which is generally referred
to as security cost. Indeed, application designers are willing to rely on the security
guarantees of a cryptographic construction for their products only if the cryptographic
construction does not significantly worsen the performance of the application; other-
wise, it is possible that the cryptographic construction is discarded by the application
designers, actually leaving the application with weaker or even no security guarantees.

In conclusion, besides the necessary theoretical soundness of a cryptographic com-
ponent, there are several further challenges that need to be addressed to make the cryp-
tographic component amenable to a secure and effective adoption in real-world appli-
cations. This general and complex problem requires specific solutions for each crypto-
graphic primitive, as the implementation difficulties and performance bottlenecks usu-
ally vary between different primitives. The common thread of this thesis deals with
tackling some of the aforementioned challenges for two specific cryptographic primi-
tives, in order to foster their effective adoption in real-world applications. In particu-
lar, we focus on the security cost currently introduced to outsource a computation in
a privacy-preserving fashion, especially when Homomorphic Encryption (HE) is em-
ployed, and on the inaccuracy of existing implementations in the processing of digi-
tal certificates. In the remainder of this chapter, we introduce the notions of privacy-
preserving outsourced computation and digital certificate, we describe the challenges
related to each of these cryptographic primitives that are tackled in this work, and we
discuss our contributions to the solution of the described issues.

Privacy-Preserving Outsourced Computation

Outsourcing computation and data to entities with powerful computation and storage
capabilities, such as data centers or cloud providers, is an emerging trend as it enables
significant cost savings with respect to the deployment and the maintenance of an high
end computing infrastructure. Nonetheless, offloading computation to a cloud provider
requires to outsource also the data involved in the computation, in turn compromising
the confidentiality of such data. Indeed, even if the data are outsourced in encrypted
form, the cloud provider must be able to decrypt the data in order to perform the compu-

6

Introduction

tation, which means that the data is necessarily disclosed to the cloud provider as well
as being possibly leaked throughout security breaches targeting the premises of the
cloud provider. This privacy loss is sometimes sufficient to discourage an entity from
outsourcing computation to the cloud, especially if the outsourced data are particularly
sensitive, as it is the case for biomedical or financial data.

To address the confidentiality issues of the outsourced data, we need to employ
privacy-preserving computation techniques, which allow a set of parties to jointly per-
form a computation with each party learning no more than the information that can
be inferred from its input values and the output of the computation. The outsourc-
ing scenario can be conceived as a 2-party privacy-preserving computation, where the
outsourcing entity inputs its data and receives the output of the computation while the
cloud provider provides no input data (being it entirely provided by the outsourcing en-
tity) and receives no output value. Thus, privacy-preserving techniques may foster the
outsource of a computation even in applications processing particularly sensitive data,
as they ensure that the cloud provider learns nothing from the outsourced computation,
in turn effectively removing any concern about data confidentiality.

Among the variety of techniques for privacy-preserving computation, Homomor-
phic Encryption (HE) is perfectly suitable for the outsourcing scenario, as it allows to
perform computation over encrypted data with neither decrypting the data nor learning
the secret key. Indeed, the outsourcing entity can simply encrypt the input data with an
HE scheme and send it to the cloud provider, which can compute the result from the
input ciphertexts without the need to know the secret key; then, the encrypted result
is sent back to the outsourcing entity, which recovers it by decrypting the received ci-
phertext. The cloud provider learns nothing throughout the computation, as it processes
only ciphertexts; similarly, the data cannot be leaked through security breaches at the
premises of the cloud provider, since the secret key to decrypt the ciphertext is never
sent to the cloud provider by the outsourcing entity.

An HE scheme, besides the two usual encryption and decryption routines, is en-
riched with the homomorphic evaluation operation, called EVAL, which, given some
input ciphertexts and a function f to be evaluated, computes a ciphertext that encrypts
the evaluation of the function over the corresponding plaintexts of the input ciphertexts.
The function f is generally represented by an arithmetic circuit with addition and mul-
tiplication gates over a given ring (e.g., the set of integers Z). This representation is
employed because the homomorphic evaluation of a function in an HE scheme hinges
upon two homomorphic operations ADD and MUL, which homomorphically evaluate
the addition and multiplication gates, respectively, over the ciphertexts fed as inputs to
these operations; the EVAL operation is then performed by applying in place of each
gate found in the arithmetic circuit the corresponding homomorphic operation.

HE schemes are classified according to the set of functions that can be homomor-
phically evaluated over encrypted data, which is referred to as the homomorphic ca-
pability of the scheme at hand. In particular, Partial Homomorphic Encryption (PHE)
schemes can evaluate circuits with a single type of gate, i.e., they provide either ADD or
MUL operation but not both of them; SomeWhat Homomorphic Encryption (SWHE)
schemes can evaluate circuits with both addition and multiplication gates, but limited
depth; lastly, Fully Homomorphic Encryption (FHE) schemes can evaluate arbitrary
circuits, with no limitation on their depth.

7

Introduction

PHE schemes are in general traditional cryptosystems where there is either an ad-
ditive or a multiplicative homomorphism between the plaintext and ciphertext spaces.
For instance, in the textbook RSA scheme, the encryption function is the exponenti-
ation over ZN (with N the composite RSA modulus) with a fixed exponent e, which
is a multiplicative automorphism: indeed, given the public key e and two plaintexts
m1,m2 ∈ ZN with corresponding ciphertexts c1 = me

1 mod N , c2 = me
2 mod N , re-

spectively, the ciphertext c = c1·c2 mod N = me
1·me

2 mod N = (m1·m2)e mod N is
an encryption of m1·m2 mod N . In this case, the homomorphic multiplication MUL
is as simple as a single multiplication over ZN , where N is a composite integer repre-
sented by few Kibit.

In order to get a FHE scheme, it is sufficient that the mapping between plaintexts and
ciphertexts is both an additive and a multiplicative homomorphism. The most common
strategy adopted to employ such an homomorphic mapping in a secure fashion (i.e,
guaranteeing that plaintexts cannot be recovered from corresponding ciphertexts with-
out the knowledge of the secret key) is performing a preliminary encoding of the plain-
texts before applying the homomorphic mapping; nonetheless such encoding preserves
the homomorphic properties of the mapping between plaintexts and ciphertexts only for
a limited number of homomorphic operations. Such encoding is referred to as noisy,
since the behavior obtained by introducing it is similar to the ones of systems dealing
with noise. Indeed, the role of the encoding can be conceived as hiding the plaintext
value by introducing a certain amount of noise, which can be removed up to a certain
threshold. The noises of ciphertexts is combined and amplified by homomorphic oper-
ations, especially multiplication, in turn making it eventually too high to be removed.
In this case, the plaintext value can no longer be recovered and the HE scheme exhibits
a decryption failure; thus, this strategy allows to design only SWHE schemes, as the
number of operations is limited by the noise growth. In order to reduce the impact of
noise on the homomorphic capabilities, SWHE schemes are generally equipped with
additional procedures that reduce the noise growth after homomorphic operations, such
as modulus switching [22] or scale invariant techniques [20, 55]. These procedures,
called noise management techniques, introduce a significant performance overhead to
homomorphic computation in SWHE schemes. A further source of computational over-
head in SWHE schemes is the ciphertext expansion, which may be as high as 2 or 3
order of magnitudes. Indeed, the ciphertexts are generally complex algebraic structures,
and thus the homomorphic operations, which are necessarily performed over elements
of these structures, become also much more complex and computationally intensive
than the corresponding operations on the plaintext values.

The limitation on the number of operations that can be homomorphically performed
in a SWHE scheme can be removed by applying the bootstrapping procedure, proposed
by Gentry in 2009. This was a significant breakthrough in the design of HE schemes,
as it lead to the construction of the first FHE scheme [60], which had been an open
problem since 1978, when Rivest [129] introduced the concept of FHE with the name
of privacy homomorphism. Differently from other noise management techniques that
simply limit the noise growth, bootstrapping allows to obtain ciphertexts with a fixed
amount of noise without decrypting the ciphertexts. When bootstrapping is applicable
to a SWHE scheme, it become possible to evaluate an arbitrary circuit, since the noise
can always be reduced to a fixed amount that allows to perform further homomorphic

8

Introduction

operations. Nonetheless, bootstrapping is an even more complex operation than other
noise management techniques, hereby introducing a much higher computational over-
head. For this reason, FHE schemes with a slower noise growth are generally preferable
despite the availability of the bootstrapping procedure, because they allow to bootstrap
less frequently, in turn amortizing the bootstrapping cost over more homomorphic op-
erations.

In conclusion, we observe that the performance overhead of HE schemes increase
with their homomorphic capabilities, mainly because the homomorphic evaluation be-
come much more complex. In particular, the performance overhead exhibited by FHE
has prevented a wider adoption of these schemes in real-world applications, as the secu-
rity cost is still deemed too high. Since the introduction of the bootstrapping technique
by Gentry, several FHE schemes were proposed [154, 15, 21, 63, 84, 35, 99, 54, 101],
based on different security assumptions [126, 144, 8] and yielding remarkable perfor-
mance improvements. In addition, researchers enriched also the features for privacy-
preserving computation available in FHE schemes: the batching technique [61, 141]
allows to construct ciphertexts with multiple slots, each storing its own plaintext value,
and to apply an homomorphic operation simultaneously to all the slots in a Single
Instruction Multiple Data (SIMD) fashion; multi-key FHE schemes [99, 113, 100] al-
low to perform computation over ciphertexts encrypted with independent keys from
different owners, and the result of the computation can be decrypted by a secret key
that is jointly computed by all the owners of the independent keys; lastly, the CKKS
scheme [34] allows to perform homomorphic evaluation of ciphertexts representing ra-
tional values. We refer interested readers to [108, 2] for a detailed outline of the most
relevant HE schemes proposed in the literature as well as the efforts aimed at achieving
efficient and optimized implementations of such schemes. Despite all these significant
improvements, the security cost of FHE is still quite unpractical: for instance, TFHE
library [36], one of the most efficient existing implementations of a FHE scheme, re-
ports about tens of milliseconds to execute one homomorphic operation, corresponding
to approximately 6 order of magnitudes overhead w.r.t. computation over plaintext val-
ues. In this thesis, we are interested in investigating possible solutions to overcome this
high security cost while allowing to outsource a computation in a privacy-preserving
manner.

Noise-Free Schemes

Given the performance overhead introduced by noise management techniques and boot-
strapping, an interesting solution to reduce such overhead is represented by noise-free
FHE schemes. As suggested by their name, these schemes do not apply a noisy en-
coding to the plaintext values: they simply employ an additive and multiplicative ho-
momorphism between the plaintext and ciphertext space, which allows to perform an
arbitrary number of operations without incurring in a decryption failure. Being noise-
free, these schemes do not require costly noise management techniques and thus they
represent a viable strategy to reduce the computational overhead exhibited by FHE
schemes. Nonetheless, most of the noise-free FHE schemes found in the literature ex-
hibit critical security weaknesses, which allow to easily recover the plaintext values or
even the secret key from ciphertexts. Indeed, the noise-free scheme proposed in [98]
was subsequently showed to be broken in [158], while the scheme found in [85] can

9

Introduction

be completely subverted by knowing the corresponding plaintext value of only two ci-
phertexts [151]. Two noise-free schemes that have not showed any security weakness
yet are the ones found in [94, 115]: nonetheless, both of them employ cumbersome
algebraic structures as their plaintext spaces (i.e., non commutative rings and group
presentations), and finding a mapping between integer values and elements of such
structures that preserves both the homomorphic properties and the security guarantees
of the schemes is still an open challenge; since this mapping is necessary to compute ci-
phertexts for the input data involved in the outsourced computation, these schemes are
currently unusable in real-world applications. To the best of our knowledge, the only
existing noise-free FHE schemes that may be employed in real-world applications are
OctoM [158] and JordanM [158], which are based on octonion and Jordan algebras,
respectively. Since these schemes are linearly decryptable, i.e., their decryption func-
tion can be expressed as the inner product between the ciphertext and the secret key,
they exhibit two security weaknesses: they are vulnerable to Known Plainext Attacks
(KPAs), that is the attacker can recover the secret key by knowing the corresponding
plaintext value for slightly less than a hundred of ciphertexts; there exists an efficient
distinguisher algorithm that allows an attacker with no knowledge of the secret key to
determine if the corresponding plaintext value of a generic ciphertext is equal to the
integer value 1 or not. Despite these vulnerabilities, which are acknowledged by the
designers of the schemes too, OctoM and JordanM are claimed to be secure in a
ciphertext-only scenario, unless it is computationally feasible to solve quadratic modu-
lar equations over a ring ZN , with N being a composite integer, a problem which is as
hard as factoring N .

OctoM and JordanM are appealing solutions for privacy-preserving computation
from a performance standpoint, as the homomorphic ADD and MUL operations are as
simple as matrix addition and multiplication, respectively, with no noise management
techniques being involved. Nonetheless, to foster their usage, there is the need to better
understand if they can be securely employed despite the vulnerabilities acknowledged
by their authors. Indeed, the existing vulnerabilities may not prevent the usage of the
scheme in application scenarios where it is unlikely that the attacker may learn a suffi-
cient number of ciphertexts with known plaintext values to mount a KPA, or where it
is extremely unlikely to have ciphertexts whose corresponding plaintext is the integer
1. Unfortunately, our analysis, which is reported in this manuscript, shows that the
existence of a distinguisher for a single plaintext value for both these schemes make
them insecure even in a scenario where the attacker has no additional information on
the processed ciphertexts (i.e., a ciphertext-only scenario). In particular, we show that
the existence of a distinguisher for a single plaintext value in a FHE scheme is suffi-
cient to mount a plaintext recovery attack for any ciphertext. We deem our attack as
comparison-based, since the core technique relies in combining the distinguisher and
the homomorphic evaluation of the comparison between two integer values in order to
efficiently guess the plaintext value of a generic ciphertext. The main drawback of our
attack resides in its computational complexity: indeed, our attack tests increasing pos-
sible plaintext values for a given ciphertext until it finds the correct one, thus yielding a
computational effort proportional to the plaintext value being recovered. Although this
limitation allows to successfully perform our attack only against ciphertexts with rela-
tively small plaintext values (e.g., no bigger than 232), we observe that in FHE schemes

10

Introduction

the magnitude of plaintext values is not expected to be much higher, as they correspond
to the input values of the computation. We remark that if the adversary knows a range
of possible plaintext values for a given ciphertext, then our attack can test only values
found in this range, yielding a computational complexity which is proportional to the
size of the range at hand rather than the actual plaintext value. Furthermore, in the
experimental evaluation of our attack against OctoM and JordanM, we show that our
attack is massively parallel, that is the speed-up of a parallel implementation scales with
the number of processing nodes available. In addition, in the specific case of OctoM
and JordanM, we show that we can employ our attack to recover the plaintext value
of a sufficient number of ciphertexts to directly recover the secret key through KPA.
To address these security issues, we also present a simple modification to OctoM and
JordanM that mitigates our attack; nonetheless, the schemes remain vulnerable to a
KPA with the same number of known plaintext values. Unfortunately, with our second
attack technique we also show that the existence of a KPA is sufficient to completely
break a FHE scheme even with a limited amount of information on the plaintext value
of a single ciphertext, in turn preventing the secure adoption of the modified OctoM
and JordanM to make a computation privacy-preserving.

Privacy-Preserving Outsourced Computation with PHE Schemes

Given the unavailability of efficient and secure FHE noise-free schemes, we explore a
different strategy to make privacy-preserving outsourced computation more practical:
hinging upon weaker but more efficient HE schemes. Indeed, as we discussed earlier,
the performance overhead of HE schemes generally increase with their homomorphic
capabilities. In particular, if we consider PHE schemes, their performance overhead
w.r.t. plaintext computation is much smaller than FHE ones, given the simplicity of
homomorphic operations and the absence of noise management techniques. The chal-
lenge in employing these schemes in place of FHE ones resides in devising an efficient
strategy to perform the computation with the single homomorphic operation available
in the PHE scheme being employed. In order to achieve the best performance, this de-
sign process must be necessarily tailored to the requirements of each privacy-preserving
outsourced computation. In this thesis, we tackle this challenge for an important build-
ing block of privacy-preserving applications, that is the computation of substring search
queries based on an inverted index. In particular, we consider the scenario reported in
Fig. 1. A data owner with a set D of documents, called document collection, computes
an inverted index that allows to efficiently compute the positions of all the repetitions,
or occurrences, of a string over the document collection D. The inverted index, re-
ferred to as full-text index from now on, is outsourced in encrypted form to an untrusted
server (e.g., a cloud provider). The data owner, and possibly other users authorized
by the data owner, can then send queries for a string q; the untrusted server employs
the full-text index to compute the result of the query, namely the positions of all the
occurrences of the string q in the document collection, and sends it back to the user.
Our goal is achieving a practical response time for the queries while guaranteeing that
the computation is privacy-preserving, which means that the untrusted server learns no
more information than the size n of the document collection D, the length m of the
string q and the number oq of its occurrences over D. Since each user is assumed to run
on a constrained device with limited storage and computational capabilities, we set as

11

Introduction

Data Owner

Cloud Server

D . . .

Authorized Users

Full-Text
Index

q
=
C
G
T

q
=
A
T
G

Figure 1: Entities involved in a PPSS protocol for a document collection D

a necessary requirement for our solution a lightweight computation for the user issuing
the query; thus, the performance metrics that mostly affect the response time are the
computational cost at server side and the amount of information exchanged between
the user and the server during a query, referred to as communication cost. Specifically,
in the design of our Privacy-Preserving Substring Search (PPSS) protocol, we aim at
reducing as much as possible the communication cost rather than the computational
one, as long as the response time remains acceptable for the end user. Indeed, while
the query is executed by a cloud service provider, which can in general provide enough
computational power to meet the Service Level Agreement (SLA) requirements, the
end user issuing a query may reside on a device with a low latency connection and a
non flat-rate plan for network access (e.g., a mobile phone); in such scenario, a protocol
with low bandwidth and communication cost is more appealing than a protocol with a
lower response time but exhibiting a prohibitively high bandwidth consumption.

There exists different solutions to tackle the problem of securely outsourcing sub-
string search queries, which exhibit different trade-offs between performance and pri-
vacy guarantees. The first class of solutions [92, 147, 33, 69], referred to as substring-
searchable symmetric encryption schemes, allows to perform queries on an untrusted
server with both computational and communication costs that depend only on the length
m of the queried string and on the number oq of its occurrences in the document collec-
tion (thus independent from the size n of the collection); nonetheless, all these solutions
leak to the untrusted server both the search and the access patterns: the former refers
to any information regarding the similarities between queries (e.g., if the same string is
searched more than once), while the latter refers to any information related to the results
of the query (e.g., if some queries share a common set of occurrences). The leakage of

12

Introduction

such information, when paired with public domain knowledge about the documents of
the collection, was proven [30, 67, 130] to be sufficient to recover a significant portion
of the documents or the content of the queried string, in turn pushing for the adoption of
solutions preventing such information leakage. This need lead to the design of several
PPSS protocols [155, 80, 139, 112, 56, 123] that hide search or access patterns from
the untrusted server. Nonetheless, the reduced information leakage comes at the cost of
making communication and computational costs no longer independent from the size
n of the document collection.

To improve over the practicality of existing PPSS solutions that protect search and
access patterns, we propose the first PPSS protocol with O(m) communication rounds
and O(m log2(n) + oq log(n)) overall communication cost that enables multiple simul-
taneous queries from different users and guarantees both search and access patterns
privacy against a semi-honest adversary who follows the protocol specification but is
eager to learn as much information as possible about the data involved in the computa-
tion. The computational cost of our PPSS protocol at server side amounts to O(mn),
i.e., it is independent from the number of retrieved occurrences oq, with O(n) storage
cost; our protocol allows authorized users to issue the queries from constrained devices,
as our protocol is computationally light at client side, exhibiting O((m+oq) log4(n))
computational cost and O(log(n)) memory. Remarkably, our protocol does not re-
quire any interaction between the users and the data owner throughout the queries, and
its memory consumption at server side scales well with the number of simultaneous
queries being performed, as it requires only O(log2(n)) additional memory per query
instead of replicating the whole outsourced full-text index for each query. To the best
of our knowledge, our PPSS protocol is the first one that allows to perform queries in
a privacy-preserving manner for strings containing wildcard characters; furthermore,
it provides a lightweight mechanism to verify the correctness of the data retrieved by
the server, which makes our protocol resilient against accidental or misconfiguration
errors. The experimental validation on a real-world genomic use case of our PPSS
protocol highlights its practical performance for substring search queries: a parallel
implementation of our solution allows to execute a query over the 21st human chromo-
some, which contains about 40 MiB of data, in few minutes, requiring only 50 KiB of
bandwidth per communication round.

Privacy-Preserving Outsourced Computation with Intel SGX

In the light of our goal of reducing the performance overhead of privacy-preserving
outsourced computation, in this work we also evaluate the usage of trusted hardware in
place of relying only on cryptographic primitives. Specifically, we address the design of
privacy-preserving applications based on the trusted execution environment, referred to
as secure enclave, provided by Intel Software Guard Extension (SGX) technology [42],
which have been available in Intel CPUs since the Skylake microarchitecture. Secure
enclaves are protected memory regions that store code and data belonging to the appli-
cation that instantiates the enclave. The SGX technology enforces at hardware level that
only the application that instantiates the enclave can access the code and data stored in
the enclave, thus ensuring their confidentiality and integrity even against the Operating
System (OS) or the hypervisor of the machine hosting the enclave. Indeed, the content
of an enclave is always stored in encrypted form with a key known only to the CPU and

13

Introduction

decrypted only when moved inside the CPU. To ensure the confidentiality and integrity
of the code and data found in the enclave, SGX enforces a strong isolation between the
code running in the enclave and any external component. In particular, the SGX pro-
gramming model forbids both system calls and calls to shared libraries from code run
inside the enclave, as these strict constraints prevent an implicit and subtle information
leak between trusted and untrusted code. Conversely, the enclave can communicate
only with the untrusted portion of the application that instantiates the enclave, which
corresponds to the code of such application running outside the enclave; the SGX model
allows to define an interface between the the trusted and the untrusted portions of the
application, ensuring that these two portions exchange data only through the methods
of this interface. Since the untrusted portion of the application resides outside the en-
clave, it can be manipulated by the attacker, hence SGX enforces strong isolation of the
trusted portion by flushing all the CPU registers, which stores plaintext data, when the
execution context switches between trusted and untrusted modes, and vice versa.

Thanks to these security guarantees, SGX technology enables the execution of an ap-
plication on an untrusted machine while guaranteeing the confidentiality and integrity
of the data employed by the application, which is useful for instance in digital right
management scenarios to protect copyrighted material from being disclosed without
authorization by legitimate consumers of the content. Since the enclave must be nec-
essarily instantiated by the untrusted machine where the enclave resides, the security
guarantees of SGX may be easily circumvented if the malicious OS of the hosting
machine instantiates an enclave with a modified code that may send the data in unen-
crypted form outside the enclave; to avoid such threat, SGX provides a remote attesta-
tion procedure, which allows the remote owner of the application to verify that the un-
trusted machine has correctly instantiated the enclave with the expected code and data.
Specifically, the remote attestation produces a fingerprint of the enclave signed with a
key known only to the CPU, and whose authenticity can be automatically verified only
by Intel through the Intel Attestation Service (IAS); in addition, the remote attestation
allows to establish a secret session key between the enclave and the application owner,
which is used to avoid Man in the Middle (MitM) attacks by the untrusted machine
aimed at learning the information exchanged between the enclave and the application
owner.

Securely outsourcing a computation to a cloud provider with SGX is rather simple.
Indeed, the outsourcing entity asks the cloud server to instantiate an SGX enclave with
its own application, which must be properly modified to be run inside an SGX enclave,
and verifies through the remote attestation the correct setup of the enclave. Then, it
employs the secret session key to send in encrypted form the data needed for the com-
putation, which is safely stored inside the enclave. At the end of this setup phase, the
application running inside the enclave starts the computation over the received data;
when the results are available, the outsourcing entity retrieves them through the secure
channel established with the enclave. Throughout this process, the outsourcing entity
has to trust only the hardware vendor (i.e., Intel) that guarantees the authenticity of
the remote attestation. The big advantage of hinging upon SGX for privacy-preserving
outsourced computation is the modest performance overhead w.r.t. pure cryptographic
solutions: indeed, after the data is decrypted when moved in the CPU, the computation
proceeds over unencrypted data with no actual overhead.

14

Introduction

Nonetheless, the main weakness of SGX resides in the multiple side channel attacks
that have been proposed since its deployment in Intel CPUs, which may pose some
concerns about the security of this technology. We can split these attacks in microar-
chitectural and memory access pattern reconstruction ones. The former leverages the
side effects on the state of the CPU (e.g., cache or internal buffers) caused by microar-
chitectural features of the CPU such as speculative or out-of-order execution, employ-
ing techniques that follow the blueprint of the seminal works on the Spectre [90] and
Meltdown [97] attacks. In particular, specific microarchitectural attacks targeting SGX
technology have been proposed in the last three years [27, 26, 124]: these attacks com-
pletely subvert the security guarantees of SGX, as they allow the adversary to read the
whole enclave memory and recover the per-CPU keys that ensure the authenticity of the
attestation procedure. The main concerns about the security of SGX technology stem
from the fact that new attacks have been found quite regularly, which generally allow
to circumvent the mitigations to preceding attacks promptly released by Intel mostly as
microcode updates [75, 76, 74]. Furthermore, each of these countermeasures generally
introduce a non negligible performance overhead (which can be as high as 20× [76]) on
the CPU, and thus stacking all those mitigations may lead to a significant performance
degradation. That being said, all the microarchitectural attacks proposed so far were
mitigated by Intel, thus SGX technology can be currently considered secure.

Memory access pattern reconstruction attacks are weaker than microarchitectural
ones, as they do not recover the per-CPU keys but they only allow to reconstruct the
access pattern to code and data of the portion of the application running inside the en-
clave. Nonetheless, as the branches and memory accesses of an application are usually
data dependent, this information can be sufficient to infer a significant portion of the
data stored in the enclave. For instance, in [161], authors managed to recover a large
portion of a JPG image from the memory access pattern of the compression algorithm
run inside a secure enclave. Two side channels are mostly employed by existing at-
tacks to learn the memory access pattern of the application run inside the enclave: the
sequence of page faults experienced by the application [161], which can be easily ob-
served by a privileged adversary running on the untrusted machine as SGX hands over
the management of virtual memory and paging to the OS; the latency experienced by an
application controlled by the attacker on cache lines shared with the victim application
running inside the enclave [25, 23]. Differently from microarchitectural attacks, Intel
explicitly claimed to exclude these attacks from its threat model [41], which means that
there is no intention to mitigate them.

This statement fostered several research efforts aimed at preventing or detecting
these side channel attacks. In [140], a compiler-level mitigation that makes page faults
independent from the control flow of the application was proposed, while T-SGX [138]
employs Transactional Synchronization Extension (TSX) technology to conceal page
faults events to the OS. While these countermeasures exclusively target page fault based
attacks, Cloak [68] refines T-SGX by protecting also against the cache attacks presented
in [23]; nonetheless, it is not effective against the ones described in [25]. Finally,
Varys [116] ensures that no concurrent applications are run on the same core of the
enclave application, protecting against page fault based attacks and all the attacks that
leverage resources shared by the enclave with applications running on the same core
(e.g., L1 caches); nonetheless, it is still vulnerable to attacks leveraging contention on

15

Introduction

the level 3 cache. In conclusion, none of these countermeasures can prevent all the
existing side channel attacks.

Instead of preventing the leakage of the memory access pattern of the application
running inside the enclave to the adversary, an alternative strategy is making such leak-
age meaningless. This goal can be achieved by making the application oblivious, which
means that it exhibits the same memory access pattern independently from the data be-
ing processed. The existing approaches [4, 135, 111] achieve oblivious execution in
SGX applications by hinging upon the Oblivious RAM (ORAM) primitive [64], which
allows a client with limited storage capabilities to remotely access data outsourced to
an untrusted server without revealing to the server, which observes only the physical
accesses to the ORAM data structure, the access pattern to the outsourced data. The
performance overhead introduced by ORAM is mostly due to the network latency be-
tween the client and the server, as the client needs to fetch more data than needed in
order to conceal which element is retrieved. However, when an ORAM is employed in
SGX applications, the client can be safely moved inside the enclave, as the confiden-
tiality guarantees of SGX allows to conceal the client data structures from the untrusted
machine; in this way, the latency to access data stored in the ORAM can be significantly
reduced. Nonetheless, as leaking the access patterns of the ORAM client algorithms
through SGX side channels is sufficient to invalidate the privacy guarantees of ORAM,
it is necessary to make the ORAM client oblivious too. Coherently with the terminol-
ogy employed in [111], henceforth an ORAM with an oblivious client is referred to as
Doubly Oblivious RAM (DORAM). ZeroTrace [135] was the first work that proposed
the adoption of a DORAM to ensure that an application running inside an SGX enclave
performs oblivious accesses to its data structures. Specifically, ZeroTrace provides a
DORAM-based memory controller in a standalone enclave, which can be employed
by a generic application to store and obliviously access its data through specific APIs.
Nonetheless, ZeroTrace does not protect the memory access pattern to code pages,
which may still reveal sensitive data. This limitation was overcome by Obfuscuro [4],
which, given the source code of a generic application, instruments and compile the
code in order to execute the application obliviously inside an SGX enclave, employing
two DORAMs to protect accesses to code and data pages, respectively. Nonetheless,
Obfuscuro introduces a non negligible performance overhead, since it has to perform a
costly access to both the DORAMs every 3 to 5 executed assembly instructions.

In our vision, the solution achieving a reasonable trade-off between performance
and security guarantees of privacy-preserving applications based on SGX is an hybrid
approach between ZeroTrace and Obfuscuro: hinging upon a DORAM to conceal the
accesses to sensitive data and employing an algorithm with a data-independent con-
trol flow to protect the accesses to code pages, hence making the application oblivious.
This solution has already been adopted in the design of Oblix [111], a search index that
enables efficient privacy-preserving keyword based look-ups inside an SGX enclave.
In this thesis, we apply this design principle to obtain the first PPSS protocol based
on SGX, with the aim of evaluating the benefits and the drawbacks of this technol-
ogy w.r.t. other PPSS solutions relying only on cryptographic primitives. Our PPSS
protocol, called Oblivious Substring Queries on Remote Enclave (ObSQRE), achieves
an optimal communication cost of O(m+oq) in one communication round, since the
client simply sends the string q to the enclave and receives back the occurrences at

16

Introduction

the end of the query, while exhibiting a remarkably O((m+oq) log3(n)) computational
cost at server side. Furthermore, by protecting the memory access pattern of the ap-
plication running inside the enclave, ObSQRE conceals both the search and the access
patterns of the substring search queries, even against a powerful malicious adversary
who may tamper with the protocol execution in order to affect the correctness of the
computation or learning as much information as possible. We remark that the Ob-
SQRE threat model encompasses only attacks excluded from SGX threat model, as we
rely on Intel to mitigate attacks that completely subvert SGX security guarantees. Un-
fortunately, ObSQRE currently exhibits less features than our previous PPSS protocol
based on PHE, as ObSQRE does not support multiple simultaneous queries from dif-
ferent users and it does not allow to perform queries for strings containing wildcard
characters. Differently from existing DORAM based solutions that protect SGX based
applications from side-channels [4, 135, 111], which all employ a doubly-oblivious de-
sign of Path [142] ORAM, in ObSQRE we evaluate, with the aim of finding the best
performing DORAM for our PPSS protocol, three different doubly-oblivious designs
of three existing ORAMs: specifically, we propose a new design of Path DORAM,
which improve upon existing ones employed in all the previous works, and we pro-
pose the first doubly oblivious designs of Circuit [156] and Ring ORAMs [128]. These
DORAMs may be of independent interest w.r.t. ObSQRE, as they can be employed as
a building block for other privacy-preserving SGX applications or for DORAM based
countermeasures against SGX side channel attacks.

Digital Certificates

Digital certificates are the mainstay to establish a secure communication channel among
different entities, as they ensure the authenticity of the binding between public keys and
the entities owning them, effectively thwarting MitM attacks. In particular, the authen-
ticity of the binding is guaranteed by digital signatures included in the certificate. The
entities entitled to compute signatures on digital certificates vary depending on the trust
model employed to ensure the authenticity of public keys. In the hierarchical and cen-
tralized approach of Public Key Infrastructure (PKI), there is a set of specific trusted
entities called Certification Authorities (CAs), whose main purpose is verifying the
owner of a public key and issuing a digitally signed certificate that attests the owner-
ship of the public key; each end entity deems as valid a digital certificate if and only
if it is signed by a trusted CA. PKI is mostly employed in the ubiquitous Transport
Layer Security (TLS) protocol. Conversely, in the the peer-to-peer and distributed ap-
proach of Open Pretty Good Privacy (OpenPGP), each entity can act both as a CA and
and as an end-user: it can digitally sign the public key of another entity after person-
ally verifying the ownership of the public key, and it decides which signatures can be
deemed as trusted. Specifically, OpenPGP is based on the idea that trust can be seen
as a transitive relation: each entity may personally verify the authenticity of the keys
of a restricted set of other entities, and then recursively extend its trust to all the keys
that are signed by a key which is already trusted. This network of trust relationships,
called Web of Trust (WoT), allows an entity to assess the authenticity of public keys
whose ownership cannot be directly verified. OpenPGP is mostly employed for end-to-
end email encryption/authentication and to ensure the integrity of software downloaded
from repositories in several Linux distributions.

17

Introduction

Despite the simplicity of their functionality, digital certificates contain much more
information than the public key and the identity of its owner, such as:

• Information on how to verify the digital signatures on certificates, including the
identify of the entity that signed the certificate

• Information on the validity of the public key, which may be revoked or expired

• Information on which usages are allowed for the public key (e.g., digital signa-
tures, encryption, key agreement).

All these information are provided in a structured format, which needs to be properly
parsed in order to correctly process such information. The format is obviously different
between digital certificates employed in PKI and OpenPGP: the former employs the
X.509 format, standardized by International Telecommunication Union (ITU) [77] and
by Internet Engineering Task Force (IETF) in Request For Comment (RFC) 5280 [39]
and its complements [72, 122, 93, 152, 45]; the latter employs its own format, standard-
ized by IETF in RFC 4880 [29]. Both formats share a significant complexity, which
makes the proper parsing of digital certificates a non trivial task. We now outline the
issues and the security vulnerabilities emerged from the inaccurate processing of digital
certificates, and our contributions towards the goal of a sound and effective parsing for
digital certificates.

X.509 Format

The complexity of the X.509 format, which has now reached its third version, motivates
the existence of several parsing inconsistencies found in widely employed libraries.
Many of these inconsistencies turned out to be actually exploitable to completely sub-
vert the security guarantees provided by X.509 digital certificates, effectively leading
to powerful attacks. In particular, several well-known parsing libraries were found to
be vulnerable to some MitM attacks, which relied on either inconsistencies among dif-
ferent libraries in the processing of the information found in an X.509 digital certificate
about the owner of the public key [106, 107], or vulnerabilities (e.g., integer over-
flows) in the processing of specific fields of such certificates [81]. Improper parsing
issues lead also to other type of attacks, such as certificate forgery: in the BERSERK
attack [47, 46], authors show that an attacker can inject arbitrary content in a certificate
and forge a valid signature for the crafted certificate, exploiting an improper counting
of the number of bytes stored in a specific field of the certificate.

Besides single attempts at finding specific flaws or vulnerabilities in the parsing of
digital certificates, there are also existing works aimed at find parsing inconsistencies
in an automatized and systematic fashion. Specifically, [24] automatically generated
crafted and invalid X.509 digital certificates, called Frankencerts, to assess the effec-
tiveness of TLS libraries in validating X.509 certificates and to identify parsing incon-
sistencies among different implementations. Frankencerts were constructed by merging
different portions of existing X.509 digital certificates in such a way that the generated
certificate was a well-formed X.509 one (i.e., it exhibits all the major fields of an X.509
digital certificate) but was likely invalid as it violated some constraints of the format,
in turn allowing to identify more specific parsing inconsistencies than the ones ob-
tained by randomly generating a digital certificate entirely from scratch. Frankencerts

18

Introduction

were employed to perform differential testing on most common TLS implementations
and allowed to discover many dangerous flaws that may easily enable MitM attacks.
A finer-grain validation of X.509 parsing effectiveness was achieved by the RFCcert
tool [149]. The approach followed in this work was deemed as RFC guided, as the tool
automatically extracted a set of constraints from the RFC specification of the format
and then generated a set of invalid certificates, each violating one of the identified con-
straints. This test set allowed to assess the effectiveness of X.509 parsers in dealing
with specific syntactic constraints, which is extremely helpful in the precise identifica-
tion of the flaw and in its resolution. The validation of 14 TLS implementations with
the generated test set allowed to identify 29 inconsistencies on average per implemen-
tation, with some of them being exploitable as security issues and leading to powerful
attacks, such as certificate forgery.

All these recent efforts showed that parsing inconsistencies have been continuously
found for X.509 digital certificates, despite their format has been well-known and
widely used for more than 30 years. This fact suggests that a proper and effective
parsing of X.509 digital certificates has not been achieved yet. A weakness of existing
X.509 parsers that motivates their inaccuracy resides in the lack of a systematic ap-
proach employed in their construction, as parsers found in most common TLS libraries
are all handcrafted. Conversely, as mandated by language-theoretic security princi-
ples [134], a reliable strategy to properly parse an input format is hinging upon a parser
automatically generated from a grammar specification of the format. Indeed, writing a
formal grammar for a given input format is much less error prone than coding entirely
from scratch a parser for the format, as formal grammars are aptly conceived to eas-
ily describe the syntactic constraints found in a format specification. In case of X.509
digital certificates, the lack of an automatically generated parser is mainly motivated
by the complexity of the format: indeed, if we consider the well-known Chomsky’s
classification of formal languages [37], the set of valid X.509 digital certificates is a
context-sensitive language [81], which hinders the automatic generation of a parser as
there is currently no strategy to automatically derive an efficient parser from a context-
sensitive grammar. This issue was addressed in [13], where authors managed to design
a grammar amenable to the automatic generation of an efficient parser for the X.509 for-
mat. In this work, authors designed a predicated grammar [120] to deal with most of the
syntactic constraints in the format, enriching some of the rules with additional pieces
of code, referred to as semantic actions, which were in charge of performing context-
sensitive checks. Once obtaining a sound and complete predicated grammar, enriched
with semantic actions, for X.509 format, an efficient parser for X.509 digital certifi-
cates was derived through the ANTLR parser generator [119]. The comparison of this
parser with 7 common TLS libraries showed the higher accuracy of the automatically
generated parser w.r.t. handcrafted implementations, as tens of parsing inconsistencies
in the TLS libraries were identified. The exploitation of one of these inconsistencies
lead to a powerful MitM attack against the widely employed OpenSSL [117] and Bor-
ingSSL [65] TLS libraries. Furthermore, the automatically generated parser found out
that about 21% of the 11M X.509 digital certificates employed for secure HTTPS con-
nections over the entire IP v4 space were syntactically invalid w.r.t. the X.509 standard.

Although [13] represents an important step towards the proper parsing of X.509 dig-
ital certificates, the significant complexity of the predicated grammar for X.509 format

19

Introduction

makes the development and maintenance of this solution in real world implementations
quite complicated. Therefore, in this work we aim at addressing the root cause of all
the parsing difficulties described so far, that is the complexity of the X.509 format. To
this extent, we design a novel format for X.509 digital certificates, which may represent
a good candidate as a possible fourth version of the X.509 standard. Our new format
retains the same expressiveness of the current version of X.509 standard, but it can be
specified by a regular grammar rather than a context-sensitive one. This feature signif-
icantly simplifies the grammar describing the format and allows to automatically gen-
erate a parser with optimal computational complexities, as parsing a string belonging
to a regular language can be performed in linear time and constant space complexi-
ties. Furthermore, we design our format in order to ensure that existing parsers identify
certificates in our format as version 4 ones: this solution eases the roll-in of our for-
mat, as implementations that are not yet compliant to our format can immediately stop
processing our certificates, because of a wrong version field found at the beginning of
the X.509 digital certificate, instead of exhibiting an unexpected behavior due to the
validation of a malformed input.

OpenPGP format

Differently from X.509 format, the one of OpenPGP digital certificates and messages
has received poor attention, mostly because of the wider adoption of PKI over OpenPGP.
This discrepancy is likely due to the fact that digital certificates in PKI can be entirely
handled automatically by software without requiring any human intervention, which is
impossible in OpenPGP as trust is based on the keys that can be personally verified
by each user. Nonetheless, since OpenPGP is employed in critical scenarios, such as
guaranteeing the authenticity of the software fetched from repositories in many Linux
distributions, it is important to deepen the scrutiny also on OpenPGP implementations.
In this regard, the few existing works are mostly focused on the state of the WoT ecosys-
tem. Specifically, [91] analyzed the email addresses that generally identify users in the
WoT ecosystem, finding out that about 40% of such addresses were unreachable. [19]
focused on the analysis of the strength of cryptographic keys found in OpenPGP cer-
tificates, identifying several weak key pairs. Authors of [10] showed how weaknesses
in the cryptographic keys may affect much many certificates than the ones belong-
ing to the owners of the weak keys, because of the transitive trust model employed in
OpenPGP and to the strong interconnections between users in the WoT. Specifically,
authors showed that compromising the few weak keys found in the strong set, which
represents the most interconnected users in the WoT, was sufficient to make any sig-
nature forged by the attacker with the compromised key pairs trusted for about 70% of
such strong set, and thus to all the users trusting at least one of these members of the
strong set.

Although these work highlighted important issues for the reliability of the WoT,
none of them focused on the assessment of the accuracy of existing OpenPGP imple-
mentations in processing digital certificates and messages. Nonetheless, as showed by
the numerous attacks caused by an improper parsing of X.509 digital certificates, it is
crucial to ensure the availability of sound implementations that prevent security threats
caused by an inaccurate processing of the OpenPGP digital certificates and messages.
The strategy to achieve this goal is similar to the one that has already proven to be

20

Introduction

successful for X.509 digital certificates, that is automatically generating a parser from
a grammar specification of the format. To this extent, in this manuscript we perform
a detailed analysis of the OpenPGP format, investigating the feasibility of designing a
grammar amenable to automatic parser generation algorithms. Our analysis shows that
the OpenPGP format can be specified by a Deterministic Context-Free (DCF) grammar;
nonetheless, we also show that the Deterministic PushDown Automaton (DPDA) de-
rived from this grammar has so many states that it cannot even be represented in nowa-
days computing devices without exceeding the available memory. Therefore, the DCF
grammar for OpenPGP format cannot be employed in practice to automatically gener-
ate a parser, thus pushing for alternative strategies to systematically derive a parser for
the OpenPGP format. Throughout our analysis, we also identify several design flaws
in the OpenPGP format, conceiving several attacks that stem from the exploitation of
such flaws. We evaluate the effectiveness of our attacks on the two most common
implementations of OpenPGP protocol, namely GNU Privacy Guard (GPG) [89], the
open source one employed in Unix based systems, and the proprietary implementation
Symantec PGP [148].

Organization of the Manuscript

We split the thesis in two parts, the former one dealing with privacy-preserving out-
sourced computation, and the latter dealing with digital certificates. In each of these
parts, we start with a chapter where we provide the background information and the
definitions which are needed to describe our contributions. Then, we devote a single
chapter to each work being discussed in this thesis. Specifically, Chapter 2 describes
our comparison-based attack techniques against noise-free FHE schemes; Chapter 3
describes our multi-user PPSS protocol based on PHE; Chapter 4 describes ObSQRE,
our PPSS protocol based on Intel SGX; Chapter 6 describes our novel format for X.509
digital certificates; lastly, Chapter 7 reports our security audit of the OpenPGP for-
mat. After these two parts, we conclude the manuscript with a final chapter, where we
summarize the contributions and a discussion of the results of this research, also dis-
cussing possible further developments that stem from the conclusions derived from our
findings.

List of Papers

Most of the contributions discussed in this manuscript have already been published in
several peer-reviewed papers. Specifically:

• The description of our comparison-based attack, its experimental evaluation and
the modifications to OctoM and JordanM that mitigate our attack are reported.
in [103]. A preliminary version of this attack was presented in [12]. Our sec-
ond attack technique, which allows to break the modified OctoM and JordanM
scheme, is instead a novel contribution reported exclusively in this manuscript.

• The description of our multi-user PPSS protocol based on a PHE scheme is re-
ported in [102]. Nonetheless, some of the features reported in this manuscript,
such as the privacy-preserving queries for strings containing wildcard characters
or the integrity check mechanism, are described in an extended version of the

21

Introduction

work which is currently under review for the ACM international journal on Digi-
tal Threats: Research and Practice (DTRAP).

• The description of ObSQRE, our PPSS protocol based on Intel SGX, is reported
in [104]. A partial but substantial contribution to the design and the implementa-
tion of ObSQRE was also given in [132].

• The description of our novel regular format for X.509 digital certificates is re-
ported in [14].

• Our security audit of the OpenPGP format is reported in [11].

22

Part I

Privacy-Preserving Outsourced
Computation

23

CHAPTER1
Definitions and Preliminaries

PLEASE, LET ME EXPLAIN!!

In this chapter, we introduce all the definitions and preliminary concepts that are needed
to describe our research activity aimed at reducing the performance overhead of privacy-
preserving outsourced computation. In particular, we organize this chapter as follows:

• In Section 1.1, we provide a formal definition of FHE schemes followed by the
definition of Length-Flexible Additive Homomorphic Encryption (LFAHE) scheme,
the type of PHE scheme which will be employed in one of our PPSS protocols.

• In Section 1.2, we describe existing solutions to homomorphically evaluate the
comparison function between two integer values, which is a fundamental building
block in our comparison-based attack against noise-free FHE schemes.

• In Section 1.3, we introduce the notation and we formally define the notion of
PPSS protocol, also describing in detail the existing solutions found in the litera-
ture.

• In Section 1.4, we describe the backward-search algorithm, which employs a full-
text index built from the Burrows-Wheeler Transform (BWT) and the Suffix Array
(SA) of a document in order to efficiently perform substring search queries over
the document. The substring search algorithms employed in our two PPSS proto-
cols are all based on the backward-search method

• In Section 1.5, we introduce the notion of Private Information Retrieval (PIR) and
we describe the Lipmaa’s protocol, which is combined with the backward-search
algorithm in order to build our multi-user PPSS protocol.

• Lastly, in Section 1.6, we describe the three existing ORAMs employed in Ob-
SQRE, our PPSS protocol based on Intel SGX.

25

Chapter 1. Definitions and Preliminaries

We report here our definition of negligible function, which is extensively used in
this part of the manuscript.

Definition 1.1 (Negligible Function). A function ε : N → R is negligible if, for every
univariate positive polynomial, poly(x) ∈ R[x], there exists an integer c > 0 such that
∀x > c, |ε(x)| ≤ 1

poly(x)
.

1.1 HE Schemes

We start with our definition of a generic HE scheme, and then we introduce the con-
cepts of Additive Homomorphic Encryption (AHE) and LFAHE schemes.

An HE scheme specifies three sets:M, C and F . The set of plaintextsM is usually
a ring algebraic structure; in this work, we consider a plaintext space given by a set of
integer values ranging from 0 to N−1, with N≥2, which are assumed to be the rep-
resentatives of the residue classes modulo N , i.e., (ZN ,+, ·), where ZN ≡ Z/NZ.
The ciphertext space C includes elements with an algebraic representation that de-
pends on the specific HE scheme at hand. The set of multivariate polynomials F ⊆
ZN [x1, x2, . . . , xa], with a ≥ 1 and degree greater or equal to zero, defines the func-
tions that the HE scheme at hand allows to be evaluated. Each of these polynomials
computes a function f : Ma → M, a ≥ 1, over the plaintexts, which is represented
by an arithmetic circuit composed by gates performing modular multiplications (·) and
modular additions (+) in ZN .

We provide the definition of an HE scheme starting from an asymmetric one, and
then we describe a symmetric HE scheme by difference.

Definition 1.2 (Public-key Homomorphic Encryption Scheme). A public-key HE scheme
is defined as a tuple of four polynomial time algorithms 〈KEYGEN, ENC,DEC, EVAL〉:

• Key Generation. (sk, pk, evk)← KEYGEN(1λ) is a probabilistic algorithm that,
given the security parameter λ, generates the secret key sk, the public key pk and
the public evaluation key evk.

• Encryption. c ← ENC(pk,m) is a probabilistic algorithm that, given a message
m ∈M and the public key pk, computes a ciphertext c ∈ C.

• Decryption. m← DEC(sk, c) is a deterministic algorithm that, given a ciphertext
c ∈ C and the secret key sk, outputs a message m ∈M.

• Evaluation. c ← EVAL(evk, f, c1, c2, . . . , ca) is a probabilistic algorithm that,
given an arithmetic circuit f ∈ F with a ≥ 1 inputs, the ciphertexts c1, c2, . . . , ca,
and the evaluation key evk, computes a ciphertext c ∈ C.

The following properties must hold:

• Decryption Correctness. ∀m ∈M : DEC (sk, ENC(pk,m)) = m.

• Evaluation Correctness. ∀m1, . . . ,ma ∈M, f ∈ F:
Pr(DEC(sk, EVAL(evk, f, c1, . . . , ca))=f(m1, . . . ,ma)) = 1− ε(λ),
where c1=ENC(pk,m1), . . . , ca=ENC(pk,ma) and ε(λ) is a negligible function
in the security parameter.

26

1.1. HE Schemes

• Compactness. ∀ f ∈ F , c1, . . . , ca ∈ C:
|EVAL(evk, f, c1, . . . , ca)| ≤ poly(λ), where | · | denotes the bit-length of a ci-
phertext, while poly(·) denotes a univariate polynomial.

When defining a symmetric-key homomorphic encryption scheme, the only differ-
ence is the key generation algorithm KEYGEN(1λ) outputting a tuple k = (sk, pk, evk)
with sk = pk.

Algorithm 1.1: Efficient algorithm to compute HYBRIDMUL operation based on the square-
and-multiply algorithm

Input: Ciphertext c ∈ C
Integer h ≥ 1 ∈ Z
Evaluation key evk

Output: Ciphertext c′ = HYBRIDMUL(c, h)
1 begin
2 res← ⊥, mask← 1, tmp← c
3 while mask ≤ h do
4 if h& mask 6= 0 /* & denotes the bitwise and operation */
5 then
6 if res = ⊥ then
7 res← tmp

8 else
9 res← ADD(evk, res, tmp)

10 tmp← ADD(evk, tmp, tmp)
11 mask← 2 · mask
12 return res

The requirement on the evaluation correctness trivially states that by decrypting
the output of the EVAL algorithm we obtain the evaluation of the function f over the
corresponding plaintext values of the a ciphertexts c1, . . . , ca. In particular, the EVAL
algorithm homomorphically evaluates a function f by hinging upon the homomorphic
operations ADD and MUL, which are defined as follows:

• Homomorphic Addition. c← ADD(evk, c1, c2) is a probabilistic algorithm that,
given the evaluation key evk and the ciphertexts c1, c2 ∈ C, computes a ciphertext
c ∈ C such that DEC(sk, c) = DEC(sk, c1) + DEC(sk, c2).

• Homomorphic Multiplication. c ← MUL(evk, c1, c2) is a probabilistic algo-
rithm that, given the evaluation key evk and the ciphertexts c1, c2 ∈ C, computes
a ciphertext c ∈ C such that DEC(sk, c) = DEC(sk, c1) · DEC(sk, c2).

By repeatedly applying each of these two operations, it is possible to perform the fol-
lowing operations:

• Hybrid Mul. c′ ← HYBRIDMUL(evk, c, h) is a probabilistic algorithm that,
given the evaluation key evk, a ciphertext c ∈ C and an integer h, computes a
ciphertext c′ ∈ C such that DEC(sk, c′) = DEC(sk, c) · h

• Hybrid Exp. c′ ← HYBRIDEXP(evk, c, h) is a probabilistic algorithm that, given
the evaluation key evk, a ciphertext c ∈ C and an integer h, computes a ciphertext
c′ ∈ C such that DEC(sk, c′) = DEC(sk, c)h

27

Chapter 1. Definitions and Preliminaries

In particular, HYBRIDMUL (resp. HYBRIDEXP) can be computed with O(log(h)) ADD
(resp. MUL) operations by relying on Alg. 1.1, which is a modified version of the well-
known square-and-multiply algorithm.

By employing these four operations, the EVAL function can homomorphically eval-
uate multivariate polynomials. The HE schemes are classified according to the set
F of polynomials that can be evaluated. In particular, an AHE scheme can evaluate
only linear polynomials, as only ADD and HYBRIDMUL are available; a Multiplica-
tive Homomorphic Encryption (MHE) can evaluate only monomials, as only MUL and
HYBRIDEXP are available; in a SWHE scheme, the degree of the polynomials that
can be evaluated is bounded by an integer d ≥ 2; lastly, a FHE scheme can evaluate
arbitrary polynomials.

Length-Flexible Additive Homomorphic Encryption Schemes

We now introduce the definition of LFAHE scheme and we describe the LFAHE scheme
by Damgård and Jurik [44], which is employed in the construction of our multi-user
PPSS protocol.

Definition 1.3 (Length-Flexible Additive Homomorphic Encryption). A LFAHE scheme
is an AHE scheme augmented with an additional parameter l ≥ 1, called length, which
specializes the definition of the plaintext and ciphertext spaces, and thus of the encryp-
tion, decryption and homomorphic addition operations, such that:

∀l1, l2 ∈ N(l1 < l2 ⇒ Cl1 ⊂Ml2)

where the superscript l1 (resp. l2) is employed to specify the plaintext and ciphertext
spaces for length l1 (resp. l2).

Specifically, the expression Cl1 ⊂ Ml2 indicates that ciphertexts in Cl1 are valid
plaintexts for ciphertexts in Cl2 (i.e., a ciphertext in Cl1 is a valid output of the decryption
algorithm fed with an element of Cl2).
Damgård-Jurik LFAHE Scheme. The Damgård-Jurik (DJ) LFAHE scheme [44] is
constructed from the AHE scheme proposed by Paillier [118]. The Paillier cryptosys-
tem is a public key AHE scheme based on the Composite Residuosity Class Problem,
which is reducible in polynomial time to the Integer Factorization Problem [118]. The
Paillier scheme is semantically secure, which intuitively means that it is computation-
ally unfeasible to determine if two ciphertexts encrypt the same plaintext or not. The
plaintext space of this scheme isM = ZN , with N being an integer of few Kbits com-
puted as the product of two large primes, while the ciphertext space is C = Z∗N2 ⊂ ZN2 ,
i.e., the subset of all and only elements of ZN2 with a multiplicative inverse moduloN2.
The key generation algorithm computes the public key pk and the private key sk, with
the public evaluation key evk being the same as pk.

Given the ciphertexts c1, c2 ∈ Z∗N2 , the homomorphic addition is a ciphertext c =
c1 · c2 mod N2, c ∈ Z∗N2 , such that DEC(sk, c) = DEC(sk, c1) + DEC(sk, c2) mod
N . Therefore, the result of an hybrid homomorphic multiplication HYBRIDMUL is
obtained as an exponentiation of a ciphertext c to an integer. It can also be conceived
as the encryption of the product of two plaintext values in ZN :

∀m ∈ ZN , c ∈ Z∗N2 : DEC(sk, cm mod N2) = DEC(sk, c) ·m mod N

28

1.2. Homomorphic Comparison of Integers

By combining the homomorphic addition and the HYBRIDMUL operation, the Paillier
scheme allows to perform the dot product between a cell-wise encrypted array 〈A〉 and
an unencrypted one B, both with n ≥ 1 elements; this operation, referred to as hybrid
dot product, is computed as follows:

DEC

(
sk,

n∏
i=1

(〈A〉[i])B[i] mod N2

)
=

n∑
i=1

A[i] ·B[i] mod N (1.1)

In the DJ scheme, a length-flexible variant of the Paillier one, the plaintext and ci-
phertext spaces depend on the length l of the encryption. In particular, a ciphertext
of length l ≥ 1 is an integer in Cl = Z∗

N l+1 encrypting a plaintext value belong-
ing to Ml = ZN l . Therefore, the homomorphic addition between two ciphertext
c1, c2 ∈ Cl is a ciphertext c = c1 · c2 mod N l+1, c ∈ Cl, such that DEC(sk, c) =
DEC(sk, c1) + DEC(sk, c2) mod N l.

The hybrid homomorphic multiplication HYBRIDMUL between a ciphertext c2 ∈
Z∗
N l2+1 of length l2 and a ciphertext c1 ∈ Z∗

N l1+1 of length l1, with l1 < l2, computes
a ciphertext of length l2 encrypting the product between the corresponding plaintext
value of c2 (which is an integer in ZN l2) and c1, being Z∗

N l1+1 ⊂ ZN l2 . Indeed, ∀c1 ∈
Z∗
N l1+1 , c2 ∈ Z∗

N l2+1:

DECl2
(
sk, cc12 mod N l2+1

)
= DECl2(sk, c2) · c1 mod N l2

where the subscript l2 denotes that the decryption operation is performed for plaintext
and ciphertext spaces Ml2 and Cl2 . This property of the HYBRIDMUL operation in
LFAHE schemes is extremely useful, as it allows to perform the homomorphic dot
product between an array 〈A〉l2 encrypted cell-wise with length l2, and an array 〈B〉l1
encrypted cell-wise with length l1, both with n ≥ 1 elements:

DECl2

(
sk,

n∏
i=1

(〈A〉l2 [i])〈B〉l1 [i] mod N l2+1

)
=

n∑
i=1

A[i] · 〈B〉l1 [i] mod N l2 (1.2)

This homomorphic operation is at the core of the Lipmaa’s PIR protocol, which will
employed in the construction of our multi-user PPSS protocol.

1.2 Homomorphic Comparison of Integers

One of the fundamental building blocks of our comparison based attack for FHE
schemes is the homomorphic evaluation of the comparison function between two in-
tegers values. In this section, we formally define this functionality and we discuss
existing methods proposed in the literature for its homomorphic evaluation.

The comparison function we need to homomorphically evaluate is the greater-than
one, which, given two integers, determines if the former is greater or equal than the
latter. For our needs, it is sufficient to consider this function over an interval of integers
rather than over the entire Z. More formally:

Definition 1.4 (Greater-than Function). Given a positive integer b and an interval of
integersDt = {0, 1, . . . , t−1}, with t ≥ 2, the greater-than function GT t,b : Dt×Dt →

29

Chapter 1. Definitions and Preliminaries

{b−1, b} is defined as:

GT t,b(x, y) =

{
b if x ≥ y,

b− 1 otherwise

To the extent of evaluating this function with an HE scheme, we need to find a
polynomial fgt ∈ F ⊆ ZN [x, y], such that fgt(x, y) mod N = GT t,b(x, y), with
2 ≤ t ≤ N , 1 ≤ b < N , and x, y being the representatives of residue classes modulo
N , (i.e., x, y ∈ ZN) considered as integers less than t. Although such a polynomial can
be easily found for specific values of N (e.g., N = 2), its construction is challenging
for a generic N > 2. Çetin in [31] reports two methods to homomorphically compute
the GT t,b(·, ·) function that do not require interaction between the secret key owner and
the party who performs the homomorphic evaluation. However, both of these methods
are not applicable for our attack: indeed, the first one is applicable only if the modulus
N is prime; the second method computes an approximation of GT t,b(·, ·), while for our
attack we need an exact computation of this function.
A more effective solution is proposed in [114]: the greater-than function is computed
as GT t,b(x, y) = SIGN t,b(x − y), where SIGN t,b(z) is a function defined over the
interval Dt ⊆ Z = {−t+1, . . . , 0, . . . , t−1} as:

SIGN t,b(z) =

{
b if z ≥ 0,

b− 1 otherwise

The homomorphic evaluation of the function SIGN t,b(·) requires a polynomial fsign ∈
F ⊆ ZN [z] fulfilling fsign(z) mod N = SIGN t,b(z), with 2 ≤ t ≤ dN

2
e, 1 ≤ b < N

and z ∈ Dt. We remark that this method does not work if N = 2, as there is no integer
t such that 2 ≤ t ≤ dN

2
e; nonetheless, this is not a limitation as the homomorphic

computation of GT t,b(·, ·) function is straightforward in case N = 2. In [114], the
polynomial fsign is computed applying the Lagrange interpolation formula to 2t − 1

points having coordinates (z, SIGN t,b(z)), with z ∈ Dt, and considering a prime
modulus, i.e., N = p. Nonetheless, we now show that by introducing an additional
constraint on the domain of the GT t,b(·, ·) function, it is possible to employ this method
also for a generic modulus N > 2.

Lemma 1.1. Given two integers N, t, with N > 2 and 2 ≤ t ≤ dN
2
e, and a set

Dt = {−t + 1, . . . , 0, . . . , t − 1}, the polynomial f(z) ∈ ZN [z], interpolating 2t − 1
points (z, f(z)) having the z-coordinate ranging over all values in Dt, exists if t ≤ q

2
,

where q is the smallest prime factor of N .

Proof. Considering the set of 2t − 1 points {(z1, y1), . . . , (z2t−1, y2t−1)} in ZN × ZN ,
the interpolating polynomial f ∈ ZN [z], with degree at most 2t − 2, can be computed
by the Lagrange interpolation formula:

f(z) =
2t−1∑
i=1

yi

2t−1∏
j=1,j 6=i

(z − zj)(zi − zj)−1

The existence of the multiplicative inverses (in ZN) required in this formula is ensured if
all the values zi − zj are co-prime with N . Assuming the z-coordinates to be mutually

30

1.3. PPSS Protocol

distinct and in Dt, the constraint t ≤ q
2

implies that −q < −2t + 2 ≤ zi − zj ≤
2t − 2 < q. Since q is the smallest prime factor of N , then all the elements in ZN \
{0} ∩ {−q + 1, . . . , q − 1} are co-prime with N ; thus, since all the values zi − zj ∈
ZN \ {0} ∩ {−q + 1, . . . , q − 1}, then these values are co-prime with N , and thus
invertible, allowing f(z) to be interpolated by the Lagrange formula.

In conclusion, by Lagrange interpolation we can obtain a polynomial fsign ∈ F ⊆
ZN [z] which computes the function SIGN t,b(z),∀z ∈ Dt, and then a polynomial
fgt ∈ F ⊆ ZN [x, y], computing the function GT t,b(x, y), ∀x, y ∈ Dt, as fgt(x, y) =
fsign(x− y).

Since fgt ∈ F , it can be homomorphically evaluated by the EVAL algorithm of the
HE scheme at hand, replacing addition and multiplications of the polynomial with the
corresponding homomorphic operations (ADD and MUL), whose inputs are ciphertexts
in C. Henceforth, we denote the algorithm EVAL(evk, c1, c2, fgt) as HGT t,b(c1, c2);
since GT t,b is defined over the interval Dt={0, . . . , t − 1}, t ≤ q

2
, with q being the

smallest prime factor of N , then c1, c2 ∈ Ct = {c ∈ C s.t. DEC(sk, c) < t} is a
sufficient condition for DEC(sk,HGT t,b(c1, c2)) = GT t,b(DEC(sk, c1),DEC(sk, c2)).

The computational complexity required to interpolate 2t − 1 points by applying
the Lagrange formula is O(t2) operations in ZN , while the evaluation of the polyno-
mial fsign ∈ ZN [z], whose degree is at most 2t − 2, has a computational complexity
O(t). Therefore, the computational cost of the HGT t,b(·, ·) algorithm, assuming that
the polynomial fsign is precomputed, is O(t). We note that, while there are no cur-
rent algorithms to compute HGT t,b(·, ·) in less than O(t), research efforts driven by
the usefulness of homomorphic comparison as a building block for privacy-preserving
applications may lead to an improvement in this sense. Since our attack relies on the
computation of HGT t,b(·, ·) as an atomic component, such improvements will posi-
tively affect the efficiency of our attack.

1.3 PPSS Protocol

In this Section, we formally define the notion of PPSS protocol and we discuss existing
solutions, comparing their efficiency and capabilities with our proposals. We start with
a brief introduction of the notation employed in our definitions and to describe PPSS
protocols throughout this manuscript.

Notation. Given a string s over an alphabet Σ, the function LEN(s) denotes the number
of characters in s. We use Σm to denote the set of strings over the alphabet Σ of length
m. For a string s ∈ Σm, we denote as s[i, . . . , j], with i ≤ j and i, j ∈ {0, . . . ,m−1},
the portion of the string s that starts with character in position i and ends with the
character in position j (i.e., for s=privacy, s[2, . . . , 4]=iva).

Definition of PPSS Protocol

In the scenario considered in this work, a data owner has a set of z ≥ 1 documents
D = {D1, . . . , Dz}, referred to as document collection, where each document Di ∈
ΣLEN(Di). We denote by n the size of the document collection, which is the sum of the
lengths of its documents (i.e., n =

∑z
i=1 LEN(Di)). From this set of documents, the

31

Chapter 1. Definitions and Preliminaries

data owner builds a full-text index that allows to efficiently perform substring search
queries over the document collection.

Definition 1.5 (Substring Search Query). Consider a collection of z≥1 documents D =
{D1, . . . , Dz}, with each Di ∈ ΣLEN(Di), 1≤i≤z, and a query string q∈Σm, m≥1.

A substring search query computes the occurrences of q in each document of D, that
is the set OD,q =

⋃z
i=1ODi,q, where

ODi,q={ j | 0≤j≤LEN(Di)−m ∧ q=Di[j, . . . , j+m−1] }

Because of its limited storage and computational capabilities, the data owner is will-
ing to outsource both the document collection D and the computation of substring
search queries to a cloud provider. Since both the content of the documents and the
strings searched in the queries are sensitive data, the data owner wants to be sure that
no meaningful information about these data is leaked to the cloud provider throughout
the queries. In particular, the cloud provider should learn no more than the number z of
documents in D, the size n of the document collection, the number m of characters of
the searched string q and the number oq of occurrences of q in D (i.e., oq = |OD,q|). The
main challenge to be addressed resides in guaranteeing this limited information leakage
while retaining a practical response time for these privacy-preserving substring search
queries. Furthermore, in a multi-user scenario, the data owner can authorize other users
to perform privacy-preserving substring search queries over the document collection.

A PPSS protocol is a solution that allows to satisfy these needs of the data owner. To
guarantee the confidentiality of the documents and of the searched string, a PPSS pro-
tocol employs privacy-preserving representations of these data. Each PPSS protocol
relies on specific cryptographic primitives to build the privacy-preserving representa-
tions of the data processed by the protocol. In this manuscript, we denote a privacy-
preserving representation of a datum by enclosing it in angular brackets (i.e., 〈D〉 is
the privacy-preserving representation of D). We now provide our formal definition of
PPSS protocol; in this definition, we refer to the data owner as the client and to the
cloud service provider as the untrusted server.

Definition 1.6 (PPSS Protocol). Consider a document collection D with z ≥ 1 doc-
uments D = {D1, . . . , Dz} over an alphabet Σ. A PPSS protocol P is a pair of
polynomial-time algorithms P = (SETUP,QUERY):
The setup procedure: (〈D〉, auxs)← SETUP(D, 1λ), is a probabilistic algorithm, run
by the data owner, taking as input the security parameter λ and the document collection
D, and returning its privacy-preserving representation 〈D〉, which is outsourced to the
untrusted server in the cloud, an an auxiliary pieces of information auxs, which is kept
secret by the data owner, and shared with entities authorized to issue queries in case of
a multi-user scenario.
The query procedure: R← QUERY(q, auxs, 〈D〉), is a deterministic algorithm run in-
teractively by the server and the client issuing the query, which is either the data owner
or any other entity authorized by the data owner in case of a multi-user scenario. The
QUERY procedure, given the string q to be searched and the secret auxiliary informa-
tion auxs, both provided by the client, employs the privacy-preserving representation
〈D〉, stored at server side, to compute the result of the query R = OD,q, where OD,q is
the set defined in Def. 1.5, which is obtained by the client.

32

1.3. PPSS Protocol

The QUERY procedure iterates w ≥ 1 rounds, where each round corresponds to the
execution of the following three algorithms:

• TRAPDOOR: 〈q〉j ← TRAPDOOR(j, q, auxs, res1, . . . , resj−1), is a probabilis-
tic algorithm, run at client side, which employs auxs and the results of previous
rounds {res1, . . . , resj−1} to build the privacy-preserving representation (a.k.a.
trapdoor) 〈q〉j of the searched string q for the j-th round.

• SEARCH: 〈resj〉 ← SEARCH(〈q〉j, 〈D〉), is a deterministic algorithm, run at
server side, which employs 〈q〉j and 〈D〉 to compute a privacy-preserving repre-
sentation of the result for the j-th round, i.e., 〈resj〉.

• RETRIEVE: resj ← RETRIEVE(〈resj〉, auxs), is a deterministic algorithm, run
at client side, which, given as inputs 〈resj〉 and auxs, computes the result of the
j-th round resj .

Existing Solutions

We now discuss the existing solutions that allows to perform privacy-preserving sub-
string search queries, also comparing them with our proposals. In order to perform a
fair comparison, we describe only protocols that conceal the search or access patterns of
the queries, as solutions with weaker privacy guarantees employ simpler cryptographic
primitives (such as symmetric encryption or order-preserving encryption schemes), in
turn making them much more efficient than PPSS protocols guaranteeing search or
access pattern privacy.

In [155], the authors proposed a PPSS protocol to establish if a given substring is
present in the outsourced document collection with an O(n) communication cost and an
impractical O(n) amount of cryptographic pairing computations required at the client
side for each query. Shimizu et. al. in [139] described how to use the BWT [28]
and Pailler’s AHE scheme [118] to effectively retrieve the occurrences of a substring.
The main drawback of the scheme lies in the significant communication cost, as each
query needs to send O((m+oq)

√
n) ciphertexts from client to server. Such a cost was

reduced by Ishimaki et. al. [80] to O((m+oq) log(n)), at the price of employing a FHE
scheme [60], which introduces a significant constant factor due to the 2 to 3 order of
magnitudes ciphertext expansion incurred by FHE schemes. Furthermore, the compu-
tational cost for the server is O((m+oq)n log(n)), with a large constant overhead (about
106) due to the homomorphic computation with FHE ciphertexts.

A multi-user protocol, preserving only the search pattern confidentiality and with the
same O((m+oq) log(n)) communication cost was proposed in [56]. The main draw-
backs of this solution are the need for the client to interact with the data owner to
perform a query, and the constraint that only substrings of a fixed length, which must
be decided in the SETUP phase of the protocol, can be searched, in turn limiting the
impact of the solution. A protocol with a remarkable O((m + oq)z) communication
cost has recently been proposed in [123]. To the best of our knowledge, this is the first
substring search protocol that allows multiple users to perform queries over data com-
ing from multiple data owners with an access control mechanism that allows to restrict,
for each document, the users authorized to perform queries. Nonetheless, the protocol
is still affected by a lack of access pattern privacy; furthermore, the client must perform
a distinct query for each document the client is interested in.

33

Chapter 1. Definitions and Preliminaries

Table 1.1: Comparison of existing Privacy-Preserving Substring Search protocols with our ones, which are
highlighted in gray. In the costs reported, n denotes the size of the document collection D, z the number of
documents in D, m the length of the searched substring q, and oq the number of its occurrences over D.
† C is a large constant factor due to usage of FHE, e.g., C≥16× 106, for 80-bit security parameters
‡ Search and Access pattern privacy

PPSS Communication Server S. & A.‡ Data Owner Multi Wildcard AdversaryProtocol Cost Cost Privacy Off-line User Queries

[155] O(n) O(m·n) X X × × Semi-honest
[139] O((m+ oq)

√
n) O((m+ oq)n) X X × × Semi-honest

[80] O(C(m+ oq) log(n))† O(C(m+ oq)n log n)† X X × × Semi-honest
[56] O((m+ oq) log(n)) Ω((nm + oq) log(n)) S.XA.× × X × Malicious

[123] O((m+ oq)z) O(m·n) S.XA.× X X × Semi-honest
[112] Ω(m log5(n)+oq log2(n)) Ω(m log5(n)+oq log2(n)) X X × × Semi-honest

PHE Based O(m log2(n)+oq log(n)) O(m·n) X X X X Semi-honest
ObSQRE O(m+ oq) O((m+oq) log3(n)) X X × × Malicious

Finally, the SA [105] based solutions proposed by Moataz et. al. in [112] guarantee
the confidentiality of the content of both the substring and the outsourced data, as well
as the privacy of the access pattern and the search pattern observed by the server. The
access pattern to the outsourced indexing data structures is concealed by employing
an ORAM protocol [64]. The asymptotic complexities of the PPSS protocol showed
in [112] mainly depends on the size of each document being negligible w.r.t. z, the total
number of them. Indeed, it exhibits O(m log3(z)) communication and computation
complexities, assuming that the size of each document is O(log2(z)). If the size of
each document is not negligible w.r.t. z, the computational and communication cost
of the solution increase proportionally to the size n of the document collection, by (at
least) a factor log2(n). Each of the oq occurrences can be retrieved with oq accesses to
the ORAM, yielding an additional O(oq log2(n)) communication cost.

In Tab. 1.1, we compare functionalities and performance of the aforementioned
state-of-the-art solutions with our PPSS protocols. We observe that none of existing
solutions allows to perform queries containing wildcard characters. We remark that the
existing solutions with an asymptotically lower communication cost than our multi-user
PPSS protocol based on PHE either do not conceal the access pattern to the untrusted
server [56, 123] or hinge upon a FHE scheme [80], which does not allow to achieve
the practical performance and bandwidth exhibited by our solution. Instead, ObSQRE
is the only PPSS solution achieving an optimal communication cost. Regarding the
computational cost, we observe that the only existing PPSS protocol with a sublinear
cost [112] has an higher communication cost than our PPSS solution based on PHE
and, being based on the ORAM primitive, cannot be trivially extended to enable multi-
ple simultaneous queries from different users with the same security guarantees of our
multi-user PPSS solution. We observe that ObSQRE improves both the communication
and the computational costs of [112] while retaining the same capabilities and ensuring
its security guarantees even against a malicious adversary.

1.4 Backward-Search Algorithm

We now describe the backward-search method [57], an existing algorithm for substring
search queries that is the basis for the construction of our privacy-preserving query
algorithms employed in our PPSS protocols. The backward-search algorithm relies on

34

1.4. Backward-Search Algorithm

Suffixes Indexes

a1 l1 f1 a2 l2 f2 a3 $ 0
l1 f1 a2 l2 f2 a3 $ 1
f1 a2 l2 f2 a3 $ 2
a2 l2 f2 a3 $ 3
l2 f2 a3 $ 4
f2 a3 $ 5
a3 $ 6
$ 7

F Suffixes Suf

$ 7
a3 $ 6
a2 l2 f2 a3 $ 3
a1 l1 f1 a2 l2 f2 a3 $ 0
f2 a3 $ 5
f1 a2 l2 f2 a3 $ 2
l2 f2 a3 $ 4
l1 f1 a2 l2 f2 a3 $ 1

F Original String L

$ a1 l1 f1 a2 l2 f2 a3 $ a3
a3 a1 l1 f1 a2 l2 f2 a3 $ f2
a2 a1 l1 f1 a2 l2 f2 a3 $ f1
a1 a1 l1 f1 a2 l2 f2 a3 $ $
f2 a1 l1 f1 a2 l2 f2 a3 $ l2
f1 a1 l1 f1 a2 l2 f2 a3 $ l1
l2 a1 l1 f1 a2 l2 f2 a3 $ a2
l1 a1 l1 f1 a2 l2 f2 a3 $ a1

sorting BWT

Figure 1.1: BWT L and SA Suf of the string alfalfa

a full-text index based on the BWT [28] and the SA [105] data structures to perform
substring search queries with an optimal time complexity of O(m+ oq). We start with
the description of the BWT and the SA data structures, and then we describe in detail
the backward-search algorithm.

BWT and SA Data Structures

We consider a string s ∈ Σn and a special symbol $ /∈ Σ, referred to as end-of-string-
delimiter, which is appended to s. In the following, we denote with an increasing
numerical subscript the occurrences of the same character in s (e.g., a1, a2 will denote
the first and second occurrence of a in s). Given the string s, the suffix with index i,
i ∈ {0, . . . , n−1}, is the substring s[i, . . . , n]; the SA of s stores the indexes of all the n
suffixes, sorted in lexicographical order w.r.t. an order relationship over Σ∪{$} where
$ precedes any character in Σ. The BWT of s is a lossless reversible transformation
that makes it more compressible by run-length encoding methods.
The construction of the SA Suf and the BWT L for the string s=alfalfa is sketched
in Fig. 1.1. The SA is built by applying its definition: first, a list with all the n+1
suffixes of the string, whose indexes are also computed and stored in a separate array,
is built; then, the SA Suf of s is obtained by sorting the array of indexes according
to the lexicographical order of the suffixes paired to the indexes. While construct-
ing the SA by naively sorting the suffixes is rather inefficient, there exists a smarter
algorithm that allows to build the SA in O(n) time [82]. The BWT L, highlighted
in red in Fig. 1.1, is then defined from the SA as follows: first, the string F , high-
lighted in blue in Fig. 1.1, is obtained by concatenating the leading characters of the
lexicographically sorted suffixes, that is F [j] = s[Suf [j]], j ∈ {0, . . . , n}; then, the
j-th character of the BWT L, that is L[j], j ∈ {0, . . . , n}, is the character preceding
F [j] in the original string, or L[j] = $ if F [j] is the leading character of s (i.e., if
Suf [j] = 0). Therefore, the BWT can be computed in O(n) time directly from the SA
as L[j] = s[(Suf [j]−1) mod (n+1)], j ∈ {0 . . . , n}; since the SA can be constructed
in O(n) time, then the BWT can be built in linear time too.

Before delving into the details of the backward-search algorithm, we state and prove
three properties about the BWT L and the string F given by the leading characters of
the suffixes sorted in lexicographical order; these properties, formalized in Thm. 1.1
are indeed useful to properly explain the backward-search algorithm.

Theorem 1.1. Consider a string s ∈ Σn with $ /∈ Σ as trailing character, the BWT
L of s, its SA Suf and the the string F [j] = s[Suf [j]], 0≤j≤n. Denoting the position
of a character c ∈ s in F and L as posF (c) and posL(c), respectively, the following
properties hold:

35

Chapter 1. Definitions and Preliminaries

(1) ∀j ∈ {0, . . . , n} : posL(s[j]) = posF (s[(j+1) mod (n+1)]).

(2) All the occurrences in s of the same character appear in the same order in both
F and L, i.e., for each pair of occurrences c1, c2 of the same character c in s:
posF (c1)<posF (c2)⇔ posL(c1)<posL(c2).

(3) Consider two occurrences of the same character c in s, denoted by c1, c2, such that
posL(c1) < posL(c2). If no occurrence c3 of c such that posL(c1) < posL(c3) <
posL(c2) exists, then posF (c2) = posF (c1) + 1.

Proof. In the proof of (1), we define an integer ji = (Suf [i]−1) mod (n+1) for each
i ∈ {0, . . . , n}. As the SA Suf has n+1 distinct values ranging over {0, . . . , n},
then all the n+1 integers ji are distinct and range over {0, . . . , n}. From L[i] =
s[(Suf [i]−1) mod (n+1)] and F [i] = s[Suf [i]], 0≤i≤n, we derive L[i] = s[ji] and
F [i] = s[(ji+1) mod (n+1)]. Therefore, for any ji ∈ {0, . . . , n}, posL(s[ji]) =
posF (s[(j+1) mod (n+1)]) = i, which proves (1). In the proof of (2), we denote
by j1 and j2 the positions in s of c1 and c2, i.e., s[j1] = c1 and s[j2] = c2, re-
spectively. First, we observe that since F is constructed by concatenating the first
characters of the sorted suffixes of s, then posF (c1) < posF (c2) ⇔ posF (s[j1+1]) <
posF (s[j2+1]). Due to (1), posL(c1) = posF (s[j1+1]) and posL(c2) = posF (s[j2+1]),
thus posF (s[j1+1]) < posF (s[j2+1]) ⇔ posL(c1) < posL(c2), which proves (2). Fi-
nally, (3) is proven by contradiction. Assume there is no c3 such that posL(c1) <
posL(c3) < posL(c2) with posF (c2)− posF (c1) 6= 1. As F contains a sorted sequence
of characters in s, having posF (c2) > posF (c1)+1 implies the existence of a further
occurrence, c3, between the two, posF (c2)>posF (c3)>posF (c1). Property (2) implies
posL(c2)>posL(c3)>posL(c1), contradicting the hypothesis.

Backward-Search Algorithm

The backward search algorithm, outlined in Alg. 1.2, computes the positions of all the
occurrences of a string q, given as input, over a string s ∈ Σn by hinging upon three data
structures: the SA Suf of s, a dictionary Count binding a character c∈Σ to the number
of characters smaller than c in the string s (according to the order relation employed
to sort suffixes in the SA), and L̃, a full-text index constructed from the BWT L of the
string s in order to efficiently compute the RANK procedure.

Definition 1.7 (RANK Procedure). Given a string s ∈ Σn and the full-text index L̃
constructed from the BWT L of s, RANK(c, i) is a deterministic algorithm that, given
as input a character c ∈ Σ and an integer i ∈ {0, . . . , n}, employs L̃ to compute
the number of occurrences of c in the prefix L[0, . . . , i] of L, that is RANK(c, i) =
|{j∈{0, . . . , i} s.t.L[j]=c}|.

In the backward-search algorithm reported in Alg. 1.2, we do not detail the RANK
procedure, as we will employ different strategies to compute this function in our PPSS
protocols, each relying on its own full-text index L̃. Therefore, we now describe the
backward-search algorithm by assuming that an implementation of the RANK proce-
dure with O(Trank) cost is employed.

As suggested by the name of the algorithm, the backward-search algorithm com-
putes the number oq of occurrences of the input substring q in the string s by starting

36

1.4. Backward-Search Algorithm

Algorithm 1.2: Backward search for a string s ∈ Σn

Input: q: a substring with length 1 ≤ m ≤ n
Output: Rq: set of positions in s with leading character of occurrences of q
Data: L̃: full-text index constructed from the BWT L of s employed to efficiently compute RANK

Count: dictionary storing ∀c∈Σ the number of chars in s smaller than c
Suf : the SA with length n+1 of the string s

1 α← Count(q[m−1]), β ← α+ RANK(q[m−1], n), Rq ← ∅
2 for i← m− 2 downto 0 do
3 c← q[i], r← Count(c)
4 α← r + RANK(c, α− 1)
5 β ← r + RANK(c, β − 1)

6 for i← α to β − 1 do
7 Rq ← Rq ∪ {Suf [i]}
8 return Rq

from the last character: specifically, the algorithm identifies the positions, in the string
F , of all the occurrences of the character q[m−1] in s; as F is a sorted string, then
these characters are identified by the substring F [α, . . . , β − 1], where α and β are
computed as showed in line 1. Then, in the first iteration of the loop at lines 2-5, the
algorithm refines the values α and β to identify the substring of F which contains the
leading characters of all the occurrences of the substring q[m−2, . . . ,m−1] in s. Start-
ing from the occurrences of q[m−1] in s (i.e., F [α, . . . , β − 1]), the algorithm aims
at identifying which of these occurrences are preceded by q[m−2]: by property (1) in
Thm. 1.1, these occurrences can be found by looking at all the occurrences of q[m−2]
in L[α, . . . , β−1]. By Property (3) in Theorem 1.1, all these occurrences corresponds
to a sequence of consecutive characters (i.e, a substring) of F : if we denote the first
of these occurrences as q[m−2]f and the last of them as q[m−2]l, then α (resp. β)
must be set to posF (q[m−2]f) (resp. posF (q[m−2]l)+1). As the string F is sorted, the
position of q[m−2]f in F can be computed by summing Count[q[m−2]], the number
of characters smaller than q[m−2] in s, to the number of occurrences of q[m−2] pre-
ceding q[m−2]f in F ; the latter number, by Property (2) in Theorem 1.1, is equal to the
number of occurrences of q[m−2] preceding q[m−2]f in L, which can be computed as
RANK(q[m−2], α−1), since there are no occurrences of q[m−2] preceding q[m−2]f
in L[α, . . . , n]. Therefore, by adding Count[q[m−2]] and RANK(q[m−2], α−1), line 4
correctly updates α to posF (q[m−2]f). Similarly, posF (q[m−2]l)+1 corresponds to
the sum between Count[q[m−2]] and the occurrences of q[m−2] in F up to q[m−2]l
(including q[m−2]l); the latter number can be computed as RANK(q[m−2], β − 1), as
q[m−2]l is the last occurrence of q[m−2] in L[0, . . . , β − 1]: thus, line 5 correctly up-
dates β to posF (q[m−2]l)+1. At the end of this iteration, the number of occurrences
of q[m−2, . . . ,m−1] in s is given by β − α. We remark that in case there are no oc-
currences of q[m−2] in L[α, . . . , β − 1], then RANK(q[m−2], α− 1)=RANK(q[m−2],
β − 1), thus α and β will be updated to the same value.

Each of the subsequent iterations of the loop at lines 2-5 progressively refines α
and β to identify all the occurrences of an increasing portion of the substring: that
is, in the i-th iteration, i ∈ {1, . . . ,m} the substring F [α, . . . , β − 1] identifies the
leading characters of all the occurrences of q[m−i, . . . ,m−1] in s; eventually, in the
last iteration, the values α, β identifies the leading characters of all the occurrences of
q in s and the number of such occurrences oq = β − α.

37

Chapter 1. Definitions and Preliminaries

The second loop of the algorithm (lines 6-7) retrieves the entries of the SA corre-
sponding to all these occurrences, which contain the positions in the string s of their
leading characters: indeed, as F [i] = s[Suf [i]], i ∈ {0, . . . , n}, the position in the orig-
inal string of the character F [i] is Suf [i]. The two loops in Alg. 1.2 perform m−1 and
oq iterations, respectively; as each iteration costs O(Trank) and O(1), respectively, the
backward-search has O(m·Trank+oq) cost. Since the RANK procedure can be com-
puted with cost Trank = O(1), employing a specific pre-computed full-text index L̃
with O(n · |Σ|) entries, then the backward-search algorithm locates all the oq occur-
rences of a string q ∈ Σm over the string s with an optimal O(m+ oq) cost.

Backward-Search for a Document Collection

A limitation of the backward-search method that hinders its adoption in our scenario is
that the algorithm performs substring search queries over a single text instead of a set
of strings. To overcome this hindrance, we now describe how to employ the backward-
search to efficiently find the repetitions of a substring q ∈ Σm over a set of z ≥ 1
documents D={D1, . . . , Dz}. We start by coupling each character of the document
collection D with a a pair of integers (pos , off): specifically, for the i-th character of
the j-th document, pos=

∑j−1
h=1 LEN(Dj$) and off =i. Then, we build a single string

s from D as the ordered concatenation of all the documents, each terminated by an
end-of-string delimiter, i.e.: s=D1$D2$. . . Dz$, binding to each character of s the pair
(pos , off) coupled to the corresponding character in D. Therefore, for each character
of s, pos is the starting position in s of the document where the character at hand is
found, and off is its offset in the said document. Once the string s is built, we compute
the three data structures required by the backward search algorithm: the full-text index
L̃ constructed from the BWT of s, the dictionary Count over the alphabet Σ and the SA
Suf of s, where we replace the indexes of the suffixes with the pair of values (pos, off)
coupled to the leading character of each suffix.

When run over these data structures and an input substring q with m characters,
Alg. 1.2 computes the set Rq with oq pairs (pos, off); by grouping all the pairs with
the same value pos , we obtain, for each document in D, the set of offsets of all the
occurrences of q in the document at hand. We remark that from the pair (pos, off)
coupled to the leading character of an occurrence, the position in s of this repetition,
if needed, can be trivially computed as pos+off. Furthermore, in case the application
scenario requires also to obtain an identifier of the document where an occurrence is
located, then the SA may also store this id for each of its entries.

The backward-search algorithm, when employing these modified data structures,
correctly finds all and only the repetitions of q in each of the documents in D separately.
Indeed, any occurrence of q in a document of D is found in s too; conversely, each
occurrence of q in s identifies m characters with no delimiter $, which correspond to an
occurrence of q in a document of D. Thus, this strategy computes the same results as
the naive but less efficient solution of running Alg. 1.2 separately over each document.

1.5 Private Information Retrieval

We now introduce the concept of PIR, which, together with the backward-search algo-
rithm, is a fundamental building block of our multi-user PPSS protocol, and we describe

38

1.5. Private Information Retrieval

the specific PIR employed in our PPSS protocol, that is the Lipmaa’s PIR [96].

Definition 1.8 (PIR Protocol). Consider an untrusted server that stores a public dataset
A, which is organized as an array with e ≥ 1 elements, each of ω bits, and a client with
limited computational power. A PIR protocol is a triple of polynomial time algorithms
(PIR-TRAPDOOR, PIR-SEARCH, PIR-RETRIEVE):

• PIR-TRAPDOOR is a probabilistic algorithm, executed by the client, that, given
an integer h ∈ {0, . . . , e−1}, computes a privacy-preserving representation 〈h〉,
also called trapdoor, and sends it to the server

• PIR-SEARCH is a deterministic procedure, run at server side, that, given the
privacy-preserving representation 〈h〉 and the public datasetA, computes a privacy-
preserving representation of the entry A[h], i.e., 〈A[h]〉

• PIR-RETRIEVE is a deterministic procedure, run at client side, that extracts the
entry A[h] from the privacy-preserving representation 〈A[h]〉 received from the
server

The privacy guarantees of the PIR protocol ensures that the untrusted server can cor-
rectly guess the index h of the element retrieved by the client with probability at most
1
e
, thanks to the usage of privacy-preserving representations for both h and the entry
A[h].

We note that to satisfy the privacy guarantees of a PIR protocol, the computational
cost at server side must be Ω(e): indeed, the PIR-SEARCH algorithm must necessarily
process all the e entries of A, as otherwise the server trivially learns that the skipped
entries are not the ones requested by the client. Conversely, the bandwidth of a PIR
protocol should be at most sublinear, as otherwise the protocol is no more efficient than
the trivial solution of sending the whole database to the client. In our PPSS protocol,
we employ the Lipmaa’s PIR because of its low bandwidth. We now describe in detail
this PIR protocol.

Lipmaa’s PIR Protocol

This PIR protocol hinges upon the DJ LFAHE scheme reported in Section 1.1. To
aid the comprehension of the protocol, we start by describing a draft version with no
security guarantees. In this protocol, the client and the server read the positions of
the cells of the array A with e entries in positional notation with radix b ≥ 2, i.e.,
an index h is represented by the sequence of t=dlogb(e)e digits {h0, . . . , ht−1}, with
hi ∈ {0, . . . , b−1} for i ∈ {0, . . . , t − 1}, such that h=

∑t−1
i=0 hib

i. The request of the
array element at position h is performed in t communication rounds. First, the client
asks the server to select all the cells having the least significant digit of the b-radix
expansion of their positions equal to h0 to compose a new array Ah0 concatenating
the selected cells in increasing order of their original position, i.e., Ah0 [j]=A[j·b+h0],
0≤j≤

⌈
e
b

⌉
−1. In the next round, the client asks the server to select the cells in Ah0

having the least significant digit of the b-radix expansion of their positions equal to h1,
constructing an array Ah1 as Ah1 [j]=Ah0 [j·b+h1] = A[j·b2+h1·b+h0], 0≤j≤

⌈
e
b2

⌉
−1.

The next rounds continue employing the subsequent digits of h with the same logic

39

Chapter 1. Definitions and Preliminaries

until, in the last round (i.e., the t-th one), a single cell (the h-th one) is identified by the
server.

In the proper, fully private, Lipmaa’s PIR protocol [96], the client initially generates
a keypair (pk, sk) for the DJ LFAHE scheme with a public modulus N , and shares
pk with the server. For simplicity of the description, we assume that the entries of the
dataset A are small enough to be encrypted in a single ciphertext of length 1 in the DJ
scheme (i.e., ω ≤ dlog2(N)e); if this is not the case, then each entry of the dataset can
be split in chunks which are small enough to be encrypted in a single ciphertext and
then the same trapdoor 〈h〉 can be employed to independently retrieve each of these
chunks.
PIR-TRAPDOOR procedure. The first step of the trapdoor computation considers the
value h as the sequence of t=dlogb(e)e digits in b-radix positional representation, for a
b ≥ 2 given as input to the procedure. Each digit hi with 0≤i≤t−1, is encoded as a
bit-string hdigiti, with length b, constructed as hdigiti[x]=1 if x=hi, 0 otherwise,
x∈{0, . . . , b−1}. Then, each bit hdigiti[x], x∈{0, . . . , b−1} of the string hdigiti is
encrypted with the DJ LFAHE scheme into a ciphertext with length l=i+1. Thus, the
bit-wise encryption of the b-bit string hdigiti is given as the concatenation of b cipher-
texts in Z∗

N l+1 . The trapdoor 〈h〉 is returned as the concatenation of the bit-wise encryp-
tions of each b-bit string in the sequence hdigit0, hdigit1, . . . , hdigitt−1, with total
size b log2

b(e) log(N) bits. The trapdoor is then sent to the server, altogether with the
radix b employed for its construction. The computational cost of the PIR-TRAPDOOR
procedure amounts to O(b log3(N) log4

b(e)) bit operations, assuming the use of modular
multiplication quadratic in the size of the operands.
PIR-SEARCH procedure. The search steps executed at server side follows the t-
iterations over the array A reported in the draft description of the PIR protocol. In
particular, in the first iteration, the server computes an encrypted array 〈Ah0〉 with
d e
b
e items, where each entry 〈Ah0〉[j], 0≤j≤d e

b
e−1, is a ciphertext in Z∗N2 encrypt-

ing the item A[j · b + h0] (i.e., DEC1(sk, 〈Ah0〉[j]) = A[j·b+h0]). To this end, each
item 〈Ah0〉[j] is computed by performing the hybrid dot product, reported in Eq. (1.1),
between the sub-array A[j·b,. . . ,j·b+b−1], whose entries are plaintexts in ZN , and the
bit-wise encryption of the b-bit string hdigit0, whose b ciphertexts are in Z∗N2 . In
the second iteration, the server constructs an array 〈Ah1〉 with d e

b2
e items, where the

item 〈Ah1〉[j], 0≤j≤d e
b2
e−1, is computed by performing the homomorphic dot prod-

uct, reported in Eq. (1.2), between the sub-array 〈Ah0〉[j·b, . . . , j·b+b−1], whose en-
tries are ciphertexts in Z∗N2 , and the bit-wise encryption of the b-bit string hdigit1,
whose b ciphertexts are in Z∗N3 . The result of this dot-product is a ciphertext in Z∗N3

which encrypts the item 〈Ah0〉[j · b+ h1]. As the latter element is a ciphertext it-
self, then 〈Ah1〉[j] is a double-layered encryption of the item A[j·b2+h1·b+h0]: i.e.,
A[j · b2+h1·b+h0] = DEC1(sk,DEC2(sk, 〈Ah1〉[j])). After t=dlogb(e)e iterations, the
server computes a single ciphertext 〈Aht−1〉 ∈ Z∗Nt+1 , which is a t-layered encryption of
the target value A[h]. The computational cost of the PIR-SEARCH procedure amounts
to O(e

b
log3(N)) bit operations to compute a ciphertext with dlogb(e)e log(N) bits.

PIR-RETRIEVE Procedure. Since 〈Aht−1〉 is a t-layered ciphertext, then the client
must remove all these t encryption layers by decrypting t times with decreasing length,
i.e., A[h]=DEC1(sk,DEC2(sk, . . . ,DECt(sk, 〈Aht−1〉) . . .)). The computational cost
of the PIR-RETRIEVE procedure amounts to O(log5

b(e) log2(N)) bit operations to de-

40

1.6. Oblivious RAM Protocols

rive the target value A[h]. Lastly, the communication cost of the described single-
round PIR-protocol amounts to O(log(N)b log2

b(e)) bits sent from client to server, and
to O(log(N) logb(e)) bits sent from server to client.
Aggregate PIR Queries. In our PPSS protocol, we also employ an aggregate version
of PIR queries, which is able to retrieve multiple consecutive entries from the dataset
A with a single trapdoor and the same computational cost at server side. In this version
of a PIR protocol, we introduce an additional parameter a, called aggregation factor,
that specifies the number of entries to be retrieved with a single PIR query; specifically,
the dataset A with e elements is logically split in d e

a
e chunks of a consecutive entries

each, in order to allow the client to retrieve the h-th chunk, h ∈ {0 . . . , d e
a
e−1}, by

issuing a single PIR query. In particular, the client generates a PIR trapdoor to retrieve
the h-th entry from a dataset with d e

a
e entries; the server splits the dataset A in a arrays,

with the j-th one, j ∈ {0, . . . , a−1}, containing all the entries A[i] such that i mod
a=j, and employs the unmodified PIR-SEARCH procedure to retrieve the h-th entry
from each of these a arrays; these a entries are then sent back to the client. Both
the computational and communication costs for the PIR-TRAPDOOR procedure are
reduced to, respectively, O(b log3(N) log4

b(
e
a
)) and O(b log(N) log2

b(
e
a
)), as a trapdoor

for a dataset with d e
a
e entries is generated in place of a trapdoor for a dataset with

e entries; conversely, both these costs increase by a factor a in the PIR-RETRIEVE
procedure, because a entries are sent back from the server and then decrypted by the
client. Remarkably, the computational cost at the server side is unchanged: indeed,
the server performs a PIR-SEARCH operations over a dataset with d e

a
e entries, thus

yielding a O(a e
ab

log3(N)) = O(e
b

log3(N)) cost.

1.6 Oblivious RAM Protocols

In this section, we introduce the concept of ORAM protocol, focusing on ORAMs
that arrange the data in a binary tree, because of their polylogarithmic overhead in
terms of both bandwidth and computation cost. We detail the inner working of Path
ORAM [142] to introduce the main algorithms and data structures of a tree-based
ORAM. Following this, we sketch the differences introduced in the Ring [128] and
Circuit [156] ORAMs designs.

Path ORAM

Path ORAM splits a dataset of L bits in blocks of B bits and assigns to each one of
them a unique identifier, referred to as block id (bid). Although l=dL

B
e blocks are

sufficient to store the dataset, Path ORAM increases the number of blocks to M ·Z,
where M=2blog2(l)c+1−1 and Z≥1; these additional blocks, called dummy, allow to
hide how the l real blocks are scrambled inside the ORAM. The id of dummy blocks
is set to a special value ⊥ to distinguish them from real ones. All the M ·Z blocks are
partitioned in M buckets, each one containing Z blocks; then, the buckets are arranged
as a balanced complete binary tree withM nodes, each storing one bucket. Each bucket
is encrypted with a semantically secure scheme; a bucket is full if it contains Z real
blocks. A Path ORAM tree that stores l=6 blocks is depicted in Fig. 1.2. The M+1

2
leaves of the tree are labeled with a leaf id lid, a log2(M+1)−1 bits-wide integer that
identifies the path of the tree to reach the leaf at hand; specifically, the i-th bit of lid

41

Chapter 1. Definitions and Preliminaries

Bucket 0
Block 0
Block 1
Block 2
Block 3

Bucket 1
Block 0
Block 1
Block 2
Block 3

Bucket 3
Block 0
Block 1
Block 2
Block 3

Leaf 0

Bucket 4
Block 0
Block 1
Block 2
Block 3

Leaf 2

Bucket 2
Block 0
Block 1
Block 2
Block 3

Bucket 5
Block 0
Block 1
Block 2
Block 3

Leaf 1

Bucket 6
Block 0
Block 1
Block 2
Block 3

Leaf 3

Figure 1.2: Path ORAM with Z=4 and l=6 (grayed out) real blocks

(i=0 is the least significant bit) is 0 (resp. 1) if the leaf belongs to the left (resp. right)
subtree of the i-th node in the path from the root to the leaf at hand.

To retrieve real blocks from the ORAM, each of them is mapped to a lid, which
identifies the path of the tree where the block must reside; this mapping is stored in
a data structure called position map. Any modification of the tree must preserve this
mapping, otherwise blocks cannot be retrieved any longer. All real blocks store their
corresponding lid in order to be placed in the proper path. Another data structure, called
stash, stores the accessed real blocks that have not been pushed back to the ORAM tree
yet. The stash analysis of Path ORAM [142] proves that for Z≥4 the number of blocks
in the stash, denoted with S, is O(1) with overwhelming probability; thus, the stash can
be stored at client side to conceal it from the server.

The content of a specific block from the ORAM can be retrieved through the AC-
CESS procedure. Given a block id bid, this procedure obtains the leaf id lid cor-
responding to block bid from the position map, and updates the corresponding en-
try with a randomly sampled leaf id lid′. Then, it invokes two other procedures:
FINDBLOCK(bid, lid, lid′) and EVICTION(lid). The former retrieves from the server
the whole path containing the leaf with id lid. The client decrypts the fetched path,
appends all the real blocks to the stash and looks for the bid block in it. If the block is
found, its leaf id is replaced with lid′. FINDBLOCK returns the content of the block, if
found,⊥ otherwise. The EVICTION procedure writes back the fetched path, with id lid,
to the ORAM tree, filling the buckets with as many blocks as possible from the stash.
The client computes, for each block in the stash, the deepest bucket of the evicted path
that can store the block at hand and, if found, it moves the block from the stash to this
bucket. A bucket can store a block with leaf id lid′ if it is not full and it belongs to
both the evicted path, with id lid, and the path with id lid′ (to preserve the property
that a block is located along the path corresponding to its leaf id). The eviction stops
when there are no more blocks in the stash that can be moved to the evicted path; at this
point, the client re-encrypts the path and writes it back to the ORAM. Both procedures

42

1.6. Oblivious RAM Protocols

Table 1.2: Format of the bucket metadata in Ring ORAM. Grayed-out fields must necessarily be
encrypted. M is the number of blocks in the ORAM, while Z (resp. D) denotes the maximum (resp.
minimum) number of real (resp. dummy) blocks per bucket

Field Bit width Size Description
IV λ 1 IV for bucket encryption

Bids log(M+1) Z Block ids of real blocks
Lids log(M+1) Z Leaf ids of real blocks
Π log(Z+D) Z Intra-bucket offset of real blocks

Invalid 1 Z+D Blocks already fetched since last bucket write
cnt logD 1 Count accesses to bucket

cost O(log(M)·Z·B) on server side and O(B(S + log(M)·Z)) on client side, while
their bandwidth is O(log(M)·Z·B), as the client and the server exchange a whole path.
Considering that B=Ω(log(M)), as a block has to store at least the block and the leaf
ids, both procedures require Ω(log2(M)·Z) computational cost and bandwidth.

Path ORAM hides the actual blocks accessed by the client because it introduces a
randomly chosen secret mapping between logical block identifiers (i.e., block ids) and
the actual access pattern observed by an adversary (i.e., the leaf ids of the paths be-
ing fetched). This mapping is randomly updated each time a block is accessed, making
consecutive accesses to the same block indistinguishable from accesses to other blocks.
The encryption of blocks with a semantically secure cipher hides to the adversary how
the blocks are moved in the ORAM tree. To ensure this privacy guarantees, the map-
ping between block identifiers and the path where the corresponding blocks reside,
which is stored in the position map, must be concealed from the server; nonetheless,
as the position map has l entries, each of log(M) bits, it cannot be stored by a client
with limited storage capabilities. To overcome this issue, another ORAM, denoted as
ORAM1, is employed to store the position map: indeed, if each block of ORAM1 con-
tains up to C entries of the position map, the position map of ORAM1 has d l

C
e entries,

thus reducing the size of the position map by a factor of C. By recursively applying
this strategy to store the position maps of smaller ORAMs, eventually the position map
becomes compact enough to be stored at client side. Indeed, by employing Θ(logC(l))
recursive ORAMs, the size of the position map of the smallest ORAM becomes O(1).
This recursive strategy introduces a logarithmic factor in both the bandwidth and the
computational cost, which become O(C·B·log2(M)·Z).

Ring ORAM

Ring ORAM improves over Path ORAM in two ways: the FINDBLOCK procedure
achieves a bandwidth of O(B·log(M)) by fetching from the server a single block per
bucket instead of the entire bucket; the EVICTION procedure is performed once every
A≥1 accesses to the ORAM instead of being performed for each access. To fetch a
single block per bucket in place of the entire bucket during FINDBLOCK, Ring ORAM
enriches the bucket with some metadata (showed in Tab. 1.2), which are employed
by the client to choose the blocks to be fetched from each bucket. Specifically, the
FINDBLOCK procedure, instead of fetching the buckets along the path containing the
searched block, retrieves only their metadata, which is much cheaper as the metadata

43

Chapter 1. Definitions and Preliminaries

are much smaller than the entire bucket. Then, for each bucket along this path, FIND-
BLOCK invokes SELECTOFFSET procedure, which employs the bucket metadata to
choose one block to be retrieved from the server, returning its offset in the bucket. The
offsets computed by SELECTOFFSET are sent to the server, which retrieves the corre-
sponding blocks from the ORAM tree. As single blocks are retrieved in place of the
whole bucket, Ring ORAM mandates to make the decryption of a single block indepen-
dent from the other ones in the bucket; employing a symmetric key cipher in CounTeR
(CTR) mode allows to achieve this goal, also enabling the usage of a single IV for the
whole bucket (stored in bucket metadata).

The goal of performing evictions every A > 1 accesses instead of being performed
for each access is achieved by ensuring that the FINDBLOCK procedure fetches only
one real block from the ORAM tree, thus appending only a single block to the stash. To
this extent, the SELECTOFFSET procedure selects the offset of the block bid, if found in
the bucket, or the offset of a dummy block otherwise. To ensure that there are enough
dummy blocks in each bucket to be chosen by the SELECTOFFSET procedure, buckets
in Ring ORAM have Z+D blocks, where the additional D slots always store dummy
blocks. To prevent the adversary from learning if SELECTOFFSET chooses a real or
dummy block, all of them are randomly permuted through a permutation Π, stored in
the metadata. Furthermore, these two additional properties must be guaranteed: i) each
block is fetched from its bucket at most once since the last time the bucket was writ-
ten back to the ORAM tree; ii) each bucket must be accessed at most D times since
the last time it was written to the ORAM tree. The first property is needed to prevent
the adversary from distinguishing dummy blocks from real ones from their access fre-
quencies. Indeed, a real block is chosen by SELECTOFFSET procedure, and fetched
from a bucket, only when it corresponds to the block bid that must be retrieved by
FINDBLOCK, while a dummy block may be chosen in all other cases. To ensure this
property, the SELECTOFFSET procedure must always choose a valid block, with a block
being marked as invalid in the bucket metadata as soon as it is chosen by SELECTOFF-
SET. The second property ensures that there are always enough dummy blocks to be
chosen in a bucket by SELECTOFFSET: indeed, after D accesses to the bucket, no valid
dummy blocks may have left in the bucket. To this extent, the bucket metadata keeps
track of the number of accesses to the bucket with a counter cnt; when D accesses are
reached, a maintenance task called EARLYRESHUFFLE must be invoked. This proce-
dure, upon receiving the Z valid blocks of the bucket, randomly shuffles them with D
dummy blocks; then, the bucket is encrypted and written back to the ORAM tree. As
the blocks are re-shuffled, they can all be marked as valid, and cnt is reset as the bucket
has again at least D valid dummy blocks available.

Since only the real block fetched from the ORAM in the FINDBLOCK procedure
is appended to the stash, an EVICTION after each FINDBLOCK becomes unnecessary.
Therefore, evictions are performed every A>1 accesses, where A is the eviction period
of Ring ORAM, whose actual value depends on Z. In order to maximize the average
number of blocks evicted from the stash, the paths to be evicted are chosen according
to a deterministic schedule, which follows the ids of the paths in increasing order. This
schedule guarantees that the overlap between two consecutive evicted paths is limited
to the bucket stored in the root node of the ORAM tree, as a bucket at level i of the
tree belongs to the evicted path every 2i consecutive evictions. EVICTION procedure

44

1.6. Oblivious RAM Protocols

is performed in the same way as in Path ORAM, with the only difference that all the
buckets of the evicted path undergo an EARLYRESHUFFLE before being written back
to the ORAM, to the extent of randomly permuting real and dummy blocks.

Circuit ORAM

Circuit ORAM is a refinement of Path ORAM tailored for hardware implemented
clients, where the server is a large memory on the same machine (or even on the same
die). Therefore, this ORAM trades off a low bandwidth for the compactness of the
circuit implementing the ORAM client. This is achieved with a simplified EVICTION
procedure that evicts at most one block from the stash. The path to be evicted is cho-
sen with the same deterministic schedule of Ring ORAM to minimize the probability
that no block can be evicted from the stash. The simplified EVICTION procedure is
performed with a single sweep of the evicted path, simultaneously moving at most one
block down along this path. The block in the stash that can go deepest in the path
is the first block moved down along the path; such block is moved down until either
the destination bucket is reached or a block that can go deeper is found in a bucket
closer to the root than the destination one. In the first case, the block is placed in the
destination bucket unless the bucket is full, while in the second case the block being
moved down replaces the block found in the current bucket, which becomes the new
block to be moved down along the path. We note that in the first case, if the destina-
tion bucket is full, then the block cannot be evicted and has to be placed back in the
stash; to reduce the chances of this inconvenience, the EVICTION procedure performs
beforehand two sweeps over the metadata (i.e., the block ids and the corresponding leaf
ids) of the buckets in the evicted path to compute the additional metadata dest. This
metadata specifies, for the stash and for each bucket in the evicted path, if a block of the
stash/bucket must be moved down along the paths and, if this the case, its destination
bucket: indeed, dest[i], i ∈ {0, . . . , log(N+1)−1} (dest[0] refers to the stash), stores
the bucket where the block of the i-th bucket that can go deepest in the path must be
moved, while dest[i]=⊥ if no block from the the i-th bucket must be moved down in
the path. The EVICTION procedure then employs dest to move these blocks to their
destination buckets with a single sweep of the evicted path.

Despite a single block is evicted, the stash growth is limited as FINDBLOCK appends
at most the block with id bid to the stash, if found in the fetched path. This path, with
the block bid replaced by a dummy one, is re-encrypted and written back to the ORAM
tree. To avoid a monotonic growth of the stash in case no blocks from the stash can be
evicted, 2 evictions are performed for each access. The additional eviction, although
forcing the ORAM to fetch and write back 3 paths per access, allows to keep the stash
about 1 order of magnitude smaller than Path and Ring ORAMs.

45

CHAPTER2
Comparison-Based Attack Against Noise-Free

FHE Schemes
PLEASE, LET ME EXPLAIN!!

In this chapter, we describe our comparison-based attack against FHE schemes, which
allows to recover the plaintext values from ciphertexts, thus completely breaking the
FHE scheme at hand. Our plaintext-recovery attack is applicable to any FHE scheme
where an efficient algorithm able to determine if a generic ciphertext is the encryption
of a fixed plaintext m is available. Since the existence of such algorithm, referred to
as m-distinguisher, was proven in [158] for linearly-decryptable FHE schemes, then
our attack is applicable to any linearly-decryptable FHE scheme, including the two
noise-free FHE schemes OctoM and JordanM. In addition, we show a further attack
technique, applicable to any symmetric FHE scheme vulnerable to a key recovery attack
when a sufficient number of ciphertexts with known plaintext values is available to
the attacker, that allows to mount such attack by relying only on a limited amount of
information on the plaintext value of a single ciphertext. Before delving into the details
of our attacks, we formalize the notion of m-distinguisher, relying on the indicator
function over a set of elements:

Definition 2.1 (Indicator Function). Given a set S and a subset A ⊆ S, the indicator
function of the elements ofA over the ones included in S is defined as: 1A : S → {0, 1},
where 1A(x) = 1 if x ∈ A, 0 otherwise.

Definition 2.2 (m-distinguisher). Let the four-tuple (KEYGEN, ENC,DEC, EVAL) be
an HE scheme with security margin λ, plaintext spaceM, ciphertext space C and the
keys k=(sk, pk, evk) ← KEYGEN(1λ). Let Amk ⊂ C, be the set of ciphertexts corre-
sponding to the encryption of a plaintext m ∈M, i.e.: Amk = {c ∈ C s.t.DEC(sk, c) =
m}. Given a plaintext m ∈ M, an m-distinguisher is a deterministic polynomial
time algorithm Am taking as input a ciphertext c ∈ C and the public portion of k (i.e.,

47

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

kpub = (pk, evk) for public-key schemes and kpub = evk for symmetric ones), and com-
puting the indicator function of the elements of Amk over the set of ciphertexts, namely
1Am

k
: C → {0, 1}, in such a way that

|{c ∈ C s.t. Am(c, kpub) = 1Am
k

(c)}|
|C|

≥ 1− ε(λ),

where ε(λ) is a negligible function of the security margin of the system.

We observe that our definition ofm-distinguisher allows the output of them-distinguisher
to be erroneous for a negligible portion ε(λ) of ciphertexts. Assuming the existence of
such anm-distinguisher for the HE scheme targeted by our attack, we now describe our
plaintext-recovery attack.

2.1 Plaintext-Recovery Attack

Before describing our attack, we outline the threat model of our attack, which encom-
passes the assumptions on the capabilities of the adversary conducting our attack.

Threat Model

The adversary can perform the attack by relying only on publicly-available information.
In particular, our attack is performed in a ciphertext-only scenario, which means that
the attacker employs only ciphertexts and public portion of the key material (that is,
the evaluation key and the public key, if the scheme is asymmetric). Nonetheless, the
ciphertext-only scenario generally embodies additional public information that can be
inferred from the application domain where the HE scheme is employed. Indeed, since
the ciphertexts are involved in a known computation, the corresponding plaintext values
are expected to be the input values for this computation. Therefore, we assume that the
attacker knows the domain of these input values, which may be extremely smaller than
the plaintext domain (e.g., in a power metering application, the input values may be as
big as 109, while the plaintext domain of an HE scheme is generally the integer ring
ZN , where N may be a much bigger number). Throughout the paper, we denote the
domain of the input values as the interval Ds = {−s + 1, . . . , s + 1}, where s is an
integer representing an upper bound for the majority of the input values (e.g., 109 for
a power metering application). We remark that, in this definition, there may be input
values outside Ds, what it is relevant for our purposes is that a large portion of input
values resides in Ds.

Attack Strategy

We now detail our plaintext recovery attack against an HE scheme capable of com-
puting the homomorphic greater-than function HGTt ,b (defined in Section 1.2), which
relies on the existence of an m-distinguisher for the targeted HE scheme.

Throughout the attack, the adversary needs to obtain encryptions of known values:
that is, given an integer h ∈ ZN , the attacker needs to compute a ciphertext ch such that
DEC(sk, ch) = h. In case the HE scheme is asymmetric, ch can be directly obtained
by employing the public key encryption algorithm of the scheme, while, in case of a

48

2.1. Plaintext-Recovery Attack

symmetric HE scheme, ch can be computed from a single encryption of m̂ = 1 hinging
upon the HYBRIDMUL homomorphic operation.

From now on we will assume that, in case our attack is applied to a symmetric HE
scheme, an encryption ĉ of a unitary plaintext value is available to the attacker (i.e.,
DEC(sk, ĉ) = 1), enabling him to obtain encryptions ch of known values required
throughout the attack; at the end of this section, we will show how ĉ can be obtained
by the adversary.
Comparison-based Attack. The core idea of our attack is to perform a homomorphic
binary search over the possible candidates for the value of the plaintext corresponding
to the ciphertext at hand. To this end, a comparison function CMP , taking two cipher-
texts as inputs and yielding an outcome in cleartext, is computed leveraging the homo-
morphic greater-than function HGT t,b and the m-distinguisher. In particular, since the
result of the HGT t,b function is a ciphertext encrypting either b or b − 1, by choosing
b = m the attacker can employ the m-distinguisher to determine the actual (plaintext)
value of HGT t,m (without employing the secret key sk).

Definition 2.3 (Comparison Function). Consider a FHE scheme with plaintext space
M = ZN , with N > 2, an integer t such that 2 ≤ t ≤ q

2
, where q is the smallest prime

factor of N , and the set of ciphertexts Ct = {c ∈ C s.t. Dec(sk, c) < t}. Given the
ciphertexts c1, c2 ∈ Ct and the m-distinguisher Am(c, kpub) (see Def. 2.2), where m is
a fixed plaintext value, c ∈ C and kpub is the public portion of the key material of the
FHE scheme, the function CMP : Ct × Ct → {1, 0,−1} is defined as:

CMP(c1, c2) =

1 if Am(HGT t,m(c1, c2), kpub) = 1 ∧ Am(c1 − c2 + cm, kpub) 6= 1,

0 if Am(HGT t,m(c1, c2), kpub) = 1 ∧ Am(c1 − c2 + cm, kpub) = 1,

−1 otherwise

where cm is an encryption of the plaintext value m (i.e, DEC(sk, cm) = m) computed
by the attacker.

Specifically, given the ciphertexts c1, c2 ∈ Ct with corresponding plaintext values
mc1 ,mc2 ∈ Dt, CMP(c1, c2) = 1 if mc1 > mc2 , CMP(c1, c2) = 0 if mc1 = mc2 and
CMP(c1, c2) = −1 if mc1 < mc2: indeed, Am(HGT t,m(c1, c2), kpub) = 1 if and only if
mc1 ≥ mc2 , while Am(c1 − c2 + cm, kpub) = 1 if and only if mc1 = mc2 .

Denoting with Tdist the computational complexity of the m-distinguisher, we have
that the time complexity TCMP of CMP is TCMP = O(t + 2Tdist), as its execution
involves at most two computations of the m-distinguisher plus one computation of the
HGT t,m function, which has complexity O(t). Given a ciphertext c with unknown
plaintext, our attack locates the value of its plaintext in the range Dt, computing a
ciphertext ch encrypting a candidate plaintext value h and employing the outcome of
CMP(c, ch) to choose the next candidate plaintext value h′ to be tested according to
a binary search strategy over the set Dt. Since this set is t elements wide, then the
candidate plaintext value is found after O(log(t)) tests, yielding a computational cost
of O(TCMP ·log(t)) = O((t+ Tdist) log(t)).

Starting from the strategy we have just described, we improve its effectiveness ex-
tending the range of the recoverable plaintexts. To this end, given a generic ciphertext c,
we split the set of recoverable plaintexts into |Dt| = t sized chunks, we find candidate
chunks that may contain the plaintext value of c, and we search for it employing the

49

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

Algorithm 2.1: Plaintext Recovery Attack
Input: Ciphertext c ∈ Cs, where Cs = {c ∈ C s.t. DEC(sk, c) < s}
Output: Plaintext mc = Dec(sk, c), mc ∈ Zn

Data: Ciphertext ĉ, with DEC(sk, ĉ) = 1
1 begin
2 for i← 1 to σ do
3 cgt ←HGTt,m(c,HYBRIDMUL(evk, ĉ, (i− 1)t))
4 if A(m)(cgt,kpub) = 1 then
5 cgt← ADD(evk,HGTt,m(c,HYBRIDMUL(evk, ĉ, it)),ĉ)
6 if A(m)(cgt,kpub) = 1 then
7 mc ← BINSEARCH(ADD(evk, c,HYBRIDMUL(evk, ĉ,−(i− 1)t)))
8 if mc 6= ⊥ then
9 return mc + (i− 1)t

binary search approach in each of the candidate chunks. We denote with Ds the set of
recoverable plaintexts (Ds={0, 1, . . . , s−1}, s ≤ N), and with Cs the set of ciphertexts
obtained encrypting plaintexts in Ds, i.e.: Cs = {c ∈ C s.t. DEC(sk, c) < s}. The re-
coverable message space Ds is split into σ chunks containing numerically consecutive
plaintexts, with σ=d s

t
e: for instance, the i-th chunk, 1 ≤ i ≤ σ, contains plaintexts

values {(i− 1)t, . . . , it− 1}, while the last one contains values {it, . . . , s− 1}.
Algorithm 2.1 shows how our improved attack is performed. It iterates over all the σ

chunks, testing, for each one, if the unknown plaintext value mc, corresponding to the
input ciphertext c, may be contained in the chunk at hand (lines 2–9). To this end, the
algorithm starts by testing if mc may be in a chunk {(i−1)t, . . . , it−1} by verifying if
GTt,m(mc, (i− 1)t) = m (lines 3–4). In case this test succeeds (line 4, case of the if
being taken), Alg. 2.1 proceeds to test also if mc is smaller than the upper bound it of
the chunk at hand, by verifying that GTt,m(mc, it) = m−1 with an analogous approach
(lines 5–6). If the tests at lines 3–6 succeed, then the current chunk may contain the
plaintext mc, and so Alg. 2.1 attempts a plaintext recovery employing the binary search
approach described in precedence over the current chunk (line 7). However, the binary
search is effective only under the assumption that the sought plaintext is in Dt, thus
Alg. 2.1 (line 7) exploits the homomorphic operations to subtract the value of the lower
bound (i−1)t of the current chunk from mc, working on its corresponding ciphertext c,
to compute the value ofmc mod t, which can be retrieved by the binary search strategy.

Nevertheless, we note that the answers of the tests in lines 3–6 are subject to po-
tential false positives. Indeed, if mc /∈ {(i−1)t, . . . , it − 1}, then mc − (i − 1) · t /∈
Dt ∨ mc − i · t /∈ Dt: thus, it means that the polynomial fsign(z) ∈ ZN [z], obtained
by interpolating points whose z-coordinates range over Dt and homomorphically eval-
uated during the computation of HGT t,m, is evaluated on a point z /∈ Dt, hence yield-
ing an outcome which is either outside the set {m − 1,m} or (by coincidence) inside
it. Therefore, it may happen that fgt(mc, (i − 1)t) =fsign(mc − (i − 1)t)=m and
fgt(mc, it) =fsign(mc − it) =m−1 even if mc /∈ {(i − 1)t, . . . , it − 1}. In this case,
the chunk {(i − 1)t, . . . , it − 1} represents a false positive candidate interval for the
sought plaintext value mc. However, these false positive chunks are filtered out later
in the algorithm. Indeed, considering the ciphertext fed as input to the BINSEARCH
procedure at line 7 in Alg. 2.1, its corresponding plaintext value mc − (i − 1)t does
not belong to the interval Dt if mc /∈ {(i − 1)t, . . . , it − 1}. Since the binary search
strategy is effective only under the assumption that the sought plaintext is in Dt, then

50

2.1. Plaintext-Recovery Attack

the binary search will return a valid result (line 8) only if mc ∈ {(i− 1)t, . . . , it− 1},
that is when the current chunk is not a false positive. In this case, the actual value of
mc is reconstructed by adding back the lower bound (i−1)t of the current chunk to the
value retrieved by the binary search (line 9).

We now consider the time complexity Ta of Alg. 2.1 as a function of the value of
the plaintext to be retrieved mc. Algorithm 2.1 is expected to perform dmc

t
e iterations

of the outer loop. Each one of the iterations, save for the last one, will fail the mem-
bership tests with very high probability (false positives are unlikely), thus resulting in a
computational effort equal to O(t+ Tdist), at each iteration. However, we consider the
overall worst-case complexity Ta(mc) of the improved plaintext recovery attack, which
assumes that a false positive is found in each iteration:

Ta(mc) = O(
⌈mc

t

⌉
(t+ Tdist + TBinSearch)) = O(log(t)(mc +

⌈mc

t

⌉
Tdist)) (2.1)

Therefore, our attack has a time complexity which is linear in the plaintext value
being recovered. This is the main reason why our attack is able to practically recover
only ciphertexts whose corresponding plaintext is not too big. However, by setting
t = 220 (an upper bound imposed by theO(t2) computational cost of Lagrange interpo-
lation), we see that, unless Tdist > 223, recovering plaintexts as big as 232 still retains
a computational complexity Ta(mc) < 240. Since many typical FHE scenarios involve
computations on relatively small values (e.g., power consumption statistics from smart
meters), we deem this plaintext recover capability effective enough to be worth consid-
ering. Furthermore, we observe that the linear computational complexity of our attack
stems from the fact that the adversary tries in increasing order all the possible plain-
text values in the domain Ds, which is a suitable strategy if the general case where tall
the elements in Ds are equally likely to be the plaintext value of the given ciphertext;
nonetheless, if the attacker, for a specific ciphertext c, can restrict the set of possible
plaintext values or it knows that some plaintext values are more likely than others, it
can employ a tailored guessing strategy that allows to reduce the number of chunks to
be tested before finding the corresponding plaintext value of c.

To conclude the description of our attack, we now show the speed-up obtained by
Alg. 2.1 over an exhaustive search strategy leveraging only the m-distinguisher Am.
This latter attack tries all plaintext values mc ∈ ZN in increasing order, with the re-
covered plaintext being the first mc such that Am(ADD(evk, c1, c2), kpub) = 1, with
c1 = HYBRIDMUL(evk, ĉ,−mc) and c2 = ADD(evk, c, cm), where cm is a ciphertext
with corresponding plaintext value equal to m and ĉ is the ciphertext with correspond-
ing plaintext m̂ = 1 which is assumed to be available to the attacker. Denoting the value
of the recovered plaintext as mc, with this strategy we employ the m-distinguisher mc

times, therefore the complexity of this approach is O(mcTdist). The speed-up of our
attack over this simple strategy can be computed as:

mcTdist
Ta(mc)

=
mcTdist

log(t)(mc + dmc

t
eTdist)

=
tTdist

log(t)(t+ Tdist)
(2.2)

This calculation shows that our attack improves the exhaustive search strategy by a
constant factor, thus without changing its asymptotic complexity. In particular, the
speed-up depends on the values of t, chosen by the attacker, and Tdist, given by the

51

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

m-distinguisher of the target scheme. Although this improvement may seem negligi-
ble, we will show during the evaluation of our attack against the OctoM [158] and
JordanM [158] FHE schemes that the magnitude of the speed-up is significant, as it
largely increases the number of recoverable plaintexts.
Relaxing the Assumptions for Comparison-Based Attack. In order to perform our
attack, the adversary needs to compute encryptions of known values (e.g., the attacker
needs encryptions of the candidate plaintext values while performing the binary search).
As already discussed at the beginning of this section, in case the HE scheme is sym-
metric, such encryptions can be easily computed if a ciphertext ĉ, whose corresponding
plaintext value is m̂ = 1, is available to the adversary.

We now show how an attacker can easily obtain ĉ hinging upon the m-distinguisher
and the homomorphic operations. The key observation is that the adversary, given only
a generic ciphertext c∈C, can homomorphically evaluate any polynomial f(z)∈ZN [z]
with no constant term. Indeed, evaluating a polynomial f(z) = hd+1z

d+1 + · · ·+h1z ∈
ZN [z] requires mainly three operations: exponentiations to compute the powers zi, mul-
tiplications between these powers zi and the coefficients hi, and the addition of all these
terms. The homomorphic evaluation of the polynomial over a generic ciphertext c (i.e.,
EVAL(evk, f, c)) can thus be performed by relying on HYBRIDEXP, HYBRIDMUL and
ADD operations, respectively.

We remark that, for a polynomial with no constant term, f(0) = 0 necessarily
holds: therefore, in order to compute the ciphertext ĉ such that Dec(sk, ĉ) = 1, the
adversary should evaluate the polynomial fne ∈ ZN [z] such that fne(z) = 1 if and
only if z 6= 0. This polynomial can be obtained by interpolating the set of N points
{(0, 0), (1, 1), . . . , (N − 1, 1)}; nevertheless, since interpolating N points would be
computationally unfeasible, the adversary can choose an integer u << N such that
interpolating the set of 2u− 1 points {(−u+ 1, 1), . . . , (0, 0), . . . , (u− 1, 1)} becomes
computationally feasible. We remark that the usage of 2u − 1 points instead of N
ones has a drawback: the polynomial fune(z) obtained by the interpolation may evaluate
to an arbitrary value in ZN if abs(z) ≥ u, where abs(z), for a generic z ∈ ZN =
{0, . . . , N−1}, is defined as min(z,N−z). Indeed, for a polynomial f(z) obtained by
interpolating 2u− 1 points {(x0, y0), . . . , (x2u−2, y2u−2)}, f(xi) = yi, 0 ≤ i < 2u− 1,
holds, but the evaluation f(z) for an integer z /∈ {x0, . . . , x2u−2} is not constrained by
the interpolation method. In conclusion, the polynomial obtained by the adversary is:

fune(z) =

0 if z = 0

1 if 0 < abs(z) < u

⊥ otherwise
(2.3)

Here, ⊥ denotes that the evaluation of fune(z), when abs(z) ≥ u, may be an arbi-
trary value in ZN . This polynomial fune can be homomorphically evaluated by the
adversary, since it has no constant term. Given a generic ciphertext c, the adversary
computes a ciphertext cne = Eval(evk, fune, c) and runs the m-distinguisher over the
ciphertext cm = HYBRIDMUL(evk, cne,m): if the m-distinguisher determines that
cm is an encryption of m, the attacker knows that m·mcne=m ⇒ mcne=11, where
mcne = DEC(sk, cne). Therefore, the adversary knows that cne corresponds to ĉ, the

1The solution of this equation is not necessarily mcne = 1 if the integer m is not coprime with N ; however, even in this case,
the probability that mcne 6= 1 is a solution is negligible.

52

2.2. Applying Our Attack on Linearly Decryptable FHE Schemes

required encryption of 1. Once the attacker obtains this encryption ĉ, then it can com-
pute all the encryptions of arbitrary known values needed to perform the attack. With
this method, any ciphertext cwhose corresponding plaintext valuemc lies in the interval
{−u+ 1, . . . ,−1, 1, . . . , u− 1} would allow the adversary to compute ĉ.

2.2 Applying Our Attack on Linearly Decryptable FHE Schemes

We now evaluate our attack against two symmetric noise-free FHE schemes [158],
OctoM and JordanM. Since these schemes are linearly-decryptable, there exists an
efficient 1-distinguisher for these cryptosystems [158], hence making our attack appli-
cable. Despite the existence of this distinguisher was acknowledged by the authors of
OctoM and JordanM, they claimed the security of their schemes against ciphertext-
only adversaries aiming to recover either the plaintext or the secret key [158]; in the
following, we show that the confidentiality guarantees of these schemes can be com-
pletely subverted by our comparison-based attack. We start by describing both the
OctoM and the JordanM scheme.

Octonion and Jordan Algebrae

We now provide a brief introduction to the two algebras required to understand the FHE
schemes evaluated in this work, i.e., the octonion algebra and the Jordan algebra. For a
more comprehensive description we refer the reader to [158] or to [6].

Octonion Algebra. The support of the octonion algebra O is an eight-dimensional
vector space over a ring. The FHE schemes we are going to describe instantiate them
over the unitary ring (ZN ,+,×), N ∈ N \ {0, 1}. From now on, we denote the octo-
nion algebra with support Z8

N as O(Z8
N). An octonion can be represented as an eight

dimensional vector, with the first element being the real component and seven different
imaginary components, each corresponding to a different imaginary unit. The sum of
two octonions is computed by adding component-wise the elements of the two vec-
tors. The multiplication operation in the octonion algebra, denoted by ∗, is distributive
with respect to vector addition, compatible with the scalar multiplication, non commu-
tative and non associative. The multiplicative identity for octonions is the row vector
1 = [1, 0, 0, 0, 0, 0, 0, 0], representing the real number 1. An operative description of
the octonion multiplication rule is obtained by encoding an octonion a as an 8×8 matrix
containing the components of a with proper sign changes. In particular, the multipli-
cation between two octonions a and b can be operatively performed by encoding a in
its left 8 × 8 multiplicative matrix, denoted by Ala, and then computing, according to
the classic vector-matrix multiplication rule, the product b · Ala. Similarly to complex
numbers, an octonion a has a conjugate, denoted by a, which can be obtained by flip-
ping the sign of all the imaginary components. Therefore, as for complex numbers, the
real part of an octonion a is <(a) = a+a

2
, while the imaginary part is =(a) = a−a

2
. The

product a∗a is a real number defining the square of the norm of an octonion, denoted by
‖a‖2. An octonion a ∈ O(Z8

N) with ‖a‖ = 0 is called isotropic. A subspace of Z8
N is

called totally isotropic if all the octonions in it are isotropic. Given an algebra O(Z8
N),

an automorphism on this algebra is a linear, bijective mapping φ : O(Z8
N) → O(Z8

N)
that preserves the product ∗ of the algebra, that is φ(a ∗ b) = φ(a) ∗ φ(b). The set of

53

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

all automorphisms of an algebra form a group, called the automorphism group. For
octonion algebra, the automorphism group is the the exceptional Lie group G2.
Jordan Algebra. The elements of this non commutative and non associative algebra,
denoted by h3(O), are 3× 3 hermitian matrices of octonions:

α =

 u W V

W v U

V U w

 (2.4)

with U, V,W being elements in O(Z8
N) and u, v, w ∈ ZN . The compact representation

of these matrices is a tuple α = (u, v, w, U, V,W).
The internal composition law of h3(O) is the Jordan product, which is defined as α?

β = α·β+β·α
2

, where α, β are two matrices and · denotes the usual matrix multiplication.
Finally, the determinant of α is det(α) = uvw− (u‖U‖2 +v‖V ‖2 +w‖W‖2)+2<(U ∗
V ∗W), while the automorphism group for Jordan algebra is the exceptional Lie group
F4.

The OctoM and JordanM cryptosystems

We are now ready to describe the construction of the OctoM and JordanM cryptosys-
tems.
OctoM Cryptosystem. This is a symmetric FHE scheme based on the algebra O(Z8

N),
with N being a composite integer.

• Key Generation. This algorithm selects the ring ZN used as the plaintext space
(withN being a composite integer), a totally isotropic subspace V which is closed
under octonion multiplication, a generic automorphism φ in G2, and a 8 × 8 in-
vertible matrix M with entries in ZN . The secret key k is the tuple k = (V, φ,M),
while the evaluation key is given by the tuple evk = (N,C−1), where C−1 =
ENC(k,N − 1).

• Encryption. Given a plaintext value m ∈ ZN , and a key k = (V, φ,M), this
algorithm constructs an octonion m′ = φ(mi + z), where i = [0, 1, 0, 0, 0, 0, 0, 0]
is the first imaginary unit and mi is the scalar product between the integer m and
i (i.e., mi = [0,m, 0, 0, 0, 0, 0, 0]), while z ∈ V is chosen to make Alm′ (the left
multiplication matrix of m′) non singular (i.e., det(Alm′) 6= 0). The ciphertext is a
matrix C ∈ Z8×8

N computed as C = ENC(k,m) = M−1·Alm′ ·M .

• Decryption. Given a ciphertext C, the corresponding plaintext value m ∈ ZN
is computed as m = DEC(k, C) = φ−1(1 · (M · C ·M−1)) mod V . The sub-
space V modulo operation can be performed by sampling a random vector v =
[v0, 1, v2, v3, v4, v5, v6, v7] in V ⊥, the orthogonal space of V , and computing the
dot product between v and the octonion mi + z, resulting from φ−1(1 · (M · C ·
M−1)). Indeed, since v ∈ V ⊥ and z ∈ V , then z · vT = 0, therefore the dot
product (mi+ z) · vT = m(i · vT) = mi.

• Homomorphic Addition. Given two ciphertexts C1,C2 ∈ Z8×8
N , the homomor-

phic addition operation is a simple matrix addition:
Cadd = ADD(evk, C1, C2) = C1+C2.

54

2.2. Applying Our Attack on Linearly Decryptable FHE Schemes

• Homomorphic Multiplication. Given two ciphertexts C1,C2 ∈ Z8×8
N , the homo-

morphic multiplication is performed as follows:
Cmul = MUL(evk, C1, C2) = C2 · C1 · C−1.

We remark that, although OctoM was presented in [158] as a FHE scheme, during our
evaluation we found out that it is not multiplicatively homomorphic: that is, the ho-
momorphic multiplication operation MUL, given two ciphertexts C1, C2 ∈ Z8×8

N , does
not fulfill the correctness property (i.e, DEC(k,MUL(evk, C1, C2)) 6= DEC(k, C1) ×
DEC(k, C2) mod N). Therefore, in order to make our attack applicable to this scheme,
we fix the construction of the homomorphic multiplication in order to make it correct;
we discuss the design of a correct MUL operation for OctoM in Appendix 1.
JordanM Cryptosystem. This scheme is a symmetric FHE scheme based on the
elements of the Jordan algebra h3(O), with some additional constraints introduced to
achieve homomorphic properties.

• Key Generation. This algorithm selects the plaintext space ZN , with N being a
composite integer, a random automorphism φ ∈ F4, an invertible 3× 3 matrix M
with entries in ZN and three isotropic octonions U ,V andW fulfilling V ∗U = W
and <(U ∗ V ∗W) 6= 0. The secret key k is the tuple k = (φ,M,U, V,W), while
evk = N .

• Encryption. Given a plaintext value m ∈ ZN , and the key k = (φ,M,U, V,W),
this algorithm first constructs the Jordan algebra element αm = (m, v, w, rUU,
rV V, rWW), with rU , rV , rW , v,w being five random values in ZN chosen to make
the matrix αm non-singular; then, the ciphertext C ∈ O(ZN)3×3 is computed as
C = ENC(k,m) = M−1 · φ(αm) ·M .

• Decryption. A ciphertext C ∈ O(ZN)3×3 is decrypted as m = DEC(k, C) =
1 · φ−1(M · C ·M−1) · 1T .

• Homomorphic Addition. Given two ciphertexts C1, C2 ∈ O(ZN)3×3, the homo-
morphic addition is given by a single matrix addition:
Cadd = ADD(evk, C1, C2) = C1 + C2.

• Homomorphic Multiplication. Given two ciphertexts C1,C2 ∈ O(ZN)3×3, the
homomorphic multiplication is given by a single Jordan product:
Cmul = MUL(evk, C1, C2) = C1 ? C2.

Security Analysis of OctoM and JordanM

Since OctoM and JordanM are both linearly decryptable, that is their decryption func-
tion is equivalent to the dot product between the ciphertext and the secret key, both
conceived as vectors in a d dimensional vector space, known cryptanalytic results ap-
plicable to linearly decryptable schemes can be employed against them. Specifically,
linearly decryptable schemes can be broken by KPAs: if the attacker knows the corre-
sponding plaintext for d ciphertexts, where d is the dimension of the ciphertext space,
then a linear system of equations can be built to recover the key and decrypt any ci-
phertext. For the two target FHE schemes, the ciphertext space dimension d is 64 for
OctoM, since a ciphertext is an 8× 8 matrix, while d = 9 · 8 = 72 for JordanM, since

55

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

a ciphertext is a 3 × 3 matrix of octonions; thus, a KPA is computationally feasible
against such schemes.

Moreover, in [158], authors showed that it is possible to efficiently compute a 1-
distinguisher for linearly decryptable FHE schemes. We now describe the construction
of such a distinguisher, which is required to apply our attack. Suppose the attacker has
a ciphertext C, which can be represented as a d dimensional vector. By hinging upon
the homomorphic operations of the FHE scheme, the attacker can compute d+ 1 pow-
ers of C, that is d + 1 ciphertexts Ci = HYBRIDEXP(evk, C, i), i ∈ {1, . . . , d + 1}.
Since the ciphertext space dimension is d, then these d+ 1 ciphertexts are bound to be
linearly dependent. Therefore, by definition, there are non trivial solutions to the sys-
tem of d equations with d+ 1 unknowns ai defined by

∑d+1
i=1 aiCi = 0. Now, since the

decryption function is linear and the encryption scheme is multiplicatively homomor-
phic, it holds the same condition for the corresponding plaintext employing the same
coefficients ai:

∑d+1
i=1 aim

i = 0. In case the plaintext m is equal to one, this equation
becomes

∑d+1
i=1 ai1

i = 0 →
∑d+1

i=1 ai = 0. Therefore, if we impose the additional con-
straint that

∑d+1
i=1 ai 6= 0, a solution to the system of equations

∑d+1
i=1 aiCi = 0 cannot

be found if and only if m = 1. In conclusion, by testing the existence of a solution
a = [a1, . . . , ad+1] of this system of equations satisfying

∑d+1
i=1 ai 6= 0, we can deter-

mine if m = 1 or not. The computational complexity of this 1-distinguisher is O(d3),
which corresponds to the computational effort needed to solve a system of O(d) linear
equations. We remark that the attacker can solve the system directly on ciphertexts,
with no information about the plaintexts or the secret key.

While the existence of the 1-distinguisher and of a KPA is acknowledged by design-
ers of OctoM and JordanM too [158], their security analysis claims (Thm. 7 of [158])
that, assuming the hardness of solving quadratic equation systems in ZN (with compos-
ite N), no information about plaintexts can be inferred from corresponding ciphertexts
(a notion formalized as weak-ciphertext only model). The proof of this claim is based
on two reductions: first, the problem of finding the secret key is reduced to the prob-
lem of solving a system of multivariate quadratic modular equations; then, the problem
of recovering a plaintext is reduced to the problem of solving a univariate quadratic
modular equation. Nonetheless, we now show that, by applying our comparison-based
attack to the two FHE schemes, we can recover the plaintext value of a generic cipher-
text, and, once d plaintexts are recovered, we can compute the secret key by mounting
a KPA against these schemes, thus completely subverting the security guarantees of
OctoM and JordanM even in a weak-ciphertext only model.

Attacking OctoM and JordanM

Once OctoM is equipped with a correct homomorphic multiplication operations, such
as the one described in Appendix 1, then our comparison based attack is immediately
applicable to this scheme, given the existence of the 1-distinguisher and the capabil-
ity to compute the HGT t,b homomorphic function. We remark that the ciphertext ĉ
with corresponding plaintext equal to 1 (i.e., DEC(sk, ĉ) = 1), which is needed in our
attack to compute encryptions of arbitrary known values (see Alg. 2.1), can be easily
computed with a simpler procedure than the one described in Sec. 2.1 for a generic
symmetric FHE scheme: indeed, a ciphertext C−1, whose corresponding plaintext is
N − 1, is embodied in the evaluation key, thus the adversary can simply compute Ĉ as

56

2.2. Applying Our Attack on Linearly Decryptable FHE Schemes

Mul(evk, C−1, C−1).
Conversely, in order to apply our attack against JordanM, we need to cope with

the fact that there may be a portion of the ciphertexts on which the outcome of the 1-
distinguisher is not correct. In the following paragraphs we analyze which ciphertexts
cause the outcome of the 1-distinguisher to be erroneous in JordanM, and then we
show why these ciphertexts are extremely likely to be computed by the HGT t,1 proce-
dure employed in our attack. To solve this issue, we later present a refreshing procedure
which allows to overcome the unreliability of the 1-distinguisher in our attack.

mmul =
m1m2 + rW1

W ∗ rW2
W + rV1

V ∗ rV2
V

2

+
m2m1 + rW2W ∗ rW1W + rV2V ∗ rV1V

2

vmul =
rW1W ∗ rW2W + v1v2 + rU1U ∗ rU2U

2

+
rW2

W ∗ rW1
W + v2v1 + rU2

U ∗ rU1
U

2

wmul =
(rV1

V ∗ rV2
V + rU1

U ∗ rU2
U + w1w2

2

+
rV2V ∗ rV1V + rU2U ∗ rU1U + w2w1

2

(2.5)

1-Distinguisher Unreliability. The structure of the encoding of a message, denoted by
αm, in the JordanM scheme is a Jordan algebra element (see Eq. (2.4)) where the 3
octonions are random isotropic octonions and the message is stored as the top left corner
of the matrix αm. In addition, we recall that a generic ciphertext C for the JordanM
scheme is C = M−1 ·φ(αm) ·M : therefore, given two ciphertexts C1, C2 ∈ O(ZN)3×3,
their homomorphic product Cmul = Mul(evk, C1, C2) = C1 ? C2 = M−1 · φ(αm1 ?
αm2) ·M , since the automorphism φ preserves the Jordan product.

By considering the Jordan product of these two matrices, namely αmul = αm1 ?αm2 ,
we can see that the elements on the diagonal are the product of the corresponding
diagonal elements in the matrices αm1 and αm2 . Indeed, the three elements on the
diagonal of the product matrix αmul, denoted by mmul, vmul and wmul, are computed
as shown in Eq. (2.5); since U ,V , and W are isotropic octonions, then the octonion
product with their conjugate is 0, thus all the octonions products in Eq. (2.5) are 0,
which means that:

mmul = 1
2
(m1m2 +m2m1) = m1m2

vmul = 1
2
(v1v2 + v2v1) = v1v2

wmul = 1
2
(w1w2 + w2w1) = w1w2

In conclusion, the JordanM scheme is multiplicatively homomorphic not only with
respect to the message m, but also with respect to the random values v and w chosen
during the encoding of the message. This peculiar property has a relevant drawback on
the 1-distinguisher: the equation

∑d+1
i=1 aiCi = 0 on the d + 1 powers of a ciphertext

C implies not only that
∑d+1

i=1 aim
i = 0 , but also

∑d+1
i=1 aiv

i = 0 and
∑d+1

i=1 aiw
i = 0.

Therefore, if at least one of the blinding values v and w are equal to 1, then the 1-
distinguisher will determine that the ciphertext C is an encryption of 1 independently

57

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

from the value of the message m. Nonetheless, this issue is not so relevant for the
1-distinguisher reliability, as the probability of these false positives happening on a
randomly selected ciphertext is negligible. Indeed there are N3 possible unconstrained
assignments for m, v and w, and the portion of ciphertexts being affected by this issue
is at most 2N2

N3 < 2
N

, which is negligible in the bit size of the modulus N employed in
JordanM.
1-Distinguisher Unreliability in our Attack. Since JordanM is multiplicatively
homomorphic with respect to the blinding values v and w, we have that ciphertexts
C ∈ O(Zn)3×3 computed as C = HGTt,1(Cx, Cy) will have v and w with values in
{0, 1}. As a consequence, invoking the 1-distinguisher on such ciphertexts, as done in
our attack, will be providing an incorrect result three times out of four, i.e., in all the
cases where either v or w is equal to 1.

To overcome this issue, we devise a ciphertext refreshing procedure, which employs
the available ciphertext Ĉ, with corresponding plaintext m̂ = 1, to compute a new
ciphertext C ′ = C + C − Ĉ ? C, having the same plaintext m, but random values
v′ = 2v − v̂v, w′ = 2w − ŵw, where v̂ and ŵ are the blinding values of ciphertext Ĉ.
We note that, if v̂ 6= 1 (resp. ŵ 6= 1), then Pr(v′ = 1) = Pr(2− v̂ = v−1 mod N) < 1

N

(resp. Pr(w′ = 1) < 1
N

); therefore, if the 1-distinguisher determines that both C and
C ′ encrypt the plaintext value 1, then the attacker can be sure with overwhelming prob-
ability that the outcome is correct, as at least one among C and C ′ has blinding values
different from 1 with overwhelming probability.

We now show that the blinding values v̂ and ŵ of the ciphertext Ĉ are equal to
1 with negligible probability, when the adversary employs the method described in
Sec. 2.1 to compute the ciphertext Ĉ for a symmetric FHE scheme. In this method, the
attacker homomorphically evaluates the polynomial fune, which is specified in Eq. (2.3).
In particular, given a ciphertext C with corresponding plaintext m, the homomorphic
evaluation of fune(m) yields a ciphertext Ĉ, whose corresponding plaintext is m̂ = 1
if 0 < abs(m) < u (see Sec. 2.1 for the definition of abs). The attacker can deter-
mine if m̂ = 1 by hinging upon the 1-distinguisher. However, since JordanM is fully
homomorphic with respect to the blinding values v, w too, the polynomial fune is homo-
morphically evaluated on these random values too: hence, if 0 < abs(v) < u (resp.
0 < abs(w) < u), then v̂ = 1 (resp. ŵ = 1). Therefore, in this case the attacker
cannot rely on the outcome of the 1-distinguisher, as it will output 1 (i.e, determining
that the corresponding plaintext of Ĉ is 1) independently from the value m̂ (thus even
if m̂ 6= 1). Nonetheless, we now show that, if the 1-distinguisher, denoted by A1, out-
puts 1 on the ciphertext Ĉ (i.e, if A1(Ĉ) = 1), then the attacker can employ Ĉ in the
refreshing procedure we described above, since Pr(Ê | A1(Ĉ) = 1) is overwhelming,
where Ê ≡ m̂ = 1 ∧ v̂ 6= 1 ∧ ŵ 6= 1.

We start by applying Bayes formula and observing that if Ê holds, then necessarily
A1(Ĉ) = 1:

Pr(Ê | A1(Ĉ) = 1) =
Pr(Ê ∧ A1(Ĉ) = 1)

Pr(A1(Ĉ) = 1)
=

Pr(Ê)

Pr(A1(Ĉ) = 1)
(2.6)

We now introduce three probabilities. We denote by p̂m the probability that m̂ = 1 and
by p̂v, p̂w the probabilities that, respectively, v̂ = 1 and ŵ = 1. We remark that m̂
depends only on the plaintext value m of the original ciphertext C; similarly, the values

58

2.2. Applying Our Attack on Linearly Decryptable FHE Schemes

v̂, ŵ depends only on the random values v, w of the ciphertext C. Obviously, the values
assigned to m, v, w in the original ciphertext C are all independent among themselves:
m is the plaintext value, while v, w are independently sampled from ZN . Therefore, the
values assumed by m̂, v̂, ŵ are independent among themselves too. This fact simplifies
the estimation of the probabilities found in Eq. (2.6). Indeed, Pr(Ê) is equivalent to the
probability that m̂ = 1 ∧ v̂ 6= 1 ∧ ŵ 6= 1; given the independence among these three
conditions, then Pr(Ê) = p̂m(1− p̂v)(1− p̂w). Concerning Pr(A1(Ĉ) = 1), we remark
that the 1-distinguisher will output 1 with ciphertext Ĉ as input if m̂ = 1∨ v̂ = 1∨ ŵ =
1. Therefore, such probability can be estimated by leveraging the independence of the
three conditions as follows:

Pr(A1(Ĉ) = 1) = 1− Pr(m̂ 6= 1 ∧ v̂ 6= 1 ∧ ŵ 6= 1) = 1− (1− p̂m)(1− p̂v)(1− p̂w)

By plugging the estimated probabilities in Eq. (2.6), we obtain a formula which depends
only on the three probabilities p̂m, p̂v, p̂w:

Pr(Ê | A1(Ĉ) = 1) =
p̂m(1− p̂v)(1− p̂w)

1− (1− p̂m)(1− p̂v)(1− p̂w)
(2.7)

Thus, we can now estimate these three probabilities to show that Pr(Ê | A1(Ĉ) =
1) ≈ 1. For simplicity, we start by estimating p̂v and p̂w. As already mentioned, since
the ciphertext Ĉ is obtained by homomorphic evaluation of the polynomial fune, then
v̂ = fune(v) and ŵ = fune(w), which means that if 0 < abs(v) < u then v̂ = 1, and if
0 < abs(w) < u then ŵ = 1. Since v and w are uniformly sampled from ZN , then
the probabilities that, respectively, 0 < abs(v) < u and 0 < abs(w) < u, are both
approximately u

N
. We recall that u is necessarily extremely smaller than the modulus

N , since u must be chosen such that interpolating 2u − 1 points is computationally
feasible, whileN is an integer sufficiently big to make its factorization computationally
unfeasible. Therefore, we obtain that p̂v = p̂w ≈ u

N
≈ 0. Concerning p̂m, similarly

to v̂ and ŵ, if 0 < abs(m) < u then m̂ = 1, because m̂ = fune(m). However, the
probability that 0 < abs(m) < u is much higher than u

N
. Indeed, we recall that in

our threat model we assume that the majority of the input values are assumed to be in
the set Ds = {−s + 1, . . . , s + 1}, with s being generally extremely smaller than the
modulus N used for the plaintext space of the targeted FHE scheme. In conclusion,
we know that p̂m >> p̂v = p̂w ≈ 0, which means that p̂m(1 − p̂v)(1 − p̂w) ≈ p̂m and
(1− p̂m)(1− p̂v)(1− p̂w) ≈ 1− p̂m. If we plug these approximations in Eq. (2.7), we
obtain:

Pr(Ê | Am(Ĉ) = 1) =
p̂m(1− p̂v)(1− p̂w)

1− (1− p̂m)(1− p̂v)(1− p̂w)
≈ p̂m

1− (1− p̂m)
≈ 1 (2.8)

Therefore, when the attacker computes a ciphertext Ĉ by employing the method pro-
posed in Section 2.1, the probability that this ciphertext does not fulfill the requirement
Ê is negligible; thus, once the attacker obtains Ĉ, it can be used in the refreshing pro-
cedure.

In conclusion, the attacker can overcome the unreliability of the 1-distinguisher for
the JordanM scheme by determining that the corresponding plaintext of a ciphertext
C is equal to 1 if and only if A1(C) = 1 ∧ A1(C ′) = 1, where C ′ = C + C − Ĉ ? C.

59

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

Key Recovery Attack Against Linearly Decryptable FHE Schemes. Since OctoM
and JordanM are linearly decryptable FHE schemes, the attacker can easily compute
the secret key k with the knowledge of the corresponding plaintext value of d cipher-
texts, where d is the number of entries in the secret key vector. Therefore, the adversary
can hinge upon our attack to recover the plaintext value of d ciphertexts, and then mount
a KPA to recover the secret key, which allows to efficiently decrypt any ciphertext. In
case of OctoM and JordanM, the number of plaintexts d that need to be recovered
amounts to 64 and 72, respectively, which is surely in the realm of feasibility.

2.3 Computational Complexity and Experimental Evaluation

We now analyze the computational effort required by our attack for the target FHE
schemes OctoM and JordanM, by estimating the constant factors in Eq. (2.1) that are
specific to the target scheme (i.e., the time complexity of the 1-distinguisher Tdist). In
addition, we show that the speed-up of our attack against the exhaustive search strategy
described in Sec. 2.1 is significant for the target FHE schemes. Then, we provide an
experimental validation of the performance of our attack, using a prototype implemen-
tation targeting OctoM and JordanM schemes. The results confirm that the computa-
tional complexity of our attack is linear with the plaintext value being recovered, and
show that our attack is more efficient than an exhaustive search strategy. Finally, we
analyze the benefits of a parallel implementation of Alg. 2.1, showing that the perfor-
mance scales linearly with the number of cores employed for the attack.

Performance on Target FHE Schemes

To analyze the computational complexity of our attack against OctoM and JordanM,
it is useful to quantify the constant terms in Eq. (2.1), namely t and Tdist. We recall
that the former denotes the set {0, . . . , t− 1}, chosen by the attacker, that corresponds
to the domain of the comparison function GTt,m homomorphically evaluated during
the execution of our attack, while the latter parameter Tdist denotes the computational
complexity of the m-distinguisher, which is specific to the targeted FHE scheme.

By looking at Eq. (2.1), we observe that the computational cost of the attack de-
creases with higher values of t, which means that the attacker should employ a value
t as high as possible. Nonetheless, the computational cost required to interpolate the
polynomial computing GTt,m is O(t2), hence a choice representing a good trade-off
between these computational cost could be t = 220, as observed in Sec. 2.1.

For linearly decryptable schemes, such as OctoM and JordanM, Tdist, the com-
putational complexity of the 1-distinguisher, is O(d3), with d = 64 for OctoM and
d = 72 for JordanM, which means that Tdist = O(219) for both schemes. However,
the distinguisher is always invoked twice in our attack, because of the refreshing pro-
cedure employed to increase its reliability; therefore the computational complexity we
are going to use in place of Tdist, in the formulae derived in Sec. 2.1 to estimate the
computational effort of our attack, is T ′dist = 2Tdist = O(220). Given this estimation,
we can see that it is practical to recover plaintext values as big as 232: indeed, the com-
putational effort required to recover a plaintext value mc = 232 can be computed via
Eq. (2.1) by replacing Tdist with T ′dist = 220 and setting t = 220:

60

2.3. Computational Complexity and Experimental Evaluation

Ta(2
32) ≤ 232 log(220) +

⌈
232

220

⌉
220 log(220) ≤ 238

We expect a significant number of FHE ciphertexts to have a corresponding plaintext
value smaller than 232, given the realistic assumption in our threat model on the limited
domain Ds of input values in FHE-based applications. Therefore, we expect that our
attack is able to recover the plaintext value for a significant number of ciphertexts.

We now estimate the cost to recover a plaintext as big as mc = 232 via an exhaustive
search strategy, with the aim of showing the computational savings introduced by our
attack strategy. Specifically, the computational cost of the exhaustive search strategy
described in Sec. 2.1 for a plaintext mc = 232 amounts to O(mcTdist) = 232 · 219 = 251

(note that with this strategy we do not need to invoke twice the 1-distinguisher, thus
we can use Tdist instead of T ′dist). Indeed, the speed-up of our attack, computed by
replacing the estimated values for t and Tdist in Eq. (2.2), amounts to:

tTdist
log(t)(t+ T ′dist)

=
220 · 219

20(220 + 220)
>

239

25 · 221
= 213

This result shows that the improvement of our attack is not negligible: considering a
computational effort fixed a-priori, the number of plaintexts recoverable by our attack
is 213 times bigger than the number of plaintexts recoverable by the exhaustive search
strategy (when t = 220). For instance, with a computational cost bounded by 238,
our attack can recover plaintexts up to 232, while the exhaustive search can recover
plaintexts up to 219.

In practice, the security level of the target schemes affects the computational effort
to perform the homomorphic operations as well as the modular arithmetic operations
needed to evaluate a m-distinguisher. Therefore, such a dependency from the security
level and/or the parameter sizes of the cryptoscheme is included in the computational
complexity formulae of both our attack and the exhaustive search as the same mul-
tiplicative factor (which has been omitted in the previous treatment). Independently
from the security margin, when the plaintext values are bounded (e.g., less than 232)
our method largely improves the practicality of their derivation employing only cipher-
texts.

Experimental Evaluation

To provide an experimental validation of the effectiveness and performance of our at-
tack, we developed a prototype implementation of the two target FHE schemes(OctoM
and JordanM) and of the described plaintext recovery attack. We realized our imple-
mentation leveraging a combination of the Sage computer algebra toolkit2 and of the
numpy Python module3. Such approach allows us to employ highly optimized multi-
ple precision arithmetic primitives at the relatively small cost imposed by the Python
bindings. Our prototype implementation was run on a Linux Gentoo server (Gentoo
Base System Release 2.6 with kernel version 4.4.95) equipped with two Intel Xeon
E5-2620 (8 physical cores each) and 128 GB of DDR-4 DRAM. For all our experi-
ments, we instantiated both OctoM and JordanM using a small composite integer

2http://www.sagemath.org/index.html
3http://www.numpy.org/

61

http://www.sagemath.org/index.html
http://www.numpy.org/

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

0 5 10 15 20

0

5

10

15

20

25

30

Plaintext Value×103

E
xe

cu
tio

n
Ti

m
e

(s
)

(a) OctoM

0 5 10 15 20

0

5

10

15

20

25

Plaintext Value×103

E
xe

cu
tio

n
Ti

m
e

(m
in

)

(b) JordanM

Figure 2.1: Execution times related to the recovered plaintext value for our attack against OctoM(a)
and JordanM (b). The red line plots the linear regression models for the datasets:
y = 1.36 · 10−3 x+ 51.32 · 10−3 for OctoM, and y = 1.14 · 10−3 x+ 1.17 · 10−1 for JordanM

N = 137 · 149 = 20, 413 for the plaintext space ZN . We chose to use a small value for
N to be able to perform an exhaustive test of the recoverability of all the plaintexts.

Empirical Performance of our Attack. We start our experimental evaluation by ana-
lyzing how the time required to perform our attack scales with the plaintext value being
recovered. The results of this experiment are shown in Fig. 2.1; specifically Fig. 2.1(a)
for OctoM and Fig. 2.1(b) for JordanM. Both plots confirm the expected linear trend
of the computational complexity of our attack with the growth of the plaintext value
being recovered. Concerning the execution times, we observe a relevant difference be-
tween the two schemes: while our attack allows to recover a plaintext value as big as
2 · 104 in about 30 seconds for an OctoM ciphertext, this time is increased to more than
20 minutes to recover the same plaintext value for a JordanM ciphertext. The sig-
nificant difference in the plaintext recovery time is caused by the different arithmetics
employed in the two schemes: indeed, in OctoM scheme, the homomorphic operations
involve matrices in Z8×8

N , whose arithmetics is efficiently implemented with native code
by numpy and Sage modules; conversely, in JordanM, the homomorphic operations
involve matrices with entries over the octonions, whose arithmetics was implemented
in pure Python, due to the lack of support in both Sage and numpy modules.

Performance of a Parallel Implementation. We now investigate the scalability of
a parallel implementation of our attack. By looking at Alg. 2.1, we observe that our
attack performs a single loop where there are no data dependencies among different
iterations. It is thus possible to perform simultaneously these iterations, stopping the
computation as soon as one of them finds the correct plaintext. We split evenly the
iterations of the algorithm across different processes, and we evaluated the obtained
speedups. The execution time of sequential and parallel implementations are reported
in Fig. 2.2 (Fig. 2.2(a) for OctoM and Fig. 2.2(b) for JordanM, respectively). The
execution time trends of both OctoM and JordanM show clearly that the position of
the sought plaintext within an iteration determines a variability in the execution time.
This is expected as the running time depends on the position of the said plaintext in the

62

2.3. Computational Complexity and Experimental Evaluation

0 5 10 15 20

0

10

20

30

2.79
5.01

28.42

Plaintext Value×103

E
xe

cu
tio

n
Ti

m
e

(s
)

1 core
8 cores

16 cores

(a) OctoM

0 5 10 15 20

0

10

20

2.02
3.88

22.88

Plaintext Value×103

E
xe

cu
tio

n
Ti

m
e

(m
in

)

1 core
8 cores

16 cores

(b) JordanM

Figure 2.2: Execution times of the parallel implementation of our attack for OctoM and JordanM
when 8 and 16 cores are used. The colored numbers on the y-axis denotes the maximum execution
time of the correspondent implementation

Table 2.1: Average speed-up for our implementations and portion of computation running in parallel
estimated from average speed-up using the Karp-Flatt metric

Target Cores Average Parallel
Scheme Speed-Up Portion

OctoM 8 5.77 0.94
OctoM 16 8.45 0.94
JordanM 8 6.26 0.96
JordanM 16 9.50 0.95

range swept by the process which will find it.
To provide a quantitative evaluation of the scalability of our attack strategy, we fol-

low the approach by Karp and Flatt [83], which proposed a concrete metric to compute
the portion of sequential code e in a parallel program starting from the speedup and
the number of parallel computing units. We compute the required speed-up for each
parallel implementation as the ratio between the average execution time of the attack in
the sequential implementation and the average execution time of the attack in the par-
allel implementation at hand. Table 2.1 reports both the speed-up and the parallel code
portion obtained as 1 − e, for an increasing number of cores employed in the attack.
We observe that around 95% of the code of our implementations runs in parallel, prac-
tically validating the scalability of our approach with the number of processing nodes
available.

Speed-up over Exhaustive Search Strategy. We conclude our experimental evalua-
tion by showing that our attack outperforms the exhaustive search strategy described in
Sec. 2.1. The speed-up of our attack against this strategy is depicted, for both OctoM
and JordanM, in Fig. 2.3. We recall that the speedup depends on the value of the pa-
rameter t chosen during the attack: in particular, the attainable speedup is tTdist

log(t)(t+2Tdist)
.

The relatively small value for N in our prototype implementation bounds us to pick a
small value for t (as Lemma 1.1 mandates that t ≤ q

2
), namely t = 32; however, such a

63

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

0 5 10 15 20
0

5

10

15

Plaintext Value×103

Sp
ee

du
p

OctoM

JordanM

Figure 2.3: Speed-up obtained by our attack with respect to an exhaustive search for both the OctoM
and the JordanM cryptosystems. The depicted speedups are obtained picking t = 32 as a value for
the width of the search intervals

small value is sufficient to show a practical ten-fold speedup for our plaintext recovery
strategy with respect to exhaustive search strategy against both OctoM and JordanM.

2.4 Mitigating Attack against OctoM and JordanM

In this section, we propose a simple modification to the two target FHE schemes OctoM
and JordanM that allows to hinder our attack. The main idea is introducing a new non
linear operation in the decryption algorithm, making the schemes no longer linearly
decryptable over ZN . This operation is introduced by changing the plaintext space of
the two schemes. This plaintext space, for both OctoM and JordanM, is the integer
ring ZN , with N being a composite number whose factorization is computationally
unfeasible. For simplicity, from now on we suppose that N is the product of two prime
numbers p, q; however, the same modification can be trivially applied if the integer N
has more than two prime factors. As a corollary of the Chinese Remainder Theorem
(CRT), the ring ZN is isomorphic to Zp × Zq. Indeed, the CRT defines a bijection
ϕ between these rings, which allows to map each pair of values in Zp × Zq to an
integer in ZN , and vice versa. Since these rings are isomorphic, this mapping is a
homomorphism: each addition or multiplication done in ZN is done at the same time
in the rings Zp and Zq. We can hinge upon this isomorphism to build two symmetric
FHE schemes, called OctoPrime and JordanPrime, with plaintext space being
the integer ring Zp, based on, respectively, OctoM and JordanM schemes. In the
following, we show how to construct OctoPrime from OctoM; JordanPrime can
be built from JordanM in the same way.

• Key Generation. Key generation algorithm of OctoPrime enriches the secret
key k of OctoM by including the prime factors of N , namely p and q.

• Encryption. Given a plaintext value m ∈ Zp and the secret key k, the encryption
algorithm of OctoPrime uniformly samples an integer rq from Zq and com-

64

2.4. Mitigating Attack against OctoM and JordanM

putes the ciphertext C as ENC(k, ϕ(m, rq)), where ENC denotes the encryption
algorithm of OctoM and ϕ denotes the bijection between Zp × Zq and ZN which
can be computed given the prime factors p, q of N .

• Decryption. Given a ciphertext c and the secret key k, the decryption algorithm of
OctoPrime computes the corresponding plaintext m ∈ Zp as DEC(k, c) mod p,
where DEC denotes the decryption algorithm of OctoM.

• Evaluation. OctoPrime employs the same homomorphic operations of OctoM.

Despite their simplicity, these modifications are quite important, since OctoPrime
and JordanPrime are no longer linearly decryptable over ZN : indeed, the last op-
eration of their decryption algorithm is a modular reduction with the modulus p, a
prime factor of N , and this operation is not linear in ZN . Thus, differently from
the original FHE schemes, we cannot express the decryption function of OctoPrime
and JordanPrime as a dot product between the ciphertext and the key represented
as vectors of a d dimensional vector space with support ZN , in turn implying that
the 1-distinguisher for OctoM and JordanM cannot be successfully employed for
OctoPrime and JordanPrime schemes. Nonetheless, these schemes are linearly
decryptable over Zp, which implies that there exists a 1-distinguisher for OctoPrime
and JordanPrime. This distinguisher is similar to the one employed for OctoM and
JordanM: it requires to solve the same system of equations, namely

∑d+1
i=1 aiCi, with

Ci = HYBRIDMUL(evk, C, i), but in this case such system must be solved over Zp
instead of ZN . However, the attacker does not know the prime factor p (otherwise the
schemes would have already been broken) and so the adversary cannot hinge upon such
a 1-distinguisher.

Despite the unavailability of a 1-distinguisher for OctoPrime and JordanPrime,
the attacker has another viable strategy, which exploits how these schemes are built.
In the following, we analyze this strategy on OctoPrime scheme; the same one
could be applied to JordanPrime too, since they are constructed in the same way.
OctoPrime can be seen as the composition of two layers: the first one maps the
plaintext value m ∈ Zp to an integer x ∈ ZN , which is a plaintext value for OctoM;
then, the integer x is encrypted using the OctoM scheme. Therefore, every cipher-
text C of OctoPrime is a legitimate ciphertext of OctoM. Because of this construc-
tion, the attacker may try to attack separately these two layers: first, it applies our
comparison-based attack on the ciphertext C, retrieving the corresponding plaintext
value x ∈ ZN according to OctoM encryption; then, it tries to recover the plaintext
value m = x mod p from the integer x. Luckily, we now show that the first step of this
attack is computationally unfeasible. In particular, we recall that our comparison-based
attack works by testing if a candidate plaintext value is the corresponding plaintext of a
given ciphertext C until a match is found, thus exhibiting a computational complexity
which is linear in the number of candidate plaintext values being tested. Since our at-
tack sequentially tests candidate plaintext values in increasing order, it can practically
recover only plaintext values not too big (e.g., smaller than 232). This capability may
be sufficient in several FHE-based applications to recover the plaintext values of a large
part of ciphertexts, since these values mostly belong to a set Ds = {−s+1, . . . , s−1},
where s is an integer that is expected to be not much bigger than the maximum plaintext
value recoverable by our attack. However, in case of OctoPrime, our comparison-

65

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

based attack would not try to recover the actual plaintext value m ∈ Zp, but the integer
x = ϕ(m, rq) ∈ ZN , where rq is uniformly sampled from Zq. Even with plaintext
values belonging mostly to Ds, our comparison-based attack would need to test an
enormous number of candidate values. In particular, for each plaintext value m, there
are q possible values x mapped to it by the bijection ϕ (one for each value rq); since
there are approximately O(s) candidate plaintext values to be tested, the attack should
find the integer x after testing O(qs) values, which is computationally unfeasible, as q is
a prime factor ofN and the prime factors need to be big enough (say, greater than 21024)
to make factoring N computationally hard. In conclusion, our attack can no longer be
applied against the modified schemes OctoPrime and JordanPrime.

In addition, since both the schemes are no longer linearly-decryptable, then they
are also no longer vulnerable to the KPA that affects linearly-decryptable schemes.
Nonetheless, we now show that it is still possible to mount a refined KPA against
OctoPrime and JordanPrime, which requires the knowledge of the corresponding
plaintext value for d + 1 ciphertexts, where d is the dimension of the ciphertext space;
as in the previous attack strategy, we describe the KPA only for OctoPrime scheme,
since it can be performed in the same fashion over JordanPrime.

KPA Against OctoPrime

We have already observed that any ciphertext c for the OctoPrime scheme is also
a valid ciphertext for the OctoM scheme. In particular, since the decryption proce-
dure of OctoPrime recovers the plaintext value m ∈ Zp of c by computing m =
DEC(k, c) mod p, where DEC is the decryption function of OctoM, then DEC(k, c) is
an integer x ∈ ZN such that x = hp + m, for an unknown integer h ∈ Zq. Therefore,
since OctoM is linearly decryptable over ZN , hp+m = x = −→c ·

−→
k T mod N , where the

vectors−→c ∈ ZdN ,
−→
k ∈ ZdN correspond to the representation as d = 64 dimensional vec-

tors of the ciphertext c and the secret key k, respectively. To mount the KPA attack, we
now assume that the attacker knows the corresponding plaintext values {m1, . . . ,md+1}
of d+1 ciphertexts {c1, . . . , cd+1}. For each pair (mi, ci), i ∈ {1, . . . , d+1}, it holds
that −→ci ·

−→
k T mod N = hip + mi, for an unknown integer hi ∈ Zq, i ∈ {1, . . . , d+1}.

Considering the matrix C ∈ Zd×dN whose rows are the vectors −→c1 , . . . ,
−→cd , and the vec-

tors −→m = [m1, . . . ,md] ∈ Zdp,
−→
h = [h1, . . . , hd] ∈ Zdq , the relationships between the d

ciphertexts {c1, . . . , cd} and their corresponding plaintext values {m1, . . . ,md} can be
written in the following matrix form:

C ·
−→
k T mod N = p ·

−→
h T +−→mT

From this equation, we observe that the vector representation
−→
k of the secret key k can

be written as:
−→
k T = C−1 · (p ·

−→
h T +−→mT) mod N = (p · C−1 ·

−→
h T + C−1 · −→mT) mod N (2.9)

where the inverse matrix C−1 trivially exists if the d vectors employed to construct
C are linearly independent, which is a reasonable assumption in case these vectors
represent generic ciphertexts of the OctoPrime scheme. We now consider the d+1-
th ciphertext cd+1 available to the attacker and its dot product with

−→
k ; by replacing

66

2.5. Amplifying Known Plainext Attack in FHE Schemes

Eq. (2.9) to
−→
k in this dot product, we obtain:

−−→cd+1 ·
−→
k T mod N = −−→cd+1 · (p · C−1 ·

−→
h T + C−1 · −→mT) mod N

= (p · −−→cd+1 · C−1 ·
−→
h T +−−→cd+1 · C−1 · −→mT) mod N

From this equation, we observe that −−→cd+1 ·
−→
k T mod N mod p = −−→cd+1 ·C−1 · −→mT mod

N mod p, as the other addend of −−→cd+1 ·
−→
k T mod N is a multiple of p. Therefore,

since −−→cd+1 ·
−→
k T mod N mod p = DEC(k, cd+1) mod p = md+1, then −−→cd+1 · C−1 ·

−→mT mod N mod p = md+1. We note that, given d+1 linearly independent ciphertexts
{c1, . . . , cd+1} with known plaintext values {m1, . . . ,md+1}, the attacker can compute
the integer y = −−→cd+1 · C−1 · −→mT mod N ; since y mod p = md+1, then the attacker can
easily recover the modulus p by computing the greatest common divisor between N
and y −md+1, as the latter integer is necessarily a multiple of p. Once p is known, the
attacker can easily recover the secret key of OctoPrime, since the scheme is linearly-
decryptable over Zp.

In conclusion, we show that the secret key of OctoPrime can be easily recovered
if the attacker obtains d+1 = 65 (resp. 73 for JordanPrime) linearly independent
ciphertexts with known plaintext values. In the following, we show our second attack
technique, that allows to compute an arbitrary amount of linearly independent cipher-
texts with known plaintext values by relying on a very limited information of a single
plaintext value.

2.5 Amplifying Known Plainext Attack in FHE Schemes

Our second attack strategy, which hinges upon the homomorphic capabilities of the
target FHE scheme, allows to compute an arbitrary amount of linearly independent ci-
phertexts with known plaintext values, which may be employed to mount a KPA. When
applied to FHE schemes vulnerable to a KPA that requires a small enough number of
ciphertexts with known plaintext values, our technique allows to recover the secret key
of the FHE scheme by relying on a really weak assumption, namely that the attacker
knows a set of possible plaintext values for a single ciphertext. We remark that our tech-
nique is meaningful only against symmetric FHE schemes, as in an asymmetric one the
attacker can easily obtain ciphertexts with known plaintext values by encrypting chosen
plaintexts with the public key of the scheme at hand. We now present our attack against
a generic FHE scheme with plaintext space M = ZN , where N is known to the ad-
versary; then, we show how to tailor our attack to OctoPrime and JordanPrime,
where the attacker does not know the prime p that defines the plaintext space Zp.

Our attack proceeds in two phases: in the first one, the adversary computes a ci-
phertext c̃ with a known corresponding plaintext value m̃ 6= 0; in the second phase,
the attacker employs c̃ to compute as many ciphertexts with known plaintext values as
necessary for its purposes (e.g., mounting a KPA). To compute the ciphertext c̃, the
adversary relies on the prior knowledge that we assume to perform for our attack: for at
least a ciphertext c, the adversary knows the set of possible plaintext values for c. More
formally, given a set S ⊂ ZN , we define the set CS ⊂ C as {c ∈ C | DEC(k, c) ∈ S},
that is CS is the set of ciphertexts whose corresponding plaintext is an integer in S.
The attacker can apply our technique to compute the ciphertext c̃ if there is at least one

67

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

ciphertext c for which the attacker knows the subset S such that c ∈ CS . In this case,
the attacker can compute the ciphertext c̃ by homomorphically computing a polynomial
fS,m̃(z) defined as:

fS,m̃(z) =

0 if z = 0

m̃ if z ∈ S
⊥ otherwise

(2.10)

where ⊥ denotes that the evaluation of the polynomial may be an arbitrary element in
ZN . We observe that the polynomial fS,m̃ must evaluate to 0 when its input is z = 0;
this constraint is needed as otherwise the polynomial fS,m̃ would have a constant term,
and thus it would not be possible to homomorphically compute this polynomial without
the availability of a ciphertext with a known corresponding plaintext value. Therefore,
if 0 ∈ S, then the adversary must homomorphically evaluate the polynomial fS\{0},m̃,
to avoid an inconsistent definition of such polynomial; nonetheless, this implies that
the corresponding plaintext of the ciphertext c̃ = EVAL(evk, fS\{0},m̃, c), for c ∈ CS ,
is different from m̃ in case the corresponding plaintext value of c is 0, which may
happen with a small but non zero probability. Obviously, this issue implies that the
attacker should possibly choose a ciphertext c ∈ CS with a known subset S such that
0 /∈ S. Since the adversary has to compute the polynomial fS,m̃ through interpolation,
then the subset S must be small enough to allow the adversary to interpolate such a
polynomial; we note that this is not a strong limitation on the prior knowledge needed
by the adversary to perform the attack, as fS,m̃ can still be computed for reasonably
large subsets (e.g., up to 220 elements).

By homomorphically evaluating the polynomial fS,m̃ over a ciphertext c ∈ CS , the
adversary obtains a ciphertext c̃ with corresponding plaintext value m̃. From this ci-
phertext, the adversary can now compute an arbitrary number of ciphertexts with known
plaintext values. Specifically, to compute h ≥ 1 ciphertexts {c1, . . . , ch} with known
plaintext values, the adversary chooses at random h univariate non linear polynomi-
als {f1, . . . , fh} over ZN and then it computes the ciphertext ci = EVAL(evk, fi, c̃),
i ∈ {1, . . . , h}. By the correctness of the homomorphic evaluation (see Def. 1.2),
the corresponding plaintext value of ci is fi(m̃), which can be easily computed by the
attacker. We remark that the set of h ciphertexts will be linearly independent with over-
whelming probability, as they are computed as the outputs of randomly chosen non
linear functions; the attacker can easily verify if the ciphertexts are linearly dependent
and, if this is the case, it can efficiently compute another set of ciphertexts by randomly
choosing other non linear polynomials.

We note that the assumption on the information about plaintext values needed by
the adversary to perform our attack, namely that the attacker knows a set of possible
plaintext values for a single ciphertext c, is generic enough to encompass also appli-
cation scenarios where different information about plaintext values are available to the
adversary. For instance, if an attacker knows that the plaintext values m1, m2 of two
ciphertexts c1, c2 are quite close, then it can apply our technique by assuming that the
ciphertext csub, computed as the homomorphic subtraction between c1 and c2, belongs
to a set S = {−u, . . . , u}, where u is a reasonable overestimation of the difference
between m1 and m2. In conclusion, our attack shows that any symmetric FHE scheme
that is vulnerable to a KPA, whose secret key was supposed to be recoverable only
if the adversary gets to know the corresponding plaintext values for a sufficiently big

68

2.5. Amplifying Known Plainext Attack in FHE Schemes

number of ciphertexts, can be broken with a very limited information about the plain-
text value of a single ciphertext. As a consequence, FHE schemes vulnerable to a KPA
should never be adopted in real-world applications, even in those scenarios where the
information available to the attacker is extremely limited.

Amplifying KPA in OctoPrime and JordanPrime

In our technique that we have just described, which allows an attacker to compute an
arbitrary number of ciphertexts with known plaintexts, we assume that the the target
FHE scheme has a plaintext spaceM = ZN , with N known to the adversary. Nonethe-
less, in OctoPrime and JordanPrime the plaintext space is Zp, where p is a secret
prime factor of the public modulusN , which implies that the attacker does not know on
which ring the plaintext operations are performed. Therefore, to apply our technique to
OctoPrime and JordanPrime, we need to overcome this lack of knowledge.

To this extent, we first analyze the difficulties that arise in our technique because of
the lack of knowledge of the plaintext space Zp. Consider the homomorphic evaluation
of the polynomial fS,m̃: the attacker does not know p, therefore it must necessarily
construct a polynomial over ZN . This means that fS,m̃(z) mod N = m̃ if z ∈ S, but
when the adversary computes the ciphertext c̃ = EVAL(evk, fS,m̃, c) for a ciphertext
c ∈ CS , then the ciphertext c̃ is an encryption of fS,m̃(z) mod p, as the operations on the
plaintext values are performed over Zp. Since N is a multiple of p, then fS,m̃(z) mod
p = fS,m̃(z) mod N mod p = m̃ mod p; therefore, if m̃ ≥ p, the plaintext value
of c̃, that is m̃ mod p, is different from m̃, in turn leading the adversary to erroneous
calculations when employing c̃ to compute the h ≥ 1 ciphertexts with known plaintext
values.

Nonetheless, we recall that the adversary can choose the value m̃ ∈ ZN and then
construct the polynomial fS,m̃; therefore, to overcome this issue, the adversary may
simply choose an integer m̃ ∈ ZN which is surely less than p, as in this case m̃ mod p =
m̃. Although the adversary does not know p, it knows that p must be big enough to
make the factorization of N computationally infeasible; thus, the adversary can easily
estimate a reasonable lower bound for p (e.g., p ≥ 21024) and choose an integer m̃ that
is much smaller than this lower bound.

A similar issue arises in the second phase of our technique, which relies on the
ciphertext c̃ to computes h ≥ 1 ciphertexts with known plaintext values. Indeed, the
adversary can evaluate the randomly chosen non linear polynomials {f1, . . . , fh} only
over ZN instead of Zp; therefore, when the adversary computes the ciphertext ci =
EVAL(evk, fi, m̃), i ∈ {1, . . . , h}, then ci is an encryption of fi(m̃) mod p, while the
adversary can compute only fi(m̃) mod N . Thus, if fi(m̃) mod N ≥ p, then the
corresponding plaintext value for ci, that is fi(m̃) mod p, is different from the one
computed by the attacker, that is fi(m̃) mod N . To avoid this issue, the attacker can
randomly choose the non linear polynomials {f1, . . . , fh}with the additional constraint
that their evaluation over m̃ is an integer in ZN much smaller than p (i.e., fi(m̃) mod
N << p). In this way, the attacker is sure that the plaintext value computed for ci,
namely fi(m̃) mod N , corresponds to the actual one, that is fi(m̃) mod p.

In conclusion, with these modifications, we can apply our attack technique both to
OctoPrime and to JordanPrime FHE schemes, thus recovering their secret key by
relying on a very limited amount of information about the corresponding plaintext value

69

Chapter 2. Comparison-Based Attack Against Noise-Free FHE Schemes

of a single ciphertext. Our attack shows that, despite OctoPrime and JordanPrime
are not vulnerable to our comparison-based attack, they cannot be securely employed
in any practical application scenario, as the limited amount of information needed by
the adversary to apply our technique and mount a KPA can be likely inferred from the
application domain.

70

CHAPTER3
Multi-User Privacy-Preserving Substring Search

Protocol with Polylogarithmic Communication
Cost

PLEASE, LET ME EXPLAIN!!

In this chapter, we describe our multi-user PPSS protocol based on the DJ LFAHE
scheme. Our protocol hinges upon the backward-search substring search algorithm,
described in Sec. 1.4 and reported in Alg. 1.2. A fundamental building block of this
algorithm is the computation of the RANK procedure (see Def. 1.7), which was not
detailed in Sec. 1.4 as each of our PPSS protocols employs a different implementation.
In this protocol, we consider a RANK procedure that hinges upon the Augmented BWT
(ABWT) full-text index. Given a string s ∈ Σn, the ABWT is constructed from the
BWT L of s as follows. Given an integer P≥1, referred to as sample-period, the
ABWT AP is an array of dn+1

P
e entries, where each one is a pair of elements (rank , l);

for the i-th entry ofAP , i ∈ {0, . . . , dn+1
P
e−1},AP [i].rank is a dictionary of |Σ| entries

that binds to a character c∈Σ the value RANK(c, i·P−1), while AP [i].l is a string of
P characters, namely the substring L[i·P, . . . , (i+1)·P−1] of the BWT L. Therefore,
the RANK procedure, for inputs c∈Σ, i∈{0, . . . , n}, is easily computed by fetching the
j=b i

P
c-th entry of the AP and adding AP [j].rank [c] to the number of occurrences of c

in AP [j].l[0, . . . , i mod P]. The size of each entry of AP is O(|Σ| log(n) +P log(|Σ|))
bits, therefore AP requires about O(|Σ|·n·log(n)

P
+ n log(|Σ|)) bits of storage.

We are now ready to describe our multi-user PPSS protocol. We initially present
our solution enabling only queries for a substring q ∈ Σm, for any m≥1, and then
we discuss further privacy-preserving query algorithms that allow to query also strings
containing wildcard characters.

71

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

3.1 Our Multi-User PPSS Protocol

The important observation that lead to the design of our PPSS protocol is that both the
backward-search algorithm, reported in Alg. 1.2, and the ABWT based RANK proce-
dure perform extremely simple and lightweight operations: indeed, the algorithms ei-
ther need to retrieve entries from the three data structures being employed, namely the
ABWT AP , the SA Suf and the dictionary Count, or they compute simple integer ad-
ditions. Therefore, the backward-search can be feasibly executed even by a constrained
device with limited computational capabilities, such as the client in the scenario con-
sidered in our definition of a PPSS protocol. Nonetheless, while the dictionary Count

can be stored at client side, as it requires only O(|Σ| log(n)) bits of storage, the ABWT
and the SA must be necessarily outsourced to a cloud server with significant storage
capabilities, as they both require Ω(n log(n)) bits of storage. Therefore, in order to
employ the backward-search method in our PPSS protocol, it is sufficient to allow the
algorithm to fetch the needed entries of the outsourced data structures without leaking
to the untrusted server any information about which entry is retrieved and its content.
In our PPSS protocol we achieve this goal by hinging upon the privacy guarantees of a
PIR protocol. Indeed, any two accesses to the same outsourced data structure are indis-
tinguishable for the server, which implies that the server cannot learn anything about
such accesses.

We now describe in detail the procedures of our PPSS protocol, which are reported
in Alg. 3.1 and Alg. 3.2. In this description, we employ a generic PIR protocol as
per Def. 1.8, hereby providing a general PPSS construction combining the backward-
search method and any PIR protocol; then, we will analyze the computational and
communication costs of our construction when it is instantiated with the Lipmaa’s PIR
described in Sec. 1.5.

Given the document collection D = {D1, . . . , Dz} with z≥1 documents, the data
owner encrypts it with a semantically secure symmetric scheme and outsources it to
the remote server. Along with the encrypted version of D, the client computes the
privacy-preserving representation 〈D〉 by employing the SETUP procedure, reported in
Alg. 3.1.

This procedure takes as input the z documents in D and the security margin λ, an
integer representing the computational security level employed to instantiate the under-
lying cryptographic primitives. The procedure starts with the construction of a single
string s obtained concatenating the documents, interleaved with the delimiter $ (line 2),
as required by our strategy to apply the backward-search method to a set of documents
(see Sec. 1.4). Subsequently, the algorithm computes the three data structures employed
in the backward search algorithm: the SA Suf of the string s; the dictionary Count with
|Σ| entries, that binds to a character c ∈ Σ the number of characters smaller than c in s;
the ABWT AP , constructed from the BWT of s, needed by the RANK procedure.

Then, the data structures that will be outsourced to the server, namely the ABWTAP
and the SA Suf , are cell-wise encrypted (lines 4–7), obtaining arrays 〈AP 〉 and 〈Suf 〉.
To this end, any secure cipher E can be employed; we choose a symmetric block cipher
for efficiency reasons. The algorithms referring to the mentioned cipher are denoted
as (E .KEYGEN, E .ENC, E .DEC), where the KEYGEN procedure yields a pair of public
and private keys, i.e.: pkE , skE (line 3), where pkE = skE if E is a symmetric-key cipher.

72

3.1. Our Multi-User PPSS Protocol

Algorithm 3.1: SETUP Procedure of our PPSS Protocol
Function SETUP(D,λ):

Input: Document Collection D = {D1, . . . , Dz}, security parameter λ
Output: 〈D〉, privacy-preserving representations of D;

auxs , secret auxiliary information employed by the client to perform search requests
Data: P , sample period employed to construct the ABWT AP

1 begin
2 s← CONCAT(D1, $, D2, $, . . . , Dz, $), n←

∑z
i=1 LEN(Di) + 1

/* Compute the SA Suf , the ABWT AP and the Count dictionary for
string s (see Section 1.4) */

3 (pkE , skE)← E .KEYGEN(λ)
4 for i← 0 to n do
5 〈Suf 〉[i]←E .ENC(pkE ,Suf [i])
6 for i← 0 to dn+1

P
e−1 do

7 〈AP 〉[i]← E .ENC(pkE , AP [i])
8 auxs ← (Count, skE)
9 〈D〉 ← (〈AP 〉, 〈Suf 〉)

10 return (auxs , 〈D〉)

At line 8, the secret information kept by the client auxs is computed as the dictionary
Count and the secret key of cipher E . Finally, the SETUP procedure in Alg. 3.1 returns
the secret data to be kept by the client, auxs=(Count, skE), and the privacy-preserving
representation 〈D〉 = (〈AP 〉, 〈Suf 〉) of the document collection, which is outsourced,
altogether with the encrypted documents, to the remote server. The SETUP procedure
requires O(n) bit operations, mostly due to the computation and the encryption of the
ABWT AP and the SA Suf ; outsourcing the privacy-preserving representation 〈D〉
requires to upload and store on the remote server O(n log(n)) bits.

Algorithm 3.2: QUERY Procedure of our PPSS Protocol
Function QUERY(q, auxs , 〈D〉):

Input: q, m-character string to be searched;
auxs , secret auxiliary information available to the client containing (Count, skE);
〈D〉, remotely accessed privacy-preserving representation of the document collection D,
containing (〈AP 〉, 〈Suf 〉).

Output: Set of positions of occurrences of q in D
1 begin
2 α← Count(q[m−1]), β ← α+ RANK(q[m−1], n) // start of the 1st phase: Qnum
3 for i← m− 2 downto 0 do
4 c← q[i], r← Count(c)
5 α← r + RANK(c, α− 1)
6 β ← r + RANK(c, β − 1)

7 return BATCHEDRETRIEVAL(α, β−1, auxs , 〈SA〉)

The QUERY procedure, reported in Alg. 3.2, takes as input the m-character string to
be searched q, the secret parameters of the client auxs= (Count, skE), and the privacy-
preserving representation 〈D〉 = (〈AP 〉, 〈Suf 〉) outsourced at server side.

The operations performed during the execution of the QUERY procedure are grouped
in two phases. The first phase, labeled as Qnum (lines 2–6), allows to evaluate as
oq = β − α the total number of occurrences of q in the remotely stored documents.
We observe that, since the dictionary Count is available to the client, then the only
difference between this phase of our QUERY procedure and the corresponding phase of

73

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

Algorithm 3.3: RANK Procedure employed in the QUERY procedure of our PPSS Protocol
Function RANK(c,i):

Input: c, character in the alphabet Σ
i, integer in {0, . . . , n}

Output: ctr: number of occurrences of c in L[0, . . . , i]
Data: P , sample period employed to construct the ABWT AP

〈AP 〉, the privacy-preserving representation of the ABWT AP of the document collection D
skE , secret key of the semantically secure cipher E

1 begin
2 h← b i

P
c

3 〈h〉 ← PIR-TRAPDOOR(h)
4 ctx← PIR-SEARCH(〈h〉, 〈AP 〉) /* executed at server side */
5 entry← PIR-RETRIEVE(ctx) /* entry = 〈AP [h]〉 */
6 entry← E .DEC(skE , entry) /* entry = AP [h] */
7 ctr← entry.rank [c]
8 for j ← 0 to i mod P do
9 if entry.l[j] = c then

10 ctr← ctr+1

11 return ctr

the backward-search algorithm (lines 1–5 in Alg. 1.2) is the computation of the RANK
procedure, which is reported in Alg. 3.3. This algorithm, given a character c ∈ Σ and an
integer i ∈ {0, . . . , n}, first privately fetches the h = b i

P
c-th entry of the cell-wise en-

crypted array 〈AP 〉 from the remote server by hinging upon a PIR protocol (lines 2–5);
then, it decrypts the retrieved entry (line 6), which corresponds to AP [h], and it com-
putes (Rank(c, i)) as the sum between AP [h].rank [c] and the number of occurrences
of c in AP [h].l[0, . . . , i mod P] (lines 7–11).

Algorithm 3.4: BATCHEDRETRIEVAL Procedure employed in the QUERY procedure of our
PPSS Protocol

Function BATCHEDRETRIEVAL (first,last,auxs ,〈A〉):
Input: first, last: starting and ending positions of the entries to be fetched

auxs : secret auxiliary information available to the client containing (Count, skE)
〈A〉: outsourced encrypted array with n entries

Output: set of entries {A[first], . . . , A[last]}
1 begin
2 a← last− first

3 〈h〉 ← AGGREGATE-PIR-TRAPDOOR(b first
a
c, a)

4 ctx← AGGREGATE-PIR-SEARCH(〈h〉, 〈Suf 〉, a) // executed at server side
5 Chunk1 ← AGGREGATE-PIR-RETRIEVE(ctx, a)
6 〈h〉 ← AGGREGATE-PIR-TRAPDOOR(b last

a
c, a)

7 ctx← AGGREGATE-PIR-SEARCH(〈h〉, 〈Suf 〉, a) // executed at server side
8 Chunk2 ← AGGREGATE-PIR-RETRIEVE(ctx, a)
9 if b first

a
c = b last

a
c then

10 return {E .DEC(skE , Chunk2[0]), . . . , E .DEC(skE , Chunk2[a− 1])}
11 else
12 return {E .DEC(skE , Chunk1[first mod a]), . . . , E .DEC(skE , Chunk1[a− 1])} ∪

{E .DEC(skE , Chunk2[0]), . . . , E .DEC(skE , Chunk2[last mod a])}

The second phase (line 7), corresponding to lines 6–8 in Alg. 1.2, allows to compute
the set of positions, in the remotely stored documents, where the leading characters of
the occurrences of q are found. Specifically, this set is found in the oq = β − α consec-
utive entries Suf [α, . . . , β−1] of the outsourced SA Suf . To retrieve these entries, the

74

3.1. Our Multi-User PPSS Protocol

client employs the BATCHEDRETRIEVAL procedure, reported in Alg. 3.4, which, given
two integers first, last and a remotely stored encrypted array 〈A〉 with n entries,
allows to privately retrieve the set of consecutive entries of A from the first+1-th one
to the last+1-th one, i.e., the sub-array A[first, . . . , last]. Specifically, Alg. 3.4
chooses the aggregation factor a = last−first (line 2) and employs two distinct ag-
gregate PIR queries (lines 3–8) to retrieve all the entries in the bfirst

a
c-th and blast

a
c-th

chunk, respectively, among the dn
a
e chunks of 〈A〉. Among the 2a entries found in these

chunks, the algorithm chooses and decrypts the ones corresponding to the requested en-
tries {A[first], . . . , A[last]} (lines 9–12).

We note that it would be possible to retrieve all the entries with a single PIR ag-
gregate query employing an aggregation factor a≥last−first chosen as the min-
imum value such that bfirst

a
c = blast

a
c: indeed, this choice guarantees that all the

last−first elements 〈A〉[first], . . . , 〈A〉[last] are found in the bfirst
a
c-th chunk

among the dn
a
e ones of 〈A〉. Nonetheless, in case the adversary already knows the ex-

act number of occurrences oq = β − α = last − first + 1 of the searched string q
(e.g., by relying on information related to the application domain), the adversary would
learn that 0 ≤ α mod a ≤ a − oq, which may in principle allow the adversary to infer
meaningful information about the string q. In our PPSS protocol, we thus avoid this
optimization to retain a minimum amount of leakage even in case the adversary already
knows the number of occurrences of the searched string; nonetheless, this optimiza-
tion, which allows to save one aggregate PIR query, may be employed in application
scenarios where the adversary has no way to know the exact number of occurrences
of the searched string, or where the aforementioned information leakage is deemed as
acceptable.

The computational and communication costs of the QUERY procedure in our PPSS
protocol obviously depend on the corresponding costs of the PIR protocol being em-
ployed for the queries: indeed, such costs are mostly dominated by the costs to perform
m PIR queries and 2 aggregate PIR queries retrieving oq consecutive entries. In this
work, since we are interested in reducing as much as possible the bandwidth of our
solution, we choose to employ the Lipmaa’s PIR, because of its polylogarithmic com-
munication cost. By instantiating our construction with Lipmaa’s PIR, we achieve an
O(m·log(N)b log2

b(n)+oq log(N) logb(
n
oq

)) communication cost for the QUERY proce-
dure, where N is the modulus employed in the DJ LFAHE keypair and b is the radix
employed to represent in positional notation an integer index in the Lipmaa’s PIR pro-
tocol; the computational cost is O(m·b log3(N) log4

b(n)+oq·log2(N) log5
b(

n
oq

)) at client
side and O(m · n

b
log3(N)) at server side. Since any PIR protocol can be employed to

instantiate our construction of a PPSS protocol, we remark that any improvement in
terms of computational or communication costs of a PIR solution may immediately
yield a PPSS protocol with better actual performance metrics than the ones reported in
this work.

Multi-User Extension

Differently from many of the existing PPSS protocols, our approach can be promptly
and efficiently adapted to a multi-user scenario. In this setting, a data-owner outsources
the full-text index for a document collection D to a cloud provider and authorizes mul-
tiple users to issue substring search queries over D to the cloud provider. Our solution

75

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

allows users to perform queries simultaneously without any synchronization among
them and without the need to interact with the data owner.

From an operational point of view the data owner runs the SETUP procedure shown
in Alg. 3.1, computing the pair of encrypted arrays 〈D〉=(〈AP 〉, 〈Suf 〉) to be out-
sourced and shares the secret auxiliary information auxs = (Count, skE) with all au-
thorized users. Then, each authorized user can independently perform substring search
queries through the QUERY procedure shown in Alg. 3.2 to find occurrences of a sub-
string of her/his choice: indeed, as a PIR protocol does not modify the data structure
stored at server side, PIR queries can be simultaneously performed with no synchro-
nization issues.

Nonetheless, when a naive implementation of Lipmaa’s PIR is employed, the scal-
ability of our solution is limited by the memory footprint of PIR queries, as each of
them requires an O(n) additional memory. Indeed, each run of the PIR-SEARCH pro-
cedure in Lipmaa’s protocol performs t = dlogb(n)e iterations, with the i-th iteration
computing an array 〈Ahi−1

〉 with d n
bi
e elements. In particular, the first iteration com-

putes an array 〈Ah0〉 with dn
b
e entries, in turn requiring O(n) memory to be allocated.

Therefore, if u queries are performed simultaneously, the memory consumption of Lip-
maa’s protocol is O(n + u · n), in turn easily leading to memory exhaustion in case
of multiple queries. To address this scalability issue, we propose to employ a modi-
fied PIR-SEARCH procedure, reported in Alg. 3.5, which aims at reducing the addi-
tional memory required by each PIR query. This goal is achieved in our optimized

Algorithm 3.5: Optimized PIR-SEARCH algorithm of Lipmaa’s PIR

Function PIR-SEARCH(A,〈h〉):
Input: A, remote array with n entries;

〈h〉, privacy-preserving representation of the position h ∈ {0, . . . , n−1}, represented as the
concatenation of the bit-wise encryptions of each b-bit string in the sequence
hdigit0, . . . , hdigitt−1, with t = dlogb(n)e (see Sec. 1.5)

Output: content of the cell A[h]
Data: b ≥ 2, radix chosen by the client to construct 〈h〉
begin

return RECURSIVERET (〈h〉, A, t−1, 0, bt−1, b, n)

Function RECURSIVERET(〈h〉, A, l, begin, end, b, n):
if begin ≥ n then

return 1 // Stop recursion to avoid overflows
if end− begin = 0 then

return A[begin]

size←
⌊
end−begin

b

⌋
, acc← 1

for i← 0 to b−1 do
el← RECURSIVERET(〈h〉, A, l−1, begin, begin + size, b, n)
begin← begin + size + 1

acc← (acc · 〈h〉[(l·b+i]el) mod N l+1

return acc

PIR-SEARCH procedure by employing a different schedule of its operations. Specif-
ically, the naive PIR-SEARCH procedure serializes the computation of the entire ar-
rays 〈Ah0〉, . . . , 〈Aht−1〉. Nonetheless, it is possible to compute the element 〈Ah1〉[0] as
soon as the b elements 〈Ah0〉[0], . . . , 〈Ah0〉[b−1] are computed, and, similarly, compute
〈Ah1〉[1] as soon as the b elements 〈Ah0〉[b], . . . , 〈Ah0〉[2b−1] are computed. In general,
the element 〈Ahi〉[j], 1≤i≤t−1, 0≤j<d n

bi+1 e, is ready to be computed as soon as the

76

3.1. Our Multi-User PPSS Protocol

b elements 〈Ahi−1
〉[b·j], . . . , 〈Ahi−1

〉[b·j+b−1] are available. We note that an element
of 〈Ah0〉 is always ready to be computed as all the elements in the dataset A are avail-
able; therefore, to avoid that all elements of 〈Ah0〉 are computed earlier than all the
other elements of arrays 〈Ah1〉, . . . , 〈Aht−1〉, we rely on the following rule to schedule
the operations: an entry of an array 〈Ahi〉, 0≤i≤t−1, is computed only if there are no
entries of arrays 〈Ahj〉, t−1≥j>i, that are ready to be computed. This schedule of the
operations is achieved by the recursive computation in Alg. 3.5.

The computational complexity of this algorithm is clearly equivalent to the naive
iterative implementation, as the same operations are performed. Nonetheless, it exhibits
a sublinear memory consumption per query. Indeed, the maximum depth of recursion
is O(log(n)), which means that only the memory for the O(log(n)) recursive calls is
required. Each recursive call stores O(l log(N)) bits due to DJ LFAHE ciphertexts
in Z∗

N l+1 , thus the overall storage cost is:
∑dlog(n)e

l=1 O(l log(N))=O(log2(n) log(N)).
In conclusion, when u queries are simultaneously performed, the server needs only
O(n+u·log2(n)) memory, with significant savings w.r.t. a naive approach.

Concerning the security guarantees of our multi-user solution, we note that each
user can employ its own keypair for the DJ LFAHE scheme in order to perform PIR
queries. This guarantees that each user can perform its own substring search query
without leaking any information to both other users and the service provider itself.
Indeed, the search and access pattern privacy of the queries of a user are guaranteed
even in case of collusion between other users and the service provider, as a colluding
user observing queries of other users have no more information than the server about
the query, thanks to the adoption of independent LFAHE keypairs among users.

Verifiability of retrieved data

In the following, we enhance the design of our PPSS protocol by providing a simple,
yet effective, mechanism that allows clients to verify the correctness of the retrieved
data with strong guarantees that they have not been accidentally tampered with by the
storage service provider. In the considered semi-honest adversarial settings, the storage
service provider is trustworthy to execute the steps of the PPSS protocol faithfully,
even if it is interested to acquire as much information as possible on the stored data.
However, chances of accidental or misconfiguration errors in the implementation or
deployment of the protocol at server side make a mechanism to verify the correctness
of accessed data elements a desirable feature.

We introduce a mechanism allowing the client to check throughout a query whether
the retrieved element matches the one prepared by the data owner or not. In particular,
the retrieved entry may either be corrupted or corresponding to an entry different from
the requested one. To this end, to detect that an outsourced data element is corrupted,
a cryptographic (keyed) Message Authentication Code (MAC) is employed, while to
prevent the chance that another intact entry is retrieved in place of the requested one,
each entry of the array is associated with a unique MAC key, paired with the entry at
hand. Specifically, the value of the secret cryptographic key employed to compute the
MAC of each entry of the outsourced array must fulfill the following properties: i) it
must depend on the index of the array entry; ii) it must be efficiently computable by the
client given the index of an entry as an input.

In our design both properties are provided by generating the MAC key of an array

77

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

entry via a keyed Pseudo Random Function (PRF), which is fed with a (secret) master
key, shared by the data owner with each user, and the index of the entry at hand. A cryp-
tographic PRF is an efficiently-computable function which emulates a random oracle.
In particular, there is no efficient algorithm able to distinguish (with significant advan-
tage) between the output of the chosen PRF and the output of a random oracle, i.e., the
outputs of a PRF appear indistinguishable from random payloads by the adversary.

Our PPSS protocol is thus extended in the following way. The data owner selects
a master secret key msk

R← {0, 1}λ, where λ is the bit-length of the randomly chosen
value (e.g., λ ∈ {128, 192, 256}), and a keyed PRF F : {0, 1}λ × {0, 1}dlog(n)e 7→
{0, 1}λ, which takes as input a master key and an integer value denoting the index
of an n-cell array. A possible instance of the said PRF is given by the AES-CBC
encryption function yielding only the last block of the ciphertext and employing a λ-
bit key, λ ∈ {128, 192, 256}. Subsequently, the value of each entry of the array A
to be outsourced is augmented with its corresponding MAC: that is, the i-th entry,
i ∈ {0, . . . , n−1}, of the array A, which contains the value ai, is replaced with the pair
of values (ai,MAC(ki, ai)), where ki = F (msk, i). When the client issues a query to re-
trieve the array element with index h, it gets back the pair of values (ah′ ,MAC(kh′ , ah′))
and can verify the correctness of the retrieved data by deriving kh = F (msk, h) and
checking if the re-computation of MAC(kh, ah′) yields the same value MAC(kh′ , ah′)
returned by the server, thus concluding whether h = h′ or not. In case of an un-
successful verification, the client can provide strong (cryptographic) evidence that the
server either returned an accidentally corrupted element or wrongly returned an intact
entry in place of the requested one. We remark that the communication and computa-
tional overheads due to the transmission of the MAC value and its re-computation at
client-side impact on the overall performance of the PPSS protocol in a negligible way.
Indeed, they involve the transmission of a few tens of bytes and the computation of a
symmetric-key cryptographic primitive, which is way more efficient (by two or three
orders of magnitude) than the asymmetric cryptographic operations performed at client
side throughout the Lipmaa’s PIR protocol.

3.2 Queries with Wildcard Characters

We now extend our PPSS protocol to enable queries for a string q containing meta-
characters, also called wildcards, that allow to define a language (i.e., a set of strings)
over the alphabet Σ instead of a single string. We call a pattern, denoted by p from
now on, any string containing at least one of these wildcards; the language defined by
a pattern p is denoted by Lp. Although a pattern p is usually employed to filter out
strings that do not belong to Lp, in our PPSS protocol we want to find the positions
of the (sub)strings in the document collection D that are also in Lp. Henceforth, these
(sub)strings will be referred to as matches or occurrences of the pattern p over the
document collection; each occurrence is identified by the document where it is located
and its starting position in the document at hand:

Definition 3.1 (Occurrence of a Pattern). Given a document collection D with z ≥ 1
documents {D1, . . . , Dz} and a pattern p, the set of positions of the occurrences of p in
Di, i ∈ {1, . . . , z}, is defined as:

ODi,p = { j | 0 ≤ j ≤ LEN(Di)− 1 ∧ ∃k (Di[j, . . . , k] ∈ Lp, LEN(Di)− 1 ≥ k ≥ j)}

78

3.2. Queries with Wildcard Characters

Table 3.1: Wildcard meta-characters available in the Unix glob patterns with their semantic

Wildcard Semantic

∗ Match zero or more arbitrary characters
? Match exactly one character

[abc] Match either a, b or c
[0− 9] Match a single digit
[!ACG] Match any character except for A, C ad G
[!A− Z] Match any character except for uppercase letters

Coherently with Def. 1.5, our PPSS protocol aims at computing, for a pattern p and a
document collection D, the set of positions OD,p =

⋃z
i=1 ODi,p. To specify a pattern p

in the queries of our PPSS protocol, we define our own format, building upon the well-
known glob patterns1, which denote a largely used simple syntax in the Command Line
Interface (CLI) of Unix-based systems to filter out the filenames not belonging to the
language defined by the specified pattern.

Format of Patterns in Queries

Table 3.1 reports the meta-characters defined in glob patterns and their semantic. Given
the set of characters defined by an alphabet Σ, the wildcard ∗ is used to match any se-
quence of characters (even the empty one) over Σ, while the wildcard ? matches exactly
one character in Σ. A character class denotes a syntax to match exactly one character
belonging to a collection (class) of characters specified within square brackets. The
collection of characters can be denoted by either listing all of them or specifying the
first and the last of them (in alphabetical order) separated by a dash (e.g, [a−z] denotes
the class of lowercase latin letters). The meta-character ! can be employed only next
to the left square bracket of a character class to “complement” the class at hand, that
is matching the elements of Σ different from the ones belonging to the collection of
characters specified afterwards (e.g., [!a − z] denotes all the characters in the alphabet
except for lowercase latin ones).

To increase the expressiveness of our patterns with respect to glob ones, in our own
format we employ the additional meta-character | to denote the union operator, i.e.,
given k ≥ 2 strings β1, . . . , βk, the pattern β1| . . . |βk matches any string among the
k given ones. Together with the union operator we also introduce round brackets as
meta-characters to specify unambiguously its scope, e.g., a(a|b)c. Besides querying
strings containing wildcard characters, we consider prefix and suffix queries, which
are quite common in information retrieval contexts [58]. Specifically, a prefix (resp.
suffix) query matches only strings that are a prefix (resp. suffix) of each document in
the collection D. For instance, the widely used glob pattern pq = q∗ (resp. pq = ∗q) can
be used to issue a prefix (resp. suffix) query, requesting to match all documents starting
(resp. ending) with a string equal to q. Nonetheless, since we define an occurrence of
a pattern p as the position in the document where a sequence of characters match (see
Def. 3.1), we need to introduce a special symbol to specify that such a sequence must
appear at the beginning or at the end of the document. To this extent, we add to our
format the special symbol &, called meta-delimiter, which should appear only as the

1http://man7.org/linux/man-pages/man3/glob.3.html

79

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

first or last character of a pattern.
The definition of the format of patterns in queries of our PPSS protocol is formally

captured by Def. 3.4, with Definitions 3.2, 3.3 being introduced to properly frame the
use of the wildcard ∗.

Definition 3.2 (Star-Free Pattern). Given an alphabet Σ, the set G of glob wildcards
reported in Tab. 3.1, the union operator | and the round brackets meta-characters,
a pattern p is star-free if and only if it is built as the concatenation of k≥1 strings
p = α1α2 · · ·αk, where each αi belongs to one of the following types:

1. αi ∈ Σ+ (strings with at least one character composed only by characters in Σ)

2. αi ∈ {G \ {∗}}+ (strings with at least one meta-character composed only by
meta-characters in G, except ∗)

3. ∃ β1, · · · , βh, h≥2 : αi = (β1| . . . |βh)∨αi = (β1| · · · |βh−1|ε), where all β1, · · · , βh
are star-free patterns.
ε denotes here the empty string (i.e., a string with no characters) that is appended
to a meta-character | to point out a possible match with no character in Σ.

Definition 3.3 (Well formed Star-Free Pattern). Given a star-free pattern p = α1 · · ·αk
over the alphabet Σ, it is a well formed star-free pattern if and only if there exists
1 ≤ h ≤ k such that αh ∈ Σ+.

A query string is considered as a well formed star-free pattern if it contain at least
one type (1) substring and does not contain the wildcard ∗. It is worth noting that such a
query string may contain the union operator only if it is applied to star-free patterns (not
necessarily well formed). We introduce such a restriction for simplicity and efficiency
reasons as our privacy-preserving queries for a pattern p containing the union operator
exhibits a computational complexity linear in the length of the longest string among
the ones defined by p (i.e., belonging to the language Lp). Thus, the presence of a ∗
wildcard would easily increase the complexity to be linear in the size of the outsourced
index.

Definition 3.4 (Well Formed Patterns). Given an alphabet Σ, the set G of glob wild-
cards reported in Tab. 3.1, the union operator |, the round brackets meta-characters,
and the meta-delimiter symbol &, a pattern p is a well formed pattern if and only if
there exist k ≥ 1 well formed star-free patterns α1, · · · , αk such that p exhibits one of
these structures:

1. p = α1 ∗ α2 ∗ · · · ∗ αk
2. p = &α1 ∗ α2 ∗ · · · ∗ αk (prefix pattern)

3. p = α1 ∗ α2 ∗ · · · ∗ αk& (suffix pattern)

4. p = &α1 ∗ α2 ∗ · · · ∗ αk& (prefix-suffix pattern)

We note that a well formed pattern has some restrictions on the usage of ∗ wildcard:
indeed, the structure of a well formed pattern mandates that it cannot start or end with a
∗. We introduce this restriction since a pattern pγ = ∗γ∗, γ ∈ Σ+, in our format would
match any sequence of characters in the document collection having γ as a substring

80

3.2. Queries with Wildcard Characters

thus yielding too many (unuseful) occurrences (see Def. 3.1). Indeed, given a document
Di, i ∈ {1, . . . , z}, z≥1, in the collection D, if j is the position of an occurrence of pγ
in Di, then every position 0≤h≤j is an occurrence of pγ in Di.

PPSS Protocol for Well-Formed Patterns

In the following, we show how to extend our PPSS protocol to deal with queries asking
for the occurrences of a well-formed pattern p. We proceed in two steps: we first show
how to perform privacy-preserving queries asking for the occurrences of a well-formed
star-free pattern (see Def. 3.3); then, we show how to perform queries for a generic
well-formed pattern (see Def. 3.4), relying on the query algorithm for well-formed
star-free patterns as a building block.

Queries for Well-formed Star-free Patterns. Our PPSS protocol performs privacy-
preserving queries for well-formed star-free patterns by hinging upon the following
decomposition of the input pattern.

Lemma 3.1 (Decomposition of Well-Formed Star-Free Pattern). Given a well-formed
star-free pattern p over an alphabet Σ, there exists a set of 2k + 1, k≥1, strings
{γ0, ω1, γ1, . . . , ωk, γk} such that p = γ0ω1γ1 . . . ωkγk, where:

• ω1, . . . , ωk ∈ Σ+ (i.e., type (1) strings in Def. 3.3)

• γ0, . . . , γk are a concatenation of type (2) or type (3) strings only (see Def. 3.3)

• γ0 and γk may be equal to the empty string ε

Proof. Following Def. 3.3, a well-formed star-free pattern p is composed by h≥1
type (1), (2) or (3) strings, p = α1 · · ·αh, where at least one of them is a type (1)
string. We prove the lemma by induction over the number h of type (1), (2) or (3)
strings composing p. Assuming h = 1, there is only the pattern p = α1, where α1 is a
type (1) string: in this case, p can be decomposed as γ0α1γ1, where γ0 = γ1 = ε, which
satisfies the lemma. Assuming h = 2, p = α1α2, there are two possible cases: if both
α1 and α2 are type (1) strings, then p can be decomposed as γ0ω1γ1, where γ0 = γ1 = ε
and ω1 = α1α2, which satisfies the lemma; if α1 (resp. α2) is a type (1) string and
α2 (resp. α1) is either a type (2) or a type (3) string, then p can be decomposed as
γ0α1α2 (resp. α1α2γ1), where γ0 = ε (resp. γ1 = ε), which satisfies the lemma. We
now proceed with the inductive step: we want to prove that any well-formed star-free
pattern p composed by h+1 type (1), (2) or (3) strings p = α1 · · ·αh+1 can be decom-
posed as in the lemma, assuming that any well-formed star-free pattern composed by
h type (1), (2) or (3) strings can be decomposed as in the lemma. Consider p = α1p

′,
with p′ = α2 · · ·αh+1. The pattern p′ is composed by h strings, thus, by inductive hy-
pothesis, it can be decomposed as γ′0ω

′
1γ
′
1 · · ·ω′kγ′k for a k ≥ 1. To encompass a generic

pattern p with h+1 strings, we have 4 different cases to consider:

1. α1 is a type (1) string and γ′0 = ε, as a consequence p can be decomposed as
γ′0ω1γ

′
1 · · ·ω′kγ′k, with ω1 = α1ω

′
1

2. α1 is a type (1) string and γ′0 6= ε, as a consequence p can be decomposed as
γ0α1γ

′
0ω
′
1γ
′
1 . . . ω

′
kγ
′
k, with γ0 = ε

81

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

3. α1 is either a type (2) or type (3) string and γ′0 = ε, as a consequence p can be
decomposed as α1ω

′
1γ
′
1 . . . ω

′
kγ
′
k

4. α1 is either a type (2) or type (3) string and γ′0 6= ε, as a consequence p =
γ0ω

′
1γ
′
1 . . . ω

′
kγ
′
k, with γ0 = α1γ

′
0

In our PPSS protocol, an occurrence is identified by a pair (pos , off) denoting, re-
spectively, the starting position, in the string s = D1$D2$. . . Dz$ derived from the
outsourced document collection D = {D1, . . . , Dz}, of the document Di where the oc-
currence is located (pos), and the relative position of the occurrence in Di (off). Along
with this information, STARFREEQUERY, our privacy-preserving query procedure for
well-formed star-free patterns reported in Alg. 3.6, associates to each of the occurrences
in the returned set Rp also its ending position in the document Di where it is located,
as this information is needed in the query procedure for a well-formed pattern, which
employs STARFREEQUERY as a building block. Analogously to the QUERY proce-
dure reported in Alg. 3.2, the STARFREEQUERY procedure in Alg. 3.6 takes as input
a triple consisting of a well-formed star-free pattern p, the auxiliary secret information
which is needed to decrypt the elements retrieved from outsourced data structures, and
the privacy-preserving representation of the document collection 〈D〉. Nonetheless,
〈D〉 has to be enriched with the encrypted string 〈s〉, computed through the same se-
mantically secure cipher E and the same keypair (pkE , skE) employed for the original
components of the privacy preserving representation of the document collection, i.e.,
〈AP 〉 and 〈Suf 〉. We note that the encrypted string 〈s〉 can be stored in place of the
encrypted document collection D, hereby avoiding an additional storage overhead.

The STARFREEQUERY procedure follows the decomposition of the well-formed
star-free pattern p defined in Lemma 3.1, parsing it properly (line 2). If the pattern
is composed by a single type (1) string (line 3), the algorithm invokes the QUERY
procedure in Alg. 3.2, as shown in line 4 of Alg. 3.6. After getting the occurrences of the
pattern, the STARFREEQUERY procedure enriches each of them with the corresponding
ending position in the document where they are located. Such an ending position is
computed considering the starting position and the length of the instance of the pattern
at hand as shown in lines 5–7.

In case the pattern p has some wildcards, the algorithm proceeds in two phases. In
the first one (lines 8–13), the client considers the k≥1 type (1) strings ω1, . . . , ωk in
p, with the aim of locating the one with the minimum number of occurrences in D.
To this extent, the algorithm executes, for each type (1) string ωi, i ∈ {1, . . . , k}, the
same steps performed in the Qnum phase of the QUERY procedure in Alg. 3.2 (denoted
by the QUERYNUM procedure in line 10), computing the indexes α, β identifying the
portion Suf [α, . . . , β−1] of the SA that stores the oωi

= β − α positions of the oc-
currences of ωi; at the end of this loop, the variables αmin, βmin identify the portion
of the SA corresponding to the occurrences of the string ωmin with the least number
of occurrences among ωi ones, i ∈ {1, . . . , k} (lines 11–12). Then, the algorithm em-
ploys the BATCHEDRETRIEVAL procedure reported in Alg. 3.4 to retrieve the set Occ
of occurrences of ωmin with two aggregate PIR queries (line 13).

The second phase (lines 14–25) uses the occurrences in Occ to finally compute the
ones of the pattern p, returning them in the output set Rp. Indeed, each sequence of

82

3.2. Queries with Wildcard Characters

Algorithm 3.6: Query procedure for well-formed star-free patterns in our PPSS protocol
Function STARFREEQUERY(p, auxs , 〈D〉):

Input: p: well-formed star-free pattern to be searched
auxs = (Count, skE): secret auxiliary information employed by the client for the queries
〈D〉 = (〈AP 〉, 〈Suf 〉, 〈s〉): remotely accessed privacy-preserving representation of D

Output: Rp: set of starting and ending positions of the occurrences of p in D
1 begin
2 (γ0, ω1, . . . , ωk, γk)← PARSEPATTERN(p)
3 if k = 1 ∧ γ0 = ε ∧ γk = ε then
4 Occ← QUERY(ω1), Rp ← ∅
5 foreach o ∈ Occ do

/* Alg. 3.2 returns, for each occurrence o, the pair
(pos, off) denoting the starting position in s of the document
where o is located and its relative position from it */

6 Rp ← Rp ∪ (o.pos, o.off , o.off +LEN(ω1)−1)

7 return Rp

8 αmin ← 0, βmin ← n
9 for i← 1 to k do

10 (α, β)← QUERYNUM(ωi, auxs , 〈AP 〉)
11 if β − α < βmin − αmin then
12 βmin ← β, αmin ← α, ωmin ← ωi

13 Occ← BATCHEDRETRIEVAL(αmin, βmin−1, auxs , 〈Suf 〉)
14 Rp ← ∅, len← COMPUTEMAXLENGTH(ωmin . . . ωkγk)
15 max_len← COMPUTEMAXLENGTH(p), min_len← COMPUTEMINLENGTH(p)
16 foreach o ∈ Occ do
17 end← o.pos + o.off + len− 1
18 start1 ← end− max_len + 1, start2 ← end− min_len + 1
19 str← BATCHEDRETRIEVAL(start1, end, 〈s〉, auxs)
20 for j ← start1 to start2 do
21 match_len← MATCHSHORTESTPREFIX(str[j − start1, . . . , max_len− 1],p)
22 if match_len > 0 then
23 offset← j − 1− o.pos
24 Rp ← Rp ∪ (o.pos, offset, offset+match_len−1)

25 return Rp

characters matching the pattern p must contain ωmin as a substring, thus, for each oc-
currence of the pattern p, there must be an occurrence o ∈ Occ with position po =
o.pos+o.off over s between the starting and ending positions over s of the occur-
rence of p at hand. As a consequence, the occurrences of p are computed by ana-
lyzing the characters of s preceding and succeeding each occurrence o ∈ Occ. To
this end, Alg. 3.6 employs the two procedures COMPUTEMAXLENGTH and COM-
PUTEMINLENGTH, which, given a star-free pattern p, compute the lengths of the
longest and shortest strings in Lp (the set of all possible strings matching p), respec-
tively. Indeed, since a star-free pattern may contain a union operator applied to strings
β1, . . . , βh with different lengths, the length of an occurrence of a pattern may vary de-
pending on which string among β1, . . . , βh is matched in the occurrence at hand. In the
STARFREEQUERY procedure, the algorithm first employs the COMPUTEMAXLENGTH
procedure to obtain the length, len, of the longest possible string matching the pattern
p shortened to start from ωmin (line 14); then, it computes the lengths of the longest and
shortest strings in Lp as max_len and min_len at line 15.

For each occurrence o ∈ Occ, the biggest possible position of the final charac-
ter of a substring matching p and including s[po], po = o.pos+o.off , is computed

83

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

as end = po+len−1 (line 17). The range {start1, · · · , start2}, identifying the
possible positions of the leading character of a substring matching p and including
s[po], po = o.pos+o.off , is found by computing start1 = end−max_len+1 and
start2 = end−min_len+1 (line 18). Subsequently, the BATCHEDRETRIEVAL pro-
cedure reported in Alg.3.4 is employed to privately retrieve with two aggregate PIR
queries the sequence of characters str = s[start1, · · · , end] from the encrypted string
〈s〉 stored at server side (line 19). The retrieved sequence of characters str includes
all the occurrences of p containing the character s[po] and with leading character po-
sitioned in the range {0, . . . , start2−start1} over str. The occurrences of p over
str are thus identified by searching for the shortest prefix of str[j, · · · , max_len− 1],
0≤j≤start2 − start1, which is matched by p (i.e., the shortest prefix that belongs
to Lp), employing the MATCHSHORTESTPREFIX procedure in line 21. If the said pre-
fix match exists, the starting and ending positions of the occurrence p are inserted in
the output set Rp together with the starting position of the document in s where the
occurrence at hand is located (i.e., o.pos), (lines 22–24).

We now analyze the computational and communication costs of the STARFREE-
QUERY algorithm fed with a pattern p. To this extent, we consider the decompo-
sition of the pattern p reported in Lemma 3.1, that is p = γ0ω1γ1 . . . ωkγk, k≥1.
In our analysis, we denote as oωi

the number of occurrences of ωi in the document
collection D, as m the length of the longest possible string matching p, i.e., m =
COMPUTEMAXLENGTH(p), and as mω =

∑k
i=1 LEN(ωi) the sum of the lengths of

type (1) strings ω1, . . . , ωk.
Concerning the communication cost, in the first phase of the algorithm (lines 2–

13) the client sends O(mωb log2
b(n) log(N)) bits to the server (with N and b being

parameters employed in the Lipmaa’s PIR protocol as the cryptographic modulus of
the LFAHE scheme and the radix value to compute trapdoors, respectively), while the
server sends back O((mω+omin)·logb(n) log(N)) bits, where omin = min(oω1 , . . . , oωk

);
this cost is largely dominated by the communication cost of the second phase (lines 14–
25), which amounts to O(omin · (b log2

b(n) log(N)+m logb(n) log(N))), that is the cost
of omin PIR queries, each of which retrieving O(m) characters from 〈s〉.

The computational cost at client side, which amounts to O(omin·(b log4
b(n) log3(N)+

m log5
b(n) log2(N))), is mostly due to the omin queries that retrieve O(m) characters

from 〈s〉; indeed, the computational cost to match the pattern p with the string down-
loaded from the server is negligible with respect to the cryptographic operations. Fi-
nally, the computational cost at server side amounts to O((mω+omin) · n

b
log3(N)),

which is obtained by adding the cost of the mω PIR queries performed over the k invo-
cations of the QUERYNUM procedure and the cost of the omin aggregate PIR queries to
retrieve substrings from 〈s〉.
Dealing with Meta-Delimiters. To employ the STARFREEQUERY algorithm as a
building block during the execution of queries with well-formed patterns (Def. 3.4),
we need to extended it to manage also the meta-delimiters preceding or succeeding a
well-formed star-free pattern p, which are employed in prefix, suffix and prefix-suffix
queries. To this extent, the PARSEPATTERN procedure converts each meta-delimiter
character & found in p into the end-of-string delimiter $ employed to concatenate the
documents in the collection D into the string s. Two cases are possible:

• If the delimiter $ precedes (resp. succeeds to) the type (1) string ω1 (resp. ωk), then

84

3.2. Queries with Wildcard Characters

it is merged with the string at hand and the STARFREEQUERY procedure proceeds
as shown in Alg. 3.6. Indeed, the type (1) string enriched with the merged symbol
$ may be processed by either the QUERY or the QUERYNUM procedure at lines 4
and 10, respectively, as both procedures support prefix, suffix and prefix-suffix
queries without any further modifications. Indeed, any occurrence of pattern $ω1

(resp. ωk$) identified by these algorithms can be positioned only at the beginning
(resp. end) of a document in s, while any occurrence of the pattern $ω1$ identified
by these algorithms correspond to an entire document being equal to ω1.

• If the delimiter $ neither precedes nor succeeds a type (1) string, then the al-
gorithm exploits the fact that the number of occurrences of the pattern with the
meta-delimiters is at most z, one for each document Di in s = D1$ · · ·Dz$.
Therefore, if, at the end of the loop at lines 9–12, the string ωmin has more than z
occurrences, then the STARFREEQUERY, instead of retrieving its occurrences at
line 13, retrieves the occurrences of $ in s. Specifically, these are stored in the first
z entries of the suffix array and so they can be retrieved at line 13 by computing
BATCHEDRETRIEVAL(0, z−1, auxs , 〈Suf 〉). Obviously, since in this case the oc-
currences in Occ no longer refers to the string ωmin but to the symbol $, the compu-
tation of the variable len at line 14 must be modified accordingly; specifically, if
the meta-delimiter precedes p, then len equals COMPUTEMAXLENGTH(p) plus
the number of meta-delimiters (which is at most two), otherwise len = 1.

Queries with Well-formed Patterns. The procedure QUERYPATTERN in Alg. 3.7
allows to locate all the occurrences of a well-formed pattern in our PPSS protocol.
The algorithm hinges upon the decomposition of a well-formed pattern p in a set of
k≥1 well-formed star-free patterns α1, . . . , αk (see Def. 3.4). Specifically, given all the
occurrences of each of these k patterns in the document collection D = {D1, . . . , Dz},
it is possible to construct an occurrence of p over a document Dj in D, 1≤j≤z, by
finding a set of occurrences ok,j = {o1,j, . . . , ok,j} located in Dj such that oi,j is an
occurrence of αi, i ∈ {1, . . . , k}, in Dj , and ∀ i≤k−1, oi,j.end < oi+1,j.begin, where
oi,j.end (resp. oi,j.begin) denotes the ending (resp. starting) position in Dj of the
occurrence oi,j . Indeed, ok,j identifies an occurrence of p in document Dj starting at
position o1,j.begin and ending at ok,j.end , which is composed by occurrences of well-
formed star-free patterns α1, . . . , αk interleaved by an arbitrary number of characters
(due to presence of the wildcard ∗ in p).

The QUERYPATTERN procedure reported in Alg. 3.7 starts by decomposing the
well-formed pattern p in k≥1 well-formed star-free patterns α1, . . . , αk (line 2). Any
meta-delimiter & found at the beginning (resp. at the end) of p is merged with the
pattern α1 (resp. αk). Then, for each of these k patterns, the STARFREEQUERY pro-
cedure is run to retrieve the set Occi of occurrences of the pattern αi in the document
collection (line 4); each set Occi is further partitioned in z portions (Occ1

i , . . . , Occ
z
i),

each containing all the occurrences located in the j-th document Dj , j ∈ {1, . . . , z}
(line 5). This partitioning is simply performed by grouping the occurrences in Occi,
i ∈ {1, . . . , k}, according to the position pos of the document where each occurrence
is located.

Subsequently, for each document Dj , the algorithm (lines 6–9) constructs occur-
rences of the well-formed pattern p from the sets Occj1, . . . , Occ

j
k, which store the oc-

85

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

Algorithm 3.7: Query procedure for well-formed patterns in our PPSS protocol
Function QUERYPATTERN(p, auxs, 〈D〉):

Input: p: well-formed pattern to be searched
auxs = (Count, skE): secret auxiliary information employed by the client for queries
〈D〉 = (〈AP 〉, 〈Suf 〉, 〈s〉): remotely accessed privacy-preserving representation of D

Output: Rp: set of positions of occurrences of p in D
1 begin
2 (α1, . . . , αk)← PARSEPATTERN(p)
3 for i← 1 to k do
4 Occi ← STARFREEQUERY(αi, auxs , 〈D〉)
5 (Occ1i , . . . , Occ

z
i)← SPLITBYDOCID(Occi)

6 Rp ← ∅
7 for j ← 1 to z do
8 Rp ← Rp ∪MATCHOCC(Occj1, . . . , Occ

j
k)

9 return Rp

currences of the corresponding well-formed star-free patterns α1, . . . , αk over Dj . The
occurrences of p are found by the procedure MATCHOCC, which, for each oh1,j ∈ Occ

j
1,

1≤h≤|Occj1|, computes a set of occurrences ohk,j , each corresponding to an occurrence
of p; indeed, although many sets ohk,j may exists for each oh1,j , according to Def. 3.1 they
represent the same occurrence of the pattern p, as they share the same starting position
oh1,j.begin. Therefore, there are at most |Occj1| occurrences of p in the documentDj , one
for each oh1,j . The MATCHOCC procedure can naively construct all these |Occj1| sets ohk,j
in time O(|Occj1| · oα,j), where oα,j =

∑k
i=1 |Occ

j
i |, that is the sum of the occurrences

of each pattern αi over document Dj; we remark that as |Occj1| = O(oα,j), then the cost
of this naive implementation becomes O(o2

α,j).

Algorithm 3.8: Optimized MATCHOCC procedure to find occurrences of well-formed patterns
Function MATCHOCC(Occ1, . . . , Occk):

Input: Occ1, . . . , Occk: set of occurrences of well-formed star free patterns α1, . . . , αk over the same
document. Each occurrence o in Occi stores the position o.pos of the document where the
occurrence is located in the string s and the starting and ending positions (o.begin and o.end)
of the occurrence in the document

Output: Rp: set of occurrences of the well-formed pattern p = α1 ∗ · · · ∗ αk over the same document
1 begin
2 for i← 1 to k do
3 SORTOCCBYEND(Occi)
4 foreach o1 ∈ Occ1 do
5 head← o1.end
6 for i← 2 to k do
7 foreach o ∈ Occi do
8 if o.begin > head then
9 head← o.end , break

10 DELETEOCC(o)

11 if Occi = ∅ then
12 return Rp

13 Rp = Rp ∪ (o1.pos, o1.begin)

14 return Rp

In Alg. 3.8, we report an improved version of MATCHOCC that reduces the com-
putational cost to O(oα,j(log(oα,j)+k)). This procedure relies on the fact that it is

86

3.2. Queries with Wildcard Characters

possible to build the occurrences of pattern p in the document Dj much more effi-
ciently if each of the k sets Occj1, . . . , Occ

j
k is sorted in ascending order according to the

ending positions of the occurrences in it. We now describe how the MATCHOCC proce-
dure efficiently finds all the occurrences of p over document Dj from the k sorted sets
Occ

j
1, . . . Occ

j
k; then, we prove its correctness. After sorting all the sets Occj1, . . . Occ

j
k

(line 3), the MATCHOCC procedure tries to build a set ohk,j for any occurrence oh1,j ∈
Occ

j
1, 1≤h≤|Occj1| (lines 4-13). Specifically, for each set Occji , i ∈ {2, . . . , k}, it

finds (lines 7-10) the first occurrence satisfying oi,j.begin > oi−1,j.end (oi−1,j.end is
stored in variable head in Alg. 3.8). Any occurrence oi,j such that oi,j.begin ≤ head

is erased from set Occji (line 10); if no occurrence oi,j with oi,j.begin > head can be
found (line 11), no more occurrences of p in document Dj can be found (line 12). Con-
versely, in case an occurrence oi,j is found for every set Occji , i ∈ {2, . . . , k}, then the
set ohk,j can be built and thus the occurrence identified by this set, which starts in posi-
tion oh1,j.begin, is added toRj

p (line 13), that is the set of occurrences of the well-formed
pattern p over the document Dj .

We now prove that MATCHOCC allows to find all and only the occurrences of p in
a document Dj . The set Rj

p computed by the MATCHOCC procedure contains only
occurrences of p over document Dj: indeed, an entry is added to this set if and only if a
set ohk,j = {o1,j, . . . , ok,j}, 1≤h≤|Occj1|, of occurrences of α1, . . . , αk, with o1,j = oh1,j
and oi,j.end < oi+1,j.begin, for every i < k, is found. We now prove that the procedure
finds all the occurrences. In particular, we want to show these two facts: an occurrence
oi,j is erased from set Occji (line 10) only if oi,j cannot belong to any other set ohk,j
besides the ones already found; if, for any of the sets Occj2, . . . , Occ

j
k, all occurrences in

the set at hand are erased (line 12), then there are no more sets ohk,j (and thus no more
occurrences of p) to be found.

We start by proving the following property:

Lemma 3.2. Consider the k ≥ 1 sets of occurrences Occ
j
1, . . . , Occ

j
k of well-formed

star-free patterns α1, . . . , αk over document Dj , with the set Occji , i ∈ {1, . . . , k},
being sorted according to the ending position of each of its occurrences. If, for an
occurrence oi,j ∈ Occ

j
i , i ∈ {2, . . . , k}, there is no set ohi,j = {o1,j, . . . , oi,j}, with

o1,j = oh1,j , such that ∀i′ < i, oi′,j.end < oi′+1,j.begin, then, for any h′ ≥ h, there is no
set oh

′
i,j = {o1,j, . . . , oi,j}, with o1,j = oh

′
1,j , such that ∀i′ < i, oi′,j.end < oi′+1,j.begin

Proof. Assume that the thesis of the Lemma is false. This implies that, even if there
is no set ohi,j = {o1,j, . . . , oi,j}, with o1,j = oh1,j , for an occurrence oi,j ∈ Occ

j
i , there

exists a set oh′i,j = {o1,j, . . . , oi,j}, with o1,j = oh
′

1,j , for an h′>h. Given the occurrence
o2,j in oh

′
i,j , it holds that o2,j.begin > oh

′
1,j.end ≥ oh1,j.end , since the set Occj1 is sorted

according to the ending position of its occurrences; therefore, by replacing oh′1,j with
oh1,j in oh

′
i,j , we obtain a set ohi,j = {o1,j, . . . , oi,j}, with o1,j = oh1,j , such that ∀i′ <

i, oi′,j.end < oi′+1,j.begin . This contradicts the hypothesis that the set ohi,j does not
exist, so we conclude that there is no set oh′i,j for the occurrence oi,j ∈ Occ

j
i for any

h′ ≥ h.

Lemma 3.3. If an occurrence oi,j ∈ Occ
j
i is erased at line 10 of the MATCHOCC

procedure reported in Alg. 3.8 in the h-th iteration of the loop at lines 4-13, then,

87

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

for any h′ ≥ h, there is no set oh
′
i,j = {o1,j, . . . , oi,j}, with o1,j = oh

′
1,j , such that

∀i′ < i, oi′,j.end < oi′+1,j.begin.

Proof. We prove the lemma by induction over the sets Occj2, . . . , Occ
j
k. We start with

Occ
j
2. Suppose that an occurrence o2,j ∈ Occ

j
2 is erased by MATCHOCC procedure in

the h-iteration of the loop at lines 4-13: then, it means that o2,j.begin ≤ head, where
head = oh1,j.end ; thus, it immediately follows that oh2,j = {oh1,j, . . . , o2,j} cannot exist.
Therefore, by Lemma 3.2, for any h′ ≥ h, no set oh′2,j = {oh′1,j, . . . , o2,j} exists. We now
look at the general case for any occurrence oi,j in the set Occji erased in the h-th iteration
of loop at lines 4-13. Our inductive hypothesis is that for any element oi−1,j ∈ Occ

j
i−1

already erased, there is no set ohi−1,j = {oh1,j, . . . , oi−1,j}. If an occurrence oi,j ∈ Occ
j
i is

erased, then it means that there is an occurrence o′i−1,j ∈ Occ
j
i−1 (which is the first non

erased occurrence in Occ
j
i−1) such that oi,j.begin ≤ o′i−1,j.end ; therefore, no set ohi,j =

{oh1,j, . . . , o′i−1,j, oi,j} exists. If we consider any oi−1,j already erased from Occ
j
i−1, then

by inductive hypothesis there is no set ohi−1,j = {oh1,j, . . . , oi−1,j}, which implies that
there is also no set ohi,j = {oh1,j, . . . , oi−1,j, oi,j}. If we consider any oi−1,j 6= o′i−1,j

still in Occ
j
i−1, then oi−1,j.end ≥ o′i−1,j.end , as the set Occji−1 is sorted in ascend-

ing order according to the ending position of its occurrences; therefore, oi,j.begin ≤
o′i−1,j.end ≤ oi−1,j.end , which means that no set ohi,j = {oh1,j, . . . , oi−1,j, oi,j} exists. In
conclusion, there is no element in oi−1,j ∈ Occ

j
i−1 such that it is possible to construct

a set ohi,j = {oh1,j, . . . , oi−1,j, oi,j}, therefore, this set does not exist for the occurrence
oi,j . By applying Lemma 3.2, we can generalize this result to any h′ > h.

Lemma 3.3 implies that when an occurrence oi,j is erased in the h-th iteration of
the loop at lines 4-13, then oi,j cannot belong to any set oh′k,j for any h′ ≥ h. As
an occurrence of p over document Dj is identified by a set ohk,j = {o1,j, . . . , ok,j},
with o1,j = oh1,j , of k occurrences from Occ

j
1, . . . , Occ

j
k, respectively, this means that

occurrence oi,j cannot belong to any occurrence of p identified by a set oh′k,j for any
h′ ≥ h. Since all the occurrences of p identified by sets oh

′

k,j , for h′ < h, have been
already found at iteration h of the aforementioned loop, then the occurrence oi,j cannot
belong to any other occurrence of p besides the ones already found. Therefore, oi,j can
be safely erased from its set.

Furthermore, if all occurrences are erased in the h-th iteration of the loop at lines 4-
13 from a set Occji , i ∈ {2, . . . , k}, then all these occurrences by Lemma 3.3 can-
not belong to any set oh′k,j = oh

′

k,j for any h′ ≥ h. Since, by definition, a set ohk,j =

{o1,j, . . . , ok,j}, with o1,j = oh1,j , identifying an occurrence of p over the document Dj

is composed by k occurrences, one for each set Occji , then any set oh′k,j , for h′ ≥ h, can-
not be built. Since all the sets oh′k,j , for h′ < h, have been already built at the h-th itera-
tion, there are no more occurrences of p to be found, which means that the MATCHOCC
procedure can immediately stop at line 12 returning the set Rj

p of occurrences of p in
document Dj found so far.

Finally, we analyze the computational and communication costs of the QUERY-
PATTERN procedure in Alg. 3.7, for a pattern p with k≥1 well-formed star-free pat-
terns α1, . . . , αk. To this extent, we denote as mαi

(resp. oαi
), i ∈ {1, . . . , k}, the

88

3.3. Security Analysis of Our Multi-User PPSS Protocol

length (resp. number of occurrences over the document collection D) of the well-
formed star-free pattern αi , and by mα (resp. oα) the sum of all of these lengths
(resp. occurrences), that is mα =

∑k
i=1 mαi

(resp. oα =
∑k

i=1 oαi
)). In case these

patterns contain wildcard characters, the computational cost at server side amounts
to O((mα+oα)n

b
log3(N)), due to the k executions of the STARFREEQUERY proce-

dure, each one with cost O((mαi
+ oαi

)n
b

log3(N)); similarly, the communication cost
amounts to O(b log2(n) log(N)

∑k
i=1mαi

·oαi
), as each of the k STARFREEQUERY pro-

cedures exhibits O(b log2(n) log(N)mαi
oαi

) communication cost. Remarkably, in case
all the patterns α1, . . . , αk do not include wildcard characters, then the computational
cost at server side remains independent from the number of occurrences, while the
communication cost is reduced to O((mα+oα)b log2(n) log(N)), because each of the k
STARFREEQUERY procedures simply executes the QUERY algorithm.

3.3 Security Analysis of Our Multi-User PPSS Protocol

We now show that our PPSS protocol ensures the confidentiality of the remotely stored
string, of the searched substring, and of the results returned by each search query, as
well as guaranteeing the privacy of both the search and access patterns. In the fol-
lowing, adopting the framework introduced by Curtmola in [43], we provide a formal
definition of the information leakage coming from a PPSS protocol and we formally
specify the adversarial model as well as the security guarantees provided by our PPSS
solution. We first consider the basic version of our PPSS protocol, and then we dis-
cuss the security guarantees of the multi-user extension and of our privacy-preserving
queries for string containing wildcard characters. In our PPSS protocol, some param-
eters, such as the sample period P employed to construct the ABWT and the radix b
employed for Lipmaa’s PIR protocol, are chosen only for performance reasons and in-
dependently from sensitive data; therefore, as the knowledge of these parameters does
not affect the security guarantees of our PPSS protocol, we assume that the same value
for these parameters is always employed, in turn simplifying our security proof.

We start by defining the leakage of a PPSS protocol. Informally, the leakage amounts
to all the information about the confidential data involved in the protocol that the ad-
versary can infer by observing the execution of the PPSS protocol. In particular, all
the information observed by the adversary during the execution of the protocol is re-
ferred to as its trace. In our threat model, we assume that the adversary is not able to
compromise the data owner or the authorized users performing queries, as otherwise
the security guarantees of the protocol are trivially subverted. Conversely, we assume
that the server is controlled by a semi-honest adversary, who does not misbehave in the
protocol but it is willing to learn as much information as possible. Given these assump-
tions, the trace of a PPSS protocol is given only by the data exchanged between the
client and the remote server and from the computation run at server side. We formally
state the trace and the leakage of a PPSS protocol in the following definition.

Definition 3.5 (Trace and Leakage of PPSS Protocol). Given a document collection
D, d≥1 strings q1, . . . , qd, and a PPSS protocol P = (SETUP,QUERY), its trace T =
(TD, Tq1 , . . . , Tqd) is defined as follows.

• TD = 〈D〉 represents the information observed by the adversary in the SETUP

89

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

Experiment transcript← RealP,A(λ):
(D, stA)← AD(1λ)
(〈D〉, auxs)← P.Setup(D, 1λ)
∀i ∈ {1, . . . , d}:

(qi, stA)← Ai
(
{TD, Tq1 , . . . , Tqi−1

}, stA
)

∀j ∈ {1, . . . , w}:
〈qi〉j ← P.Trapdoor(j, qi, auxs, res1, . . . , resj−1)
(〈resj〉, stA)← A.Search(stA, 〈qi〉j , 〈D〉)
resj ← P.Retrieve(〈resj〉, auxs)

transcript← {stA, TD, Tq1 , . . . , Tqd}

Experiment transcript← IdealA,S(λ):
(D, stA)← AD(1λ)
(〈D〉, stS)← SD(LD, 1

λ)
∀i ∈ {1, . . . , d}:

(qi, stA)← Ai
(
{TD, Tq1 , . . . , Tqi−1

}, stA
)

∀j ∈ {1, . . . , w}:
(〈qi〉j , stS)← Sqi(j, stS , {LD,Lq1 , . . . ,Lqi})
(〈resj〉, stA)← A.Search(stA, 〈qi〉j , 〈D〉)

transcript← {stA, TD, Tq1 , . . . , Tqd}

Figure 3.1: Security game experiments for our PPSS protocol

phase, which is limited to the outsourced privacy-preserving representation 〈D〉
of the document collection.

• Tqi , i ∈ {1, . . . , d}, represents the information observed by the adversary in the
w iterations (rounds) executed during the QUERY phase of the protocol for the
string qi. Specifically, Tqi = {〈qi〉1, st1, 〈res1〉, . . . , 〈qi〉w, stw, 〈resw〉}, that is
the trapdoors 〈qi〉j , j ∈ {1, . . . , w}, computed in each round by the TRAPDOOR
procedure, the states stj that store all the information observed during the execu-
tion of the SEARCH procedure in each round, and the results 〈res〉j computed in
each round by the SEARCH procedure.

The leakage L = (LD,Lq1 , . . . ,Lqd) of the protocol P is the information about the
document collection D, the d strings qi and the results of the d queries for such strings
inferred by the adversary from the trace T .

The security game stated in Def. 3.6 allows to prove that a semi-honest adversary
does not learn anything but the leakage L. To this end, this definition requires the ex-
istence of a simulator S, taking as inputs only LD and Lq = {Lq1 , . . . ,Lqd}, which
is able to generate a transcript of the PPSS protocol for the adversary that is compu-
tationally indistinguishable from the one generated when a legitimate client interacts
with the server during a real execution of the protocol. The transcript of the protocol is
given by the trace observed by the adversary and any other information inferred by the
adversary during the execution of the protocol, which is stored in a state stA.

Definition 3.6 (Security Game). Given a PPSS protocol P with security parameter λ,
d≥1 queries, the leakage L and the trace T of P as defined in Def. 3.5, an adversaryA
consisting of d+1 probabilistic polynomial time algorithmsA = (AD,A1, . . .Ad), and
a simulator S, which is also a tuple of d+1 probabilistic polynomial time algorithms
S = (SD,Sq1 , . . .Sqd), the two probabilistic experiments RealP,A(λ) and IdealA,S(λ)

90

3.3. Security Analysis of Our Multi-User PPSS Protocol

shown in Fig. 3.1 are considered. Denote as D(o) a probabilistic polynomial time
algorithm taking as input a transcript of an experiment o and returning a boolean
value indicating if the transcript belongs to the RealP,A(λ) (D(o) = 0) or IdealA,S(λ)
(D(o) = 1) experiment. The protocol P , with leakage L, is secure against any semi-
honest probabilistic polynomial time adversary A = (AD, . . .Ad), if, for every such
A, there exists a simulator S = (SD,Sq1 , . . .Sqd) such that for every D:

Pr
(
D(o) = 1 | o← RealP,A(λ)

)
− Pr

(
D(o) = 1 | o← IdealA,S(λ)

)
≤ ε(λ)

where ε(·) is a negligible function.

In the experiments shown in Fig. 3.1, D is chosen by the adversarial algorithm AD

and each query qi, 1≤i≤d, is adaptively chosen by the i-th adversarial algorithm Ai,
depending on the transcript of the protocol in the previous queries.

The RealP,A experiment represents an actual execution of the protocol, where the
client receives the document collection D and the d queries and it behaves as speci-
fied in the protocol; conversely, in the IdealA,S experiment, the client is simulated by
S, which however employs only the leakage information L = (LD, Lq1 , . . . ,Lqd). In
particular, the simulator SD constructs a privacy-preserving representation 〈D〉 by ex-
ploiting only the knowledge of LD, while each simulator Sqi constructs the trapdoor
for each round of the i-th query by exploiting only the knowledge of the leakage LD,
Lqj , 1 ≤ j ≤ i. Therefore, the transcript of the IdealA,S experiment depends only on
the leakage L, as the real document collection D and the strings q1, . . . , qd are never
employed in the simulation of the protocol. Thus, if the transcript is computationally
indistinguishable from the one of the RealP,A experiment, then it means that also this
transcript reveals no more information than L, as otherwise the additional information
leakage of the real protocol would allow to distinguish between the transcripts of the
two experiments. Since the transcript of the RealP,A experiment corresponds to the
information observed and derived by the adversary in our PPSS protocol, then no infor-
mation other than L can be inferred from the adversary in our PPSS protocol, in turn
proving that the protocol leaks no more information than L to the adversary.

In the following Thm. 3.1, we state the leakage L that makes our protocol secure
according to Def. 3.6, which, as we have just discussed, corresponds to the leakage of
our PPSS protocol.

Theorem 3.1. Given a document collection D with z ≥ 1 documents {D1, . . . , Dz}
and d ≥ 1 substrings q1, . . . , qd, our PPSS protocol is secure against a semi-honest
adversary, as per Def. 3.6, with a leakage L = (LD,Lq1 , . . . ,Lqd), where:

• LD =
∑z

i=1(LEN(Di) + 1) = n

• Lqi = (LEN(qi), |OD,qi |), 1≤i≤d, where OD,qi is defined as per Def. 1.5.

The proof of this claim can be found in Appendix 2. Informally, the security of
our protocol is based on the security of the PIR protocol being employed and on the se-
mantic security of the encryption scheme used to compute the encrypted data structures
〈AP 〉 and 〈Suf 〉, as the server observes only PIR queries on arrays encrypted with a se-
mantically secure encryption scheme. The only information leaked to the server are the
sizes of these data structures, which are both proportional to the size n of the document

91

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

collection, the number of documents z in D, which is trivially leaked by the encrypted
documents outsourced to the server, the length m of the searched substring, leaked by
the number of PIR queries performed over 〈AP 〉, and the number of occurrences oq,
which is proportional to the number of entries retrieved by the aggregate PIR queries
over 〈Suf 〉. We remark that Thm. 3.1 guarantees search and access pattern privacy, as
they are not enclosed in the leakage L.

Security Guarantees in Multi-User Scenario

We now informally analyze the security guarantees achieved by our PPSS protocol in
a multi-user scenario. In such setting, we need to consider also the information that
is leaked to the multiple users involved in the protocol. First of all, we observe that
each user can easily reconstruct the entire document collection D. Indeed, each user
can perform |Σ| queries through the PPSS protocol, each retrieving the occurrences of
a distinct character in the alphabet Σ. From each of these queries, the user learns the
positions of all the occurrences of a specific character in Σ and the document where
each occurrence is located; by combining the information of all these queries, the users
learn the character found in each position of each document in the collection, hereby
entirely reconstructing D. We observe that the users reconstruct the content of the
documents relying only on the results of legitimate queries, which is an information
available in any PPSS protocol providing the substring search functionality specified
in Def. 1.5. In particular, we observe that such information leakage would occur even
in the PPSS protocol with the highest possible privacy guarantees, where the queries
are executed by a trusted party that reveals to the users only the results of their queries.
Therefore, this leakage is not a security weakness of our protocol, but an unavoidable
information leakage that the data owner must necessarily accept.

Furthermore, our solution guarantees that, given a query for a string q performed by
a user, all the other users, even by observing the execution of the query at server side,
can learn no more information than the leakage Lq reported in Thm. 3.1. Equivalently,
a query issued by any user in our PPSS protocol exhibits the same information leakage
to both the untrusted server and other authorized users in the protocol. This property
stems from the security guarantees of the PIR protocol: indeed, as for the untrusted
server, any other authorized user observes only a set of PIR queries from the victim
user, thus the privacy guarantees of PIR ensures that no information about the entries
retrieved by the victim user from the outsourced full-text index can be learned. In
particular, with the Lipmaa’s PIR employed in our PPSS protocol, each user employs
its own key-pair for the DJ LFAHE scheme, which implies that all the parties observe
only ciphertexts of a semantically secure encryption scheme that can be decrypted only
by the user issuing the query. This property is crucial to discourage collusion between
the untrusted server and authorized users in our PPSS protocol: indeed, although the
server is interested in such a collusion as it allows to learn the content of the document
collection, the authorized users have no incentive to collude with the server, as they
cannot learn any meaningful information about queries of the other users.

Privacy Guarantees for Queries with Wildcards

To analyze the information leakage of privacy-preserving queries containing wildcard
characters, we distinguish two possible use case scenarios: in the first one, which is

92

3.3. Security Analysis of Our Multi-User PPSS Protocol

more unlikely, the adversary knows that the client is performing a single query (e.g., an
application scenario where each user is allowed to perform a single query per day); in
the second one, the client may perform an arbitrary number of queries.

In the first scenario, the adversary can infer the number k of ∗ wildcards in the
queried pattern p = α1 ∗ · · · ∗ αk+1 and, for each of the k+1 well-formed star-free pat-
terns α1, . . . , αk+1, if there is at least a wildcard different from &. The value k can be
inferred by the number of private accesses to the encrypted SA 〈Suf 〉 performed dur-
ing the execution of the query: indeed the QUERYPATTERN procedure runs k+1 times
(line 4 in Alg. 3.7) the STARFREEQUERY function reported in Alg. 3.6, which in turn
accesses 〈Suf 〉 only twice per run during the execution of the BATCHEDRETRIEVAL
function (invoked either at line 13 in Alg. 3.6 or during the QUERY procedure invoked
at line 4 in Alg. 3.6). Furthermore, if the client performs a private access to the en-
crypted array 〈s〉 (line 19 in Alg. 3.6) after the i-th access to 〈Suf 〉, 1≤i≤k+1, then
the adversary learns that the i-th well-formed star-free pattern αi found in p contains a
wildcard character different from &. Once the adversary has reconstructed the structure
of p, for each well-formed star-free pattern with no wildcard character (except for &)
it learns its length and its number of occurrences, as they are leaked by the QUERY
procedure invoked at line 4 in STARFREEQUERY (Alg. 3.6); otherwise, for each well-
formed star-free pattern αi with at least a wildcard character different from &, it learns
the length of the longest string in Lαi

(from the number of elements retrieved at line 19
in Alg. 3.6) and the upper bound omin (see communication cost of STARFREEQUERY
procedure in Sec. 3.2) on the number of its occurrences (from the number of elements
retrieved at line 13 in Alg. 3.6). Therefore, the adversary cannot learn the exact number
of occurrences of a pattern unless it is a well-formed star-free pattern with no wildcards
other than &.

In the second scenario, where the client may perform an arbitrary number of queries,
the adversary can no longer reconstruct the number of ∗ wildcards: indeed, the adver-
sary only observes a set of queries for well-formed star-free patterns, but it cannot
determine which of them are portions of the same well-formed pattern. Nonetheless,
the adversary can still infer, for each of the observed queries, if the queried well-formed
star-free pattern p contains at least a wildcard character other than & by verifying if the
client retrieves any element from the encrypted array 〈s〉. It is worth noting that this
information leakage may be not accurate for the adversary: indeed, although not spec-
ified in the functionality provided by a PPSS protocol, in some application scenarios
the client, once determined the positions of an occurrence in a document, may need to
download the portions of the document corresponding to such an occurrence, hereby
privately accessing via PIR queries the encrypted array 〈s〉 too. Similarly to the previ-
ous scenario, in case the adversary determines that the searched well-formed star-free
pattern p contains at least a wildcard character other than &, it learns the length of the
longest string in Lp and the upper bound omin on the number of its occurrences; oth-
erwise, it learns the length of p and the number of its occurrences. Nonetheless, since
in this scenario the client cannot know if p is a portion of a bigger well-formed pattern
or not, the adversary can never know with certainty both the length and the number of
occurrences of a well-formed pattern.

The leakage of the structure of the well-formed pattern in both scenarios can be pre-
vented with the following two modifications: the first one consists of conceiving the

93

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

encrypted arrays 〈AP 〉, 〈Suf 〉 and 〈s〉 in 〈D〉 as a single dataset, thus performing any
PIR query over all these three arrays; the second modification requires that PIR queries
always retrieve elements in batches of constant size (otherwise the adversary can in-
fer which array among 〈AP 〉, 〈Suf 〉 and 〈s〉 is accessed from the number of retrieved
elements). Nonetheless, these two modifications would introduce a significant perfor-
mance overhead to the PPSS protocol, as the performance benefits of implementing a
batching retrieval would be lost and also the performance penalty due to accessing with
a PIR protocol a much larger dataset must be kept into account. Therefore, we deem
the leakage related to the execution of queries with wildcards acceptable in most of
the practical scenarios and recommend the described countermeasure only for specific
use cases where the information leakage about the structure of the queried well-formed
pattern is actually a sensitive data.

3.4 Experimental Evaluation of our PPSS Protocol

In this section, we report the experiments that we performed in order to evaluate the
actual performance and the practicality of our multi-user PPSS protocol on a real world
genomics use case. We run our tests on a dual Intel Xeon CPU E5-2620 clocked at
3 GHz, endowed with 128 GiB DDR4-2133, and 64-bit Gentoo Linux17.0 OS. For
our experimental campaign, we built a C/C++ implementation of our PPSS protocol,
providing a cryptographic security level of at least λ = 80 bits. To implement the PIR-
related cryptographic operations, our implementation relies on both the multi-precision
integer arithmetic GMP library [66] and a proper parametrization of the DJ scheme
implementation provided by the LIBHCS library [150]. For the cell-wise encryption/de-
cryption of 〈D〉 = (〈AP 〉, 〈Suf 〉, 〈s〉), our implementation employs the AES-128 sym-
metric encryption algorithm with CTR mode available in the OPENSSL library [117]
(ver. 1.0.2r).

We chose as our case study a genomics dataset in the widely employed FASTA
format [38]; although this format may employ up to 20 characters to represent DNA
sequences, only 5 symbols are employed in our dataset, i.e.: Σ = {C,G,A, T,N}. Our
genomics dataset is a single document containing approximately 40 · 106 nucleotides
(characters) belonging to the 21st human chromosome selected from the ENSEMBL
publicly available data [59]. In the experiments, we considered documents with variable
sizes replicating and truncating the mentioned dataset appropriately. We considered
substring searches with a substring q having m = 6 characters, as it is the size of
many restriction enzyme sites (transcribed as m-character strings) that are commonly
employed in DNA-based paternity tests. Indeed, the test employs the distances between
the occurrences of one of the mentioned substrings in the DNA fragments of two hosts
to identify if the hosts are related [7].

For the construction of the ABWT AP in the implementation of our PPSS protocol,
we chose a sample period P that made the size of each entry approximately log(N)
bits wide, with N being the modulus chosen in the DJ LFAHE scheme employed in
Lipmaa’s PIR. In this way, we reduce the number of entries of the encrypted array 〈AP 〉
as much as possible without increasing the bandwidth, as the entry still fits in a single
ciphertext of the DJ LFAHE scheme. Lowering the number of entries is beneficial
for the performance of the Lipmaa’s PIR queries, as it allows to reduce the number

94

3.4. Experimental Evaluation of our PPSS Protocol

0 20 40

0

10

20

30

40

Radix b

C
lie

nt
C

os
t(

s)
Qnum

BATCHEDRETRIEVAL

0 20 40
0

2

4

6

8

Radix b
Se

rv
er

C
os

t(
m

in
)

Qnum

BATCHEDRETRIEVAL

0 20 40
10

20

30

40

50

Radix b

C
om

m
.C

os
t(

ki
B

)

Qnum

BATCHEDRETRIEVAL

Figure 3.2: Performance of our PPSS protocol as a function of the radix b employed in the PIR
algorithms. We consider the retrieval of the positions of the 248 occurrences of q = CTGCAG in a
genome with 500k nucleotides

of homomorphic operations in the PIR-SEARCH procedure. We employed a similar
optimization for the construction of the encrypted SA 〈Suf 〉, as we encrypted in a
single AES ciphertext of approximately log(N) bits as many entries as possible from
the SA Suf .

We start the discussion of the results of our experimental campaign with the per-
formance evaluation of the QUERY procedure. We evaluated separately the first phase
of the QUERY procedure, labeled as Qnum in Alg. 3.2, which computes the number
of occurrences of the searched substring, and the BATCHEDRETRIEVAL procedure re-
ported in Alg. 3.4, which retrieves the set of positions of the leading character of the
occurrences. We remark that the communication cost reported in our results refer to a
single round of communication. In Fig. 3.2, we show how the performance of the two
phases of the QUERY procedure are affected by the radix b employed in the Lipmaa’s
PIR algorithm. As expected, increasing values of b allows to significantly decrease
the computational cost on server side; conversely, the client and communication costs,
which include a factor O(b·poly(logb(n))) (see Sec. 1.5), increase with the values of b,
save for small values of b. The results suggest that the optimal value of b must be found
considering the overall response time of a query, and should be differentiated between
the Qnum phase and the BATCHEDRETRIEVAL procedure as bn and br, respectively.

In the next batch of tests, we considered a single-core implementation where we
employed the same value b = 20 for genomes of increasing size, to observe how the
performances are affected only by the size of the document collection. In addition,
we considered also a multi-core implementation of the PIR-SEARCH procedure of
the Lipmaa’s PIR protocol. Specifically, we employed a simple parallelization strat-
egy that hinges upon b cores to simultaneously compute all the b recursive calls of
Alg. 3.5. For these tests, we employed the optimal values bn and br for each document
size. In order to focus our analysis on the dependence between the performance met-
rics of our implementations and the size of the document collection, in these tests the
BATCHEDRETRIEVAL procedure retrieved a single occurrence: indeed, since the num-
ber of occurrences may increase proportionally to the size of the document collection,
the performance metrics would be affected also by the progressively higher number of
occurrences to be retrieved; we will separately evaluate in subsequent experiments the
dependence of these metrics on the number of occurrences retrieved by the client. The

95

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

0 20 40
0

10

20

Genome size (MiB)

C
lie

nt
C

os
t(

s)
Qnum b=20

Qnum bn opti

BATCHEDRETRIEVAL b=20

BATCHEDRETRIEVAL br opti

0 20 40

10−1

100

101

102

Genome size (MiB)

Se
rv

er
C

os
t(

m
in

)

Qnum 1 core

Qnum bn cores

BATCHEDRETRIEVAL 1 core

BATCHEDRETRIEVAL br cores

0 20 40

20

30

40

50

Genome size (MiB)

C
om

m
.C

os
t(

ki
B

)

Qnum b=20

Qnum bn opti

BATCHEDRETRIEVAL b=20

BATCHEDRETRIEVAL br opti

Figure 3.3: Performance of our PPSS protocol as a function of the genome document size to find one
occurrence of the substring q = CTGCAG. Considering each document size in increasing order,
the optimal values of radixes bn and br employed during the experiments are
{13, 17, 21, 26, 14, 17, 20, 21} and {27, 14, 17, 20, 24, 28, 17, 18}, respectively.

0 5 10 15

2

4

6

8

Occurrences ×103

C
lie

nt
C

os
t(

s)

0 5 10 15
52

53

54

55

56

Occurrences ×103

Se
rv

er
C

os
t(

m
in

)

0 10 20

100

200

300

400

Occurrences ×103

C
om

m
.C

os
t(

ki
B

)

Figure 3.4: Performance of BATCHEDRETRIEVAL procedure in our PPSS protocol as a function of the
number of occurrences retrieved by the client. We consider the retrieval of a subset of the 18168
occurrences of q = CTGCAG over the entire 21st human chromosome with a single core
implementation. The dashed red line represents the linear model
Comm.Cost = 17.65 ∗Occurrences + 54218 that fits the communication cost growth.

results of these tests are shown in Fig. 3.3. Regarding the server cost, we observe a lin-
ear trend in both the single-core (continuous lines in Fig. 3.3) and the multi-core imple-
mentations (dashed lines in Fig. 3.3); nevertheless, the multi-core implementation is at
least one order of magnitude faster than the single-core, achieving much more practical
performances (i.e., approximately 5 minutes to search for the substring q = CTGCAG
in a 40 · 106 characters document containing the whole chromosome).

The client and communication costs show the expected poly-logarithmic trend which
allows to exchange only few tens of kilobytes of data to search for the occurrences of
q = CTGCAG in the whole chromosome. Furthermore, in Fig. 3.3 the dashed lines
on plots reporting the client and communication costs show the benefits of employing
specific values bn and br tailored for the size of the document.

In Fig. 3.4, we report the evaluation of the performance metrics of our PPSS pro-
tocol for an increasing number of occurrences retrieved by the user issuing the query.
We observe that both the computational cost at client side and the communication one
increase linearly with the number of occurrences, which is expected as the client re-

96

3.4. Experimental Evaluation of our PPSS Protocol

0 100 200

0

20

40

60

80

100

Genome Size (MiB)

Se
tu

p
Ti

m
e

(s
)

Figure 3.5: Execution time of the SETUP
procedure for genomes of increasing size. The
blue line shows the fit between the linear
model given by
SetupTime = 0.4369 ∗GenomeSize −2.2
and the experimental data

0 5 10 15

0

0.5

1

1.5

2

Queries

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

32M 8M

2M 500k

Figure 3.6: Memory consumption of our PPSS
protocol when multiple simultaneous queries
are performed. Each line represent a genome
with a different size

ceives and decrypts each of these occurrences. Remarkably, the linear regression model
that fits the communication cost shows that each additional occurrence retrieved by the
client requires only 18 B of bandwidth. The results of our evaluation confirm that the
computational cost at server side is basically independent from the number of retrieved
occurrences. Indeed, the BATCHEDRETRIEVAL procedure shows approximately the
same execution time both to retrieve few occurrences and to retrieve all the 18168 oc-
currences of the string q = CTGCAG over the entire 21st chromosome.

Willing to compare the execution time of our PPSS protocol with the one of a base-
line solution with no security guarantees, we considered the backward-search procedure
outlined in Alg. 1.2, employing the ABWT-based algorithm to compute the RANK pro-
cedure. Specifically, we measured the response time of a query for a single occurrence
of the substring q = CTGCAG in the outsourced document. The result of this experi-
ment showed a response time for the backward-search equal to a few microseconds. We
remark that a significant portion of this overhead can be motivated by the computational
complexity of the QUERY procedure in our PPSS protocol, which depends linearly on
the size of the outsourced document; conversely, the computational complexity of the
backward-search method is unrelated to the size of the outsourced document in case of
querying for a single occurrence of q.

After extensively analyzing the QUERY procedure, we report in Fig. 3.5 the execu-
tion time for genomes of increasing size of the SETUP procedure in Alg. 3.1, which
builds the privacy-preserving representation 〈D〉 of the dataset. In this test we con-
sidered also the genomics data corresponding to the 1st human chromosome, which is
much bigger than the 21st one employed in all other tests. The experimental results
confirm the expected linear trend and they show practical performance for the SETUP
procedure: indeed, building the privacy-preserving representation of the 1st human

97

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

chromosome, which is as big as 238 MB, requires only 103 seconds.
Lastly, willing to verify the limited memory consumption when multiple-queries

are simultaneously performed, we run each query in a separate thread, measuring the
memory consumption of the process, as exposed by the process record in Linux’s proc
virtual filesystem. Figure 3.6 shows that as the number of simultaneous queries is
increased, the memory consumption increases keeping (roughly) the same rate for the
four dataset sizes considered. These results confirm the sublinear amount of additional
memory required by each simultaneous query and the substantial storage savings given
by our optimized PIR-SEARCH procedure over the naive strategy that replicates the
whole dataset per-query.

Evaluation of Queries with Wildcards

We also implemented the STARFREEQUERY and the QUERYPATTERN procedures,
with the aim of experimentally validating their correctness as well as evaluating their
performance. In our implementation of the STARFREEQUERY procedure, we relied
on the Perl Compatible Regular Expressions (PCRE) library [71] (ver. 10.35) for the
MATCHSHORTESTPREFIX procedure (line 21 in Alg. 3.6), which matches the portions
of the string s privately retrieved from the outsourced encrypted array 〈s〉 (line 19). In
particular, we employ the option PCRE_UNGREEDY to find the shortest match of a pat-
tern instead of the longest one, which is the default behavior of PCRE library. Similarly
to the construction of the outsourced suffix array, we packed in a single ciphertext of
O(log(N)) bits as many characters as possible from s, hence reducing as much as pos-
sible the number of entries of the array 〈s〉. In our evaluation, we employed a parallel
implementation of the PIR-SEARCH procedures on server side.

In the evaluation of STARFREEQUERY procedure, we considered the following
well-formed star-free pattern, which is decomposed according to Lemma 3.1 in three
wildcard-free substrings (highlighted in red) and 5 substrings containing wildcards
(highlighted in blue):

p = ?(GC |A|)GCCTATCG(G |TAC |??)([!CT]?|)TA?(TG |CGT |TA|[ACG][ATG])GTC (|?)

Such pattern allows to fully validate the capability of our privacy-preserving STAR-
FREEQUERY procedure, as it includes all the legit wildcards defined in our format
while reasonably representing the type of well-formed star-free patterns that may be
matched in our PPSS protocol. Indeed, this pattern matches substrings with length
ranging from 18 to 26 characters, with the longest matches including 50% of wildcard
characters. The issuing of queries with patterns that matches more than 50% of the
characters through wildcards is not representative of the usual application scenarios.

The computational costs of the STARFREEQUERY procedure for different dataset
sizes are reported in Fig. 3.7. In our evaluation, we split the computational and com-
munication costs according to the three most computationally intensive operations of
the STARFREEQUERY procedure: the computation of the number of occurrences of
each of the k wildcard-free substrings of the searched well-formed star-free pattern p,
performed with the k executions of the QUERYNUM procedure (line 10 in Alg. 3.6);
the batched retrieval of the omin occurrences of the wildcard-free substring with the
least number of occurrences (line 13), labeled as Batched Occ Retrieval in Fig. 3.7;
the batched retrieval of the portions of the string s where the occurrences of p can

98

3.4. Experimental Evaluation of our PPSS Protocol

0 10 20 30 40

0

0.5

1

Genome size (MiB)

Se
rv

er
C

os
t(

m
in

)

0 10 20 30 40
0

1

2

Genome size (MiB)

C
lie

nt
C

os
t(

s)

QUERYNUM procedure
Batched Occ Retrieval
Batched Text Retrieval

(a) Unitary costs

0 10 20 30 40

0

10

20

Genome size (MiB)

Se
rv

er
C

os
t(

m
in

)

0 10 20 30 40

0

20

40

Genome size (MiB)

C
lie

nt
C

os
t(

s)

QUERYNUM procedure
Batched Occ Retrieval
Batched Text Retrieval

(b) Overall costs

Figure 3.7: Computational costs of a multi-core implementation of STARFREEQUERY procedure of
our PPSS protocol as a function of the genome size. The tested query retrieves all the occurrences of
the well-formed star-free pattern p = ?(GC |A|)GCCTATCG(G |TAC |??)([!CT]?|)TA
?(TG |CGT |TA|[ACG][ATG])GTC (|?)

be found (line 19), labeled as Batched Text Retrieval in Fig. 3.7. Since the costs of
the QUERYNUM procedure depend on the number of characters of the k wildcard-free
substrings of the pattern p, and the costs of the Batched Text Retrieval depend on the
number omin of portions of s that must be retrieved, we report in Fig. 3.7(a) also the uni-
tary costs for both these operations; conversely, since the server cost of the Batched Occ
Retrieval is independent from the omin occurrences sent to the client, we do not report
its unitary cost. We observe that the costs of the Batched Text Retrieval are more than
halved w.r.t. the costs of the QUERYNUM procedure, which is mostly due to the smaller
size of the outsourced array 〈s〉 w.r.t. the encrypted array 〈AP 〉, in turn leading to faster
PIR queries. All the unitary costs show the expected linear and poly-logarithmic trends
in server and client costs, respectively.

The overall computational costs of the privacy-preserving query for the well-formed
star-free pattern p are reported in Fig. 3.7(b). From the experimental data, we observe
that the performance mostly depend on the costs for Batched Text Retrieval, which
grow linearly with the size of the dataset. In case of the client cost, the linear trend
is due to the increasing number omin of portions of s that must be retrieved: indeed,
the occurrences omin of the substring GCCTATCG (i.e., the wildcard-free one with
the least number of occurrences) vary from 1 to 41 with an increasing dataset size.
In case of the server cost, the linear trend is given by the growth of both the unitary

99

Chapter 3. Multi-User PPSS Protocol with Polylogarithmic Communication Cost

0 10 20 30 40

20

30

40

50

Genome size (MiB)

C
om

m
.C

os
t(

ki
B

)

QUERYNUM procedure
Batched Occ Retrieval
Batched Text Retrieval

Figure 3.8: Communication cost of the STARFREEQUERY procedure to retrieve all the occurrences of
the well-formed star-free pattern p = ?(GC |A|)GCCTATCG(G |TAC |??)([!CT]?|)TA
?(TG |CGT |TA|[ACG][ATG])GTC (|?)

cost and the number of retrievals, which grow linearly with the dataset size and omin,
respectively. The costs of the QUERYNUM and Batched Occ Retrieval are less affected
by the increasing number of occurrences, showing similar trends to the corresponding
operations performed in the evaluation of the QUERY procedure (Fig. 3.3).

Overall, we observe that the response time of our privacy-preserving pattern match-
ing queries over the biggest dataset (i.e., the entire chromosome), given by the sum of
the three components reported in Fig. 3.7(b), is about 35 minutes, which amounts to ap-
proximately four times the cost of the QUERY procedure for wildcard-free substrings.
This performance gap is mostly due to the dependence of the server cost on the num-
ber of occurrences omin, which is a non tight upper bound on the number of matches
of p, while we recall that the server cost of the QUERY procedure, when the batched
retrieval method is employed, is independent from the number of occurrences of the
string. Nonetheless, we remark that the observed performance gap is acceptable, given
the unprecedented expressiveness achieved by our privacy-preserving pattern matching
queries.

In addition, although not reported in the client cost of our pattern matching query,
we experimentally verified that identifying the occurrences of p in the portions of the
string s fetched from the outsourced array 〈s〉, which corresponds to lines 20– 24 in
Alg.3.6, has a negligible impact on client cost: indeed, this operation requires 180 µs
averaged over all the dataset sizes reported in Fig. 3.7, while the overall client cost is
on average about 30 seconds, hereby showing 5 order of magnitudes of difference.

Concerning the communication cost of our query, reported in Fig. 3.8, we observe
that it is roughly equivalent to the cost reported for the QUERY procedure in Fig. 3.3.
Indeed, also in case of STARFREEQUERY procedure the communication cost is mostly
due to the batched retrieval of the occurrences, as it fetches in a single round an amount
of data proportional to the number of occurrences omin. Aside from the non smooth be-
havior, which is given by the different number of recursive levels obtained by employ-
ing an optimal value of the radix b in the Lipmaa’s PIR protocol, the overall commu-
nication cost still exhibits the expected polylogarithmic trend, showing that our PPSS

100

3.4. Experimental Evaluation of our PPSS Protocol

protocol allows to increase the expressiveness of the queries while retaining approxi-
mately the same bandwidth.

Finally, we did not thoroughly evaluate the overall performance of the QUERYPAT-
TERN procedure, as it is rather obvious from its description in Alg. 3.7 that the compu-
tational and communication costs can be easily derived from the corresponding costs of
the k STARFREEQUERY procedures invoked at line 4. Conversely, we focused our eval-
uation on the estimation of the impact on the client cost of the QUERYPATTERN proce-
dure of the MATCHOCC procedure invoked at line 8 in Alg. 3.7, which computes the
occurrences of the well-formed pattern p = α1 ∗ · · · ∗ αk from the occurrences of the k
well-formed star-free patterns returned by the k STARFREEQUERY procedures. In our
evaluation, we employed the well-formed pattern p = GCAATC ∗ CTGAC ∗ TGAC ,
as we considered it as a good representative of the well-formed patterns that may be
searched by users of our PPSS protocol; indeed, since in general the ∗ wildcard does
not significantly restrict the number of matches of the well-formed star-free patterns
composing the matched well-formed pattern, we expect that users in our PPSS pro-
tocol would issue queries for patterns composed by infrequent well-formed star-free
patterns, in order to avoid an unnecessary blowup of the number of matched occur-
rences. Our evaluation revealed that the impact of MATCHOCC procedure is limited:
indeed, it requires only 3 s to compute the 7459 occurrences of the pattern p over the
entire chromosome, which is the biggest of our datasets, from the occurrences of the
patterns GCAATC, CTGAC, TGA, as opposed to the 71.5 s of overall client cost of the
three STARFREEQUERY procedures invoked to compute the occurrences of the patterns
GCAATC, CTGAC, TGA.

101

CHAPTER4
ObSQRE: Privacy-Preserving Substring Search

Protocol Based on Intel SGX
PLEASE, LET ME EXPLAIN!!

In this chapter, we describe ObSQRE, our PPSS protocol with optimal communication
cost based on Intel SGX technology. ObSQRE makes the information leakage coming
from SGX side channels useless for the adversary by employing a substring search al-
gorithm with data-independent control flow based on the backward search method (see
Sec. 1.4), and by relying on the privacy guarantees of a DORAM protocol to oblivi-
ously access its data structures. We structure the description of ObSQRE as follows.
First, we show how to build our PPSS protocol, relying on two components: an obliv-
ious substring search algorithm and a DORAM; then, we describe the design of these
components, providing our own doubly oblivious versions of Path, Ring and Circuit
ORAMs (Sec. 4.1), and two oblivious substring search algorithms based on the back-
ward search method (Sec. 4.2).

ObSQRE Overview

ObSQRE is a single-user PPSS protocol involving two entities: a data owner with
limited computational capabilities and an untrusted server equipped with Intel SGX
technology. We sketch the architecture of ObSQRE in Fig. 4.1. ObSQRE is composed
by two main modules: a simple application run at client side, which communicates with
the enclave to provide the data needed for substring search queries and to receive back
the results; an SGX based application, which actually executes substring search queries
inside an SGX enclave hosted on an untrusted server. The SGX application provides
the two main components of ObSQRE: an oblivious substring search algorithm that
employs the outsourced full-text index to efficiently perform substring search queries;
the client algorithms of a DORAM, which is employed to obliviously retrieve entries

103

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

SERVER

Full-text index

DORAM Tree

SGX Enclave
Oblivious
Substring
Search

DORAM
Client

Data Owner

Figure 4.1: Overview of the ObSQRE PPSS architecture

from the full-text index.
ObSQRE is composed by three procedures: SETUP, LOAD and QUERY. The first

one, executed by the data owner once as a pre-processing stage, computes the full-text
index from the document collection D. The index is encrypted with a semantically
secure symmetric cipher and outsourced with the encrypted documents to the untrusted
server. The integrity of the index is guaranteed by encrypting it with an Authenti-
cated Encryption with Authenticated Data (AEAD) scheme, such as Galois Counter
Mode (GCM), whose encryption procedure computes also a keyed digest that is veri-
fied upon decryption. Whenever the data owner is willing to perform queries, it asks
the untrusted server to instantiate the ObSQRE SGX enclave, employing the remote
attestation procedure, provided by SGX technology, to verify that the enclave has been
correctly instantiated with the proper code and data by the remote server and to es-
tablish a secure communication channel with the enclave. When enclave is running,
the LOAD procedure instantiates the DORAM data structures (both inside and outside
the enclave). Then, the enclave receives via secure channel the decryption key and the
digest for the full-text index from the data owner, decrypts the index, hereby verifying
also its integrity, and stores it in the DORAM. Once LOAD is over, the data owner can
submit queries to the enclave. In the QUERY procedure, the data owner sends through
the secure channel the substring q to be searched. Then, the oblivious substring search
algorithm runs inside the enclave, obliviously accessing the full-text index to compute
the positions of the occurrences of q over documents of D, which are sent back to the
data owner.

The privacy guarantees of ObSQRE follows from the security guarantees of SGX
applications and from the obliviousness of the algorithms run inside the enclave. Thus,
the main technical challenge in the design of ObSQRE lies in devising efficient con-
structions for the two main components of our solution, namely a DORAM protocol
and an oblivious substring search algorithm. In the following, we present the design
of three DORAMs, which are doubly oblivious versions of the ORAMs described in
Sec. 1.6, and two oblivious substring search algorithms based on the backward search
method, which are differentiated by the adoption of distinct oblivious algorithms for
the RANK procedure.

104

4.1. Doubly Oblivious RAMs

In all our constructions, we rely on these two simple operations: oblivious write
OBLWRITE and oblivious swap OBLSWAP. The former (resp. the latter), given three
input parameters cond , a and b, writes the content of b to a (resp. swaps the content of
b and a) if and only the boolean expression cond is true. To implement OBLWRITE,
we employ the x86_64 assembly instruction CMOVNZ, which moves the content of the
source operand to the destination one if the zero flag is not set. CMOVNZ is oblivious as
its operands are always loaded in the CPU and written back regardless of the status of
the flag. The OBLSWAP operation, given the input parameters cond , a, b, first computes
OBLWRITE(cond , tmp, a ⊕ b), where tmp is initially set to 0; then, it updates a and b
with a⊕ tmp and b⊕ tmp, respectively.

4.1 Doubly Oblivious RAMs

In ObSQRE, the ORAM client is executed inside the SGX enclave, therefore its mem-
ory access pattern is leaked through SGX side channels. This information is sufficient
to invalidate the privacy guarantees of the ORAMs described in Sec. 1.6: for instance,
if the adversary can observe which block is moved to the stash by the FINDBLOCK pro-
cedure in Ring and Circuit ORAMs, it can immediately learn the block requested by
the client. Therefore, to prevent this leakage, we make the client algorithms of the three
ORAMs described in Sec. 1.6 oblivious, obtaining three corresponding DORAMs. We
start our description with required modifications to the stash and the recursive position
map which apply to all our three DORAMs.

In all our DORAMs, the stash cannot have a dynamic size, lest the number of blocks
moved between the DORAM and the stash is leaked. Thus, in all our DORAMs the
stash has a fixed size S, and an overflow error occurs if the number of blocks in the
stash is higher than S. Empty entries in the stash are filled with dummy blocks. The
stash analysis of Path, Ring and Circuit ORAMs provide upper bounds for S making
the probability of overflows negligible. We observe that all these upper bounds are
independent from the number of blocks stored in the ORAM, thus the stash size S can
be neglected while evaluating the asymptotic complexity of our DORAMs.

If a recursive position map is employed, the ORAMs that store the position map
must be doubly oblivious too. Once a block from each of these DORAMs is fetched, the
client obliviously swaps each one of the C entries in the block with a memory location
dest, initialized with the new leaf id lid ′, actually performing the swap only for the
entry corresponding to the block to be retrieved from the next DORAM in the recursion.
Eventually, dest stores the id of the path to be fetched from the next DORAM, while
the corresponding entry in the block stores the updated id lid ′.

In addition, we enrich all our DORAMs with a mechanism to efficiently detect any
tampering (including replacement with old blocks) on any path fetched from the DO-
RAM, while storing in the enclave a single digest for the whole DORAM. Specifically,
we combine the DORAM tree with a Merkle tree, as proposed in [127] for Path ORAM;
however, we encrypt the buckets with an AEAD scheme to replace an unkeyed hash
computation for the digest of each bucket with a more efficient symmetric encryption
operation.

105

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

Path DORAM

We start with a description of the oblivious EVICTION procedure proposed in the Path
DORAM of ZeroTrace [135] and employed with minor modifications in all existing
works [4, 111]; then, we show the improvements introduced in our eviction strategy.
The EVICTION procedure of ZeroTrace, for each block of the stash (even dummy ones),
sweeps over the evicted path, which is initialized with dummy blocks, from the leaf to
the root bucket, obliviously swapping each block with the entry of the stash at hand;
the block of the stash is actually swapped with a dummy block found in the deepest
non-full bucket that can store the block at hand. The computational cost of ZeroTrace
EVICTION is thus O((S+log(M)·Z) log(M)·Z·B), since both the blocks of the stash
and the blocks of the path fetched by the FINDBLOCK procedure, which are appended
to the stash too, must be obliviously swapped with all the blocks in the evicted path.

In our Path DORAM, we modify this EVICTION procedure by introducing an opti-
mization, called in-place eviction, that allows to approximately halve its cost. Indeed,
instead of appending all the blocks of the evicted path to the stash and then evict them
as all other blocks in the stash, the client tries to push these blocks as down as possi-
ble in the path before performing stash eviction. This optimization allows to swap a
block in the path only with deeper buckets instead of swapping it with all the buckets
in the path. We remark that this optimization has no impact on the overflow probability
of the DORAM, as evictions always aim at moving blocks as down as possible in the
path, leaving free slots in higher buckets since they can store a large amount of the
DORAM blocks. Even with this optimization, our oblivious EVICTION still exhibits
an O(log(M)·Z) computational overhead with respect to the non oblivious EVICTION
of Path ORAM. To reduce the impact of this overhead over DORAM accesses, in our
Path DORAM we aim at making evictions less frequent. To make evictions unneces-
sary after each FINDBLOCK, as in Ring ORAM, we need to ensure that only one block
is appended to the stash for each access. We achieve this employing the FINDBLOCK
procedure of Circuit ORAM, which actually moves to the stash only the block bid , if
found in the fetched path, and writes back the fetched path to the tree, replacing the
block bid with a dummy one. We note that, although we add a write back operation
for each access, this strategy allows our Path DORAM to perform evictions every A>1
accesses; since a write back costs O(log(M)·Z·B), it is asymptotically faster than an
eviction, thus improving the performance of our Path DORAM. To choose which path
to evict, our Path DORAM employs the same deterministic schedule of Ring ORAM;
hence, as the stash is managed in the same fashion, the values of Z, S and A suggested
by authors of Ring ORAM [128] can be employed in our Path DORAM too.

Our oblivious FINDBLOCK procedure, reported in Alg. 4.1, starts by fetching the
path with id lid from the DORAM tree (line 1) and then it obliviously looks for the
block with id bid over the fetched path (lines 2-3). If the block is found, it is moved
to a variable dest and replaced by a dummy block in the fetched path (line 3), other-
wise neither dest nor the fetched path are updated. Then, the FINDBLOCK procedure
obliviously sweeps (lines 4-9) over the stash to either write to the stash the block bid ,
if found in the fetched path, or to search the block in the stash. In the former case, the
proper update of write flag (line 9) ensures that the block bid is written to the first
empty entry in the stash (line 7); in the latter case, the block bid found in the stash
is written to dest (line 6). In both cases, the leaf id of the block bid in the stash is

106

4.1. Doubly Oblivious RAMs

Algorithm 4.1: FINDBLOCK in Path/Circuit DORAMs
Input: bid : id of the block to be retrieved from the DORAM

lid : id of the path where block bid may be located
lid ′: id of the path where block bid will be evicted

Output: The block with id bid
Data: Stash: S blocks not evicted to the DORAM yet

1 Blks← READPATH(lid) , dest.bid← ⊥
2 foreach blk ∈ Blks do
3 OBLSWAP(blk.bid = bid , dest, blk)
4 write← dest.bid = bid
5 foreach blk ∈ Stash do
6 OBLWRITE(bid = blk.bid, dest, blk)
7 OBLWRITE(blk.bid = ⊥ ∧ write, blk, dest)
8 OBLWRITE(bid = blk.bid, blk.lid, lid ′)
9 write← write ∧ blk.bid 6= bid

10 WRITEPATH(Blks, lid)

11 return dest

Table 4.1: Format of the bucket metadata in Ring DORAM. Grayed-out fields must necessarily be
encrypted. M is the number of blocks in the ORAM, while Z (resp. D) denotes the maximum (resp.
minimum) number of real (resp. dummy) blocks per bucket

Field Bit width Size Description

IV λ 1 IV for bucket encryption
Bids log(M+1) Z+D Block ids of all blocks
Lids log(M+1) Z Leaf ids of real blocks

Invalid 1 Z+D Flags keeping track of invalid blocks
Cnt logD 1 Count accesses to bucket

updated to lid ′ (line 8). Finally, the FINDBLOCK procedure writes back the fetched
path to the DORAM tree (line 10). The computational cost of our oblivious FIND-
BLOCK is mostly due to the linear sweeps over the fetched path and the stash, whose
costs amount to O(log(M)·Z·B) and O(S·B), respectively; therefore, our oblivious
FINDBLOCK procedure exhibits the same cost of the non oblivious version, namely
O(log(M)·Z·B).

Ring DORAM

We start the description of our Ring DORAM by discussing the structure of the meta-
data of the buckets, reported in Tab. 4.1, which differs from the one of buckets in the
original Ring ORAM. We recall that Ring ORAM enriches each bucket with metadata
that are employed by the SELECTOFFSET procedure to choose, for each bucket, one
block to be retrieved from the ORAM tree. We observe that the major difference be-
tween the metadata employed in our Ring DORAM and the ones employed in Ring
ORAM, which are reported in Tab. 1.2, is the absence of the permutation Π that stores
the offsets of the real blocks in the bucket. Indeed, in our Ring DORAM we decide to
store also the block ids of the dummy blocks in the bucket, in turn making the informa-
tion found in Π redundant. This solution, although slightly increasing the size of the
bucket metadata (we save Z log(Z+D) bits for Π, but we add D log(M) bits for the
block ids of dummy blocks), allows to obliviously compute with a single sweep over

107

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

Algorithm 4.2: SELECTOFFSET in Ring DORAM
Input: bid : id of the block to be fetched from the ORAM

Meta: metadata of a bucket of the path where block bid may reside
Output: off: position in the bucket of the block with id bid , if found, otherwise the position of a

randomly chosen valid dummy
1 found← false, max← −1
2 for i ∈ {0, . . . , Z +D − 1} do
3 if ¬Meta.invalid[i] then
4 rnd

R← {0, . . . , 255}
5 max_dummy← Meta.bids[i]=⊥ ∧ rnd > max

6 sel← Meta.bids[i]=bid ∨ (max_dummy ∧ ¬found)
7 OBLWRITE(sel, off, i), OBLWRITE(max_dummy, max, rnd)
8 found← found ∨ Meta.bids[i] = bid

9 return off

the metadata the offset of the chosen block in the SELECTOFFSET procedure.
We now describe how to make the procedures of Ring ORAM oblivious, starting

with the SELECTOFFSET one, which is reported in Alg. 4.2. This procedure iterates
over all the blocks in the bucket, skipping invalid ones (line 3) as they cannot be chosen.
Note that there is no need to hide which blocks are skipped, as the adversary can easily
know which blocks are invalid by logging blocks chosen in previous accesses to the
bucket at hand. For each valid block, a number rnd is uniformly sampled from a fixed
domain (e.g., {0, . . . , 255} in line 4) and the offset of the valid block is obliviously
written to the variable off (line 7). The update of max_dummy (line 5), sel (line 6) and
found (line 8) flags ensures that eventually the variable off stores either the position
in the bucket of the block with id bid , if found in the bucket, or the position of the
valid dummy block with the highest random number among the ones sampled for all
the dummy valid blocks, otherwise. As all these numbers are sampled from the same
distribution, each one of them has the same probability of being the highest, thus this
method chooses uniformly at random a block among the dummy valid ones without
revealing which blocks are dummies.

In the oblivious EARLYRESHUFFLE procedure, Z blocks have to be randomly placed
over Z+D slots of a bucket. To this end, the i-th block, 1≤i≤Z, is obliviously
written in the off -th free slot of the bucket, where off is uniformly sampled from
{1, . . . , Z+D−i+1}; the block and leaf ids in the bucket metadata are updated ac-
cordingly. Since the bucket is initialized with all dummy blocks, after Z sweeps, each
writing one block, D slots of the bucket certainly contain a dummy block. As this
strategy requires Z linear sweeps over a bucket with Z+D slots, EARLYRESHUFFLE
costs O(Z·(Z+D)·B) per bucket. We show in Appendix 4 that this strategy ensures
that each block is placed with uniform probability over all the Z+D slots of the bucket.

In the oblivious FINDBLOCK procedure, reported in Alg. 4.3, first the metadata for
all the buckets along the path with id lid are fetched (line 1). Then, the procedure iter-
ates over the metadata to choose one block per bucket to be retrieved from the server
(lines 2-5). The offset of the chosen block in the bucket, obliviously computed by the
SELECTOFFSET procedure (line 3), is appended to the set Offsets (line 4). Further-
more, the bucket metadata are updated by marking the chosen block as invalid and
by increasing the number of accesses to the bucket (line 5). Subsequently, the algo-

108

4.1. Doubly Oblivious RAMs

Algorithm 4.3: FINDBLOCK in Ring DORAM
Input: bid : id of the block to be retrieved from the DORAM

lid : id of the path where block bid may be located
lid ′: id of the path where block bid will be evicted

Output: the block with id bid
Data: Stash: S real/dummy blocks not evicted to the DORAM yet

1 Metadata← FETCHBUCKETSMETADATA(lid), Offsets← ∅
2 foreach Meta ∈ Metadata do
3 off← SELECTOFFSET(bid , Meta)
4 Offsets← Offsets ∪ {off}
5 Meta.invalid[off]← true, Meta.cnt + +

6 Blks← FETCHBLOCKS(lid , Offsets), dest.bid← ⊥
7 foreach blk ∈ Blks do
8 OBLSWAP(blk.bid = bid , dest, blk)
9 write← dest.bid = bid

10 foreach blk ∈ Stash do
11 OBLWRITE(bid = blk.bid, dest, blk)
12 OBLWRITE(blk.bid = ⊥ ∧ write, blk, dest)
13 OBLWRITE(bid = blk.bid, blk.lid, lid ′)
14 write← write ∧ blk.bid 6= bid

15 foreach i← 0 to log(M+1
2

)−1 do
16 if Metadata[i].cnt ≥ D then
17 Blks← FETCHVALIDBLOCKSINBUCKET(lid , i)
18 Bucket← EARLYRESHUFFLE(Blks, Metadata[i])
19 WRITEBUCKET(lid , i, bucket)

20 WRITEMETADATA(lid , Metadata)
21 return dest

rithm employs the offsets found in Offsets to fetch from the path lid in the DORAM
tree the O(log(M)) blocks chosen by the SELECTOFFSET procedure (line 6). Then,
the client obliviously searches the block with id bid through a linear sweep over the
fetched blocks (lines 7-8). The algorithm proceeds by iterating over the stash (lines 9-
14) to either insert the block retrieved from the server (line 12) or locate the block with
id bid in the stash, in case it was not found in the path with id lid (line 11). After-
wards, the FINDBLOCK procedure, for each bucket, invokes, if necessary (line 16), the
EARLYRESHUFFLE procedure (line 18), fetching the Z valid blocks left in the bucket
from the DORAM tree (line 17) and writing the whole bucket back after the reshuffle
(line 19). Lastly, the FINDBLOCK procedure writes back the updated metadata to the
DORAM tree (line 20). The computation cost of the FINDBLOCK procedure is mostly
due to the linear sweep over the fetched blocks and the stash, as we neglect the cost
of processing the bucket metadata because of their small size compared to a whole
bucket. Therefore, our oblivious FINDBLOCK procedure exhibits the same cost of the
non oblivious version, namely O(log(M)·B).

The EVICTION procedure follows the blueprint of the oblivious one described in
Path DORAM. Indeed, although buckets in Ring DORAM has Z+D slots, at most Z
of them may be filled with real blocks; hence, buckets with Z slots can be employed
during evictions, as in Path DORAM. At the end of the EVICTION, the EARLYRESHUF-
FLE procedure is invoked to randomly place each of the Z evicted blocks in a bucket
with Z+D slots, which is written back to the DORAM tree after re-encryption. As in
Path DORAM, EVICTION is split in two phases: in-place and stash eviction. While the
latter works exactly as in Path DORAM, in the former, for each bucket, only the R≤Z

109

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

Algorithm 4.4: EVICTION in Circuit DORAM
Input: Path: path to be evicted

lid : id of Path
Data: Stash: S real/dummy blocks not evicted to the DORAM yet

1 dest← COMPUTEDESTINATIONS(Path, lid)
2 max_depth← −1, target← dest[0], hold.bid = ⊥
3 foreach blk ∈ Stash do
4 depth← MAXDEPTH(blk.lid, lid)
5 OBLSWAP(dest[0] 6=⊥∧depth>max_depth, hold, blk)
6 OBLWRITE(depth > max_depth, max_depth, depth)

7 for i← 0 to log(N+1)−2 do
8 max_depth← i, deeper_bucket← (target6=i ∧ target6=⊥)
9 foreach blk ∈ Path[i] do

10 depth← MAXDEPTH(blk.lid, lid)
11 swap← (dest[i+1]6=⊥ ∧ depth>max_depth) ∨ (dest[i+1]=⊥∧blk.bid=⊥)
12 OBLSWAP(swap ∧ ¬deeper_bucket, hold, blk)
13 OBLWRITE(depth>max_depth, max_depth, depth)

14 OBLWRITE(¬deeper_bucket, target, dest[i+1])

valid real blocks must be evicted, while all the other Z+D−R blocks can be discarded,
as they are either dummies or invalid real blocks. To avoid leaking R to the adver-
sary, during in-place eviction the client has to always choose Z blocks for each bucket.
In particular, for each bucket, the client must choose Z blocks out of the V≥Z valid
blocks: R real valid blocks and Z−R blocks among the V−R dummy valid blocks. To
this extent, we employ the Knuth’s algorithm reported in [88, pag. 142], which chooses
uniformly at random k elements out of h ones, with k≤h; this algorithm can be triv-
ially made oblivious by relying on oblivious write/swap primitives while retaining O(h)
computational complexity. Once the offsets of the Z blocks are computed, they are
obliviously fetched from the bucket with Z linear sweeps and evicted in deeper buckets.
The computational cost of in-place eviction amounts to O(log(M)·Z(log(M)·Z·B +
(Z+D)B)) = O(log2(M)·Z2·B), as log(M)·Z blocks must be fetched from their
bucket with a linear sweep, which costs O((Z+D)B), and obliviously swapped with all
the blocks found in deeper buckets. Therefore, the overall computational cost of EVIC-
TION procedure is O(log(M)·B·Z(log(M)·Z+S+Z+D)) = O(log2(M)·Z2·B), which
is the sum of the costs of in-place eviction, stash eviction and EARLYRESHUFFLE for
all the buckets along the evicted path, respectively; this cost is amortized over A≥1
DORAM accesses.

Circuit DORAM

The simplicity of the client in Circuit ORAM makes its oblivious design the easiest one
among our three DORAMs. The FINDBLOCK procedure in our Circuit DORAM is
equivalent to our Path DORAM, reported in Alg. 4.1. Conversely, the EVICTION pro-
cedure of Circuit ORAM significantly differs from the one of Path and Ring ORAMs.
Specifically, the non-oblivious eviction involves two sweeps over the metadata of the
evicted path and a single sweep over the evicted path. In the oblivious EVICTION pro-
cedure, reported in Alg. 4.4, the two sweeps over the metadata are performed by the
COMPUTEDESTINATIONS procedure (line 1), which computes, for the stash and for
each bucket in the evicted path, the additional metadata dest. We recall that these meta-

110

4.2. Oblivious Substring Search Algorithms

Table 4.2: Client-side asymptotic computational costs

FINDBLOCK EVICTION
ORAM our DORAM ORAM our DORAM

Path O(log(N)·Z·B) O(log(N)·Z·B) O(B·log(N)·Z) O(log2(N)·Z2·B
A)

Ring O(log(N)·B) O(log(N)·B) O(B·log(N)·Z
A) O(log2(N)·Z2·B

A)

Circuit O(log(N)·Z·B) O(log(N)·Z·B) O(log(N)·Z·B) O(log(N)·Z·B)

data specify how the blocks must be moved among buckets in the subsequent sweep
over the evicted path (see Sec. 1.6); specifically, for each i ∈ {0, . . . , log(M+1)−1}
(dest[0] refers to the stash), dest[i] stores the bucket where the block of the i-th bucket
that can go deepest in the path must be moved, while dest[i]=⊥ if no block from the
the i-th bucket must be moved down in the path. To avoid leaking these metadata
while computing them, COMPUTEDESTINATIONS procedure employs oblivious writes
to remove conditional dependent updates to these metadata. During the sweep over the
evicted path (lines 2-14), at most one block, stored in hold, is simultaneously moved
down along this path; the variable target stores the destination bucket of such block.
Throughout the sweep over the evicted path, a procedure MAXDEPTH is employed to
compute the deepest bucket of the path that can store a given block by hinging upon the
leaf id of the block at hand and the id of the evicted path. First, the block in the stash
that can go deepest in the path is obliviously moved to hold through a linear sweep
of the stash (lines 3-6). Then, this block is moved to its destination bucket, where it
is swapped (line 12) with either a dummy block, in case no block in the destination
bucket must be moved down (i.e., if dest[i+1]=⊥ in line 11), or with the block in the
destination bucket than can go deepest in the path (lines 11, 13). The computational
cost of oblivious EVICTION is O(B·(S+log(M)·Z)) = O(B·log(M)·Z), given by the
linear sweeps over the stash and the evicted path, respectively.

To conclude the description of our DORAMs, we summarize the computational
costs of their oblivious client algorithms in Tab. 4.2. We observe that Circuit DORAM
is asymptotically faster than Ring and Path DORAMs; nonetheless, as 3 paths have to
be fetched and written back for each DORAM access, a performance gain may be ob-
served only for DORAMs with a significant number of blocks. Instead, Ring DORAM
saves a factor of Z in the computational cost of the FINDBLOCK procedure; nonethe-
less, its oblivious algorithms involve cumbersome operations, which may increase the
actual response time of DORAM accesses.

4.2 Oblivious Substring Search Algorithms

We now present two oblivious substring search algorithms based on the backward
search method, which are safely executed inside the SGX enclave. These algorithms
differ in the strategy employed to compute the RANK procedure (see Def. 1.7), which
is a fundamental building block of backward search. We first describe these two obliv-
ious algorithm for the RANK procedure, and then we show how to obtain an oblivious
backward search algorithm by hinging upon either of these procedures.

111

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

Oblivious RANK with Augmented BWT Full-Text Index

Similarly to our multi-user PPSS protocol described in Chapter 3, this algorithm em-
ploys the ABWT full-text index to compute the RANK procedure. We recall that, for a
string s ∈ Σn, the ABWT AP , with sample period P , is an array with dn+1

P
e entries,

each containing a pair of elements (rank , l); for the i-th entry of AP , AP [i].rank is a
dictionary of |Σ| entries that binds to a character c∈Σ the value RANK(c, i·P−1), while
AP [i].l is a string of P characters, namely the substring L[i·P, . . . , (i+1)·P−1] of the
BWT L. The value RANK(c, i), c∈Σ, i∈{0, . . . , n}, is computed from the j=b i

P
c-th

entry ofAP as the sum ofAP [j].rank [c] and the number of occurrences of character c in
AP [j].l[0, . . . , i mod P]. In the oblivious implementation of RANK procedure, reported

Algorithm 4.5: Oblivious RANK procedure based on ABWT for a string s ∈ Σn with BWT L
Input: c: character of the alphabet Σ

i: integer in {0, . . . , n+1}
Output: ctr: number of occurrences of c in L[0, . . . , i]
Data: DORAM: DORAM storing the ABWT AP with sample period P

1 Entry← DORAM.ACCESS(b i
P
c)

2 foreach char ∈ Σ do
3 OBLWRITE(c = char, ctr, Entry.rank [char])
4 for j← 0 to P − 1 do
5 OBLWRITE(Entry.l[j] = c ∧ j ≤ i mod P, ctr, ctr + 1)

6 return ctr

in Alg. 4.5, the ABWT is stored inside a DORAM; the algorithm first fetches the block
storing the h=b i

P
c-th entry of AP (line 1); then, ctr is obliviously set to AP [h].rank [c]

through a linear sweep over the entries of AP [h].rank (lines 2-3); lastly, the algorithm
sweeps over the string AP [h].l, obliviously increasing by 1 ctr whenever a character
among the first i mod P+1 ones equals c (lines 4-5). If a Circuit DORAM is employed
to store the ABWT AP , each access to an entry of AP costs O(C·log2(n)·Z·B), where
C is the recursive factor employed to build the recursive position map of the DORAM;
this cost becomes O(C·log3(n)·Z2·B) in case Path or Ring DORAMs are employed to
store AP , as each EVICTION costs O(log2(n)·Z2·B) instead of O(log(n)·Z·B). Given
that B = O(|Σ| log(n)+P log(|Σ|)) (i.e., the size of an entry of the ABWT AP) and
Z, C, |Σ| and P are small constants, our ABWT based oblivious RANK procedure has
O(log3(n)) computational cost when Circuit DORAM is employed to store the ABWT
AP .

Oblivious RANK with Binary Search BWT Full-Text Index

In the Binary Search BWT (BSBWT) method, instead of the ABWT array AP , we em-
ploy a balanced BST as a full-text index constructed from the BWT L of a string s ∈
Σn. To build this index, we employ an enumeration Enum of characters c∈Σ. For each
j∈{0, . . . , n}, we create a node in the BST as a key-value pair (Enum(s[j])·(n+1) +
posL(s[j]), RANK(s[j], posL(s[j]))), where posL(s[j]) denotes the position in the BWT
L of the character s[j]. Once the BST is built, RANK(c, i), c∈Σ, i∈{0, . . . , n}, can be
computed by looking-up the node with key k=Enum(c)·(n+ 1)+i in the balanced BST,
as outlined in Alg. 4.6. If the node is found (line 3), then RANK(c, i) equals the value
stored in this node by construction of the BST (line 4). Otherwise, the last node ex-

112

4.2. Oblivious Substring Search Algorithms

Algorithm 4.6: Non-oblivious RANK procedure with balanced BST for a string s ∈ Σn with
BWT L

Input: c: character of the alphabet Σ
i: integer in {0, . . . , n+1}

Output: RANK(c, i): number of occurrences of c in L[0, . . . , i]
Data: BST: balanced Binary Search Tree (BST) constructed from the string s

Enum: enumeration of characters in Σ
Occ: dictionary binding a char c∈Σ to RankL(c, n)

1 node← BST.root, k← Enum(c)·(n+ 1)+i

2 while node 6= ⊥ do
3 if node.key = k then
4 return node.value
5 go_left← 0, parent← node, node← node.right
6 if node.key < k then
7 go_left← 1, node← node.left

8 if parent.key<Enum(c)·(n+1)∨parent.key≥(Enum(c)+1)·(n+1) then
9 return Occ(c)·go_left

10 return parent.value− go_left

plored is either the predecessor (if go_left=0) or the successor (if go_left=1) of the
node with key k. Since Enum(c)·(n+1) is added to the key of each node in the construc-
tion of the BST, then all the nodes referring to occurrences of the same character c have
consecutive keys; as a consequence, the predecessor node corresponds to the last occur-
rence of c in L[0, . . . , i], while the successor node corresponds to first occurrence of c in
L[i+1, . . . , n]. Thus, in case the look-up of a node with key k=Enum(c)·(n+1)+i ends
up in the predecessor of such node, then RANK(c, i) equals the value of the predeces-
sor node, while if the look-up ends up in the successor of the node with key k, then the
value of the successor node must be decremented by 1 to obtain RANK(c, i) (line 10).
In case there is no occurrence of c in L[0, . . . , i] (resp. L[i+1, . . . , n]), the predecessor
(resp. successor) node refers to an occurrence of a character c′ 6=c, as checked in line 8;
thus, RANK(c, i) equals 0 (resp. the number of occurrences of c in L), as returned in
line 9.

To make this algorithm oblivious, each of the O(log(n)) nodes visited in the search
path of the tree should be accessed with a DORAM. In particular, we rely on the Obliv-
ious Data Structure (ODS) [157] framework to obliviously access nodes in the BST.
ODS relies on the fact that each node of a BST can be reached only from another node,
i.e., its parent in the tree, to store the position map entries inside ORAM blocks. Specif-
ically, each node of the BST stores the ids of the paths of the ORAM tree containing
the blocks that store the children of the node at hand. Therefore, to access any node of
the BST, the client only needs to store the root node: from this one, the client chooses
to fetch one of its two children, employing the corresponding leaf id stored in the root
node. This procedure is repeated to visit the entire path of the BST. In this way, the
look-up of a node in a BST with n nodes stored inside an ODS requires O(log(n)) di-
rect (i.e., with no recursive position map) accesses, one for each level of the BST, to the
DORAM. In our ODS, we roughly halve the look-up cost by applying a trick proposed
by Gentry [62]: instead of storing all the nodes of the BST in the same DORAM, a
distinct DORAM is employed for each level of the BST. In this way, the access to each
level becomes faster, as it is performed over smaller DORAMs.

Employing distinct Circuit DORAMs (resp. Path or Ring DORAMs) to store each

113

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

level of the BST allows to compute the oblivious RANK procedure with O(log2(n)·Z·B)
(resp. O(log3(n)·Z2·B)) computational cost. Since B=O(log(n)) and Z=O(1), the
BSBWT based oblivious RANK procedure has the same O(log3(n)) computational cost
of the ABWT one; nonetheless, the BSBWT method accesses log2(n) DORAMs with
small blocks instead of logC(n) DORAMs with large blocks accessed in the ABWT
method, in turn allowing different implementation tirade’s.

Oblivious Backward Search

We now show how to obtain an oblivious substring search algorithm based on the back-
ward search method, by hinging upon one of the two oblivious RANK procedures we
have just described. First of all, we observe that the control flow of Alg. 1.2 depends
only on the length m of the searched substring and on the number oq = β−α of its
occurrences. To avoid this dependence, we should always perform the same number
of iterations in all the queries; thus, such number necessarily corresponds to an upper
bound on the length of the searched substring and on its number of occurrences. Since a
reasonable upper bound is at least proportional to n, then this strategy would introduce
a significant performance slowdown; thus, to retain practical performance, in our PPSS
protocol we decide to keep the control flow unmodified, at the cost of leaking both m
and oq to the adversary, deeming this information leakage as acceptable.

Therefore, to make the backward search method oblivious, we just need to make ac-
cesses to its data structures oblivious. In particular, our algorithm, besides employing
an oblivious RANK procedure, must obliviously access both the dictionary Count and
the SA Suf : indeed, the entries fetched from the former would leak the characters of q,
while the entries retrieved from the SA would leak the values α and β, which are related
to both the string s and the substring q. To prevent such information leakages, Suf is
stored inside a DORAM, while Count (with its |Σ| entries) is stored inside the enclave
and each search over it is (obliviously) performed through a linear sweep. These im-
plementation choices together with each of the proposed oblivious RANK procedures
yield two substring search algorithms with computational cost O((m+oq) log3(n)).

4.3 Security Analysis of ObSQRE

We now discuss and formally define the security guarantees of ObSQRE, which are
based on the confidentiality and integrity guarantees given by Intel SGX and on the
access pattern privacy given by our DORAMs. Similarly to the security analysis of our
multi-user PPSS protocol, reported in Sec. 3.3, we employ security definitions based on
the simulation paradigm, which allows to precisely frame the information leakage L of
a privacy-preserving protocol by showing that the execution of the protocol can be sim-
ulated by a simulator S employing all and only the information found in L. Nonethe-
less, despite relying on the same framework employed in Sec. 3.3 for our multi-user
PPSS protocol, we need to introduce a different security definition for ObSQRE, since
we consider a different threat model. Indeed, while the security definition employed in
our multi-user PPSS protocol (see Def. 3.6) withstands only semi-honest adversaries,
who do not misbehave in the protocol but are willing to learn as much information
as possible, ObSQRE is able to guarantee a limited information leakage and the cor-
rectness of the PPSS protocol even against malicious adversaries, who may arbitrarily

114

4.3. Security Analysis of ObSQRE

deviate from the protocol specification in order to gain some additional information.
More concretely, in our threat model we assume a powerful adversary that has total
control of the machine hosting the SGX enclave. Thus, thanks to the security guaran-
tees of SGX, the attacker has no direct access to the data stored inside the enclave and
it cannot interfere with the computation performed within the enclave; nonetheless, it
has access to every data outside the enclave and may tamper with the computation per-
formed outside the enclave. Furthermore, the adversary can learn the memory access
pattern of algorithms run inside the enclave through side channel attacks.

Since the security guarantees of ObSQRE are based on the privacy guarantees of
our DORAMs, we perform our security analysis in two main steps: first, we define and
prove the access pattern privacy guarantees of our DORAMs; then, we define and prove
the security guarantees of ObSQRE assuming that a secure DORAM is employed.

DORAM Security Analysis

We assume that the DORAM stores a dataset D split in M blocks, each of size B
bits. In our security definition, besides the ACCESS procedure that we have already
described, we consider also an INIT procedure, which is employed to build the DORAM
tree and insert the M blocks of D in the DORAM: specifically, for each block to be
inserted, the algorithm obliviously adds to the stash the block at hand and then evicts
the stash to the DORAM tree following the eviction strategy of the DORAM. In order
to properly construct the DORAM tree, the INIT procedure employs several parameters
specified by the user: the recursive factor C to build the recursive position map, the
maximum number of real blocks per bucket Z, the stash size S, the number of dummy
blocks per buckets D and the eviction period A. The security guarantees of a DORAM
are not weakened if the adversary knows these values, since they depend only on the
number of blocks of the DORAM; thus, to simplify our security analysis we assume
that the INIT procedure always employs the same values for these parameters. Since
our DORAMs employs an integrity-check mechanism based on Merkle-trees, both the
INIT and ACCESS procedures may return the special value abort in case they detect
data tampering on the DORAM.

As in the security analysis of our multi-user PPSS protocol, we specify the trace T ,
that is the the information directly observed by the adversary while interacting with the
DORAM, and the leakage L, which corresponds to the information about the dataset
and the accessed blocks that is inferred by the adversary from the trace T .

Definition 4.1 (Trace and Leakage of DORAM). Given a DORAM whose client runs
inside an SGX enclave and whose DORAM tree is stored in the unprotected memory, the
trace of the DORAM is T = {CodeAP , DataAP , DataSrv}, with CodeAP and DataAP
denoting the code and data access patterns of the DORAM client, respectively, while
DataSrv denotes the information sent by the DORAM client outside the enclave. The
leakage L of the DORAM denotes the information inferred by the adversary from the
trace T about the dataset D and the set of blocks accessed by the DORAM.

In our security definition, we split the trace in two components TInit and TAcc, which
refer to the trace of the INIT and the ACCESS procedures, respectively. Similarly, we
split the leakage L in two components LInit and LAcc that represent the information
inferred by the adversary from TInit and TAcc, respectively.

115

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

Experiment transcript ← Realρ,A(λ):
(D, stA)← AInit(1λ)
res0 ← ρ.INIT({Di}ni=1)
∀i ∈ {1, . . . , d}:

(bidi, stA)←AAcc,i(stA, D, {bidj}i−1j=1,LInit, {LAcc,j}
i−1
j=1, TInit, {TAcc,j}

i−1
j=1)

resi ← ρ.ACCESS(bidi)
transcript ← {{resi}di=0, {TAcc,i}di=1, TInit, stA}

Experiment transcript ← Idealρ,A,S(λ):
(D, stA)← AInit(1λ)
(DS , stS)← SInit(LInit)
res0 ← ρ.INIT({DSi }ni=1)
∀i ∈ {1, . . . , d}:

(bidi, stA)←AAcc,i(stA, D, {bidj}i−1j=1,LInit, {LAcc,j}
i−1
j=1, TInit, {TAcc,j}

i−1
j=1)

(bidSi , stS)← SAcc,i(stS ,LInit, {LAcc,j}ij=1)
resi ← ρ.ACCESS(bidSi)
if resi 6= abort: resi ← Dbidi

transcript ← {{resi}di=0, {TAcc,i}di=1, TInit, stA}

Figure 4.2: Security experiments for DORAM protocol ρ

Definition 4.2 (DORAM Security). Given a security parameter λ, an integer d ≥ 1,
and a DORAM ρ with trace T = {TInit, TAcc,1, . . . , TAcc,d} and leakage L = {LInit,
LAcc,1, . . . ,LAcc,d} as in Def. 4.1, consider the two interactive experiments Realρ,A and
Idealρ,A,S , outlined in Fig. 4.2, between a challenger and an adversary A consisting
of d+1 probabilistic polynomial time algorithms, i.e., A={AInit,AAcc,1, . . . ,AAcc,d}.
Throughout the experiments, the challenger may invoke the DORAM ρ and a simulator
S consisting of d+1 probabilistic polynomial time algorithms, i.e., S = {SInit,SAcc,1,
. . . ,SAcc,d}; the adversary A can tamper with data and computation of the DORAM
as described in our threat model. Denoting as D a probabilistic polynomial time al-
gorithm that, given the transcript o of an experiment, determines if o refers to Realρ,A
(D(o) = 0) or Idealρ,A,S (D(o) = 1) experiment, the DORAM ρ, with leakage L and
trace T , is secure against malicious probabilistic polynomial time adversariesA if, for
every possible A, there exists a simulator S such that for every D:

Pr(D(o) = 1|o← Realρ,A)− Pr(D(o) = 1|o← Idealρ,A,S) ≤ ε(λ)

where ε(·) is a negligible function.

In short, our security definition is satisfied if the transcripts of the two experiments
outlined in Fig. 4.2 are computationally indistinguishable. This property is sufficient to
prove these two security guarantees:

• The DORAM ρ leaks to any malicious adversary no more information than the
leakage L

• The DORAM client can detect any misbehavior of the malicious adversary that
affects the result of the computation, in turn ensuring the correctness of the com-
putation against any malicious adversary

The first guarantee stems from the indistinguishability between the trace T of the DO-
RAM and the state stA of the adversary found in the transcripts of the two experiments.

116

4.3. Security Analysis of ObSQRE

Indeed, the trace of the DORAM T and the state stA available to the adversary at the
end of the Idealρ,A,S experiment depends on the fake input data (DS , {bidSi }di=1) con-
structed by the simulator S. Since S constructs the fake input data by knowing only the
leakage L provided by the challenger, no more information than L about the actual data
can be inferred by the adversary from the operations observed over fake data. Since the
trace T and the state stA are computationally indistinguishable between the Realρ,A
and Idealρ,A,S experiments, then the trace T and the state stA available to the adver-
sary in the Realρ,A experiment cannot reveal more information than L about the actual
data.

The correctness of the computation stems from the indistinguishability between the
outputs of the d+1 operations found in the transcripts of the two experiments. Indeed,
in the Idealρ,A,S experiment, the challenger ensures that the result of the computa-
tion is always the correct one, unless the DORAM ρ has detected a misbehavior of
the adversary. Thus, in case there exists a misbehavior of the adversary affecting the
correctness of the result that is not detected by the DORAM, the result would be cor-
rect in the Idealρ,A,S experiment but wrong in the Realρ,A one, hence making them
distinguishable.

Our DORAMs provides the security guarantees given by Def. 4.2 for the information
leakage L reported in the following statement:

Theorem 4.1. Our DORAMs meet the security guarantees of Def. 4.2 against a mali-
cious adversary with leakage L = {LInit,LAcc,1, . . . ,LAcc,d}, where LInit = {M,B}
and LAcc,i = ∅, i = 1, . . . , d.

The proof of this theorem is found in Appendix 3.1. Informally, the privacy guar-
antees of our DORAMs stem from these two factors: the privacy guarantees of the
original ORAMs schemes, which ensure that the access pattern observed over the DO-
RAM tree reveals nothing about the blocks retrieved by the ACCESS procedure; the
obliviousness of the client algorithms of our DORAMs, which is given by their control
flow and memory access patterns being independent from the blocks retrieved by the
ACCESS procedure. Furthermore, the correctness of the DORAM operations performed
inside the enclave is ensured by the security guarantees of SGX, which prevent the ad-
versary from tampering with any data or code stored in the enclave; the only operation
performed outside the enclave is the fetch of the data from the DORAM tree, whose
authenticity is ensured by the integrity-protection mechanism added to the DORAM
tree.

ObSQRE Security Analysis

We now prove the security guarantees of ObSQRE, assuming that a DORAM fulfilling
the security requirements of Thm. 4.1 is employed in our oblivious substring search
algorithms. Some of these algorithms may employ several parameters, such as the
sample period employed in the construction of the ABWT; since these parameters are
not sensitive and can be derived by the adversary itself (e.g., from the block size of
the DORAM storing the ABWT), for simplicity in our security analysis we assume
that the same value is always employed. Similarly, we assume that the alphabet of the
documents in the document collection D is publicly known.

117

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

Experiment transcript ← RealP,A(λ):
(D, stA)← A0(1λ)
I ← P.SETUP(D)
res0 ← P.LOAD(I)
∀i ∈ {1, . . . , d}:

(qi, occi, stA)←Ai(stA,D, {qj}i−1j=1, {occj}
i−1
j=1,LSetup,LLoad, {LQuery,j}

i−1
j=1,

TSetup, TLoad, {TQuery,j}i−1j=1)

resi ← P.QUERY(qi, occi)
transcript ← {{resi}di=0, {TQuery,i}di=1, TSetup, TLoad, stA}

Experiment transcript ← IdealP,A,S(λ):
(D, stA)← A0(1λ)
(IS , stS)← S0(LSetup,LLoad)
res0 ← P.LOAD(IS)
∀i ∈ {1, . . . , d}:

(qi, occi, stA)← Ai(stA,D, {qj}i−1j=1, {occj}
i−1
j=1,LSetup,LLoad, {LQuery,j}

i−1
j=1,

TSetup, TLoad, {TQuery,j}i−1j=1)

(qSi , occ
S
i , stS)← Si(stS ,LSetup,LLoad, {LQuery,j}ij=1)

resi ← P.QUERY(qSi , occ
S
i)

if resi 6= abort: resi ← Rqi
transcript ← {{resi}di=0, {TQuery,i}di=1, TSetup, TLoad, stA}

Figure 4.3: Security experiments for PPSS protocol P

As in the DORAM security analysis, we define the traces of the three procedures of
ObSQRE (i.e., SETUP, LOAD and QUERY) as the information observed by the adver-
sary throughout the execution of these procedures. For the ones running inside the en-
clave, namely LOAD and QUERY, the traces TLoad and TQuery are defined as in Def. 4.1,
with the DORAM client being trivially replaced by the corresponding procedure; in-
stead, since the SETUP procedure is executed at data-owner’s side, its trace TSetup is
limited to the encrypted full-text index sent to the untrusted server, which is denoted as
I. We also define the leakage L as the information inferred by the adversary about the
document collection D, the substring queried q and the occurrences of q in D; we split
L in three components LSetup, LLoad and LQuery, denoting the leakage inferred by the
adversary from the traces TSetup, TLoad and TQuery, respectively.

In our security definition, we consider a modified QUERY procedure that, instead of
retrieving all the oq occurrences of a string q in D, allows to specify the number occ of
occurrences to be retrieved. This procedure can be implemented by fetching occ entries
instead of oq ones from the SA Suf in the second phase of backwards search algorithm
(lines 6-7 of Alg. 1.2). This modification allows to prove that ObSQRE is secure against
an adversary that can choose the query to be performed after observing the traces of
previous queries. This is a strong security notion, known as chosen adaptive security,
as it guarantees that the protocol remains secure even if the adversary can somehow
control ObSQRE operations (e.g., forcing to always querying the same string).

Definition 4.3 (PPSS Security Against Malicious Adversary). Given a security param-
eter λ, an integer d ≥ 1, and a PPSS protocolP with trace T = {TSetup, TLoad, TQuery,1,
. . . , TQuery,d} and leakage L = {LInit,LLoad,LQuery,1, . . . ,LQuery,d}, consider the two
interactive experiments RealP,A and IdealP,A,S , outlined in Fig. 4.3, between a chal-
lenger and an adversaryA consisting of d+1 probabilistic polynomial time algorithms,

118

4.3. Security Analysis of ObSQRE

i.e., A = {A0,A1, . . . ,Ad}. Throughout the experiments, the challenger may invoke
the protocolP and a probabilistic polynomial time simulator S consisting of d+1 prob-
abilistic polynomial time algorithms, i.e., S = {S0,S1, . . . ,Sd}; the adversary A can
tamper with data and computation of the PPSS protocol as described in our threat
model. Denoting as D a probabilistic polynomial time algorithm that, given the tran-
script o of an experiment, determines if o refers to RealP,A (D(o) = 0) or IdealP,A,S
(D(o) = 1) experiment, the PPSS protocol P , with leakage L and trace T , is secure
against malicious probabilistic polynomial time adversariesA if, for every possibleA,
there exists a simulator S such that for every D:

Pr(D(o) = 1|o← RealP,A)− Pr(D(o) = 1|o← IdealP,A,S) ≤ ε(λ)

where ε(·) is a negligible function.

As for the security definition employed for our DORAMs, the indistinguishability
between the transcripts of the RealP,A and IdealP,A,S experiments reported in Fig. 4.3
is sufficient to ensure the following security guarantees:

• The PPSS protocol P leaks to any malicious adversary no more information than
the leakage L

• The PPSS protocol can detect any data or computation tampering that affect the
result of the protocol, in turn ensuring the correctness of the protocol against any
misbehavior from a malicious adversary

ObSQRE provides the security guarantees of Def. 4.3 while exhibiting the information
leakage L reported in the following statement:

Theorem 4.2. For a document collection D={D1, . . . , Dz} with z≥1 documents and
d ≥ 1 strings q1, . . . , qd, assuming that a DORAM with the privacy guarantees outlined
in Thm. 4.1 is employed, ObSQRE is secure according to Def. 4.3 with a leakage L =
{LSetup,LLoad, LQuery,1,...,LQuery,d

} defined as:

• LSetup = {n =
∑z

i=j LEN(Dj)}

• LLoad = {n}

• LQuery,i = {mi, occi}, i ∈ {1, . . . , d}, where mi=LEN(qi) and occi is the number
of occurrences of qi in D chosen to be retrieved by the remote user

We prove this theorem in Appendix 3.2. Informally, the security guarantees of Ob-
SQRE are based on the confidentiality and integrity guarantees given by Intel SGX and
by the obliviousness of the substring search algorithm run inside the enclave. Indeed,
the control flow of our oblivious backward search algorithm depends either on publicly
known parameters (e.g, P or |Σ|) or from data found in the leakageL; the accesses to all
the data structures employed in our substring search algorithms are all oblivious, as they
are performed either with a linear sweep over the data structure of through a DORAM.
The information leakage L is inferred by the adversary from the size of the outsourced
full-text index, which is proportional to the size n of the document collection, and from
the number of iterations of the two loops of the backward search algorithm (Alg. 1.2),
which leak the the length mi of the substring searched qi and the number occi of oc-
currences of qi in D retrieved by the remote user, respectively. Finally, the correctness

119

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

Table 4.3: Parameters chosen for our DORAMs. S is the stash size, A the eviction period, Z (resp. D)
the max. (resp. min.) number of real (resp. dummy) blocks per bucket

DORAM Z S D A

Path [142] 4 32 0 3
8 41 0 8

Circuit [156] 3 8 0 1

Ring [128] 4 32 6 3
8 41 13 8

of the result against any adversarial misbehavior is ensured by the security guarantees
of SGX and by the integrity-protection mechanism of our DORAMs: indeed, the latter
ensures the authenticity of the data fetched from the DORAM tree, while all the other
operations are performed inside the enclave, where the adversary cannot tamper with
any data or code thanks to the security guarantees of Intel SGX technology.

4.4 Experimental Evaluation

We realized a publicly available C++ implementation [133] of ObSQRE employing the
Intel SGX SDK 2.5 [41]. To encrypt blocks in the DORAM, we employed the AES
implementation of WolfSSL [143]. We performed all our tests on an Ubuntu 16.04
LTS server equipped with 64 GiB of RAM memory and an Intel Xeon E3-1220 v6
CPU clocked at 3 GHz, where SGX is available. To evaluate our substring search
algorithms with different alphabets, we considered three datasets: the 21st human chro-
mosome [17] (Chr in short), which encodes DNA sequences employing 7 symbols of
the FASTA format [38]; the SwissProt database [153] (Prot in short), which con-
tains 550k human proteins, encoded with 25 symbols as a sequence of amino-acids; the
Enron dataset [87] (Enron in short), which contains real emails of a financial firm over
an alphabet of 96 ASCII characters.

DORAM Benchmarking

We started our experimental campaign by comparing the response time of the ACCESS
procedure for our three DORAMs, excluding accesses to the position map in order to
make these tests meaningful also for ODS. We instantiated each of these DORAMs
with parameters chosen according to the configurations provided by the authors of the
corresponding ORAM, except for Path DORAM where we employed the same config-
urations of Ring DORAM. For Path and Ring DORAMs, we considered two possible
configurations to explore the trade-off between the size of a bucket and the eviction
period A: indeed, while smaller buckets reduce the computational cost of DORAM
procedures, evictions, which are the most expensive operations, are performed more
frequently. The configurations employed for our tests are reported in Tab. 4.3; we em-
pirically verified that no stash overflow occurs after 230 round robin accesses with the
chosen parameters. For all the configurations, we measured the response time to access
one block, averaged over 1024 accesses, for DORAMs with 2i, i∈{5, . . . , 25}, real
blocks storing 8 bytes of data each. In all the tests, we fully initialized all the blocks in
the DORAM before measuring the response time.

120

4.4. Experimental Evaluation

24 210 216 222
0

20

40

60

80

Number of blocks

A
cc

es
s

re
sp

on
se

tim
e

(µ
s)

ZT Path Ring (Z=4)

Ring (Z=8) Circuit

Path (Z=8) Path (Z=4)

(a) Response time of accesses for our DORAMs and the Path
DORAM of ZeroTrace [135]

24 210 216 222

1

1.5

2

2.5

Number of blocks

Sl
ow

do
w

n

Path Ring (Z=4)

Ring (Z=8) Circuit

(b) Ratio between response times of DORAMs and SORAMs
accesses

Figure 4.4: DORAM Benchmark

Figure 4.4(a) reports the results of our benchmark, showing that Path DORAM is
the fastest one among our DORAMs. This outcome is motivated by the simplicity of
the client operations w.r.t. Ring DORAM and by the higher eviction period than Circuit
DORAM. Nonetheless, we observe that the response time of Circuit DORAM grows
slower w.r.t. Path and Ring DORAMs, confirming that Circuit DORAM is asymptoti-
cally faster. It is worth noting the different impact of the eviction period and bucket size
in Ring and Path DORAMs: indeed, in the former, evicting less frequently achieves bet-
ter performance, even if each eviction is slower due to the larger buckets; conversely,
since in Path DORAM both EVICTION and FINDBLOCK procedures become slower
with larger buckets, a lower eviction period, which allows to employ smaller buckets,
yields better performance. To compare our DORAMs with existing ones, we report in
Fig. 4.4(a) the access response time of our own implementation of the Path DORAM
proposed in ZeroTrace [135] (and employed with minor modifications in all the exist-
ing works [4, 111]), referred to as ZT Path DORAM. The comparison shows that all
our DORAMs are faster than ZT one. In particular, our Path DORAM is about 2×
faster than ZT one, clearly showing the performance gain given by amortizing the cost
of evictions over A≥1 accesses.

Willing to assess the overhead introduced by our oblivious clients in DORAMs, in
Fig. 4.4(b) we compare their access response time with the one of Singly Oblivious
RAMs (SORAMs), which correspond to the original versions of the ORAMs. For Path
ORAM, we compare the configuration achieving best performance for the DORAM
with a configuration for the SORAM suggested by authors in [142], i.e., Z=4 and
S=64. The results in Fig. 4.4(b) show that the computational overhead introduced by
oblivious clients is acceptable, being at most 2.5×. As expected, the slowdown of Cir-
cuit DORAM is negligible, given the simple modifications required to make the client
oblivious. Conversely, Path DORAM exhibits the highest slowdown: this overhead
mostly comes from making the EVICTION procedure oblivious and from the additional
path that is written back to the DORAM tree during the FINDBLOCK one.

121

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

0 10 20 30

10

15

20

25

Text size (MB)

R
es

po
ns

e
Ti

m
e

(m
s)

BSBWT based Backward Search Algorithm

0 10 20 30
2

4

6

8

10

Text size (MB)

R
es

po
ns

e
tim

e
(m

s)

ABWT based Backward Search Algorithm

Ring on Chr Circuit on Chr Path on Chr Ring on Prot Circuit on Prot
Path on Prot Ring on Enron Circuit on Enron Path on Enron

Figure 4.5: Comparison of ObSQRE oblivious substring search algorithms for Chr, Prot and Enron
datasets.

ObSQRE PPSS Protocol Evaluation

We now show the results of our evaluation of the two proposed oblivious substring
search algorithms, combining each of them with each of our DORAMs, and choosing,
for Path and Ring ones, the most efficient configuration identified in our benchmark
(Fig. 4.4(a)). We evaluated the response time to compute the number of occurrences of
a substring with 24 characters for increasing sizes of the datasets, without considering
the retrieval of the positions of the said occurrences as they depend neither on the
specific substring search algorithm nor on the alphabet size. To achieve the maximum
performance for the ABWT based algorithm, we performed an exhaustive parameter
space exploration to find the optimal values for the sample period P and the factor
C, which are employed to construct the ABWT and the recursive position map for
the DORAM, respectively. Specifically, we identified, for each DORAM with M=2i

real blocks, i ∈ {9,. . . ,25}, the value C minimizing the response time to recursively
access the position map of the DORAM at hand. Then, for each sample period P , we
stored the corresponding ABWT index inside a DORAM with M=2dlog(dn+1

P
e)e blocks,

building the position map with the optimal recursive factor C for a DORAM with M
blocks, and we chose the sample period P minimizing the query response time.

The results of the evaluation for both our oblivious substring search algorithms are
reported in Fig. 4.5. We observe that, regardless of the DORAM being employed, the
ABWT based algorithm is by far the fastest, as its response time is about 3 to 5 times
smaller than BSBWT one. This performance gap shows that it is more beneficial to
access few DORAMs rather than employing a small block size; indeed, the perfor-
mance gain of the ABWT based RANK procedure is due to the logC(dn+1

P
e) DORAMs

accessed instead of the log2(n) ones in the BSBWT based method. The comparison
among different datasets reveals that the ABWT algorithm is more affected by the al-
phabet size |Σ|, as, regardless of the DORAM, the queries for the Enron dataset are
slower than Chr and Prot ones. This is expected, as the size of the entries in the
ABWT, and thus the block size of the DORAM storing it, depends linearly on |Σ|;

122

4.4. Experimental Evaluation

Table 4.4: Performance of ObSQRE and less secure alternatives applied to the genomic and Enron
datasets with different lengths of the queried substring (m). Response time to compute the number of
occurrences is denoted as S, while R denotes the time to retrieve all the corresponding positions

Dataset m #Occ. ObSQRE SGX+ no SGX+
(ms) SORAM (ms) no ORAM (µs)

Genome 3050 1 S: 1019 R: 0.6 S: 347 R: 0.3 S: 167 R: 0.2

Enron 5 2657 S: 1.6 R: 2.1 S: 0.6 R: 0.8 S: 0.8 R: 10.4
Enron 13 290 S: 5.0 R: 0.5 S: 1.7 R: 0.2 S: 3.1 R: 1.1
Enron 20 154 S: 7.8 R: 0.6 S: 2.8 R: 0.2 S: 5.1 R: 0.6

conversely, BSBWT algorithm is negligibly affected by |Σ|.
Concerning the different DORAMs employed to store the full-text index, the ABWT

based algorithm achieves the best performance when combined with Circuit DORAM
(blue lines in the right pane in Fig. 4.5), while Path DORAM outperforms the other ones
in the BSBWT algorithm (green lines in the left pane in Fig. 4.5). However, while Path
DORAM is the most efficient in our benchmarks in Fig. 4.4(a), it exhibits the largest
slowdown when employed for the ABWT algorithm. This outcome is due to the low
value of the factor C (comparatively with the values derived for the other DORAMs)
which is identified as optimal for Path DORAM in the previously mentioned exhaustive
parameter space exploration for the ABWT algorithm. Indeed, a low C implies a high
number of deployed Path DORAMs to recursively store and access the position map.
Since the only performance benefit given by a low value for C is that the blocks of all
these DORAMs are smaller, our conjecture is that Path DORAM is more affected by the
block size than other DORAMs; to validate our hypothesis, we evaluated the response
time of our DORAMs with blocks of increasing size, hereby observing a much worse
performance degradation in Path DORAM than in Circuit and Ring ones.

Once determined that ObSQRE achieves the best performance when the ABWT
based backward search is paired with Circuit DORAM, we validated the practicality
of this solution on two realistic use cases: the look-up of the occurrences of a DNA
sequence corresponding to a protein in the entire human genome, whose size is approx-
imately 3 GB, and the look-up of all the occurrences of three typical strings (i.e., Fitch,
Business Trip and Investment Portfolio) in the financial domain over the whole Enron
email corpus, whose size is about 1 GB. Furthermore, we evaluated the overhead of Ob-
SQRE w.r.t. baseline solutions with weaker security guarantees: an application running
the ABWT based substring search algorithm outside the enclave, which has no security
guarantees; an application running the algorithm inside the enclave but employing Path
SORAM (i.e., the fastest among our SORAMs) instead of Circuit DORAM, which is
secure only if the critical leakage of memory access patterns inside SGX is ignored (as
in SGX threat model). Indeed, even neglecting the information leakage coming from
these side-channels, the adoption of a SORAM is needed to protect accesses to the
full-text index and the suffix array, as these data structures must be necessarily stored
outside the enclave because of the limited memory area that is reserved by SGX to en-
clave applications, which amounts to only about 100 MB. Table 4.4 outlines the results
of this evaluation. Although the overhead incurred by ObSQRE over a solution with

123

Chapter 4. ObSQRE: PPSS Protocol Based on Intel SGX

no security guarantees in both the use cases amounts to about 3 order of magnitudes,
ObSQRE is only 3× slower than a solution that ensures confidentiality of the data in the
SGX threat model, which does not encompass information learned from side channels.
Given the high security guarantees offered by ObSQRE, we deem this security cost as
acceptable for real-world applications. Indeed, the results show the practicality of Ob-
SQRE in real-world scenarios, as the occurrences of a protein over the whole genome
are found in only 1.019 seconds, while the occurrences of short strings in the whole
Enron corpus are found in just few milliseconds.

124

Part II

Digital Certificates

125

CHAPTER5
Definition and Preliminaries

PLEASE, LET ME EXPLAIN!!

We start the second part of this manuscript by providing the definitions and the back-
ground information about digital certificates and the two formats considered in this
work, namely the X.509 and the OpenPGP ones. We organize this chapter as follows:

• In Section 5.1, we recall the language theoretical notions that are employed in our
analysis of the X.509 and OpenPGP formats

• In Section 5.2, we describe the format of X.509 digital certificates

• In Section 5.3, we briefly introduce the OpenPGP protocol and we describe in
detail the format of its digital certificates and messages

5.1 Language Theoretical Concepts

Given a finite set of symbols Σ, known as alphabet, a language L is defined as a set
of elements, named strings, obtained by concatenating zero or more symbols of Σ.
Conventionally, the empty string is denoted as ε, while a portion of a string is known as
a factor.

Given a language it is also possible to describe it via a generative formalism, i.e., a
grammar. A grammar is a quadruple G : (Vn,Σ,P, S), with Vn a finite set of sym-
bols named nonterminals, Σ the alphabet of the generated language, whose symbols
are also named terminals, P a set of productions defined as pairs of strings obtained
by concatenating elements of V=Σ∪Vn, and S∈Vn the axiom of the grammar. The
productions are denoted as usual as α→β, where α ∈ V+

n is the Left Hand Side (LHS)
of the production and β ∈ V∗ is the Right Hand Side (RHS), with V+ representing
the closure with respect to concatenation over V, and V∗=V+∪{ε}. The generative
framework of a grammar describes a string of the language as the results of a generation

127

Chapter 5. Definition and Preliminaries

process starting from the string w0 = S. At each generation step i, the process outputs
a string wi ∈ V∗, i ≥ 1. At the i-th step a production p ∈ P is randomly chosen
among the ones having their LHS in wi−1; then, the LHS of p in wi−1 is substituted
with the RHS of p to derive wi. The process stops when all the symbols in the sequence
wi are terminals (i.e., wi ∈ Σ∗). Languages are classified according to the Chomsky
hierarchy [37], depending on which constraints are holding on the productions of the
grammar generating them. Language families generated from grammars with stricter
constraints are included in all the families with weaker constraints. In the following,
we describe the language families starting from the least constrained one.

Grammars with no restrictions on the both LHS and RHS of their productions are
denoted as unrestricted grammars, and generate Context Sensitive with Erasure (CS-E)
languages. Determining if a generic string over Σ belongs to a CS-E language is not
decidable. Restricting the productions of a grammar so that the sequence of substitu-
tions does not allow the erasure of symbols yields Context Sensitive (CS) grammars,
which generate CS languages. Determining if a generic string over Σ belongs to a CS
language is decidable, i.e., it is always possible to state whether a string over Σ can be
generated by a given CS grammar. Restricting the productions of a grammar to have a
single element of Vn on their LHS yields the so-called Context-Free (CF) grammars,
which generate CF languages. Deterministic Context-Free (DCF) languages can be rec-
ognized by a DPDA and their generating grammars constitute a proper subset of non
ambiguous CF grammars. Finally, restricting the productions of a grammar either to the
ones of the form {A→a,A→aA} or to the ones of the form {A→a,A→Aa}, where
A ∈ Vn, a ∈ Σ∪{ε}, yields right- or left-linear grammars, which generate Regular
(REG) languages. We will denote such grammars as linear whenever the direction of
the recursion in their productions is not fundamental.

Given a grammarG generating the language L and a generic terminal stringw ∈ Σ∗,
the process of parsing consists both in determining if w ∈ L and in computing the se-
quence(s) of applications of the productions ofGwhich generate(s)w. The sequence(s)
of productions are depicted as a tree, called either parse tree or abstract syntax tree,
with the axiom of the grammar being the root and the terminal symbols being the
leaves. There exists a straightforward parsing algorithm of a CS language which is
complete and correct, but its running time is exponential in the length of the input.
As a consequence, a number of automated parser generation techniques with higher
efficiency were defined for subsets of the CS grammar family. CF grammars are the
mainstay of parser generation as it is possible to automatically generate a recognizer
automaton for any language generated by them. In particular, given a generic DCF
grammar it is possible to automatically generate a deterministic parser for the strings of
the corresponding language [70]; such parser enjoys worst-case linear space and time
requirements in the length of input. Linear grammars are optimal from a parsing stand-
point, as it is possible to derive from them a parser that runs with constant memory and
linear time requirements in the length of input. Moreover, a parser for a REG language
can be generated starting from the definition of a regular expression [18].

In the remainder of this work, the terminal alphabet Σ will be the set of 256 values
which can be taken by a byte (i.e., Σ = {0, 1}8), unless pointed out otherwise. Each
terminal symbol will be denoted by two hexadecimal digits (e.g., the byte taking the
decimal value 42 will be denoted as 2A). We will also employ the Extended Backus-

128

5.2. Format of X.509 Digital Certificates

Naur Form (EBNF) to write the RHS of grammar productions.

5.2 Format of X.509 Digital Certificates

We now describe the X.509 format of digital certificates, whose specification is found
in RFC5280 [39] and its complements [72, 122, 93, 152, 45]. Since the X.509 stan-
dard is described through the Abstract Syntax Notation 1 (ASN.1) meta-language, we
introduce this notation before describing in detail the structure of an X.509 digital cer-
tificate.

ASN.1 Description

The ASN.1 meta-language allows to specify the structural constraints of a data format,
describing it as a set of so-called Abstract Data Types (ADTs). ASN.1 is described
in the set of ITU Recommendations (ITU-R) X.680-X.683 [79], while the encoding
schemes for the ADTs are specified in ITU-R X.690–X.696 [79]. ASN.1 provides the
means to express both the syntax of the ADT at hand, in a form akin to a grammar,
and some semantic constraints concerning the values taken by an instance of such an
ADT. To ease the comprehension of the analysis of X.509 from a language-theoretical
perspective, we first provide a mapping between the syntactic-structure-specifying key-
words of ASN.1 and the corresponding productions of an EBNF grammar. Subse-
quently, we highlight how the remaining, non purely syntactic features of ASN.1 act as
constraints on the language of the instances of the described ADT in terms of seman-
tics and describe the meta-language facilities exposed to ease the definition of a non
ambiguous specification.
Syntactic Elements. An ASN.1 ADT can be regarded as a construct equivalent to a
single EBNF grammar generating all the possible concrete data type instances as its
language. The user-defined name of the ADT corresponds to the axiom of the EBNF
grammar, while the productions are represented as structured data definitions with the
::= operator separating the left and right hand side, in lieu of the common→.

The structure of an ADT may either be a single element, in case the type is primitive,
or a composition of other types employing ASN.1 constructs in case it is constructed.

Primitive types in ASN.1 represent terminal rules of an EBNF grammar, i.e., rules
where α→β, α∈V+

n , β∈Σ∗. The RHS of a primitive type definition is described
by a single line ended by a specific keyword (e.g., INTEGER, BOOLEAN, OBJECT
IDENTIFIER, OCTET STRING, BIT STRING), specifying completely its nature.
An OBJECT IDENTIFIER is a sequence of decimal numbers separated by dots, of
which a single decimal number is known as an arc.

Constructed types may either have a single user-defined name appearing on the RHS
of their definition, in which case they act as the copy rules of an EBNF grammar (i.e.,
rules where α→β, α, β∈Vn), or an arbitrary ASN.1 syntactic construct may be used.
The only exception to the aforementioned constructed type definition is the possibility
of turning a primitive OCTET STRING or BIT STRING type into a constructed one
through appending the keyword CONTAINING to it, followed by the description of
its contents. Deriving a constructed type from an OCTET STRING forces its value in
an ADT instance to be byte-aligned, and allows the designer to enforce the choice of
the encoding rules to be employed for it with the ENCODED BY keywords followed

129

Chapter 5. Definition and Preliminaries

Table 5.1: Equivalence between the notation of the ASN.1 RHS of a constructed type definition and the
right hand side of an EBNF grammar production, with a set of sample ASN.1 types u,v,x
matching the identically named strings u, v, x ∈ V∗ in EBNF

ASN.1 RHS EBNF RHS

SEQUENCE {u,v,x} uvx
CHOICE {u,v,x} u|v|x
u OPTIONAL u|ε
SET {u,v,x} uvx|uxv|vux|vxu|xuv|xvu
SEQUENCE OF u u∗

SET OF u u∗

SEQUENCE SIZE(1 .. MAX) OF u u+

SET SIZE(1 .. MAX) OF u u+

u(2 .. N) u2|u3| . . . |uN

ANY Arbitrary definition
ANY DEFINED BY u Arbitrary ASN.1 definition

by the encoding name (see ITU-R X.682) [79]. Table 5.1 shows a mapping between
the ASN.1 structures appearing on the RHS of the data types that are found in X.509
specification and their matching EBNF notation, expressed with a set of sample ASN.1
types u,v,x and identically named strings u, v, x ∈ V∗ in EBNF.

The ASN.1 notation specifies the common concatenation and union operators via
the SEQUENCE and CHOICE keywords, respectively, while the syntactic constraint in-
dicated by the SET keyword mandates that a set of ADTs may appear in any order,
without repetitions. Post-fixing an ADT appearing in a RHS of a definition with the
OPTIONAL keyword allows it to be either missing or present only once. Given an
ASN.1 ADT u, the syntactic constraints imposed by the SEQUENCE OF and SET OF
constructs, indicate a concatenation of zero or more instances of u, matching the star
operator in EBNF. The ternary range operator in ASN.1, having the syntax t(low . . .
high), where t is an ADT and low,high the range boundaries, is employed with
two purposes: specifying the range of possible values of the instances of the primi-
tive ADT to which they are appended, or indicating the concatenation of any number
low<n<high of instances of the user-defined ADT preceding them. The bounds of a
range operator are either constant values or the keywords MIN and MAX, which indicate
that the minimum (resp., maximum) of the given range is interpreted as the smallest
(resp., greatest) value that can be taken by the ADT on their left. ASN.1 allows to
specify size constraints through the use of the keyword SIZE, followed by a range of
allowed sizes. A common idiom in ASN.1 ADT declarations is to employ MAX as an
upper bound for SIZEs to indicate that there is no upper bound on the size. As a con-
sequence, the two common ASN.1 SEQUENCE SIZE(1 .. MAX) OF and SET
SIZE(1 .. MAX) OF idioms in Tab. 5.1 represent a concatenation of one or more
instances of the involved ADT u, corresponding to the EBNF cross construct. Finally,
the ASN.1 keyword ANY allows to delegate the definition of the structure of a given
ADT to another document, potentially not expressed in ASN.1. Specifying further the
effect of the ANY construct with the DEFINED BY keywords, followed by the name of
an ADT, enforces the fact that the specification should be expressed as an ASN.1 ADT.

Semantic Elements and Disambiguation Constructs. ASN.1 allows to describe se-
mantic information on instances of an ADT either specifying a constant value for a

130

5.2. Format of X.509 Digital Certificates

given primitive type element, appending such value between round brackets on the line
where the type appears, or specifying a so-called DEFAULT value. Appending the
DEFAULT keyword allows to indicate that, in case an element is missing in an instance
of the ADT, the recognizer should assume its presence nonetheless, and assign the
semantic value present in the ASN.1 specification to it.

The expressive power of the ASN.1 allows the designer to specify an ADT corre-
sponding to an inherently ambiguous language, i.e., a language for which no unam-
biguous grammar exists. An illustrative example of such a case is the following ADT
t:

t ::= CHOICE {
s1 SEQUENCE{u(i..i),v(i..i),x(j..j)},
s2 SEQUENCE{u(j..j),v(i..i),x(i..i)}}
i ::= INTEGER(1 .. MAX)
j ::= INTEGER(1 .. MAX)

which has its instances belonging to the intrinsically ambiguous language L = {uivixj
∨ ujvixi s.t. u, v, x ∈ Σ, i≥1, j≥1}. To provide a convenient way to cope with ambi-
guities, ASN.1 introduces the so-called user-defined tag elements. A tag is a syntactic
element, denoted as a decimal number enclosed in square brackets, which is prefixed to
an ADT appearing in the RHS of a data description. Proper use of tags minimally alters
the language of accepted ADT instances, while effectively curbing ambiguities. Stick-
ing to the previous example, the inherent ambiguity of the sentences of the language of
the ADT t can be eliminated adding two tags to its description:

t ::= CHOICE {
s1 SEQUENCE{ [0] u(i..i),v(i..i),x(j..j)},
s2 SEQUENCE{ [1] u(j..j),v(i..i),x(i..i)}}
i ::= INTEGER(1 .. MAX)
j ::= INTEGER(1 .. MAX)

Binary Encoding for ASN.1 ADTs

While ASN.1 allows to detail the structure of an ADT, it does not define how its in-
stances should be encoded in a machine readable (i.e., binary) format. The encoding
rules for an ASN.1 data type instance (see ITU-R X.690–X.696 [79]) define several
formats portable across different architectures by mandating bit and byte value con-
ventions and ordering of the encoded contents. Among these formats, X.509 certifi-
cates mostly employ the Distinguished Encoding Rules (DER) encoding, as a con-
structed typed field in the X.509 standard certificate ADT requires this encoding via
the ENCODED BY keyword. DER encoded material may be further mapped to the
fully printable base64 encoding, resulting in the so-called Privacy-enhanced Elec-
tronic Mail (PEM) format [95]. The DER encoding strategy represents an ASN.1 ADT
instance as a stream of bytes which is logically split up into three fields: identifier
octets, length octets, content octets.

The identifier octets field is employed to encode the ASN.1 tag value and whether
the ADT instance at hand is a primitive or a constructed ASN.1 type. The tag value may
be either the disambiguating user-defined one present in the ASN.1 ADT definition, or
a so-called universal tag assigned by the DER standard to all ASN.1 primitive types
and to the SEQUENCE, SEQUENCE OF, SET, SET OF, ANY constructed ones.

131

Chapter 5. Definition and Preliminaries

Certificate ::= SEQUENCE {
tbsCert TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPubKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueId OPTIONAL,
subjectUniqueID [2] IMPLICIT UniqueId OPTIONAL,
extensions [3] EXPLICIT Extensions OPTIONAL }

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY AlgorithmP OPTIONAL}

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING }

Figure 5.1: Portion of the description of the X.509 Certificate ADT and its fields

The universal tag allows to identify the specific type of the DER encoded ADT. If a
user-defined tag is present, its encoding is stored in the identifier octets field, while
the encoding of the tagged ADT is stored in the content octets field. To provide a more
succinct encoding, ASN.1 allows to specify that a given user-defined tag is IMPLICIT,
i.e., that it should replace the tag of the tagged ADT in the encoding in the identifier
octets field. On the other hand, the EXPLICIT keyword states that a user-defined tag
should be encoded according to the default behavior.

The content octets field contains the actual encoding of the ADT instance at hand,
while the length octets one stores the size of the content field as a number of bytes.
The number of bytes constituting the length octets field varies in the 1 to 126 range.
The encoding conventions for the length value are stated in the ITU-R X.690 [78]. A
short form and a long form for the encoding of a length value are possible. The short
form mandates the encoding of the length field as a single octet in which the most
significant bit is 0 and the remaining ones encode the size of the content octet field
from 0 to 127 bytes. The long form consists of one initial octet followed by one or
more subsequent octets containing the actual value of the length octet field (i.e., the
number of bytes of the content octets field). In the initial octet, the most significant bit
is 1, while the remaining ones encode the number of length field octets that follow as
an integer varying from 1 to 126. Thus, the number of bytes for the content octets field
is at most 2126·8. The length octet field value equal to 128 encoded as a single byte is
forbidden in DER, while in other standard encoding rules it is reserved to indicate that
an indefinite number of bytes will follow.

Description of X.509 Certificate Structure

We can now describe the format of an X.509 digital certificate by hinging upon the
ASN.1 meta-syntax.

132

5.2. Format of X.509 Digital Certificates

Certificate ADT. Figure 5.1 reports a shortened version of the X.509 standard, defining
the main Certificate ADT. In the figure, field names start with a lowercase letter,
while user-defined ADT names start with capital letters. The Certificate ADT is
a concatenation of three fields: the material To Be Signed typed as
TBSCertificate, the identification data for the signature algorithm typed as
AlgorithmIdentifier, and a BIT STRING field containing the actual signature
value.

TBSCertificate ADT. Considering the contents of the TBSCertificate ADT, the
first two fields contain a version number typed as Version (an INTEGER in the range
{0, . . . , 2}), and an integer value which must be unique among all the certificates signed
by the same CA, which is typed as CertSerialNumber. The third field, typed as
AlgorithmIdentifier, contains the information to uniquely identify the crypto-
graphic primitive employed to sign the certificate.

The AlgorithmIdentifier ADT is a concatenation of two fields: an ADT
OBJECT IDENTIFIER (OID) typed field algorithm and an optional field named
parameters, which is typed as ANYDEFINEDBYAlgorithmP. The OID value
allows to uniquely label the signature algorithm, as well as binding the format of its
parameters, which are described in in [122, 72, 93, 152, 45] for a set of standardized
signature algorithms. The issuer, validity and subject fields contain infor-
mation on the CA issuing the certificate and the subject to whom it has been issued,
together with the validity time interval of the certificate. issuer and subject fields
are typed as a Name ADT: a SEQUENCE OF of SET OF structures containing a con-
catenation of two fields typed as OID and ANY, respectively. Despite the quite baroque
definition, the Name ADT is indeed employed to represent a list of names for both
the issuer and the subject which are typically expressed as printable strings prefixed
with a standardized OID value stating their meaning (e.g., organization, country). The
most relevant among these names is the so-called Common Name (CN), which usually
corresponds to the identifier of an entity in the application domain where the digital
certificate is employed (e.g., in HTTPS the CN in the Subject field corresponds to
the URL of the website the digital certificate is bound to). Because of its relevance
for identification purposes, the CN is a sensitive field targeted by many impersonation
attacks [13, 107, 81].

The subjectPublicKeyInfo field provides both the public key bounded to the
subject identity, and information on the employed cryptographic primitive in the form
of a BIT STRING and an AlgorithmIdentifier typed field, respectively. Fol-
lowing the subjectPublicKeyInfo field, the TBSCertificate ADT includes
two deprecated extra optional fields, containing further information about the issuer and
the subject. These fields are tagged with tags [1] and [2] respectively, preventing a
possible parsing ambiguity arising from only one of them being present.

Extension ADT. The extensions field concludes the definition of the
TBSCertificate ADT. Most of the information of modern certificates is contained
in it, and its presence is mandatory in the current version (v3) of X.509 certificates. As
reported in Fig. 5.2, the ExtensionsADT is a sequence of one or more Extension
typed fields. Each Extension ADT is composed of an OID typed field identifying
it unambiguously, and a critical field typed as BOOLEAN indicating, if True, that
the certificate validation should fail in case the application either does not recognize

133

Chapter 5. Definition and Preliminaries

Extensions ::= SEQUENCE SIZE(1..MAX) OF Extension

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING CONTAINING ... ENCODED BY der }

Figure 5.2: X.509 ADT description reporting the definition of the last field of the TBSCertificate
ADT

or cannot process the information contained in the subsequent extnValue field. The
extnValue field stores the actual payload of the extension, thus its content vary de-
pending on the extension at hand (and indeed its structure depends on the extnID
field). An example of sensitive information contained in the extnValue field is the
so-called KeyUsage, i.e., information stating which is the legitimate purpose of the
subject public key in the certificate at hand (e.g., signature validation or encryption).

5.3 Description of OpenPGP Protocol and Format

Before delving into the description of the OpenPGP format, we first introduce the main
concepts and the architecture of the OpenPGP protocol, which are necessary to under-
stand the meaning and the purpose of the fields found in OpenPGP digital certificates
and messages.

OpenPGP Protocol

The basic idea of the OpenPGP protocol to authenticate the ownership of public keys
found in digital certificates is building a network of users which can be represented as a
directed graph, known as the Web of Trust (WoT); specifically, each user’s public key is
a node, while an edge between a source node and a destination one represents a signa-
ture computed by the user associated to the source node on the public key associated to
the destination node. Each user is identified by its User-ID, which is usually a string
composed of a name and an email address. Each OpenPGP certificate contains a self
signed public key, known as the primary public key. The corresponding primary pri-
vate key is the one employed by the user when vouching for the authenticity of another
public key through digitally signing it, effectively acting as a CA. Other public keys
may be present, and bound to a primary key: they are known as public subkeys. Such
subkeys may be employed during the actual communication, that is, to encrypt or sign
messages. To this extent, the OpenPGP protocol employs a hybrid message encryption
scheme, where an ephemeral, per message, cryptographic session key is generated as
the first step of a message encryption. This ephemeral key is used to encrypt the mes-
sage employing a symmetric cipher, and is in turn encrypted with one of the receiver’s
public subkeys that can be used for such key encapsulation method. All the subkeys
are bound to the corresponding primary public key by a signature computed using the
primary private key. Moreover, every private subkey usually signs a binding of the pri-
mary public key to a subkey. There are also revocation signatures, which are mainly
needed to state that a primary key or a subkey is no longer in use or to invalidate a past
signature.

134

5.3. Description of OpenPGP Protocol and Format

The OpenPGP certificates are available on a public network of mutually synchro-
nized servers, known as keyservers [73]. These servers provide OpenPGP certificates
via the HTTP Keyserver Protocol (HKP) [1], optionally using the TLS transport layer.
It is worth noting that OpenPGP certificates are intended to be append-only, meaning
that whenever a certificate is exported to a keyserver, only new parts may be added,
while the old ones cannot be modified. Nevertheless, a keyserver is not expected to
provide integrity checks. Thus, the most trivial but really effective attack from a mali-
cious keyserver is omitting parts of the certificate: for example, a keyserver may remove
a revocation signature from a certificate, thus turning a revoked key into a valid one.
Finally, each OpenPGP client has its own local storage for certificates, known as the
keyring of the owner. Coupled with the keyring, an additional storage, the trustDB,
contains the “level of trust” of the owner towards the users bound to the certificates in
her/his keyring when they act as a CA.

OpenPGP Format

The OpenPGP standard [29] defines the format of two valid OpenPGP objects: certifi-
cates and messages; their format is defined as a sequence of the basic elements known
as OpenPGP packets, and differ only in the kind of packets allowed into each object
and how they are combined.
OpenPGP Packet Structure. An OpenPGP packet is split into two parts: the packet
header, which includes metadata needed to process the packet, and the packet body. The
OpenPGP standard specifies that version 3 and version 4 packets have to be considered
valid. The latter version supports a wider range of packet types and employs a different
way of encoding the length fields in the packet header. The packet header consists of a
single byte, named packet tag, followed by a variable length field, named body length,
which encodes the number of octets composing the body of a packet. A ver. 3 packet
tag specifies the version with 2 bits, the body length field encoding with 2 other bits,
and then the packet type over the remaining 4 bits. In particular, the 2-bit encoding
conventions for the body length field encoding are as follows [29]:

00bin: specifies a body length field made of one (20) octet, which is employed for
packet bodies with length up to (28)20−1 =28−1 = 255 bytes;

01bin: specifies a body length field made of two (21) octets, which is employed for
packets with a length ranging from 28 to (28)21−1 =216−1;

10bin: specifies a body length field made of four (22) octets, which is employed for
packets with a length ranging from 216 to (28)22−1=232−1;

11bin: specifies an unbounded length of the packet body. In this case, no body length
field is present in the packet header, and the recognition of the end of the packet is
implementation dependent (e.g., checking the End-Of-File marker as the last octet
in the OpenPGP object).

A ver. 4 packet tag specifies the version with 2 bits, and the packet type with the
remaining 6 bits. The length of the packet body is specified by the numerical value
encoded in the first octet of the body length field in the packet header. The values of
the 1st octet range in:

135

Chapter 5. Definition and Preliminaries

00000000bin–10111111bin specify a 1 octet body length field, with the length of
the packet body being the unsigned decimal value in 0dec–191dec encoded by the
1st octet itself;

11000000bin–11011111bin specify 2 octets for the body length field, while the
length of the packet body is determined as the unsigned decimal value ranging
in 192dec–8383dec, which corresponds to the sum of 192dec with the value en-
coded by concatenation of the five least significant bits of the 1st octet and the bits
of the 2nd (indeed 8383dec = 192 + 213 − 1);

11111111bin–11111111bin specify 5 octets for the body length field, and the un-
signed decimal value which is binary encoded in the remaining four octets ranges
from 8384dec to 232−1;

11100000bin–11111110bin encode an unsigned decimal number n in the range
224dec–254dec. The quantity 2n−224 defines the length of the packet, which is
thus at most 2254−224 = 230 octets long. This encoding is employed when the
length of the content to be encased in a packet is a-priori unknown and thus this
content is split into packets having this type of length field until the length of the
remaining portion of the content can be encased in the body of a packet having
one of the previously listed length types.

The length encoding strategies of ver. 4 packets are somehow similar to the ver. 3 ones,
with the main difference being the replacement of the unbounded length option with a
less troublesome encoding. We remark that the packet body has a specific structure de-
pending on the packet type encoded in its tag. These various types of packets and their
structures are detailed, for the ones relevant to our analysis, throughout the description
of the format of OpenPGP certificates and messages.
OpenPGP Certificate Format. In the following, we describe the format of OpenPGP
certificates as in RFC 4880 [29], which is reported in Fig. 5.3(a) by employing the
EBNF notation. In the EBNF grammar found in Fig. 5.3(a), the terminal symbols
represent specific OpenPGP packets.

A minimal certificate is specified by the sequence of at least two terminal symbols:
PrimaryKey and UserID. The former one is encoded as a Public-Key Pkt
packet, including the primary public key and the corresponding cryptographic parame-
ters. The latter is encoded as a User-ID Pkt, including user identity data. Between
these two packets, there may be a set of signature packets. In the OpenPGP format,
each signature is stored in a Signature Pkt packet, which has a specific field (i.e.,
Signature Type) that determines the class of signature the packet refers to (e.g.,
a revocation signature or a signature binding a subkey to the primary one). The signa-
tures that may be found between Primary Key and the UserID packets are a list
of RevocationSelfSignatures, each of which issued by the same private key
authenticating the revoked binding, and a list of DirectKeySignatures, which
are used to authenticate some information, stored as auxiliary data in the packet of
the signature, about a key, without binding them to a specific UserID. For instance,
a DirectKeySignature may be employed to authorize a set of keys other than
the signed ones to issue revocation signatures on the key the signature refers to. Fol-
lowing the UserID, there is a list of optional Signatures which acknowledge the

136

5.3. Description of OpenPGP Protocol and Format

PGPCertificate→ PrimaryKey(RevocationSelfSignature)∗(DirectKeySignature)∗

(UserID(Signature)∗)+ (UserAttribute(Signature)∗)∗

(Subkey(BindingSignatureRevocation)∗ PrimaryKeyBindingSignature)∗

(a)

PGPMessage→ Plaintext | Encrypted | Signed
Encrypted→ SessionKeyCtx EncryptedMessage
SessionKeyCtx→ SymmetricallyEncryptedCtx | AsymmetricallyEncryptedCtx
EncryptedMessage→ Ciphertext | IntegrityProtectedCiphertext MessageMDC
Signed→ Signature PGPMessage | OnePassSignature PGPMessage Signature

(b)

Figure 5.3: EBNF specification of the OpenPGP Certificate format (a); and the OpenPGP Message
format (b). Non-terminal symbols are reported with italic typeface, while the terminal ones, which
corresponds to OpenPGP packets, are denoted with roman typeface. Mandatory symbols in the
OpenPGP objects are reported with a bold typeface

binding between the primary public key and its owner. We remark that the OpenPGP
format provides four different types of signature to authenticate such binding, each
specifying a different amount of efforts by the signer to actually verify the authen-
ticity of such binding. Additional information about a user identity (e.g., a picture)
may be specified in UserAttribute, encoded as a User-Attribute Pkt, and
cryptographically bounded to the primary key by optional subsequent Signatures.
Finally, an OpenPGP certificate terminates with a list of zero or more public Subkeys
followed by an optional sequence of BindingSignatureRevocations and by
a PrimaryKeyBindingSignature. The latter kind of signatures cryptographi-
cally binds the public subkeys to which they refer with the primary public key, while
the former kind revokes such binding. A Subkey can be revoked only with a sig-
nature from its primary key, unless additional keys are authorized to issue revoca-
tion signatures in the corresponding PrimaryKeyBindingSignature packet. A
Subkey is encoded as Public-Subkey Pkt, which has the same body structure
of Public-Key Pkt.

The Signature Pkt body definitely exhibits the most complex structure among
OpenPGP ones, which is now described in detail due to its relevance in our analysis
of the OpenPGP format. Its body contains four 1-octet fields (i.e., including version
number, signature class, public key cipher and hash algorithm, respectively) followed
by a pair 〈S1, S2〉 of sequences of sub-packets. Sub-packets are intended to provide
additional data decorating the signature itself and, similarly to packets, are specified by
a header and a body. The header is partitioned in a sub-packet body length field and in a
1-octet sub-packet type field. Sub-packet body length field can be 1, 2 or 5 octets long,
following the same encoding specified for the body length fields of ver. 4 packets. The
content of a Signature Pkt up to S1 (included) is fed to the signature algorithm,
whilst sub-packets in S2 are not meant to be part of the signature. Both S1 and S2 are
prefixed with a 2-octet field specifying their size. It is worth noting that any type of sub-
packet may be included in both sequences, except for the Signature Creation
Time Subpkt, which must be placed in S1. Finally, more than one sub-packet of the
same type may be in the same sequence or Signature Pkt.

OpenPGP Message Format. The OpenPGP message format [29] is summarized in
Fig. 5.3(b), where the terminal symbols denote a specific type of OpenPGP packet.

137

Chapter 5. Definition and Preliminaries

An OpenPGPMessage non-terminal symbol can be replaced with a Plaintext
terminal symbol, an Encrypted non-terminal symbol, or a Signed non-terminal
symbol. In the former case, a Literal Pkt encodes the original message pre-
fixed with a field denoting its type (binary or textual). An Encrypted non-terminal
symbol is defined as a SessionKeyCtx followed by an EncryptedMessage, to
capture the sequence of data made of an encrypted payload preceded by the value of
session key employed to obtain it. The session key is encrypted either with another
symmetric key generated from a passphrase (SymmetricallyEncryptedCtx), or
with one of the receiver’s public subkeys (AsymmetricallyEncryptedCtx). An
EncryptedMessage can be either the Ciphertext terminal symbol or the pair
of terminal symbols: IntegrityProtectedCiphertext MessageMDC. In the
former case, an encrypted OpenPGP packet containing the plaintext message (e.g., a
Literal Pkt) is found in the body of the Ciphertext OpenPGP packet, while in
the latter such a copy is also followed by a modification detection code (MDC), which
is generally a hash, to provide message integrity.

A Signed message has two possible structures. The simplest one prefixes the
Signature terminal symbol to an entire PGPMessage. The other one, employed
to achieve a single pass signature verification, prefixes a OnePassSignature ter-
minal symbol (encoded as a One-Pass Signature Pkt) and the PGPMessage
to the Signature terminal symbol. The One-Pass Signature Pkt contains
the parameters of the hash and public key algorithms, to start the execution of the
signature verification algorithm prior to receive the actual signature data. Note that
PGPMessage can be recursively expanded in a Signed message, therefore multiple
signatures can be put on the same Plaintext or EncryptedMessage.

138

CHAPTER6
Novel Regular Format for X.509 Digital Certificates

PLEASE, LET ME EXPLAIN!!

In this chapter, we describe our proposal for a novel format for X.509 digital certifi-
cates. Our format is designed to ease the parsing of X.509 digital certificates and it is
described by a REG grammar, which implies that a parser with optimal complexities
and sound correctness guarantees can be automatically generated from the grammar
specification [70]. In addition, we report the experimental validation of a parser au-
tomatically generated from a REG grammar with the yacc [145] toolchain. Before
delving into the description of our format, we report the parsing issues of X.509 digital
certificates identified in [13] that mostly drive the design of our format.

6.1 Parsing Hindrances in X.509 Format

In this section, we analyze the X.509 certificate structure from a language theoretic
standpoint. In particular, we highlight the portions of the certificate which hinder and
harden the design of a grammar amenable to automatic parsing generation algorithms.
These issues mostly drive the design of our novel format, with the extent of removing
them to obtain an efficient and simple parser for X.509 digital certificates. We remark
that, although the set of DER encoded X.509 digital certificates is formally a REG
language, since a certificate (and thus any ADT specifying a portion of it) cannot be
longer than 2126∗8 bytes, we cannot practically rely on this fact to build an efficient
parser. Indeed, although any ADT with no ASN.1 specified constraints on its size
may be theoretically recognized by enumerating all the possible binary strings with
at most 2126∗8 bytes, this strategy cannot be adopted in practice; therefore, when in
the following we argue that a portion of X.509 certificate requires a recognizer more
powerful than a regular parser, it is implied that recognizing the portion at hand by
enumerating all the possible strings is infeasible.

139

Chapter 6. Novel Regular Format for X.509 Digital Certificates

Length octets in DER Encoding. While parsing DER encoded ASN.1 ADTs, a recog-
nizer must match the number of bytes encoded by a length octets field with the actual
length of the content octets field. Since both constructed and primitive ADTs are en-
coded with length octets, then parsing a constructed ADT requires to simultaneously
compute the number of content octets of the constructed ADT and the number of con-
tent octets of at least one other ADT found in the content octets of the constructed ADT
at hand. For instance, consider the following DER encoded ADT:

Item ::= SEQUENCE {
key INTEGER,
valid BOOLEAN}

While parsing the key field in the Item ADT, a recognizer must simultaneously mod-
ify two counters for each byte of the content octets of key: one counter to keep track
of the number of bytes left in the content octets of the INTEGER field, and a second
counter to keep track of the number of bytes left in the content octets of the Item
ADT. In the X.509 format, except for Certificate ADT, any primitive or con-
structed ADTs is “nested” in another constructed ADT, that is it is found in the content
octets of another ADT; therefore, while parsing Certificate ADT, one counter for
each nested ADT must be simultaneously handled. This is impossible with a DPDA,
as to modify one of the counter we lose any information about the other one, in turn
requiring a CS recognizer.

Issue 6.1 (Matching Multiple length octets). Since an X.509 digital certificate is a
constructed ASN.1 ADT, then multiple ADTs are simultaneously processed during the
parsing of the certificate at hand. Therefore, checking the correctness of the number
of bytes found in the length octets of these ADTs requires to simultaneously handle
multiple counters, in turn implying that a CS recognizer is needed.

Matching Repetitions of Long Strings. The need for a CS recognizer is also intro-
duced by the same kind of constraint in two different portions of the certificates. This
constraint is the need to check repetitions of arbitrarily long strings. First, consider the
signatureAlgorithm field in Certificate ADT and the signature field
in TBSCertificate ADT, both typed as AlgorithmIdentifier. While the
latter is found in the portion of the certificate which is signed, the former is not. There-
fore, it is expected that these two fields have the same content; nonetheless, since an
AlgorithmIdentifier ADT contains the parameters field which is typed as
an ANY ADT, this field may contain arbitrarily long string of bytes, in turn requiring a
CS recognizer to check the equality of two fields typed as AlgorithmIdentifier,
such as signatureAlgorithm and signature ones.

Issue 6.2 (Matching AlgorithmIdentifier ADT). Checking the equality of the
content of the signatureAlgorithm and signature fields, both typed as
AlgorithmIdentifier, requires to compare arbitrarily long strings, hence re-
quiring a CS recognizer

Similarly, the presence of some portions of the certificate is mandatory if the cer-
tificate is self-issued, which means that the issuer and the subject are the same entity.
Recall that both issuer and subject are typed as Name ADT, which is an arbi-
trarily long sequence of names, which are generally printable strings, referring to the
issuer or subject entity, coupled with an OID identifying their meaning. Therefore:

140

6.2. Description of Our X.509 Format

Issue 6.3 (Validating self-issued certificates). Determining if a certificate is self-issued
requires to match the content of issuer and subject fields, which are both arbi-
trarily long string of bytes, in turn requiring a CS recognizer

Parsing Ambiguities and Inconsistencies. Due to looseness in standard specifica-
tion of some fields, there are also parsing ambiguities in the format. First, consider
the signatureValue field in the Certificate ADT. Despite the X.509 standard
is typing this field as a primitive BIT STRING, some standardized signature algo-
rithms require it to be a constructed field (e.g., the DSA and ECDSA cryptographic
primitives [152, 45]), in turn giving way to an ambiguity in its interpretation. The
same kind of issue arises in SubjectPublicKeyInfo field in TBSCertificate
ADT. Indeed, the public key field is typed as a BIT STRING, instead of a con-
structed ADT. These ambiguities may lead to security issues when parameters for a
given cryptographic primitive are either misinterpreted as valid for another one or sim-
ply parsed incorrectly [47, 3]. A similar issue is introduced by the extnValue field
in Extension ADT, which is typed as OCTET STRING but contains the extension
data, which is usually a constructed ADT. Nevertheless, DER forbids the encoding of
OCTET STRINGS as constructed types (see ITU-R X.690) [78], in turn forcing an
inconsistency in the way OCTET STRINGS containing the value of an extnValue
field should be treated during parsing (due to the CONTAINING keyword in the X.509
specification). We note that a less problematic definition of the field would have in-
volved a dedicated constructed ADT for the extnValue field, which should have had
its structure specified according to the value of the extnID field.

Issue 6.4 (Constructed BIT STRING and OCTET STRING Types). The adoption of
BIT STRING (resp. OCTET STRING) primitive ADT in the signatureValue
and SubjectPublicKey (resp. extnValue) fields of the X.509, which may some-
times contain other ADTs, lead to a parsing ambiguity, as such BIT STRINGs (resp.
OCTET STRINGs) can be recognized either as primitive or as constructed ADTs, de-
pending on the parser at hand

Unmanageable Number of Rules. Recall that the Extensions ADT is a sequence
of Extension ADTs. Such a sequence of ADT has no constraint on their order, as
they all share the same ADT. However, a constraint expressed in natural language in
the X.509 standard mandates that 2 Extension typed field instances with the same
extnID field cannot appear, in turn providing a concrete hindrance to its representa-
tion in grammar form. Indeed, an exponential number of productions would be required
to generate unique Extension instances in any possible order. Considering that the
number of X.509 standardized extensions is 17 [77], the required grammar would have
at least 217 productions, which is hardly manageable by a designer.

Issue 6.5 (Extension Uniqueness). Since no extensions in a digital certificate can share
the same extnID, the grammar generating all the subsets of the 17 X.509 standard
extensions [77] appearing in any possible order requires at least 217 productions

6.2 Description of Our X.509 Format

We provide the formal specification of our novel format for X.509 digital certificates
in terms of a syntactic grammar G = (Vn, Vt, Ps, 〈CERTIFICATE〉), and a lexical

141

Chapter 6. Novel Regular Format for X.509 Digital Certificates

cert→ preamble token_list
preamble→ 0x30 0x07 0x30 0x05 0xA0 0x03 0x02 0x01 0x04

token_list→ token token_list |token
token→ (ctr0|ctr1| . . . |ctr126)∗ token_body term

ctr0→ 0x80 term→ 0xFF

token_body→ integer | rsa_oid |ascii_string
integer→ inttypepayload inttype→ 0x02

payload→ ([0x00− 0xFE]|0xFF 0xFF)+

rsa_oid→ 0x05 0x2A 0x86 0x48 0x86 0xf7 0x0d 0x01 0x01 0x01

ascii_string→ 0x06 [0x20− 0x7F]+

Figure 6.1: Lexical grammar of the proposed certificate format. The lexer yields to the parser the
tokens contained in the token list. For some tokens, e.g., OIDs, only a representative sample is
reported

one Gl = (Vt,Σ, Pl, cert), as it is usual for modern technical languages. We recall
that we consider the set of digital certificates compliant to our format as a language
defined over the alphabet Σ = {0, 1}8, that is the set of 256 possible values for a
single byte. The lexical grammar describes how the input alphabet is transformed into
structured symbols Vt, the tokens, which are subsequently used as terminals by the
syntax grammar. We will indicate the elements of Vt as strings of boldface lowercase
alphabetic characters, plus the underscore, while the nonterminals Vn of the syntax
grammar are reported as angular-brackets encased, uppercase strings, e.g., 〈A〉.

Format Lexicon

The lexical grammar of the proposed format, of which the most relevant portions are re-
ported in Fig. 6.1, is designed to provide a strategy for a gradual adoption of the format,
and solve the parsing issues highlighted in Sec. 6.1. From a lexical standpoint, a cer-
tificate is composed of a fixed-length preamble followed by a non empty list of tokens
having the 0xFF character as a list separator. The fixed length preamble contains the
representation of the DER encoded prefix of an X.509 certificate up to the version field,
included, with the version set to 4. As a consequence any existing library will recognize
our format as a new version of X.509 and, if such a format is not yet supported, will
point out the error gracefully. Such a strategy allows a gradual roll-out of the new cer-
tificates, which is currently considered a crucial factor for adoption [16], as certificates
are re-generated by the CAs either upon expiration of the current ones or as a transition
policy. The use of a unique termination character (i.e., 0xFF) avoids employing length
fields, removing the need for a context sensitive recognizer reported in Issue 6.1. The
contents of each token begins with a single byte encoding its type, which is followed by
the payload of the token at hand. Since the tokens are separated by the presence of the
0xFF delimiter, the token encoding does not allow a single 0xFF to be present in their
payload; in case such a byte value needs to be represented, a pair of 0xFF characters
is used. Each token can be prefixed by one or more control bytes, fulfilling the role of
ASN.1 tags, i.e., preventing syntactic recognition ambiguities at parsing stage between
two tokens of the same type. To avoid the introduction of recognition ambiguities be-

142

6.2. Description of Our X.509 Format

tween control bytes and type encoding, the former have their first bit set, while the latter
have the first bit clear. Such an encoding allows 127 possible control bytes, and 127
possible primitive types, which we found plentiful to describe the language at hand.
We note that the use of control bytes allows us to remove the concept of constructed
data types in our format. Indeed, at encoding level, the constructed types are redundant
delimiters of the structures they represent, unless the end of such structure cannot be
unambiguously inferred from the next token found; nonetheless, in the latter case we
can employ control bytes to unambiguously mark the end of the structure at hand. We
illustrate this concept through two examples.

1. Consider the following ASN.1 definition of the Tuple ADT:
Tuple ::= SEQUENCE{

Values SEQUENCE OF INTEGER,
IsValid BOOLEAN
}

In this case, the length octets of the SEQUENCE ADT are not necessary to identify
the end of the Values field: indeed, this can be unambiguously inferred as soon
as a BOOLEAN ADT is found instead of an INTEGER one. In this case, erasing
the tag and length octets of the SEQUENCE ADT in the DER encoding of the
Values field does not affect the proper recognition of this syntactic structure

2. Consider the following alternative definition of the Tuple ADT:
Tuple ::= SEQUENCE{

Values SEQUENCE OF BOOLEAN,
IsValid BOOLEAN DEFAULT TRUE
}

In this case, the length octets of the SEQUENCE ADT are necessary to determine
the end of the Values field, that is the length octets actually act as a delim-
iter of the SEQUENCE ADT. In this case, erasing the tag and length octets of
the SEQUENCE ADT in the DER encoding of the Values field would lead to
the impossibility of determining if the last parsed BOOLEAN ADT represents the
IsValid field or the last element of Values field. Nonetheless, if we introduce
an ASN.1 tag before the IsValid field, then we can safely erase the tag and
length octets of the SEQUENCE ADT in the DER encoding of the Values field,
as in the previous example

Therefore, in our own format, to simplify the binary encoding we decide to remove con-
structed ADTs from the lexical grammar, resorting to a proper usage of control bytes
in the syntactical grammar to avoid introducing ambiguities in the format. We observe
that the removal of constructed ADTs from our lexical grammar implicitly solves am-
biguities mentioned in Issue 6.4, since interpretation of a payload as a composition of
primitive types is no longer possible. Indeed, in the troublesome cases mentioned in
Issue 6.4 where other ADTs are found in the payload of a primitive type, our syntax
grammar will be defined to expect a sequence of tokens rather than a single one.

Statement 6.1 (Regular Lexicon). The proposed lexical grammar is REG. Indeed, all
the productions of the grammar in Fig. 6.1 having only terminal symbols in their RHS
generate a REG sub-language. As a consequence of this, and the fact that regular
languages are closed with respect to union and concatenation, also the productions

143

Chapter 6. Novel Regular Format for X.509 Digital Certificates

〈CERTIFICATE〉 → preamble 〈HASH〉 〈SERIAL〉 〈ISSUER〉 〈VALIDITY〉 〈SUBJECT〉
(〈PK_CERTSIG〉 〈INTERM_PORTION〉 | 〈PK_NOCERTSIG〉 〈LEAF_PORTION〉)
〈SIGNATURE〉

〈HASH〉 → hash_oid any 〈VALIDITY〉 → time time

〈ISSUER〉 → 〈NOREPEATABLE_OID〉 (oid any)∗|(oid any)+

〈SUBJECT〉 → 〈ISSUER〉 〈SUBJ_ALT_NAME〉? | 〈CRITICAL_SUBJ_ALT_NAME〉
〈INTERM_PORTION〉 → 〈NOSELF_SIG〉 〈NOSS_INTERM_EXTN〉 |

〈SELF_SIG〉 〈SS_INTERM_EXTN〉
〈LEAF_PORTION〉 → 〈NOSELF_SIG〉 〈NOSS_LEAF_EXTN〉

Figure 6.2: Portion of the syntactic grammar of a certificate describing the axiom production and the
first level of recursion

token_list, token, token_body, and integer generate sub-languages which are REG.
Consequentially, for the same reason, the axiom of the lexical grammar cert generates
a regular language.

Format Syntax

The syntactic grammar for our proposed certificate format, of which the most signif-
icant structures are reported in Fig. 6.2, is designed to tackle the issues outlined in
Sec. 6.1 and introduces some additional constraints aimed at preventing possible at-
tacks. The 〈CERTIFICATE〉 nonterminal, which is the axiom of the grammar, starts
by generating the fixed preamble of the certificate, followed by the hash algorithm em-
ployed to compute the signature, so that it is possible to perform the computation of the
hash of the message while parsing the certificate contents. Such a fact allows a single-
pass certificate validation, yielding good efficiency and limited memory requirements.
All the contents of the certificate, save for the initial preamble, are to be hashed and
signed by the CA. The certificate structure continues with the certificate serial num-
ber, the information concerning the issuer, the certificate validity and the subject of the
certificate. We impose a uniqueness constraint on the distinguished names employed
in issuer and subject (e.g., common name, organization name), due to impersonation
attacks based on duplication of these names [81]. These ones are the set of names de-
fined as mandatory to be supported in [39](page 21); to ease checking of the uniqueness
constraint, we impose that these mandatory names should always appear in the same
order. Indeed, for a set of n elements, ensuring that each of them appears at most once
would require at least 2n productions, in turn making the grammar design hardly man-
ageable even for few elements; instead, if an order of appearance is established, then
the uniqueness constraint can be checked with a single EBNF production. In our gram-
mar, the non terminal 〈NOREPEATABLE_OID〉 is employed to generate this set of
standard defined distinguished names, ensuring also their uniqueness. Furthermore, we
allow the presence of a set of arbitrary distinguished names after the standard defined
ones.

Concerning the 〈SUBJECT〉 non terminal, we note that the subject distinguished
names may be followed by the subject alternative name extension. Conversely, in X.509
v3 format all extensions are found at the end of the certificate, immediately preceding

144

6.2. Description of Our X.509 Format

the signature on the digital certificate. In our format, we move the subject alternative
name extension immediately after subject distinguished names because it simplifies the
syntactical checking of an existing constraint in the X.509 standard, which mandates
that this extension must be present and must be marked as critical in case there are no
names in the subject field of the certificate. Since in X.509 v3 format several extensions
exhibit constraints on their presence or on their content that are introduced by the con-
tent of previous fields in the certificate, by moving such extensions immediately after
the field they depend upon we ease the syntactical checking of each of these constraints:
indeed, we manage to avoid the simultaneous check of all of them, which may lead to
a blowup in the design complexity of the grammar.

Following this design principle, we also place the extended key usage and key us-
age extensions between the public key algorithm OID and the public key parameters,
as the content of these extensions is dependent on the public key algorithm being em-
ployed. In contrast with X.509 v3, we require the presence of the key usage extension
to be mandatory, since it is crucial for security. Indeed, X.509 v3 states that if such
an extension is missing, a certificate may be used as an intermediate one, which is
prone to easy but dangerous misuses. The portion of the certificate containing the
public key, which includes also the extended key usage and key usage extensions,
is generated in the grammar by either 〈PK_CERTSIGN〉 or 〈PK_NOCERTSIGN〉
nonterminal symbol, depending on whether the public key can be employed to verify
signatures on other certificates or not, an information stated in the key usage exten-
sion. The syntactic structure of the remaining portion of the certificate significantly
differs among these two cases, as the content of several extensions found in this por-
tion depends on whether the certificate can act as an intermediate one in a certifi-
cate chain or not (e.g., the ca flag in basic constraints extension must be set to true
in the former case). A similar difference in the certificate structure is subsequently
introduced to explicitly represent whether a certificate is self-signed or not, result-
ing in three nonterminals, 〈SS_INTERM_EXTN〉, 〈NOSS_INTERM_EXTN〉, and
〈NOSS_LEAF_EXTN〉, that generate the remaining portion of the certificate fulfill-
ing the constraints imposed by the content of the previous fields. Note that the remain-
ing combination of features (i.e., 〈SS_LEAF_EXTN〉) is discarded as a self-signed
certificate which can be used only as a leaf of a certificate chain is pointless. We re-
mark that the presence of an explicit field specifying if a certificate is self-signed or not
allows to determine if a certificate is self-issued without the need for a CS recognizer
(Issue 6.3).

Each of the three possible nonterminals generates the portion of the certificate con-
taining the remaining extensions with a specific set of constraints. In any case, the
remaining extensions are spit in two sequences:

〈EXTN〉 → 〈STD_EXTN〉 〈CUSTOM_EXTN〉
The 〈STD_EXTN〉 nonterminal generates any subset of the extensions described in the
X.509 standard (except for the ones placed earlier in the certificate, such as key usage).
We establish a fixed order of appearance for standard extensions, which is designed to
minimize the distance between interdependent extensions, leaving extensions with no
dependency at all at the end of the list, enforcing appearance ordering in [39]. As for
checking the uniqueness of distinguished names, this fixed order also allows to easily
check that each standard extension appears at most once in a digital certificate, hereby

145

Chapter 6. Novel Regular Format for X.509 Digital Certificates

addressing Issue 6.5. After standard extensions, our format allows to specify custom
extensions, maintaining the degree of freedom present in X.509 v3: such extensions,
generated by the 〈CUSTOM_EXTN〉 nonterminal, must appear after standard ones.

Finally, the signature field concludes the certificate and contains the signature al-
gorithm OID and the signature itself. Note that there are no algorithm parameters in
signature field since we argue that it is sufficient to represent them once alongside the
public key employed to verify the signature. Moreover, note that signature algorithm
appears only once effectively solving the issue of context-sensitive checks reported in
Issue 6.2.

We note that, despite our proposed format is missing some fields with respect to
the current X.509 v3, we are able to represent with it all of the information contained
in the older format, while retaining an easier to recognize, and mechanically generate,
format. The only semantic constraint of X.509 v3 which we are not able to check
syntactically is the uniqueness of certificate policies, custom extensions and custom
distinguished names OIDs. We note that such a shortcoming cannot be coped with
using a regular grammar, unless restrictions are imposed on the set of OIDs. However,
we note that performing a simple bytewise uniqueness check after the recognition of
the entire certificate is quite straightforward, and not likely to be mis-implemented.

Statement 6.2 (Regular syntax grammar). Analogously to the procedure employed to
prove our lexical grammar regular, we can prove our syntax grammar to be regular
as all of its nonterminals either generate finite languages, or are combined together
with operations over which regular languages are closed. Thus, the combination of the
lexical and syntactic grammars is also regular.

6.3 Implementation strategies and experimental validation

We realized an implementation of the grammar described in the previous section, and
we derived automatically a certificate parser from it. Our purpose was twofold: first of
all we validated the absence of ambiguities in it, and then we experimentally validated
the linear parsing time in the size of the input achieved for our new digital certificates.

Parser implementation

Our implementation employs the widely consolidated yacc toolchain [145], composed
by a lexical scanner generator, Flex, and an LR(k) parser generator, GNU Bison.
Our choice of a DPDA recognizer was made to provide a more meaningful error re-
porting, however we note that the implementation and generation of a fully regular
recognizer is also possible. In implementing the lexical recognizer, we exploited the
multi-state lexer generation feature available in Flex, which basically implement the
inner product of Finite State Automata (FSAs). Such a feature allows to describe with
ease the distinction between the recognition of payload and type identifiers, partition-
ing the inner FSA graph. The incoming byte is thus correctly matched depending on
the specified lexer state. The multi-state feature is also employed to recognize con-
straints on public key algorithms and key usage/extended key usage extensions. Such
constraints are different depending on the public key algorithm recognized which is
matched right before them, and a solution relying on lexer states allows a clear spec-
ification of their recognition, taking into account the correct set of constraints. We

146

6.3. Implementation strategies and experimental validation

0 10 20 30 40 50

0

250

500

750

1,000

1,250

Size (kB)

Ti
m

e
(µ

s)

samples
linear regression

Figure 6.3: Parsing execution timings as a function of the certificate size

lexically check such constraints as this can be done more easily inspecting the lexi-
cal grammar terminals than inspecting whole tokens. Due to the abundance of such
constraints, the lexer specification is relatively large, counting 815 lines.

However, the syntax grammar in Bison benefits from such an offloading, being
only 457 lines long, and counting just 112 rules. Bison manages to generate the parser
without conflicts, proving that the proposed grammar is unambiguous as it fulfills the
LR(k) condition [70].

Performance Analysis

In order to test performance of the generated parser, we need to generate a dataset
using a string generator from the same grammar specification. Such generator works
in two main phases: first, it parses a yacc-formatted file to build an Abstract Syntax
Tree (AST) expanding at least once every grammar production. During generation
phase, the algorithm randomly traverses the tree appending strings generated by each
terminal symbol found. Although the algorithm is quite straightforward, we needed to
implement a new generator from scratch as the current state of the art one, Yagg [40],
was not fulfilling our needs. Indeed, although Yagg allows to generate all possible
strings of given length from a grammar, it has no support for binary alphabet grammars
and for multi-states lexers, and it is only able to generate tokens out of a limited set
of regular expression operators. Instead, our tool copes with our multi-state lexical
grammar, deals with a broader set of regular expression operators and, differently from
Yagg, it requires slight modifications to the Flex/Bison specifications to employ
them as input.

We measured the execution times of our parser on a generated dataset made of 90
sample certificates of different lengths. The machine employed for all these tests was
a Linux Gentoo 13.0 amd64 host based on a six-core Intel Xeon E5-2603v3 endowed
with 32 GiB DDR-4 DRAM. The results are reported in Fig. 6.3. The good fit between
the experimentally measured timing samples and their linear regression clearly shows
a linear parsing time. Moreover, we note that our parser recognition times are actually

147

Chapter 6. Novel Regular Format for X.509 Digital Certificates

really short, as recognizing a certificate of size 1 kB takes only 25 µs, after a fixed
bootstrapping time of 121 µs. To provide a somewhat fair comparison with existing
parsers for X.509 v3 certificate, we checked the execution time of the OpenSSL [117]
d2i_X.509_fp function, which simply reads an ASN.1 DER encoded certificate from
a file and stores the information in an internal data structure, leaving the check of syn-
tactic constraints to the validation routine. In particular, we compared the average exe-
cution time of our parser (stripped and compiled with release-grade optimizations) and
the OpenSSL routine over datasets with an average certificate size of approximately
1500 bytes. The experimental evaluation showed that our complete parsing routine is
as fast as the OpenSSL simpler function, since it employs 127µs on average to parse a
certificate against the 126µs required by OpenSSL routine.

148

CHAPTER7
Security Audit of OpenPGP Format

PLEASE, LET ME EXPLAIN!!

In this chapter, we provide our analysis of the OpenPGP format, which is extensively
described in Sec. 5.3. Our analysis aims at discussing the issues and the hindrances
to be tackled in order to obtain a grammar amenable to automatic parser generation
algorithms for the OpenPGP format. To this extent, we first classify the set of valid
OpenPGP certificates and messages according to Chomsky’s hierarchy [70], showing
that the OpenPGP format can be represented with a DCF grammar, from which an ef-
ficient parser can be automatically derived; then, we show that such grammar cannot
be employed in practice to automatically generate an efficient parser. In addition, we
point out some flaws in the specification of the OpenPGP format identified throughout
our analysis, designing several attacks stemming from the exploitation of such flaws.
We also evaluate the effectiveness of our attacks on the most common OpenPGP im-
plementations, namely GPG and Symantec PGP.

7.1 On the Design of a Formal Grammar for the OpenPGP Format

We now discuss the challenges and the feasibility to design a grammar amenable to
automatic parsing generation algorithms for the OpenPGP format. As a stepping stone
to build such grammar, we first classify the set of valid OpenPGP certificates and mes-
sages according to Chomsky’s hierarchy.

Language-Theoretical Classification of OpenPGP Format

Following the blueprint of the description of the OpenPGP format reported in Sec. 5.3,
we start our analysis from OpenPGP packets, and then we classify according to Chom-
sky’s hierarchy the set of OpenPGP certificates and messages by considering them as
a language defined over OpenPGP packets. Indeed, similarly to strings in a language

149

Chapter 7. Security Audit of OpenPGP Format

being a concatenation of symbols of an alphabet, OpenPGP certificates and messages
are actually a concatenation of different OpenPGP packets.
OpenPGP Packets. Every OpenPGP packet has the same structure, composed by a
single byte packet tag, a body length and the payload of the packet. The information
found in the packet tag can be easily recognized by a FSA, which may simply employ
up to 256 states to store the bits found in the packet tag. Matching the content of the
body length field with the actual size of the payload can be also performed by a REG
recognizer, as the size of an OpenPGP packet is upper bounded by 232 − 1 bytes. An
exception to this upper bound is represented by the v3 packets with unknown length:
for these packets, the standard delegates to implementations how to determine the end
of the packet. This poses a serious issue in classifying the OpenPGP format language.
Indeed, depending on the method employed to determine the end of the packet, the lan-
guage can be classified in the REG class, in the DCF class (if a parenthesized structure
is used), or even within classes requiring higher computational power. Given that such
a choice is completely implementation dependent, in our classification of the OpenPGP
object formats we will assume this encoding to be REG. Luckily, this issue was ad-
dressed in OpenPGP v4 packets, where the partial body length encoding (see Sec. 5.3)
is employed for packets with unknown length; with such encoding, an arbitrarily long
packet is split in several packets with at most 230 bytes, in turn allowing to enforce the
correct length of the packets with a REG recognizer.

The structure of the payload of an OpenPGP packet obviously depends on the packet
type. Among all the packets defined in the OpenPGP standard [29], the one with the
most complex structure is definitely the Signature Pkt, described in Sec. 5.3, be-
cause of the presence of several sub-packets. Analyzing the structure of the payload of
a Signature Pkt, we observe that it is a sequence of elements either with a fixed
size or whose size is prefixed to them (e.g., the sub-packets). In the latter case, there
are upper bounds on those size: indeed, a sequence of sub-packets cannot be longer
than 216 − 1 bytes, as a 16 bit wide length field, which stores the number of bytes of
the sequence at hand, is prefixed to the sequence. In conclusion, to check the proper
syntactical structure of a Signature Pkt, a REG recognizer is sufficient. Similarly,
we argue that the structure of other packets appearing in an OpenPGP certificate is
regular too, being simpler than Signature Pkt one. Indeed, all those packets are
composed by elements either with a fixed size or which contain unstructured data (e.g.,
an encrypted message). In conclusion, since all the payloads of OpenPGP packets can
be recognized with a REG recognizer, we can make the following statement:

Statement 7.1. A generic OpenPGP packet can described with a REG language, since
it is a concatenation of finite (every body length field has an upper bound) REG fields.

OpenPGP Certificates and Messages. We can now classify according to Chomsky’s
hierarchy the set of OpenPGP certificates and messages by looking at their correspond-
ing grammars, reported in Fig. 5.3(a) and Fig. 5.3(b), respectively. The terminal sym-
bols of these grammars are OpenPGP packets, which are strings of a REG language. By
looking at the grammar defining an OpenPGP certificate (Fig. 5.3(a)), we observe that
it is defined by a regular expression (i.e., a single EBNF rule) over OpenPGP packets;
therefore, we can make the following statement:

Statement 7.2. The language of OpenPGP certificates is REG, as it is realized via

150

7.1. On the Design of a Formal Grammar for the OpenPGP Format

union and concatenation of REG languages

Considering the grammar defining an OpenPGP message (Fig. 5.3(b)), we observe
that the production expanding the Signed non-terminal symbol is not linear, as it in-
terleaves terminal symbols (i.e., OnePassSignature and Signature) and non-
terminal ones (i.e, PGPMessage), hereby making the grammar in Fig. 5.3(b) a CF
grammar. It is worth noting that any possible rewriting of the grammar in Fig. 5.3(b)
cannot guarantee the non-interleaving between terminal and non-terminal symbols in
the RHS of the productions. This can be easily proven observing that the OpenPGP
format admits language words having a One-Pass Signature Pkt as a prefix
and the Signature Pkt as a suffix. Assuming to rewrite the grammar, changing the
last production and moving the non-terminal symbol PGPMessage either at the start or
at the end of the RHS of the production, the aforementioned words can no longer be
derived.

To show that the OpenPGP message format can be described by a DCF grammar,
we observe that such messages exhibit the following structure: x c bn s.t. x ∈ {a, b}∗ ∧
|x|a=n, n≥0, where a is OnePassSignature, b is Signature and c is either
Plaintext or Encrypted; the number of a in x (denoted as |x|a) must be equal to the
number of b after c. Syntactically checking that a signed OpenPGP message exhibits
the aforementioned structure requires a DPDA, thus making the grammar a DCF one.

Statement 7.3. The OpenPGP message format is a DCF language due to signed mes-
sages employing the single pass signature verification format, which requires to match
any One-Pass Signature Pkt found before the signed message with a corre-
sponding Signature Pkt found after the signed message.

In conclusion, we claim that there exists a DCF grammar that generates all the pos-
sible OpenPGP certificates and messages. Since DCF grammars are amenable to auto-
matic parser generation algorithms, then designing a DCF grammar for the OpenPGP
format would allow to immediately obtain an efficient and effective parser for OpenPGP
certificates and messages with sound correctness guarantees. Nonetheless, in the fol-
lowing we show that, although a DCF grammar for OpenPGP format exists, it cannot
be practically employed to derive a parser, because the automatically generated parser
would require an unpractical amount of memory.

Size-bounds of a Parser Derived from OpenPGP DCF Grammar

The most troublesome portion of the DCF grammar for the OpenPGP format concerns
the match between the content of the body length fields in OpenPGP packets with the
actual number of bytes found in the payload of the packet at hand. To this end, we
can employ a DPDA with a number of states which is proportional to the bit size of
the body length field. Specifically, the DPDA reads the content of the body length
field, pushes its binary encoding onto the stack (with the least significant bit on the top)
and decrements it each time a byte of the body of the packet is read, while checking
that the binary counter on the stack is zero if and only if all octets of the body of the
packets have been read. Nonetheless, similarly to Issue 6.1 described for X.509 digital
certificates, this strategy cannot be employed on a DPDA if more than one counter has
to be simultaneously handled, since to modify one counter we erase the information
on the other counter. Unfortunately, in the OpenPGP format, there is a packet whose

151

Chapter 7. Security Audit of OpenPGP Format

parsing requires to simultaneously handle three counters: the Signature Pkt. In-
deed, we recall from Sec. 5.3 that this packet contains two sequences of sub-packets:
each sequence is prefixed with a 2-bytes length field, which stores the total number l
of bytes encoding the sequence; furthermore, the i-th sub-packet in the sequence stores
the number li of bytes encoding its payload in the body length field of its header. There-
fore, for each byte read in the payload of a sub-packet, the DPDA should decrement the
counter for the body length field of the sub-packet, the counter for the length field of
the sequence the sub-packet belongs to and the counter for the body length field of the
Signature Pkt where the sequence of sub-packets is located.

Given that the strategy of storing the binary encoding of the counters in the stack
of the DPDA is not possible, then the automaton must necessarily employ the states to
store these counters. We now show that the number of such states becomes so high that
the automaton cannot even be deployed on existing hardware. Suppose that the DPDA
employs a counter on the stack to check that the length of the sub-packet matches with
the content of its body length field. Then, assuming a sequence with m sub-packets,
the DPDA necessarily employs its states to verify the constraint that l =

∑m
i=1 li. In

particular, the automaton needs to employ a sequence of m states for each possible
“composition” of sub-packet lengths: i.e., a sequence of states for each possible list of
numerical values li adding up to the value l. The same set of li values in a different
order represents a different sub-packet sequence, thus requiring its own sequence of
states. We now show that the number of these sequences needed for given values of
m and l can be computed as

(
l−1
m−1

)
. Consider the numerical value l as the addition of

the value one repeated l times: i.e., l=1+1+. . .+1. In this expression there are l−1
plus operators. By choosing m−1 plus operators to be replaced with a separator (e.g.,
a comma ,), we obtain m positive integers (i.e., the sum of all the 1s found between
two commas) that sums up to l. We observe that there is an onto mapping between the
possible placements of the m−1 commas and the possible set of m integers summing
up to l. Therefore, the number

(
l−1
m−1

)
of possible placements of m−1 commas over

the l−1 available positions (i.e., the plus operators in l=1+1+. . .+1) corresponds to
the number of possible set of integers m summing up to l. Employing m=26 and
l=100, where 26 is the number of different sub-packets defined in [29], while 100 is a
reasonably representative value of the size of the sequence of sub-packets, we obtain
that the DPDA requires

(
l−1
m−1

)
=
(

99
25

)
>279 sequences of states, which implies that the

DPDA memory largely exceeds the amount of memory currently available on existing
hardware. Furthermore, we remark that this estimation is only an extremely loose lower
bound on the number of states of the DPDA, as we should also must take into account
all the possible combinations of m and l, requiring

(
l−1
m−1

)
sequences of m states for

each combination. In conclusion, it is not possible in practice to automatically derive a
parser from the DCF grammar for the OpenPGP format.

7.2 Design Flaws in OpenPGP Format

In this section we outline the flaws of the OpenPGP format identified throughout our
analysis and the attacks that exploit such flaws. To this extent, our threat model assumes
an attacker to be a legitimate user of the OpenPGP system, and thus able to modify at
will his keyring and to retrieve from the global keyservers any user certificate, tamper

152

7.2. Design Flaws in OpenPGP Format

with it and upload it back. In addition, he is assumed to be able to eavesdrop OpenPGP
messages sent from a legitimate user to another with the purpose of subverting the
security services provided by the system.
Design Flaws and Attacks. The first issue we identify in the OpenPGP format spec-
ification is the unbounded length form of ver. 3 packets, which delegates to the appli-
cation the choice of the method to determine the end of a packet encoding. Assuming
a disambiguation strategy based on the presence of the End Of File marker as packet
terminator, an attack aimed at both erasing and preventing the addition of subkeys to
an existing certificate object is easily conceivable.

Attack 7.1. Given a ver. 3 user certificate, the attacker appends to it an User ID
Pkt having in its header an unbounded length specification of its body, and later ex-
ports the tampered certificate back to the keyserver. Since this packet may contain
arbitrarily long unformatted data, all the packets following it in a publicly available
instance of an OpenPGP certificate will be misinterpreted as part of its payload, with-
out causing a syntactic failure.

Note that we consider User ID Pkt since it is the only packet in a certificate
which may contain arbitrary long unformatted data, thus subsequent packets may be
enclosed in its payload without causing a syntactic failure. Fortunately, such a trouble-
some indefinite length encoding is discarded in ver. 4 packets. It is clear that attack 7.1
is not applicable to such an encoding, since all the bytes are still counted and a packet
cannot end with a chunk having a partial body length field.

The second issue we identify lies on the fact that the specification about the signed
message format with the single pass verification option [29] does not mandate a match
between the data in the One-Pass Signature Pkt and the one in the corre-
sponding Signature Pkt. Enforcing such a match is critical, as the content of
the One-Pass Signature Pkt is not cryptographically signed and any alteration
of the signature parameters included in it (e.g., the kind of signature algorithm) would
not be spotted by a signature verification failure.

Attack 7.2. Given a signed message including a One-Pass Signature Pkt, an
attacker can replace the content of its fields without causing a syntactic failure in the
OpenPGP client. As a consequence the application logic can be deceived to employ
different parameters for the signature verification algorithm.

As an example, one of the fields of the mentioned packet, namely the signature type
one, allows to specify if the signature is to be computed on a textual or binary message.
In the processing of a textual message to compute the signature, the OpenPGP spec-
ification [29] mandates to replace any octet having the same encoding of the ASCII
characters 〈CR〉 or 〈LF〉 with the sequence: 〈CR〉〈LF〉. Let us consider a message
encoded as a binary file, and included as such in a signed OpenPGP message with a
single pass verification option. If the attacker changes the value of the signature type
field from binary to textual and removes one octet, for any pair of octets of the original
message equal to 〈CR〉〈LF〉, then the OpenPGP client will add back the removed octet
during the signature verification execution, thus validating the tampered message. The
consequences of deceiving the signature verification check logic depend on the seman-
tic of the binary encoding of the original message. For instance, if the binary message
contains software updates, the program code may be tampered with this technique.

153

Chapter 7. Security Audit of OpenPGP Format

The third issue we identify is related to the structure of the Signature Pkt. In
particular, the two sequences S1, S2 of sub-packets in the body of a Signature Pkt
may include sub-packets of any type, with the ones in S1 being signed, while the ones
in S2 being unsigned (see Sec. 5.3). The OpenPGP standard [29] does not report any
restriction nor recommendation on which kind of sub-packets should appear in S1 or
S2, potentially exposing applications to malicious information found in the unsigned
sub-packets. Indeed, an implementer of the OpenPGP clients may not have enough
expertise to determine whether an information found in an un-signed sub-packet may
be employed without consequences on the security guarantees. We now describe two
attacks on two different sub-packet types that show possible consequences of trusting
sensitive information found in an un-signed sub-packet.

Attack 7.3. Given a user’s certificate with a self-signature on the UserID/Primary
Public Key binding, the attacker adds to the portion encoded by the Signature Pkt
an unsigned Revocation Key Subpkt. This sub-packet includes the digest of a
cryptographic key meant to be able to revoke the binding vouched by the signature
in the Signature Pkt. In case the OpenPGP client processes a certificate taking
the information in an unsigned Revocation Key Subpkt sub-packet as legit, an
attacker is able to revoke the original UserID/Primary key binding with the key included
in the added sub-packet

Furthermore, the preferred algorithms subpackets, that are Preferred Hash
Algorithms Subpkt, Preferred Compression Algorithms Subpkt,
Preferred Symm Algorithms Subpkt, may be exploited to perform a down-
grade attack:

Attack 7.4. Given a user’s certificate with a self-signature on the UserID/Primary Pub-
lic Key binding, the attacker adds to the portion encoded by the Signature Pkt an
unsigned sub-packet to state the cryptographic algorithms to be preferably used to in-
teract with the UserID. The possible subpackets of this kind are: Preferred Hash
Algorithms Subpkt, Preferred Symmetric Algorithms Subpkt and
Preferred Compression Algorithms Subpkt. In case the OpenPGP client
processes a certificate taking the information in an unsigned sub-packet as legit, an at-
tacker is able to foster the usage of weak cryptographic primitives to communicate with
the victim user.

For instance, by stating that a user supports only MD2 algorithm, the attacker forces
the usage of a weak hashing primitive where collisions may be found.

A further issue is related to the lack of standardized criteria for managing conflicting
information in OpenPGP certificates and messages containing Signature Pkts. In
particular, there are two possible conflicting scenarios. In the first one, the lists of sub-
packets in a Signature Pkt may contain one or more sub-packets of the same type
with conflicting data. In the second one, a OpenPGP certificate may include multiple
self-signatures vouching for the same binding, but including conflicting data. Non-
standardized strategies for solving the aforementioned conflicts are a potential source
of vulnerability. Indeed, if two different implementations employ different policies,
then an attacker can benefit from the different data processing, as we exemplify in the
following attack.

154

7.3. Experimental Evaluation of Our Attacks

Attack 7.5. Given a user’s certificate with a self-signature including an expiration time
t1 in a Key Expiration Time Subpkt, the attacker may add an additional un-
signed sub-packet of the same type with expiration time t2>t1 with the aim to imperson-
ate the certificate’s owner in the future after recovering its private key. The conflicting
information on the expiration date may lead a set of clients to consider the certificate
valid up to t2, while the user still believes its key to be valid until t1.

7.3 Experimental Evaluation of Our Attacks

We now evaluate the attacks identified in Sec. 7.2 against both Symantec PGP [148]
10.4.0MP1HF1 and GPG [89]. For GPG, we test both the legacy tree version ver.1.4.18,
employed by default in Debian and Ubuntu, and ver. 2.1.18. However, we did not find
any differences, and thus we will refer to both of them as GPG from now on. As a key-
server, we employ SKS [110], the de-facto standard implementation written in OCaml,
which is currently used in the overwhelming majority of the public keyservers.
Attack 7.1 Evaluation. This attack is simply prevented in GPG since a User-ID
Pktwith an unbounded length type of body length field is deemed a syntactic error. We
observe that the attack conceptually works through usage of Literal Pkt, on which
GPG allows usage of unbounded length type of body length field. Indeed, if we inject a
Literal Pkt in an OpenPGP certificate, all the subsequent packets will be included
in its body. Nevertheless, this certificate is not even exported by GPG since a Literal
Pkt is valid only if found in OpenPGP messages. Moreover, even directly uploading
the certificate to our test keyserver, we found out that it is ignored by SKS. Indeed,
by looking at the code, we realize it does not handle unbounded length encoding at all.
About Symantec PGP, no error is raised during the import of the certificate, however the
unbounded length User-ID Pkt is ignored, with no effects on the original certificate.
Attack 7.2 Evaluation. Signature type and public key algorithm identifier fields in
One-Pass Signature Pkt are ignored by GPG, while a mismatch between the
hash algorithm identifiers in One-Pass Signature Pkt and in the corresponding
Signature Pkt is detected. Symantec PGP detects the mismatch for each of the
previous fields. Therefore, Attack 7.2 is not feasible on both implementations.
Attack 7.3 Evaluation. First of all, we acknowledge that the modified self signature
with the unsigned Revocation Key Subpkt is imported in the keyring by GPG
only if the original, untampered signature is absent in the keyring. However, the un-
signed sub-packet is ignored even if imported in the keyring. Symantec PGP is even
more restrictive, completely preventing to import the modified self signature with the
unsigned Revocation Key Subpkt in the keyring independently from the fact
that the original, untampered signature is already present in the keyring or not.
Attack 7.4 Evaluation. This attack does not work since both implementations include
by default signed preferred algorithms sub-packets. These ones state legitimate prefer-
ences to be used when interacting with the UserID authenticated in the Signature
Pkt. These preferences cannot be restricted employing another preferred algorithm
sub-packet, but they can only be enlarged. Therefore, the attacker cannot force the
usage of a weak cryptographic primitive.
Attack 7.5 Evaluation. For the same reasons highlighted during analysis of attack 7.3,
this one can be performed only against users that do not have the victim’s public key in

155

Chapter 7. Security Audit of OpenPGP Format

their keyring. GPG employs a signed Key Expiration Time Subpkt to state
when the public key expires. Therefore, the unsigned Key Expiration Time
Subpkt is ignored. Since Symantec PGP ignores all added sub-packets, it is clearly
immune to this attack too.

As a conclusion, none of the identified attacks are exploitable on considered imple-
mentations. We remark that this evaluation does not show that these issues are harm-
less, but it demonstrates that fortunately implementers properly deal with them, being
conscious of the security implications of their decisions.

7.4 Improvements to OpenPGP Format

We now briefly discuss some modifications to the OpenPGP format to obtain a DCF
grammar that can be employed in practice to derive an automatically generated parser.

The presence of the single pass signature verification option in the format of the
signed messages is responsible for the DCF classification of the OpenPGP grammar. A
change in the grammar definition to make the format amenable to a REG specification
would require an additional constraint on the maximum number of different signatures
put on the same message, removing the need of a recursive production in the grammar.
However, such a modification would reduce the expressiveness of the format language
and in the end remove a feature of the OpenPGP system.

The specification of a practically manageable OpenPGP DCF grammar would re-
quire to remove the length fields from OpenPGP packets. We note that in the current
specification of the OpenPGP format, some length fields are redundant (e.g., when re-
ferring to a fixed sized sequence of elements). In such cases they can be safely removed
to keep the format as small as possible. To remove the non redundant length fields,
similarly to the approach employed in the design of our novel format for X.509 digital
certificates described in Chapter 6, we may replace length fields with proper delimiters,
say a fixed octet, provided a proper escaping is computed over the octets in case the
same value of the delimiter octet is found in the payload of the packet. This escaping
can be easily performed by doubling the delimiter octet in encoding, and removing it in
decoding. Therefore, the end of the element is found when an odd number of delimiter
octets is matched. We observe that such new binary encoding for OpenPGP packets
cannot completely replace the older one: indeed, because of the append-only nature of
OpenPGP certificates, it is not possible to get rid of old packets in existing OpenPGP
certificates; nonetheless, it would be possible to append packets without length fields
to existing OpenPGP certificates. Conversely, OpenPGP messages can be entirely en-
coded without length fields.

Finally, we discuss mitigation strategies for each of the attacks identified in Sec. 7.2.
Attack 7.1 is fortunately already mitigated in ver. 4 OpenPGP packets. Therefore, ex-
isting implementations, while still accepting valid ver 3 packets for backward compat-
ibility, should foster the adoption of ver. 4 ones by employing them while creating or
updating OpenPGP certificates and messages. Nonetheless, our experimental valida-
tion reports that both GPG and Symantec PGP still generate certificates and messages
employing ver. 3 packets. Attack 7.2 can be mitigated by mandating that the parame-
ters for the computation of the digital signature found in a One-Pass Signature

156

7.4. Improvements to OpenPGP Format

Pkt, which are unsigned, must match with the corresponding ones found in the signed
Signature Pkt paired with the One-Pass Signature Pkt at hand, as cur-
rently enforced by Symantec PGP. Attacks 7.3, 7.4 are caused by both the append-
tolerant nature of the OpenPGP format (which is crucial to its working) and the freedom
of action left by the standard on the decision of which sub-packets should be signed.
Since removing the possibility to append valid packets to existing OpenPGP objects
would undermine the functionality of the system, the only viable alternative is forc-
ing all the security critical sub-packets (e.g., Non-Revocable, Key Expiration
Time, Revocation Key, and Signature Expiration Time) to be signed.
Attack 7.5 is caused by a loose specification in the standard on how to deal with con-
flicting information found in OpenPGP certificates and messages, which may lead to
inconsistencies of the data extracted from an OpenPGP certificate or message between
different implementations. Therefore, to remove this potential threat, the OpenPGP
standard should mandate a specific policy to handle conflicting information, such as
introducing uniqueness constraints or always considering the first/last duplicate infor-
mation processed.

157

Concluding Remarks and Further Developments
PLEASE, LET ME EXPLAIN!!

The proper adoption of sound cryptographic primitives is crucial in many real world
systems to ensure their security: indeed, even a single weakness found in a crypto-
graphic component of the system is often sufficient to completely subvert its secu-
rity guarantees. Unfortunately, employing theoretically sound cryptographic primitives
is not sufficient to ensure that the cryptographic components of a system are not ex-
ploitable by attackers. Indeed, the integration and deployment of a cryptographic prim-
itive in a complex system usually exhibits some challenges that must be carefully tack-
led by designers and developers. For instance, given the complexity of cryptographic
primitives, developers may easily build flawed implementations, where a simple un-
noticed error may introduce algebraic or statistical weaknesses as well as making the
implementation vulnerable to powerful side-channel attacks. Furthermore, even as-
suming the adoption of a sound implementation from a reliable cryptographic library,
other potential vulnerabilities may be introduced by misusing cryptographic compo-
nents (e.g., employing a weak secret key). Besides ensuring that the cryptographic
components provide the expected security guarantees, the designers of a secure sys-
tem are also concerned by the performance overhead introduced by the cryptographic
components. Indeed, in case a cryptographic primitive significantly degrades the per-
formance of a system, it may even be removed from the system, hereby leaving it with
weaker or even no security guarantees, as no designer would employ a cryptographic
solution that significantly worsens the quality and the usability of the system.

In this work, we addressed the challenges imposed by the adoption of two crypto-
graphic primitives in real-world systems and applications. Specifically, we focused on
the security cost exhibited by solutions for privacy-preserving outsourced computation
and on the exploitable security vulnerabilities introduced by the improper parsing of
digital certificates. For each of these broad topics, which correspond to the two parts
composing this manuscript, we now briefly recap the specific problems tackled in this
work, our contributions and the conclusions that we can derive from our research. We
also discuss possible further developments of our work that may stem from our findings.

159

Concluding Remarks and Further Developments

Privacy-Preserving Outsourced Computation

We focused on the problem of outsourcing computation to a powerful untrusted server
(e.g., a cloud provider or a data center) while retaining the confidentiality of the data
involved in the computation. Indeed, the lack of privacy guarantees on outsourced data
may prevent entities dealing with sensitive data (e.g., biomedical or financial ones) to
outsource computation to an untrusted server, in turn leading to the loss of all the finan-
cial and performance advantages enabled by outsourcing computation. FHE schemes
allow to perform an arbitrary computation over encrypted data without the need to
know the secret key, thus guaranteeing the confidentiality of the data involved in an out-
sourced computation. The main hindrance that prevents the adoption of FHE schemes
in real-world applications is the significant performance overhead introduced by com-
putation over ciphertexts, which amounts to at least 6 order of magnitudes with respect
to standard computation over the corresponding plaintext values.

The first approach followed in this work to reduce this performance gap was the
investigation of the security guarantees of noise-free FHE schemes: indeed, these
schemes can in principle exhibit better performance than common FHE ones because of
the absence of costly noise management techniques; nonetheless, most of the existing
noise-free schemes turned out to be completely insecure after some scrutiny. Our in-
vestigation lead to the design of new attack techniques against FHE schemes (reported
in Chapter 2), which are applicable also to the only two existing noise-free ones that
had not been completely broken yet (i.e., OctoM and JordanM). Our main technique
is a plaintext-recovery attack applicable to any FHE scheme for which there exists an
m-distinguisher, that is an efficient algorithm capable of determining if the correspond-
ing plaintext value of a generic ciphertext is a fixed integer m. Our attack combines
the homomorphic capabilities of the FHE scheme with the information leakage coming
from the m-distinguisher, employing only the public information about the ciphertexts
available in a ciphertext-only scenario. Although the computational cost of our attack is
linear in the value of the plaintext being recovered, it significantly improves the number
of recoverable plaintexts with respect to an exhaustive search strategy, which, in turn,
might mean recovering a vast portion of ciphertexts in a FHE application scenario.
Since the existence of an m-distinguisher was proved for any linearly-decryptable FHE
scheme [158], our attack is immediately applicable to any such scheme, including the
two linearly-decryptable noise-free FHE schemes OctoM and JordanM. We indeed
experimentally validated the efficacy of our attack against these two FHE schemes,
also showing that the performance of a parallel implementation of our attack scales
proportionally with the number of computing nodes employed to perform the attack.
Furthermore, during the implementation of the OctoM scheme, needed for our experi-
mental validation, we discovered that it is not a FHE scheme, because the homomorphic
multiplication proposed by its designers in [158] yielded an incorrect result; therefore,
we also revised this homomorphic operation in OctoM, proposing a sound design that
makes the scheme fully homomorphic.

In addition, we discussed a simple modification to OctoM and JordanM that makes
them no longer linearly-decryptable, and thus no longer vulnerable to our plaintext re-
covery attack; nonetheless, we showed that it is still possible to mount a KPA with the
knowledge of the corresponding plaintext value for a few tens of ciphertext, and we pro-
posed a second attack technique that allows to compute enough ciphertexts with known

160

Concluding Remarks and Further Developments

corresponding plaintext value to mount the KPA. This second technique allows to com-
pute a polynomial number of ciphertexts with known plaintext values for any FHE
scheme by relying on a very little amount of information, namely only a broad range of
possible plaintext values for a single ciphertext is sufficient. We showed that this lim-
ited information allows to efficiently compute enough ciphertexts with known plaintext
values to mount the KPA against the modified OctoM and JordanM schemes, in turn
completely subverting their confidentiality guarantees.

Our attacks clearly show that FHE schemes must ensure strong security guarantees
(i.e., at least security against chosen-plaintext attacks), as otherwise they are completely
insecure. Indeed, the common thread of our techniques is that the homomorphic capa-
bilities allow to dramatically amplify the impact of a small vulnerability on the security
of the vulnerable FHE scheme. Our investigation unfortunately poses a further chal-
lenge in the design of secure and efficient FHE schemes, since it implies that we cannot
trade strong security guarantees of the scheme for the efficiency of the homomorphic
computation. For instance, the OctoM and JordanM noise-free FHE schemes were
an example of this trade-off, as the existence of both the m-distinguisher and the KPA,
acknowledged also by their authors, might still have allowed the adoption of these
schemes in application scenarios where it is safe to assume that the attacker cannot
know enough plaintext values to mount the KPA or where it is unlikely to find ci-
phertexts whose corresponding plaintext is the fixed value m; nonetheless, our attacks
show that these schemes cannot be securely used even in such particular scenarios.
Therefore, the design of secure and efficient noise-free FHE scheme remains an open
problem, which may be addressed in future research efforts.

Given the absence of a secure noise-free FHE scheme, in this work we investigated
two alternative strategies to overcome the performance gap introduced by FHE: em-
ploying PHE schemes instead of FHE ones, as they trade the homomorphic capabilities
for efficiency; relying on trusted hardware for secure computing, such as the commer-
cially available Intel SGX technology. In the first case, the main challenge resides in
devising algorithms to perform a given computation with the limited homomorphic ca-
pabilities of a PHE scheme; in the second case, the main challenge is mitigating the in-
formation leakage coming from SGX side channels. In this work, we applied these two
approaches in the design of two efficient PPSS protocols which exhibit practical per-
formance and a limited communication cost between the user issuing substring-search
queries and the untrusted server that computes the results of such queries. We now
recall the main achievements of our designs and the possible future developments that
we foresee to improve their performance and their features; then, we discuss the effec-
tiveness of our solutions in reducing the performance overhead of privacy-preserving
outsourced computation.

In the first of our solutions, presented in Chapter 3, we provided a general construc-
tion of a PPSS protocol, which combines the privacy guarantees given by a PIR protocol
with the backward search substring search method [57]. By instantiating our construc-
tion with the Lipmaa’s PIR protocol [96], which is based on the LFAHE scheme by
Damgård and Jurik [44], we obtained the first PPSS protocol with proven guarantees
of search and access pattern privacy that enables the simultaneous execution of queries
from multiple users without the need of the data owner being online, and exhibiting
a sub-linear O(m log2(n) + oq log(n)) communication cost per user. In a multi-user

161

Concluding Remarks and Further Developments

scenario, our protocol requires only O(log2(n)) additional memory for each query si-
multaneously performed, thus avoiding the replication of the whole full-text index for
each query, in turn improving the scalability of our solution. Furthermore, our PPSS
protocol is the first one enabling privacy-preserving pattern matching over outsourced
data, since it allows to perform queries containing the most common wildcard char-
acters while leaking a limited information about the structure of the searched pattern
and the matching portions of the outsourced data. The experimental validation of our
PPSS protocol over a real-world genomic use case showed practical response times,
requiring few minutes on off-the-shelf hardware to compute the results of a query over
21st human chromosome, which contains about 40 MiB of genetic data. Remarkably,
our PPSS protocol requires an extremely low bandwidth, which amounts to less than
50 KiB for each of the O(m) communication rounds; this limited bandwidth makes our
solution applicable also to scenarios where the end user issuing a query may reside on
a device with a low latency connection and a non flat-rate plan for network access (e.g.,
a mobile phone), which was one of the requirements we initially established for our
PPSS protocol.

Despite the practicality of the response time achieved by our solution, the compu-
tational effort of the untrusted server is definitely the bottleneck in our PPSS protocol.
A possible solution to improve the overall response time of our protocol may be in-
stantiating our generic construction with a different PIR protocol. In particular, two
recently proposed PIR solutions (XPIR [109] and SealPIR [5]) showed significant im-
provements in terms of actual execution time at server side by relying on lattice-based
AHE schemes instead of number-theoretic ones such as the DJ LFAHE scheme em-
ployed in this work. Nonetheless, both these solutions are based on the PIR protocol
proposed by Stern in [146], whose communication cost is d ·n 1

d +F d, where F = Θ(1)
and d is a value chosen by the client at each query. We observe that these protocols
cannot achieve a poly-logarithmic communication cost: indeed, if d = O(1), then the
communication cost is O(n

1
O(1)); if d = Θ(log(n)), then the communication cost be-

comes O(log(n) + F log(n)) = O(n). Therefore, in this work we did not consider these
solutions, given our goal of minimizing the communication cost with the extent of mak-
ing our protocol usable in scenarios with limited bandwidth (e.g., on mobile phones);
nonetheless, these two solutions may be employed in a future work to explore a better
trade-off between the bandwidth and the computational effort at server side, with the
extent of minimizing the overall response time for the queries of our PPSS protocol.
In addition, we remark that since any PIR protocol can be employed to instantiate our
construction, any improvement in terms of computation or communication in a PIR
solution may be immediately applicable to our construction, thus obtaining a PPSS
protocol with similar performance improvements.

To asymptotically reduce both the communication and the computational costs, a
possible solution is the construction of a multi-user PPSS protocol by relying on an
ORAM protocol. In particular, we aim at employing PanORAMa [121], a recently pro-
posed ORAM construction that achieves a O(log(n) log log n) (amortized) communi-
cation cost. Nonetheless, a well-known limitation of ORAM protocols is the difficulty
of simultaneously perform accesses to the ORAM data structure, which is mainly due
to the stateful nature of ORAMs. Therefore, in order to employ an ORAM protocol in
place of a PIR one in our multi-user PPSS solution, we need to overcome this limitation

162

Concluding Remarks and Further Developments

of ORAMs; a possible solution may be adapting to PanORAMa the constructions found
in [160, 32], which allow to simultaneously perform accesses to the same ORAM for
multiple users. Nonetheless, these constructions do not take into account the informa-
tion leakage among different users, that is these solutions do not aim at guaranteeing
the privacy of the access pattern of a user against the other users accessing the ORAM.
Since this feature makes our PPSS protocol resistant against collusion among the un-
trusted server and authorized users, it would be interesting to address also this chal-
lenge, thus obtaining a solution with the same security guarantees of our construction
based on PIR, but with improved computational and communication costs.

The second PPSS protocol we proposed in this work, described in Chapter 4, re-
lies on the security guarantees of the Intel SGX technology. To reduce the information
leakage coming from SGX side channels, our PPSS protocol employs an ORAM with
oblivious client algorithms, referred to as DORAM. In order to find the best perform-
ing DORAM for our PPSS solution, we designed three doubly oblivious versions of
existing ORAMs: our own design of Path DORAM, which improves the performance
of existing doubly oblivious versions of Path ORAM employed in previous works,
and the first design of Circuit and Ring DORAMs; these contributions are relevant
also beyond the scope of this work, as our DORAMs may be employed to build other
privacy-preserving applications based on SGX or to speed-up existing countermeasures
that rely on the privacy guarantees of a DORAM to mitigate the information leakage
coming from side channels in general purpose SGX applications [135, 4]. By com-
bining our DORAMs with an oblivious version of the backward search method, we
obtained ObSQRE, the first PPSS solution that guarantees search and access pattern
privacy of substring search queries while exhibiting an optimal communication cost
of O(m + oq) in 1 communication round. Furthermore, ObSQRE exhibits a remark-
able O((m+oq) log3(n)) computation cost for the untrusted server, which is the lowest
one among existing PPSS solutions guaranteeing search and access pattern privacy.
In addition, ObSQRE guarantees both the search and access pattern privacy as well
as the correctness of the result of the queries even against a malicious adversary who
has total control of the machine hosting the SGX enclave, improving over the security
guarantees of our multi-user PPSS protocol based on PHE, which hold only against a
semi-honest adversary. The experimental validation of ObSQRE showed that our so-
lution is extremely practical for real-world use cases: indeed, it requires only about 1
second to privately retrieve all the occurrences of a protein (about 3000 nucleotides)
over the entire human genome, which contains approximately 3 GiB of genetic data;
the query time is reduced to few milliseconds for the retrieval of the occurrences of
short keywords (i.e., less than 20 characters) in the Enron email dataset, which con-
tains more than 1 GiB of emails belonging to accounts of the employees of a real-world
financial firm. These experiments show that ObSQRE is already usable in real-world
applications without incurring in a noticeable performance degradation.

Despite the astonishing performance and the higher security guarantees, ObSQRE
lacks some important features of our PPSS protocol based on PHE: first, because of the
usage of a DORAM, it does not allow to perform simultaneously multiple queries from
distinct users; secondly, it does not support pattern matching queries. We have already
started working to overcome these limitations. In particular, our strategy to adapt Ob-
SQRE to a multi-user scenario relies on the approach followed by TaoStore [131], a

163

Concluding Remarks and Further Developments

solution that allows to simultaneously perform multiple accesses to an ORAM by rely-
ing on a proxy application trusted by all the users, which is run on a trusted machine that
is assumed not to collude with the untrusted server storing the ORAM. In our scenario,
we can remove this limiting non-collusion assumption by moving the proxy inside the
SGX enclave, which allows also to overcome the main bottleneck that curbs the scala-
bility of TaoStore only to few users: the network bandwidth. Nonetheless, moving the
proxy inside an SGX enclave poses the significant challenge of making it oblivious and
compatible with a DORAM, as otherwise the privacy guarantees of TaoStore would be
subverted by the information leakage coming from SGX side channels. Our efforts are
currently driven to the design of an efficient oblivious version of the TaoStore proxy,
which will enable to simultaneously perform multiple queries in ObSQRE. We remark
that in case of a successful design of an oblivious TaoStore proxy, we will obtain a so-
lution that enables multiple simultaneous accesses to a DORAM, which may be of in-
dependent interest for a generic privacy-preserving application based on SGX. Finally,
to enable pattern matching queries in ObSQRE, we are planning to design oblivious
versions of the algorithms employed in our multi-user PPSS protocol (see Sec. 3.2).

Although in ObSQRE we hinged upon a DORAM to address the information leak-
age coming from SGX side channels, an alternative viable solution is represented by
dynamically allocated data structures [51, 53], in particular by the shuffle index [50,
48, 52]. This data structure aims at the same privacy guarantees of an ORAM protocol,
namely guaranteeing access pattern confidentiality to data stored in an untrusted mem-
ory, while providing richer capabilities to the client: indeed, the shuffle index, besides
the retrieval of the data based on its identifier, supports efficient range queries (i.e., re-
trieving all the data whose identifiers belong to a given interval) and allows to insert
and remove elements in the outsourced data. From a performance standpoint, the shuf-
fle index exhibits similar response times w.r.t. Path ORAM, and, for expected choices
of the parameters employed to ensure the access pattern privacy, a lower bandwidth
consumption [50]. In order to employ a shuffle index in ObSQRE, we would need to
make the algorithms executed at client side oblivious, as in our DORAMs. Although
the operations performed at client side to access elements in the shuffle index are more
complex than the ones of our DORAMs (e.g., the client would need to obliviously shuf-
fle blocks retrieved from the index), they involve less data; thus, it would be interesting
to evaluate if such an oblivious shuffle index may further improve the performance of
ObSQRE. We chose to defer this investigation to future works, as one of our goals was
the evaluation of different performance trade-offs between several DORAM designs,
given their relevance also for other existing countermeasures to withstand side chan-
nels in general purpose SGX applications [135, 4]. Finally, we remark that a shuffle
index able to efficiently deal with multiple simultaneous accesses from different users
is proposed in [49], thus the adoption of this privacy-preserving data structure may be
useful also to achieve our goal of making ObSQRE amenable to a multi-user scenario.

We now analyze the effectiveness of our two solutions in improving the performance
of privacy-preserving outsourced computation in the considered application scenario.
To this extent, we compare in Tab. 7.1 the response times of the substring-search queries
in our two PPSS protocols with the one of the PPSS protocol based on FHE reported
in [80]. We remark that, despite the tests were not performed on the same machine,
similar CPUs were employed; furthermore, given the different magnitude of the query

164

Concluding Remarks and Further Developments

Table 7.1: Comparison of the query response time among PPSS protocols employing different
privacy-preserving solutions

Privacy-Preserving CPU Threads Dataset Substring Response
Solution Size Length Time

FHE Based [80] Xeon E5-1620 72 0.5 MB 5 30 min
PHE Based Xeon E5-2620 21 40 MB 6 5 min
SGX Based Xeon E3-1220 1 3 GB 3000 1 s

response times among the solutions, it is rather clear that the results are negligibly af-
fected by the machine employed for the experimental evaluation. The response times
in Tab. 7.1 clearly shows the performance improvements achieved by our solutions: in-
deed, our multi-user PPSS protocol based on PHE is 1 order of magnitude faster than
the FHE based solution, despite the queries are executed employing less computing
units and they are performed over a document that is 2 order of magnitudes bigger;
the performance gap is even bigger between our multi-user solution and ObSQRE,
showing the significant performance gain given by relying on trusted hardware instead
of purely cryptographic solutions. This comparison clearly shows that both our ap-
proaches are effective in achieving our goal of reducing the performance overhead of
privacy-preserving outsourced computation. Nonetheless, both these approaches also
exhibit some drawbacks that prevent their general adoption.

First of all, we remark that PHE can be employed only to a limited number of ap-
plication scenarios, as there are some computations that can only be represented by
an arithmetic circuit with both additions and multiplications. Furthermore, the weaker
homomorphic capabilities of a PHE scheme make the design of the privacy-preserving
solution much more challenging with respect to FHE, although the development of the
privacy-preserving application is simpler as PHE does not need to handle noise growth
in homomorphic operations. Conversely, the design of privacy-preserving solutions
based on Intel SGX, besides yielding astonishing performance improvements, is also
definitely simpler, as there is no need to represent all the computations as arithmetic cir-
cuits. Nonetheless, HE schemes still presents several advantages over SGX technology,
which are mainly related to the widespread adoption of such technology in practice.

Indeed, a relevant issue to be faced for the actual deployment in the cloud of privacy-
preserving solutions based on SGX is the limited availability of powerful computing in-
frastructures where SGX is available and enabled in the BIOS firmware of the machine.
Specifically, an SGX application can obviously run only on a machine whose CPU is
equipped with SGX; although there are several machines in the cloud with a CPU where
SGX is available, several cloud providers keep SGX disabled on such machines. This
policy is mostly due to concerns about the impact of SGX over the security of the ma-
chine hosting the enclave. Indeed, while in SGX threat model the code running in the
enclave is always assumed to be trusted, a cloud provider cannot rely on this assump-
tion for enclave applications run by one of its tenants; this discrepancy introduces a
strong conflict between the privacy guarantees that SGX must ensure to enclave ap-
plications and the need for the cloud provider to profile and inspect the execution of
untrusted code in order to protect the security of its infrastructure. This conflict may be
solved only if the cloud provider can be reassured that the code running in the enclave

165

Concluding Remarks and Further Developments

has no way to harm the system thanks to the constraints imposed by enclave execution
(e.g., forbidden system calls); nonetheless, it has been recently showed in [137] that it
is possible to lead several attacks (e.g., stealing private files, phishing on behalf of the
owner of the machine) from a malicious payload hidden inside an SGX enclave appli-
cation. This work clearly showed the need to deeply analyze the security implications
of running untrusted SGX applications for the machine hosting the enclaves, as well
as pushing for the identification of feasible countermeasures to reduce the attack sur-
face available for malicious SGX applications [159] without undermining the privacy
guarantees of SGX. It is likely that cloud providers will be reluctant to enable SGX on
their infrastructure without a solid understanding of the potential threats coming from
SGX enclaves and without effective mitigations that prevent the exploitation of SGX
enclaves as an attack vector; therefore, given the yet poor scrutiny of such threats, this
is currently a serious hindrance to the flourishing of privacy-preserving applications
based on SGX technology.

Finally, another advantage of HE techniques with respect to trusted hardware relies
on the autonomy of the solution from the hardware vendor. Indeed, an HE applica-
tion can be deployed on any machine, with no involvement of the vendor of the device
where the computation is performed; conversely, with Intel SGX, it is possible to re-
motely attest an enclave (and thus trust the code and data found inside it) only with the
participation of Intel. This need may limit the access to private outsourcing in some cir-
cumstances, as Intel may hinder the deployment of an SGX based application to protect
its own interests. This possibility, although applicable only to peculiar scenarios, have
raised a debate on the implications and ethical concerns related to the market power
acquired by a single hardware vendor [42, pag. 90], and may encourage some entities
(e.g., governments) to prefer the adoption of privacy-preserving techniques where they
can retain more independence from the hardware vendor.

Digital Certificates

We tackled the problem of proper parsing of digital certificates, which are widely em-
ployed in several secure communication protocols to ensure the authenticity of the bind-
ing between a public key and its owner. Throughout the years, several MitM attacks
against such protocols have stemmed from parsing inconsistencies found in existing
parsers for digital certificates. In our work, we aimed at improving the accuracy of
such parsers by automatically derive them from grammar specifications. This approach
was already applied to X.509 digital certificates [13] and was showed to be really ef-
fective in improving the parsing accuracy. Nonetheless, given the complexity of the
X.509 format, authors of [13] were forced to employ a large predicated grammar to
describe the format, whose complex design and structure may hinder the development
and maintenance of this solution in real-world implementations.

Therefore, in this work we proposed a novel format for X.509 digital certificates,
which was explicitly design to address all the parsing hindrances found in the current
format, while retaining the same expressiveness of existing X.509 digital certificates.
The main desirable feature achieved by our new format is the existence of a regular
grammar describing the format, as from this grammar it is possible to automatically
derive a parser with sound correctness guarantees and with optimal parsing complex-
ities. Furthermore, we designed our new format to ease its gradual roll-in in the PKI,

166

Concluding Remarks and Further Developments

as digital certificates in our own format can be recognized as ver. 4 ones by imple-
mentations recognizing only older versions of X.509 certificates; in this way, these
implementations can gracefully stop parsing the certificate without incurring in poten-
tial side effects given by interpreting certificates in our new format as older versions of
X.509. We consider this graceful handling of our new format by existing implementa-
tions as a key enabler to overcome the usual interoperability hindrances related to the
widespread adoption of a new format; indeed, certificates in our own format can be pro-
gressively introduced in the PKI, upon expiration of the current ones, without causing
disruptions in legacy systems. The experimental validation of the parser automatically
derived from our grammar via the yacc toolchain showed performance comparable to
existing parsing libraries for X.509 v3 digital certificates and a linear parsing time.

The next goal in our research will be automatizing the identification of parsing in-
consistencies in existing recognizers of X.509 digital certificates, by designing a tool
that relies on a grammar specification of the X.509 format to automatically generate
a set of digital certificates that can be employed to assess the accuracy of parsing li-
braries. In particular, we aim at devising a mechanism to automatically inject errors in
the grammar specification of the format, in order to generate a set of erroneous digital
certificates which are labeled with the syntactic flaw that makes them invalid. In our vi-
sion, this labeled testset could be automatically generated after each important upgrade
of an X.509 parser to automatically identify new parsing inconsistencies; furthermore,
it would provide to developers a finer-grain error reporting, which surely aids them in
fixing the identified parsing inconsistencies.

Besides X.509 digital certificates, in this work we also focused on the problem of
properly parsing OpenPGP certificates and messages. In particular, following the same
systematic approach that turned out to be effective for X.509 digital certificates, we
aimed at obtaining an automatically generated parser for OpenPGP certificates and
messages. To this extent, in this work we performed a deep analysis of the OpenPGP
format, which proved that it can be described with a DCF grammar. Nonetheless, we
also showed that, although such grammar exists, it is impossible to employ it in practice
to automatically derive a DPDA parsing OpenPGP certificates and messages, as such
automaton would require an amount of memory that largely exceeds the capacities of
existing memory devices. We also discussed some modifications to the OpenPGP for-
mat to overcome this issue and enable the automatic generation of a DPDA to recognize
OpenPGP certificates and messages. In addition, throughout our analysis we identified
several flaws in the OpenPGP format specification and we outlined five attacks stem-
ming from the exploitation of such flaws. We experimentally verified that our attacks
are ineffective against the most common OpenPGP implementations, namely GPG and
Symantec PGP, mostly because their developers properly applied the OpenPGP speci-
fication by bearing in mind the security implications of their implementations choices.
Nonetheless, this outcome does not mean that the identified flaws are harmless, and
thus we also proposed some little modifications to the OpenPGP standard that would
prevent our attacks.

Given the impossibility of automatically generating a parser from a DCF grammar,
we are planning to investigate other solutions to automatically derive a parser with
sound correctness guarantees. Among the possible approaches, we may consider to
rely either on predicated grammars [120], as it was done for X.509 digital certificates,

167

Concluding Remarks and Further Developments

or on parser combinators [9], which allow to specify a format as a set of predefined
data structures, then automatically deriving a parser by composing the sub-parsers for
each of these data structures. Although these approaches do not ensure the same formal
guarantees of DCF grammars, they reduce the complexity of parser development and
we expect them to improve the parsing accuracy with respect to existing handcrafted
parsers for OpenPGP certificates and messages.

168

Bibliography

[1] The OpenPGP HTTP Keyserver Protocol (HKP). RFC Internet Draft, 2003.

[2] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A survey on homomorphic encryption
schemes: Theory and implementation. ACM Comput. Surv., 51(4):79:1–79:35, 2018. doi: 10.1145/3214303.
URL https://doi.org/10.1145/3214303.

[3] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halder-
man, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wus-
trow, Santiago Zanella Béguelin, and Paul Zimmermann. Imperfect Forward Secrecy: How Diffie-Hellman
Fails in Practice. In Ray et al. [125], pages 5–17. ISBN 978-1-4503-3832-5. doi: 10.1145/2810103.2813707.

[4] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungyoung Lee. OB-
FUSCURO: A commodity obfuscation engine on intel SGX. In 26th Annual Network and Dis-
tributed System Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019. URL https://www.ndss-symposium.org/ndss-paper/
obfuscuro-a-commodity-obfuscation-engine-on-intel-sgx/.

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries and amortized
query processing. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA, pages 962–979. IEEE Computer Society, 2018. doi: 10.1109/SP.
2018.00062. URL https://doi.org/10.1109/SP.2018.00062.

[6] John C. Baez. The octonions. Bulletin of the American Mathematical Society, 39(2):145–205, 2002. doi:
10.1090/S0273-0979-01-00934-X.

[7] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Countering GAT-
TACA: efficient and secure testing of fully-sequenced human genomes. In Y. Chen, G. Danezis, and
V. Shmatikov, editors, Proc. of the 18th ACM Conf. on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pages 691–702. ACM, 2011. ISBN 978-1-4503-0948-6. doi:
10.1145/2046707.2046785. URL https://doi.org/10.1145/2046707.2046785.

[8] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Science, pages 719–
737. Springer, 2012. doi: 10.1007/978-3-642-29011-4_42. URL https://doi.org/10.1007/
978-3-642-29011-4_42.

[9] Julian Bangert and Nickolai Zeldovich. Nail: A practical tool for parsing and generating data formats.
In Jason Flinn and Hank Levy, editors, 11th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, pages 615–628. USENIX Associa-
tion, 2014. URL https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/bangert.

169

https://doi.org/10.1145/3214303
https://www.ndss-symposium.org/ndss-paper/obfuscuro-a-commodity-obfuscation-engine-on-intel-sgx/
https://www.ndss-symposium.org/ndss-paper/obfuscuro-a-commodity-obfuscation-engine-on-intel-sgx/
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1145/2046707.2046785
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/bangert
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/bangert

Bibliography

[10] Alessandro Barenghi, Alessandro Di Federico, Gerardo Pelosi, and Stefano Sanfilippo. Challenging the Trust-
worthiness of PGP: Is the Web-of-Trust Tear-Proof? In Computer Security - ESORICS 2015 - 20th European
Symposium on Research in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part I,
volume 9326 of LNCS, pages 429–446. Springer, 2015. ISBN 978-3-319-24173-9.

[11] Alessandro Barenghi, Nicholas Mainardi, and Gerardo Pelosi. A security audit of the openpgp format. In
14th International Symposium on Pervasive Systems, Algorithms and Networks & 11th International Confer-
ence on Frontier of Computer Science and Technology & Third International Symposium of Creative Com-
puting, ISPAN-FCST-ISCC 2017, Exeter, United Kingdom, June 21-23, 2017, pages 336–343. IEEE Com-
puter Society, 2017. doi: 10.1109/ISPAN-FCST-ISCC.2017.35. URL https://doi.org/10.1109/
ISPAN-FCST-ISCC.2017.35.

[12] Alessandro Barenghi, Nicholas Mainardi, and Gerardo Pelosi. Comparison-based attacks against noise-free
fully homomorphic encryption schemes. In David Naccache, Shouhuai Xu, Sihan Qing, Pierangela Sama-
rati, Gregory Blanc, Rongxing Lu, Zonghua Zhang, and Ahmed Meddahi, editors, Information and Com-
munications Security - 20th International Conference, ICICS 2018, Lille, France, October 29-31, 2018,
Proceedings, volume 11149 of Lecture Notes in Computer Science, pages 177–191. Springer, 2018. doi:
10.1007/978-3-030-01950-1_11. URL https://doi.org/10.1007/978-3-030-01950-1_11.

[13] Alessandro Barenghi, Nicholas Mainardi, and Gerardo Pelosi. Systematic parsing of X.509: eradicating
security issues with a parse tree. J. Comput. Secur., 26(6):817–849, 2018. doi: 10.3233/JCS-171110. URL
https://doi.org/10.3233/JCS-171110.

[14] Alessandro Barenghi, Nicholas Mainardi, and Gerardo Pelosi. A novel regular format for x.509 digital cer-
tificates. In Shahram Latifi, editor, Information Technology - New Generations, pages 133–139, Cham, 2018.
Springer International Publishing. ISBN 978-3-319-54978-1. doi: 10.1007/978-3-319-54978-1_18. URL
https://doi.org/10.1007/978-3-319-54978-1_18.

[15] Jean - Sé bastien Coron, Tancrè de Lepoint, and Mehdi Tibouchi. Scale-invariant fully homomorphic encryp-
tion over the integers. In Hugo Krawczyk, editor, Public-Key Cryptography - PKC 2014 - 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28,
2014. Proceedings, volume 8383 of Lecture Notes in Computer Science, pages 311–328. Springer, 2014. doi:
10.1007/978-3-642-54631-0_18. URL https://doi.org/10.1007/978-3-642-54631-0_18.

[16] Emilia Kasper Ben Laurie, Adam Langley. Certificate Transparency. https://www.
certificate-transparency.org/, 2014.

[17] DA Benson, M Cavanaugh, K Clark, I Karsch-Mizrachi, DJ Lipman, J Ostell, and EW Sayers. Genbank.
nucleic acids res. Jan 2013. doi: 10.1093/nar/gks1195. The 9th International Symposium on String Processing
and Information Retrieval.

[18] Gérard Berry and Ravi Sethi. From Regular Expressions to Deterministic Automata. Theor. Comput. Sci., 48
(3):117–126, 1986. doi: 10.1016/0304-3975(86)90088-5.

[19] Hanno Böck. A Look at the PGP Ecosystem through the Key Server Data. IACR ePrint Archive: http:
//eprint.iacr.org/2015/262, 2015.

[20] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417
of Lecture Notes in Computer Science, pages 868–886. Springer, 2012. ISBN 978-3-642-32008-8. doi:
10.1007/978-3-642-32009-5. URL https://doi.org/10.1007/978-3-642-32009-5.

[21] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Standard) LWE.
SIAM J. Comput., 43(2):831–871, 2014. doi: 10.1137/120868669. URL https://doi.org/10.1137/
120868669.

[22] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science 2012, Cambridge,
MA, USA, January 8-10, 2012, pages 309–325. ACM, 2012. ISBN 978-1-4503-1115-1. doi: 10.1145/
2090236.2090262. URL http://doi.acm.org/10.1145/2090236.2090262.

170

https://doi.org/10.1109/ISPAN-FCST-ISCC.2017.35
https://doi.org/10.1109/ISPAN-FCST-ISCC.2017.35
https://doi.org/10.1007/978-3-030-01950-1_11
https://doi.org/10.3233/JCS-171110
https://doi.org/10.1007/978-3-319-54978-1_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
http://eprint.iacr.org/2015/262
http://eprint.iacr.org/2015/262
https://doi.org/10.1007/978-3-642-32009-5
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669
http://doi.acm.org/10.1145/2090236.2090262

Bibliography

[23] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-
Reza Sadeghi. Software grand exposure: SGX cache attacks are practical. In 11th USENIX Workshop
on Offensive Technologies, WOOT 2017, Vancouver, BC, Canada, August 14-15, 2017. USENIX Asso-
ciation, 2017. URL https://www.usenix.org/Conference/woot17/workshop-program/
presentation/brasser.

[24] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly Shmatikov. Using frankencerts for
automated adversarial testing of certificate validation in SSL/TLS implementations. In 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 114–129. IEEE Computer
Society, 2014. doi: 10.1109/SP.2014.15. URL https://doi.org/10.1109/SP.2014.15.

[25] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. Telling your se-
crets without page faults: Stealthy page table-based attacks on enclaved execution. In Kirda and Ristenpart
[86], pages 1041–1056. URL https://www.usenix.org/Conference/usenixsecurity17/
technical-sessions/presentation/van-bulck.

[26] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution. In 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, pages 991–1008. USENIX Association, 2018. URL https:
//www.usenix.org/conference/usenixsecurity18/presentation/bulck.

[27] Jo Van Bulck, Danile Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom
Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In 41th IEEE Symposium on Security and Privacy (S&P’20), 2020.

[28] Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm. Techni-
cal report, Digital Equipment Corporation, 1994. URL http://www.hpl.hp.com/techreports/
Compaq-DEC/SRC-RR-124.pdf.

[29] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP Message Format. RFC 4880, 2007.

[30] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-Abuse Attacks Against Searchable
Encryption. In Ray et al. [125], pages 668–679. ISBN 978-1-4503-3832-5. doi: 10.1145/2810103.2813700.
URL https://doi.org/10.1145/2810103.2813700.

[31] Gizem S. Çetin, Yarkın Doröz, Berk Sunar, and William J. Martin. An Investigation of Complex Operations
with Word-Size Homomorphic Encryption. ePrint Archive, (1195), 2015. https://eprint.iacr.
org/2015/1195.pdf.

[32] Anrin Chakraborti and Radu Sion. Concuroram: High-throughput stateless parallel
multi-client ORAM. In 26th Annual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Inter-
net Society, 2019. URL https://www.ndss-symposium.org/ndss-paper/
concuroram-high-throughput-stateless-parallel-multi-client-oram/.

[33] Melissa Chase and Emily Shen. Substring-Searchable Symmetric Encryption. PoPETs, 2015(2):
263–281, 2015. URL http://www.degruyter.com/view/j/popets.2015.2015.issue-2/
popets-2015-0014/popets-2015-0014.xml.

[34] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption for arithmetic of
approximate numbers. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 409–437. Springer, 2017. doi: 10.1007/978-3-319-70694-8_15. URL https://doi.
org/10.1007/978-3-319-70694-8_15.

[35] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster Fully Homomorphic En-
cryption: Bootstrapping in Less Than 0.1 Seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I,
volume 10031 of Lecture Notes in Computer Science, pages 3–33, 2016. ISBN 978-3-662-53886-9. doi:
10.1007/978-3-662-53887-6_1. URL https://doi.org/10.1007/978-3-662-53887-6_1.

171

https://www.usenix.org/Conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/Conference/woot17/workshop-program/presentation/brasser
https://doi.org/10.1109/SP.2014.15
https://www.usenix.org/Conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/Conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.1145/2810103.2813700
https://eprint.iacr.org/2015/1195.pdf
https://eprint.iacr.org/2015/1195.pdf
https://www.ndss-symposium.org/ndss-paper/concuroram-high-throughput-stateless-parallel-multi-client-oram/
https://www.ndss-symposium.org/ndss-paper/concuroram-high-throughput-stateless-parallel-multi-client-oram/
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1

Bibliography

[36] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic
encryption library, August 2016. https://tfhe.github.io/tfhe/.

[37] Noam Chomsky. Three Models for the Description of Language. IRE Trans. Information Theory, 2(3):
113–124, 1956. doi: 10.1109/TIT.1956.1056813.

[38] P.J. Cock, C.J. Fields, N. Goto, M.L. Heuer, and P.M. Rice. The Sanger FASTQ file format for sequences with
quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research, 38(6):1767–1771, 2010.
doi: 10.1093/nar/gkp1137. URL https://doi.org/10.1093/nar/gkp1137.

[39] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet X.509 Public Key Infras-
tructure Certificate and CRL. RFC 5280, 2008.

[40] David Coppit and Jiexin Lian. yagg: an easy-to-use generator for structured test inputs. In ASE ’05), Nov.
7-11, 2005, Long Beach, CA, USA, pages 356–359. ACM, 2005. ISBN 1-58113-993-4.

[41] Intel Corporation. Intel R© Software Guard Extensions (Intel R© SGX) SDK for Linux* OS, v2.5 edition, May
2019. URL https://download.01.org/intel-sgx/linux-2.5/docs/.

[42] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology ePrint Archive, 2016:86, 2016.

[43] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In A. Juels, R. N. Wright, and S. De Capitani di Vimercati,
editors, Proc. of the 13th ACM Conf. on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, October 30 - November 3, 2006, pages 79–88. ACM, 2006. doi: 10.1145/1180405.1180417. URL
https://doi.org/10.1145/1180405.1180417.

[44] Ivan Damgård and Mads Jurik. A Generalisation, a Simplification and Some Applications of Paillier’s Proba-
bilistic Public-Key System. In Kwangjo Kim, editor, Public Key Cryptography, 4th Intl. Workshop on Practice
and Theory in Public Key Cryptography, PKC 2001, Cheju Island, Korea, February 13-15, 2001, Proc., vol-
ume 1992 of LNCS, pages 119–136. Springer, 2001. ISBN 3-540-41658-7. doi: 10.1007/3-540-44586-2_9.
URL https://doi.org/10.1007/3-540-44586-2_9.

[45] Quynh Dang, Stefan Santesson, Kathleen M. Moriarty, Daniel R. L. Brown, and Tim Polk. Internet X.509
Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA. RFC 5758, 2010.

[46] Antoine Delignat-Lavaud. BERserk Vulnerability Part 2: Certificate Forgery in Mozilla NSS. Tech.
Rep.–Intel Advanced Threat Research Team. http://www.intelsecurity.com/resources/
wp-berserk-analysis-part-2.pdf, 2014.

[47] Antoine Delignat-Lavaud. BERserk Vulnerability Part 1: RSA Signature Forgery Attack Due to Incorrect
Parsing of ASN.1 Encoded DigestInfo in PKCS1 v1.5. Tech. Rep.–Intel Advanced Threat Research Team.
http://www.intelsecurity.com/resources/wp-berserk-analysis-part-1.pdf,
2014.

[48] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo Pelosi, and Pierangela Samarati.
Efficient and private access to outsourced data. In 2011 International Conference on Distributed Computing
Systems, ICDCS 2011, Minneapolis, Minnesota, USA, June 20-24, 2011, pages 710–719. IEEE Computer
Society, 2011. doi: 10.1109/ICDCS.2011.37. URL https://doi.org/10.1109/ICDCS.2011.37.

[49] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo Pelosi, and Pierangela Samarati.
Supporting concurrency and multiple indexes in private access to outsourced data. J. Comput. Secur., 21(3):
425–461, 2013. doi: 10.3233/JCS-130468. URL https://doi.org/10.3233/JCS-130468.

[50] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo Pelosi, and Pierangela Samarati.
Shuffle index: Efficient and private access to outsourced data. ACM Trans. Storage, 11(4):19:1–19:55, 2015.
doi: 10.1145/2747878. URL https://doi.org/10.1145/2747878.

[51] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo Pelosi, and Pierangela Samarati.
Access privacy in the cloud. In Pierangela Samarati, Indrajit Ray, and Indrakshi Ray, editors, From Database
to Cyber Security - Essays Dedicated to Sushil Jajodia on the Occasion of His 70th Birthday, volume 11170 of
Lecture Notes in Computer Science, pages 186–205. Springer, 2018. doi: 10.1007/978-3-030-04834-1_10.
URL https://doi.org/10.1007/978-3-030-04834-1_10.

172

https://doi.org/10.1093/nar/gkp1137
https://download.01.org/intel-sgx/linux-2.5/docs/
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1007/3-540-44586-2_9
http://www.intelsecurity.com/resources/wp-berserk-analysis-part-2.pdf
http://www.intelsecurity.com/resources/wp-berserk-analysis-part-2.pdf
http://www.intelsecurity.com/resources/wp-berserk-analysis-part-1.pdf
https://doi.org/10.1109/ICDCS.2011.37
https://doi.org/10.3233/JCS-130468
https://doi.org/10.1145/2747878
https://doi.org/10.1007/978-3-030-04834-1_10

Bibliography

[52] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo Pelosi, and Pierangela Samarati.
Enforcing authorizations while protecting access confidentiality. J. Comput. Secur., 26(2):143–175, 2018.
doi: 10.3233/JCS-171004. URL https://doi.org/10.3233/JCS-171004.

[53] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo Pelosi, and Pierangela Samarati.
Three-server swapping for access confidentiality. IEEE Trans. Cloud Comput., 6(2):492–505, 2018. doi:
10.1109/TCC.2015.2449993. URL https://doi.org/10.1109/TCC.2015.2449993.

[54] Yarkin Doröz and Berk Sunar. Flattening NTRU for evaluation key free homomorphic encryption. IACR
Cryptol. ePrint Arch., 2016:315, 2016. URL http://eprint.iacr.org/2016/315.

[55] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptol.
ePrint Arch., 2012:144, 2012. URL http://eprint.iacr.org/2012/144.

[56] Sebastian Faust, Carmit Hazay, and Daniele Venturi. Outsourced pattern matching. Int. J. Inf. Sec.,
17(3):327–346, 2018. doi: 10.1007/s10207-017-0374-0. URL https://doi.org/10.1007/
s10207-017-0374-0.

[57] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581, 2005. doi:
10.1145/1082036.1082039. URL https://doi.org/10.1145/1082036.1082039.

[58] Paolo Ferragina and Rossano Venturini. The compressed permuterm index. ACM Trans. Algorithms, 7(1):
10:1–10:21, 2010. doi: 10.1145/1868237.1868248. URL https://doi.org/10.1145/1868237.
1868248.

[59] Paul Flicek et. al. Ensembl Genome Browser, 2000. www.ensembl.org/.

[60] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 169–178. ACM, 2009. doi: 10.1145/1536414.1536440. URL
http://doi.acm.org/10.1145/1536414.1536440.

[61] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Homomorphic Encryption with Polylog Over-
head. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 465–482. Springer, 2012. ISBN 978-3-642-29010-7. doi: 10.1007/
978-3-642-29011-4. URL https://doi.org/10.1007/978-3-642-29011-4.

[62] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, and Daniel Wichs.
Optimizing ORAM and using it efficiently for secure computation. In Privacy Enhancing Technologies -
13th International Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings, volume
7981 of Lecture Notes in Computer Science, pages 1–18. Springer, 2013. ISBN 978-3-642-39076-0. doi:
10.1007/978-3-642-39077-7_1. URL https://doi.org/10.1007/978-3-642-39077-7_1.

[63] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learning with Errors:
Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In Ran Canetti and Juan A. Garay, ed-
itors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Sci-
ence, pages 75–92. Springer, 2013. ISBN 978-3-642-40040-7. doi: 10.1007/978-3-642-40041-4. URL
https://doi.org/10.1007/978-3-642-40041-4.

[64] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams. In Alfred V.
Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York,
New York, USA, pages 182–194. ACM, 1987. doi: 10.1145/28395.28416. URL https://doi.org/10.
1145/28395.28416.

[65] Google Inc. BoringSSL. https://boringssl.googlesource.com/boringssl/, 2016.

[66] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic
Library, 2012. http://gmplib.org/.

[67] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and Vitaly Shmatikov. Breaking
Web Applications Built On Top of Encrypted Data. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proc. of the 2016 ACM SIGSAC Conf. on Computer

173

https://doi.org/10.3233/JCS-171004
https://doi.org/10.1109/TCC.2015.2449993
http://eprint.iacr.org/2016/315
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/s10207-017-0374-0
https://doi.org/10.1007/s10207-017-0374-0
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1868237.1868248
https://doi.org/10.1145/1868237.1868248
www.ensembl.org/
http://doi.acm.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-29011-4
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/978-3-642-40041-4
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416
https://boringssl.googlesource.com/boringssl/
http://gmplib.org/

Bibliography

and Communications Security, Vienna, Austria, October 24-28, 2016, pages 1353–1364. ACM, 2016. ISBN
978-1-4503-4139-4. doi: 10.1145/2976749.2978351. URL https://doi.org/10.1145/2976749.
2978351.

[68] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, István Haller, and Manuel Costa. Strong
and efficient cache side-channel protection using hardware transactional memory. In Kirda and Risten-
part [86], pages 217–233. URL https://www.usenix.org/Conference/usenixsecurity17/
technical-sessions/presentation/gruss.

[69] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. Practical and Secure Substring Search. In Gautam
Das, Christopher M. Jermaine, and Philip A. Bernstein, editors, Proc. of the 2018 Intl. Conf. on Management
of Data, SIGMOD Conf. 2018, Houston, TX, USA, June 10-15, 2018, pages 163–176. ACM, 2018. doi:
10.1145/3183713.3183754. URL https://doi.org/10.1145/3183713.3183754.

[70] Michael. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1978. ISBN 0201029553.

[71] Philip Hazel. PCRE - Perl Compatible Regular Expressions, 2015. https://www.pcre.org.

[72] Russell Housley, Burt Kaliski, and Jim Schaad. Additional Algorithms and Identifiers for RSA Cryptography
for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL).
RFC 4055, 2005.

[73] IETF OpenPGP WorkGroup. Open Specification for Pretty Good Privacy. https://datatracker.
ietf.org/wg/openpgp/charter/, 2017.

[74] Intel Corporation. Description and mitigation overview for l1 terminal fault, 2018. URL
https://software.intel.com/security-software-guidance/software-guidance/
l1-terminal-fault.

[75] Intel Corporation. Deep dive: Special register buffer data sampling, 2020. URL
https://software.intel.com/security-software-guidance/insights/
deep-dive-special-register-buffer-data-sampling.

[76] Intel Corporation. Deep dive: Load value injection, 2020. URL https://software.intel.com/
security-software-guidance/insights/deep-dive-load-value-injection.

[77] International Telecommunication Union. Recommendation ITU-T X.509: Open Systems Interconnec-
tion - Public-key and Attribute Certificate Frameworks. https://www.itu.int/rec/T-REC-X.
509-201210-I, 2012.

[78] International Telecommunication Union. Recommendation ITU-T X.690: Information technology - ASN.1
Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Dis-
tinguished Encoding Rules (DER). https://www.itu.int/rec/T-REC-X.690, 2015.

[79] International Telecommunication Union. Data networks, Open System Comm.s and Security Recommenda-
tions. https://www.itu.int/rec/T-REC-X, 2016.

[80] Yu Ishimaki, Hiroki Imabayashi, and Hayato Yamana. Private Substring Search on Homomorphically En-
crypted Data. In 2017 IEEE Intl. Conf. on Smart Computing, SMARTCOMP 2017, Hong Kong, China,
May 29-31, 2017, pages 1–6. IEEE Computer Society, 2017. ISBN 978-1-5090-6517-2. doi: 10.1109/
SMARTCOMP.2017.7947038. URL https://doi.org/10.1109/SMARTCOMP.2017.7947038.

[81] Dan Kaminsky, Meredith L. Patterson, and Len Sassaman. PKI Layer Cake: New Collision Attacks against
the Global X.509 Infrastructure. In Radu Sion, editor, Financial Cryptography and Data Security, 14th
International Conference, FC 2010, Tenerife, Canary Islands, January 25-28, 2010, Revised Selected Papers,
volume 6052 of Lecture Notes in Computer Science, pages 289–303. Springer, 2010. ISBN 978-3-642-14576-
6. doi: 10.1007/978-3-642-14577-3_22.

[82] Juha Kärkkäinen and Peter Sanders. Simple Linear Work Suffix Array Construction. In Jos C. M. Baeten,
Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata, Languages and Program-
ming, 30th Intl. Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proc., vol-
ume 2719 of Lecture Notes in Computer Science, pages 943–955. Springer, 2003. ISBN 3-540-40493-7. doi:
10.1007/3-540-45061-0_73. URL https://doi.org/10.1007/3-540-45061-0_73.

174

https://doi.org/10.1145/2976749.2978351
https://doi.org/10.1145/2976749.2978351
https://www.usenix.org/Conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/Conference/usenixsecurity17/technical-sessions/presentation/gruss
https://doi.org/10.1145/3183713.3183754
https://www.pcre.org
https://datatracker.ietf.org/wg/openpgp/charter/
https://datatracker.ietf.org/wg/openpgp/charter/
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-special-register-buffer-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-special-register-buffer-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://www.itu.int/rec/T-REC-X.509-201210-I
https://www.itu.int/rec/T-REC-X.509-201210-I
https://www.itu.int/rec/T-REC-X.690
https://www.itu.int/rec/T-REC-X
https://doi.org/10.1109/SMARTCOMP.2017.7947038
https://doi.org/10.1007/3-540-45061-0_73

Bibliography

[83] Alan H. Karp and Horace P. Flatt. Measuring Parallel Processor Performance. Commun. ACM, 33(5):539–
543, 1990. doi: 10.1145/78607.78614. URL https://doi.org/10.1145/78607.78614.

[84] Alhassan Khedr, P. Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: scalable homomorphic implementa-
tion of encrypted data-classifiers. IEEE Trans. Computers, 65(9):2848–2858, 2016. doi: 10.1109/TC.2015.
2500576. URL https://doi.org/10.1109/TC.2015.2500576.

[85] Aviad Kipnis and Eliphaz Hibshoosh. Efficient Methods for Practical Fully Homomorphic Symmetric-key
Encrypton, Randomization and Verification. http://eprint.iacr.org/2012/637.

[86] Engin Kirda and Thomas Ristenpart, editors. 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017, 2017. USENIX Association. URL https://www.usenix.
org/conference/usenixsecurity17.

[87] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email classification research. In Machine
Learning: ECML 2004, 15th European Conference on Machine Learning, Pisa, Italy, September 20-24,
2004, Proceedings, volume 3201 of Lecture Notes in Computer Science, pages 217–226. Springer, 2004. doi:
10.1007/978-3-540-30115-8_22. URL https://doi.org/10.1007/978-3-540-30115-8_22.

[88] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-
Wesley, Boston, third edition, 1997. ISBN 0201896842 9780201896848.

[89] Werner Koch and David Shaw. The GNU Privacy Guard. https://www.gnupg.org, 1997.

[90] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[91] Benjamin Leiding and Andreas Dähn. Dead Letters to Alice - Reachability of E-Mail Addresses in the PGP
Web of Trust. CoRR, abs/1605.03162, 2016.

[92] Iraklis Leontiadis and Ming Li. Storage Efficient Substring Searchable Symmetric Encryption. In Aziz
Mohaisen and Qian Wang, editors, Proc. of the 6th Intl. Workshop on Security in Cloud Computing,
SCC@AsiaCCS 2018, Incheon, Republic of Korea, June 04-08, 2018, pages 3–13. ACM, 2018. doi:
10.1145/3201595.3201598. URL https://doi.org/10.1145/3201595.3201598.

[93] Serguei Leontiev and Dennis Shefanovski. Using the GOST R 34.10-94, GOST R 34.10-2001, and GOST
R 34.11-94 Algorithms with the Internet X.509 Public Key Infrastructure Certificate and CRL Profile. RFC
4491, 2006.

[94] Jing Li and Licheng Wang. Noise-Free Symmetric Fully Homomorphic Encryption Based on Non-
Commutative Rings. IACR ePrint Archive, Report 2015/641, 2015. https://eprint.iacr.org/
2015/641.

[95] John Linn. Privacy Enhancement for Internet Electronic Mail: Message Encryption and Authentication. RFC
1421, 1993.

[96] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. In J. Zhou, J. López,
R. H. Deng, and F. Bao, editors, Information Security, 8th Intl. Conf., ISC 2005, Singapore, September 20-23,
2005, Proc., volume 3650 of Lecture Notes in Computer Science, pages 314–328. Springer, 2005. ISBN
3-540-29001-X. doi: 10.1007/11556992_23. URL https://doi.org/10.1007/11556992_23.

[97] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium (USENIX Security 18), 2018.

[98] Dongxi Liu. Practical Fully Homomorphic Encryption without Noise Reduction. http://eprint.
iacr.org/2015/468.

[99] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22,
2012, pages 1219–1234. ACM, 2012. doi: 10.1145/2213977.2214086. URL https://doi.org/10.
1145/2213977.2214086.

175

https://doi.org/10.1145/78607.78614
https://doi.org/10.1109/TC.2015.2500576
http://eprint.iacr.org/2012/637
https://www.usenix.org/conference/usenixsecurity17
https://www.usenix.org/conference/usenixsecurity17
https://doi.org/10.1007/978-3-540-30115-8_22
https://www.gnupg.org
https://doi.org/10.1145/3201595.3201598
https://eprint.iacr.org/2015/641
https://eprint.iacr.org/2015/641
https://doi.org/10.1007/11556992_23
http://eprint.iacr.org/2015/468
http://eprint.iacr.org/2015/468
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086

Bibliography

[100] Fucai Luo, Fuqun Wang, Kunpeng Wang, Jie Li, and Kefei Chen. Lwr-based fully homomorphic encryption,
revisited. Security and Communication Networks, 2018:5967635:1–5967635:12, 2018. doi: 10.1155/2018/
5967635. URL https://doi.org/10.1155/2018/5967635.

[101] Fucai Luo, Fuqun Wang, Kunpeng Wang, and Kefei Chen. Fully homomorphic encryption based on the ring
learning with rounding problem. IET Inf. Secur., 13(6):639–648, 2019. doi: 10.1049/iet-ifs.2018.5427. URL
https://doi.org/10.1049/iet-ifs.2018.5427.

[102] Nicholas Mainardi, Alessandro Barenghi, and Gerardo Pelosi. Privacy preserving substring search proto-
col with polylogarithmic communication cost. In David Balenson, editor, Proceedings of the 35th Annual
Computer Security Applications Conference, ACSAC 2019, San Juan, PR, USA, December 09-13, 2019,
pages 297–312. ACM, 2019. doi: 10.1145/3359789.3359842. URL https://doi.org/10.1145/
3359789.3359842.

[103] Nicholas Mainardi, Alessandro Barenghi, and Gerardo Pelosi. Plaintext recovery attacks against linearly
decryptable fully homomorphic encryption schemes. Comput. Secur., 87, 2019. doi: 10.1016/j.cose.2019.
101587. URL https://doi.org/10.1016/j.cose.2019.101587.

[104] Nicholas Mainardi, Davide Sampietro, Alessandro Barenghi, and Gerardo Pelosi. Efficient oblivious sub-
string search via architectural support. In Kevin Butler, editor, Proceedings of the 36th Annual Computer
Security Applications Conference, ACSAC 2020, Austin, TX, USA, December 07-11, 2020. ACM, 2020. doi:
10.1145/3427228.3427296. URL https://doi.org/10.1145/3427228.3427296.

[105] Udi Manber and Eugene W. Myers. Suffix Arrays: A New Method for On-Line String Searches. SIAM J.
Comput., 22(5):935–948, 1993. doi: 10.1137/0222058. URL https://doi.org/10.1137/0222058.

[106] Moxie Marlinspike. Internet Explorer SSL Vulnerability. https://moxie.org/ie-ssl-chain.
txt, 2002.

[107] Moxie Marlinspike. Null Prefix Attacks against SSL/TLS Certificates. https://moxie.org/papers/
null-prefix-attacks.pdf, 2009.

[108] Paulo Martins, Leonel Sousa, and Artur Mariano. A survey on fully homomorphic encryption: An en-
gineering perspective. ACM Comput. Surv., 50(6):83:1–83:33, 2018. doi: 10.1145/3124441. URL
https://doi.org/10.1145/3124441.

[109] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. XPIR: Private information
retrieval for everyone. PoPETs, 2016(2), 2016. doi: 10.1515/popets-2016-0010. URL https://doi.
org/10.1515/popets-2016-0010.

[110] Y. Minsky, J. Clizbe, and K. Fiskerstrand. Synchronizing Key Server (SKS) Software Package. https:
//bitbucket.org/skskeyserver/sks-keyserver/wiki/Home, 2015.

[111] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA, pages 279–296. IEEE Computer Society, 2018. ISBN 978-1-5386-
4353-2. doi: 10.1109/SP.2018.00045. URL https://doi.org/10.1109/SP.2018.00045.

[112] Tarik Moataz and Erik-Oliver Blass. Oblivious Substring Search with Updates. IACR Cryptology ePrint
Archive, 2015:722, 2015. URL http://eprint.iacr.org/2015/722.

[113] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 735–
763. Springer, 2016. doi: 10.1007/978-3-662-49896-5_26. URL https://doi.org/10.1007/
978-3-662-49896-5_26.

[114] Harika Narumanchi, Dishant Goyal, Nitesh Emmadi, and Praveen Gauravaram. Performance Analysis of
Sorting of FHE Data: Integer-Wise Comparison vs Bit-Wise Comparison. In Leonard Barolli, Makoto Tak-
izawa, Tomoya Enokido, Hui-Huang Hsu, and Chi-Yi Lin, editors, 31st IEEE International Conference on
Advanced Information Networking and Applications, AINA 2017, Taipei, Taiwan, March 27-29, 2017, pages
902–908. IEEE Computer Society, 2017. doi: 10.1109/AINA.2017.85. URL https://doi.org/10.
1109/AINA.2017.85.

176

https://doi.org/10.1155/2018/5967635
https://doi.org/10.1049/iet-ifs.2018.5427
https://doi.org/10.1145/3359789.3359842
https://doi.org/10.1145/3359789.3359842
https://doi.org/10.1016/j.cose.2019.101587
https://doi.org/10.1145/3427228.3427296
https://doi.org/10.1137/0222058
https://moxie.org/ie-ssl-chain.txt
https://moxie.org/ie-ssl-chain.txt
https://moxie.org/papers/null-prefix-attacks.pdf
https://moxie.org/papers/null-prefix-attacks.pdf
https://doi.org/10.1145/3124441
https://doi.org/10.1515/popets-2016-0010
https://doi.org/10.1515/popets-2016-0010
https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
https://doi.org/10.1109/SP.2018.00045
http://eprint.iacr.org/2015/722
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1109/AINA.2017.85
https://doi.org/10.1109/AINA.2017.85

Bibliography

[115] Koji Nuida. A Simple Framework for Noise-Free Construction of Fully Homomorphic Encryption from a
Special Class of Non-Commutative Groups. IACR ePrint Archive, 2014. http://eprint.iacr.org/
2014/097.

[116] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof Fetzer. Varys: Protecting
SGX enclaves from practical side-channel attacks. In 2018 USENIX Annual Technical Conference, USENIX
ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 227–240. USENIX Association, 2018. URL https:
//www.usenix.org/conference/atc18/presentation/oleksenko.

[117] OpenSSL Foundation. OpenSSL: Cryptography and SSL/TLS Toolkit. https://www.openssl.org/,
2016.

[118] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Jacques
Stern, editor, Advances in Cryptology - EUROCRYPT ’99, Intl. Conf. on the Theory and Application of Cryp-
tographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999. ISBN 3-540-65889-0. doi: 10.1007/3-540-48910-X_16.
URL https://doi.org/10.1007/3-540-48910-X_16.

[119] Terence Parr and Kathleen Fisher. LL(*): the foundation of the ANTLR parser generator. In Mary W. Hall
and David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 425–436. ACM, 2011.
ISBN 978-1-4503-0663-8. doi: 10.1145/1993498.1993548.

[120] Terence J. Parr and Russell W. Quong. Adding Semantic and Syntactic Predicates To LL(K): Pred-LL(K). In
Proceedings of the 5th International Conference on Compiler Construction, CC ’94, pages 263–277, London,
UK, UK, 1994. Springer-Verlag. ISBN 3-540-57877-3.

[121] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. Panorama: Oblivious RAM with log-
arithmic overhead. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 871–882. IEEE Computer Society, 2018. doi:
10.1109/FOCS.2018.00087. URL https://doi.org/10.1109/FOCS.2018.00087.

[122] Tim Polk, Russell Housley, and Larry Bassham. Algorithms and Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 3279, 2002.

[123] Shiyue Qin, Fucai Zhou, Zongye Zhang, and Zifeng Xu. Privacy-preserving substring search on multi-source
encrypted gene data. IEEE Access, 8:50472–50484, 2020. doi: 10.1109/ACCESS.2020.2980375. URL
https://doi.org/10.1109/ACCESS.2020.2980375.

[124] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. CrossTalk: Speculative
Data Leaks Across Cores Are Real. In 42th IEEE Symposium on Security and Privacy (S&P’21), 2021. URL
https://download.vusec.net/papers/crosstalk_sp21.pdf. Intel Bounty Reward.

[125] Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors. Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October 12-6, 2015, 2015. ACM. ISBN 978-
1-4503-3832-5.

[126] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):34:1–
34:40, 2009. doi: 10.1145/1568318.1568324. URL http://doi.acm.org/10.1145/1568318.
1568324.

[127] Ling Ren, Christopher W. Fletcher, Xiangyao Yu, Marten van Dijk, and Srinivas Devadas. Integrity verifi-
cation for path oblivious-ram. In IEEE High Performance Extreme Computing Conference, HPEC 2013,
Waltham, MA, USA, September 10-12, 2013, pages 1–6. IEEE, 2013. ISBN 978-1-4799-1365-7. doi:
10.1109/HPEC.2013.6670339. URL https://doi.org/10.1109/HPEC.2013.6670339.

[128] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk,
and Srinivas Devadas. Constants count: Practical improvements to oblivious RAM. In 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015.,
pages 415–430. USENIX Association, 2015. URL https://www.usenix.org/Conference/
usenixsecurity15/technical-sessions/presentation/ren-ling.

[129] R L Rivest, L Adleman, and M L Dertouzos. On Data Banks and Privacy Homomorphisms. Foundations of
Secure Computation, Academia Press, pages 169–179, 1978.

177

http://eprint.iacr.org/2014/097
http://eprint.iacr.org/2014/097
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.openssl.org/
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1109/FOCS.2018.00087
https://doi.org/10.1109/ACCESS.2020.2980375
https://download.vusec.net/papers/crosstalk_sp21.pdf
http://doi.acm.org/10.1145/1568318.1568324
http://doi.acm.org/10.1145/1568318.1568324
https://doi.org/10.1109/HPEC.2013.6670339
https://www.usenix.org/Conference/usenixsecurity15/technical-sessions/presentation/ren-ling
https://www.usenix.org/Conference/usenixsecurity15/technical-sessions/presentation/ren-ling

Bibliography

[130] Cédric Van Rompay, Refik Molva, and Melek Önen. A Leakage-Abuse Attack Against Multi-User Searchable
Encryption. PoPETs, 2017(3):168, 2017. doi: 10.1515/popets-2017-0034. URL https://doi.org/10.
1515/popets-2017-0034.

[131] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro. Taostore: Overcoming asyn-
chronicity in oblivious data storage. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016, pages 198–217. IEEE Computer Society, 2016. doi: 10.1109/SP.2016.20. URL
https://doi.org/10.1109/SP.2016.20.

[132] Davide Sampietro. ObSQRE : efficient full-text index for oblivious substring search queries with Intel SGX.
Master’s thesis, Politecnico di Milano, 2019. URL http://hdl.handle.net/10589/150515.

[133] Davide Sampietro and Nicholas Mainardi. ObSQRE: Oblivious Substring Queries on Remote Enclave, 2020.
URL https://github.com/DavideSampietro/ObSQRE.

[134] Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Michael E. Locasto. Security Applications of
Formal Language Theory. IEEE Systems Journal, 7(3):489–500, 2013.

[135] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. Zerotrace : Oblivious memory prim-
itives from intel SGX. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Internet Society, 2018.
URL http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/
02/ndss2018_02B-4_Sasy_paper.pdf.

[136] Richard Donald Schafer. An introduction to nonassociative algebras. Dover Publications, Inc., Mineola, New
York, 2017.

[137] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical enclave malware with intel SGX. In
Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto, and Magnus Almgren, editors, Detection of In-
trusions and Malware, and Vulnerability Assessment - 16th International Conference, DIMVA 2019, Gothen-
burg, Sweden, June 19-20, 2019, Proceedings, volume 11543 of Lecture Notes in Computer Science, pages
177–196. Springer, 2019. doi: 10.1007/978-3-030-22038-9_9. URL https://doi.org/10.1007/
978-3-030-22038-9_9.

[138] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: eradicating controlled-channel
attacks against enclave programs. In 24th Annual Network and Distributed System Security Sympo-
sium, NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017. The Internet Soci-
ety, 2017. URL https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/.

[139] Kana Shimizu, Koji Nuida, and Gunnar Rätsch. Efficient privacy-preserving string search and an application
in genomics. Bioinformatics, 32(11), 2016. doi: 10.1093/bioinformatics/btw050. URL https://doi.
org/10.1093/bioinformatics/btw050.

[140] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing page faults from
telling your secrets. In Proceedings of the 11th ACM on Asia Conference on Computer and Communica-
tions Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016, pages 317–328. ACM, 2016. ISBN
978-1-4503-4233-9. doi: 10.1145/2897845.2897885. URL https://doi.org/10.1145/2897845.
2897885.

[141] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptog-
raphy, 71(1):57–81, 2014. doi: 10.1007/s10623-012-9720-4. URL https://doi.org/10.1007/
s10623-012-9720-4.

[142] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, and Srinivas
Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 299–310.
ACM, 2013. ISBN 978-1-4503-2477-9. doi: 10.1145/2508859.2516660. URL https://doi.org/10.
1145/2508859.2516660.

[143] Larry Stefonic and Todd Ouska. The wolfSSL Embedded TLS Library, 2019. URL https://www.
wolfssl.com/.

178

https://doi.org/10.1515/popets-2017-0034
https://doi.org/10.1515/popets-2017-0034
https://doi.org/10.1109/SP.2016.20
http://hdl.handle.net/10589/150515
https://github.com/DavideSampietro/ObSQRE
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_02B-4_Sasy_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_02B-4_Sasy_paper.pdf
https://doi.org/10.1007/978-3-030-22038-9_9
https://doi.org/10.1007/978-3-030-22038-9_9
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660
https://www.wolfssl.com/
https://www.wolfssl.com/

Bibliography

[144] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings, volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer, 2011. doi: 10.
1007/978-3-642-20465-4_4. URL https://doi.org/10.1007/978-3-642-20465-4_4.

[145] Stephen C Johnson. Yacc: Yet Another Compiler-Compiler. http://dinosaur.compilertools.
net/yacc/index.html.

[146] Julien P. Stern. A new efficient all-or-nothing disclosure of secrets protocol. In Kazuo Ohta and Dingyi Pei,
editors, Advances in Cryptology - ASIACRYPT ’98, International Conference on the Theory and Applications
of Cryptology and Information Security, Beijing, China, October 18-22, 1998, Proceedings, volume 1514 of
LNCS, pages 357–371. Springer, 1998. doi: 10.1007/3-540-49649-1_28. URL https://doi.org/10.
1007/3-540-49649-1_28.

[147] Mikhail Strizhov, Zachary Osman, and Indrajit Ray. Substring Position Search over Encrypted Cloud Data
Supporting Efficient Multi-User Setup. Future Internet, 8(3), 2016. doi: 10.3390/fi8030028. URL https:
//doi.org/10.3390/fi8030028.

[148] Symantec Corp. Symantec Encryption (PGP) Docs. Article Tech202483. https://knowledge.
broadcom.com/external/article?legacyId=TECH202483, 2016.

[149] Cong Tian, Chu Chen, Zhenhua Duan, and Liang Zhao. Differential testing of certificate validation in ssl/tls
implementations: An rfc-guided approach. 28(4), October 2019. ISSN 1049-331X. doi: 10.1145/3355048.
URL https://doi.org/10.1145/3355048.

[150] Marc Tiehuis. libhcs: A partially Homomorphic C library, 2015. https://github.com/tiehuis/
libhcs/tree/master/include/libhcs.

[151] Boaz Tsaban and Noam Lifshitz. Cryptanalysis of the MORE symmetric key fully homomorphic encryption
scheme. J. Mathematical Cryptology, 9(2):75–78, 2015. doi: 10.1515/jmc-2014-0013. URL https:
//doi.org/10.1515/jmc-2014-0013.

[152] Sean Turner, Daniel R. L. Brown, Kelvin Yiu, Russell Housley, and Tim Polk. Elliptic Curve Cryptography
Subject Public Key Information. RFC 5480, 2009.

[153] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Research, 46(5):
2699–2699, 02 2018. ISSN 0305-1048. doi: 10.1093/nar/gky092. URL https://doi.org/10.1093/
nar/gky092.

[154] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over
the integers. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 -
June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer, 2010.
doi: 10.1007/978-3-642-13190-5_2. URL https://doi.org/10.1007/978-3-642-13190-5_
2.

[155] Bing Wang, Wei Song, Wenjing Lou, and Y. Thomas Hou. Privacy-preserving pattern matching over en-
crypted genetic data in cloud computing. In 2017 IEEE Conf. on Computer Communications, INFOCOM
2017, Atlanta, GA, USA, May 1-4, 2017, pages 1–9. IEEE, 2017. ISBN 978-1-5090-5336-0. doi: 10.1109/
INFOCOM.2017.8057178. URL https://doi.org/10.1109/INFOCOM.2017.8057178.

[156] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: on tightness of the goldreich-ostrovsky lower
bound. In Ray et al. [125], pages 850–861. ISBN 978-1-4503-3832-5. doi: 10.1145/2810103.2813634. URL
https://doi.org/10.1145/2810103.2813634.

[157] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil Stefanov, and Yan Huang.
Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 215–226. ACM, 2014. ISBN 978-1-4503-
2957-6. doi: 10.1145/2660267.2660314. URL https://doi.org/10.1145/2660267.2660314.

179

https://doi.org/10.1007/978-3-642-20465-4_4
http://dinosaur.compilertools.net/yacc/index.html
http://dinosaur.compilertools.net/yacc/index.html
https://doi.org/10.1007/3-540-49649-1_28
https://doi.org/10.1007/3-540-49649-1_28
https://doi.org/10.3390/fi8030028
https://doi.org/10.3390/fi8030028
https://knowledge.broadcom.com/external/article?legacyId=TECH202483
https://knowledge.broadcom.com/external/article?legacyId=TECH202483
https://doi.org/10.1145/3355048
https://github.com/tiehuis/libhcs/tree/master/include/libhcs
https://github.com/tiehuis/libhcs/tree/master/include/libhcs
https://doi.org/10.1515/jmc-2014-0013
https://doi.org/10.1515/jmc-2014-0013
https://doi.org/10.1093/nar/gky092
https://doi.org/10.1093/nar/gky092
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1109/INFOCOM.2017.8057178
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2660267.2660314

Bibliography

[158] Yongge Wang and Qutaibah M. Malluhi. Privacy Preserving Computation in Cloud Using Noise-Free Fully
Homomorphic Encryption (FHE) Schemes. In Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Kat-
sikas, and Catherine A. Meadows, editors, Computer Security - ESORICS 2016 - 21st European Symposium
on Research in Computer Security, Heraklion, Greece, September 26-30, 2016, Proceedings, Part I, volume
9878 of Lecture Notes in Computer Science, pages 301–323. Springer, 2016. ISBN 978-3-319-45743-7. doi:
10.1007/978-3-319-45744-4. URL https://doi.org/10.1007/978-3-319-45744-4.

[159] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss. Sgxjail: Defeating enclave malware via
confinement. In 22nd International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2019,
Chaoyang District, Beijing, China, September 23-25, 2019, pages 353–366. USENIX Association, 2019.
URL https://www.usenix.org/conference/raid2019/presentation/weiser.

[160] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: a parallel oblivious file system. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, the ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 977–988. ACM, 2012. doi: 10.1145/2382196.
2382299. URL https://doi.org/10.1145/2382196.2382299.

[161] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 640–656. IEEE Computer Society, 2015. ISBN 978-1-4673-6949-7. doi:
10.1109/SP.2015.45. URL https://doi.org/10.1109/SP.2015.45.

180

https://doi.org/10.1007/978-3-319-45744-4
https://www.usenix.org/conference/raid2019/presentation/weiser
https://doi.org/10.1145/2382196.2382299
https://doi.org/10.1109/SP.2015.45

APPENDIXA
Appendix

1 Make OctoM Multiplicatively Homomorphic

In this section, we show how to modify the homomorphic multiplication MUL of the
OctoM scheme in order to satisfy the evaluation correctness property: that is, given two
ciphertexts C1, C2 ∈ Z8×8

N and the ciphertext Cmul = MUL(evk, C1, C2) ∈ Z8×8
N , then

DEC(k, Cmul) = DEC(k, C1) × DEC(k, C2) mod N . In particular, first we show why
the MUL operation, as presented in [158], does not satisfy the evaluation correctness
property; then, we discuss the additional constraints in the key generation algorithm
which make OctoM multiplicatively homomorphic, and thus fully homomorphic.

DEC(k,Cmul) = φ−1(1 ·M · Cmul ·M−1) · vT = φ−1(1 ·M ·M−1 ·Alm′2 ·A
l
m′1
·Al−1 ·M ·M−1) · vT

= φ−1(1 ·Alm′2 ·A
l
m′1
·Al−1) · vT = φ−1(m′2 ·Alm′1 ·A

l
−1) · vT

= φ−1((m′1 ∗m′2) ·Al−1) · vT = φ−1(φ(−i+ z−1) ∗ (m′1 ∗m′2)) · vT

= φ−1(φ(−i+ z−1)) ∗ φ−1(m′1 ∗m′2) · vT

= (−i+ z−1) ∗ (φ−1(φ(m1i+ z1) ∗ φ(m2i+ z2))) · vT

= (−i+ z−1) ∗ (φ−1(φ((m1i+ z1) ∗ (m2i+ z2)))) · vT

= (−i+ z−1) ∗ ((m1i+ z1) ∗ (m2i+ z2)) · vT

= −i((m1i)(m2i)) = −i(−m1m2) = m1m2i

(A.1)

According to [158], given two ciphertexts C1, C2 ∈ Z8×8
N and their homomorphic

product Cmul = MUL(evk, C1, C2), the decryption algorithm DEC(k, Cmul) = φ−1(1 ·
M ·Cmul ·M−1) mod V retrieves the plaintext value following the calculations shown in
Eq. (A.1). In particular, the erroneous derivation in this chain of equations is shadowed

181

Appendix A. Appendix

in gray in Eq. (A.1). Denoting as amul the octonion computed by φ−1(1·M ·Cmul·M−1),
we can write it as amul = m1m2i + zmul; the issue with the erroneous derivation in
Eq. (A.1) is that the octonion zmul is not necessarily in the isotropic subspace V , which
means that the modulo V operation performed as the inner product amul · vT may not
yield m1m2i.

The fact that zmul does not necessarily belong to V is proven as follows. Eq. (A.2)
shows the multiplication of the three octonions in the last-but-one line of Equation A.1:

((−i+ z−1) ∗ ((m1i+ z1) ∗ (m2i+ z2))) · vT = ((−i+ z−1) ∗ (−m1m2 +m1(i ∗ z2) +

(z1 ∗ i)m2 + z1 ∗ z2)) · vT

= (m1m2i −m1(i ∗ (i ∗ z2))−m2(i ∗ (z1 ∗ i))− i ∗ (z1 ∗ z2) −m1m2z−1

+ m1(z−1 ∗ (i ∗ z2)) +m2(z−1 ∗ (z1 ∗ i)) + z−1 ∗ (z1 ∗ z2)) · vT

= (m1m2i+ zmul) · vT
(A.2)

Eq. (A.2) points out that zmul is equal to the sum of several octonion terms and some of
them (the ones highlighted by a light gray background in Eq. (A.2)) are not necessarily
octonions belonging to V , making zmul not necessarily belonging to V too. Indeed, they
contain the imaginary unit i /∈ V , thus their sum zmul may be out of V . Obviously, the
presence of these additional terms makes the decryption erroneous, since these terms
are added to the term m1m2i and are not canceled out by the inner product with the
vector v ∈ V ⊥. We practically observed decryption failures due to this issue in our
pilot implementation.

Modifications to OctoM Homomorphic Multiplication

We now describe how to compensate for the additional terms that are not in the totally
isotropic subspace V , employing a monodimensional V space. We remark that such a
choice does not affect the security of the cryptosystem, as reported in [158]. In case of a
monodimensional subspace, all the vectors in V are obtained as rz, where r is a random
integer in ZN and z is the isotropic octonion generating the subspace V . Moreover, for
a generic octonion a, it holds that a2 = 2<(a)a − ‖a‖2

1 (Thm. 2 in [158]), therefore
for an isotropic octonion z, z2 = 2<(z)z − ‖z‖2

1 = 2<(z)z. This property allows to
show that every monodimensional totally isotropic subspace V is closed under octonion
multiplication, since, for every two generic octonions in V , namely z1 = rz, z2 = sz,
their product is still in V , as z1 ∗ z2 = rsz2 = 2rs<(z)z. Henceforth, we denote by
z = [z1, z2, z3, z4, z5, z6, z7, z8] the isotropic octonion generating the totally isotropic
subspace V .

In order to make OctoM multiplicatively homomorphic, we need to somehow get
rid of the additional octonions highlighted in Eq. (A.2). The main idea is to append a
vector v, orthogonal to all the additional octonions, to the secret key computed by the
KEYGEN algorithm. However, this solution is viable only if the additional octonions
added to the result are of the same form regardless of the number of homomorphic
multiplications performed to compute the ciphertext to be decrypted.

Since all these additional terms involve a multiplication of an octonion with the
first imaginary unit i, we analyze the octonion products i ∗ z and z ∗ i. The following

182

1. Make OctoM Multiplicatively Homomorphic

equalities show the computation of such products:

i ∗ z = [−z2, z1,−z4, z3,−z6, z5, z8,−z7]

z ∗ i = [−z2, z1, z4,−z3, z6,−z5,−z8, z7]
(A.3)

The product of an octonion with the imaginary unit is not commutative. However,
octonion algebra is alternative, therefore Artin’s theorem [136] can be applied:

Theorem A.1 (Artin’s Theorem [136]). An algebra A is alternative if and only if, for
any two elements a, b in the support of the algebra, the three following equalities hold:

a ∗ (a ∗ b) = (a ∗ a) ∗ b
(a ∗ b) ∗ a = a ∗ (b ∗ a)
(b ∗ a) ∗ a = b ∗ (a ∗ a)

Artin’s theorem equivalently states that the sub-algebra generated by two elements
of an alternative algebra is associative. By applying this theorem on the two octonions
i, z, we can derive the following equalities, related to the additional terms appearing in
Eq. (A.2):

i ∗ (z ∗ i) = (i ∗ z) ∗ i
(z ∗ i) ∗ z = z ∗ (i ∗ z)

z ∗ (z ∗ i) = (z ∗ z) ∗ i = 2<(z)(z ∗ i)
(i ∗ z) ∗ z = i ∗ (z ∗ z) = 2<(z)(i ∗ z)

(z ∗ i) ∗ i = z ∗ (i ∗ i) = −z

(A.4)

These equalities will be employed to verify the following statement:

Statement A.1. Consider h > 0 octonions aj ∈ O(Z8
N), 1 ≤ j ≤ h, of the form

aj = mji + zj = mji + rjz, where mj, rj ∈ ZN and z ∈ O(Z8
N) is an isotropic

octonion. For every h > 0, the product of these octonions is:

a1 ∗ a2 ∗ · · · ∗ ah = ih
h∏
j=1

mj +Rzz +Riz(i ∗ z)

+Rzi(z ∗ i) +Rizi(i ∗ z ∗ i)
+Rziz(z ∗ i ∗ z)

(A.5)

where Rz, Riz, Rzi, Rizi, Rziz are integers in ZN .

Before proving Statement A.1, we present some additional equalities involving the
imaginary unit i and the isotropic octonion z. These equalities, which will be employed
in the proof, are shown in Eq. (A.6). All these relationships hinge upon the associative
multiplication between i and z. In addition, in the last step of the bottom relationships,
we exploit the fact that i∗z and z∗i are isotropic octonions: indeed, since octonions are
a normed algebra, ‖a∗b‖ = ‖a‖·‖b‖, thus ‖i∗z‖ = ‖i‖·‖z‖ = 1 ·0 = 0, and similarly
for the octonion z ∗ i. Therefore, since for an isotropic octonion z, z2 = 2<(z)z, then
(i ∗ z)2 = 2<(i ∗ z)(i ∗ z) and similarly for the octonion z ∗ i.

We now prove Statement A.1.

183

Appendix A. Appendix

(i ∗ (z ∗ i)) ∗ i = ((i ∗ z) ∗ i) ∗ i = (i ∗ z) ∗ (i ∗ i) = −(i ∗ z)
(z ∗ (i ∗ z)) ∗ z = ((z ∗ i) ∗ z) ∗ z = (z ∗ i) ∗ (z ∗ z) = 2<(z)((z ∗ i) ∗ z)
(z ∗ (i ∗ z)) ∗ i = (z ∗ i) ∗ (z ∗ i) = (z ∗ i)2 = 2<(z ∗ i)(z ∗ i)
(i ∗ (z ∗ i)) ∗ z = (i ∗ z) ∗ (i ∗ z) = (i ∗ z)2 = 2<(i ∗ z)(i ∗ z)

(A.6)

amul ∗ ah+1 =

ih h∏
j=1

mj +Rzz +Riz(i ∗ z) +Rzi(z ∗ i) +Rizi(i ∗ z ∗ i) +Rziz(z ∗ i ∗ z)

 ∗ (mh+1i+ rh+1z)

= ih+1
h+1∏
j=1

mj +

 h∏
j=1

mj

 rh+1(ih ∗ z) +Rzmh+1(z ∗ i) +Rzrh+1(z ∗ z) +Rizmh+1((i ∗ z) ∗ i)

+Rizrh+1((i ∗ z) ∗ z) +Rzimh+1((z ∗ i) ∗ i) +Rzirh+1((z ∗ i) ∗ z) +Rizimh+1((i ∗ z ∗ i) ∗ i)

+ Rizirh+1((i ∗ z ∗ i) ∗ z) + Rzizmh+1((z ∗ i ∗ z) ∗ i) + Rzizrh+1((z ∗ i ∗ z) ∗ z)

= ih+1
h+1∏
j=1

mj +

 h∏
j=1

mj

 rh+1(ih ∗ z) +Rzmh+1(z ∗ i) +Rzrh+12<(z)z +Rizmh+1((i ∗ z) ∗ i)

+Rizrh+12<(z)(i ∗ z) −Rzimh+1z +Rzirh+1((z ∗ i) ∗ z) −Rizimh+1(i ∗ z)

+ Rizirh+12<(i ∗ z)(i ∗ z) + Rzizmh+12<(z ∗ i)(z ∗ i) + Rzizrh+12<(z)(z ∗ i ∗ z)

= ih+1
h+1∏
j=1

mj +R′zz +R′iz(i ∗ z) +R′izi(i ∗ (z ∗ i)) +R′ziz(z ∗ (i ∗ z)) +R′zi(z ∗ i)

(A.7)

Proof. The statement trivially holds for h = 1. Indeed, a1 = m1i + r1z, which is
equivalent to Eq. (A.5) where Rz = r1 and Rzi = Rzi = Rizi = Rziz = 0. Next,
we consider h = 2 octonions a1 = m2i + r2z, a2 = m2i + r2z. If we multiply these
octonions, we obtain:

a1 ∗ a2 = (m1i+ r1z) ∗ (m2i+ r2z)

= −m1m2 +m1r2(i ∗ z) + r1m2(z ∗ i) + r1r2z
2

= −m1m2 +m1r2(i ∗ z) + r1m2(z ∗ i) + r1r22<(z)z

Since a1 ∗ a2 is equivalent to Eq. (A.5) where Rz = r1r22<(z), Riz = m1r2, Rzi =
m2r1 andRizi = Rziz = 0, Statement A.1 holds for h = 2 too. We are now ready for the
induction step. Assume that the statement holds for an octonion amul obtained by mul-
tiplying h octonions aj , j = 1, . . . , h. Eq. (A.7) shows that, if we multiply another oc-
tonion ah+1 = mh+1i+rh+1z, the statement holds too. Here, we highlighted the deriva-
tions where we employ relationships from either Eq. (A.4) or Eq. (A.6). Lastly, we re-
mark that the octonion

(∏h
j=1mj

)
rh+1(ih∗z), which is part of the computation shown

in Eq. (A.7), in the last step is either grouped in the term R′zz or in the term R′iz(i ∗ z),
depending on the parity of h: indeed, if h is even, then ih = ±1 is a real number, and
so
(∏h

j=1 mj

)
rh+1(ih ∗ z) = ±

(∏h
j=1mj

)
rh+1z; instead, if h is odd, then ih = ±i is

an imaginary number, and so
(∏h

j=1mj

)
rh+1(ih ∗z) = ±

(∏h
j=1mj

)
rh+1(i∗z).

We now show how to apply Statement A.1 to the homomorphic multiplication of

184

1. Make OctoM Multiplicatively Homomorphic

OctoM. Given h ciphertexts C1, C2, . . . Ch, their homomorphic product Cmul is com-
puted as Ch−1

−1 · C1 · C2 · · ·Ch, where the Ch−1
−1 factor is due to the fact that each ho-

momorphic multiplication requires a multiplication by C−1. Then, the decryption pro-
cedure of Cmul computes the octonion amul = φ−1(1 ·M · Cmul ·M−1), deriving the
plaintext value as amul ·vT , where v ∈ V ⊥ is the vector appended to the secret key. Due
to the homomorphic property, the octonion amul can also be written as the octonion
product among the octonions aj = φ−1(1 ·M · Cj ·M−1), j ∈ {−1, 1, 2, . . . , h}; i.e.,
amul = ah−1

−1 ∗(a1∗(a2∗(. . .∗ah) . . .)), where a−1 = (−i+r−1z) and aj = mji+rjz, j ∈
{1, 2, . . . , h}, with mj ∈ ZN being the plaintext of Cj , r−1, r1, . . . , rj ∈ ZN being the
random values employed to construct Cj and z being the generator of the subspace V .

Applying Statement A.1 to amul, we obtain:

amul =

(
i2h−1(−1)h−1

h∏
j=1

mj

)
+Rzz +Riz(i ∗ z)

+Rzi(z ∗ i) +Rizi(i ∗ z ∗ i) +Rziz(z ∗ i ∗ z)

=

(
i

h∏
j=1

mj

)
+Rzz +Riz(i ∗ z) +Rzi(z ∗ i)

+Rizi(i ∗ z ∗ i) +Rziz(z ∗ i ∗ z)

(A.8)

which follows from i2h−1(−1)h−1 = i2h−1(i2)h−1 = i2h−1i2h−2 = i4h−3 = i4(h−1)+1 =
i(i4)h−1 = i(1)h−1 = i. Eq. (A.8) shows that the additional octonion terms besides the
product of the plaintext values

(
i
∏h

j=1mj

)
, which need to be removed to preserve de-

cryption correctness, are equivalent to the sum of five octonions of the form reported in
Eq. (A.4) regardless of the number of homomorphic multiplications performed among
the ciphertexts. Therefore, in the last step of decryption, we can perform an inner prod-
uct between amul and a vector v ∈ V ⊥ that is orthogonal to these five octonions. To find
this vector v = [v1, 1, v3, v4, v5, v6, v7, v8], given N and z = [z1, z2, z3, z4, z5, z6, z7, z8],
the generator of the isotropic subspace V , we need to solve the following system of five
equations in seven unknowns (the components of the vector v) over ZN :

z · vT ≡N 0

(i ∗ z) · vT ≡N 0

(z ∗ i) · vT ≡N 0

(i ∗ z ∗ i) · vT ≡N 0

(z ∗ i ∗ z) · vT ≡N 0

(A.9)

where ≡N denotes the equivalence relationship over ZN . By adding member-wise the
first and third equalities in Eq. (A.9), we obtain the following constraint on the elements
of v and z:

(2v1×(−z2)+2v2×z1) ≡N 0 ⇒ (v1×(−z2)+z1) ≡N 0 ⇒ z1 ≡N v1×z2

By subtracting member-wise the first and fourth equalities in Eq. (A.9), we obtain a
further constraint on the elements of v and z:

(2v1 × z1 + 2v2 × z2) ≡N 0 ⇒ (v1 × z1 + z2) ≡N 0

185

Appendix A. Appendix

By replacing the first constraint in the second one, it is possible to find the following
necessary condition on v1 to solve the simultaneous set of equalities in Eq. (A.9):

(v1 × z1 + z2) ≡N 0 ⇒ z2 × (v2
1 + 1) ≡N 0.

There are three possible cases to be analyzed to solve this equation:

1. z2 = 0. In this case, any integer v1 would satisfy this equation. Moreover, the
first of the aforementioned constraints allows to infer that also z1 = 0, since
z1 ≡n v1 × z2 ≡N 0.

2. z2 is coprime with N , and thus it is invertible. Therefore, we have:

z2 × (v2
1 + 1) ≡N 0⇒ v2

1 + 1 ≡N 0⇒ v2
1 ≡N −1

This equation has a solution if and only if there is a square root of −1 in ZN , that
is an integer ιN such that ι2N = −1 mod N .

3. z2 is not coprime with N . We denote a generic common divisor between N and
z2 as g. Now, since z2 × (v2

1 + 1) ≡N 0, then z2 × (v2
1 + 1) must be a multiple

of N ; since z2 is a multiple of g, then v2
1 + 1 must be a multiple of N

g
. Therefore,

v2
1 + 1 ≡N

g
0, which again has a solution if and only if there is a square root of

−1 in ZN
g

. Obviously, if there are square roots of −1 in ZN , v1 = ιN is a solution
also in this case.

The sets of constraints ensuring that it is always possible to find a vector v allowing a
correct decryption are thus summarized as follows.

Statement A.2. The system in Eq. (A.9) may exhibit a solution v = [v1, 1, v3, v4, v5, v6,
v7, v8] only if at least one of these three set of constraints on the modulus N of the
ring ZN and on the generator z = [z1, z2, z3, z4, z5, z6, z7, z8] of the monodimensional
isotropic space V are satisfied:

1. z1 = 0 and z2 = 0, N ∈ N \ {0, 1}.

2. N is a composite integer for which square roots of −1 exist in ZN , denoted by ιN .
z1 must be chosen as z1 ≡N ιNz2, while z2 ∈ ZN .

3. N is a composite integer such that, for at least one of its divisors g, square roots of
−1 exist in ZN

g
, and are denoted by ιN

g
. z2 must be a multiple of g and z1 ≡N ιN

g
z2.

Willing to avoid the introduction of strong constraints for the choice of z, as it con-
tains the randomness employed to hide the plaintext, we pick the second set of con-
straints in our instantiation of OctoM. We therefore need to pick a composite N as
a modulus such that square roots of −1 exist in ZN . The specific constraints on the
composite integer N that allow to meet this requirement are detailed in the following
theorem:

Theorem A.2. Given a composite integer N =
∏h

l=1 pl with h prime factors pl, l ∈
{1, . . . , h}, square roots of −1 exist in ZN if and only if pl mod 4 = 1 for all prime
factors pl, l ∈ {1, . . . , h}.

186

2. Security Proof for Our PPSS Protocol

Proof. Recall that, by Euler’s criterion, for a prime p and an integer a coprime with p,
if the square root of a exists in Zp then a

p−1
2 = 1, otherwise a

p−1
2 = −1. Consider

the CRT decomposition of ZN : for N =
∏h

l=1 pl, ZN and Zp1 × Zp2 × · · · × Zph are
isomorphic. Therefore, an equation has a solution in ZN if and only if it has a solution
on each of the rings Zpl . Hence, the equation x2 ≡N −1, whose solution is a square
root of −1 in ZN , has a solution if and only if each equation x2 ≡pl −1 has a solution.
In particular, each of these equations has a solution if and only there is a square root of
−1 in Zpl , which can be determined with Euler’s criterion. For each prime number pl,
we compute a

p−1
2 , with a = −1:

(−1)
pl−1

2 =

{
1 if pl−1

2
is even

−1 if pl−1
2

is odd

Therefore, there is a square root of −1 if and only if pl−1
2

is even, which implies that
pl mod 4 = 1.

Summing up, to make OctoM a multiplicatively homomorphic scheme, we extend
the key generation algorithm computing the key k = (M,φ, V, v) and the evaluation
key evk = (N,C−1) with the following additional constraints:

1. Each prime factor of the composite integer N used to perform the modular op-
erations must be chosen such that it is congruent to one modulo four (i.e., N =∏h

l=1 pl, with pl mod 4 = 1, l ∈ {1, . . . , h}).

2. The generator z = [z1, z2, z3, z4, z5, z6, z7, z8] of the totally isotropic subspace V
must be chosen such that z1 = ιN · z2, where ιN is a square root of −1 in ZN .

3. The octonion v ∈ V ⊥ must be obtained by solving the simultaneous set of equal-
ities in Eq. (A.9).

We experimentally verify in our pilot implementation the evaluation correctness of the
homomorphic multiplication with such a modified KEYGEN procedure, hereby making
OctoM a FHE scheme.

2 Security Proof for Our PPSS Protocol

In this section, we prove Thm. 3.1 by showing the existence of a simulator S which
interacts with any semi-honest adversary A, according to the IdealA,S experiment of
Def. 3.6, to produce a transcript for this experiment which is computationally indis-
tinguishable from the transcript of the RealP,A experiment, where A interacts with a
client through our actual PPSS protocol. For the sake of clarity, in the following we
denote all the variables involved in the IdealA,S experiment with a superscript Id (e.g.,
〈D〉Id denotes the privacy-preserving representation of the document collection 〈D〉
computed by the simulator SD). We also assume that the alphabet Σ for the documents
in D is publicly known.
Simulator Construction. We now show how to construct the simulator S. Specifically,
for a document collection D of z documents D1, . . . , Dz and a string q, S is realized by
constructing two simulators SD and Sq. The former employs the leakage LD to build a

187

Appendix A. Appendix

privacy-preserving representation 〈D〉Id that must be computationally indistinguishable
from the privacy-preserving representation 〈D〉 computed by the client in our PPSS
protocol. The latter simulator employs both the leakage LD and Lq to build a trapdoor
〈q〉Idj , j≤1≤w, for each of the w rounds of the QUERY procedure looking up the string
q; all these trapdoors must be computationally indistinguishable from the trapdoors
constructed by the client in the w rounds of our PPSS protocol.

• SD. Given the leakage LD =
∑z

i=1(LEN(Di) + 1) = n, the simulator constructs
two arrays AId and Suf Id . The former (resp. the latter) array has dn+1

P
e (resp.

n+ 1) entries, each containing a randomly generated bit string with the same size
of an entry of the ABWT full-text index constructed with sample period P (resp.
the suffix array), that is Θ(|Σ| log(n) + P log(|Σ|) (resp. Θ(log(n))) bits. The
simulator outputs the privacy-preserving representation 〈D〉Id = (AId , Suf Id)

• Sq. Given the leakages LD, Lq = (LEN(q), b, |OD,q|) and the public modulus N
for the LFAHE DJ scheme employed by the client in the RealP,A experiment, the
simulator computes the values tA = dlogb(dn+1

P
e)e and tSuf = dlogb(dn+1

oq
e)e,

where oq = |OD,q|. Then, the simulator constructs m = LEN(q) trapdoors
〈q〉Id1 , . . . , 〈q〉Idm as follows. Each trapdoor is an array with b · tA elements, where
the first b entries are integers randomly sampled in Z∗N2 , the subsequent b entries
are integers randomly sampled in Z∗N3 , and so on; in general, the j-th entry con-
tains an integer randomly sampled in Z∗

Nd
j
b
e+1

. Then, the simulator generates two

trapdoors 〈q〉Idm+1, 〈q〉Idm+2, where each trapdoor is an array with b · tSuf elements
constructed in the same manner as the previous m trapdoors (i.e., the j-th entry
contains an integer randomly sampled in Z∗

Nd
j
b
e+1

).

We now prove that, for any probabilistic polynomial time adversaryA, the transcript
of the RealP,A experiment is computationally indistinguishable from the transcript of
the IdealA,S experiment when the simulator S we have just constructed is employed.
Specifically, we analyze each step of the two experiments and we show that the ad-
versary cannot distinguish the simulator from the client of our PPSS protocol. In both
the experiments, the adversary initially chooses a document collection D of z docu-
ments over a publicly known alphabet Σ. In the RealP,A experiment, D is sent to the
client, which constructs a privacy-preserving representation 〈D〉 by running the SETUP
procedure of our PPSS protocol; specifically, 〈D〉 is composed by two cell-wise en-
crypted arrays 〈D〉 = (〈AP 〉, 〈Suf 〉) with, respectively, dn+1

P
e and n + 1 elements.

Conversely, in the IdealA,S experiment, the simulator SD obtains the leakage LD and
constructs the privacy-preserving representation 〈D〉Id as two arrays AId , Suf Id whose
size is the same as, respectively, 〈AP 〉 and 〈Suf 〉 ones. The semantic security of the
scheme E employed to encrypt 〈AP 〉 and 〈Suf 〉 in our PPSS protocol guarantees that
a ciphertext computed by E .Enc is computationally indistinguishable from a random
bit string with the same number of bits of the ciphertext, which implies that each en-
try of 〈AP 〉 (resp. 〈Suf 〉) is computationally indistinguishable from each entry of AId

(resp. Suf Id); therefore, the two privacy-preserving representations 〈D〉 and 〈D〉Id are
computationally indistinguishable too.

After receiving the privacy-preserving representations 〈D〉 and 〈D〉Id , the adver-
sary chooses a string q1. In the RealP,A experiment, the string q1 is sent to the client,

188

3. Security Proof for ObSQRE

which employs the QUERY procedure of our PPSS protocol to find all the positions
of the occurrences of q1 in D. In each of the m+2 rounds of the QUERY procedure,
the client employs the TRAPDOOR procedure to generate a trapdoor 〈q1〉j, j≤1≤m+2,
which corresponds to a trapdoor in the Lipmaa’s PIR protocol. In the IdealA,S experi-
ment, the simulator Sq1 receives the leakage Lq1 , which is employed to build a trapdoor
〈q1〉Idj , j≤1≤m+2 for each of the m+2 rounds. The semantic security of the LFAHE
DJ scheme guarantees that a ciphertext computed by the encryption procedure with
length l is computationally indistinguishable from a random integer in Z∗

N l+1 , which
means that the set of trapdoors 〈q1〉j are computationally indistinguishable from the set
of trapdoors 〈q1〉Idj , for all j ∈ {1, . . . ,m+2}.

Subsequently, in the RealP,A (resp. IdealA,S) experiment, the trapdoor 〈q1〉j (resp.
〈q1〉Idj) generated by the client (resp. Sq1) in each of the m+2 rounds is received by the
adversary, which employs the SEARCH procedure of Lipmaa’s PIR protocol to compute
a ciphertext 〈resj〉 (resp. 〈resj〉Id). The semantic security of the LFAHE DJ scheme
guarantees that all the intermediate values computed by each homomorphic operation of
the SEARCH procedure in the RealP,A experiment are computationally indistinguish-
able from the corresponding intermediate values in the IdealA,S experiment. Indeed, in
the former experiment, given two ciphertext c1 and c2 in Z∗

N l for the LFAHE DJ scheme,
each homomorphic addition computes cadd = c1 · c2 mod N l, with cadd being a cipher-
text in Z∗

N l; in the latter experiment, the homomorphic addition multiplies two random
integers in Z∗

N l , obtaining a new random integer in Z∗
N l which is computationally in-

distinguishable from cadd. Similarly, in the RealP,A experiment, given a ciphertext
c1 ∈ Z∗

N l and a ciphertext c2 ∈ Z∗
N l+1 , each hybrid homomorphic multiplication com-

putes chmul = cc12 mod N l+1, with chmul being a ciphertext in Z∗
N l+1; in the IdealA,S

experiment, each hybrid homomorphic multiplication computes the exponentiation be-
tween a random integer in Z∗

N l+1 and a random integer in Z∗
N l , obtaining a new random

integer in Z∗
N l+1 which is computationally indistinguishable from chmul. Therefore, as

the SEARCH procedure of Lipmaa’s PIR performs only homomorphic operations, we
conclude that all values (including the outcomes 〈resj〉 and 〈resj〉Id) observed by the
adversary throughout this computation in the RealP,A and IdealA,S experiments are
computationally indistinguishable. In conclusion, the adversary cannot distinguish an
interaction with a legitimate client in our PPSS protocol from an interaction with the
simulator Sq1 for the first query q1.

We note that the same reasoning allows to prove that all the trapdoors and the inter-
mediate values observed by the adversary in the subsequent d − 1 queries in the two
experiments are computationally indistinguishable.

3 Security Proof for ObSQRE

In this section, we first prove that our DORAMs meet the security guarantees stated in
Thm. 4.1 and then we show that ObSQRE achieves the security guarantees stated in
Thm. 4.2. We remark that, although our security definitions are applicable to all the
DORAMs and all the oblivious substring search algorithms discussed in this work, for
the sake of conciseness, we actually prove the security guarantees only for the DORAM
and for the substring search algorithm employed in the solution exhibiting the best per-
formance in our experimental evaluation, that are Circuit DORAM and ABWT based

189

Appendix A. Appendix

substring search algorithm, respectively.

3.1 DORAM Security Proof

To prove that Circuit DORAM exhibits the security guarantees stated in Thm. 4.1,
we show the construction of a simulator S that makes the transcript of the Idealρ,A,S
experiment computationally indistinguishable from the Realρ,A one.
Simulator SInit. This algorithm, given LInit as input, randomly samples M blocks
DSi of B bits, i ∈ {1, . . . ,M}. The traces TInit observed by the adversary in the two
experiments are indistinguishable: indeed, the DORAMs are constructed with similar
parameters in both the experiments, and the INIT procedure accesses the same blocks
in both the experiments (as paths to be evicted are chosen according to a deterministic
schedule). Since the blocks inserted in the DORAMs are encrypted with a semantically
secure cipher, it is not possible to distinguish the blocks with random data employed
in the Idealρ,A,S experiment from the blocks with actual data of the Realρ,A one. The
result res0 of the INIT procedure is the same in both experiments, as the tampering
of the tree is detected independently from the data stored inside the DORAM. Besides
such tampering, there are no other adversarial behaviors that may alter the result of the
computation, since any such tampering involves code and data stored inside the SGX
enclave, whose integrity is ensured by SGX security guarantees.
Simulator SAcc,i, i ∈ {1, . . . ,d}. This simulator simply chooses at random the block
id bidSi to be accessed by the DORAM. We now show that the traces TAcc,i of our Cir-
cuit DORAM observed by the adversary in both the experiments are computationally
indistinguishable. We start by proving the following claim about the code and data
access patterns of the client algorithms in our Circuit DORAM:

Theorem A.3. The code and data access patterns (CodeAP andDataAP) of our Circuit
DORAM client in the ACCESS procedure are independent from the block id bid given
as input to the procedure

Proof. The ACCESS procedure of the DORAM has two main phases: the former re-
trieves from the position map the leaf id lid corresponding to block bid, replacing lid
with a new random leaf id lid′ in the corresponding entry of the position map; the latter
employs the FINDBLOCK and EVICTION procedures to retrieve the block with id bid
from the DORAM. We first prove our claim for these two procedures; then, we prove it
also for the first phase when the position map is recursively stored in several DORAMs.
FINDBLOCK. The DORAM client executes the FINDBLOCK procedure reported in
Alg. 4.1. Both the control flow and the memory locations accessed by this procedure
are clearly independent from the block id bid: indeed, the former depends only on
parameters of the DORAM known to the adversary, while all conditionally dependent
memory accesses are performed through oblivious operations.
EVICTION. This procedure, reported in Alg. 4.4, is executed over two paths, chosen by
the client with a deterministic schedule known to the adversary and independent from
bid; furthermore, as the control flow of this procedure depends only on parameters
of the DORAM known to the adversary and all the conditionally dependent memory
accesses are performed through oblivious operations, both code and data access patterns
of this procedure are independent from the block id bid.

190

3. Security Proof for ObSQRE

Recursive Position Map. We recall that the position map of the DORAM is stored in
O(logC(n)) DORAMs of increasing size, and the client stores only the position map of
the smallest among these DORAMs. The algorithm to retrieve the leaf id correspond-
ing to block bid has O(logC(n)) iterations; in each of them, the algorithm accesses
one of the DORAMs storing the position map, hinging upon FINDBLOCK and EVIC-
TION procedures: as we have just shown, their operations are independent from bid.
The algorithm, after retrieving a block from these DORAMs, performs a linear sweep
over such block; this block is a small array with O(C) entries, and each of them is
obliviously swapped with a target memory location through the OBLSWAP operation.
Therefore, the sweep over the block does not depend on bid. No other operations are
performed in each iteration of the algorithm, thus making the control flow and the mem-
ory access pattern of the retrieval of the leaf id lid corresponding to the block with id
bid independent from bid.

The claim in Thm. A.3 implies that there is no difference on the access patterns ob-
served by the adversary throughout the ACCESS procedure in the Realρ,A and Idealρ,A,S
experiments. Regarding Datasrv, that is the information sent outside the enclave from
the DORAM client, we observe that this is limited to the leaf ids of the paths being
fetched or evicted, and the blocks of these paths written back to the DORAM tree. The
paths to be fetched in our DORAMs are chosen in the same way as in the corresponding
ORAM; thus, the leaf ids of these paths are distributed as in the corresponding ORAM.
Since leaf ids of fetched paths in Circuit ORAM are uniformly distributed, indepen-
dently from the accessed blocks, then the distribution of the leaf ids fetched by our
DORAM is uniform in both the Realρ,A and Idealρ,A,S experiments. Regarding the
paths being evicted, in all our DORAMs they are chosen according to a deterministic
schedule that depends only on the eviction period A, which is the same in both exper-
iments. Finally, since the blocks are encrypted with a semantically secure scheme, the
paths being written back after fetch or eviction appear as indistinguishable random data
in both the experiments. In conclusion, the traces TAcc,i, i ∈ {1, . . . , d}, are computa-
tionally indistinguishable between the Realρ,A and Idealρ,A,S experiments.

Regarding the result resi of the ACCESS procedure, i ∈ {1, . . . , d}, the integrity
check mechanism ensures that any tampering on the path fetched from the DORAM tree
is detected in both experiments. Conversely, in case the adversary decides to tamper
with a randomly chosen path before knowing which path will be fetched, the results
between the two experiments may differ; nonetheless, as the adversary cannot guess
with other than uniform probability the path being fetched in the ACCESS procedure
in both experiments, the statistical distribution of tampering detection is equivalent to
the distribution of correctly guessing the path being fetched, which is uniform in both
experiments. The adversary has no other ways to tamper with data and computation,
as all the other operations are performed inside the enclave over the data stored inside
the enclave, thus proving that the results resi, i ∈ {1, . . . , d}, are computationally
indistinguishable between the experiments.

3.2 ObSQRE Security Proof

We now prove that ObSQRE achieves the security guarantees reported in Thm. 4.2,
assuming that a DORAM fulfilling the privacy guarantees outlined in Thm. 4.1 is em-

191

Appendix A. Appendix

ployed in our ABWT based oblivious substring search algorithm. To this extent, we
describe the simulator S and we show that the output of the IdealP,A,S experiment is
computationally indistinguishable from the output of the RealP,A one.
Simulator S0. This simulator, upon receiving LSetup and LLoad, constructs a document
collection DS over the publicly known alphabet Σ by randomly sampling z strings
whose lengths sum up to n. Then, the simulator computes the ABWT-based full-text
index and the SA from DS and encrypts them with an AEAD scheme, obtaining the
encrypted index IS . This index has the same size of the index I computed from the
document collection D chosen by the adversary; furthermore, each of its entries are
encrypted with a semantically secure scheme, in turn making the indexes I, IS (and
thus the traces TSetup in the RealP,A and IdealP,A,S experiments) computationally
indistinguishable. The traces TLoad are also computationally indistinguishable in both
the experiments. Indeed, in the LOAD procedure, IS is decrypted, and then the ABWT
and the SA are inserted into the DORAM through the INIT operation. The security
guarantees of the DORAM ensures that this operation leaks only the number and the
size of the DORAM blocks: their number is proportional, for both the ABWT and the
SA, to n, which is the same in both experiments; the size of each block corresponds
to the size of each entry of the ABWT and the SA, respectively, which are already
known to the adversary. Finally, the security guarantees of the DORAM ensures that
INIT procedure is secure against any tampering to the DORAM tree, while the AEAD
scheme guarantees that any tampering on the encrypted indexes I, IS is detected in the
LOAD procedure, hence making the results res0 equivalent in both experiments.
Simulator Si, i ∈ {1, . . . ,d}. This simulator, given LQuery,i, chooses a random string
qSi of length mi and sets occSi = occi. The QUERY procedure then, upon receiving
qSi and occSi , employs the oblivious backward search algorithm with ABWT based
oblivious RANK procedure. The number of iterations of backwards search depends
only on mi and occi in both the RealP,A and the IdealP,A,S experiments. The linear
sweeps over the dictionary Count adds to the trace TQuery only its size |Σ|, as each
entry is involved in an oblivious write. The oblivious RANK procedure, outlined in
Alg. 4.5, retrieves a block from the DORAM, whose security guarantees ensures that
no information is leaked during the ACCESS operation. After retrieving such block,
the RANK procedure obliviously sweeps over this block, an operation that reveals only
the block size, which is already known from TLoad. Concerning the result of the query,
all the operations, except for the DORAM ACCESS, are performed inside the SGX en-
clave, where any code and data tampering is prevented. As the security guarantees of
DORAM ensures that accesses are secure against any tampering strategy, then the re-
sults of the queries are computationally indistinguishable in both the RealP,A and the
IdealP,A,S experiments.

4 Oblivious EARLYRESHUFFLE Analysis

In this section, we prove that the strategy employed by the EARLYRESHUFFLE pro-
cedure of our Ring DORAM places Z blocks out of the Z+D slots available in a
bucket uniformly at random. To this extent, we define the event Ei,j , i∈{1, . . . , Z},
j∈{0, . . . , Z+D−1}, which is verified if the slot j of the bucket is full after the EAR-
LYRESHUFFLE procedure has placed the i-th block in the bucket. Similarly, we define

192

4. Oblivious EARLYRESHUFFLE Analysis

the event Bi,j , i∈{1, . . . , Z}, j∈{0, . . . , Z+D−1}, which is verified if the i-th block
placed by EARLYRESHUFFLE is assigned to the slot j of the bucket. Clearly, the i-th
block is assigned to the slot j if and only if this slot is chosen in the i-th iteration and it
is never chosen in all previous iterations, i.e, Bi,j =

∧i−1
h=1 ¬Eh,j ∧ Ei,j . The probability

of the event Bij can be thus computed as:

Pr(Bi,j) = Pr(
i−1∧
h=1

¬Eh,j ∧ Eij) = Pr(Ei,j|
i−1∧
h=1

¬Ehj)Pr(
i−1∧
h=1

¬Eh,j)

= Pr(Ei,j|
i−1∧
h=1

¬Eh,j)Pr(¬Ei−1,j|Pr(
i−2∧
h=1

¬Eh,j))Pr(
i−2∧
h=1

¬Eh,j)

= Pr(Ei,j|
i−1∧
h=1

¬Eh,j)Pr(¬Ei−1,j|Pr(
i−2∧
h=1

¬Eh,j) · · · Pr(¬E1,j)

(A.10)

We now compute each of these probabilities. Pr(¬E1,j) is the probability that the slot
j is not chosen in the first iteration; since each of the Z+D slots may be chosen
with uniform probability, Pr(¬E1,j) = Z+D−1

Z+D
. Pr(¬Eh,j|

∧h−1
k=1 ¬Ek,j) is the proba-

bility that the slot j is not chosen among the Z + D − h + 1 ones still available in
the h-th iteration; since each of them may be chosen with uniform probability, then
Pr(¬Eh,j|

∧h−1
k=1 ¬Ek,j) = Z+D−h

Z+D−h+1
. Finally, Pr(Ei,j|

∧i−1
z=1 ¬Ez,j) is the probability that

the slot j is chosen in the i-th iteration; as the slot is chosen uniformly at random
among Z + D − i + 1 ones, then Pr(Ei,j|

∧i−1
z=1 ¬Ez,j) = 1

Z+D−i+1
. Substituting these

probabilities in Eq. (A.10), we obtain:

Pr(Bi,j) =
1

Z +D − i+ 1

i−1∏
h=1

Z +D − h
Z +D − h+ 1

=
1

Z +D

Since the analysis may be repeated for each slot j and for each of the Z blocks, we
conclude that each block is placed with uniform probability over all the Z+D slots of
the bucket.

193

	Introduction
	I Privacy-Preserving Outsourced Computation
	Definitions and Preliminaries
	Comparison-Based Attack Against Noise-Free FHE Schemes
	Multi-User PPSS Protocol with Polylogarithmic Communication Cost
	ObSQRE: PPSS Protocol Based on Intel SGX

	II Digital Certificates
	Definition and Preliminaries
	Novel Regular Format for X.509 Digital Certificates
	Security Audit of OpenPGP Format
	Concluding Remarks and Further Developments
	Bibliography
	Appendix

