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Abstract

Hyperspectral microscopy is a very powerful tool because images with both
spatial and spectral information of the samples are retrieved. For this reason
it is an important technique for the materials recognition and characteriza-
tion on the basis of their spectra and with a micrometer spatial resolution.
Hyperspectral microscopy can be exploited for different spectral measure-
ment implementations such as reflectivity, transmission, fluorescence and
Raman. In general different hyperspectral imaging approaches both in the
spectral and in the spatial domain can be adopted. In the spatial domain
there’s the basic distinction between raster scanning in which the image is
acquired one point at a time and widefield in which the image is acquired
at once. In the spectral domain there are two main different approaches:
the Dispersive Spectroscopy in which the different wavelengths of the de-
tected light are separated and resolved by means of prisms or gratings and
the Fourier Transform Spectroscopy which relies on the Fourier transform
operation to pass from an acquired interferogram of the detected light to a
spectrum.
In 2019 a Fourier Transform Hyperspectral Microscope based a common-
path ultrastable interferometer has been developed in Physics Department
at Politecnico di Milano [1]. Relying on the advantages of Fourier Trans-
form Spectroscopy, this microscope is used in the widefield approach and
therefore all the spectra for the seval image pixels are retrieved at once.
The ultrastability of the interferometer allows a simple use of this setup in
a routinely laboratory activity.
Starting from the Hyperspectral Microscope introduced in [1], this mas-
ter thesis deals with the consequent work undertaken on this setup in or-
der to optimize and corroborate the reliability of the system both from
an experimental-instrumental implementation and from a datum analysis
point of view. In particular the effort has been focused on Raman widefield
imaging because that is a very interesting and promising technique as the
Raman spectrum peaks are specifically related to the particular chemical
species and this allows a very selective characterization of the investigated
sample. As Raman phenomenon is characterized by very low cross-section,
an optimization of the measurement parameters in order to increase the
Raman signal with respect to the background and an accurate choice of

xi



the consequent hyperspectral datum analysis are fundamental in order to
accomplish a significative result. In this sense much time has been spent
in the laboratory activity to test the setup with different kind of samples
and in the improvement of the related analysis software: the scope of this
effort has been collecting appreciable results and complying with a proper
analytical tool for the information extrapolation.
As it is demonstrated by this thesis work, the setup and its peculiar hyper-
spectral imaging technique have revealed a very promising system to perform
widefield Raman imaging in fast measurements if compared with other works
presented in literature and with an high spatial resolution. In addition, the
measured Raman spectra are completely fluorescence-free even if the fluo-
rescence intensity from the sample is not negligible: this is a novelty in the
spectroscopy community as, in typical Raman setups, the measured Raman
spectral peaks are superimposed to the broadband fluorescence background.
These characteristics together with the ultrastability and the compactness
make this instrument a good candidate for scientific research and industrial
applications.

xii



Chapter 1

Theory

1.1 Hyperspectral Imaging

Hyperspectral Imaging is a very powerful technique based on the acquisition
of images in which each pixel contains spectral information.

In common imaging each pixel is represented by a single intensity value,
in grayscale images, or by a red (R), green (G) and blue (B) value triad,
in color images. In greyscale images the single value describes the overall
irradiance, instead in color images the combination of the R, G and B values
results in the color of the pixel: these representations give only information
on the overall incoming light on that part of the electromagnetic spectrum
perceived by the human eyes.

An hyperspectral image contains on each pixel an entire vector describ-
ing the spectral content as it is acquired: this means that for each pixel such
an image contains the intensity associated to each spectral frequency and
not only the three intensity values related to the RGB triad or, even worse,
the single overall irradiance value as in greyscale images. For this reason
an hyperspectral image is called “spectral hypercube” because the intensity
values contained on it are organized in a three-dimensional matrix as it is
shown in Figure 1.1.

Therefore considering a spectral hypercube means to deal with both
spectral and spatial information at the same time: this is very important
for applications in which it is requested the investigation of both morpho-
logical and chemical composition of the object to study. For these reasons
hyperspectral imaging is commonly applied to environmental sensing [2],
military target designation [3] and medical imaging [4] but also it has other
important applications to several fields such as agriculture [5], astronomy
[6], archeology [7] and art conservation [8].

From a spectral hypercube it is possible to obtain a wealth of information
including an RGB image: each R, G and B value are calculated integrating
the product between the spectrum and functional windows related to R, G
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Theory

and B over the frequency/wavelength axis as it is shown in Figure 1.2. The
real R, G and B windows are defined according to the human perception
of colors. As in hyperspectral imaging we have extended spectral informa-
tion, it is possible to assign the R, G and B windows to different ranges in
the spectrum and to generate a false RGB image taking the integral of the
product between the spectrum with the redefined RGB windows.

Figure 1.1: Representation of the spectral hypercube space as three-dimensional matrix: the x
and y dimensions identify the pixels in the image plane, the f dimension indentifies the spectral
frequencies. To enhance the fact that the spectral hypercube can be seen as a collection of images
each one related to a particular frequency, each ”slice” has been colored with a different hue.

Figure 1.2: Example of a certain spectrum as a function of the wavelength and the three R, G
and B windows located in the real wavelength range as perceived by the human eye.

2



Theory

1.2 Fourier Transform Spectroscopy

The Fourier Transform Spectroscopy is a technique based on the Wiener-
Kintchine theorem.
This theorem was proved by Norbert Wiener in 1930 for the case of a deter-
ministic function [9]. In the particular case of a continous function E(t) the
theorem states that the autocorrelation γ(τ) of E(t) is bound to the power
spectral density S(f) of E(t) according to this equality:

γ(τ) =

∫ +∞

−∞
S(f)ei2πτf df (1.1)

where the autocorrelation is defined as

γ(τ)
.
= 〈E(t)∗E(t− τ)〉 =

∫ +∞

−∞
E(t)∗E(t− τ) dt (1.2)

and the symbol ∗ indicates the complex conjugate if E is a complex function.
If we consider the complex function E(t) as the functional representation of
the dependence of the electric field on time and we make it interfere with a
delayed replica E(t− τ), we can write the interferogram U(τ) measured on
a detector as the intensity I of the overlap of E(t) and E(t− τ) integrated
in the time interval [t1, t2] 1:

U(τ) =

∫ t2

t1

I dt ∝
∫ t2

t1

[
| E(t) + E(t− τ) |2

]
dt =

=

∫ t2

t1

[
| E(t) |2 + | E(t− τ) |2 +E∗(t)E(t− τ) + E(t)E∗(t− τ)

]
dt =

=

∫ t2

t1

[
| E(t) |2 + | E(t− τ) |2

]
dt +

+

∫ t2

t1

[E∗(t)E(t− τ) + E(t)E∗(t− τ)] dt =

= C0 + 2 Re [〈E∗(t)E(t− τ)〉]
(1.3)

As it can be seen from equation 1.3 taking apart a constant term (called C0)
which do not depend on τ , the integral U(τ) is equal to 2 Re [〈E∗(t)E(t− τ)〉]
which corresponds to the real part of the autocorrelation γ(τ) defined in
equation 1.2. This means that, if we consider the real part of the γ(τ), it

1In optics the intensity is defined as the amplitude of the Poynting vector ~S =
c

4π

(
~E ∧ ~H

)
where c is the speed of light, ~E is the electric field and ~H is the magnetic

field. For a plane wave the amplitude of the Poynting vector is S = c
4π

√
ε
µ
| ~E |2 where

ε is the dialectric constant and µ is the magnetic permeability: therefore the intensity is
proportional to the modulus square of the electric field [10].
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corresponds to the interferogram of the two replicas of the electric field E(t)
and E(t− τ) as function of the relative delay τ between the two. Moreover,
according to the physical interpretation of the E(t) function as an electric
field, we have that the real part of S(f) is the power spectral density of
the electric field E and therefore it is the frequency spectrum of the optical
radiation. From now on we will consider γ(τ) and S(f) as real functions and
by definition the frequency spectrum S(f) and the interferogram γ(τ) are
functions belonging to L1(R) because they are integrable on R. Therefore
we can invert equation 1.1:

S(f) =

∫ +∞

−∞
γ(τ)e−i2πτf dτ (1.4)

because S(f) and γ(τ) belong to L1(R) and for this reason they satisfy the
necessary conditions for the inversion. The expressions

∫ +∞
−∞ S(f)ei2πτf df

from 1.1 and
∫ +∞
−∞ γ(τ)e−i2πτf df from 1.4 corresponds respectively to the

Inverse Fourier Transform (IFT) of S(f) and the Fourier Transform (FT) of
γ(τ) in L1(R) [11].

Equation 1.4 states that the FT of the interferogram γ(τ) of the electric
field E is equal to the spectrum of E. Therefore if we acquire the interfer-
ogram of the incoming electromagnetic radiation and then we take the FT,
we obtain the frequency spectrum: this is the basis of FT Spectroscopy.

To acquire the interferogram of the incoming radiation we need an in-
terferometer which has the role to split the incoming electric field into two
replicas E(t) and E(t− τ) and to control the relative temporal delay τ be-
tween them.

1.2.1 The Michelson interferometer

The most common configuration for an optical interferometer is the Michel-
son interferometer invented by Albert Abraham Michelson and used in 1887
in the famous Michelson-Morley experiment for the attempt to detect the
existence of the luminiferous ether [12]. Figure 1.3 shows the scheme of the
Michelson interferometer: it relies on a 50-50 beam splitter which reflects
50% of the incoming light and transmits the other 50%. The beam splitter
is tilted at 45° in order to obtain two replicas of the electric field: one in
the upper branch (at 90° with respect to the direction of propagation of
the incoming electric field) and the other in the right branch. These two
replicas (indicated in red and blue in Figure 1.3) are back reflected by two
perpendicular mirrors and then they impinge again on the beam splitter.
The light transmitted from the upper branch and the light reflected from
the right branch interfere on the detector as shown in Figure 1.3. Mirror
M2 can be translated in order to change the path of the right branch: in
this way the two replicas of the electric field which interfere on the detector
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have a relative phase difference which depends on the position of the trans-
lating mirror. If we consider a plane wave with obscillation frequency f and
amplitude A0, we have that the temporal evolution of the electric field can
be written in this way:

E(t) = A0 · e−i2πft (1.5)

If the plane wave is delayed because of a different optical path, we have:

E(t− τ) = A0 · e−i2πf(t−τ) (1.6)

where τ is the temporal delay. If we consider an incoming electric field Ein
as a plane wave oscillating with a frequency f , we have to deal with the
interference between two replicas as described by equations 1.5 and 1.6; in
this case the intensity I which impinges on the detector is:

I(τ) ∝| E(t) + E(t− τ) |2=

=| E(t) |2 + | E(t− τ) |2 +E∗(t)E(t− τ) + E(t)E∗(t− τ) =

= 2· | A0 |2 + | A0 |2 ·ei2πfτ+ | A0 |2 ·e−i2πfτ = 2· | A0 |2 · [1 + cos(2πfτ)]

(1.7)

In reality the detector measures the integral of the intensity I over time, but
in this case it would simply result in a multiplication of the equation 1.7 by
a constant factor. Thus equation 1.7 gives us the mathematical expression
of the interferogram: if the phase 2πfτ = n2π (n ∈ Z) we have constructive
interference, if the phase 2πfτ = (2n + 1)π (n ∈ Z) we have destructive
interference.
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Figure 1.3: Scheme of the Michelson interferometer. Thanks to the beam splitter (B.S.) the
incoming electric field Ein(t) is splitted into two replicas (one reflected on the upper branch, in
red, and the other transmitted on the right branch, in blue) which are reflected by two mirrors
(M1 and M2) and then they interfere on a detector (D). The position of one of the two mirrors
(M2) can be changed to control the optical path difference between the two branches and therefore
the temporal delay τ between the two replicas E(t) and E(t+ τ).

Figure 1.4: (a): example of two replicas of the electric field E (described as a plane wave) with
a relative delay τ . The amplitudes of the two replicas are shifted for clarity. (b): intensity of the
interference of the two replicas shown in (a) which impinges on the detector as a function of the
delay τ .

If we consider the incoming electric field Ein as a broadband signal we
can write it as:

Ein = A(t) · e−i2πf0t (1.8)

where A(t) is the envelope and f0 is the carrier frequency. We can write the
energy U measured by the detector integrating the intensity on time t [13]
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in an interval [t1, t2]:

U(τ) =

∫ t2

t1

I dt ∝
∫ t2

t1

| A(t) · e−i2πf0t +A(t− τ) · e−i2πf0(t−τ) |2 dt =

=

∫ t2

t1

(
| A(t) |2 + | A(t− τ) |2

)
dt+

+

∫ t2

t1

(
A(t) ·A∗(t− τ) · e−i2πf0τ +A∗(t) ·A(t− τ) · ei2πf0τ

)
dt =

=
C0

2
+
C0

2
+ 2 Re

[∫ t2

t1

(
A∗(t) ·A(t− τ) · ei2πf0τ

)
dt

]
=

=
C0

2
+
C0

2
+ 2 · C(τ)

(1.9)

where we have put
∫ t2
t1
| A(t) |2 dt =

∫ t2
t1
| A(t − τ) |2 dt = C0

2 and

we recognize that the third term 2 Re
[∫ t2
t1

(
A∗(t) ·A(t− τ) · ei2πf0τ

)
dt
]

=

2 · C(τ) is the only τ -dependent term.
If the two replicas are not delayed (τ = 0) C(τ) = C0

2 and we get:

U(τ) =
C0

2
+
C0

2
+ 2

C0

2
= 2 · C0 (1.10)

If the two replicas have a relative phase −π
2 + 2nπ ≤ 2πf0τ ≤ +π

2 + 2nπ we

have 0 ≤ C(τ) ≤ C0
2 and therefore:

C0 ≤ U(τ) ≤ 2 · C0 (1.11)

If the two replicas have a relative phase π
2 + 2nπ < 2πf0τ <

3π
2 + 2nπ we

have −C0
2 < C(τ) < 0 and therefore:

0 < U(τ) < C0 (1.12)

If the two envelopes A(t) and A(t + τ) are well separated in time they do
not overlap in the intergral of the third term and we have:

U(τ) =
C0

2
+
C0

2
+ 0 = C0 (1.13)

From the equations 1.10, 1.11, 1.12 and 1.13 we can easily understand the
behaviour of U as a function of the delay τ : it has its maximum when
τ = 0, then it oscillates around the zero-delay until the absolute value of τ
is greater than the temporal coherence of the envelopes A(t) and A(t + τ)
and it stabilizes at half of the oscillation dynamics. The oscillations of
the interferogram before the stabilization at half of the dynamics are also
refferred to as fringes.

7



Theory

Figure 1.5 (b) shows the dependence on the delay τ of the energy U
described by equation 1.9.

Figure 1.5: (a): example of two replicas of the electric field E in the broadband case. Each one
of the two replicas oscillates with the frequency f0 of the carrier and has an amplitude A which
depends on time (in this figure A is considered as a Gaussian envelope). The amplitudes of the
two replicas are shifted for clarity. (b): energy U related to the intensity of the interference of the
two replicas shown in (a) which is integrated on the detector as a function of the delay τ .

The two examples described by equations 1.7 (see Figure 1.4 (b) as ref-
erence) and 1.9 (see Figure 1.5 (b) as reference) are representative of a
narrowband-spectrum signal and a broadband-spectrum signal respectively.
The plane wave described by equation 1.5 and oscillating with a frequency
f has a spectrum which is a line at frequency f , while the broadband signal
described by equation 1.8 has a spectrum which is centered around the car-
rier frequency f0 and which covers more frequencies. These two examples
allow us to understand this important property: the interferogram obtained
from the interference of two replicas of a narrowband signal is a periodic
function which continues to oscillate even at very large delays (positive or
negative) with respect to τ = 0 as it is shown by Figure 1.4 (b), the interfer-
ogram obtained from the interference of two replicas of a broadband signal
has apprecciable oscillations only around τ = 0 and then it settles at half of
the maximum as it is shown by Figure 1.5 (b).

To arrive to this conclusion we have considered only examples involving
coherent light, infact equations 1.5 and 1.8 are representative of a monochro-
matic laser and a pulsed laser respectively: anyway the property we have
demonstrated with these simple examples is also valid for incoherent light.

1.2.2 The advantages of FT spectroscopy

The very known advantages of FT spectroscopy with respect to the disper-
sive spectroscopy based on prisms or gratings reside in:

• Jacquinot advantage or throughput advantage

• Fellgett advantage or multiplex advantage
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The Jacquinot advantage starts from the fact that in an ideal lossless optical
system, the brightness of an object equals the brightness of the image: this is
because of the conservation of the “étendue” (or “throughput”) 2. In a real
optical system with a limited aperture stop 3 the étendue is limited by the
aperture stop itself; therefore grating spectrometers have smaller étendue
with respect to FT interferometers because in gratings the light is spatially
filtered by linear slits (for the formal demonstration of this statement see
the Jacquinot advantage discussion on [15]).

The Fellgett advantage comes from the multiplex principle. This princi-
ple asserts that the observation time Tδσ of a small band of width δσ in a
broad spectrum from frequency σ1 to σ2 (∆σ = σ2 − σ1) is:

Tδσ =
T∆σ

∆σ/δσ
(1.14)

where T∆σ is the total time required to scan the spectrum from σ1 to σ2.
This is the principle the grating spectrometers are based on. Therefore the
signal-to-noise ratio for a grating is:

(S/N)G ∝
√
Tδσ (1.15)

In an interferometer (FT spectrometer) all the small bands δσ are observed
at the same time; therefore if the total time of the scanning is T∆σ, each
small band is observed for a time T∆σ and the signal-to-noise ratio is:

(S/N)I ∝
√
T∆σ (1.16)

From equations 1.15 and 1.16 we get the Fellget advantage:

(S/N)I
(S/N)G

=

√
T∆σ

Tδσ
=

√
∆σ

δσ
(1.17)

This shows that the signal-to-noise ratio is better in an FT spectrometer
than in a grating spectrometer. In reality in equations 1.15 and 1.16 we
have assumed that the signal-to-noise ratio depends only on the observation
time and not on the noise of the source: this assumption is valid if the noise
in the detector is the prevailing one and it is independent on the shot noise
of the photons of the source. This situation occurs in the infrared region

2The étendue E of the radiation field emitted by a surface dA and confined in a solid
angle dΩ forming an angle θ with respect to the normal to the surface is defined as

E = dA · cos(θ) · dΩ

The étendue is an invariant property of the light beam.
3The Aperture Stop of an optical system is the actual physical component that limits

the size of the maximum cone of rays (from an axial object point to a conjugate image
point) that can be processed by the entire system [14].
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in which the noise of the detectors is much higher than the noise of the
sources. It can be demonstrated that if the shot noise prevails over the de-
tector noise, as in the visible region, the signal-to-noise ratio is the same for
the interferometer and the grating spectrometer and the Fellget advantage
is lost (the demonstration of this is in [15]).

Anyway the Jacquinot and Fellgett advantages permit construction of
interferometers having much resolving powers than dispersive instruments
[16] because, in general, they assure an higher signal-to-noise ratio.

Together with the Jacquinot and Fellgett advantages FT spectroscopy
offers the following advantages:

• the flexibility in spectral resolution which depends on the maximum
scan delay [1]: the greater the maximum scan delay the better the
resolution (see [16] for example)

• the possibility of parallel recording of the spectra of all pixels within
a two-dimensional scene of an imaging system [17]
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1.3 An ultrastable common-path interferometer:
the TWINS

The Michelson interferometer presented in the subsection 1.2.1 is a basic but
effective scheme of an interferometer; nevertheless it has problems to fulfill
the necessary requirement in FT spectroscopy that the delay of the two
replicas of the electric field must be controlled to within a fraction (1/100
or better) of the optical cycle (e.g., 2fs at 600nm) [1]. In practice this
means that the beam splitter and the two mirrors must be stabilized with a
precision better than tens of nanometers and this ends up in a bulky setup.

In [18] the Translating-Wedge- Based Identical Pulses eNcoding System
(TWINS) has been introduced; this system constitutes a common path bire-
fringent interferometer that combines compactness, intrinsic interferometric
delay precision, long-term stability and insensitivity to vibrations [1, 18, 17].
Figure 1.6 shows the scheme of the TWINS.

Figure 1.6: Scheme of TWINS. P1 and P2 are wire-grid polarizers with polarizing axis along
the 45° and −45° direction as shown by the black arrows. A and B are two birefringent blocks
with optical axis at 0° (horizontal direction) and 90° (vertical direction) as depicted by the green
arrows. d is the width of each one of the two birefringent blocks. The width of block B can be
changed translating one of the two wedges in the directions indicated by the black arrows. E1

and E2 are the two replicas of the electric field generated in the blocks and τa and τb are the
relative delays determined by the birefringence of the crystals. The purple arrow indicates the
propagation direction of a paraxial ray.
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TWINS is composed by two uniaxial birefringent crystal blocks (A and
B in figure) with thickness d and with crossed optic axis (green arrows
in Figure 1.6). Block B is divided into two wedges: one of these can be
translated by a motorstep in the direction parallel to the cut (as shown by
the black arrows in Figure 1.6). In this way the width of block B can be
changed with respect to the thickness d. The A and B block are located
between two polarizers: one in front (P1 in figure) and the other at the end
(P2 in figure). In Figure 1.6 the two polarizers are crossed (P1 with the
polarizing axis at 45° and P2 with the polarizing axis at −45°) but they
can be with parallel polarizing axis: if they are parallel the delay τ = 0 in
the interference coincides with the maximum of the interferogram (as shown
in Figure 1.5 (b) for the Michelson interferometer), if they are crossed the
τ = 0 condition coincides with the minimum (the situation is reversed with
respect to the one shown in Figure 1.5 (b) because for τ = 0 we have U = 0,
destructive interference).

Considering as the light propagation direction the one indicated by the
purple arrow in Figure 1.6, first of all the incoming light is polarized at 45°
by the polarizer P1. Then the light enters the block A which has an optic
axis along the horizontal direction; due to the birefringence of the material
the 45°-polarized electric field is splitted into two replicas (the E1 and E2

replicas indicated in the figure).

Figure 1.7: Scheme of the block B. x is the trans-
lation of the wedge (the positive direction is indi-
cated by the arrow) and αapex is the apex angle.

E1 has a polarization along the
horizontal direction and therefore it
oscillates along the optic axis of the
crystal experiencing a refractive in-
dex n‖ (ordinary refractive index),
E2 has a polarization along the per-
pendicular direction and therefore
it oscillates perpendicularly with re-
spect to the optic axis of the crys-
tal experiencing a refractive index
n⊥ (extraorinary refractive index),
n⊥ 6= n‖

4. The difference in optical
path between the two replicas in the
A block is:

∆a =| n⊥ − n‖ | ·d (1.18)

and therefore after the A block the
two replicas have accumulated a rel-
ative delay:

τa =
∆a

c
=
| n⊥ − n‖ |

c
· d (1.19)

4For an explanation of the birefringence properties see, for example, [14]
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where c is the speed of light in vacuum.
The difference in optical path between the two replicas in the B block

is:
∆b =| n⊥ − n‖ | ·d1 (1.20)

where d1 = d − x · sin(αapex) is the width shown in the scheme of Figure
1.7 for a positive translation x of the wedge and considering an apex angle
αapex. Therefore the relative delay accumulated by the two replicas due to
the block B is:

τb =
∆b

c
=
| n⊥ − n‖ |

c
· d1 (1.21)

As the block B has the optic axis in the vertical direction, the E1 replica
now experiences the extraordinary refractive index n⊥ and the E2 replica
now experiences the ordinary refractive index n‖: the situation is reversed
with respect to the propagation in block A.
Therefore the total relative delay between the two replicas before the second
polarizer (P2) is:

τ = τa − τb =
| n⊥ − n‖ |

c
· (d− d1) =

| n⊥ − n‖ |
c

· x · sin(αapex) (1.22)

Then, after the polarizer P2, the two replicas of the electric field are pro-
jected on the same polarization direction and they can interfere on a detector
according their phase displacement 2πf0τ as described by equation 1.9.

Equation 1.22 clearly shows the linear dependence of the interference
delay τ from the translation x of the wedge: the translation x can be pos-
itive (direction indicated in Figure 1.7 with respect to the 0 when d1 = d)
or negative and therefore the wedges structure allows us to scan the varius
delays of interference.

As can be seen from equations 1.18 and 1.20 the difference in optical
path between the two replicas depends on the difference between the two
refractive indices in the crystals and on the widths d and d1 the two replicas
pass through: therefore the interference is determined only by the birefrin-
gence properties of the blocks A and B but anyway the pathlenghts of the
two replicas in the TWINS interferometer are exactly the same. This means
that all the movements and mechanical instabilities of the physical compo-
nent of the TWINS are experienced by both of the two replicas: this solves
the stability problems necessary to perform FT spectroscopy.
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1.4 Widefield imaging

Widefield is an imaging technique in which an image the sample is acquired
at once. For this reason the entire Field of View (FOV) on the sample has
to be uniformly illuminated and the imaging system has to be designed in
order to produce an image on a position-sensitive detector 5. There are
two possible configurations in widefield imaging: reflection configuration
and transmission configuration. In the reflection configuration the sample is
illuminated from above as depicted in Figure 1.8 (a), instead in the trans-
mission configuration the sample is illuminated from the bottom as depicted
in Figure 1.8 (b).

Figure 1.8: (a): widefield reflection scheme. (b): widefield transmission scheme.

Another image acquisition technique is the raster scanning (which is
also called “whiskbroom”) in which the sample is illuminated with a tightly
focused light beam that is scanned in two dimensions to obtain the entire
image 6 (see [4] and [20] as reference). Raster scanning is a point-scanning
technique because one point at time is illuminated and integrated on the
detector: scanning all the points on the FOV, the system is able to build
the entire image. Figure 1.9 depicts the conceptual scheme behind the raster
scanning imaging technique. The scanning of the tightly foucused light beam
over the stationary sample is determined by a moving mirror (called scanning
mirror in Figure 1.9) which can rotate in the two dimensions; alternatively
a point-scanning technique can be realized without scanning mirror and

5A position-sensitive detector is a two-dimensional matrix of small elements (pixels)
each one sensitive to the amount of incoming light. Therefore such a device is able to
detect the spatial intensity distribution of light on the pixels plane.

6In optical systems which allow optical sectioning (such as confocal microscopes) a
3D-scanning can be performed to obtain 3D images of the sample.
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simply moving the sample. Then the setup relies on a de-scanning mirror
which rotates in such a way that the light coming from the sample is always
directed towards a single element detector 7: in this way no position sensitive
camera is needed because the scanned point coordinates information can be
deduced from the rotation control of the scanning mirror and de-scanning
mirror.

Figure 1.9: Raster scanning scheme.

Figure 1.9 illustrates the raster scanning scheme in reflection configura-
tion: the transmission geometry can be used in a scanning system but it is
rarely found in practice [20].

There is another technique similar to whiskbroom but which relies on the
scanning of an entire line on the sample (line-scanning) instead of a single
point: this is called “pushbroom” (see [4] as reference).

7In practice, in most of the microscopes which work in the reflection geometry, the
scanning and de-scanning is performed by a single moving mirror (see [20])
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1.5 FT hyperspectral widefield imaging with TWINS

In sections 1.2, 1.3 and 1.4, the FT spectroscopy principles, the TWINS
ultrastable interferometer and the widefield imaging conception has been
presented: now in this section the applications of these concepts in hyper-
spectral imaging are discussed.

FT hyperspectral imaging relies on the acquisition of an image for each
delay of interference: the collection of all these frames is called temporal
hypercube and it can also be seen as a single image on which each pixel
contains an entire interferogram. The principle behind FT hyperspectral
imaging is that, taking the FT of each interferogram contained in the tem-
poral hypercube, the final spectral hypercube is obtained: all these concepts
will be studied in chapter 2.

In an acquisition system thought to perform FT hyperspectral imaging
based on TWINS interferometer, each one of the frames is acquired for a
particular translation of the wedge (for a particular delay of the replicas
of the electric field determined by birefringence properties). Figure 1.10
represents the conceptual scheme of an imaging system which includes the
TWINS interferometer.

In section 1.4 we have seen that in a widefield imaging system a large
area of the sample is illuminated and also the optical detection system of
an ordinary imaging device is designed in order to collect the light within
a certain numerical aperture. This means that the light going through the
TWINS interferometer in an imaging system is not only composed by parax-
ial rays as the one considered in section 1.3 and shown in Figure 1.6: the
rays can impinge on the birefringent plates A and B with a certain angle
α and this determines a correction to the relative phase 2πfτ between two
replicas of the electric field.

In a 2-dimensional representation the light coming from a point in the
FOV, which forms an angle α0 with respect to the optical axis (see Figure
1.10 for the definition of α0), is a bundle of rays which propagates at various
angles around α0 with a range ∆α [17]: for this reason we can uniquely
identify a particular ray bundle by its own pair {α0,∆α} with α0 central
ray angle and ∆α angle range (the range between the angles of the marginal
rays of the bundle with respect to the central ray). We have to consider
an entire pencil of rays (and not a single ray) because an imaging system is
characterized by a certain numerical aperture determined by a finite aperture
stop therefore it is able to collect an entire bundle of light coming from a
single point.
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Figure 1.10: 2-dimensional schematic representation of an FT hyperspectral imaging system based
on TWINS interferometer. O: point in the FOV on the object plane. I: point on the detector
in the image plane. α0: angle the line from O to I forms with respect to the optical axis. The
purple shaded area represents the ray bundle defined by the angle range ∆α = [−∆α1; ∆α2]
and collected by the imaging system. The purple line indicates a generic ray inside the bundle
which forms an angle α = α0 + δα with respect to the optical axis. The lens represents the finite
aperture stop of the imaging system. The green rectangle is a schematic 2-D depiction of the
TWINS interferometer illustrated in Figure 1.6.

Therefore we can write the angle α formed by the single ray (belonging
to a certain light bundle) with respect to the paraxial axis in this way:

α = α0 + δα (with −∆α1 ≤ δα ≤ ∆α2) (1.23)

where we have considered δα as the angle variation with respect to α0 inside
the range ∆α = [−∆α1; ∆α2] of the bundle. Therefore we can uniquely
identify a particular ray inside the bundle {α0,∆α} with the pair {α0, δα}.
In the TWINS interferometer, each one of these rays determines an electric
field replicas pair with a relative phase:

φ = 2πfτ + φ0 + δφ (with −∆φ1 ≤ δφ ≤ ∆φ2) (1.24)

where 2πfτ is the relative phase determined by the delay τ controlled with
the translation of the wedge (as described by equation 1.22) and φ0 + δφ
is the correction to the relative phase determined by the fact that the ray
impinges on the birefringent plates at an angle α0 + δα. We call φ0 the
phase correction due to angle α0 and δφ the phase correction due to the
angle variation δα: in this way, as δα is limited in a range ∆α, we have that
δφ is limited inside a range ∆φ = [−∆φ1; ∆φ2]. From this statement we can
understand that a ray bundle {α0,∆α} can be uniquely identified by the
pair {φ0,∆φ} and a single ray {α0, δα} of that bundle by {φ0, δφ}. With
equation 1.24 we don’t want to draw the matemathical dependence of φ on
the angle α of incidence of the single ray (for this discussion see [17]) but
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we want only to point out the fact that the relative phase between the two
replicas depends not only on the wedge translation but also on the position
of the object point at an angle α0 with respect to the optical axis and on
the angle variation δα within the bundle range ∆α. We have to mark the
fact that, if we fix the angle α of incidence, the phase correction φ0 + δφ is
linear with respect to the wedge translation x.

The phase correction φ0 + δφ is responsible of a delay shift of the two
replicas interferogram because the overall delay τφ can be written as:

τφ =
φ

2πf
= τ +

φ0 + δφ

2πf
= τ + τshift (1.25)

τ is a function of the wedge translation x (equation 1.22) but also τshift
depends on x as well as α:

τφ(x, α) = τ(x) + τshift(x, α) (1.26)

where: {
τshift(x, α = 0) = 0

τshift(x, α 6= 0) 6= 0
(1.27)

Equation 1.26 tells us that, if the ray impinges on the TWINS at an angle
α 6= 0, the delay τφ is not anymore only the nominal delay τ associated
to the wedge translation x (as we have seen in section 1.3) because there’s
a correction term τshift. This means that the association of the wedge
scanning to a delay scanning is not unique for all the rays collected by the
imaging system but it depends contemporarly on the wedge position x and
on the angle α of ray incidence. As shown in Figure 1.10, the light coming
from a point O in the FOV is sent to a point I on the detector; therefore all
the rays within the bundle are all integrated on the conjugated point on the
detector. In a FT hyperspectral imaging acquisition this means that on that
point we have the sum of the electric fields which, as it can be seen from
equation 1.26, are related to a different delay axis although they are built
on a single set of translations {x}set of the wedge. Moreover in a widefield
geometry the optical system collects light from all the points in the FOV
and creates the correspondent image on the camera: therefore on the image
plane each point derives from the integration of its associated light bundle
characterized by its own central ray angle α0. These facts determines two
fundamental problems as discussed in [1] and [17]:

• hyperbolic phase pattern across the FOV

• reduction of interferogram fringes visibility ν on each point of the
detector

The phase pattern is due to the fact that the ray bundles coming from
different points in the FOV are characterized by different central ray angles
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α0 and this determines a dependence of the phase correction φ0 (see equation
1.24) on the particular position of the FOV. As it is shown in [1], the 2D
spatial map of the phase φ0 determined by the uniaxial birefringent crystal
of the TWINS is characterized by an hyperbolic pattern.

As it is stated in [17] the fringes visibility reduction is determined by
the phase span ∆φ. This is a direct cause from the fact that on a single
point of the detector we have the sum of the electric field replicas related
to all the rays within the particular bundle {φ0,∆φ}. In order to study the
dependence of the fringes visibility on ∆φ we can consider each one of the
rays within the bundle as a monochromatic plane wave with frequency f .
We can make the assumpion that the polarization is the same for all the
electric fields related to these rays when they impinge on the detector point
and we can consider the ray phase correction δφ as uniformly distributed
in the interval ∆φ = [−∆φ1; ∆φ2]. Starting from these hypothesis, we call
E{φ0,δφ}(2πft + φr) and E{φ0,δφ}(2πft + φ + φr) the two replicas of the
electric field associated to a particular ray {φ0, δφ} expressed as functions
of the phase 2πft + φr: φr is the phase difference of E{φ0,δφ}(2πft + φr)
with respect to the first replica E{φ0,δφ=0}(2πft) of the central ray. In this
simple model the interferogram measured on the detector point in the time
interval [t1, t2] is:

U(τφ) =

=

∫ t2

t1

∣∣∣∣∫ +∆φ2

−∆φ1

[
E{φ0,δφ}(2πft+ φr) + E{φ0,δφ}(2πft− φ+ φr)

]
d(δφ)

∣∣∣∣2 dt
(1.28)

where we have written the integral from −∆φ1 to +∆φ2 in order to sum
all the replicas belonging to the different rays inside the bundle {φ0,∆φ}.
φr depends on δα and therefore in the integral in equation 1.28 it depends
on δφ. To simplify the calculation we can neglect φr: this coincides with
the assumption that the first replicas of the rays within the bundle see the
same optical path independently on the incidence angle on the TWINS. This
is reasonable as in a two-dimensional representation of the TWINS one of
the two replicas pass through the birefringent blocks A and B without any
dependence of the crystal refractive indices on the angle of incidence (see
[1] for the details on this). As all the rays within the bundle are focused
on the same detector point, we can reasonably consider all the first replicas
reciprocally in phase.

The electric field associated to a plane wave can be written as:

E(ϕ) = A0e
−iϕ (1.29)

where ϕ is its overall phase and A0 is its amplitude. Substituting equation
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1.29 in equation 1.28, φ with the expression 1.24, and neglecting φr, we get:

U(τφ) =

=

∫ t2

t1

∣∣∣∣∫ +∆φ2

−∆φ1

[
A0 · e−i(2πft) +A0 · e−i(2πft−φ0−δφ−2πfτ)

]
d(δφ)

∣∣∣∣2 dt
(1.30)

In this equation we have considered all the replicas of all the rays within the
bundle with the same amplitude A0. As the factors A0 and e−i(2πft) don’t
depend on δφ, we can rewrite equation 1.30 in this way:

U(τφ) =

∫ t2

t1

∣∣A2
0

∣∣ · ∣∣∣∣∫ +∆φ2

−∆φ1

[
1 + ei(φ0+δφ+2πfτ)

]
d(δφ)

∣∣∣∣2 dt (1.31)

From equation 1.31 we can calculate the expression of U as a function of τ
and the phase span ∆φ = [−∆φ1; ∆φ2] 8:

U(τ) = |A0|2 ·
∣∣∣∆φ2 + ∆φ1 − iei(φ0+2πfτ) ·

[
ei∆φ2 − e−i∆φ1

]∣∣∣2 · (t2 − t1)

(1.32)
We define the fringes visibility ν in agreement with the definition in [17]:

ν(∆φ1,∆φ2)
.
=
max {U(τ)}τ − 〈U(τ)〉τ

〈U(τ)〉τ
(1.33)

where the notations max {U(τ)}τ and 〈U(τ)〉τ indicate respectively the
maximum and the mean of U(τ) calculated on the τ variable: for this reason
ν is calculated as a function of the phase span ∆φ = [−∆φ1; ∆φ2].

Figure 1.11 shows the dependence of ν on ∆φ2 (considering ∆φ1 = 0)
calculated substituting equation 1.32 in equation 1.33: this is the same re-
sult shown in [17]. As it can be seen the fringes visibility ν is almost 100%
for small phase span (|∆φ2 −∆φ1| < π), then it decreases until it reaches
0% (at |∆φ2 −∆φ1| = 2π).

8We make the approximation that the phase correction φ0 + δφ is not dependent on
the wedge translation x and therefore there is not a mathematical relation between τ and
φ0 + δφ. For this reason we can calculate U as a function of τ as τφ is simply obtained by
the addition of a term τshift which does not depend on x in this approximation.
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Figure 1.11: Fringes visibility ν as a function of ∆φ2 (in multiple of π) considering ∆φ1 = 0,

φ0 = 0, f = 500THz (λ = 600nm) and τ ∈
[
−100× 5µm× 0.29 fs

µm
; +100× 5µm× 0.29 fs

µm

]
. In

the panels at the top three interferogram for different values of ∆φ2 are shown.

1.5.1 High-fringes visibility and Uniform Zero-path Delay
configurations

The imaging system scheme shown in Figure 1.10 relies on a single lens. The
imaging scheme used in microscopy is the 4f configuration depicted in Figure
1.12. As it can be seen this scheme relies on two elements: the objective and
the tube lens. The objective (depicted in Figure 1.12 as a single lens) has
the role to collect the cone of light (defined by its numerical aperture NA)
from each point of the sample and it has to be located at a distance from the
sample equal to f1 which is the objective focal length. In this way the rays
coming from a point of the sample are parallel after the objective: they are
infinity conjugated. Then the tube lens has the role to focus the rays in a
point at a distance equal to f2 which is the tube lens focal length: therefore
the tube forms an image of each point of the sample on the detector plane
if it is located at a distance f2.
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Figure 1.12: Scheme of the 4f configuration. f1: focal length of the objective. f2: focal length of
the tube lens

The magnification M of the image of the sample on the detector plane
in the 4f configuration is:

M =
f2

f1
(1.34)

and the resolution δρ of such an optical system is given by the Abbe diffrac-
tion limit:

δρ =
λ

2 ·NA
(1.35)

where NA = n · sin(αmax) is the objective numerical aperture (n is the
refractive index of the objective surrounding medium and αmax is the max-
imum angle of the cone of light accepted by the objective) [20].

In a FT hyperspectral imaging system based on TWINS which relies on
the 4f scheme there is the possibility to choose between the two different lo-
cations of the interferometer depicted in Figure 1.13 (a) and in Figure 1.13
(b). This choice ends up with two different configurations of the imaging sys-
tem called high-visibility configuration and uniform zero-path delay (ZPD)
configuration [1]. The high-visibility configuration is the one in which the
TWINS interferometer is located between the objective and the tube lens.
In this scheme all the rays belonging to a bundle that comes from a single
point in the sample pass through the TWINS with the same angle because
they are all parallel as shown in Figure 1.13 (a). In this way all the electric
field replicas of these rays integrated as in equation 1.28 have a maximum
phase shift ∆φ = [−∆φ1,∆φ2] which is almost zero and this ends up in a
high fringes visibility ν as defined in equation 1.33. We have to note that the
different bundles coming from different points in the sample pass through
the TWINS with different α0 angles and therefore in this configuration the
problem of the hyperbolic phase pattern across the FOV is not solved.
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Figure 1.13: (a): high-visibility scheme in the FT hyperspectral imaging system based on TWINS
in the case of a 4f configuration. (b): uniform ZPD scheme in the FT hyperspectral imaging
system based on TWINS in the case of a 4f configuration.

The uniform ZPD configuration is obtained when the TWINS is located
after the tube lens. In this scheme (see Figure 1.13 (b)) all the rays of a
bundle pass through the interferometer with different angles α (as defined
by equation 1.23) but with α0 = 0: therefore the rays integrated in a single
point of the detector have on average an angle α = 0 with respect the
TWINS and this means that the integral on that detector point (see equation
1.32 for reference) is not dependent on φ0 and therefore it is completely
controlled by the delay τ imposed by the wedge translation x. As this
situation is the same for all the bundles (and therefore for all the points
on the detector), we have that all the pixels’ interferograms acquired in the
temporal hypercube are referred to the same axis of delays τ(x): the zero
delay is not shifted but it is uniform on all the image pixels. This solves
the problem of the hyperbolic phase pattern across the FOV but it reduces
the fringes visibility as the integral of interferograms on each point of the
detector contains interferograms of rays with different angles α with respect
to the TWINS.
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Chapter 2

Management and
development of data

2.1 Analysis and treatment of the temporal hy-
percube

In section 1.5 we have seen the concept of temporal hypercube which is
the datum collected by an FT hyperspectral imaging system. This datum is
the collection of varius images at different delays determined by the trans-
lation of the wedge of the TWINS interferometer. For this reason we can
see the temporal hypercube as an image whose pixels contain each one a
interferogram as it is presented in Figure 2.1.

As in a measurement acquisition the wedge translator covers the overall
excursion through discreet steps (set of translations {x}set), the collected
frames are referred to a discreet set of delay values. For this reason the
interferogram in the single pixel of the temporal hypercube is an array of
values as a function of τ . As we have seen in section 1.2, the interferogram
is the starting datum in FT spectroscopy: by taking the Fourier transform
of the interferogram U(τ) according to equation 1.4 we obtain the frequency
spectrum S(f):

S(f) =

∫ +∞

−∞
U(τ)e−i2πτf dτ = FT [U(τ)] (2.1)

where FT denotes the Fourier transform operation. As the delay τ depends
on the discrete set of wedge translation {x}set, the FT we have to consider
is discrete:

S(f) =
∑

τ∈{τ}set

U(τ) · e−i2πτf ·∆τ = DFT [U(τ)] (2.2)

where ∆τ denotes the difference between τ and its following in the array
{τ}set and DFT denotes the discrete Fourier transform operation.
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Figure 2.1: Depiction of the temporal hypercube space as three-dimensional matrix: the x and
y dimensions identify the pixels in the image plane, the τ dimensions identifies the delays. The
window on the right shows the interferogram contained in the pixel in green as energy U vs. delay
τ . The color saturation represents the interferogram value.

Therefore, as it is stated by equation 2.2, it is necessary to take the DFT
of each pixel in the image in order to obtain the final spectral hypercube
which is the datum of interest in hyperspectral imaging. This is not a
straightforward operation because a real measurement acquires a non-ideal
interferogram and therefore some treatments are necessary before taking the
DFT : the subtraction of the mean (and of a polynomial fit of the slowly
varying signal) and the apodization. Moreover we have to point out that in
an experimental setup the control is on the wedge translation therefore the
retrieved temporal hypercube is referred to the wedge position. This means
that the spectra obtain from the FT operation are expressed in terms of
pseudo-frequency: the way to pass from the pseudofrequency domain to the
frequency domain will be discussed in chapter 3.

2.1.1 Subtraction of the mean and polynomial fit

As we have seen in section 1.2, the physical quantity measured by a detector
is the energy; therefore the acquired interferogram is in the form:

U(τ) = C0 + 2 · C(τ) (2.3)
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as it is stated by equation 1.9. In this equation we can see that the acquired
interferogram is constituted by a τ -dependent part 2·C(τ) (which is the term
that oscillates) and a constant term C0 (which simply adds a background to
the oscillating part). As 2 · C(τ) oscillates around 0 and it has null mean,
the term C0 represents the mean of the function U(τ). Therefore, before
applying equation 2.2, it is necessary to subtract its mean in order to avoid
a peak at frequency f = 0 in the spectrum. In experimentally measured
interferograms C0 is not always constant: therefore we have not only the
problem to subtract a mean but also to subtract a polynomial function from
the interferogram that, after the DFT operation, would produce artifacts
in the spectrum at low frequencies.

2.1.2 Finite acquisition record: convolution with a boxcar

The set {τ}set determined by the wedge excursion during the measurement
acquisition is a finite interval. This means that the interferograms contained
in the temporal hypercube are not extended from −∞ to +∞ as the theory
of equation 2.1 requires. Therefore a real aquired interferogram can be seen
as an infinite extended interferogram U(τ) multiplied by a ‘boxcar’ function
BX(τ) [19]; applying equation 2.1 we have:∫ +∞

−∞
U(τ) ·BX(τ) · e−i2πτf dτ = FT [U(τ) ·BX(τ)] (2.4)

whith the boxcar function defined as:

BX(τ) =

{
1 if T1 ≤ τ ≤ T2

0 if τ < T1 or τ > T2

(2.5)

where T1 and T2 indicate respectively the first and the last delay in the
excursion set {τ}set. From the FT theory [11] the operation 2.4 can be
rewritten as:

FT [U(τ) ·BX(τ)] = FT [U(τ)] ∗FT [BX(τ)] = S(f) ∗FT [BX(τ)] (2.6)

where we use ∗ to denote the convolution operation. As we have that:

FT [BX(τ)] =

∫ T2

T1

e−i2πτf dτ =
i

2πf

[
e−i2πT2f − e−i2πT1f

]
(2.7)

equation 2.6 tells that, the FT of an interferogram acquired from delay T1

to delay T2, provides S(f) convoluted with a function FT [BX(τ)] which
introduces some sidebands artifacts in the spectrum. If we consider a sym-
metric acquisition of the interferogram (T1 = −T and T2 = T ) we get from
equation 2.7:

FT [BX(τ)] =
2T sin (2πTf)

2πTf
= 2 · T · sinc (2Tf) (2.8)
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Figure 2.2 shows the effect of the multiplication of the interferogram by
BX which introduces undesired sidebands in the spectrum near the narrow
peak.

Figure 2.2: Effect of the multiplication of the interferogram by a boxcar function. (a) shows the
FT of the infinite extended interferogram which is the real spectrum on the right. (b) shows the
FT of the same interferogram multiplied by a boxcar BX with extension from T1 = −T to T2 = T .

Figure 2.2 (b) presents the case in which the boxcar is symmetric with
respect to the delay τ = 0 and the FT ends up with a spectrum which is a
real function. If we consider an asymmetric boxcar (with T1 and T2 which
are not necessarily T1 = −T to T2 = T ) we have the convolution of the
spectrum S(f) with the complex function described by equation 2.7: in this
case the resulting spectrum is not a real function but it is complex. The
problem of treating complex spectra will be discussed in section 2.3.

In Figure 2.2 it is evident that the convolution with FT [BX(τ)] pro-
duces a broadening of the spectrum peaks: this broadening inversely de-
pends on the width of the boxcar window. This is a fundamental property
of the FT spectroscopy: the spectral resolution depends on the delay inter-
val scanned during the acquisition.

2.1.3 Apodization

As in real measurements we acquire a finite record of the interferogram, we
can’t avoid the sidebands effect on the spectrum; however we can reduce it
using the so called apodization.

The concept behind apodization is to truncate the interferogram less
abruptly than with ‘boxcar’ cutoff: therefore we multiply the interferogram
by a proper apodization function. There are several apodization functions
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described in literature (see for example [19], [21] and [22]): Figure 2.3 shows
some of the most used apodization windows and shows their effect on a
single-line spectrum.

Figure 2.3: Effect of different apodizations on a cosinusoidal interferogram function (simulated in
MATLAB). Left: the sinusoidal interferogram (black line) and the apodization function (red line).
The apodizations have been built considering the delay window defined by the boxcar (dashed
red line): this simulates the finite record of the interferogram in a real measurement (red shaded

area). The Supergaussian has been considered in the form e−τ
2·index

with index = 2. Right: the
resulting spectrum after the FT operation.

The different apodizations have their pros and cons and the best one
depends on the particular measurement and the particular spectrum we
are acquiring. The two most important characteristics to consider for the
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choice of the apodization are the sidebands added to the spectrum lines and
the broadening of the lines. Figure 2.4 shows the cases (d), (f) and (g)
(presented in Figure 2.3) in a semi-logarithmic plot. As it can be clearly
seen the Supergaussian apodization determines the smallest broadening of
the spectrum line but it presents evident sidelobes next to the peak. 3-
term Blackmann-Harris apodization function has negligible sidelobes but it
determines a considerable broadening of the peak. Happ-Genzel apodization
is a good compromise between the sidebands (10−2 smaller than the main
peak) and the broadening. As it can be seen Supergaussian and Happ-
Genzel present an higher peak in the spectrum with respect to the 3-term
Blackmann-Harris.

Figure 2.4: Comparison between Happ-Genzel, 3-term Blackmann-Harris and Supergaussian
apodization functions effects ((d), (f) and (g) cases in Figure 2.3). The y-axis is in logarith-
mic scale in order to enhance the level of the ripples. The Supergaussian has been considered in

the form e−τ
2·index

with index = 2.

From this analysis it is clear that the best apodization depends on which
kind of property we need for our specific case. For example in a measurement
in which the level of noise is very high the best apodization is the Happ-
Genzel because it does not lower and broaden conspicously the spectrum
peaks and the high-level ripples are anyway covered by the noise. Instead
in a measurement with low noise and broadband-features spectum the best
apodization between (d), (f) and (g) cases will be the 3-term Blackmann-
Harris.
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2.2 Implementation of the Fourier Transform

As it has been already anticipated in section 2.1, in FT hyperspectral imag-
ing we obtain the spectral hypercube taking the Descreete Fourier Trans-
form, DFT , of each interferogram contained in the temporal hypercube.
Therefore, if we consider the interferogram Up(τ) (already adjusted with
the subtraction of the mean and the polynomial fit and already apodized)
of the pixel p, we calculate the spectrum Sp(f) on that pixel through the
operation:

Sp(f) = DFT [Up(τ)] (2.9)

The operation stated in 2.9 has to be performed for each pixel p of the image
and this can results in a very time-demanding process for images larger than
1 Mpixel. For this reason the implementation choice for the operation DFT
is very important from a computational point of view.

One of the most efficient algorithms for the implementation of the DFT
is the Fast Fourier Transform (FFT). In [23] it has been shown that the
DFT , which was thought to require N2 arithmetic operations, could have a
computational cost of N log(N) operations if it is implemented in the FFT
algorithm.

In experimental interferograms the set of wedge translations {x}set is
not uniform because the positions assumed by the wedge are not perfectly
equispaced: therefore in reality what we have to perform is the Non-uniform
Discrete Fourier Transform, NDFT , and for each pixel p we have to calcu-
late:

Sp(f) = NDFT [Up(τ)] (2.10)

As the FFT algorithm works only for equispaced data we can’t use it to
implement the NDFT .
If we consider equation 2.2 for a non-uniform delays set {τ}set we can write:

NDFT [Up(τ)] =
∑

τ∈{τ}set

U(τ) · e−i2πτf ·∆τ (2.11)

We can write the delays set as:

{τ}set
.
=


τ1

τ2
...
τn

 (2.12)

and its differential as:

{∆τ}set
.
=


∆τ1 = τ2 − τ1

∆τ2 = τ3 − τ2
...

∆τn−1 = τn − τn−1

∆τn = τn − τn−1

 (2.13)

30



Management and development of data

If we consider these definitions1 and the frequency set {f}set, we want to
take the points of the spectrum Sp in, defined as:

{f}set
.
=


f1

f2
...
fm

 (2.14)

we can rewrite equation 2.11 exploiting the matrix product:
Sp(f1)
Sp(f2)

...
Sp(fm)


T

= NDFT [Up(τ)] =

=


Up(τ1) ·∆τ1

Up(τ2) ·∆τ2
...

Up(τn) ·∆τn


T

·


e−i2πτ1f1 e−i2πτ1f2 · · · e−i2πτ1fm

e−i2πτ2f1 e−i2πτ2f2 · · · e−i2πτ2fm

...
...

. . .
...

e−i2πτnf1 e−i2πτnf2 · · · e−i2πτnfm


(2.15)

where T is the symbol for transposed and · between the vector and the ma-
trix denotes the matrix product. As it can be seen in equation 2.15 the
only elements which depend on the particular pixel p are Up(τ1), Up(τ1), ...
, Up(τn) that are the interferogram vector elements for the pixel p. If we
assume a unique delays set {τ}set for an acquisition of the temporal hyper-
cube, we can calculate {∆τ}set (as defined by equation 2.13) and the matrix
of exponentials (in 2.15) only one time: it is not necessary to calculate them
for each pixel p of the image.

The matrix implementation of the NDFT described by equation 2.15
with the precalculation of the differentials {∆τ}set and the exponentials
matrix is an operation that can be easily setted up and performed in a
MATLAB software in a reasonable amount of time even for a very large
number of pixels.

There is another possibility to implement an efficient algorithm forNDFT
which is the Non-uniform Fast Fourier Transform (NUFFT) algorithm: the
mathematical discussion of this algorithm can be found in [24].

Figure 2.5 shows the results of a simulation in which the performances
of the matrix implementation of NDFT as described by 2.15 has been com-
pared to the performances of the NUFFT algorithm. The calculations have
been performed on a simulated interferogram with a certain number of sam-
ples (number n of delays in the vector {τ}set) and repeated for 105 iterations

1Note that the last two elements of vector {∆τ}set are equal (∆τn = ∆τn−1): this is
an approximation in order to have {τ}set and {∆τ}set of the same dimension.
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(the iterations simulate the large amount of pixels of an image). The num-
ber of samples for the simulated interferogram has been: 256, 512 and 1024.
The number of elements for the calculated spectrum (number m of frequen-
cies in the vector {f}set) was fixed to 500. For the matrix implementation
of NDFT have been taken into considerations both the case in which the
differetial delay set {∆τ}set and the exponentials matrix are calculated each
time for each iteration and the case in which they are precalculated only
one time before starting the iterations.

Figure 2.5: Results of a MATLAB simulation of three different implementations of the Non-
uniform Discrete Fourier Transform (NDFT). This graph in logarithmic scale shows the total
execution time as a function of the number of samples (number n of elements in the delay set
{τ}set: n = 256, n = 512 and n = 1024) for a fixed number of iterations (105 iterations). The
number of elements for the calculated spectrum (number m of frequencies in the vector {f}set)
was fixed to m = 500. NDFT: Non-uniform Discrete Fourier Transform as described by equation
2.15 with the calculation of {∆τ}set and the matrix of exponentials for each iteration. NUFFT:
Non-uniform Fast Fourier Transform algorithm implemented by the MATLAB function nufft.
NDFT-∆τ and exps precalculated: Non-uniform Discrete Fourier Transform as described by
equation 2.15 with the calculation of {∆τ}set only one time before the iterations.

As it can be seen from this figure, the best implementation in terms of
execution time is the one in equation 2.15 with the precalculation of {∆τ}set
and the exponentials matrix. Therefore from now on when referring to the
FT of a real acquired temporal hypercube we will mean the operation stated
in 2.15 with the precalculated elements repeated for each pixel in the image
(for each interferogram Up of each pixel p).
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2.3 Analysis and treatment of the spectral hyper-
cube

As we have seen in section 2.2 we obtain the spectral hypercube taking the
FT of the temporal hypercube which means applying equation 2.15 to all the
interferograms Up of the various pixels in the image in order to obtain the
corresponding spectra Sp. In this section we will concern the problems re-
lated to the treatment of a spectral hypercube that derived from a measured
temporal hypercube and we will presents and discuss the possible methods
to extract a physical and significant information from it.

In the ideal case the temporal hypercube contains interferograms which
are symmetric with respect to the zero delay and, taking the FT of this, we
would obtain a spectral hypercube constituted by real numbers. As we have
seen in section 1.5 the various interfrograms collected across the FOV in an
hyperspectral FT imaging system based on TWINS are intrinsically referred
to slightly different delay axis because there’s a certain shift τshift in the de-
lay (see equation 1.26) due to the angle α the incoming rays forms with the
optical axis of the TWINS interfometer. In addition, there may be a certain
imprecision in the real evaluation of the wedge positions {x}set during the
measurement (due to both the motor positioning errors and the control soft-
ware which have an intrinsic uncertainty, ∼ 0.1µm) and therefore the delay
axis {τ}set is not exactly the expected one from the sampled points of the
interferogram vector. As discussed in [19], the FT of an asymmetric inter-
ferogram determines a complex spectrum: this means that an experimental
temporal hypercube ends up in a complex spectral hypercube in which both
real and imaginary parts are present. Together with the intrinsic delay shift
there is the measurement noise which perturbes the measurement of the
temporal hypercube: this determines an intrinsic asymmetry even in the
functional form of the interferograms which would be supposed to be ex-
actly symmetric with respect to their own baricenters.

In order to better visualize this problem we give now a general mathemat-
ical description of an interferogram and the phenomena which determines
its asymmetry with respect to the zero-path delay (ZPD), τ = 0. We start
considering an ideal interferogram Uideal which is perfectly symmetric with
respect to the ZPD. If we take its FT we obtain the ideal spectrum Sideal
which is a purely real function:

FT [Uideal(τ)] = Sideal(f) (2.16)

If now we introduce a delay shift τshift (which is defined according to equa-
tion 1.25) in the points of the delay axis {τ}set the ideal interferogram is
reffered to, we have to consider an interferogram Uideal(τ + τshift). Accord-
ing to equation 1.26 we would have that the delay shift τshift depends on
the nominal position x of the wedge and therefore it would be different for
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different delays τ : in this discussion we consider this shift as independent on
the delay τ and therefore we consider it as a constant. In this approximation
we have that all the points of the function Uideal are shifted by a constant
quantity τshift. If we take the FT we obtain:

FT [Uideal(τ + τshift)] = ei2πτshiftf · Sideal(f) (2.17)

therefore from FT properties we obtain a complex spectum with modulus
equal to Sideal and phase equal to 2πτshiftf . Equation 2.17 tells us that, if
the problem on the interferogram were simply a delay shift, we would just
need to correct the phase by multiplying the result of the FT by e−i2πτshiftf

(or by taking its absolute value). But, as we have already marked, an
experimentally acquired interferogram is disturbed by noise. Therefore a
complete description of the interferogram is:

U(τ) = Uideal(τ + τshift) + n(τ) (2.18)

where the function n is the uncorrelated noise and, in principle, it can include
also the correction to τshift which depends on τ . If we take the FT of U we
obtain:

FT [U(τ)] = FT [Uideal(τ + τshift) + n(τ)] =

= ei2πτshiftf · Sideal(f) + FT [n(τ)]
(2.19)

The FT of the noise is a complex function with a phase φn(f) which ran-
domly depends on f therefore we can write:

FT [U(τ)] = ei2πτshiftf · Sideal(f) + eiφn(f) ·N(f) (2.20)

where N(f) is the modulus of the FT of the noise. Equation 2.20 clearly
shows that we can’t retrieve a real function spectrum with a simple phase
correction multiplying by e−i2πτshiftf . If we fix to a particular frequency f̄ ,
from this equation we can understand that:

FT [U(τ)] (f̄) ∼

{
ei2πτshiftf̄ · Sideal(f̄) if Sideal(f̄)� N(f̄)

eiφn(f̄) ·N(f̄) if Sideal(f̄)� N(f̄)
(2.21)

Therefore, if we consider a frequency f̄ which corresponds to a peak of
the physical spectrum Sideal that is above the modulus of the FT of the
noise (Sideal(f̄) � N(f̄)), the phase of the complex spectrum FT [U(τ)] is
∼ 2πτshiftf̄ , if we consider a frequency f̄ which corresponds to a frequency
region in which there’s no signal (Sideal(f̄)� N(f̄)), the phase is φn(f̄). If
we take into consideration a population of pixels of an hyperspectral image
all referred to a spatial region in which it is supposed to have a single type
of spectrum Sideal: in the first case (Sideal(f̄)� N(f̄)) we have that all the
pixels contain a complex value with an almost constant phase ∼ 2πτshiftf̄
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(spatially correlated phase), in the second case (Sideal(f̄) � N(f̄)) all the
pixels have random different phases φn(f̄) which depend on the particular
pixel (spatially uncorrelated phase). Figure 2.6 (c) shows the plot in the
Gauss plane (real part and imaginary part) of a population of 64×64 pixels
in a simulated hyperspectral image: all these pixels contain different complex
spectra due to added noise but, in principle, all derive from the same physical
spectrum (Figure 2.6 (a)). As it can be seen, the pixels population at a
frequency coincident with a peak of the physical spectrum are distributed
in a region of the plane such that their complex phase is limited around a
certain value which coincides with 2πτshiftf̄ (correlated phase). The pixels
population belonging to a frequency where there’s no signal are distributed
around the origin of the Gauss plane and therefore their phases span all the
round corner.

Figure 2.6: Results obtained from a MATLAB simulation considering a noisy complex spectral
hypercube with 64 × 64 pixels, each of them containing a noisy complex spectrum generated
from the reference noiseless real spectrum depicted in (a). Starting from the ideal spectrum (a),
we generated the corresponding interferogram for each pixel. Then all the 4096 independent
interferograms have been temporally shifted and Gaussian noise with standard deviation equal
to 1/100 of the maximum of the interferogram has been added independently to each one of the
interferograms. The noisy interferograms has been apodized with Happ-Genzel window and then
Fourier transformed to obtain the final noisy complex spectral hypercube. (b): an example of the
absolute value plot of a single spectrum in the noisy complex hypercube. (c): plot in the Gauss
plane of the 64 × 64 pixels of the image at the frequencies indicated by the vertical dashed lines
in (a) and (b). The arrows indicate the mean value of the complex numbers at a fixed frequency,
the circle indicates the standard deviation calculated as the square root of the variance of the
absolutes values.

This different behaviour of the complex phase of the spectra in the case
of signal peak frequencies and in the case of completely noisy frequencies is
a useful information that, even if it is not directly a physical observable, can
be exploited for the spectral hypercube analysis together with the absolute
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value of the spectra.
As for hyperspectral imaging analysis the final datum we want to study is

a spectrum (or a set of spectra) constituted by real numbers and therefore an
actual physical observable, finally we need to extract a real quantity from
the complex FT we obtain. There are two ways to extract this physical
information which are:

1. taking the real part of FT

2. taking the absolute value of FT

The first case needs some care because the real part of complex numbers can
be negative if the complex phase is contained in the interval

[
π
2 + 2kπ, 3π

2 + 2kπ
]
,

with k ∈ Z, and negative values are not physical in an observed spectrum. To
face this problem what it has to be done is to correct the complex spectrum
by a linear phase which is calculated as linear fit of the phases evaluated
at the different frequencies. Starting from equation 2.20 we can write the
complex spectrum Scompl as:

Scompl(f) = ei2πτshiftf ·Sideal(f) + eiφn(f) ·N(f) = |Scompl(f)| · eiφ̂(f) (2.22)

where φ̂ is the complex phase of Scompl. The linear phase correction has to

be calculated as linear fit φ̂fit(f) on the base of the values of φ̂ at the dif-
ferent frequencies f in order to retrieve a good approximation of the linear
phase 2πτshiftf . Considering the different behaviour of the phase for peak
frequencies (correlated) and for noisy frequencies (uncorrelated) we have
previously discussed, a reasonable method to calculate the linear fit φ̂fit(f)
is to assign a considerable weight to those phase values related to peak fre-
quencies and small weight to those phase values related to noisy frequencies:
therefore a good weight-definition for the linear fit implementation can be
based on |Scompl(f)| itself. Then the phase correction of the spectrum Scompl

is simply performed multiplying it by the term e−iφ̂fit(f). This approach of
multiplying by a phase, based on the Mertz-method 2, is supposed to pro-
duce a final spectrum which has negligible complex phase for those values
in correspondence of peak frequencies and considerable complex phase for
those values related to noisy frequencies: in this way the real part of such
a spectrum determines only positive peaks and positive and negative noise
spikes. This method of analysis is useful when a mean spectrum is calculated
from a certain omogeneous region of interest (ROI) in the hyperspectral im-
age because the spectrum peaks sum up and the noise on average simplifies.

The second possibility is to take the absolute value of Scompl(f) and

2In the Mertz-method the phase is extracted deducing the temporal shift τshift of the
interferogram taking the central lobe as reference [25]. This operation would in principle
be equal to taking the absolute value of the spectrum but this is not the case in noisy
experimental interferograms
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therefore directly consider |Scompl(f)| as the measured spectrum. In this
case of spectrum evaluation, two possibilities arises when we consider a pop-
ulation of pixels in an hyperspectral image which are all supposed to contain
the same physical spectrum and we want to consider the mean spectrum of
such a ROI. These two different possibilities are:

• mean of the absolute values of the spectra

• absolute value of the mean of the spectra

These two approaches are not equivalent because in general the absolute
value of the sum of complex numbers is not equal to the sum of the abso-
lute values. The difference between the two is straightforward from Figure
2.6 (c). We can understand that taking the mean of the absolute values
of a population of complex numbers means to take the mean geometrical
distance from the origin of the related points in the Gauss plane; instead
taking the absolute value of the mean means to take the modulus of the
mean point in the Gauss plane. Between these two approaches the best one
is the absolute value of the mean because if we consider Figure 2.6 (c) taking
the absolute value of the mean for the population of points related to the
peak frequency means to take the length of the red arrow and taking the
absolute value of the mean for the population of points related to the noisy
frequency means to take the length of the blue arrow which is almost imper-
ceptible because its mudulus is almost zero. In this way, taking the absolute
value of the mean, we end up with a mean spectrum in which we have that
noise cancel out because its uncorrelated nature ends up in a mean which is
almost zero in the Gauss plane and in which the peaks (correlated nature
of the signal) are preserved. Figure 2.7 shows the comparison of the two
approaches. If the mean spectrum Smean is calculated as the mean of the
absolute values of the selected complex spectra Scompl, even if we average
over a large number of pixels we have that the signal is “overwhelmed” by
the noise. Instead if the mean spectrum Smean is calculated as the absolute
value of the mean of the selected complex spectra Scompl, as the number
of selected pixels increases, the noise cancels out and Smean tends to the
noiseless ideal spectrum Sideal. This is a very important result because it
makes clear that in FT imaging dealing with a complex hypercube means
that the information is contained both in the amplitude and in the phase
of the spectra even if this second one is not directly a physical observable.
This property allows us to understand the best method to apply when we
want to extract a physical spectrum from a generated spectral hypercube
datum applying the absolute value operation: during the analysis we
have to preserve as much as possible the complex nature of the
datum and only at the end of our calculations, when we need to
deal with a real spectrum, we take the modulus. This approach is
even better than the Mertz-method previously discussed because, when the

37



Management and development of data

signal-to-noise ratio is very low (in equation 2.22 Sideal and N are of the
same order of magnitude), the calculation of the correction term e−iφfit(f)

can be mislead by the noise itself (the contribution of the uncorrelated phase
φn to the overall phase φ̂ is not negligible even for peak frequencies) and
this can determine consistent negative overshoots in the spectrum where we
expect signal peaks.

The analytical method of dealing with a complex datum and extract-
ing the absolute value only at the end works only if all the pixels in the
hyperspectral image are characterized by the same delay shift τshift of the
related interferograms: if this is not, it is not anymore true that the pixel
population at a peak frequency f̄ plotted in the Gauss plane has small phase
variations around a fixed value 2πτshiftf̄ . In an hyperspectral FT imaging
system based on TWINS the condition of constant τshift is only guaranteed
in the uniform ZPD configuration where all the interferograms in the ac-
quired temporal hypercube are referred to the same delay axis (see section
1.5). In all the other configurations where this property is not guaranteed
we have to use the Mertz-method or to directly consider the absolute value
of the spectral hypercube.
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Figure 2.7: Results obtained from the same simulation described in Figure 2.6 but considering a
noise standard deviation equal to 1/5 of the maximum of the ideal interferogram. The left column
(title Smean = 〈

∣∣Scompl∣∣〉) shows the mean spectrum Smean = 〈
∣∣Scompl∣∣〉 in the noisy complex

spectral hypercube. The right column (title Smean =
∣∣〈Scompl〉∣∣) shows the mean spectrum

Smean =
∣∣〈Scompl〉∣∣. On each column there are four rows each one containing the comparison of

Smean (red line) with the starting ideal spectrum Sideal (bold blue line) for different numbers of
selected pixels: 1, 16, 256 and 4096.
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Chapter 3

FT Hyperspectral
Microscope based on TWINS

In section 1.5 we have seen the general scheme of an imaging system which
implements hyperspectral widefield imaging based on FT with TWINS in-
terferometer and the possible configurations for a 4f system in microscopy
(high-fringes visibility and uniform ZPD). Now we give the description of
the scheme and the functionality of the Hyperspectral Microscope (HSM)
used for the acquisition of the measurements presented in this thesis work.

3.1 Scheme: hardware and software components
and illumination and detection geometry

As presented in [1] a Leica DMRBE optical microscope has been upgraded to
HSM placing the TWINS interferometer described in section 1.3 between the
tube lens and the 2-dimensional position sensitive detector (Luca R, Andor,
Belfast, Northern Ireland) with size 8 × 8mm2, 1002 × 1004 pixels, 14-bit
depth, and spectral sensitivity from 400 nm to 1100 nm. In this way the
HSM has been realized in the uniform ZPD configuration (see subsection
1.5.1 for the description of this configuration) that guarantees a uniform
delay on the FOV. The TWINS interferometer described in section 1.3 has
been realized with crossed polarizers’ axes (as shown in Figure 1.6): this
means that at the delay τ = 0 we have destructive interference of the light
after the TWINS and no light comes to the detector. The birefringent blocks
A and B are in α-barium borate (α-BBO) 1 and the B block is cut into two
wedges with apex angle αapex = 7°. The wedge translation is performed
through a motorized step system (translator PIr L-402 Miniature Linear
Stage) which is driven by a motor controller (PIr C-663.12 Mercury Step

1The α-BBO is a negative uniaxial crystal with ordinary refractive index n‖ = 1.6725
and extraordinary refractive index n⊥ = 1.5322 considering 600nm wavelength.
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Stepper Motor Controller). The motor controller is connected to a PC in
order to receive instructions for the translations of the step system. By
means of a LabVIEW software, the PC transmits to the motor controller the
target translator position, as decided by the user. To check if the step system
has been correctly translated, the PC receives from the motor controller the
value of the effective position the translator is in. The check on the position
value is done in the LabVIEW software with a tolerance of 0.1µm 2. The
same LabVIEW software is used to control the detector parameters that will
be presented in section 3.2. Figure 3.1 shows a schematic representation of
the HSM. The commercial microscope has been modified with the addition
of a fiber coupling to allow the illumination with a laser from the top of
the sample. Figure 3.2 illustrates the scheme of laser illumination from the
top; a dedicated optical system has been designed in order to have on the
sample plane the image of the exit of the fiber: in this way the sample is
illuminated by a spatially uniform laser spot if a multimode fiber is used.
In reality to obtain a uniform spot the fiber is bent in order to mix of the
multiple modes. In addition, to average out the speckle effect on the sample
plane, in our measurements the fiber is shaken by a loudspeaker oscillating
at a 45Hz frequency modulation.

Figure 3.1: Scheme of the Hyperspectral Microscope with TWINS interfrometer located between
the tube lens and a 2 dimensional detector. In this scheme there are also two illumination sources:
an integrated lamp for the illumination from the bottom (widefield transmission geometry) and
laser source through a fiber coupling that allows illumination from the top (widefield reflection
geometry, see Figure 3.2 for the details).

2This means that the step system translation and the motor controller-PC communi-
cations are repeated until the difference of the effective translator position (value received
by the PC from the motor controller) with respect to the target is smaller than 0.1µm.
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Figure 3.2: Schematic representation of the illumination from the top (widefield reflection geom-
etry) with a laser through a coupled fiber. An optical system (fiber coupling and optical system
for uniform illumination) has been designed in order to allow a uniform laser spot on the sample
when the excitation light is focused by the objective. A beam splitter reflects the laser on the sam-
ple and lets the red-shifted photons emitted by the sample pass through the detection uniform
ZPD module (objective, tube lens, TWINS and 2 D detector).

As it can be seen the laser light propagates in the horizontal direction
inside the microscope after the fiber coupling and then it is reflected by a
beam splitter. The objective focuses the laser in the uniform illumination
spot to excite the sample. The photons emitted by the sample can pass
through the beam splitter (if they are red-shifted with respect to the laser
wavelength) therefore they are collected by the uniform ZPD imaging sys-
tem which creates on the 2 dimensional detector an image for each delay τ
controlled by the wedge translation x in the TWINS. As the illumination
light comes from the top, the emitted light from the sample is also collected
on the top of it and the illumination area on the sample is large (the image
of the fiber section), this scheme realizes the epi-illumination geom-
etry in widefield imaging discussed in section 1.4 (see Figure 1.8 (a) as
reference). As it is shown in Figure 3.1, there is also the possibility to illu-
minate the sample from the bottom in widefield transmission geometry.

3.2 Measurement acquisition parameters

As we have seen in section 2.1, a measurement with an FT hyperspectral
imaging system, such as the HSM, consists in the acquisition of images of
the sample at different delays τ scanned by the wedge translation in a dis-
crete set of steps {τ}set: this ordered set of frames consititutes the temporal
hypercube of the measurement. In this section we discuss all the parameters
related to the acquisition of the temporal hypercube.
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3.2.1 Detector parameters

With equation 1.3 we have understood that the detector measures an en-
ergy and therefore it integrates the incoming light intensity I in an interval
[t1, t2]. In the case of the HSM the 2-dimensional detector is based on the
charge-coupled device (CCD) technology and therefore the integrated en-
ergy on each detector element is stored as electronic charge accumulated in
a potential well [26]. This camera has 14-bit depth: this means 214 = 16884
discretization levels of the detector dynamics. Therefore the energy values
are expressed in counts of the detector that belong to the interval from 0
to 16883. For each acquisition frame we can choose the integration time
which is the time interval the CCD camera collects the incoming light and
consequently promotes electronic charge inside the potential well. Provided
that the camera dynamics is not saturated, an high integration time allows
to improve the signal-to-noise ratio but it lengthens the measurement time.
Another way to improve the S/N ratio is by binning: this technique con-
sists on summing up the electrons contained in a certain number of pixels
and therefore the resulting frame has lower resolution. If the noise is dom-
inated by the shot noise, the S/N ratio is increased by the square root of
the number of binned pixels; if the noise is dominated by the read noise of
the CCD, the S/N ratio linearly increases with the number of binned pixels
[27]. If, for instance, we set binning equal to 2, this means that we take the
average over 2 × 2 pixels: this reduces the resolution of the image as the
number of final separeted pixels is 4 times lower but it increases the signal-
to-noise ratio by a factor between 2 and 4. The CCD camera offers also the
possibility to increase the electron multiplication inside the potential wells
of the pixels through a gain: we have seen that this parameter does not
appreciably increase the S/N ratio.

3.2.2 Objective

In section 1.5 we have seen the role of the objective in a 4f configuration and
the concepts of magnification and resolution of such an optical system. If we
have a fixed tube lens as in the case of the HSM depicted in Figure 3.1, the
magnification of the sample imaged on the detector plane is determined
by the objective. As the sample must be located at a distance from the
objective equal to its focal length f1 (see Figure 1.12), also the FOV is
uniquely determined by the choice of the objective if the field stop defined
by the tube lens is fixed. The resolution of the optical system depends on
the objective numerical aperture NA as drawn by equation 1.35. Table
3.2 lists the objectives used in HSM measurements presented in chapter 4
and their specifications.
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objective FOV diameter NA

Leicar PL FLUOTAR 50× 160µm 0.55

Leicar PL FLUOTAR 20× 400µm 0.40

Leicar N PLAN 5× 1600µm 0.12

Table 3.1: Objectives characteristics

3.2.3 Wedge scan

The temporal hypercube acquired in the measurement is defined in the delay
τ dimension (see the three-dimensional matrix representation of the tempo-
ral hypercube in Figure 2.1) by the position of the wedge translator dur-
ing the acquisition: for each position a frame is acquired. We call wedge
scan the set of the translator positions {x}set for the particular acquisition.
For the HSM measurements the acquisitions are set in uniform wedge scan
uniquely defined by the step width. As the translation control has a nom-
inal precision of 0.1µm 3, the wedge scan is not exactly uniform because
the steps are not exactly equispaced. The total excursion determines the
spectral resolution of the measurement (see subsection 2.1.2): the proper
choice of it depends on the spectrum to be measured and on the spectral
detail. The wedges used in the HSM has an excursion limited in the interval
[−2810µm; +10138µm] with respect to the ZPD position. The step width
is the sampling step ∆x of the interferograms therefore from the Nyquist
theorem:

∆x ≤ 1

2 · νmax
(3.1)

where νmax is the maximum frequency of the spectrum [19]. In order to
avoid spectrum aliasing, the sampling step has to comply with the theorem
3.1: as there are not lower limits, in principle it can be chosen arbitrarily
small. As we have that the lower the sampling step the higher the number of
samples for a fixed wedge excursion (that complies with the desired spectral
resolution), the best choice would be to take the smallest sampling step
as possible because the higher the number of samples the better the S/N
ratio. On the other hand, an higher number of samples would lengthen the
total measurement time: for this reason in a real measurement the step is
chosen compromising between the improvement of the S/N ratio and the
total acquisition time duration.

In chapter 4 the measurement wedge scan is indicated using this notation:

Nstart → Nend(×∆x) (3.2)

3This is the tolerance on the position value controlled in the LabVIEW software in the
PC.
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where Nstart and Nend are the integer number of steps with respect to the
ZPD position of the wedge translator starting position and ending position
respectively 4 and ∆x is the step width.

The measured temporal hypercubes are referred with respect to the
wedge translations {x}set (unit of measurement µm): this results in spec-
tral hypercubes in psuedo-frequency units (unit of measurement µm−1). For
this reason a frequency calibration of the HSM is necessary in order to con-
vert the pseudo-frequency axis to real-frequency units. Such a calibration
is retrieved measuring light with precisely known spectral lines 5. In this
way particular real frequencies are associated to related pseudo-frequencies
values: then the calibration is calculated from the fitting of these points.

3.3 Calibration of the wedge translator

In section 3.1 we have given a description of the wedge translator control
process and we have pointed out that the nominal precision imposed by the
LabVIEW software is 0.1µm.

In that description we have seen that, to check the position of the wedge
translator, the software receives an input from the motor controller with
the position value; this value is in turn affected by an error because of the
translator encoder imprecision.

The errors made by the translator in the wedge excursion steps result
in an uncorrect delay axis {τ}set 6 the interferograms in the temporal hy-
percube are referred to: this is the cause of some artifacts in the spectrum
that can be misleading for the analysis. To correct these errors a calibra-
tion of the system is necessary. This is obtained by measuring signal with
narrowband frequency spectrum that will act as a physical reference in the
retrieved spectra: for this reason we have chosen as reference the He:Ne laser
(wavelength 633nm). In the specific we have illuminated a spectralon 7 with
the He:Ne laser beam and we have measured it in the reflection geometry.
We have performed various scans in order to study the behaviour of the
translator errors and to have a good statistics for the calibration. For the
analysis of each measurement these steps have been followed:

1. A certain number of regions of interest (ROIs) in the hyperspectral

4Note that Nstart and Nend can be negative since they are referred to the ZPD position
5Spectral peaks whose real frequency have been recorded with several instruments and

tabulated in several literature works.
6As the delay axis {τ}set is linear with respect to the wedge translations {x}set (as it

is pointed out in section 1.5) and the frequency calibration, once it has been retrieved, is
straightforward used for the spectra conversion, we refer to {x}set directly as the delay
axis {τ}set as we have previously done and we interchange this two notations.

7The spectralon is a fluoropolymer that has an high reflectrance over a wide region of
the electromagnetic spectrum from ultraviolet to near-infrared.
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image and their related mean spectra have been considered.

2. For each ROI mean spectrum the He:Ne peak (and its related pseud-
ofrequency f) has been identified (because it is higher than the artifact
peaks).

3. The spectra has been back transformed with the IFT operation con-
sidering a pseudofrequency range that included both the laser peak
and the artifacts, obtaining the related interferogram yτ .

4. The IFT of the spectra results in complex interfrograms in the form
yτ = |yτ | · eiφ(τ) with a phase φ. If the spectra have only the single
laser peak, their complex interferograms are expected to have a phase
φ(τ) = 2πfτ . As we know that the He:Ne laser measurements has only
one peak, we can theoretically impose a delays axis {τc}correctedset such
that the oscillation phase is exactly in the form φ(τ) = 2πfτc (with
the laser frequency f). Therefore, starting from the phase φ extrap-
olated from the interferograms yτ of the error-affected measurement,
the calculation

τc =
φ

2πf
(3.3)

allows us to retrieve the correct positions {τc}correctedset of the translator.

5. Once we have retrieved the correct delay axis {τc}correctedset , we can
calculate the delays correction as:

{∆τc}correctionset = {τc}correctedset − {τ}set (3.4)

This is the calibration associated to a particular ROI.

6. The overall single measurement calibration is calculated as the mean
of the calibrations {∆τc}correctionset of the considered ROIs.

Figure 3.3 shows the delay corrections that have been calculated for some
measurements on the He:Ne laser.
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Figure 3.3: Delay corrections for each wedge translator position obtained from the measurements
HeNe 5µm, HeNe 10µm, HeNe 15µm, HeNe 7µm indicated in table 3.2. The vertical black
dashed line indicates the zero path delay position which is 2846.3µm. The x-axis has been con-
sidered in the excursion common to all the measurements (from position 41.3µm to position
12926.3µm).

meas. name step initial pos. final pos. n° steps

HeNe 5µm 5µm 41.3µm 12926.3µm 2577

HeNe 10µm 10µm 36.3µm 12926.3µm 1289

HeNe 15µm 15µm 41.3µm 12926.3µm 859

HeNe 7µm 7µm 39.2µm 12983.8µm 1841

Table 3.2: Parameters of the measurements for the wedge translator position correction. All the
other parameters that are not listed in this table have been kept constant for all the measurements
(objective: Leicar 20×, integration time: 30ms, gain:0, binning:3).

As it can be seen from Figure 3.3, except for a shift in the y-axis, the
delays corrections of the different measurements (whose parameters are indi-
cated in table 3.2) are almost equal for each translator position. This means
that the error made by the translator is actually a systematic error and it
can be properly corrected with a calibration. The vertical shift in the y-axis
of the corrections retrieved in the different measurements is not a problem
because a constant shift in the delay axis of the interferograms in a temporal
hypercube determines a constant complex phase in the complex spectra (as
stated in equation 2.17) that can be easily removed.

The final wedge translator calibration {∆τcal}calibrationset has been ob-
tained as the mean of the curves in Figure 3.3. This calibration is sim-
ply added to the measurement delay axis {τ}set to retrieve the corrected
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measurement delay axis {τc}correctedset :

{τc}correctedset = {τ}set + {∆τcal}calibrationset (3.5)

Figure 3.4 shows the effect of the translator calibration (which has been
retrieved on the basis of He:Ne laser) on a measurement of the Ti:sapphire
laser (wavelength 785nm). As it can clearly seen, if no calibration is applied
the spectrum presents some artifacts that disturbs the proper visualization
and physical analysis. If the calibration {∆τcal}calibrationset is applied to the
delay axis {τ}set of the temporal hypercube according to equation 3.5, the
FT provides a spectrum that does not present anymore the artifacts.

Figure 3.4: Effect of the application of the translator calibration on the spectrum of the
Ti:sapphire laser measured by the HSM. The wedge excursion for this measurement has been
−200→ +200(×10µm): this explain the very low spectral resolution.

This is an important result because it shows that the translator calibra-
tion works properly and it is able to clean up the spectra of the measurements
from undesired false peaks.
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Chapter 4

Application of the FT
Hyperspectral Microscope

In chapter 3 the FT Hyperspectral Microscope based on TWINS has been
presented and the measurement acquisition parameters has been discussed.
In the present chapter some of the measurements obtained with the HSM
and their related results are shown and analyzed in order to corroborate the
reliability and the enormous potentials and applications of this system. Sec-
tion 4.1 will show an electroluminescence measurement that clearly makes
evident the fine sensibility of the HSM to small spectrum peak variations
inside the FOV and then Section 4.2 will deeply focus on the very interesting
and promising results of the HSM in the spontaneous Raman hyperspectral
widefield imaging.

4.1 Commercial LEDs measurement

In this section we present some measurements on commercial Light Emitting
Diodes (LEDs) acquired by the HSM system. These LEDs (CreeXlampr

XM-L and XP-E) have 1mm × 1mm dimensions and are based on InGaN
Multiple Quantum Wells (MQWs) technology. GaN is the most popular
material in the semiconductor industry after silicon and it has a wide direct
bandgap energy of 3.4eV at room temperature [28]; InN is a semiconduc-
tor with a direct bandgap energy of 0.7eV [29]. For this reason the emis-
sion wavelength of InGaN can be tuned over a wide range from visible red
(∼ 610nm) to ultraviolet (∼ 365nm) by changing the alloy composition and
and forming heterostructures such as quantum wells [30].

In these measurements the LEDs have been biased with different current
values and their photoluminescence have been detected with the HSM. The
measurements presented in this section and their related paramenters are
lised in Table 4.1: the first three entries regard the XM-L green LED and
the last two entries regard the XP-E amber LED. The the LED electrolu-
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minescence has relatively broadband spectral features and therefore, as we
have seen in section 1.2, the related interferogram oscillates only at short
delays around the delay τ = 0: for this reason we have acquired these mea-
surements with small excursions (with respect to the maximum excursion
allowed by the wedge translator) around the ZPD 1. The excursion required
by the XP-E amber is larger with respect to the XM-L green because it
presents a typical spectrum with a tighter peak. Figure 4.1 (a) and Figure
4.1 (b) show the spectra of XM-L green and XP-E amber LEDs respectively:
as it is indicated by the arrows, the peaks values can change. The nomi-
nal emission wavelength of the XM-L green LED is identified by Cree LED
manufacturing company in the range 520 − 535nm and the nominal emis-
sion wavelength of the XP-E amber LED is identified around 585− 590nm:
the results we have obtained with our measurements are an agreement with
these values. As we have previously outlined, the emission peak shifts are
determined by variation of alloy composition (concentration of GaN and
InN) but there are other physical mechanisms that can determine them
such as temperature increase or Quantum-Confined Stark Effect (QCSE)2.
A red-shift of the emission spectrum peak can be determined by the tem-
perature increase in InGaN (as it is shown in [33]) and a blue-shift, as the
bias current increases, can be determined by the reduction of the Stark shift
of QCSE because, upon the application of large forward bias, excess carriers
are injected into the QW which screens part of the polarization field (as it is

1The LED electroluminescence is the result of injection of carriers in the semiconductor
device and the following electrons-holes recombinations with spontaneous emissions of
photons. In a semiclassical approach starting from the spontaneous emission rate rsp =
Acv · fc(E2) · [1 − fv(E1)] (considering the Einstein’s coefficient Acv and the Fermi-Dirac
distribution of the valence band fv and the conduction band fc) for a given transition from
a level E2 in the conduction band to a level E1 in the valence band, we can calculate the total
spontaneous emission rate Rsp as a function of the photon frequency. Considering a joint
density of states ρj , the total spontaneous emission rate can be written as Rsp = rsp · ρj .
Starting from the expression of Rsp, the Full-Width-At-Half-Maximum (FWHM) ∆λ of
the emission spectrum in terms of photon wavelength can be calculated as (see [31] for
the demonstration):

∆λ ≈ 1.8λ2kBT

hc

where λ is the emission spectrum peak, kB is the Boltzmann constant, T is the tem-
perature, h is the Planck constant and c is the speed of light in vacuum. Considering
λ ∼ 500nm and T ∼ 300K, we have ∆λ ∼ 10nm: this means that the electrolumines-
cence signal has a typical bandwidth of ∆f ∼ 10THz and therefore an interferogram
oscillations extension of 1

∆f
∼ 100fs. As the delay variation introduced between two

replicas of electric field at 600nm by a translation ∆x = 5µm of the α − BBO wedges
(with apex angle αapex = 7°) is 0.29fs, the electroluminescence interferogram extension
is ∼ 350 × ∆x: therefore a symmetric acquisition around the ZPD with ∼ 350 steps
determines a spectral resolution which is enougth to characterize a semiconductor electro-
luminescence spectrum.

2The QCSE is the decrease of the optical transition energy as a result of the band
structure tilt. In QWs this determines a red-shift (referred to as Stark shift) with increase
in the bias field [32].
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shown in [34] for InGaN QWs) . For these reasons these commercial LEDs
are very interesting sample to be investigated with hyperspectral imaging
because both spatial and spectral information are important.

LED bias int.time

XMLg 1µA 1000ms
XMLg 100µA 40ms
XMLg 40mA 3ms
XPEa 100µA 200ms
XPEa 40mA 15ms

Table 4.1: Parameters used in the measurements of the commercial LEDs described in this section.
XMLg indicates the XM-L green LED and XPEa indicates the XP-E amber green LED. bias:
LED applied bias current. int.time: CCD integration time. For all these measurements we
have used the 5× objective, −200 → +200(×5µm) wedge scan for the XMLg LED and −400 →
+400(×5µm) wedge scan for the XPEa LED, CCD gain equal to 1 and CCD binning equal to 1.

Figure 4.1: (a): typical luminescence spectrum of CreeXlampr XM-L green LED measured with
HSM. The arrows indicate that the position of the peak can change according to the bias current.
(b): typical luminescence spectrum of CreeXlampr XP-E amber LED measured with HSM. The
arrows indicate that the position of the peak can change according to the bias current.

Figure 4.2 (a) − (c) shows the map of the emission spectrum peak of
the XM-L green LED for different values of bias current. In this figure the
colorbar ranges have been chosen in order to enhance the small variation
of the peak emission that the LED presents on its surface: these spatial
changes of the spectrum peak are probably due to small variations of the
InGaN alloy. For the three different values of current we can recognize some
regions on the surface which present blue or red shift of the emission peak
in few nanometers of wavelength range. Figure 4.2 (d) − (f) shows the
same maps for equal colorbar ranges (from 525nm to 540nm): from these
a general blue-shift of the peak is evident as the current increases. This
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blue-shift of the emission wavelength can be attributed to the reduction of
the Stark shift as the current increases.

The inhomogeneities of the emission peak can be seen also on the surface
of the XP-E amber (Figure 4.3): even in this case the wavelength shift is
in few nanometers range. In this case we have a general red-shift of the
peak as the current increases: this can be physically explained as an effect
of thermal heating due to the increase of injected electrons.

Figure 4.2: From (a) to (c): spectral peak maps of the XM-L green LED for different values of
current (1µA, 100µA and 40mA).
From (d) to (f): spectral peak maps of the XM-L green LED for different values of current (1µA,
100µA and 40mA).
The colorbars indicate the peak wavelength value (in nm). The scale bar is 250µm.

Figure 4.3: Spectral peak maps of the XP-E amber LED for different values of current (100µA
and 40mA). The colorbars indicate the peak wavelength value (in nm). The scale bar is 250µm.

These results are very important because they clearly show a fine sen-
sitivity of the HSM to the peak shift over the measurement hyperspectral
image: from the maps shown in Figures 4.2 and 4.3 we can appreciate spec-
trum peak variation even of ∼ 0.5nm. Moreover these measurements clearly
show that the spatial resolution is very high (spectral variation can be ap-
preciated in ∼ 1µm) infact it is the one of the 4-f system as we have seen
in theory in section 1.5: the resolution is limited only by the objective nu-
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merical aperture and there are not other worsening factors related to the
acquisition system (the TWINS does not affect the spatial resolution). This
is an optimum and very promising starting point for the FT widefield hy-
perspectral imaging for which the HSM has been designed for.

4.2 Widefield hyperspectral Raman measurements

Raman imaging is a very powerful technique to recognize the different species
captured in the FOV because the Raman spectrum is like a “fingerprint”
of the materials. Despite its huge potential for several application fields,
Raman has some issues that make it a challenging technique and require
many cares in the setup.

In this section a general introduction to Raman spectroscopy and its
related issues are presented with a focus on Raman imaging. Then the ap-
plication of the HSM on this field is presented and its related advantages
with respect to other approaches is discussed. Finally some Raman mea-
surements with HSM are illustrated highlighting the enormous potential of
this setup for micro-sized samples recognition and characterization.

4.2.1 General introduction to Raman Imaging Spectroscopy
and its related issues

In 1928 C.V. Raman and K.S. Krishnan reported the discovery of “a change
of wave-length in light scattering” [35] that the scientific community would
be referred to as Raman scattering. In 1930 C.V. Raman was awarded the
Nobel prize for this fundamental discovery.

Spontaneous Raman scattering is an effect that can be detected if a
medium is excited by light: the incoming photons with frequency ωi can be
elestically scattered (Rayleigh scattering) or inelastically scattered with a
frequency that is lower (Raman Stokes scattering) or higher (Raman anti-
Stokes scattering) with respect to the initial frequency [36]. In a macroscopic
theory of inelastic light scattering we have that the Stokes photons have
a frequency ωS = ωi − ω0 and the anti-Stokes photons have a frequency
ωAS = ωi + ω0 where ω0 is the frequency of atomic displacement associated
with a phonon 3 of the material [38]. Figure 4.4 schematically illustrates the
effect of light scattering on the photon frequency.

3The vibrations in a molecule can be described in terms of normal modes. A normal
mode is a periodic collective motion where all particles involved move at the same fre-
quency. A normal mode with oscillation frequency ω0 in a quantum mechanics description
(quantum harminic oscillator formalism) can be seen as a quantum state characterized by
a certain number of quanta of vibration [37], phonons, each one with an energy ~ω0.
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Figure 4.4: Schematic depiction of the elastic scattering (Rayleigh), Raman inelastic Stokes scat-
tering (Stokes) and Raman inelastic anti-Stokes scattering (anti-Stokes). ω0: phonon frequency.
ωi: incoming photon frequency. ωR: Rayleigh scattered photon frequency which is equal to the
incoming photon frequency. ωS : Stokes scattered photon frequency. ωAS : anti-Stokes scattered
photon frequency.

Such a simple description of the Raman effect allows us to understand
the selectivity of this phenomenon which is characterized by a frequency
shift ω0 which depends on the particular atomic positions, electron distribu-
tion and intermolecular forces of the material [39]. For this reason Raman
spectroscopy has a lot of applications in different fields of scientific research
such as biology [39, 40, 41], material science [42], pharmaceutical industry
[43], medicine [44] and tumors diagnosis [45, 46, 47, 48]. Unfortunately
Raman scattering is characterized by a very low cross section 4 which is
typically 10−7 for Stokes signal and even weaker for the anti-Stokes signal
[20, 49, 50]: this means that the excitation light fluence on the sample has
to be very high (order of 10−2 − 10 mJ

µm2 ) in order to have a significative Ra-
man signal. To reach such fluences and to have a fixed and precisely known
incoming photon frequency, the excitation source used to perform sponta-
neous Raman measurements is the laser light (pump source). The signal of
interest in spontaneous Raman spectroscopy is the Stokes one (because the
anti-Stokes has a lower cross-section) and for this reason the spontaneous
Raman spectra are typically plotted as function of the wavenumber defined
as the Stokes shift (with respect to the pump source) normalized on the
speed of light quantity.

In 1975 Delhaye and Dhamelincourt introduced the first Raman micro-
scope [51]. From that point several spontaneous Raman imaging techniques
have been introduced but even nowadays this is a very challenging field in
science because the high fluences required to reach an acceptable S/N re-
sult in very long acquisition times or high laser power focused on
the sample paying attention not to overcome the damage threshold limit 5.

4The scattering cross section σ is defined by

Ns = Ni · σ

which is the relation that links the number Ni of incoming photons to the number Ns of
scattered photons [38].

5A typical sample damage threshold in terms of irradiance is ∼ 2− 10mW
µm2 [52]
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In section 1.4 we have pointed out the various imaging methodologies that
have been developed and we have seen that they can be grouped in global
(widefield) or raster (whiskbroom and pushbroom) acquisition techniques.
As marked in [52], point-scan Raman mapping speed is about one to few
spots per second (see for example [50] and [53]) and this results in very long
image aquisition (hours) if this dwell time is multiplied by thousands of pix-
els. In [52] an high-speed hyperspectral spontaneous Raman imaging which
relies on Spatial Light Modulation (SLM) is presented and the integration
time per pixel results in ∼ 10ms. Others have performed Raman widefield
but the integration time per single pixel of the image is comparable to the
Raman raster techniques [54, 55]. In all these works on spontaneous Raman
imaging in general the acquisition of the Raman spectra is performed by
means of grating dispersive spectrometers or bandpass filters at specific Ra-
man peaks 6. Fourier Transform spectroscopy has been applied to Raman
since 1980s [56, 57] because of the higher throughput with respect to the
grating spectrometers. There are some recent works which presented FT
spontaneous Raman imaging [58, 59] but all of them rely on very cumber-
some and complex setups.

In Raman spectroscopy there’s the problem of removal of the fluo-
rescence background 7. In general the fluorescence phenomenon has an
higher efficiency with respect to the Raman one. For this reason, in most
of the cases, the excitation wavelength is chosen in the near-infrared region
(785nm, 830nm and 1064nm are typical excitation wavelength chosen for
Raman measurements) where most of the materials have no appreciable ab-
sorption [60, 61, 53]: this has the cost of reducing the Raman signal as its

6This is reasonable in the spectroscopic applications where it is sufficient to record only
a minimal number of Raman images at specific wavenumber positions in order to reveal
the spatial chemical heterogeneity of the sample [55].

7The fluorescence is the emission of light from the sample as a result of the de-
excitation of the sample after illumination light absorption: therefore fluorescence is not
a scattering phenomenon as Raman but it is the consequence of the re-emission of the
energy previously deposited on the sample [20]. In a simple two-levels model the absorption
phenomenon can be described in this way: an incoming illumination photon with energy
∆Ea = ~ωa (~ = h

2π
where h is Plank constant and ωa = 2πfa where fa is the frequency of

the photon) disappears and the energy is transferred to an electron which is promoted from
its starting electronic level (initial state, energy E1) to a final electronic level with higher
energy (final state, energy E2 = E1+∆E). As a consequence of the energy conservation, the
difference E2 − E1 must be equal to the energy ∆Ea of the incoming photon (∆E = ∆Ea).
Then the electron can come back to the initial state and a photon ∆Eφ = ∆E is emitted.
As real molecule possesses many vibrational and rotational levels (that, in effect, spread
the electronic levels into multilevel bands), a part of the E2 energy is converted into phonon
vibrations and the emitted photon has an energy lower with respect to the absorbed one
(∆Eφ < ∆Ea): this explains the typical red-shift (Stokes shift) of the fluorescence with
respect to the excitation light (fφ < fa). The widening of the electronic levels to bands
explains the broadband nature of fluorescence spectra. From this simple model we can
understand that the fluorescence intensity dependence on the excitation frequency fa is
determined by the electronic levels structure of the material.
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intensity scales with the fouth power of the excitation frequency 8.
As the Raman signals are very narrow peaks in comparison to the flu-

orescence bands, there are some analytical techniques that relies on this
property to discriminate between the two. The demonstration of these tech-
niques (e.g. shifted-spectra, first-derivative spectroscopy and fast Fourier
transform filtering techniques) is beyond the scope of this section but it can
be easily found in literature (e.g., [62, 63]). In Time-Resolved Spectroscopy
there is the possibility of fluorescence removal through time-gating as the
Raman interaction is practically instantaneous (� 1ps) and the fluores-
cence photons emission is, statistically, relatively slow (∼ 100ps) [64]. The
methodology we have used with HSM to remove the fluorescence signal in
our Raman spectra is discussed in subsection 4.2.2.

4.2.2 Raman FT acquisition with Hyperspectral Miscroscope:
unilateral sampling of the interferogram

Together with the advantages described in section 1.2, another very impor-
tant benefit of FT spectroscopy with respect to the dispersive spectroscopy
based on prisms and gratings is the measurement of the interferogram itself
instead of collecting directly a spectrum. As we have seen in the subsection
1.2.1, the interferogram of a broadband signal presents oscillations only in
proximity of the delay τ = 0 and then it settles to a constant value, instead
the interferogram associated to a tightband signal oscillates even at very
large delays (endlessly if it is spectrum is a monochromatic signal). There-
fore, signals with a spectrum characterized by both broadband features and
narrow features (see the example in Figure 4.5), the central part of the inter-
ferogram (around τ = 0) gives information on the broadband characteristics
of the spectrum (Figure 4.7), while the tails of the interferogram (at very
large delays, | τ |� 0) carries information only on the tightband features
(Figure 4.6). In this way FT spectroscopy enables the uncoupling of the
broadband part of the spectrum from the narrowband part by choosing the
proper acquisition sampling of the interferogram in the proper delay interval.
In Figures 4.5 and 4.7 only a small window in the delay axis has been shown
in order to better visualize the interferograms: the oscillations extends much
longher than the limits imposed by these plots because they are related to
very thin lines in spectrum. The interferogram oscillations associated to

8The dependence on the fourth power of the frequency is a general and important
property of light scattering (both Rayleigh and Raman) and it can be deduced from the
Rayleigh scattering law:

P =
e2ω4r2

12πε0c3

where P is the power irradiated by an induced dipole, e is the electron charge, ω = 2πf
is the pulsation (f is the oscillation frequency), r is the charges distance in the dipole, ε0
is the dielectric constant and c is the speed of light in vacuum [14]. The demonstration
applied to the Raman scattering can be found in [38].
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the thin spactral lines are very small with respect to the central part of the
interferogram because the total energy of the narrowband part, the integral
of the thin lines in spectrum, is much smaller (four orders of magnitude in
the example of Figures 4.5, 4.6 and 4.7) with respect to the energy of the
broadband part, the integral of the broad shape of the spectrum.

As the Raman spectra are characterized by very narrow peaks, the con-
cept depicted in Figures 4.5, 4.6 and 4.7 is the reason why we have used
for the Raman measurements acquisition an unilateral delay scan
with the wedge translator in order to directly obtain fluorescence-free
Raman spectra. This unilateral acquisition is a key point of our Raman
measurements approach that has not been used in previous FT Raman spec-
troscopy works [56, 57, 58, 59]. As it can be seen from the simulation of
Figure 4.5, if we have a broadband part of the spectrum characterized by
a consistent amplitude, the small tighband signal stays on top of the half-
dynamics of the interferogram: applied to the Raman case this means that,
if the fluorescence is a strong signal, it greatly raises up the half-dynamics
and this sets a limit in the integration time and binning in order not to
saturate the CCD.
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Figure 4.5: Left: an example of spectrum with a broadband component (the wide shape) and a
tightband component (the thin lines). Right: the associated interferogram calculated as the IFT
(FT−1) of the spectrum on the left.

Figure 4.6: Right: the central part of the interferogram shown in Figure 4.5. Left: the associated
spectrum.

Figure 4.7: Right: the tail of the interferogram shown in Figure 4.5; the y-axis has been zoomed
(zoom factor: 104) around the 0 amplitude in order to better visualize the oscillations; in the
x-axis only a small part of the delays are shown as the interferogram is very long. Left: the
associated spectrum (zoom factor: 5).

4.2.3 PMMA and PS beads Raman measurement

In this subsection we present and discuss the Raman measurement on Poly-
methyl methacrylate (PMMA) and Polystyrene (PS) beads with the HSM.
The PMMA and PS are thermoplastics that constitute a standard sample
for Raman spectroscopy as their Raman spectra have been broadly mea-
sured and they are well known in literature [65, 66, 67, 68, 69].

For Raman measurements with the HSM, the geometry of the top laser
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illumination (described in section 3.1 and depicted in Figure 3.2) is used.
The PMMA and PS beads sample has been prepared on an aluminum sub-
strate 9. We have performed two different measurements with two different
pump sources: Ti:Sapphire laser (continous wave, wavelength 785nm, power
155mW ) and frequency doubled Nd:YAG laser (Spectra−PhysicsrMillennia,
continous wave, wavelength 532nm, power 2W ). In Table 4.2 all the mea-
surements parameters are indicated. The wedge excursion have been 9.6mm
that is almost the maximum allowed by the wedge translator for a unilateral
acquisition (see chapter 3) and, after Happ-Genzel apodization, this results
in a spectral resolution of ∼ 110cm−1 of the spectral hypercube. The spec-
tral resolution can be improved by increasing the maximum delay scan: this
can be reached by choosing longer wedges and a crystal with stronger bire-
fringence than the α-BBO 10. For both measurements we have used dichroic
beam splitter (as it is shown in Figure 3.2): Semrockr LPD02-785RU for
785nm laser and Semrockr LPD02-532RU-25 for 532nm laser. In the de-
tection branch we have located two filters in order to remove the laser signal:
Semrockr RazorEdge Long Pass E-Grade 785 and Thorlabsr FELH0800
for 785nm laser; Semrockr RazorEdge LP03-532RU-25 and Thorlabsr

FELH0550 for 532nm laser.

laser power obj. fiber scan time g. bin.

785nm 50mW 50× 200µm +30→ +670(×15µm) 40s 1 2

532nm 450mW 20× 400µm +45→ +1005(×10µm) 2s 1 2

Table 4.2: PMMA and PS beads measurements paremeters with the two different pump sources.
laser: laser pump wavelength. power: laser power on the sample. obj.: objective. fiber: fiber
diameter. scan: wedge translator scan. time: CCD integration time. g.: CCD gain. bin.: CCD
binning.

In the measurement with the 785nm excitation source the power on the
sample was 50mW on a uniform circular spot of ∼ 200µm which was the
image of the exit of the 200µm fiber (see section 3.1) 11. The integration time
per frame was set to 40s in order to reach a fluence per frame of ∼ 5·10−2 mJ

µm2

that is small (about two orders of magnitude lower) in comparison to the

9Aluminum is typically used as sample substrate in Raman measurement because it
has not Raman or fluorescence signal

10Using equation 1.22 considering αapex = 7°, Y V O4 crystal (n‖ = 1.9987 and n⊥ =
2.2240 at 600nm wavelength) and a wedge excursion x = 30mm, we can obtain a delay
scan ∆τ = 2745.7fs that corresponds to a spectral resolution of 12.140cm−1 that is
acceptable if compared with other Raman imaging systems (for comparison see for example
[50, 70, 71]).

11The magnification of the image of the fiber exit on the sample plane is not exactly 1
and infact the laser spot in the FOV is a bit smaller with respect to the diameter of the
fiber.
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ones typically used in Raman widefield [54, 55, 58, 59]. In the measurement
with the 532nm laser the power on the sample was 450mW on a uniform
circular spot of ∼ 400µm 12 and the integration time per frame was set to
2s: this means a fluence of ∼ 6 · 10−3 mJ

µm2 . Figure 4.8 shows the False RGB
map retrieved from the spectral hypercube of the 532nm exitation laser
measurement in the spectral range from 2668cm−1 to 3172cm−1 and Figure
4.9 (a) and Figure 4.9 (b) show the related spectra of PS and PMMA. As
it can be seen, the spectra are completely fluorescence-free because of the
unilateral temporal hypercube acquisition described in subsection 4.2.2: this
is the reason why we can rely on a 532nm excitation source that normally
is avoided in FT Raman systems in order to have negligible fluorescence
signal [60]. As the Raman signal intensity scales with the fourth power of
the excitation frequency, switching from the 785nm to the 532nm extitation
enhances the Raman emission by a factor ∼ 4.7: this explains why with the
532nm pump we can rely on a smaller fluence on the sample for the single
acquired frame and therefore on a much smaller integration time.

12See the previous note about the image of the fiber exit on the sample plane.
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Figure 4.8: False RGB generated from the spectral hypercube considering the wavenumber interval
2668cm−1 − 3172cm−1. In this spectral interval the beads that results in green are the PMMA
and the beads that results in yellow-orange are the PS. The yellow arrow indicates a ROI in a PS
bead and the green arrow indicates a ROI in a PMMA bead. Laser pump wavelength: 532nm.
Power on the sample: 450mW . Image dimensions: 502 × 501 pixels. Total temporal hypercube
acquisition time: 36 minutes.

Figure 4.9: (a): Raman spectrum obtained as the mean of pixels in a ROI on a PS bead indicated
by the yellow arrow in Figure 4.8. The spectral resolution is ∼ 110cm−1. (b): Raman spectrum
obtained as the mean of pixels in a ROI on a PMMA bead indicated by the green arrow in Figure
4.8. The spectral resolution is ∼ 110cm−1.

The spectra obtained are in agreement with the ones reported in liter-
ature (see for example [65, 68]) and in the measurement with 532nm laser
the strong peaks in the 3000cm−1 region related to the C-H bond stretching
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vibration [72] are clearly present.
Figure 4.10 shows the comparison between the spectra of PS obtained

with the 532nm excitation laser and the 785nm excitation laser: as it can
be seen the S/N ratio is much better in the 532nm case and in the 785nm
case the high wavenumber peaks are not present as they fall in a wavelength
region near the 1100nm limit of the CCD sensitivity. Furthermore we have
to point out the fact that the measurement with 532nm has required a total
acquisition time of 36 minutes instead the measurement with 785nm has
required a total acquisition time of 7 hours and 7 minutes! A total measure-
ment time of 36 minutes for a 502×501 pixels image means a time per pixel
of ∼ 9ms that is a competitive value with respect to the raster-scanning
approaches that can be found in literature.

As the spectra resolution is ∼ 110cm−1 we are not able to distinguish
all the peaks reported in [65] and [68]: as we have already pointed out,
the spectral resolution can be greatly improved by increasing the maximum
delay scan achievable by the wedge translator. Anyway the spectral hyper-
cube obtained from the measurements with the 532nm allows us to clearly
distingush the two species in the FOV based on their spectra with a very
rapid acquisition in comparison to the performances of other Raman imag-
ing systems. This is a very promising result considering that the HSM is a
very compact and stable system that could have all the characteristics to be
used in routinely laboratory and industrial research.

Figure 4.10: Comparison of the spectrum of a PS beads in the measurement with 532nm extitation
laser (orange line) with respect to the measurement with 785nm extitation laser (red line).

4.2.4 Microplastics Raman measurement

In a collaboration project with Università Politecnica delle Marche and Uni-
versità degli Studi di Padova we have planned measurements to test the HSM
system in a possible application for the hyperspectral imaging identification
of a series of microplastics (MPs). Nowadays MPs contamination constitutes
a serious global environmental problem because MPs, particles smaller than
5mm in size, are easily ingested and have the potential to accumulate in
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both biota and acquatic food web [73]. MPs are produced directly in pellets
or abrasive agents industry but the large majority of environmental MPs
are of secondary origin (e.g. degradation of plastic wastes or synthetic cloth
washing).

In this subsection two examples of microplastics Raman measurements
with the HSM are presented. These two measurements have been per-
formed on a polyethylene (PE) and polystyrene (PS) powders mixture (PE
grains 20 − 25µm, PS grains 50 − 100µm) and on a polyester (PEST) 13

and polyamide (PA) fibers mixture (PEST fibers 618 ± 367µm length and
13±1µm diameter, PA fibers 566±500µm length and 11±1µm diameter) 14.
The samples have been prepared on an aluminum substrate and illuminated
by the 532nm laser described in subsection 4.2.3 with the same illumination
geometry in the HSM. The parameters have been identical for both these
measurements and they are listed in Table 4.3.

laser power obj. fiber scan time g. bin.

532nm 450mW 20× 400µm +45→ +1005(×10µm) 600ms 1 2

Table 4.3: PE and PS mixture and PEST and PA mixture measurements paremeters. laser: laser
pump wavelength. power: laser power on the sample. obj.: objective. fiber: fiber diameter.
scan: wedge translator scan. time: CCD integration time. g.: CCD gain. bin.: CCD binning.

Figure 4.11 and Figure 4.13 show the reflectivity images obtained with
the top illumination using a lamp (a) and the false RGB images retrieved
from the Raman spectral hypercube (b) of the two measurements considering
the range from 2590cm−1 to 3245cm−1 for the PE and PS mixture and the
range from 2668cm−1 to 3412cm−1 for the PEST and PA mixture. Figure
4.12 and Figure 4.14 show the spectra of the two species for the respective
measurement.

As in the measurement on the PMMA and PS beads described in sub-
section 4.2.3, on the basis of the spectra we are able to spatially distinguish
the two species in the FOV. The spectrum of PS (Figure 4.12 (a)) is consis-
tent with the one retrieved from the PS bead in the previous section. The
spectrum of PE (Figure 4.12 (b)) is in agreement with the one described in
[75]. We can see the band at 2832cm−1 that is consistent with the sym-
metric (2848cm−1) and antisymmetric (2883cm−1) carbon-hydrogen bond
stretching in the CH2 group: we are not able to distinguish these two peaks

13The generic description of “polyester” usually refers to fibers of the polymer
poly(ethylene terephthalate) (PET) [74].

14All these samples have been arrived from the Ecotoxicology and Environmental Chem-
istry of Università Politecnica delle Marche.
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because of the poor spectral resolution. The peak at 1432cm−1 can be re-
lated to the CH2 bending (between 1416cm−1 and 1440cm−1 in [75]) and
the peak at 1284cm−1 is explained with the CH2 twisting (1296cm−1 in
[75]).

Figure 4.11: (a): reflectivity image of the PE and PS measurement (1004×1002 pixels) illuminating
the sample by a lamp. (b): false RGB image (502×501 pixels) generated from the spectral Raman
hypercube considering the wavenumber interval 2590cm−1 − 3245cm−1. In this spectral interval
of the false RGB, the PE grains result in light blue and the PS grains result in yellow. The yellow
arrow indicates a ROI in a PS grain and the light-blue arrow indicates a ROI in a PE grain. Laser
pump: 532nm. Power on the sample: 450mW . Total temporal hypercube acquisition time: 14
minutes.

Figure 4.12: (a): Raman spectrum obtained as the mean of pixels in a ROI on a PS grain indicated
by the yellow arrow in Figure 4.11. (b): Raman spectrum obtained as the mean of pixels in a
ROI on a PE grain indicated by the light-blue arrow in Figure 4.11. The spectral resolution is
∼ 110cm−1.
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Figure 4.13: (a): reflectivity image of the PEST and PA measurement (1004 × 1002 pixels)
illuminating the sample by a lamp. (b): false RGB image (502 × 501 pixels) generated from the
spectral hypercube considering the wavenumber interval 2668cm−1 − 3412cm−1. In this spectral
interval of the false RGB, the PEST fibers result in green and the PA fibers result in blue. The
blue arrow indicates a ROI in a PA fiber and the green arrow indicates a ROI in a PEST fiber.
Laser pump: 532nm. Power on the sample: 450mW . Total temporal hypercube acquisition time:
14 minutes.

Figure 4.14: (a): Raman spectrum obtained as the mean of pixels in a ROI on a PEST fiber
indicated by the green arrow in Figure 4.13. (b): Raman spectrum obtained as the mean of pixels
in a ROI on a PA fiber indicated by the blue arrow in Figure 4.13. The spectral resolution is
∼ 110cm−1.

The PEST spectrum (Figure 4.14 (a)) is in agreement with the Raman
spectra reported in [75, 76, 74, 77]. In [76] a Raman band is identified at
1615cm−1 (1610cm−1 in [77]) and it is related to the C−C bond in the ben-
zene ring and in [74] the band near 1700cm−1 (1725cm−1 in [77]) is related to
the ester C = O stretching: we can see these two peaks in our measurement
with the HSM in the band at 1614cm−1 and as a shoulder at ∼ 1697cm−1.
In [77] a clearly visible band at 1289cm−1 is reported and this is the one
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we have at 1284cm−1. In the same article other peaks around ∼ 1100cm−1

and ∼ 850cm−1 are identified and these are in agreement with the ones we
can see at 1103cm−1 and 872cm−1. The peaks at ∼ 2900cm−1 (that we see
as a shoulder in Figure 4.14 (a)) can be explained as the frequencies of the
CH2 symmetric (2908cm−1) and antisymmetric (2970cm−1) stretching that
are shifted of ∼ 50cm−1 with respect to the ones polyethylene because of
the presence of the oxygen adjacent to the C −H bond in PEST chemical
structure [75]. The strong peak at ∼ 3000cm−1 is also present in the spectra
shown in literature.

The spectrum that results from the PA fiber (Figure 4.14 (b)) can be
explained on the basis of what is discussed in [78]. The high 2899cm−1 peak
can be related to CH2 antisymmetric (2922cm−1) and symmetric (2850cm−1

and 2907cm−1) stretching. The peak at 3270cm−1 is the nitrogen-hydrogen
stretching in the amide group. The peak at 1631cm−1 can be related to the
amide I Raman peak that is a typical one in both synthetic and natural poly-
mers containing the secondary amide group −CONHR [75]. The 1449cm−1

can be correlated to the evident CH2 reported at 1440cm−1 in [78] and then
all the other peaks are probably consistent with the CH2 twisting and C−C
stretching listed in the same article.

4.2.5 Graphene monolayer Raman measurement

In this subsection a Raman measurement on a graphene sample is presented.
First we provide a brief and general introduction on its structure and prop-
erties together with a brief explanation on the Raman process in such a
material and the related peaks that have been studied in literature. A com-
plete and deep study of the Raman spectrum of graphene is beyond the
purpose of this subsection that has only the role to show a potential appli-
cation of the HSM.

Graphene is a flat monolayer of carbon atoms organized in a 2D hon-
eycomb lattice and it is the basic constituent of the 3D graphite, 1D nan-
otubes and 0D fullerenes [79]. Graphene has been firstly isolated and char-
acterized by Andre Geim and Konstantin Novoselov in 2004 [80] and they
were awarded the nobel prize in 2010 for this work. Nowadays there is
an intense interest in graphene because of its exciting potential applica-
tions for example in electronics, photonics, sensors and energy generation
and storage [81, 82]. Graphene is characterized by very high carrier mobil-
ity and for this reason it should enable transistors operating at very high
frequencies (∼ 100GHz) [83]; electrons in graphene behave as massless two-
dimensional particles which results in a wavelength independent absorption
[81]; graphene is the strongest material ever measured [84]...

The Raman spectrum of graphene has been measured and characterized
for the first time in 2006 [85]. As outlined in [86], Raman spectrum contains
information about both atomic structure and electronic properties. For this
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reason the Raman spectrum is a fundamental phenomenon that allows to
distinuish pristine graphene from defected graphene and to study edges and
doping which are at the origin of variation of the electronic properties. From
the point of view of its electronic properties, graphene is a 2D zero-gap semi-
conductor [87]. The microscopically description of Raman scattering of light
in a semiconductor involves three systems [38]:

• incident and scattered photons

• electrons in the semiconductor

• the phonon involved in the scattering

This description is more complex with respect to the one used to demon-
strate the Raman activity in molecules which is related only to the normal
modes of oscillation of the atoms nuclei 15. One-phonon modes in defect-
free samples can be Raman active only if their symmetry is correct and
their wave vector is zero. As pointed out in [38], in a microscopic picture
the Raman scattering in a semiconductor proceeds in three steps:

1. The incident photon excites the semiconductor into an intermediate
state |a〉 by creating an electron-hole pair (or exciton)

2. The exciton is scattered into another state by emitting a phonon. We
denote this intermediate state as |b〉

3. The exciton in |b〉 recombines radiatively with emission of scattered
photon

In such a scattering process the wavevector must be conserved: this means
that the wavevector in the final state |b〉 must be equal to the wavevector
in |a〉. There can be two-phonon Raman scattering events that ivolve the
emission of two phonons such that the wavevector conservation is satisfied:
in the particular case in which the two phonons are identical (same wavevec-
tor) the related Raman peak is called overtone.

As it can be seen from this microscopic description, electrons play an
important role in the Raman scattering of phonons although they remain

15Raman activity in molecules is present for a particular normal mode if the Raman
tensor [α] belongs to the same symmetry species as that normal mode [75]. Given a
polarizability tensor [p] and a particular normal mode with coordinate Um, the single
element ij of the Raman tensor is defined as:

αij =
∂pij
∂Um

where pij is the ij element of [p]. The polarizability tensor is such that

~µ = [p] ~E

where ~E is the electric field and ~µ is the induced dipole moment.
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unchanged after the process.
As shown in [86], graphene presents two main Raman peaks called the G

peak and the 2D peak. The G peak (∼ 1580cm−1) is due to the degenerate
in-plane optical mode, thus it is related to a one-phonon process. The 2D
peak (∼ 2700cm−1) is due to a two-phonon scattering event called interval-
ley event: it is named 2D because it is the overtone of the D peak which
is due to the breathing modes of the six-atoms rings of graphene. The D
peak (∼ 1350cm−1) would be determined by a one-phonon scattering pro-
cess but, as a result of wavevector conservation, it can happen only by means
of the electron scattering on a defect: for this reason it is absent in pristine
graphene. Another peak that is present in pristine graphene is the so called
2D’ peak which is the overtone of the D’ peak: the D’ peak is related to an
intravalley process and, as well as the intervalley process related to the D
peak, it can happen only by means of a defect. 2D’ peak (∼ 3250cm−1) is
present in pristine graphene because, as well as the 2D peak process, it is
due to a two-phonon scattering where the wavenumber is conserved. There’s
another scattering event that gives rise to another peak called D+D” that
is a combination of the phonon related to the D peak and a phonon re-
lated to the D” peak. The D” peak has been seen in defected graphene
measured with visible light and it is related to a phonon at ∼ 1100cm−1

[88]. The D+D” peak (∼ 2450cm−1) is present in the spectrum of pristine
graphene because, as the 2D peak, it is related to a two-phonons (phonon
D + phonon D”) intervalley scattering event. In defected graphene there’s
the D+D’ peak (∼ 2975cm−1) which is due to a two-phonons (D phonon +
D’ phonon) scattering event with one intravelley phonon and one intervalley
phonon: this process is not possible in pristine graphene because the over-
all wavevector conservation can be guarateed only by means of an electron
scattering on a defect. Figure 4.15 shows the Raman processes related to
the peaks we have considered in our discussion.
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Figure 4.15: The most relevant scattering process related to the graphene Raman peaks. Each
graph (energy E vs wavenumber k) presents the schematic of graphene electronic dispersion (Dirac
cones).

With HSM we have measured an hexagonal-shaped monolayer graphene
sample (heaxagon side ∼ 200µm) grown on a SiO2 substrate. The measure-
ment paramenters are listed in Table 4.4.

Figure 4.16 shows a false RGB image obtained from the spectral hy-
percube considering an interval around the graphene 2D peak measured at
2645cm−1 (see the graphene measured spectrum in Figure 4.17). Thanks
to this peak we are able to clearly distinguish the graphene from the SiO2

substrate. As it can be seen from Figure 4.17, in this measurement we can
see the G peak at 1567cm−1. The spectrum doesn’t clearly show the D+D”
peak expected at ∼ 2500cm−1 and the 2D’ peak expected at ∼ 3250cm−1

because the S/N is too low: there’s a very small peak near the 2D peak
(2645cm−1) at ∼ 2428cm−1 and another one at ∼ 3198cm−1 but we can’t
assure that they are real signal peaks. The G peak presents a small shoulder
on its right: this is probably the D’ peak that emerges in cases of defects
but the spectral hypercube of this measurement is too much noisy to outline
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a spatial map of the defects on the basis of this property and a much better
spectral resolution would be needed to clearly distinguish the G peak from
the D’ peak. The absence of a clear D peak at ∼ 1350cm−1 suggests that
the graphene sample is not too much defected.

laser power obj. fiber scan time g. bin.

532nm 789mW 20× 400µm +45→ +1005(×10µm) 6s 1 2

Table 4.4: Hexagonal monolayer graphene measurement paremeters. laser: laser pump wave-
length. power: laser power on the sample. obj.: objective. fiber: fiber diameter. scan: wedge
translator scan. time: CCD integration time. g.: CCD gain. bin.: CCD binning.

Figure 4.16: False RGB image (502×501 pixels) generated from the spectral hypercube considering
the wavenumber interval 2537cm−1 − 2797cm−1. In this spectral interval of the false RGB, the
graphene results in green and the SiO2 background results in black as it has no signal in the
considered spectral range. Laser pump: 532nm. Power on the sample: 789mW . Total temporal
hypercube acquisition time: 1 hour 40 minutes
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Figure 4.17: Spectra obtained as mean of a ROI on the graphene and a ROI on the SiO2 back-
ground. The 2D and the G peak of graphene are clearly distingushable.

In [85] the change and the shift of the 2D peak as the numbers of
graphene layers increases is discussed. The measurement we have taken
with the HSM has a S/N that is not enough to obtain a reliable map of
the 2D peak for the peak spectral position in each single pixel but, with an
higher S/N, it would allow to study the presence of multiple graphene layers
on the sample area. A possible way to increase the S/N would be using
a band-pass filtering that removes all the light under ∼ 1000cm−1: in this
way the half-dynamics of the interferograms determined by the fluorescence
of the SiO2 would be reduced and this would allow an higher binning or
integration time. In this way we will loose the small wavenumber interval
of the spectrum but, from Figure 4.17, it is clear that that region of the
spectrum is anyway spoilt by the peaks of the SiO2 substrate. In addition
the relevant graphene peaks are between 1100cm−1 and 3500cm−1.

This preliminary result obtained with the HSM is very promising because
it shows the capacity of the system to perform widefiled Raman imaging on a
monolayer material in a reasonable measurement acquisition time and, after
some setup improvements (such as the spectral resolution and the bandpass
filtering), the possibility to study the electronic properties of graphene sam-
ples on their surface with a spatial resolution that is the one of an optical
microscope.
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Conclusions and future
planning

This thesis work has validated the widefield high-throughput HSM as a re-
liable system to perform fluorescence-free Raman imaging measurements in
small acquisition times (∼ 9ms per image pixel) and with an high spatial
resolution (∼ 1µm) and spectrum peak sensitivity (∼ 0.5nm). However the
spectral resolution allowed by the present TWINS interferometer based on
α-BBO crystal is ∼ 110cm−1 which is not enough for Raman adjacent peaks
distinction. As it has been pointed out in this thesis, the spectral resolution
can be improved with an higher wedge excursion in the measurement acqui-
sition and with an higher birefringence of the crystals. For this reason the
next step in the optimization of the HSM for Raman imaging application is
to improve the spectral resolution up to 25cm−1 at least: we have extimated
that such a resolution can be reached using Y V O4 crystal and an almost
three-times longer wedge excursion with respect to the one allowed by the
actual interferometer. The enhancement of the resolution will make the
HSM a very impressive instrument in the Raman imaging community and
a very powerful setup for several applications. Furthermore the acquisition
approach outlined in subsection 4.2.2 can allow separation of the Raman
signal from the fluorescence one. This property can be exploited for the
acquisition of a pair of measurements for the same sample: one fluorescence
acquisition and one Raman acquisition. Further work has to be done in
this sense but, in principle, this system is ready for the measurement of a
fluorescence hypercube and a Raman hypercube of the same sample FOV.
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sorella Maddalena (Maddaaa!!!) per le lunghe chiaccherate fisico-matematiche (e
di programmazione) e su svariati argomenti (tra cui musica, film e attori) e per la
simpatia. Ringrazio mio fratello Bernardo per il confronto su argomenti di fisica
e di informatica di un certo livello (tanto lui li macina anche meglio di me che ho
7 anni in più) e per il “movimento” che ha sempre portato in famiglia. Ringrazio
mio fratello Martino per tutte le cose che mi racconta e mi fa imparare ogni volta
che ci vediamo e per le discussioni su Star Wars, Minecraft e tante altre belle cose.
Ringrazio tutta la mia famiglia allargata: le nonne Ignaziella e Carmela e tutti
gli zii e cugini con cui sono cresciuto e con cui ho vissuto innumerevoli esperienze.
Ringrazio tutti quelli che mi guardano da lassù: i nonni Benedetto e Salvatore,
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della Games Workshop. Ringrazio Totò, il campione in carica delle Olimpioladi

prima del mio anno, per avermi aiutato a “spiegare i calendari” nella mia prima

cena di Natale. Ringrazio Peterburg per avermi invogliato a conoscere Python e

per i saluti “Ciao bellezz!”. Ringrazio Ago per tutte le volte che si incazza quando

il Milan subisce un’ingiustizia. Ringrazio Bold per la torta al testo e per essere un

82



Acknowledgements Ringraziamenti

tifoso juventino molto sportivo (anche se, a volte, gode un po’ troppo quando il

Milan va male). Ringrazio Marco, uno dei superstiti del Liceo Quadri di Vicenza

(come il sottoscritto), per la musica che ascolta e mi ha consigliato (non è facile al
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